Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

Developing agents in the RoboCupRescue simulation project

Leconte, Emmeline; Van Peteghem, Hugues

Award date:
2002

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. Sep. 2024

https://researchportal.unamur.be/en/studentTheses/d021cf54-92be-4b99-a620-c13f22fc6a3b

5
i
S
o o
g 5
z M
= 7
3 &
= -
ATV
> “ &
MappdR

Facultés Universitaires Notre-Dame de la Paix, Namur

Institut d’Informatique

DEVELOPING AGENTS IN
THE ROBOCUPRESCUE
SIMULATION PROJECT

Emmeline LECONTE et Hugues VAN PETEGHEM

Promoteur : M. Schobbens

Maitre de stage : M. Tadokoro

Mémoire présenté en vue de ’obtention du grade de Maitre en Informatique

Année Académique 2001 - 2002

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Abstract. RoboCupRescue is a research project
which the purpose is to provide emergency decision
support by integration of disaster information,
prediction, planning, and human interface. The main
objective of this document is to help new agent
developers in this project. To do it, we detail the
rescue agents conception by specifying in a clarified
way the various steps of development. We give also,
as example, our source code with complete
explanations, what will allow a better assimilation of
the specificities imposed by the project. To be
complete, this work introduce the notions of agent,
multi-agent system and of multi-agent simulation
and confronts them with the project.

Keywords: agent, multi-agent system, multi-agent
simulation, RoboCupRescue, developing agents,
earthquake.

Résumé. RoboCupRescue est un projet de recherche
dont le but est de fournir un support de décision
d'urgence, par l'intégration d'informations sur les
catastrophes, d'outils de prédiction, de planification,
ainsi qu'une interface homme-machine. Ce
document a pour principal objectif d'aider de
nouveaux développeurs d'agents dans ce projet. Pour
ce faire, nous détaillons la conception d'agents
secouristes en spécifiant de manieére précise les
différentes étapes de développement. Nous donnons
aussi, a titre d'exemple, notre code source
accompagné d'explications complétes, ce qui
permettra de mieux assimiler les spécificités
imposées par le projet. Afin d'étre complet, ce travail
introduit les notions d'agent, de systéeme multi-agents
et de simulation multi-agents et les confronte au
projet.

Mots-clés: agent, systéme multi-agent, simulation
multi-agent, RoboCupRescue, développement
d'agents, tremblement de terre.

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Acknowledgements

To Professor Pierre-Yves Schobbens,
for the supervision of this work;

To Satoshi Tadokoro, the chairman of the RoboCupRescue Comity,
for his welcome within his work team in Kobe;

To Tomoya Nakanishi, Keiko Watanabe, Professor Takamori, Hiroshi Saito,
Hattori Motofumi, Takuhiro Dohta

and the other colleagues of the Engineering Faculty of Kobe's University,
for their hospitality, their kindness and their patience;

To our families and friends (Japanese, Taiwanese, Danish, Welsh, Spanish,
French and Belgian),
for their support during our five years of studies;

To our classmates,
for the unforgettable years within the Computer Science Institute;

And, finally, both of us,
for this incredible year!

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Table of contents

I INTRODUCTION ..o 12
II. MULTI-AGENT SIMULATIONcooooi 14
1. INTRODUCTION ...ttt 14

2. ARTIFICIAL INTELLIGENCEcutiitiiitiiiiiiie ittt sttt ettt ettt 14

3. DEFINITIONS.....ooiiiitiiiitiniee et sttt sttt et st eee e ereesee e ene e ene et ene e sne e ene e enneenneenneenneennes 16

1) AGORE ..o 16

2) Multi-Q@eNT SYSTOMI. ...t 18

3) Multi-agent SIMUIALIONcccciiiiiiii i 20

4. ENVIRONMENT L....oiiiiiiiiiiiiii i e 21
1) DEIRITION ...t 21

2) PFOPEFHESt 21

3) Action and modelling action...................c.ccocceeiiiiiiiiiiiiiiiiii e 21

4) SHUCTUFE Of AQENT ... 24

5) Modelling of environmentsccccooiieiiiiiiii it 26

5. RELATIONS BETWEEN AGENTS.....cccuttiiiiiiiiteniiieiireeiteenineeniteestee et esieeesineesineeens 27

D) INLeraction ... 27

2) COMMUNICATION. ...t eeee et e e e 30

6. CONCRETE APPLICATIONSocuttiitiiitiiteaiieaittaine et et et et ettt ettt e 31

1) FOF@WOFA. ..o 31

2) EIeCIFONIC COMMBICE.cccviiieeee et 31

3) Honey bee Simulation..................cccccooiiiiiiiiiiiiii it 32

4) RODOCUD. ... 32

III. ROBOCUPRESCUE: A MULTI-AGENT SIMULATION............. 38
L. INTRODUCTION......ccocoiiiiiiiiiiiiiiiii ittt st 38

2. OVERVIEW Lottt et et e 40

3 UGS s 40

Ao VIEWER....coooiiiiiii et 41

5. COMPONENT SIMULATORScciouiiutiiiaintsiit ettt ettt 43

6. AGENTS. ..ot e 44

7. KERNEL ..ot 44

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

8. PROGRESS OF THE SIMULATIONccoviuiirinirianninineanneanreeineaneesnneanneannesnneenneenneennes 45
IV. DEVELOPING AGENTS ..., 48
1. INTRODUCTIONcoitiriiiniieieenieenteeniee ettt ettt e 48
2. AGENT'SLIFE......cciiiiiiiiiiiiiiiiiiieit ettt sttt 48
3.0 LONGUDP ... s 50
1) PPOTOCOL..........ccoooiiii i 50

2) Packer JOFMAQLcoociiiiii e 51

3) Packet header [iStcoociiiiiiiiiiiieiiiiiii e 52

4. CONNECTION......ccoimiiiiiatiiniiintettete ettt ene ettt ene et en ettt ene et ene s 54
1) SCREIIA...........coiooiii e 54

D) PACKEES ... 55

5. WORLDMODELLING.......ccciiiiiiiiiiiiiiiiiiii s 60
1) INIPOQUCTION ... 60

2) VORI ..o 61

3) CIVITIAN. ... 62

4) FireFighterBrigade...............ccc.oooiiiiiiiiiiiiiiiiii e 63

5) AMbBULANCETEAN ... 64

6) POLICEIOFCE ... 65

7) ROGA........ccciiiiiiieie e 65

8) NOGE........cooiiiieeee e 67

9) BUHAING ... 68
10) REJUZE ... 69
11) FIPOSIALION. ..o 69
12) AMBUIANCECENIFEceeiiiieeeeeeii e 70
13) POLICEOSICE ... 70
14) CONCPEIRIY ... 70

6. THE ACTIONS.oiitiiiititeiiit ettt ettt ettt et et ettt enenees 72
1) Move (Foute)ooooiiiiii 73

2) Tell (MSSAZE). ... 74
3) Say (message, AQent Id)..............ccccoiiiiiiiiiiiiii e 75

4) Extinguish (building id)...............ccccoiiiiiiiiiiii i 76

5) Clear (roQd id).............ccccoooiiiiiiiiiiiiii e 77

6) Rescue (AQENt Gcoooouiiiiiiii it 77

7)) Load (Aent Gd)ccoiiiiiii e 78

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

8) UNIOQA ... 79

9) Code eXAMPIEccciiii e 80

7. NEXTKERNELooiiiiiiiiiiiiie ittt et e ettt e et e e e e e e neeeens 80

8. CONCLUSIONuutiiitiieetet et et ettt ettt ettt et et e ettt ettt e enb e e et e e eteeeaeeeaenneeanneaens 81
V. OUR AGENT S e 84
1. INTRODUCTIONcoitiiiiiiiite ettt e e ettt e ettt e et e e ettt e e et e e e est et e e ettt e e e anteeeeanneeens 84
2. MATERIAL AND SIMULATIONuuttiiiiieeeeiiiiiireeeeeeeseeiirareeeeeessasiraseeeaeessasssnsnenas 84

3. PROGRAMMATION LANGUAGEcciiiiiiiiiiiiiiieeeeeeeiiiieeeeeeeessiiiraeeeaeeessiiaiaeeeaeeens 86

4, METHODOLOGY AND PRESENTATION OF OUR ARCHITECTURE.............cc0evvverneerneann. 87

5. KEEPING MAP DATAiiiiiiiiiiie ettt e et e ettt e e ettt e e et e e et e e e e e e e antaeeeeaneneeeaaes 90

6. TALKING WITH THE KERNELceeiiuuiteeatieeeeaieeeeaeiete ettt e e aeaeeaeaneaeaeasnneeaeannaeeens 93

7. GENERALIDEAS.....eittiutirtireineineanesneasseassessseansesnseassesssesssesssesssesssessnesnsesnsesnne 94

8. MOVING ALGORITHMcceiiiiiiieiiiiietiiiieeaaiteteeaeieee e ettt e e e antaeeeaaeneeeestneeesannneee e 98

1) INIPOQUCTION ... 98

2) The simulated world map = graph...............cccccovviiiiiiiiiiiiiiiie e 98

3) THE PrOBIOHL. ... 99

4) Our solution: Dijkstra's algortinm................ccc.cooviiiiiiiiiiiiiiiiiie e, 100

5) IMPIEMENIQLION ... 101

9. COMMUNICATION PROTOCOL,ceiuuiiitiiaiiiaaiiieaiteeateeaaieeasiseaanbeeaaeaeaseaeaeeeaanneas 103
10. FIRE FIGHTER BRIGADES ALGORITHMScc0vvieiirrieeinneeesinneeesenneessnneessnnneens 105
11. AMBULANCE TEAMS ALGORITHMS.........cccvviiiiiiiiieiiiieeeieiieeeeireee e e eeeeiaeee e 107
12. POLICE FORCES ALGORITHMSccocuiiiiiiieeeiiiiiirireeeeeseeiirseeeeaesesannsnssneesesssannns 109
13. CENTRE ALGORITHMSutiiiitiiitit it et ettt e st e eateeeeee e ieeeaiaeesabeeanbeeaaeeenneae e 110
14, IMPROVEMENTSoiiiiiiiiiieiiiieie e ettt e e et ee e e eete e e e et e e e et e e e e ente e e e aneteeeeantneaeaanneeens 113
15, CONCLUSIONoctviiieiireiresieesiresieesieesinesseesteesteesteesinesseessaestasssesnsnsssessseesseenseens 114
VI, CONCLUSION ...ttt 116
VII. BIBLIOGRAPHICAL REFERENCES... 118
VI ANNEXES e 122

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Index of figures and tables

Figure 1: Timeline of major AI eVents.cccc.cooviiiiiiiiiiiiiiiiee 14
Figure 2: The structure of QR QQeRt...................cccccoiiiiiiiiiiiiiiiieeie e 24
Table 1: Classification of interaction SitUGLions.ccccccooeeiiienciiiaenn.. 28
Table 2: Main modes of communication in multi-agent Systems........................... 30
Pictures 1: Kobe's earthquake.cccccciiiiiiiiiiiiiiiiiiiiiiiiee 38
Figure 3: Overview of rescue Simulator.ccccccoioiiiiiiiiiiiiiieee 40
Figure 4: 2D VIEWer.ooooiiiiiii i 41
Figure 5: 3D VIeWer.oooiiiiii e 42
Figure 6: Component SImMUIGLOFS.ccc..cooiiiiiiiiiiiiii e 43
Figure 7. Communication at the beginming.ccc.ccooveiiiviiiiiiiiiiie 45
Figure 8: Communication among modules.c...ccccceieviiiiiinniiiiiee 46
Table 3: LongUDP Reader.................cccccciiiiiiiiiiiiiiiiiiie e 50
Figure 9: Packet fOrmat...................coccciiiiiiiiiiiiiii e 52
Figure 10: Small packet fOFmat..................ccc.coooiiiiiiiiiiiiiaii e 52
Table 4: KA packet header........................cccciiiiiiiiiiiiiiiii 53
Table 5: AK packet header.........................cccciiiiiiiiiiiiiiii i 53
Figure 11: Connection to the kernel.........................ccccccciiiiiiiiiiiiie 54
Figure 12: Receiving Sensory infOrMAtion.cccccocoveciiiiiiiiiiiieiiaee 55
Figure 13: AK CONNECT packet.cc..cooociiiiiiiiiiiiiiiiieiee 56
Table 6: AGENL'S [YDES.cc.ieiiiii e 56
Figure 14: KA CONNECT OK packet.ccccccooeciiiiiiiiiiiiiiiiiiiiiieee 57
Figure 15: KA CONNECT ERROR packet.ccccccoioiiiiiiiiiiiiiiiiiiie 58
Figure 16: AK ACKNOWLEDGE packet.ccccccciiiiiiiiiiiiiiiiiiiiice 58
Figure 17: KA HEAR packet...................ccocoiiiiiiiiiiiiiiie e 59
Figure 18: KA SENSE packet..................cccociiiiiiiiiiiiiiii e 59
Table 7: WOFId ProOperties.c.c.ccouviiiiiiiiiiiiai e 61
Table 8: Civilian Properties.ccoccuuiiiiiiiiaiii e 63
Table 9: FireBrigade properties.cccccuiuuiiiiiiiiiiiiiiiie e 64
Figure 19: Road and node on the RoboCupRescue map.cccc....cc..... 65
Table 10: ROGA PrOPEFLIes.cooiiiiiiiiiieii e 66

-10 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Table 11: Node Properties.coocciiiiiiiiiiiiiiii e 67
Table 12: Building properties.cc.couueciiioiiiiiieiiiie e 69
Table 13: KA CONNECT OK filling.ccc.ccooooiiiiiiiiiiiiiiiiiiie 71
Figure 20: AK MOVE packet.ccccccoooiiiiiiiiiiiiiiii e 73
Figure 21: AK TELL packet.ccc..cccociiiiiiiiiiiiiiiiee e 74
Figure 22: AK SAY packet.ccccciiiiiiiiiiiiiiii e 75
Figure 23: AK EXTINGUISH packet................cccccoiiiiiiiiiiiiiiiiieiiieeaee 76
Figure 24: AK CLEAR packet.cccc.cooiiiiiiiiiiiiiiiiie e 77
Figure 25: AK RESCUE packer.ccc.ccooiiiiiiiiiiiiiiiiiiieee e 78
Figure 26: AK LOAD packet...................ccccciiiiiiiiiiiiiiiiieee e 79
Figure 27: AK UNLOAD packet.ccc..ccoooiiiiiiiiiiiiiiiiiee e 79
Table 14: Java V. CH. oo 86
Figure 28: First version of the RescueAgent package architecture. 88
Figure 29: ObjectProperties package architecture.....................ccccooeviciinani.. 91
Figure 30: Reaction thread.ccccciiiiiiiiiiiii e 96
Table 15: Graph data.cc..ccooiiiiiiiiiiiiiii e 99
Figure 31: Tell by communication devices.cccccceieviiiiiiaiiiiiee 103
Figure 32: Fire fighter algorithm.....................cccc.ccoiiiiiiiiiiiiii 107
Figure 33: Ambulance team algOFithim.cccccciiiiiiiiiiiiiiiiii 108
Figure 34: Police force algorithm.cccc.cooiiiiiiiiiiiiiiiiee e 110
Figure 35: Communication example.ccccciiiiiiiiiiniiiiiiiiiee 111

-11 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

L. INTRODUCTION

Thanks to their capacities and their various evolutions, computers always
help us in our most varied tasks. And through the years, they become
integrated more and more profoundly into the daily life. Our questioning, in
this document, aims at a very precise part of the computer science, namely
the artificial intelligence or, more exactly, the multi-agent systems. Agents
are everywhere. People encounter intelligent agents, information agents,
mobile agents, personal assistant agents, and other types mainly in the e-
commerce or on the Web. Multi-agent systems are suitable for the domains
that involve interactions between different people and collective
intelligence.

Agent-based technology has already made a fast inroad from highly
specialised workshops to mainstream textbooks. Rapid progress has
continued to date, resulting in an ever expanding range of underpinning
theories, architectural models, engineering methods, implementation
frameworks, and tools. Even so, there remain many issues to be investigated
and clarified concerning the relations between theoretical models of agents
and multi-agent systems on the one hand, and the deployment of
implementations based on these models and architectures in real-world
applications on the other, including perspectives on the supporting
infrastructure and middleware.

But, would it be possible, using their distributed resolution of problems and
their capacity to handle difficult interactions, that these multi-agent systems
are capable of advising us and of assisting us in teams management and
coordination? Would it be also possible that they manage, one day, to
replace us? As regards to teams management in real time, the applications of
multi-agent systems are less known. But it is due to the fact that the
researches in this domain are only rising up and so, there are not yet many
applications. However, we will linger on the research project of the
RoboCupRescue which simulates the management of heterogeneous rescue
teams after an earthquake.

In this way, we went directly in the heart of the project, where it was born:
Kobe. It was in 1995, after the terrible earthquake and the disorganisation of
the rescue teams which followed, that Mr. Tadokoro, chairman of the
RoboCupRescue project, bent over the possibility of developing multi-agent
decision support systems for the first-aid work. A few vyears later,
RoboCupRescue was born. We arrived in Kobe about seven years after the

-12 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

earthquake and our purpose was, as many other research teams, to develop
the most efficient agents.

The interested reader will find our source codes and many other interesting
stuffs on the Annexes CD.

This document is organised as follow:

e Chapter II: Multi-agent simulation

This chapter is an introductory chapter in which we define the terms of
agent, multi-agent system and of multi-agent simulation. You will also find
there some application of the multi-agent systems and finally we formalise
the RoboCupRescue simulation project with the definitions exposed.

e Chapter III: RoboCupRescue: a multi-agent simulation
Here, we present the RoboCupRescue project, its purpose, its constituents,
its current state and its future versions.

e Chapter IV: Developing agents

This chapter is intended for the beginners who enter in the RoboCupRescue
as agents developer. This chapter wants to be a complement to the official
manual (VOr4) which you can also find in Annexes. This last one had
certain gaps which we tried to fill.

e Chapter V: Our agents

Finally, this chapter presents our work made in Japan: our agents. We detail
there all our implementation from the low level layer up to the behavioural
algorithms of the various agents. This chapter could also be a good starting
point for the beginners trying to come into the project.

-13 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

II. MULTI-AGENT SIMULATION

1. INTRODUCTION

First, we will try to define clearly the concept of agent, multi-agent system
and multi-agent simulation. We take as starting point the book of J. Ferber
[FER99): Multi-Agent Systems, An introduction to distributed Artificial
Intelligence. We are also inspired by R. Jennings and M. Wooldridge
[WOO98]: Agent technology, Foundations, applications and markets. These
two books allow us to introduce the ideas and theories developed about
agents and multi-agents simulations.

Knowing some definitions, we will present practical applications of agents

and multi-agent systems and simulations. Finally, we will try to define
precisely the RoboCupRescue project using the theories exposed.

2. ARTIFICIAL INTELLIGENCE

With the development of the electronic computer in 1941, the technology
finally became available to create machine intelligence. The term artificial
intelligence was first coined in 1956, at the Dartmouth conference, and since
then Artificial Intelligence has expanded because of the theories and
principles developed by its dedicated researchers. Through its short modern
history, advancement in the fields of Al have been slower than first
estimated but progress continues to be made. From its birth, five decades
ago, there have been a variety of Al programs, and they have impacted other
technological advancements. The Figure 1 shows the major Al events from
1941 till nowadays.

The barth of AI Al-based hardware sells
First Electronic Start of DoD's Advanced $425 million to compatues
computer Dartmouth Research Projects
conference Svstmﬁ beats
| First Expert System uman chessmapter
1968 _Jo7) 1986
Mdire owclarld progra, AT it systems
Furst commercial, Lisp language SHRDLT created used effectively n
stored program developed DESERT STORM
computer
4 Logic Theonist developed PRO%ﬁ?Sﬂli;gu .

Figure 1: Timeline of major Al events.

-14 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

In 1998, the first Sony RoboCup-Soccer takes place in Paris at the same
time as the world cup of football. The first "functional" humanoid robots are
born. And finally in 1999, Sony launches the first model of Aibo with
limited capacities.

Artificial intelligence is a quite young research field. Therefore, we should
not be astonished at that the claim of Al to support humans in inaccessible,
unpleasant or even hazardous situations by enabling computers to act
intelligently, is more a task for next generations that wide-spread reality.
Nevertheless, there are a several convincing results to be reported on.

During the eighties, the scientific field which has the most in common with
the autonomous agents is planning. This sub-domain of Artificial
Intelligence tries to answer to the following question: "What do we do?", in
other words, "Which action do we do and in which order?". As an agent is
an entity which performs actions, we realise directly the interest of
planning. These algorithms gives good results for small and simple
problems but, unfortunately, their performances often exponentially
decrease when we apply them to bigger problems, as the real world.

Faced with the failure of symbolic Al for some tasks, like walking, another
model was set up by R.A. Brooks which is called reactive Al. According to
this model, the intelligent behaviour is made of the interaction between
other simpler behaviours. Despite its simplicity and its good results, this
model receives a lot of reproaches. The main were the difficulty to create an
agent with a complex behaviour (too many interactions to be managed) and
the difficulty for an agent to learn.

At the early of the nineties, researchers as B. Chaib-Draa and I.A. Ferguson
begin to work on the combination of both approaches to obtain an hybrid
architecture. In this case, an agent is composed of three layers, at the lowest
level of the architecture, we usually find a purely reactive layer, which takes
its decisions by basing itself on the environment. The intermediate layer
works rather on the knowledge level. And finally, the superior layer takes
care of social aspects of the environment, which is taking into account the
other agents.

-15 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

3. DEFINITIONS

1) AGENT

The concept of agent has been the subject of studies in various disciplines
during several decades. It was used in the systems with knowledge base,
robotics, natural language and of other domains of artificial intelligence. In
the literature, there are many definitions of agent. They are alike, but differ
according to the type of application for which the agent is conceived.

Ferber considers an agent as a physical or virtual entity:

— which is capable of acting in an environment,

— which can communicate directly with other agents,

— which is driven by a set of tendencies (in the form of individual
objectives or of a satisfaction/survival function which it tries to
optimise),

— which possesses resources of its own,

— which is capable of perceiving its environment (but to a limited extent),

— which has only a partial representation of this environment (and perhaps
none at all),

— which possesses skills and can offer services,

— which may be able to reproduce itself,

— whose behaviour tends towards satisfying its objectives, taking account
of the resources and skills available to it and depending on its
perception, its representations and communications it receives.

This definition seems to be quite blur to us. It enumerates some properties
that seems restrictive. Indeed, just the point about the direct communication
disqualifies the RoboCupRescue agents. It is why we think the definition of
M. Wooldridge is more convenient: an agent is a computer system, situated
in some environment, that is capable of flexible autonomous action in order
to meet its design objectives.

Before more discussing about the definitions, it is important to know the

two existing schools of thought:

e The first, the 'cognitive' school, considers an agent as follow: a cognitive
agent is characterised by a symbolic internal representation of the world
which surrounds it. It possesses intentions and tries to reach certain
objectives. To do that, it has a representation of the others agents and its
environment which can be manipulated and from which it can produce a
plan. That means: the sequence of actions which it has to make to reach
its determined objective (planning). In this way, each agent has a
knowledge base available comprising data required for the carrying out

- 16 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

of its task and for handling interactions with the other agents and with

the environment.

e The second, the 'reactive' school, claims that it is not necessary for
agents to be individually intelligent for the system to demonstrate
intelligent behaviour overall. This schools considers an agent as follows:
a reactive agent is defined by the perceptions it has of his environment,
by the actions which it can make and by a set of pre-established rules
which associate an action to the perceptions.

In front of the difficulty to have a clear and common definition of the
concept of agent, Nwana and Ndumu' define an agent as referring to a
component of software and/or hardware that is capable of acting exactingly
in order to accomplish tasks on behalf of its user. They add that it is an
umbrella term that covers a range of other more specific agent types. So, it
is more enriching to distinct agent characteristics than elaborate a technical
and complex definition. (in front of the several dimensions to classify
existing software agents) Let us recall the chara of agents given by Nwana

and Ndumu:

e Static or mobile:

o Deliberative or reactive:

Agents may be classified by their mobility,
their ability to move around some network.

The distinction between the deliberative
(cognitive) and reactive agents corresponds to
the two existing ways of thought developed
above.

Deliberative agents possess an internal
symbolic reasoning model, and they engage in
planning and negotiation with other agents in
order to achieve their goals.

Reactive agents, originated from research
carried out by Brooks, Agre and Chapman, do
not have any internal, symbolic models of their
environment, and they act wusing a
stimulus/response type of behaviour by
responding to the present state of the
environment in which they are embedded
(Ferber).

' A brief Introduction to Sofiware Agent Technology, Nwana, H.S. and Ndumu, D.T. ,

[WOO098].

-17 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

e Attributes: Autonomous agents operate without the direct
intervention of humans or others, and have
some kind of control over their actions and
internal state.

Cooperation with other agents is paramount: it is the
raison d’étre for having multiple agents.
Lastly, agents have to learn as they react and/or

interact with their external environment; so
that with time, their performance increases.

e Roles: We can classify agents by their roles. For
example, the information (internet) agents help
manage the vast amount of information in the
wide area networks like the Internet.

e Hybrid: We also can determine the category of hybrid
agents that combines two or more agent
philosophies in a single agent.

Other attributes of agents can be considered. For example the temporality,
the emotional attitudes, ... There are others existing classifications, one of
the most popular is the Belief Desire Intention (BDI) from Rao and
Georgeff [RAO95]. In the BDI, the distinction is inspired by the human
reasoning such as we conceive it.

To characterise an agent, will give all its individual characteristics. In
section 4) RoboCup page 32, we will describe the agent of the
RoboCupRescue simulation project by this way.

But an agent as an individual entity can be limited in many cases. Especially
for the distributed applications for which a set of agents putting in common
knowledge and competence is more appropriate. This type of application
form the multi-agent systems.

2) MULTI-AGENT SYSTEM

Various definitions from different disciplines have been proposed for the

term multi-agent system (MAS). According to J. Ferber: the term "multi-

agent system" is applied to a system comprising the following elements:

— an environment, E, that is, a space which generally has a volume,

— aset of objects, O. These objects are situated, that is to say, it is possible
at a given moment to associate any object with a position in E. These

-18 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

objects are passive, that is, they can be perceived, created, destroyed and
modified by the agents,

— an set of agents, A, which are specific objects (A c O), representing the
active entities of the system,

— aset of relations, R, which link objects (and thus agents) to each other,

— an assembly of operations, Op, making it possible for the agents of A to
perceive, produce, consume, transform and manipulate object from O,

— operators with the task of representing the application of these
operations and the reactions of the world to this attempt at modification,
which we shall call the laws of the universe.

In 1998, N.R. Jennings, K. Sycara, and M. Wooldridge have given different
meaning to the multi-agent system term, and it is now used for all types of
systems composed of multiple autonomous components showing the
following characteristics [JEN98]:

— each agent has incomplete capabilities to solve a problem,
— there is no global system control,

— data is decentralised,

— computation is asynchronous.

The definition of Ferber is interesting because the different elements of the
MAS are separate in clear and distinct sets. However, the definition of
Wooldridge allows passive agents, such as centres in the RoboCupRescue,
which can not be formalised with the definition of Ferber.

According to those definitions, a MAS is a distributed system composed of
a set of agents. Contrary to Al's systems, which try to simulate the human
reasoning, the MAS is conceived as a set of agents interacting according to
cooperation, competition, coexistence modes. These systems possess the
traditional advantages of the distributed resolution such as modularity,
speed or reliability, but they inherit also benefits of the Al which is in each
agent.

Although the MAS offers abundant advantages, they also offer many
challenges. Indeed, the construction of this type of system contains all the
difficulties of distributed systems, but also the flexibility and the complexity
of the interactions among agents. As we have seen, the domain of the multi-
agents systems is a domain filled with challenges to be surmounted, in other
words a domain which is very open for the research.

-19-

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

3) MULTI-AGENT SIMULATION

The precise meaning of the word "simulation" is, even at present, a point of
debate, as is the precise definition of "agent" or "multi-agent system". In
loose terms, most people understand simulation to be the act of running a
program which represents an abstract model in order to study the real
system's behaviour. But one thing has to be said: here, the computer has
been directly introduced as the suitable partner in the scientific-engineering
approach. Though few persons may question this choice, it has to be
recognised that other devices like small-scale physical models have also
been used and are still in use to assist the researchers in aerodynamic for
example. But, in this text, we focus us on the computer-aided modelling and
computer simulation. The computer concept of the multi-agents systems is
very adapted to perform simulations because it implements independent
entities, each of them having its own goal. It is then easy to define the actors
of the simulation as computer agents and to implement an abstract model.

So, simulation is a very active branch of computer science which consists of
analysing the properties of theoretical models of the surrounding world.
Physics, chemistry, biology, ecology, geography and social sciences makes
particularly frequent use of simulations to try to explain or forecast natural
phenomena. To do this, researchers in these various disciplines construct
models of reality and then test their validity by 'Tunning' them on computers.

In theory, the main qualities of multi-agent modelling are its capacity for
integration and its flexibility. It is, in fact, possible to integrate within the
same model quantitative variables, differential equations and behaviours
based on symbolic rules. It is also very easy to integrate modifications, each
enhancement of the model being brought about adding behavioural rules
which operate at the individual level. In addition, as individuals are different
from one another, it is possible to add new types of agents to those already
defined. But, as said for the MAS, the multi-agent simulations offer also
many challenges beside these advantages.

-20 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

4. ENVIRONMENT

1) DEFINITION

The environment of a MAS? is the common “space” in which the agents of
the system are embedded. There is a set of objects easy to handle which
have the following particularities:

— situated: at any time, it is possible to determine the position of the

object.

— passive or active.

The environment of an agent is composed by the environment of the MAS
and the other agents of the system.

2) PROPERTIES
The environment may be described by its properties [BOIO1]:

e accessible (or not): the agent can know the complete state of the
environment;
e deterministic (or not): the environment is deterministic for a group of

agents if its next state is determined by the
current state and the actions of the agents;

e episodic (or not): an episodical environment means that the next
evolutions do not depend on the actions
already carried out;

e static (Vs. dynamic): an environment which does not change while
the agent reflects is static;

e discrete (Vs. continuous): if the number of distinct percepts and actions

is bounded, the environment is discrete;

with (or without) any rational adversaries.

3) ACTION AND MODELLING ACTION

Located in its environment, an agent can carry out actions. An action is
implemented by a set of effectors, which receive commands from agent.
According to this command, to the situation of the agent, to the state of the
environment, an action could be carried out. An action can be defined: by
the mechanisms implying a modification of the physical environment or like
the modification of the physical environment resulting from its application
(action) and of the reaction from the environment (co-action). The co-
actions are managed by the environment.

* There are actually a lot of discussion about the definition of the environment.

-21 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

There is more than one way of modelling actions and their consequences.
Several, more or less mathematical, formalisms are available for taking
account of actions, the activities of agents and the evolution of a MAS. Here
are some of the formalisms we shall examine:

Action as transformation of global state:

The classic concepts of action used in artificial intelligence are based on an
approach involving states and transformations of states.
So we have

e X set of the possible states of the world,;

e op (args*): action defined as a transition of state (as an operator
whose execution produces a new state). args®™ represents the
parameters of the action, for example if (op = run), then args can
means 50 meters.

Thus, starting from a sate o; of X, the execution of the action op produces a
new state ¢z of Z:

o2 = Exec (op (args*), 1), where Exec is the operator of execution
for the actions operators, that is, a
function of the type: op x £ — Z.

Just like a film strip, each image represents a state of the world, and the
actions describe the passage from one image to another (discrete model). So
it is the movement of the film that gives the illusion of continuity of
movement.

Action as response to influences:

This model is based on the principle of influences and reactions to
influences. This model makes use of certain elements from approaches
based on the transformation of states. Nevertheless, it takes account of the
consequences of the simultaneous actions of agents and model phenomena
stemming from interactions between agents.
So we have
e X set of the possible states of the world. (A state is described by a
set of atomic formulas),
e I set of possible influences achieved by agents. (An influence is
described by a set of atomic formulas);
e Action op operator of OP: action whose execution produces a new
state (op: £ — I'). An operator will be represented in the form of a
triplet, < name, pre, post >. The application of the operator produces

-22 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

a set of influences. pre describes the conditions which have to be
verified for the operator to be applied, and post the set of influences
which will be directly produced by this operator when it is applied.

The application of an operator can be described by a function, Exec, which
takes an operator and a current state and gives back an influence:
Exec: OPx X > T

Thus, with the current state 6 of X, an action op of OP and an influence y of
I
Exec (op, 0)=v & Exec (< name, pre, post >,) =
post if pre(o) is verified and {} if not.

The main interest of the influences model lies in the fact that it makes a
clear distinction between what properly concern to the agents and the
phenomena that take place in the environment. All that is needed is to
describe the set of influences which the agent can actually produce and use
the environment as an integrator system in which the laws of the universe
are the same for all.

Action as computing processes:

Action can also be seen as a set of events produced and consumed by
computing. Generally computer science never takes account of the overall
state of the world. It conceives the universe as a set of activities which are
being carried on in parallel and which are called processes.

We also use the theoretical tools, such as finite-state automata or Petri nets,
to formalise the behaviours of the agents and the environment.

Action as local modification:

In local models, action is considered as being a local modification which is
propagated along a net of automata. Each action produces only a local
disturbance, an alteration which is in contact with, or at any event at a finite
distance from, the cause of the action. In this model, the world is made up
of a network whose nodes represent ‘real’ entities and the arcs correspond to
the link between these entities (like dependencies, social relationships and
SO on).

While these models pose numerous problems with regard to the description

of agents, they provide an easy way of representing environments,
particularly when cellular automata are involved.

-23 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Action as physical displacement:

For physics, action is first of all what brings about movement, what changes
the dynamic state of a body, that is, an acceleration. Remember the
Newton’s law: “A body remains at rest or moves with constant velocity in a
straight line unless acted upon by force.”.

Even if the concept of action as used in physics has had little influence on
the world of artificial intelligence, this model is obviously very practical
when we want to describe the actions of mobile agents.

Action as command:

In the cybernetic model, action is a command. We are interested in what
agent perceives of this environment and in the commands it sends to its
actuator organs in order to achieve a goal or satisfy an internal drive. The
problem of action then consists in causing variations in a certain number of
inputs, known as command variables, in a physical system to obtain specific
output variable values. So action is no longer merely a transformation of
states of the world or a simple movement, but a complex activity entirely
directed towards a goal, which takes account of the reactions of the
environment and the corrections to be made to previous actions.

This model is predominantly used to describe the behaviour of the reactive
agents.

4) STRUCTURE OF AGENT

After introducing different models of actions we can move on to the
description of agents and multi-agent systems. Agents are entities capable of
taking account of what surrounds them, which, for purely situated agents,
translates into the capacity to perceive the environment and to act by
executing actions which tend to modify the state of the multi-agent system,
after having deliberated on what should be done. This is schematised in the
following figure:

Perception [——® Deliberation ———¥ Execution
I |

< pmman 3

Figure 2: The structure of an agent.

-4 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Perception, for an agent, is the quality of being to classify and distinguish
states of the world, not only with respect to prominent features of the
environment, but also with respect to the actions it is undertaking. The
deliberation, between the perception and the execution, constitutes the most
essential part of an agent. In this part, the objectives, decision making and
memory faculties are developed. That is why it is the most complex and the
most closely studied.

So, concretely, an agent has different components:

o the physical attributes:
An agent is characterised by own values (mass, height,
colour..) and data relating to the environment (weight,
speed...).

o the sensors (perception):
An agent has its own information concerning the environment.
This information is acquired by the sensors (intermediary of an
interface). Notice that each agent can have different capacities
of perception. So, it might be appropriated to allot to each
agent its own sensors.

o the effectors (execution):
Without effector an agent has inert behaviour. An effector
receives an order of its agent and according to this order, of the
situation of the agent and the environment, an action will be
perhaps carried out. There is a clear separation between
motivation of the agent and the realisation of this motivation.

We can add the following component in the case of the reactive model only:
e the brain:
The brain is the place where the whole of the processes which,
according to the sensors, are charged to order the effector.

-25-

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

5) MODELLING OF ENVIRONMENTS

An agent is environment dependent: once an agent leaves the environment
to which it is adapted, it may no longer be considered as an agent. In other
words, different agents belong to different environments. In order to
describe an agent, it is essential to describe its environment.

So, the environment is the key problem of the modelling of situated agents.
There are many possibilities to solve such a problem and we present here a
representation developed by J. Ferber [FER99]: BRIC (Basic Representation
of Interactive Components). BRIC distinguish clearly two ways to represent
the environment:

e The centralised environment
In this model, the environment is considered as a monolithic block.
All the agents have access to the same structure. They produce
influences which can be expressed as requests to the environment for
actions, and it responds by sending back consumed or perceived
elements.

e The distributed environment

Here the environment is modelled as a set of cells assembled into a
network to form a sort of cellular automaton. A distributed
environment is made up of a set of cells arranged in a network, like
cellular automata. Each cell behaves like a centralised environment
in miniature, managing the influences of the agents which are
localised on that cell, and sending the consumed marks to the agents
that ask for them.

This kind of environment modelling (cells-approach) is largely used in the

MAS. And we will see that the distributed model is applicable to the multi-
agent simulation project of the RoboCupRescue.

-26 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

5. RELATIONS BETWEEN AGENTS

1) INTERACTION

Definition

According to Ferber: "An interaction situation as being an assembly of
behaviours resulting from the grouping of agents which have to act in order
to attain their objectives, with attention being paid to the more or less
limited resources which are available to them and to their individual skills.".
So, the interactions are related to a series of actions whose consequences
exert in return an influence on the future behaviour of the agents. The
interactions are not only the consequence of actions carried out by several
agents at the same time, but also the element necessary to the constitution of
social organisations. It is by the exchanges that they maintain, by
engagements which bind them, by the influence which they exert the ones
on the others that the agents are social entities and that new functionality
can emerge from these systems of mutual actions.

Classification

Each agent can be characterised by three dimensions: its goals, the resources
it has and its skills to achieve some tasks. The interactions of the agents of
an MAS are justified by interdependence of the agents according to this
three dimensions: their goals can be compatible or not ; the agents can wish
resources that the others have ; an agent X can have a capacity necessary to
an agent Y for the achievement of one of the action plans of Y.

-27-

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Goals® Resources* Skills® Types of situation Cate;ory
Compatible Sufficient Sufficient Independence Indifference
Compatible Sufficient Insufficient Simple collaboration
Compatible Insufficient Sufficient Obstruction Cooperation
Compatible Insufficient Insufficient Coordinated

collaboration
Incompatible Sufficient Sufficient Pure individual
competition
Incompatible Sufficient Insufficient Pure collective Antagonism
competition
Incompatible Insufficient Sufficient Individual conflicts
OVer resources
Incompatible Insufficient Insufficient Collective conflicts

OVEr résources

Table 1: Classification of interaction situations.

Following the Table 1, there are eight types of interactions gathered in three
main categories: indifference, cooperation and antagonism.

Indifference

In the indifference category, each agent regards the other agents only as
components of the environment, as well as all the other components.

The situation of independence poses no problem from the multi-agent point
of view, and can be summarised as the simple juxtaposition of actions
carried out by agents independently, without any effective interaction. For
example, people who pass each other in the street, knowing that there is
enough room for them to pass.

Simple collaboration consists of the simple addition of skills, requiring no
supplementary coordination actions between those involved. This situation
is characteristic of the communicating systems in which all the interaction is
expressed in the form of the allocation of tasks and the sharing of
knowledge.

? Represents the compatibility or the incompatibility of the goals of the interactive agents.

* Shows if the present resources are sufficient or insufficient for the achieving of the goals
of all the interactive agents.

* Shows if an agent has the require skills to achieve its own goal.

-08 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Cooperation

In the cooperation category, the goal of the agent is not only to maximise its
own satisfaction but also to contribute to the success of the group. The
agents can exchange information on the environment to increase their
individual perceptions, or to transmit their intentions so that the agents can
have an idea of what the others do.

Obstruction is characteristic of all situations in which agents get in each
other’s way in accomplishing their tasks, and do not need one another. An
example is the cars on the road.

Coordinated collaboration supposes that the agents have to coordinate their
actions to procure the synergic advantages of pooled skills. Coordinated
collaboration is the most complex of cooperation situations, since it
combines task allocation problems with aspects of coordination shaped by
limited resources. Mainly implicated in the industrial activities requiring a
distributed approach, such as network control.

In the pure individual competition category, the goals are incompatible,
agents have to struggle or negotiate in order to achieve them. All the agents
have the same resources at their disposal, and they are placed in identical
initial situations. Their is no competition about the available resources, so
it’s pure individual competition. A running race is an example of pure
competition.

Antagonism

If the interaction between the agents are antagonist, the goal of each agent is
to maximise its own satisfaction, what is made at the expense of the other
agents (their goals are incompatible). The agents must thus communicate
between them to solve the conflict. This communication takes usually the
form of negotiation.

In the pure collective competition, when agents do not have sufficient skill,
they have to group themselves together into coalitions or associations to be
able to achieve their goals. A typical example is the team competitions such
as relay races.

In the situation of the individual conflict over resources, when resources
cannot be shared, we have a typical conflict situation in which an agent
wishes to acquire the resources for itself. For example, in the animal world,
when animals defend its territory.

The collective conflicts over resources combine collective competition with
individual conflicts over resources. Coalitions struggle against each other to
obtain a monopoly of a good, a territory or a position. The war and other
kinds of collective conflicts where the objective is to obtain possession of a
territory or a resource are characteristic examples of this.

-20 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

2) COMMUNICATION

As we have seen in the classification of interaction situations, agents need
(sometimes) to communicate to reach their goals. The communication
system which binds agents acts as a kind of nervous system which puts in
contact sometimes separate individuals. Indeed, the communication
increases the perceptive capacities of the agents while enabling them to
profit from information and the know-how of the other agents. The
communications are essential to the cooperation and it is difficult to
conceive a system of cooperating agents if there is not a system to exchange
information or to convey requests. In the cognitive systems, the
communications are carried out by sending of messages, whereas in the
reactive systems, they are the result of the diffusion of a signal in the
environment. The communication constitutes one of the fundamental means
to ensure the allocation of the functions and the coordination of the actions.

There are distinct communication categories between agents, as detailed in
the Table 2:

Types of message Mode of Routing Intentionality
communication

point-to-point point-to-point direct generally intentional

symbolic message

broadcast symbolic general broadcasting direct generally intentional

message

Announcement point-to- noticeboard generally intentional
point/broadcasting

Signal broadcasting propagation incidental

Table 2: Main modes of communication in multi-agent systems.

-30 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

6. CONCRETE APPLICATIONS

1) FOREWORD

Now that we have a better understanding of what the terms 'agent' and
'multi-agent system' mean, the obvious question to ask is: "What do agents
have to offer?"

Firstly, multi-agent systems have the ability to solve problems that have
hitherto been beyond the scope of automation. The well-known example are
open systems (with dynamic structures) or complex systems (which need
modularity and abstraction). Secondly, they have the ability to solve
problems that can already be solved in a significantly better way. Agent
technology provide a better means of conceptualisation or/and
implementing a given application.

There are several orthogonal dimensions along which agent applications
could be classified such as: industrial applications (process control or air
traffic control), commercial applications (electronic commerce detailed just
below), medical application (patient monitoring or health care) or games.
Here follows three existing multi-agents applications.

2) ELECTRONIC COMMERCE®

The SAGE (Smart AGent Environment) project is researching into seamless
integration of information distributed over networks. In the SAGE,
conversational agents speak in ACL’ (Agent Communication Language)
and cooperate in solving problems focused on retrieval and integration of
heterogeneous information.

To put the SAGE into practical uses, it is applied to electronic commerce.
Its prototype is called SAGE: Francis, which provides search services for
information on commodities. As the result of an experiment with two legacy
database applications, Oracle and Access, whose field names and category
structures are different, the SAGE: Francis succeeded in integrating

® http://context.mit.edw/imediat98/paper4, see also [SUG99].

7 Communication standard from FIPA (Foundation for Intelligent Physical Agents): The
Foundation for Intelligent Physical Agents (FIPA) is an organisation of standardisation
which regularly produces specifications aiming a better inter-working between
heterogeneous software agents. In 1997, it publishes the FIPA 97 specification whose the
second part specifies an ACL (Agent Communication Language). To know more about it:
http://www fipa.org/.

-31 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

information on commodities and the response time was on average 3
seconds within real-world requirements.

3) HONEY BEE SIMULATION®

Honey Bees live in colonies. The colony, or hive, is often considered as a
single entity or super-organism but at the same time is made up of tens of
thousands of individuals. It is not fully understood how the behaviours of
the individuals in a hive contribute to its overall behaviour. This project uses
computer simulation to investigate how simple behaviours attributed to
individuals could give rise to the patterns of behaviour exhibited at colony
level.

In order to simulate the behaviour of bees, the researchers use the Multi-
Agent simulation approach which seems to be particularly adapted. Multi-
agent simulations give an opportunity to create simulations which are not
buried in mathematical definitions. Although all the agents have a simple
behaviour, when we begin to consider how they interact in a synchronised
time environment, with mathematical definitions, many problems begin to
arise. Some of these could greatly alter the outcome of the simulation, even
with today's powerful machines, this may not always be possible.

4) RoBOCUP®

RoboCup is an international joint project to promote Al, robotics, and
related fields. It is an attempt to foster Al and intelligent robotics research
by providing standard problem, a football competition and a rescue task,
where wide range of technologies can be integrated and examined.

The RoboCup project covers a vast field of applications, in particular as

regards robotics and artificial intelligence:

— under development software, the setting of intelligent programs able to
develop complex competence in dynamic environment and real time
(maintenance of the ball, saving civil under the debris , ...),

— in artificial intelligence, the development of cognitive agents acting in
disturbed dynamic environment, able to work in liaison with other
agents in coordinated actions, but also able to make autonomous
decisions,

8 http://www.maths.ox.ac.uk/~sumpter/beesim

? http://www.RoboCup.org

-32-

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

— in robotics, the development of mobile, autonomous, complex and fast
robots. The development of effectors and of reliable receivers in spite of
the constraints resulting from the dynamic nature of the environment,

— in image processing, recognition in real time of disturbed information
coming from the camera of the agents.

Here follows a description of the two main fields of the RoboCup:

RoboCup Soccer

RoboCup choses to use soccer game as a central topic of research, aiming at
innovations to be applied for socially significant problems and industries.
The ultimate goal of the RoboCup project is, by 2050, develop a team of
fully autonomous humanoid robots that can win against the human world
champion team in soccer. In order for a robot team to actually perform a
soccer game, various technologies must be incorporated including: design
principles of autonomous agents, multi-agent collaboration, strategy
acquisition, real-time reasoning, robotics, and sensor-fusion. RoboCup is a
task for a team of multiple fast-moving robots under a dynamic
environment.

RoboCupRescue

RoboCupRescue is a secondary field of the activities of RoboCup. Its main
purpose is to provide emergency decision support by integration of disaster
information, prediction, planning, and human interface.. RoboCup initiated
RoboCupRescue project to specifically promote research in socially
significant issues. It is a championship of managing of natural disasters
simulation and of use of real robots in such disasters. The championship of
simulation concentrates on the strategies of planning and coordination of
rescue teams, whereas the competition of robots concentrates on the
individual capacities of the robots in the rescue operations, and how these
robots can collaborate to achieve specific spots.

Its origin is drawn from the observation of the inefficiency of the current
helps in the event of significant natural disaster, like illustrated at the time
of the catastrophe of Kobe in Japan. These problems are very close to those
with which are confronted the systems multi-agents in strongly dynamic
environment. The RoboCupRescue project simulation is an attempt of
resolution of these problems. It concentrates mainly on:

-33-

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

acquisition, accumulation, the relay, selection, analysis, the summary
and distribution of information necessary;

the informative support necessary to the decision;

distribution of the systems to increase their reliability and their
robustness;

operational continuity, of the normal conditions to the emergencies.

The goal of the RescueCup is similar in spirit with that of RoboCup: in
2050, human technology will have to be able to set up teams of robots
which will save lives in real situation and at the time of a so great
catastrophe. Currently, the RescueCup is located in margin of RoboCup and
utilises teams of simulated agents.

Now we can describe formally the RoboCupRescue simulation project. We
plan to analyse the RoboCupRescue simulation project'® using each point of
theory developed.

First of all, we have to give a precise description of the agent. By analysing
the typology of agents given by Nwana and Ndumu, we can affirm that:

The majority of the agents are mobile because they can move around the
map. However the centres are static because they are, in fact, building
agents.

The agents are cognitive. They have to possess an symbolic internal
representation of the world which surrounds them. They can not share
their knowledge about the map. They have specific objectives they try to
reach, like extinguish a building in fire.

An agent is autonomous. It does not need any human intervention and
controls his own behaviour.

The agents needs cooperation to be very effective, for example it is more
efficient to extinguish a fire with two or more fire fighter brigades than
only one.

There is no learning system in the RoboCupRescue world.

We call the agents of the RoboCupRescue rescue agents because they
all have the common goal to react as rescuers after an earthquake.

At this time the civilians and the rescue agents of the RoboCupRescue
simulation project are not very elaborate but, in the future, it is envisaged to
develop more human behaviour as the altruism, the selfishness and so on.

' More information about the RoboCupRescue simulation project may be very useful to
read the following. It is possible to deepen your knowledge about the project by reading the
next chapter.

-34 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Secondly, the environment of the project can be specify as:

e Not accessible:

e Not deterministic:

e Not episodic:

e Dynamic:

e Discrete:

The agents do not have all the information
about the map. They receive, at the beginning
of the simulation, the virgin map with the
different objects on it, like buildings and
roads, but without any information about the
real situation (fire, blocked road, ...). During
the simulation, agents receive the evolution of
only a part of the map, which surrounds them.
The next state of the environment depends of
the actions of the agents and the component
simulators. For example, the state of a burning
building depends on the evolution of the
simulation (that means whether there are rains,
wind, sun, ...) determined by the component
simulators. 1t depends also of the different
initiatives taken by the agents, like extinguish
this building.

The next evolution does not depend only on
the realised actions but also of the component
simulators. In fact, the component simulators
manage the natural evolution of the world and
the agents after the earthquake. Even if the
future situations are influenced by the different
actions, like saving a civilian, if this civilian
does not have enough air to breathe under the
rubble, even if there are tree ambulance teams
trying to rescue him, he can be choked.

The environment is dynamic and changes
continuously event when the agent reflects.
The updates of the environment are managed
by the different simulators who are responsible
of the fire evolution, the health evolution of
the civilian, ... These simulators continue their
work even if the agents reflect.

There are a certain number of actions and
percepts. The rescue agents and the civilian
can not do what they want at this time of the
simulation. They have a determine number of
simple actions, like move from their position
to another place, say a message to someone,
load a civilian in an ambulance, ...

-35-

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

e Without any adversaries: All the agents in the RoboCupRescue world
are interdependent. The management of an
earthquake (especially the situation after the
earthquake) require the solidarity of all to
reduce the damage. It is why the only
adversaries in the RoboCupRescue project are
the natural phenomena and not other agents.
Even if there is a competition to elect the best
first-aid worker team, there are no agents
adversaries.

Thirdly, there are different ways to model an action in the RoboCupRescue
simulation. An action can be seen as physical displacement, think about the
move around the map. An action is also seen as a response to influences
because the system takes account of the consequences of the simultaneous
actions. For example, when firemen extinguish together a burning building.
The actions are commands too because to be effective they have to be sent
to the kernel.

Fourthly, we can define the interaction between the rescue agents. The
category of this interaction is a collaboration and the type of the situation is
a coordinated collaboration. In fact, all the rescue agents have the same
goal: to bound the damage of the earthquake. However, separately, agent
does not have the sufficient resources to act alone. Moreover, it is the sum
of the skills of all the rescue agents which allow them to achieve their
objective. As example, a fire fighter brigade has to move across the map to
extinguish buildings in fire but when roads are blocked, it can not pass
through. It is why it needs the help of police forces to clear the roads.

Finally, the type of the messages in the RoboCupRescue, which binds the
agents, is the announcement. Each message pass through the kernel. The
communication among the agents can be a broadcast or a point to point
message.

Now that the RoboCupRescue is clearly defined, the following chapter will
detail the project.

-36 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

-37-

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

I1I. ROBOCUPRESCUE: A MULTI-AGENT SIMULATION

1. INTRODUCTION

January 17, 1995, 5:47 am: the ground shook in Kobe (in Hanshin-Awaji,
Japan). The magnitude of the Hanshin-Awaji Earthquake was 7.2 on the
Richter scale. About 2,300,000 people were seriously effected: more than
6.500 citizens died and 43,800 injured. 530,000 buildings were damaged:
104,906 were fully destroyed (mainly wooden houses: 80,000), 144,272 half
destroyed and 6,148 were fully burnt. The damage of the basic
infrastructures exceeded 100 billion US dollars.

The crush and the suffocation by building destruction were the causes of
death in the Hanshin-Awaji Earthquake. The collapse of buildings and the
tumble of furniture caused the injury.

Pictures 1: Kobe's earthquake''.

' Source: http://www.eqe.com

-38 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Faced with these disastrous consequences of the earthquake some people

though about robotics and Al to perform the rescue process. The

experiences at the Hanshin-Awaji Earthquake concluded that the following

functions were necessary to information systems for disasters:

e C(Collection, accumulation, relay, selection, summarisation and
distribution of necessary information.

e Prompt support for the search and rescue actions.

e Reliability and robustness of the system.

So, some committees have been organised since 1995:

e JSME Robotics and Mechatronics Div. Research Committee which
consist of investigation of search and rescue activities in the Hanshin-
Awaji Earthquake for the purpose of research and development of
rescue robotic infrastructure.

e JSME Research Committee RC-150 which consists of research and
development of robotic systems for search and rescue in large-scale
disaster.

Others activities were instituted with the aim to promote the rescue research.

On April 30, 1999, a meeting was held at a corner of the hall where people
were busy preparing the RoboCup-Soccer Japan Open '99. At this meeting,
it was decided to make a prototype of the RoboCupRescue simulator by the
end of 1999. From that time, many people have joined this project and now,
each year, a competition is organised to compare the algorithms of all
researchers working on the RoboCupRescue simulation. Last year, in 2001,
this competition was held in Seattle (USA) and this year, in June 2002, the
competition will be held in Fukuoka (Japan).

The RoboCupRescue project supports the functions for disaster and rescue

simulation:

e The period to be simulated is set to the first five hours (300 simulation
turns), considering that after that period, survival rate decreases.

e The area of 1.5 km? centred on JR Nagata railway station is selected to
be a target for the prototype system. But it’s possible to change the map
(to put the Los Angeles ward’s data for example) and then to have
another disaster simulation.

e The number of rescue agents is fixed by the RoboCupRescue
committee: five ambulance teams, ten fire-fighter brigades, ten police
forces, one ambulance centre, one fire-fighter centre and one police
office.

-39.-

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

2. OVERVIEW

The RoboCupRescue simulation is built of a number of modules which
communicate with each other using a protocol based upon UDP. These
modules consist of kernel, agents, component simulators, G1S (Geographical
Information System) and viewer.

The Figure 3 represents interaction between these various modules but this
is a simple overview of the RoboCupRescue simulator. So, in the rest of this
chapter, we will take all the different modules one by one and explain them
in a more detailed way.

viewer

!

GIS ¢ » kernel <+—>

!

Agents

component
simulators

Figure 3: Overview of rescue simulator.

3. GIS

The GIS (Geographical Information System) module provides the initial
configuration of the world, where roads, buildings, nodes and individuals
are located at the beginning of the simulation. It manages information
necessary to the creation and to the update of the world. The GIS contains
precise information on each objects world. The world of RoboCupRescue
contains many kinds of objects (all these elements will be detailed in the
following chapter):

e Buildings: They represent urban constructions in the city. A building
can suffer structural damage: from 0 % to 100 %, it can
burn, ... There are special types of buildings as, for
example, the refuge, the fire station, the ambulance centre

- 40 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

e Roads:

e Nodes:

e Agents:

and the police office. There are 778 buildings or group of
buildings in the current map.

They represent a road of the city. It can have different
length or width and it can be blocked (from 0 % to 100 %).
There are 820 roads (or pieces of road).

They represent the crossing between two (or more) roads or
the crossing between a road and a building (an entrance of a
building). Totally there are 765 nodes.

They may represent all the humans in the city. Agents can
be civilians, fire fighters, policemen's or ambulance teams.
Totally there are 98 agents on the map.

4, VIEWER

The viewer visualises the RoboCupRescue simulation. It co-operates with
the GIS module (for the initialisation) and the kernel (for the rest of the
simulation) to show the world’s state each turn. The Figure 4 shows an
example of the 2D viewer.

A prototype of a 3D viewer is being developed but it is not yet used in the
RoboCupRescue simulator (Figure 5).

Figure 4: 2D viewer.

-41 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Agent Developers use mainly the 2D viewer which seams to be more useful
to watch the simulation result. To understand the map of the Figure 4, it's
necessary to know some information:

E - civilian g - ambulance

T b
‘a': fire fighter brigade
.. ambulance which load or

" ..
%w,) unload a civilian.
= police force

The rest of the map is made up of buildings and roads. The buildings may
be green, yellow, red or black which gradually represents their burning state.
And the roads may be white, grey or black which represents whether they
are cleared, partially or totally blocked.

9‘“—' RoboCup-Rescue LogViewer 31) View (Public Beta) Fly Throught Reset

Information | Welcone to losViewer 3d beta Iime = 101
by the RoboCup-Rescue Prodject

Figure 5: 3D viewer.

-42 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

5. COMPONENT SIMULATORS

Component simulators correspond to various domains, such as earthquakes,
fires and traffic jams. The component simulators, which are plugged into the
system, compute what will happen in the world and what the effects of the
individual’s actions will be.

For example, the Fire Simulator manages the fire spreading through the
building and the intensity of the different fires. Or well the Traffic Simulator
cares about the travelling of the different agents through the map.

viewer
I Fire Simulator
GIS <4—p| kernel <« Traffic Simulator

N

Agents

Figure 6: Component simulators.

There is also another simulator, a bit more specific: the miscsimulator
(miscellaneous simulator). This simulator takes charge of the agent's status.
So, the miscsimulator handles two kinds of things:

1. Commands

e Load:

e Unload:
e Rescue:
e Move:

The miscsimulator changes the property position of the
agent who is being loaded. This property has now the
value of the ID of the ambulance team which loaded the
agent.

The miscsimulator changes the property position of the
agent who is being unloaded.

The miscsimulator decreases the property buriedness of
the agent who is being rescued.

The miscsimulator changes the property position of the
agent who is moving. The value of this property is the ID
of a node or a road or a building.

-43 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

II. Agent's properties

e Hp: (Health point) The initial value of this property is 10000
and O means the agent is dead. The miscsimulator decrease
the value of this property when the agent is injured.

e Damage: The miscsimulator puts a certain value on this property
when the agent is a victim of fire (40) or a building
collapses (400). When the agent is in a refuge, the
miscsimulator puts O in this property.

e Buriedness: The miscsimulator decreases each turn the value of this
property by the number of ambulance teams which are
rescuing an agent. When this property is 0, that means the
agent is free to move.

6. AGENTS

The agent module controls an intelligent individual that decides its own
action according to situations. The individuals are the civilians, the fire
fighter brigades, the ambulance teams and the police forces. The fire fighter,
police and ambulance centres are agents too but have some particularities:
they are static, they can manage the communication between agents, ...

Individuals are virtual entities in the simulated world. Their will and actions
are controlled by the corresponding agents. The kernel supervises the
actions of the agents: all the agents decisions pass through the kernel (this
part is further developed in the next chapter).

Currently, an agent is a unit like a family or a fire brigade in order not to
make the simulation system too large. In future, a single person will be
represented by an individual agent.

7. KERNEL

The kernel is the central module of the simulation. It controls the simulation
process and facilitates information among the modules. It's the brain of the
simulation which manages all the modules and their communications in real
time. It should be able, in the future, to supervise tens of thousand of
modules.

-44 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

One module is represented by one process; however, it is possible to make a
single process represent more than one module by using multiple threads.
Particularly, the inter-module communication protocol is designed so that
more than one agent module can share a socket. It's essential when the
number of agents is large (for the time being, there are more than 100
agents).

Agents cannot communicate directly with each other. The communication
between agents has to pass through the kerme/ which accepts messages
admissible in the communication protocol. Other modules may
communicate directly witch each other; however, for the sake of the
modularity, plug-in component simulators are expected to communicate
with others only by way of the kernel.

8. PROGRESS OF THE SIMULATION

All the modules described above are connected through the kermnel. They
communicate information to each other at the begin of the simulation and
continuously. The communication system among the modules is divided in
two parts: the initialisation and the progress of the simulation. The Figure 7
shows the communication at the beginning of the simulation.

Request
information
viewers
Requested
information The initial
configuration
of the world
GIS kernel component simulators —’_‘
[
The initial '
configuration Knowable
of the world information

Agent

Figure 7: Communication at the beginning,

- 45 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

First of all, the kernel receives the initial configuration of the world by the
GIS. Then with the geographical information it can give the configuration of
the world to the component simulators. After that it sends the knowable
information to the agents; the agent can have sensory information only
about a part of the map. The GIS and the viewers pass on information to one
another. So before the start time all the modules have the map information
essential for the progress of the simulation. The kermel then starts the
simulation.

In the prototype system, one cycle taking one second of the computer time
simulates one minute of the real world time. During the simulation,
information goes around the modules in a way described in Figure 8, which
represents the simulation cycle.

8. Request for

information
4— viewer
7. Notificatio
about update 6. Integrated simulation results
9. Requested
information 6. Integrated
simulation results 5. Simulation
results
GIS < kernel component simulators
4>
3. Gathered [
commands I
4. Integration of the
1. Sensory commands
information 2. commands

Agent 1

Figure 8: Communication among modules.

The communication among modules follows the steps explained below:
1. At the beginning of each cycle, the kernel sends sensory information to

each agent module. This sensory information is the visual and hearing
information that the agent can sense in the simulated world at that time.

- 46 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

2. With the support of the sensory information the agent module decides
what actions the individual should take. When the agent module makes

its decision, it send the commands to the kernel.

3. The kernel gathers all messages from agent modules, filters the
commands and broadcasts them to the component simulators. The
kernel supervises the command ; that means, for example: a dead agent

cannot send a command or a fire fighter brigade cannot load a civilian!

4. The component simulators individually compute how the world will
change based upon its internal status and the commands received from

the kernel. It integrates the actions of the agent module.

5. The component simulators have to send back the results of the

integration of the agents' actions.

6. The kernel integrates the results received from the component
simulators and broadcast them to the GIS and the component

simulators.

7. The kernel increases the simulation clock and notifies the viewers about

the update.

8. The viewers request the GIS to send the update information of the
world. Then, the viewers can visually display the information according

to various evaluation criteria.

9. The GIS keeps track of the simulation results and sends the viewers the

requested information.

-47 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

IV. DEVELOPING AGENTS

1. INTRODUCTION

To develop agents behaviours, the RoboCupRescue manual (VOr4)'? seems
to be light. It's why this chapter develops a more practical manual for agent
developers in RoboCupRescue simulation project.

This manual contains information that does not appear in the existing
manual. It’s not a new version but additional information for agent
developers. So to be used efficiently it is recommended to know the
RoboCupRescue manual (VOr4) and to assimilate all the concepts of the
simulation world.

2. AGENT'S LIFE

There are two major steps to develop an agent:

e atalow level: to maintain the connection with the kernel (the
availability of the socket and the good formatting of
the packets, for example: the header)

e at a higher level: to develop the basic algorithms and the behaviours

The first step is rather technical and is developed in the LongUDP and
Connection part of this chapter. The life of an agent begins with the
connection to the kernel. During a handshake protocol, the agent receives all
the simulated world information. The agent has to keep this information in
an efficient way because of it's rather large size (explanation in the part
world modelling of this chapter). When the connection protocol ends the
simulation starts. The agent receives each cycle sensory information from
the kernel which updates the information received during the connection.
Then the agent decides upon some commands to make and sends it to the
kernel.

'2 The manual version 0, revision 4 (VOr4) is available on
http://kivosu.isc.chubu.ac.jp/RoboCup/Rescue/manual-English-vOr4/manual-v0-r4.pdf.

- 48 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

The second step is more algorithmic. Until now the agents are alive in the
simulated world and have all the information they need. However they have
to make some commands which represent the actions they want to do. So it's
essential to develop some basic and behavioural algorithms. The basic ones
are essential: it is, for example, the moving algorithm common to all the
agents. Above this elementary algorithms, the agents have to react like
rescuers and so to develop their first-aid worker behavioural algorithms. The
behaviour of the agent can be sophisticated or simple ; the most important is
the result: saving life, limiting the fire, limiting the damage, ...

The agents already developed'® can be classified according to:
programmation language

the data structure to keep the world information

the way to move across the map (moving algorithm)

the way to save life

the way to extinguish the fire

the way to clear the road

the cooperation between the agents

the communication protocol between the agents

A third layer can be added above the two others detailed above. This third
level layer would be a high level layer containing the behavioural
algorithms. An algorithmic hierarchy would be introduced and would allow
to develop the behavioural algorithms above the basic and the low level
algorithms. This will make it possible to distinguish distinct phases to
design agents. In fact, once the two lower level layers are developed in a
reliable and powerful way, remains the behavioural layer to implement. That
would make it possible to develop the behaviours of the agents
independently of the basic and low level algorithms and thus to improve
those more easily.

'3 Here is the web page which reference other agents in the RoboCupRescue simulation
project: http:/www.r.cs.kobe-u.ac.jp/robocup-rescue/robocup200 1report. html.

- 49 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

3. LoNnG UDP

1) PROTOCOL

The communication between the kernel and the other components (the
agents, the GIS, ...) is mostly done by UDP. But data from the GIS is too
big, its length can be larger than 64Kbyte that UDP can handle. So,
RoboCupRescue provides a new protocol to transmit those big packets:
LongUDP.

This protocol uses IP address and port numbers as well as UDP and they are
the same in both protocols. LongUDP divides a big packet (which has a
length bigger than 64Kbytes) into small parts, adds a 8 bytes header to each
part, puts each part and its header into an IP packet and sends it on the
network. The LongUDP header has the following format (Table 3).

Offset Data Comment
(in bytes)
0 0x0008 Magic number.
2 D ID number of LongUDP packet.
4 number This number shows where this UDP packet is in the
LongUDP packet. This value varies from O to total-1.
6 total Number of UDP packets of a single LongUDP packet.

Table 3: LongUDP header.

Here is a code example of a method which create a small packet header:

DATAOUTPUTSTREAM TABHAUT;,
STATIC SHORT LUDPID = NEW SHORT((SHORT) 0);,

VOID CREATE_HEADER _LUDP() THROWS [OEXCEPTION

{

TABHAUT.WRITESHORT(0x0008);

SYNCHRONIZED (LUppPID)
{
TABHAUT.WRITESHORT(LUDPID.SHORTVALUE()),
LuppID = NEW SHORT((SHORT) (LUDPID.SHORTVALUE() + 1)),
}

TABHAUT.WRITESHORT(0x0000),

TABHAUT.WRITESHORT(0x0001),

3

-50 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

So, a long packet is reassembled by the receiver by

1. collecting all the LongUDP packets with the same /D,

2. after receiving total packets, sorting them in number ascending order,

3. concatenating them without the header part.

Notice that the length of a divided small part is, except for the last one (of
number fofal-1), a multiple of four. This length is bigger than eight to be
sure to have data besides the header part.

LongUDP (like UDP) is a minimalist transport protocol which leans on the
IP service to supply a transport service without connection and not reliable.
That means: no guarantee on the correct routing of packages (a package can
be lost), no guarantee on the respect for the sequence (a package can
"overtake" an other packet emitted before) and finally, no guarantee on the
duplication.

The problems of duplication and 'no respect of the sequence' are not very
important due to the sequence number of the LongUDP packets. But the last
problem of packet lost is a bit different. In fact there are two issues: the first
is when a packet is lost during the connection. During this part of the
Simulation, there is a special packets sequence to respect (Figure 11, page
54). So it is easy to notice any abnormality, but this lead to the well known
two armies problem [BONOO]. The other problem appears when a packet is
lost during the rest of the Simulation and this is a bit more complicated to
handle. On one hand, if an agent does not receive a packet from the kernel,
it is not annoying. The next turn, the kerne/ will send an other packet with
enough information to fill the lacks. And on the other hand, if the kernel
does not receive a packet from an agent, the reaction of this agent will
depend on its behavioural algorithms.

2) PACKET FORMAT

In the RoboCupRescue Simulation, all the packets sent on the network have
the same format: the first 20 bytes are used to create the IP header which
contains mainly the destination's IP address and the source's IP address.
After this IP header comes the LongUDP header, (eight bytes, Table 3), the
following bytes are the body of the packet and the last four bytes are used to
encode a special value (Header NULL = 0x00) to specify the end of the
packet (Figure 9).

-51 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Packet
LongUDP Header p Offset: 0 — 7
Packet itself p Offset: 8 — X
Header NULL p Offset: X+1 — X+4

Figure 9: Packet format.

If the length of the packet is lower than 64Kbytes, it is possible to detail the
packet format a bit more (this format can also be applied to the first packet
of a big packet divided with the LongUDP protocol) (Figure 10).

Packet
LongUDP Header » Offset: 0 — 7
Packet header P Offset: 8 — 11
Body’s length P Offset: 12 — 15
Body P Offset: 16 > Y
Header NULL P Offset: Y+1 — Y+4

Figure 10: Small packet format.

3) PACKET HEADER LIST

It’s possible to divide the packet header in two groups. The first group is
formed by the header of all kinds of packets the agents can receive during
the simulation. Those packets will come from the kernel (K) and are sent to
the agents (A) since other communications (eg. direct communication
between agents) are forbidden. The name of such header begins with KA
(Table 4).

-52 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Header’s name Value
KA CONNECT OK 0x50
KA CONNECT ERROR 0x51
KA SENSE 0x52
KA HEAR 0x33

Table 4: KA packet header.

The second group is formed by the header of the packets which come from
the agents (A) and are sent to the kernel (K). The name of such headers
begin with AK (Table 5).

Header’s name Value
AK MOVE 0x81
AK LOAD 0x82
AK UNLOAD 0x83
AK SAY 0x84
AK TELL 0x85
AK _EXTINGUISH 0x86
AK RESCUE 0x88
AK CLEAR 0x89
AK CONNECT 0x10

AK_ ACKNOWLEDGE Ox11

Table S;: AK packet header.

-33 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

4, CONNECTION

1) SCHEMA

An agent must connect itself to the kernel at the beginning of the simulation.
This connection will be done using the IP address and the listening port
(usually: 6000) of the kernel (Figure 11).

\Agent\ V(emeﬂ

Tim

e
|
|

1: AK_CONNECT

First of all, an agent must send an
“AK_CONNECT” packet to tell the kernel it
wants to connect.

2: KA_CONNECT_OK\ERROR

After receiving an “AK_CONNECT” packet,
the kernel returns a “KA CONNECT OK”
when the connection succeeds or returns
“KA_CONNECT_ ERROR” in case of failure.
The “KA CONNECT OK” contains all the
simulated world information the agent can have.

3: AK ACKNOWLEDGE

After receiving a “KA CONNECT _OK”
packet, the agent must send an
“AK _ACKNOWLEDGE” packet to be totally
connected to the kernel.

Figure 11: Connection to the kernel.

When all agents are connected (ten fire brigades, ten police forces, five
ambulance teams and 3 centres), the simulation may begin. On each cycle,
every agent can see (4) or hear (5) something (Figure 12). It receives from
the kernel all the sensory information about the surrounding objects. With
that information the agent can make commands (such as extinguish a fire for
a fire fighter brigade).

-5 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

\Agent\ Kernel

4: KA_SENSE

Each agent receives one “KA SENSE” packet
4 each cycle. In this packet, there is all that this
agent can see (the sight is limited at 30 meters).

5: KA_HEAR

5 An agent receives such a packet when
somebody (an other agent or a civilian) speaks
to him (using its ‘voice’ or telecommunication
means).

Time v

Figure 12: Receiving sensory information.

2) PACKETS

In this section, we will take, one by one, all the packets sent during the
connection between the agent and the kernel (KA CONNECT,
KA ACKNOWLEDGE, KA CONNECT_OK and
KA CONNECT_ERROR). We will also look at an other kind of packet,
those sent carrying sensory information (KA SENSE and KA HEAR). We
will detail a bit more their content:

- 55 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

e AK_CONNECT

LongUDP Header
Packet header » AK_CONNECT
Body’s length p 12 bytes
- templd (int): Represents the temporary 1D
Body > given to the newly created
agent. This value can be set
to any value by
Header NULL corresponding agent module.
- Version (int): Represents the version of the
kernel (for the moment,
version is 0).
- AgentType (int): Represents the kind of agent
that is connecting (Table 6).
Figure 13: AK_CONNECT packet.
AgentType value Agent’s kind
1 Civilian
2 Fire brigade
4 Fire station
8 ambulance team
16 ambulance centre
32 police force
64 police office

Table 6: Agent's types.

Here follows the code example to create a connect packet:

VOID CONNECT(INT AGENTTYPE, INT TID)

{

(..)

CREATE_HEADER_LUDP();,
TABHAUT.WRITEINT(AK _CONNECT);

BYTE[] BODY = NEW BYTE[4 * 3],
OuTILS.BYTEARRAYCOPY(TID, BODY, 0);,
OUTILS.BYTEARRAYCOPY(0, BODY, 4),
OUTILS.BYTEARRAYCOPY(AGENTT YPE, BODY, 8),
TABHAUT.WRITEINT(BODY.LENGTH);

-56 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

TABHAUT.WRITE(BODY, 0, BODY.LENGTH);
TABHAUT.WRITEINT(HEADER NULL);,
(..)

}

e KA CONNECT OK

LongUDP Header
Packet header p KA CONNECT OK
Body’s length P X bytes
Body > . templd (int): This is the same value as the
one in the AK CONNECT
NUL packet.
Header _ L - ID (int): Represents the definitive ID of
the agents who is connecting.

This information is decided by
the kernel.

- self (object): Represents all the information
about the agent itself (cf. 5.

World Modeling).

- map (objects): Represents all the information
about the RoboCupRescue
Simulation world, this
information comes from the

GIS (cf. 5. World Modeling).

Figure 14: KA CONNECT_OK packet.

This information is rather large (larger than 64 Kbytes) with regard to all the
information about the world that an agent must receive. So, this packet will
be divided by the LongUDP protocol and the Figure 13 represents only the
first packet of this series of packets.

-57 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

e KA CONNECT ERROR

LongUDP Header
Packet header p KA CONNECT _ERROR
Body’s length p X bytes
- templd (int): This is the same value as the one
Body > in the AK_CONNECT packet.
- reason (string): Represents the reason of the
Header NULL connection failure (maximum
characters: 255).

Figure 15: KA_CONNECT_ERROR packet.

e AK ACKNOWLEDGE

LongUDP Header
Packet header » AK_ACKNOWLEDGE
Body’s length » 4 bytes
Body P - ID (int): The agent sends to the kernel the AK
ACKNOWLEDGE with its definitive ID.
Header NULL

Figure 16: AK_ACKNOWLEDGE packet.

Code example:

VOID ACKNOWLEDGE()

{

(...)

CREATE_HEADER_LUDP();
TABHAUT.WRITEINT(AK _ ACKNOWLEDGE),
BYTE[] BODY = NEW BYTE[4];
OuTILS.BYTEARRAYCOPY(ID, BODY, 0);,
TABHAUT.WRITEINT(BODY.LENGTH);
TABHAUT.WRITE(BODY, 0, BODY.LENGTH);
TABHAUT.WRITEINT(HEADER NULL);,

3

-58 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

This is the ID of the agent
who will receive the
message.

This is the ID of the agent
who sent the message to the
kernel.

Represents the length of the
message.

This is the message sent by
origin to dest (maximum
characters: 255).

Represents the ID of the agent
who receive this packet.
Represents the current time (the

e KA HEAR
LongUDP Header
Packet header p KA HEAR
Body’s length p 12 bytes + length
Body > - dest (int):
Header NULL - origin (int):
- length (int):
- message (string):
Figure 17: KA_HEAR packet.
e KA SENSE
LongUDP Header
Packet header p KA SENSE
Body’s length p X bytes
Body > - ID (int):
- time (int):
Header NULL

- self (object):

- sight (objects):

number of cycles).

Represents all the information
about the agent itself (cf. 5.
World Modeling).

Represents all the information
about the surrounding objects
(30 meters around), this
information comes from the

GIS (cf. 5. World Modeling).

Figure 18: KA_SENSE packet.

-50 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

5. WORLD MODELLING

1) INTRODUCTION

First, it should be known that the map of the RoboCupRescue world is
regarded as a two dimensions plan. Two axes (x and y) make it possible to
refer the objects of the world in the map. The measurement unity used is the
millimetre. In seek of precision, certain actions and some objects define a
property direction which express in second the direction taken by the objet
in relation to the y axe.

Let us notice that the GIS data format is different of the format of the data
which are exchange among the modules of version 0. The GI1S data is based
on the 19 standard coordinate (19_s). 19 s is the coordinate used in Japan
Geographical Survey Institute. Normally the unit is the meter, however
millimetre is used in RoboCupRescue in order to make the data type in
integer. There are a transformation formula'* which allow to obtain the 19
standard coordinate from the coordinate used in the RoboCupRescue world.

Above this low level representation, there are inter-module rules between all
the modules of the RoboCupRescue world to describe all the objects of the
map with numbers. So, every object in the simulated world (building, road,
civilian and so on) and their characteristics are represented by constants.
Moreover, a unique ID is assigned to each existing object of the
RoboCupRescue world.

Each module has to be aware to the assigned number because it has to
communicate with other modules by using this protocol. Particularly, agents
have to keep the map information to act in a efficient way. This information
is provided to him by the KA CONNECT_OK and KA SENSE messages.

Below, we will detail each kind of object with the following scheme:
e the type number which represent the object.
e an table which contains the description of the properties:

» Property: the name of the property.

» Comment: the explanation of the property.

» Value: description of the real value of the property
(minimum and maximum),

» Property value: the property number which represent the

property.

' To know more about the GIS data format look in the manual (VOr4) on the page 43.

- 60 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Notice that a certain number object properties do not have any use at this
time of the RoboCupRescue project. They describe the simulation world at
the best but do not give currently important information for the agents.

2) WORLD

The world object contains some geographical information about the
RoboCupRescue environment. Currently, this properties are not very useful
to develop agents. However, later it might be useful to use some information
like the wind force to improve the quality of the simulation.

~ TYPE_WORLD =208
— descriptions array:

Property

startTime

longitude

latitude

windForce

windDirection

Comment

Simulation start time (The time
is elapsed minutes from January

1, 1970 at 0:0 AM)

The longitude of the new
coordinates origin, East
longitude is positive and west
longitude is negative.

The latitude of the new
coordinates origin. North

latitude is positive and south
latitude is negative.

Current force of the wind. unit:
0.001 meter/hour.

Current direction of the wind.
The positive direction along y
axis 1s 0 and this value moves to
1295999 (360*60*60-1) seconds
in the clockwise rotation
direction. The direction is not
expressed in term of cardinal
points (South, North, East and
West).

15
Value

integer:
-0x7FFFFFFF ~
Ox7FFFFFFF
integer:
-0x7FFFFFFF ~
O0x7FFFFFFF

integer:
-0x7FFFFFFF ~
O0x7FFFFFFF

integer:

0 ~ Ox7FFFFFFF
integer:

0~ 1295999

Table 7: World properties.

Property
value
29

30

31

32

33

!> Hexadecimal notation: It’s a notation system with base 16. Normally a digit goes from 0
to 9. With the hexadecimal notation, the digit goes from 0 to 15. So, the 16 digits use are: 0
:01,2:3:4:5;6;7;8,9;A;B;C;D;E;F. The hexadecimal system is often use in

computer science to code digits with the support of 4 bits.

-61 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

3) CIVILIAN

The civilians are the basic agents of the RoboCupRescue world. The 72
civilians are given with the simulator. The other agents, the rescue ones,
have the same particularities as the civilian, nevertheless, they have
additional properties. The civilian are given with the simulator. The 25
rescue agent have to be implement by team developers who want to
participate to the competition. The simple civilians have basic behaviour:
they shout when they are injured and they walk through the map when they
are not under rubble. The rescue agents hear the civilian only if they are
distant of less than 30 meter The majority of the civilian are pedestrian but
some of them (10) have a car. In the future the behaviour of the civilian will
be surely improve to develop some human feature as the altruism.

The rescue agents, so the 10 fire fighter brigade, the 5 ambulance team and
the 10 police force are detailed below. The civilian have a lot of properties

to describe them. This properties are explained here:

— TYPE CIVILIAN = 232

— descriptions array:

Property

position

positionExtra

stamina

hp

Comment

ID of the object that the civilian
is on or in. For example, when a
civilian is on a road, position
contains the ID of that road (it
is the same for building,
ambulance, ...).

When a civilian is on a road,
this property signifies the
position on the road.: the value
is the distance from the head of
the road.

Taking actions will decrease the
stamina, and the agent cannot
take an action that causes the
value of the stamina to be
negative. It will be restored
object each cycle (by kernel).

Health point, is an amount
which determine the health of
the civilian. At the beginning,
hp is 10000. During the

-62 -

Value

object ID ; 0

(if position = 0
means it is on/in
nothing.)

integer:

0 ~ x7FFFFFFF.
(So the range of
the value is from 0
(the civilian is not
on a road) to the
length of the road.)
integer:

0 ~ Ox7FFFFFFF

integer:

0 ~ 0x7FFFFFFF
(if hp = 0, that
means the civilian

Property
value
6

10

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

damage

buriedness

direction

positionHistory

simulation the kernel decreases
it by damage to represent the
injuries of the civilian (see
below in the paragraph 6)
Rescue at the page 77). When
hp=0, the civilian is dead.

This property is the evaluation
of the damage that takes the
civilian. This also means the
necessity of medical treatment.
(more details in the next part
about the rescue action)

This property shows how deep
the civilian is buried in the
collapse of the buildings. The
value is how many people are
required to save it from the
collapse. (see below in the
paragraph 6) Rescue at the page
77)

This property shows the
direction of the civilian. The
positive direction along y-axis
is 0, and the value moves to
1295999 = 360*60*60-1
seconds counter clockwise.

A list of Ids, such as buildings
or roads, that is passed during
the previous one cycle. The
order is chronological.

is dead)

integer: 11
0 ~ Ox7FFFFFFF

integer: 23
0 ~ Ox7FFFFFFF

integer: 27
0 ~ 1295999

a list of IDs 207

Table 8: Civilian properties.

4) FIREFIGHTERBRIGADE

The fire fighter brigade are the only agent able to extinguish the fire. The 10
firemen have a truck with a hose to sprinkle the buildings on fire. So,
normally, they have to pull the hose to an fire hydrant to have water.
However, currently the firemen do not have to find a fire hydrant because
they have all the water they want in their truck. It is a simplification for the
beginning of the simulation project but later there will have some
restrictions about it.

A fire fighter brigade, as the other rescue agents, can communicate by radio
device with the other fire fighter brigades and can also communicate with

-63 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

the other rescue agents through the fire fighter centre. The firemen are able
to hear 4 messages each cycle. They hear the messages from the fire fighter
centre, from the other fire fighter brigades and from the civilian who are
shouting. They can tell or say 4 messages that only the others fire fighter
brigades and the fire station can hear.

The firemen have the same properties as the simple civilian adding to two
others. The two additional properties of the firemen are useless at this time
but are described like if they are available.

— TYPE FIRE BRIGADE =233
— descriptions array: the same as the civilian's one plus two other

properties.
Property Comment Value Property
value
waterQuantity ~ This property shows how much integer: 25
water is in the tank. 0 ~ Ox7FFFFFFF
stretchedLength This property shows how long integer: 26
the hose is pulled to the nearest 0 ~ Ox7FFFFFFF
fire hydrant.

Table 9: FireBrigade properties.

5) AMBULANCETEAM

The ambulance team are the only agent able to save live. The 5 ambulance
teams are able to do different actions. They can excavate rubble to find
people. They can load injured in the ambulance and to bring them to the
hospital. At this time, the ambulance are only able to transport one man.
They can also unload the injured from the ambulance. The ambulance men
are able to save other rescue agents.

Currently, at the beginning of the simulation, the ambulances teams (and the
other rescue agents) know exactly where are all the civilians on the map. It
simplify a lot the research task even if the agents are able to move during
the simulation because the majority of them are under the rubble and so
does not move anymore. Moreover, the ambulance team know exactly the
health of the civilians in a radius of 30 meters. This two information
decrease the credibility of the simulation and would be abolish in the future
version of the simulation. The ambulance team does not have any other
properties than the civilian.

-64 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

— TYPE AMBULANCE TEAM =234
— descriptions array: the same as the civilian's one.

6) POLICEFORCE

The police force is the only agent able to clear the road. The 10 police men
have a bulldozers and other machines to clear the road blocked by rubbles or
collapsed. They are responsible to make the street practicable for other
agents. The police forces do not have additional characteristics more than
those of the civilian,

— TYPE POLICE FORCE = 235
— descriptions array: the same as the civilian's one.

7) ROAD

A road in the RoboCupRescue world represents a road of a piece of a road.
The Figure 19 is a representation of the road and node on the map. In the
following scheme: each R represents one road of the map, each N
symbolises one node and each B is one building of the map.

B[
R@R RRR
/ /
R (5}

Figure 19: Road and node on the RoboCupRescue map.

The 820 roads of the map have the following properties:

— TYPE ROAD = 168
— descriptions array:

Property Comment Value Property
value
head ID of an end point of the node ID or 12
road. building ID
tail ID of the other end point node ID or 13
of the road. building ID
length The length of the road. integer (mm): 24

0 ~ Ox7FFFFFFF

-65 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT

EMMELINE LECONTE AND HUGUES VAN PETEGHEM

roadKind

carsPassToHead

carsPassToTail

humansPassToHead

humansPassToTail

width

block

repairCost

medianStrip

linesToHead
linesToTail

widthForWalkers

This property shows the

kind of road:

- 0x01: elevated road

- 0x02: bridge

- 0x03: tunnel

- 0x04: road for
emergency

The number of cars that
passed during the previous
cycle from tail to head.

The number of cars that
passed during the previous
cycle from head to tail.

The number of humans
that passed during the
previous cycle from tail to
head.

The number of humans
that passed during the
previous cycle from head
to tail.

The width of the road.

The width of the part of
the road where cars and
humans cannot pass by
collapse of buildings,
cracks, ...

This property show how
many people are required
to restore the road.

The value is 1 when there
is a median strip,
otherwise 0.

The number of traffic lanes
from tail to head.

The number of traffic lanes
from head to tail.

The width of the part of
the road for pedestrians

integer:
0 ~ 0x04

integer:
0 ~ Ox7FFFFFFF

integer:
0 ~ Ox7FFFFFFF

integer:
0 ~ Ox7FFFFFFF

integer:
0 ~ Ox7FFFFFFF

integer (mm):
0 ~ Ox7FFFFFFF
integer (mm):
0 ~ Ox7FFFFFFF

integer:
0 ~ Ox7FFFFFFF

integer:
0~ 0x01

integer:
0 ~ Ox7FFFFFFF
integer:
0 ~ Ox7FFFFFFF
integer:
0 ~ Ox7FFFFFFF

Table 10: Road properties.

- 66 -

19

34

35

36

37

38

22

39

40

41

42

43

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

8) NODE

A node in the RoboCupRescue models a crossing of roads or a building
entrance. The Figure 19 shows the distinct nodes existing in the
RoboCupRescue world. So, a node is a crossroad between X distinct roads
or an intersection between a road and a building. The X number varies
according to the number of road emerging on the node. The 765 nodes in the
RoboCupRescue world have the following properties:

~ TYPE_NODE = 200
— descriptions array:

Property Comment Value Property
value
X x coordinate integer (mm): 3
0 ~ Ox7FFFFFFF
y y coordinate integer (mm): 4
0 ~ Ox7FFFFFFF
edges A list' of IDs of objects IDs of roads, 242

(roads or buildings) buildings, ...
connected to this node.

signal The value is 1 when there Boolean (0 or 1) 44
are signals, otherwise 0.
shortcutToTurn In the case of left (right) list of integers: 128

traffic system: a list of 0~ Ox7FFFFFFF
short cut for left (right)

turn. The numbers are in

the order of the edges.

pocketToTumAcross Under the left (right) list of integers: 129
traffic system: a list of the 0 ~ Ox7FFFFFFF
number of pockets and the
length for right (left) turn.
The numbers are in the
order of the edges.
signalTiming A list of the time periods list of integers: 130
of signal for every road in 0 ~ Ox7FFFFFFF
the edge. The number is a
triplet for green, yellow
and blue for the right turn.
The numbers are in the
order of the edges.

Table 11: Node properties.

16 A list is a continuation of integer. So, in the case of the edges properties, it is a successive
enumeration of the roads or building entrances connected to the node described.

-67 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

9) BUILDING

The building object in the RoboCupRescue world represents a building or a
group of building. In fact, there are the 778 buildings: 768 buildings, 7
refuges, one ambulance centre, one police station and one fire station. A
building (included the refuge and the centres) has a lot of particularities to
describe him: the number of floors, the entrances and so on. In fact, the
refuge and the centres are building agents because they represents the
infrastructure of the building and also the personnel who live inside it. The
refuge and the centres are detailed below. The type number allow the
distinction between all the building kind of the map even if they all
(“simple” buildings and agent buildings) have the same properties. These
properties are described here after:

— TYPE BUILDING =176
— descriptions array:

Property Comment Value Property
value

X x coordinate integer (mm): 3
0 ~ Ox7FFFFFFF

y y coordinate integer (mm): 4
0 ~ Ox7FFFFFFF

floors The number of floors. integer: 14
0 ~ Ox7FFFFFFF

buildingAttributes The value indicates the integer: 15

kind of the building: 0~ 0x02

- 0: wooden house
- 1: steel frame house
- 2: reinforced concrete

house
ignition The value is 1 if the Fire Boolean (0 or 1) 48
Simulator sets fire to,
otherwise 0.
fieryness This property shows how integer: 16
much the building is 0~ 0x07
burning:

- 0: not burning

- 1 — 3: intensity of the
fire

- 5 or 6: extinguish

- 7. totally burned

brokenness The value indicates how integer: 17
much the building is 0~ 0x100
collapsed:

- 0:no damage

-68 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

- 25: partly damaged
- 50: half collapsed
- 100: fully collapsed

entrances A list of ID's of objects IDs of the objects 235
that the entrances of the (node) connected
building connected to. to the building.
buildingShapeID Figure ID of the building. integer: 49
0 ~ Ox7FFFFFFF
buildingCode Structure code. integer: 50
0 ~ Ox7FFFFFFF
buildingAreaGround Area of the first ground. integer: 51
0 ~ Ox7FFFFFFF
buildingAreaTotal Total floor area. integer: 52
0 ~ Ox7FFFFFFF
buildingApexes Coordinates of polygon’s list of coordinates 131
vertexes.

Table 12: Building properties.

10) REFUGE

The refuge is a kind of hospital where the agents are in safety. That means
that their HP does not decrease anymore. The seven refuges of the
RoboCupRescue world can not burn or break down.

— TYPE REFUGE = 184
— descriptions array: the same as the building's one.

11) FIRESTATION

The fire station is the centre of the fire fighter brigades. The fire station is
able to hear the tell and say messages from the agents of the same kind (the
firemen so). The fire fighter centre can also tell message to the fire fighter
brigades and the other centres. So the centre allows the discussion between
the different rescue agents. However, at this time of the competition, with
the restriction of the maximum 4 messages to tell and to hear each cycle, the
centre become a bottleneck for the communication. This can be applied to
the other kind of centre: AmbulanceCentre and PoliceOffice.

— TYPE FIRE STATION = 185
— descriptions array: the same as the building's one.

-69 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

12) AMBULANCECENTRE

— TYPE _AMBULANCE_CENTER = 186
— descriptions array: the same as the building's one.

13) POLICEQOFFICE

— TYPE POLICE OFFICE = 187
— descriptions array: the same as the building's one.

14) CONCRETELY

So, an object of the simulated world is described with its type, its ID and
then its properties. To describe the properties of an object there is a list of
couple; the first element of the couples is the type of the property (coded by
its number) and the second element is the effective value of the property
described for the object.

For example, a building with 7 floors would have the following description:
[176 34 14 7 ...]. 176 means that the describing object is a building with ID
=34. 14 and 7 are the first couple of the list of properties. 14 means that the
number after it represents the number of floors of the building; in this case,
the building has 7 floors.

Remember that, at the beginning of the simulation, during the connection
sequence, the agent receives the map information in the
KA CONNECT OK message. At each cycle, the agent receives the same
kind of packet: the KA SENSE, which consists of an updating of the map.
But the KA CONNECT_OK message is much bigger than the KA SENSE
message because it has all the objects of the map in contrast to the
KA SENSE which has only the objects seen by the agent with their new
properties.

Here is an example of objects description in the simulated world (the
beginning of KA CONNECT_OK packet):

80 /344228 /20 /2404 /233/2404/6/892/7/0/27/0/207/0/9/
10000/ 10/10000/11/0/23/0/25/26/0/0/208/1/29/0/30/0/
31/0/32/0/33/0/0/168/2/12/ 860/13/861/24/4204/19/0/
34/0/35/0/36/0/37/0/38/2250/22/0/39/0/40/0/41/1/42/
1/43/0/0/168/3/ ...

-70 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Each object of the world is described in this continuation of figures
separated with a 0.

So the KA CONNECT OK packet with the support of the list of the
constants can be translated in the following words (the words in italic

represents the real value of the property):

80 KA CONNECT OK 0 winddirection
344228 length 0 OBJECT
20 tempory ID 168 TYPE ROAD
2404 ID 2 ID
233 TYPE FIRE BRIGADE 12 PROPERTY HEAD
2404 ID 860 head
6 PROPERTY POSITION 13 PROPERTY TAIL
892 position 861 tail
7 PROPERTY POSITION EXTRA 24 PROPERTY LENGTH
0 positionExtra 4204 length
27 PROPERTY DIRECTION 19 PROPERTY ROAD KIND
0 direction 0 kind
207 PROPERTY HISTORY 34 PROPERTY CARS PASS TO HEAD
0 history 0 carspasstohead
9 PROPERTY STAMINA 35 PROPERTY CARS PASS TO TAIL
10000 stamina 0 carspasstotail
10 PROPERTY HP 36 PROPERTY HUMAN PASS TO HEAD
10000 hp 0 humantohead
11 PROPERTY DAMAGE 37 PROPERTY HUMAN PASS TO TAIL
0 damage 0 humantotail
23 PROPERTY BURIEDNESS 38 PROPERTY WIDTH
0 buriedness 2250 width
25 PROPERTY WATER QUANTITY 22 PROPERTY BLOCK
0 water 0 block
26 PROPERTY STRETCHED LENGTH 39 PROPERTY REPAIR COST
0 stretched 0 repaircost
0 OBJECT 40 PROPERTY MEDIAN STRIP
208 TYPE WORLD 0 medianstrip
1 1 version 41 PROPERTY LINES TO HEAD
29 START TIME 1 linestohead
0 time 42 PROPERTY LINES TO TAIL
30 LONGITUDE 1 linestotail
0 longitude 43 PROPERTY WIDTH FOR WALKERS
31 LATITUDE 0 widthwalkers
0 latitude 0 OBJECT
32 WIND FORCE 168 TYPE ROAD
0 windforce 3 ID
33 WIND DIRECTION

Table 13: KA CONNECT_OK filling.

-71 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

The KA CONNECT OK begins with a description of the agent who
receives the packet and the description of the world. After that, all objects of
the world are described. In the KA SENSE, there is first a description of the
agent who receives the packet and then, the description of the objects which
has been modified (burning, collapsed, ...) but only those the agent can
have the sensory information about.

So to develop agents it is necessary to retain all information about the map.

To be a realistic simulation of the world this memory must be individual
(fair play rule).

6. THE ACTIONS

In the RoboCupRescue world, each agent is able to perform different
actions, according to its type. Each action must be specified to the kernel to
be effective. The kernel alerts the other simulation components of the
actions performed by the agents.

But, for example, how can we specify to the kernel that the agent wants to
move across the map? To be realised, an action has to be communicated to
the kernel by using commands. The action command represents the basic
communication language between agents and between the agent and the
kernel.

In the simulated world there are different kinds of agent: the basic ones (the
civilian) and the first aid agents (the ambulance team, the fire-fighter
brigade and the police force). All agents can do the actions: move and say.
The first aid agents have other specific actions relative to their function. So
an ambulance team can rescue, load and unload an other agent ; a police
force can clear the road ; and a fire fighter can extinguish the fire.

In this section, we will detail each of those commands with the same
canvas:

Description: Light description to explain the aim of command.

Actors: Gives which agent are able to launch this command.
Comments: Little text to elucidate some subtleties of the command.
Content: Shows the packet format of the command.

-72 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

1) MOVE (ROUTE)

e Description: The move action is used to move the agent across the map.
e Actors: Every agent.

e Comments: If the current position of the agent who wants to move is a
building, the route will begin with the ID of the building
entrance (a node).

If the actual position is a road the route will begin with the
head or the tail of the road (a node).

Finally if the actual position is a node the route begin with
the ID of a road or a building connected to the node.

Pay attention, it’s impossible (using the version 0.31 of the
kernel) to stop an agent in the middle of a road. So the last
ID of a route will always be a building ID or a node ID.

e Content:
LongUDP Header
Packet header p» AK MOVE
Body’s length p 8 bytes + route
Body p - ID (int): Represents the ID of the agent
who wants to move.
- route (int’s): This is a list of ID of roads,
Header NULL building and (or) nodes, which
the sender passes though.
- Sentry (int): It is a value (= 0) to indicate the

end of the route.

Figure 20: AK_MOVE packet.

-73 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

2) TELL (MESSAGE)

e Description:

e Actors:

e Comments:

The tell command is use to broadcast a message by radio.
Every other agent and the centre of the same kind (for
example, the ambulance team together and the ambulance
centre) will receive this message.

All first aid agent (fire brigades, police forces and
ambulance teams).

Constructing a communication language between each
kind of first aid agent is very useful. For example, if one
fire brigade needs the help of some colleagues to
extinguish a big building, it will use some established
messages which are very clear and useful. This special
communication between agents can increase the efficiency
of the rescue.

Constructing a communication language between all the
first aid agent is useful too. For example, if a fire brigade
needs to move to a certain place but the leading there is
blocked by collapse buildings, it can ask the police forces
for help.

Notice that the tell from the centres are heard by the other
centres t00.

e Content:
LongUDP Header
Packet header p AK TELL
Body’s length p 8 bytes + size
- ID (int): Represents the ID of the agent
Body > who wants to tell the message.
- size (int): Represents the length of msg.
Header NULL -msg (string): Represents the message that
— the agent wants to tell to the

other agents of the same kind.

Figure 21: AK TELL packet.

-74 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

3) SAY (MESSAGE, AGENT ID)

e Description:

e Actors:

e Comments:

The say command is used to transmit a message to another
agent (agent id) who is within 30 meters with the
‘voice’(it's like speaking).

Every agent.

Say is difficult to use correctly because of two restrictions.
The first one is that we must specify the target agent ID.
The other is the distance of the availability of the emission
(30 meters) which is very little.

Notice that the civilians use only this command to
communicate. Their messages are not normal sentences,
they send FIPA ACL messages' .

A last comment for the SAY and TELL actions is that any
agent can tell or say only 4 sentences in one turn. An other
restriction concerns the sentences that an agent is able to
hear during each turn: this number is limited to 4.

e Content:
LongUDP Header
Packet header p AK _SAY
e
Body’s length > 12 bytes + size
- ID (int): Represents the ID of the agent
Body > who wants to say the message.
- size (int): Represents the length of msg.
Header NULL - msg (string): Represents the message that the
— agent wants to say to an other
agent.

- target (int): Represents the ID of the agent
who will receive the message.

Figure 22: AK_SAY packet.

7 Communication standard from FIPA (Foundation for Intelligent Physical Agents):

http://www.fipa.org.

-75 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

4) EXTINGUISH (BUILDING ID)

e Description:

The extinguish command allows a fire brigade to

extinguish a fire which is within a maximum radius of 30

meters.

e Actors: Fire brigades.

e Comments:

The extinguish command can only be used if the fire

brigade is on a node and if the target building is in the 30
meter radius. The kernel 0.31 does not handle the water
quantity. So the extinguish command works with a water

quantity of 1000.
e Content:
LongUDP Header
Packet header » AK EXTINGUISH
Body’s length p 28 bytes
Body p - ID (int): Represents the identifier of the

fire brigade who wants to
extinguish a fire.

Header NULL - targetID (int): Represents the ID of the
burning building that the fire

- direction (int):

- quantity (int):
- sentry (int):

brigade wants to extinguish.
Represents the direction of the
nozzle. This value vary
between 0 (along the Y axis)
and 1295999 (360*60*60-1).
Position of the nozzle (x
coordinate)

Position of the nozzle (y
coordinate)

This value is equal to 1000.

It is a value (= 0) to indicate
the end of the
AK_EXTINGUISH packet.

Figure 23: AK_EXTINGUISH packet.

-76 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

5) CLEAR (ROAD ID)

e Description:

e Actors:

e Comments:

The clear command allows a police force to restore a
blocked road so that cars can pass trough it.

police forces.

No particular remarks about this command.

e Content:
LongUDP Header

Packet header p AK CLEAR

Body’s length p 8 bytes
- ID (int): Represents the ID of the agent

Body > who wants to clear a road.

- routelD (int): Represents the ID of the

Header NULL blocked road.

Figure 24: AK_CLEAR packet,

6) RESCUE (AGENT ID)

e Description:

e Actors:

e Comments:

This command is used to rescue buried people. That
means to free the civilians from the collapsed buildings.

ambulance teams.

When an ambulance team rescues a civilian, the property
buriedness of this civilian is decreased by one. In other
words, the property buriedness of a civilian shows how
many people are required to extricate him from the debris.
Notice that rescuing a civilian with two ambulance teams
decreased by twice the number of turns necessary to
extricate the civilian from the collapse.

In the same time, the Ap of the buried civilian decreases
each turn of the damage value. So, to make the rescues
more efficient, it's useful to analyse these fields.

-77 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

e Content:
LongUDP Header
Packet header p AK RESCUE
Body’s length p 3 bytes
Body > - ID (int):
Header NULL - targetID (int):

7) LOAD (AGENT ID)

e Description. This command is used to load an injured civilian into the
ambulance.

e Actors: ambulance teams.

e Comments: To be able to load any civilian, an ambulance team must
be at the same position as the civilian. That means that the
properties ‘position’ of the civilian and the ambulance
team must have the same value.

When a civilian is loaded onto an ambulance, his position
become the ID of the ambulance.

An ambulance team can only load one civilian. If it wants
to load an other civilian, it must firstly unload the first

Represents the ID of the
agent who wants to rescue a
civilian.

Represents the ID of the
civilian who is buried and
needs help.

Figure 25: AK_RESCUE packet.

civilian (who is in the ambulance).

-78 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

e Content:
LongUDP Header
Packet header p AK LOAD
Body’s length p 8 bytes
Body p - ID (int): Represents the ID of the
agent who wants to load a
civilian.

Header NULL - targetID (int): Represents the ID of the
civilian that the ambulance
team is going to load.

Figure 26: AK LOAD packet.
8) UNLOAD

e Description: Unload is used to unload an civilian from the ambulance.

e Actors: ambulance teams.

e Comments: Note that no targets is specified. That is because it is of no
use: there is at most one civilian in the ambulance. So if
the ambulance team uses this command, only one civilian
can be unloaded.

e Content:

LongUDP Header

Packet header

Body’s length

Body

> 4 bytes

> ID (int):

Header NULL

-79 -

» AK UNLOAD

Represents the ID of the agent who wants
to unload the civilian (who is already in
the ambulance).

Figure 27: AK_UNLOAD packet.

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

9) CODE EXAMPLE'®

This code shows how to create the message to send to the kernel to effect an
action. In this case, the “extinguish” command is described, the other
actions have the same kind of code.

VOID EXTINGUISH(INT TARGETID), INT DIRECTION, INT POSITIONX, INT POSITIONY, INT QUANTITY)
{
(..)
CREATE_HEADER_LUDP();
TABHAUT.WRITEINT(AK _EXTINGUISH);,
BYTE[] BODY = NEW BYTE[4 * 7]; INT 1=0;0UTILS.BYTEARRAYCOPY(ID,BODY, 1), 1+=4;
OUTILS.BYTEARRAYCOPY(TARGETID, BODY, 1), 1+=4;
OUTILS.BYTEARRAYCOPY(DIRECTION, BODY, 1), I+=4;
OUTILS.BYTEARRAYCOPY(POSITIONX, BODY, 1), I+=4;
OUTILS.BYTEARRAYCOPY(POSITIONY, BODY, 1), I+=4;
OUTILS. BYTEARRAYCOPY(QUANTITY, BODY, 1), +=4;
OUTILS.BYTEARRAYCOPY(O, BODY, 1),
TABHAUT.WRITEINT(BODY.LENGTH);
TABHAUT.WRITE(BODY, 0, BODY.LENGTH);
TABHAUT.WRITEINT(HEADER NULL);,

3

7. NEXT KERNEL

So, till now, we describe the project at his current state. But RoboCup-
Rescue simulation is a new project and needs improvements. At this time,
the version of the kernel used is the version 0.39. We worked with the
package Ver.0.31 (June 24, 2001) containing all the modules used during a
simulation (kernel, GIS, ...). This package represents the competition
environment of RoboCup2001.

But now with the version 0.39, which will be the environment of the next
competition in June 2002 in Fukuoka (RoboCup2002), there are some little
changes for agent developers. The evolution is not major but only one really
affect the agents. In previous releases, the kernel ignored the positionExtra
property and regarded the middle point of the road as the position of the
agent if it is on a road. In the package version 0.39, the kernel regards the
true position of the agent.

'® QOutils is a static class which implements some methods of general utility. For more
information, please see our codes in the Annexes.

-80 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Later, other evolutions are planned to increase the credibility of the

Simulation project. Here are mentioned some of them:

e To represent one agent by one object. In fact now a rescue agent
represent a set of agents.

e To increase the size of the map.

e To restrict the quantity of water available from a fire hydrant. This is a
serious problem to deal with during the real earthquake and so, it is very
important to integrate such an issue into the Simulation.

e To develop more realistic civilian.

So, in this chapter, we have described the modules of the project and their
probably evolution. Now, we submit some suggestions for the next versions
of the RoboCupRescue simulation project:

e To use the centres as the real brain of the cooperation between the
agents. That means that centres would be able to receive all the
messages diffuse by the agents of the same kind and to transmit those
they want (not only four). That should allow a better management of the
cooperation among the agents.

e To allow safe civilians to help the rescue agents to save others peoples
in the debris. This is developing a kind of altruism among the civil
population which is a normal behaviour for human as seen on the
September 11, 2001.

e To develop an efficient radio system among the rescue agents of the
same kind. That means to allow an agent to speak, using telecom-
munication means, with somebody in particular. This kind of transmis-
sion can be compare to the cellular phones.

e To develop the police centre like a radio operator guidance. So, the
police centre would be able to inform the population (civilians and
rescue agents) of the state of the roads among the map. With this kind of
management of the city map, it is possible to inform people of the
alternative route (without road blocked) or the deviations available.
Police forces would firstly clear the principal axes of the city.

8. CONCLUSION

Knowing those specifications, we had to develop new agents. A good
suggestion shall be to develop a low level layer on which an agent layer
would come leaning. The first one can be coded in any programming
languages and would insure all basics stuffs such as connection, data
representation, primary actions and so on. While the other, the high level

-81 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

layer, would implement all the complex agent's behaviours: their choices,
communications and cooperation.

The best thing to do is to code this agent's layer not in an Object-Oriented
language as Java or C++ but indeed in an Agent-Oriented language which
may contain for example very potent Al algorithms or communication
protocol already implemented. This would be a serious help for agents
developers but, unfortunately, this kind of programming languages are not
yet completely developed. It's possible to find some good prototypes on the
Internet such as:

AgentBuilder (http://www.agentbuilder.com),

ABE (http://www.networking.ibm.com/iag/iagsoft.htm),

Grasshopper (http://www.ikv.de/products/grasshopper),

Knowbot® (http://www.cnri.reston.va.us/home/koe).

-82 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

-83 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

V. OUR AGENTS

1. INTRODUCTION

Our first step, as agents developers entering into the research team of the
RoboCupRescue Simulation, was to join the mailing list. To do that, we sent
an e-mail to the administrator: Ranjit Nair (nair@isi.edu), introducing
ourselves in order for the members to understand who we were. From this
moment, we received daily news of the international research situation. We
could also send our questions, recommendations or answers by writing at
the following address: r-resc@isi.edu. Notice that there is a Japanese
mailing list: its administrator is Tomoya Nakanishi (nakanisi@r.cs.kobe-
u.acjp) and its address is: rescue(@r.cs.kobe-u.ac.jp.

Once installed, we had to inquire about the simulation project. We went
directly to the official Web site of the RoboCupRescue Simulation:
http://www.r.cs.kobe-u.ac.jp/RoboCupRescue. There we found all the infor-
mation we need: the overview of the project (a good introduction for a
beginner), the rules for the next competition, several documents and
interesting links, the latest news (for those who are not on the mailing list),
... After two months of attentive reading about RoboCupRescue Simulation
and multi-agent programming, we decided to begin our program.

2. MATERIAL AND SIMULATION

How to get started? Since 2000, all modules of RoboCupRescue Simulation
have been implemented on Linux. Games of RoboCup 2001 Rescue
Simulation Leagues were played on Linux (RedHat). Using Linux is the
quick way to start Rescue Simulation.

The Simulation requires at least three Pentium III SOOMHz 256MB Linux
for all the simulators and the agents. If your agents need computational
power, you should have more machines for agents. But for us, it was a bit
different: we had a Pentium IV 1700 MHz 256 MB only for our agents and
a biprocessor (2 x 1400 MHz) machine for all the simulators.

-84 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

The following steps show how to install Rescue Simulation environment:

e Download RedHat from: http://www.redhat.com.

e Prepare Linux machines.

e Download Simulation package from: http://www.r.cs.kobe-
u.ac.jp/RoboCupRescue/download.html.

e Unpack files:
» gzip -d rescue-0***-unix tar.gz
» tar xvf rescue-0***-unix.tar

e Follow the README.TXT file.
» configure
» make (note: it takes about an hour to compile all files)

e Prepare JDK.
» viewer requires Java environments. If your Linux distribution does
not include Java, you need to download it from: http://java.sun.com.

Once all these phases completed, you have installed the environment of the
Simulation: GIS, kernel, component simulators and 2D viewer. The last
thing to do is to implement the agent module or to connect other agents
already coded.

Here is some information to help you launch our agent module: download
and unzip our <codes (and some documentation) from:
http://www.info.fundp.ac.be/~eleconte/Code.html. The two packages are
already compiled, so you just need to launch the simulation (see the
README.TXT file of the Simulation package) and after that, launch our
agents using the following command:

JAVA RESCUEAGENT/MAIN FB AT PF [IP [PO]] "
The arguments of the command are:
e rB, the number of fire fighter brigades. With the version O of the

kernel, this number was fixed at 10, but it can change in the future
versions of the Simulation package.

19 [...] means the argument is optional.

-85 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

e A7, the number of ambulance teams. With the version O of the kernel,
this number was fixed at 5, but it can change in the future versions
of the Simulation package.

e pr, the number of police forces. With the version O of the kernel, this
number was fixed at 10, but it can change in the future versions of
the Simulation package.

e 7P, this is the IP address of the kernel. If it is on the same computer as
the agent module, it is not needed to specify this argument.
e po, this is the listening port number of the kermel. Normally, the

kernel's listening port is 6000 and it is no use to specify it unless
the kernel changes his port.

3. PROGRAMMATION LANGUAGE

The first decision to take when you decide to code agents is to choose the
programmation language you will use. There are not any restrictions in this
choice: if you want to use Pascal or Fortran or even Assembler it's possible,
even if it seems to be more complicated. All the simulation’s modules are
written in C or C++. It explains that in the passed competition (Seattle,
2001), most agents modules were developed in C or C++. But some were
coded in Java (as the winner: YabAl,
http://ne.cs.uec.ac.jp/~morimoto/rescue/yabai).

So, we did not have any constraints. We hesitated a lot between C++ and
Java because an object-oriented language seems relevant to implement
agents behaviours. We tried to evaluate these two languages: Java is very
close to the language C++ given that it has almost the same syntax.
However Java is simpler than the language C++ although it is inspired by it,
because the critical characteristics of the language C++ (those that are at the
origin of the main errors) were abolished:

Java C++
Predefined types. Possibility of creation of types.
A single type of structure: the class. Different types of structures: struct,
union, ...

Better management of the exceptions.

Simple inheritance. Multiple inheritance.
No object's destructor due to the garbage Freedom of the memory management
collector. (constructor/destructor)

Table 14: Java Vs. C++.

- 86 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

These modifications do not prevent Java from being at least as powerful as
C++. However Java is much slower, in fact, it loses in speed what it gains in
portability.

We also hesitated to make an API C++/Java for the RoboCupRescue
developers, but we decided to forget this possibility because we did not
know enough about the Simulation project to appreciate what is more
interesting to code in C++ than in Java. So, our decision was to begin to
code our agent from scratch and only in Java.

4, METHODOLOGY AND PRESENTATION OF OUR
ARCHITECTURE

We had to completely develop the rescue agent (fire fighter brigade, police
force, ambulance team and their centre). From the low level connection to
the kernel to the high level behavioural algorithms.

First of all, we decided the general structure of our programme. We had at
this time a good idea of the work we had to do because we read a lot of
previous rescue agent programs. We implemented two separate packages to
divide the map information (data) and the agent's behaviours (algorithms).
The packages' names are:

— ObjectProperties: package which contains all the map objects,
— RescueAgent: package which contains all the algorithms.

The Figure 28 is a representation of our agent module:

-87 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

RescueAgent

10 Main Outils

Constantes Dijkstra

AmbulanceTeam

FireFighterBrigade

PoliceForce /
\ Controller

f CentreController
AmbulanceCentre

FireFighterCentre

PoliceCentre

Figure 28: First version of the RescueAgent package architecture.

This is the first version of the RescueAgent package. We spent a lot of time
elaborating such an architecture because a good architecture is the best way
to begin developing agents.

e Qur first goal was to connect us to the kerne/. We wanted to establish
the connection to the kernel (using the LongUDP protocol) and to
create methods to form the packet for the actions (move, extinguish,
clear, say, ...). All these methods are in the 10 class.

e Secondly we planned to create a Main class which has to launch the
agent simulation. The aim of this class was also to launch the requested
number of agents and check the parameters of the server (IP address and
port number).

e We also created a tools class which contains a series of useful methods
(Outils class).

- 88 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

e Then we worked on the rescue agent as an individual just as we would a
civilian. We created a common representation of the basic agent
(Controller class). This class implements some actions as move, say
and tell which are common to all the agents.

e The map is a kind of graph with nodes and arcs. So we had to choose
and implement a shortest path algorithm. We choose the Dijkstra
algorithm and we improved it a little (Dijkstra class).

e We had to think about the specific agent: fire fighter brigade, police
force and the ambulance team. They extend the Controller because each
of them are first of all a simple agent. But every particular agent has
some specific actions: the fire fighter brigade's action is to extinguish a
fire, the police force's action is to clear the road, the ambulance team's
actions are to rescue a civilian, to load the civilian in the ambulance and
to unload him from the ambulance (policeForce, ambulanceTeam and
FireFighterBrigade classes).

e After that, we had to develop the behavioural algorithms. We thought of
creating a special class for all the agent's behaviours. In this way the
behaviour can be developed independently of the rest of the agent
module (Behaviour class). This point is very interesting for the future
agent developers to perform the behavioural algorithms.

e To develop the communication among the agents, it is imposed to use
the centres. So we developed these algorithms in the following classes:
ambulanceCentre, policeCentre, FireFighterCentre and
CentreController (which is quite the same as the Controller class but
for the centres).

Later we added some classes to perform our architecture but we respected
the first structure of the RescueAgent package.

-89 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

5. KEEPING MAP DATA

At the beginning of the simulation, during the connection, all agents receive
the map data in the KA CONNECT_OK packet. During each cycle those
data are updated when the agents receive the KA SENSE packet. This
packet holds only the objects containing a property with a changing value.

Each agent has to keep the map data in an individual data structure, it's
forbidden to maintain a common map for all the agents (fair play rules). So
we need to simulate a kind of personal memory to retain the map
information and be able to be updated often. The 25 rescue agents (10 fire
fighter brigades, 10 ambulance teams and 5 police forces) need the same
kind of data structure to memorise map information. Moreover this data
structure has to be powerful, fast and not too heavy.

By using an object-oriented language (Java), each object of the simulated
world (a road, a building, ...) can be easily formalised in classes (a road
class, a building class, ...). So to be perfectly clear, we create a separate
package (ObjectProperties) which contains all objects of the simulated
world with their properties.

The Figure 29 shows the structure of the ObjectProperties package:

-90 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

ObjectProperties

World

Road Node

/ Building \

PoliceStation AmbulanceStation

FireFighterStation

Agent 1\

Ambulance

\ FireBrigade

Police

Figure 29: ObjectProperties package architecture.

In the ObjectProperties package, the following objects are developed:

World:

Road:

Node:

Agent:

Ambulance:

contains all the world's properties (such as the
start Time or the windForce).

contains all the road's properties (such as the length
or the roadKind).

contains all the node's properties (such as the edges
or the x coordinate).

contains all the agent's properties (such as the
position or the stamina).

contains all the ambulance team's properties.
Properties of the ambulance team are the same as

-91 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

e FireBrigade:

e Police:

e Building:

e AmbulanceStation:

e FireFighterStation:

e PoliceStation:

the civilians' ones but for clarity's sake we decide
to keep the ambulance class separate.

contains all the fire fighter brigade's properties
(such as the waterQuantity or the stretchedLength).

contains all the police force's properties. The
properties of the police force are the same as the
civilians' ones but for clarity's sake we decide to
keep the police class separate.

contains all the building's properties. Note that the
refuge is a building but the property of type is
different.

contains all the ambulance station's properties. The
properties of the ambulance station are the same as
the buildings' ones but for clarity's sake we decide
to keep the AmbulanceStation class separate.

contains all the fire fighter station's properties. The
properties of the fire fighter station are the same as
the buildings' ones but for clarity's sake we decide
to keep the FireFighterStation class separate.

contains all the police station's properties. The
properties of the police station are the same as the
buildings' ones but for clarity sake we decide to
keep the PoliceStation class for possible
extensions.

Each object of the world contained in the ObjectProperties package has the
same format. First of all, the properties of the object are detailed and after
that, some methods. The properties are those developed in the previous
chapter and are materialised by using different kinds of variables (integer,

array, ...).

92 .-

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

The methods are generally the same for all the objects:

e PUBLIC VOID SETPROP (INT[] DATA): this method receives an array of
integers which contains all the
values of the object's properties
and it puts the right value to all
properties.

e PUBLIC VOID PRINTPROP(): this method prints on the screen
all the object's properties values.

All the objects of the simulated world are represented in the
ObjectProperties package. But it is not yet sufficient. We have to build a
data structure which can conserve all the different objects of the world. We
thought a dynamic structure would be more efficient. In our case we have
the choice between the vector and the Hashtable. We have chosen to use an
Hashtable®® because there is an more useful index management. We work
more exactly with an HashMap. The HashMap class is roughly equivalent to
Hashtable, except that it is unsynchronised and permits nulls.

6. TALKING WITH THE KERNEL

To be able to exchange information with the kermel is the first thing to
develop an agent module. So, we begun our program in coding the 10
(input/output) class which is, in fact, the lowest level class. This class
connect our agent module directly to the kermel using the sockets. The
kernel module may be on the same computer or on an other computer and,
in this case, the IO class will use the Internet. Note that through the kernel,
the agent module is connected to all the other modules, which are also
plugged to the kernel (Figure 3, page 40).

Now that the agent module and the kernel are connected, the communication
between them may begin. The 10 class insures the bi-directional
communication: on one hand, it is charged of the sending of packets from
the agents towards the kernel. Those packets are sent during the connection
of the agent (the CONNECT and ACKNOWLEDGE methods®') or when an agent

*° The Hashtable class from the java.util package allows to create collections of objects
associated to a name (a key). An Hashtable can contain different kind of objects.

*! For more information about these methods and the 10 class, please see our codes in the
Annexes.

-03 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

wants to do something (the MOVE, SAY, TELL, EXTINGUISH, ... methods). The
kernel receives all those messages and takes charge of it: verifying them,
executing them or forwarding them to the right module(s).

On the other hand, the IO class warrants the receiving of packets coming
from the kernel thanks to the RECEIVE CONNECT method (which only
receives the KA CONNECT_OK packet) and the RECEIVE method (which
receives all the packets during the Simulation except the
KA CONNECT_OK packet).

Here finishes our low level layer (connection and data representation). Upon
it, we implemented a second layer which contains all the common and basic
algorithms of the agents. The main are the moving algorithm, which helps
the agent to find the shortest path between two points of the map and to
move across it. The other is the communication protocol, this one gives a
minimum language to agents. Given that, they are able to coordinate their
actions.

7. GENERAL IDEAS

Our agent module contains in fact three kind of agents: the fire fighter
brigade, the police force and the ambulance team. To handle all these
different agents during the simulation, we use multithreaded programming.
So we have a fire fighter brigade class that will be instantiated ten times ;
the police force class, ten times too ; the ambulance team five times. So we
have 25 threads running simultaneously during the simulation just to
represent the rescue agents. We cannot develop 25 different behaviours, so
we have to think about generic algorithm for each kind of rescue agents.

It's also necessary to think about the way the agents will react to the sensory
information they receive. But all the agents will not have the same
behavioural algorithms: the fire fighter brigades have to react when they see
or ear fire and they have to try to extinguish it. The police forces have to
clear a road when they see or ear that a road is blocked. And finally, the
ambulance teams have to save (rescue, load in the ambulance and unload)
civilians who need help.

In fact the rescue agents have to react immediately to changes in the
environment. We do not think now about the way the agent has to react to
the environmental update, we just try to imagine how the agent can be aware
of their environment and react simultaneously. The solution was to use a

-94 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

thread to react to the sensory information the agent receives each turn. We
call this thread the reaction thread. Even if this thread is different for each
kind of rescue agents, the principle is quite the same.

The Figure 30, here after, shows the way the rescue agent reacts when

something interesting for him happens. It will be explain in more detail after
the following figure.

- 05 -

Indidual memory

Map information

Rescue agent

Behavioural Algorithms

Reaction thread

Instantiation
Map data Reaction thread (like extinguish a fire)
KA CONNECT OK _‘
J\ /L v
| | [| | | I
| | | | | | I Time
1 2 5 6 7 8 (cycle)
gometling happens (like a buildg burns)

Sensitive Sensitive Sensitive

information| [|information| |information

KA SENSE| |KA SENSE| |KA SENSE

Figure 30:

Reaction thread.

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

This figure details the reaction scheme of all the agents. Here follows the
description of this reaction:

— On one hand, the rescue agent has an individual memory containing all
the map information and on the other hand, it has his own behavioural
programme. The behavioural algorithms contain, of course, the reaction
thread.

— The agent receives the map information during the connection (thanks to
the KA CONNECT OK packet) and each cycle it receives the updates
of the map in the KA SENSE packet.

— Until now everything is all right, no special sensory information is
noticed. That means no fire, no block road or no civilian who need help.

— Suddenly something happens (just at the beginning of the fifth cycle):
the event is a fire or debris blocking a road or a civilian who needs help.

— Then the behavioural algorithm starts and decides to react or not.
Sometimes it will be more efficient to do nothing and to wait for another
event than to react immediately. But this is a part of the specific
behavioural algorithm explained below.

— If the agent reacts, the behavioural algorithm launches the reaction
thread. This thread consists of saving a civilian for a ambulance team,
extinguishing a fire for a fire fighter brigade and clearing a road for a
police force.

— At this time the agent thread continues to run normally and be aware of
the environmental information. Simultaneously, the reaction thread
continues its way.

— When the reaction thread finishes, that means the civilian is saved or
dead, the road is clear or the building does not burn anymore, the
reaction thread kills itself, but the agent thread is still active.

Using another thread is very useful because it's necessary to continuously
update the map information to know if the situation changes or not. In fact,
just imagine that we do not use another thread. The agent should only react
or be aware, but not both simultaneously. So if something happens, the
agent should react and then cannot be aware all the time to the new sensitive
information. It might be able to manage a system of this kind but this would
surely be less efficient and moreover less realistic. The reaction thread
allows the agent to be aware all the time of the world's information and to
react at the same time.

Concerning the concurrent accesses, we have two threads: the "agent
thread", the one which update the map information, and the "reaction
thread". The first one read and, of course, write on the map information
while the other thread is only reading it. So, it is not possible to have any

-97 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

writing problem. Concerning the reading, it is not a real problem because
the "reaction thread" constantly (each cycle) read the map information.

The reaction thread is the general idea of implementation for our three kinds
of agent. However each kind of agent applies this idea in a different way.
But these personal applications of the rescue team are explained in the
sections 10, 11 and 12 of this chapter.

8. MOVING ALGORITHM

1) INTRODUCTION

In the simulated world, agents have to move across the map using the
special action called move. This action has been detailed in the previous
chapter and needs parameters. One of those parameters is the way taken to
move from the start point to the arrival point. So we have to think about a
suitable way of moving across the map. This way has to be the shortest way
or the less collapsed (with the smallest number of blocked roads).

But the second solution is impossible due to the fair play rule (the individual
memory of the agent). An agent cannot know, for all the roads of the map, if
this road is blocked or not. So, we looked for a shortest path algorithm in the
simulated map. But before thinking about a complex algorithm, it's essential
to formalise the data we have: the map.

2) THE SIMULATED WORLD MAP = GRAPH

Each agent receives the map at the beginning of the simulation and updates
some objects of this map each cycle. The map contains roads, buildings and
nodes. Intuitively, the map can be assimilated to a graph.

Effectively, a road could be represented by an arc? of a graph. The
direction of the road could be shown in a graph. If the road has a double
direction then there is no arrow on the graph. A node of the graph could
represent a building or more generally a node of the map.

*2 In bold: the mathematical words used ; to avoid a confusion between the node of the map
and the node of the graph.

- 08 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Graphically, the objects of the simulated world evaluated are:

Simulation object Graphical object Mathematical object
Building and node Node Xj

Road Arc w = (X5, X))

with 1 = j and

Vk —~dru=(x,Xx).
Length of the road weight of the vertex p (w) =p (xi, x;)

Table 15: Graph data.

We notice that the length of a road is always a positive value whatever the
direction used to pass through it.

Mathematically:
- U={w}, the set of all the roads of the map.
- X={x}, the set of all the nodes of the map.

— Vk e U;p(u) =0, the length of all roads are positive or equal to zero.

3) THE PROBLEM

Now that the data is formalised, we can set-out the problem. The most
important thing for a rescue team in an earthquake is the time management.
So it seems very important for rescue agents to move quickly across the
map. Logically, the quickest way is the shortest one. However, there are a
lot of blocked roads after an earthquake and it should be very useful to avoid
those roads if possible. But, as said before, an agent does not have all the
information about all the blocked roads of the map. So, the only possibility
is to find the shortest path and to ask the help of a police force when it's
necessary.

An other way of thinking would lead us to the following idea: if an agent
comes up against a blocked road, it tries again to find the shortest path till
its arrival point avoiding this blocked road. But again, we disregard this
possibility. In fact, just after an enormous earthquake as the Kobe's one,
maybe 70% of the roads are blocked. So we risk, at the beginning of the
Simulation, that the agent do not find any road towards their destination.
But this improvement of the agent's moving algorithm could be powerful
after 50 or 75 turns, when police forces have already clear many roads.

-00 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

So, our problem is to find the best path from a node, a building or a road
(node or arc™) to another node or building (node). The best path is the
shortest one or the lighter one in our case. This problem is a classic of graph
theory. A lot of mathematicians try to solve it and there are a lot of different
solutions possible. We choose the Moore-Dijkstra algorithm which seems to
be the most powerful.

4) OUR SOLUTION: DIJKSTRA'S ALGORTIHM

We use the same mathematical conventions developed in the part 2 of this
chapter.

We have to pose:
|y (Xi , Xj) =0 iin = Xj
=+ o if(Xi,Xj)G_fU

Suppose that we have a graph with n nodes. The algorithm runs in n-1
iterations. The algorithm updates an integer array: pi. The pi array has a
length of the numbers of nodes and each item of the array corresponds to a
node. So the pi[i] item corresponds to the node x;.

The algorithm uses another set, D. In fact, the X set is divided into two

parts: D and X\ D.

— D contains the nodes already visited (for which the shortest path is
already calculated).

— X\ D contains the other nodes.

At the beginning of the algorithm, we must update the pi array with the
value of the start point. In fact the pi array contains all the weights from the
start point to the other nodes. So the pi[x,] contains the weight of the way
from the start point to the x; node. So the Dijkstra algorithm consists of
filling the pi array with the lightest weight for each node of the graph. This
principle of updating the pi array is called the relaxation principle.

Suppose that xg is the start point:

— the value of pi[x¢] s 0;

— for each other node of the graph which has a connection with the start
node we have to update its value of the pi array with the value of the
vertex (the length in our case) between the two connected nodes.
(relaxation principle).

* In version 0.31, an agent cannot stop itself in the middle of a road, but when the road is
blocked it can pass through a certain part of the road and then be blocked somewhere clse
on the road.

- 100 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

After that, each iteration happens this way:

— choose the node not already visited with the lighter value in the pi array,

— for each other node of the graph which has a connection with the
selected node, we have to update his value in the pi array. The new
value is the minimum value between the weight of the vertex between
the two connected nodes added to the value of the selected node in the
pi array and his previous value (relaxation principle),

— consider that the chosen node is now already visited.

Algorithmically we can formalise Dijkstra's algorithm this way (suppose
that x¢ is the start point):

D={x}
pi(%)=0

forx € X\ {x,} do:
pi(x)=p(x,X)

While D = X repeat:
choosey € X\Dsuchthatpi(y)=min {pi(x)|xe X\D}
D=Du{y}
¥V x e X\Ddo:
pi(x)=min[pi(x).pi(y)+p(y.x)]

5) IMPLEMENTATION

To implement Dijkstra's algorithm we create two classes (included in the
RescueAgent package): Dijkstra.java and WeightBefore. java. Dijkstra.java
contains the algorithms and WeightBefore java is a data structure. Here
follow a description of our implementation.

First of all Dijkstra.java contains data:

PUBLIC CLASS DIJKSTRA IMPLEMENTS CONSTANTES

/** CONTAINS ALL THE OBIECTS OF THE MAP. */

PUBLIC DATA MYDATA;

/** CONTAINS THE ID OF START NODE OF THE ALGORITHM. */

PUBLIC INT START;

/*¥* CONTAINS THE ID OF THE FINISH NODE OF THE ALGORITHM. */

PUBLIC INT FINISH;

/** IS THE DATA STURCTURE USE TO RETAIN THE WEIGHT AND THE PREDECESSOR OF EACH NODE. */
PUBLIC HASHTABLE DIJ_DATA

/** CONTAINS THE BRAND NEW VISITED NODES AF DIJ_DATA (PERFOMING DIIKSTRA). */
PUBLIC VECTOR JUST_VISITED;

(..)

}

- 101 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

The pi array is represented by dij_data in the code. Dij_data has a particular
structure: it's an hashtable of WeightBefore. The WeightBefore has the
following fields:

PUBLIC CLASS WEIGHTBEFORE

{

/** CONTAINS THE WEIGHT OF THE SHORTEST PATH FROM X, TO THE OBJECT. */

PUBLIC INT MYWEIGHT=0);

/** CONTAINS THE PREDECESSOR OF THE OBJECT ON THIS SHORTEST PATH.*/

PUBLIC INT MYBEFORE=0);

/** CONTAINS THE ID OF ROAD BETWEEN THE PREDECESSOR AND THE OBJECT ON THIS SHORTEST
PATH.*/

PUBLIC INT ROADBEFORE=0);

/** I VISITED IS TRUE, THAT MEANS THAT THE OBJECT BELONG TO 1D AND THAT THE VALUES ARE
FINAL.*/

PUBLIC BOOLEAN VISITED=FALSE;

(..)

}

This structure is essential to retain the values of the weight (MyWeight) and
predecessor (MyBefore) necessary for Dijkstra's algorithm. The predecessor
is useful to compute the path.

We add a vector to dij data to improve the result: just visited which
contains the ID of the most recent update values from dij data. This is
useful to perform the time asked for the resolution of the algorithm. In fact,
in its original version (that means without any change of the classical
Dijkstra's algorithm), it takes too much time to be executed (complexity of
O(n%)). By introducing just visited we reduce the number of nodes visited
(by forcing the visit of the nodes with most recent changing values), so we
decrease the resolution's time.

We provide each agent with its Dijkstra object to allow more simultaneous
moves. So with our 25 rescue agents we have 25 Dijkstra's. An agent use all
the simulation time the same Dijkstra for each move across the map. So to
implement a reusable object we imagine two main methods: the
initialisation (set data) and the solving of the algorithm with a start and
finish points (solve).

The first method, set data, create dij data and is only used once by each
agent. It fills the dij data with the agent's particular data's. The set data
method is called once at the begin of the controller execution of each agent.

The second method, solve, is used each time the agent needs a path between
two points (at each movement so). solve updates the dij data object with the
values of the start and finish points (by relaxation) and, by this way,
calculate the way between the two points. So, first of all, there is an
initialisation of the dij data with the values of the start and the finish points.

-102 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Concretely we use a method called init. Then, the resolution by using
relaxation process, we progress by filling of the dij data structure. We
change something in the resolution in front of the classical Dijkstra: when
there is a way found the algorithm stops immediately, to reduce the time of
the execution.

9, COMMUNICATION PROTOCOL

The RoboCupRescue Simulation allows the agents to speak together. If it is
used judiciously, it can seriously improve the reaction of the rescue agents.
There are not any language specification, so you are totally free to create
your own language. We just know that the civilians use the FIPA ACL*
language to call up for help.

So, any agent can communicate with other agents. When an agent says a
message using his voice, the message is immediately heard by other agents
within a radius of 30 meters. When an agent fells a message by
communications devices, this message is immediately heard by agents
whose type is the same as the speaker's, and his centre. Furthermore, when a
centre agent tells something, the message is transferred to other type centres
(Figure 31).

| Ambulance centre 'ﬁ‘ Fire station 'ﬁ‘ Police office |

Ambulance team ‘J Fire brigade ‘J L Police force

Figure 31: Tell by communication devices.

But to be more realistic, agents can only receive (and send) four messages
. . . 25 .
during one simulation turn®. Unfortunately, centres are considered as

2 More information about it on: http:/www.fipa.org

** The 300 turns of the simulation represents the first five hours after the earthquake, so one
turn is equivalent to one minute.

- 103 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

normal agents and have the same restrictions which seems to be inadequate
for them. So we have to minimise the number of sentences said (and
received) by an agent.

To limit the receiving, when an agent receives hear information from the
simulation system, the agent may select whether it hears the message or not
by checking who is the speaker.

For the sending limitation, our agents can only send tree type of messages:

e ROAD BLOCKED

This message is sent by an agent to call up for the help of a police force to
clear a route segment. Of course, only fire fighter brigades and ambulance

teams will send this kind of message (to police forces).

The syntax of the message is:

| “ROAD BLOKED”

ROAD.ID | ARRIVAL.ID | ME.ID |

with “ROAD BLOKED?”, string which identifies the kind of the message.

ROAD.ID, identifier of the blocked road (start point).

ARRIVAL.ID, identifier of the route's point®® the agent wants to
reach (arrival point).

ME.ID, identifier of the agents who send the message.

e BUILD BURN

This message is sent by an agent to warn the fire fighter that a building is on
fire. Of course, only police forces and ambulance teams will send this kind
of message (to fire fighter brigades).

The syntax of the message is:

| “BUILD_BURN” | BUILD.ID |

with “BUILD BURN”, string which identifies the kind of the message.
BUILD.ID, identifier of the burning building.

*® This will only be the identifier of a node or a building.

- 104 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

e NO NEED TO HELP

This message is only send by an ambulance team to other ambulance teams.
They send this message when they load a civilian or when they see a dead
civilian. The meaning of this message is that the civilian does not need any
more help because he is dead (it's no use trying to save him anymore) or he
is saved.

The syntax is:

“NO_NEED TO HELP”

AGENT.ID |

with “NO_NEED TO HELP”, string which identifies the kind of the
message.

AGENT.ID, identifier of the agent (civilian) who is dead
or saved.

Notice that all those messages are only sent using the fe// method. Our
agents do not use the say method because it is very difficult to know who is
in a radius of thirty metres (who can hear the message).

Here follows the highest level layer, the "agent" layer. The two previous
layers implement some basic algorithms and primary behaviours. But the
next layer will be the most important, and the most difficult for agent
developers because it contains all the specific agent's behaviours.

10. FIRE FIGHTER BRIGADES ALGORITHMS

We have ten fire fighter agents in the simulated world. Each represent a
team of firemen. The fire fighter brigades are the only agents able to use the
"extinguish" command. Moreover, it's much more efficient to work in team
to face with a burning building. So it's imperative to develop some
cooperation between the fire fighter agents themselves and between the fire
fighters and the other rescue agents.

The fire simulator, an element of the component simulators, manages the
spreading of the fire around the map. At the begin of the simulation, it
decides some ignition points which are placed where the fire occurs. At this
time there are four ignition points across the map. The fire fighter brigades
are aware of this, in fact, just imagine that you can see some gray fogs on
the sky when there is an earthquake. These are the first information that the
fire fighter brigades have over the burning buildings. During the simulation

- 105 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

they detain other sources of information's to know where are the fires: the
KA _SENSE and the "BUILD_BURN" messages from the other agents. So
the fire fighter brigades are conscious of the different places where there is
fire. Because the fire spreads quickly, it's necessary to react immediately
and to conceive some cooperation algorithms.

The first idea we developed is to split the ten fire fighter brigades into the
number of ignition points. So with four ignition points we have four teams:
two with two brigades and the others with three. This is easy to implement
by a simple integer division operation. Then each team is redirected to an
ignition point (the nearest one). So from the begin of the simulation each
fire fighter brigade has something to do: to move near his ignition point.
Possibly during the journey the fireman can extinguish another burning
buildings. This is the first step of the fire fighter brigade algorithm which
ends after the fifty first cycles or when the ignition point is completely burnt
or extinguished.

Secondly the idea is the following: to extinguish the nearest burning
building. That means first of all the fire fighter brigades are aware to the
information they receive in the KA SENSE packet and then only if there is
no burning building thirty meter around, they hear the messages from the
other rescue agents. When a fire fighter brigade has fixed goal as explained
in the two paragraphs above, it starts its reaction thread. The reaction thread
developed for the fire fighter brigade is quite simple:

If not busy, become busy, else no reaction.

Extinguish the building while not totally burned or extinguished.

Become not busy.

This version of the reaction thread is effective only when the fire stays
around thirty meters around. That means when it's not necessary to move for
extinguishing. The following version is more realistic and consider the
move across the map:

If not busy, become busy, else no reaction.

Move near the goal if necessary ; that means near the burning building selected as
those to extinguish(it may request the help of a police force to clear the road: sending
of BLOCKED ROAD messages).

Extinguish the building while not totally burnt or extinguished.

Become not busy.

- 106 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

We can resume the situation:

Beginning of the Simulation

i Create teams of fire fighter brigades for the
ignition points

Initialisation

1. Update the map
If there is a burning building €

Eachtumn W w KA SENSE and if the fire fighter is not
KA SENSE busy, then launch reaction thread
- > 3. Ifthe ignition goal is not totally burnt or

not extinguish and if the time < 50, then
v launch the reaction thread with igni-

tion point.
KA HEAR L|

If the fire fighter brigade is not busy, then
ear 4 BURN BUILD messages, sclect the
nearest and launch the reaction thread with
this chosen building.

Figure 32: Fire fighter algorithm.

11. AMBULANCE TEAMS ALGORITHMS

The aim of the ambulance teams is to save civilians. To do that, the
ambulance teams have to find civilians, to rescue him (to free them from the
collapses), to load them and to unload them into the refuge (a kind of make-
shift hospital) where they can have some medical assistance. That's the only
way an ambulance team can help civilians. Note that they can also save
other agents (fire fighter brigade, police force and another ambulance team)
which are buried.

Ambulance teams have two information sources to find civilians. The first
one is their calls for help. But, unfortunately for the realism of the
Simulation, we do not use this information. In fact, civilians send
periodically a message which can only be heard by agents who are in a
radius of thirty meters. So, if the ambulance teams base their saving plan
exclusively on these messages, only few civilians would be saved.

The second information source is the position on the map of all the civilians

at the beginning of the Simulation. This is not very realistic, but we have
this information (into the KA CONNECT_ OK), so we use it. Our point of

- 107 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

view 1s to save the nearest civilian. To handle that, the ambulance teams
have a data structure to remember which civilians are saved, dead or still
buried. The Figure 33 represents the ambulance team behavioural algorithm.

Beginning of the Simulation

Create the data structure to remember which
\ 4 Y civilians are saved. dead or still buried.
Initialisation
1. Update the map information.
2. If the ambulance team sees a burning
Fachtum W W building, it sends a BUILD BURN
KA SENSE > message.
— 3. If the ambulance team is not busy,
choose the nearest civilian and launch
v the reac-tion thread.

KA HEAR _LI—| If the message is NO_NEED TO_HELP,
the ambulance team updates the data

structure with the information it receives
from the message.

Figure 33: Ambulance team algorithm.

Here is a pseudo code of the ambulance teams reaction thread:

If not busy, become busy, else no reaction.

Move to the building where the nearest civilian is to save (it may request the help of a
police force to clear the road: sending of BLOCKED ROAD messages).

Rescue him (check if it is useful to save him and if not, send a NO_NEED TO HELP
message (finish)).

Load him.
Move to refuge.

Unload him.

Become not busy.

But when is it useless to save a civilian? There are two reasons to take such
a decision: the first one is when the building, where the civilian is, is
burning. In this case, it is almost certain that the civilian will die and there is
an great risk of losing the ambulance team. Given that, our ambulance teams

- 108 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

do not try to save civilians when they are in burning buildings. The other
reason which could persuade us to abandon a civilian is when the property
hp of the civilian is too low. In fact, civilians have three important
properties for this calculation: hp, damage and buriedness (Table 8, page
63). Each cycle, the miscsimulator subtracts the value of damage from the
value of hp. So, while the civilian is not saved (buriedness=0):

hpe1 = hp; — damage >’
So it’s interesting to save a civilian only when:

hp - (damage * buriedness) > 500 **

12. POLICE FORCES ALGORITHMS

We divide the 10 police forces into two teams of 5 police forces each. The
first team, composed of five police forces, only listens to the messages
coming from the five ambulance teams. So we assign one ambulance team
to one police force and during the simulation this police force will listen to
the messages coming from this ambulance team only. The other team,
composed also of five police forces, listens to the fire fighter brigades. We
assign one police force to one ignition point. So, during the simulation, this
police force will only listen to the messages coming from the fire fighter
brigades assigned to the same ignition point. The Figure 34 represents
police force behavioural algorithm.

*" hp, represents the value of the property hp at the turn t.

% 500 is the approximate hp value needed to reach the refuge.

- 109 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Beginning of the Simulation

!

Initialisation
1. Update the map information.
Eachturn ¢ 2. If the police force sees a burning

KA SENSE > building, it sends a BUILD BURN
message.
If the message is BLOCKED ROAD, if the
KA HEAR | » | police force is not busy and if the sender of
the message is the right one, then launch the

reaction thread.

Figure 34: Police force algorithm.

Here is a pseudo code of the police forces reaction thread:

Become busy.
Clear the roads from the police force's position to the road with the identifier road.ID.
Clear the road with the identifier road.ID.

Clear the roads from the road with the identifier road.ID to the node (or the building)
with the identifier arrival.ID.

Become not busy.

13. CENTRE ALGORITHMS

The only thing a centre can do is to manage the messages it receives. How
do they do that? First of all, here is an example to understand the problem:
simple situation, a fire fighter brigade calls for the help of a police force to
clear a given road (Figure 35).

- 110 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

1
v - .
Ambulance centre < Fire station Police office
2. T 2. a
|
|
]
1 12 3
1
1
\ 7
Fire brigade € Police force

I
1
el

1

Figure 35: Communication example.

1. The fire ﬁghter brigade fells the following message, "BLOCKED_ROAD" +
X +Y+2*. As said above, this message is heard by all the fire fighter
brigades (who, in fact, do not care about the message) and the fire fighter
station.

2: The fire fighter station will forward this message, because it should be
heard by the police office. So, the station fe/ls again this message which
will be heard by the two other centres: the police office and the
ambulance centre.

3: Only the police office will take care of the message, and tell it again to
all the police forces.

With that simple example, we can see that a fire fighter who sends a
message to call a police force produces, in reality, three important messages
(bolded lines in the Figure 35): one from the fire fighter brigade to the fire
fighter station, an other from the fire fighter station to the police office, and
the third one from the police office to the police forces. But it also creates a
lot of totally unnecessary other messages (dotted lines in the Figure 35). It's
why we have to minimise the number of sentences forwarded by the centres.
In order to do that, we made three different algorithms, one for each centre:

* The arguments of the message are useless for the example.

-111 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Police Office

>

ROAD BLOCKED:
When the police office receives a “ROAD BLOCK” message, it
always forwards it (so that all the police forces receive the message).

BUILD BURN:

When the police office receives a “BUILD BURN” message, first of
all it checks if the sender of the message is a police force.

If it is, then the police office forwards the message (so that the Fire
fighter station receives it). And if the sender is not a police force, the
police office will forgets this message (it is not useful to forward it).

NO _NEED TO HELP:

When the police office receives a “NO _NEED TO HELP”
message, it always discards it (this kind of message is only
interesting for ambulance teams).

Fire Fighter Station

>

ROAD BLOCKED:

When the Fire fighter station receives a “ROAD _BLOCK” message,
first of all it checks if the sender of the message is a Fire fighter
brigade.

If it is, then the Fire fighter station forwards the message (so that the
police office receives it). And if the sender is not a Fire fighter
brigade, the Fire fighter station discards this message (it is not useful
to forward it).

BUILD BURN:

When the Fire fighter station receives a “BUILD BURN” message,
it always forwards it (so that all the Fire fighter brigades receive the
message).

NO _NEED TO HELP:

When the Fire fighter station receives a “NO_NEED_TO_HELP”
message, it always discards it (this kind of message is only of use for
ambulance teams).

-112 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

e Ambulance Centre
» ROAD BLOCKED:

When the ambulance centre receives a “ROAD BLOCK” message,
first of all it checks if the sender of the message is an ambulance
team.

If it is, then the ambulance centre forwards the message (so that the
police office receives it). And if the sender is not an ambulance
team, the ambulance centre discards this message (it is not useful to
forward it).

» BUILD BURN:
When the ambulance centre receives a “BUILD BURN” message,
first of all it checks if the sender of the message is a ambulance team.
If it is, then the ambulance centre forwards the message (so that the
Fire fighter station receives it). And if the sender is not an ambulance
team, the ambulance centre discards this message (it is not useful to
forward it).

> NO NEED TO HELP:
When the ambulance centre receives a “NO_NEED TO HELP”
message, it always discards it. All the ambulance teams have already
heard this message because it comes from an other ambulance team.

14. IMPROVEMENTS

It is, of course, possible to seriously ameliorate our behavioural algorithms.
Here is a series of critical points to improve. First of all, the fire fighter
brigades could better take charge of the fire. Fire rapidly changes its
condition, so it must be especially coped with. It may not be difficult to
extinguish an early fire for even a few fire brigade agents, but, on the
contrary, it is very difficult to extinguish a late or big fire even for many. In
our program, the fire brigades extinguish the first fire they see, but with a
little more cooperation, it would be possible to barricade a spread fire by
extinguishing edges.

Our agents have also to take charge of the roads. The police forces clears the
roads when they receive a "BLOCKED ROAD" message. But, in order to
save others' time, it would be effective to clear important road in advance
such as roads leading to refuges and ignition points.

-113 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

A better management of the messages would be a good progress for our
program. Almost each turn, centres receive more than the four messages
they can hear, so reduce even more the messages sent by agents and
forwarded by centres is the key for a good communication and cooperation
among the agents.

Finally, the moving algorithm is, for the moment, very potent. But when the
map will get bigger, it will take a lot of time to find the shortest way
between two points on this map. That's because the algorithm considers all
the roads of the card when it looks for a route. A good idea to decrease the
calculation time is to introduce a series of heuristics. The blind research
algorithms does not exploit any information concerning the structure of the
research tree or the potential presence of solution-node to optimise the
research. This is a "rustic" research through the space until finding a
solution. Unfortunately, most of the real problems may provoke an
explosion of the possible states number. An heuristic research algorithm
uses the available information to process more effectively the research.
There are many heuristic algorithms already developed such as A* or the
Best-First search algorithm which is a combination between research in
depth and in width. It investigates nodes in the (increasing/lessening) order
of their heuristic values.

15. CONCLUSION

When all the modules are connected, the Simulation begins with the 100
agents: 72 civilians, 10 fire brigades, 10 police forces, 5 ambulance teams
and 3 centres. The aim of the game is to save as many civilians as possible
without losing a rescue agent. Our agents are able to save between 45 and
55 civilians, that means that we only lose between 17 and 27 on the 97
human agents (centres can not die).

This score is not as good as YabAl's one which saves 61 civilians, but we
did not have the same objective. In 4 months, it was not possible to fully
develop powerful agents. We did not have enough time to deepen our
algorithms, so we tried to go further into something else which misses also
in the RoboCupRescue: specifications. Indeed, there was a real lack of
specification for new agent's developers, we passed two months to
understand how the Simulation goes and how to connect our agent module
to the kernel. So, we decided to spend a lot of our time to code a clear,
flexible and understandable low level layer which can easily be reused by
developers of new agent.

-114 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

Upon this brand new layer, we decided to create an intermediate layer to
give some tools to developers who will use our program such as the moving
algorithm or the communication protocol.

Finally, only to test these two previous layers, we developed a lighter high
level layer which gathers all our behavioural algorithms. This layer is not
very effective, but it was not our main objective. Now, we hope other
agent's developers will use our lower level layers to develop an efficient and
competitive behavioural layer.

- 115 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

V1. CONCLUSION

We must note the activity and the ambition of the industrialists and
laboratories of the United States, Japan and certain European countries
working in robotics and the Artificial Intelligence. Why such a passion?
What are the real reasons which animate these projects? It is impossible to
answer precisely to this interrogations because each research project is
justified by its own goals. However, would it be at a scientific, computer
science or whether psychological level, we can not deny that these projects
provide many contributions of knowledge. More precisely, if we are
lingering on the project which now occupies us since one year, we are
absolutely certain that, in the long run, the RoboCupRescue project will
bring to Science invaluable knowledge.

Indeed, RoboCupRescue is a relatively young research project, only two
years old. Currently, the project looks like a great play where teams of
developers are in competition. Nevertheless, under its appearances of
entertainment for big children, RoboCupRescue is a sizeable project with
future. Its long-term goal (for 2050) is the following: human technology will
have to be able to set up teams of robots which will save lives in real
situation and during a catastrophe of great extent. Demonstrations as
RoboCupRescue are perfectly studied to make known, in a ludic way,
researches which have furthermore a strategic interest.

RoboCupRescue is an ambitious project which deserves to appear among
the most significant projects of the Artificial Intelligence. Indeed, it
envisages the development at a human size of a time critical organisation of
the helps at the time of earthquakes. It is a social project: its goals are to
save lives, to limit the casualties and to minimise the material damages. It is
also an universal project: the natural disasters break in all the areas of the
world, so it unifies various nations around a joint project. It is even a high
level research project for computer science. It is actually necessary to
develop high level programs with a great algorithmic complexity to simulate
reality. Lastly, it requires high level scientific knowledge in the fields of
seismology, the geography, of the human behaviour.

So, the principal intention of the RoboCupRescue project is to promote
research and development in this socially significant domain at various
levels. That involve series of other research project such as: multi-agent
team work coordination, physical robotic agents for search and rescue,
information infrastructures, personal digital assistants (PDA), standard
simulator and decision support systems, human behaviour simulator,

-116 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

evaluation benchmarks for rescue strategies and robotic systems that are all
integrated into a comprehensive systems in future. So, even if
RoboCupRescue is quite young, it has many ambitions. Due to that, the
project encounter difficulties which will force more researches. For
example, real world problems are too complex and too heavy to be assumed
by the actual simulator. All the more our knowledge in domains such as
seismology , human behaviour or well group psychology remains limited.

Our first objective, when we were integrated in the RoboCupRescue project,
was to create competitive agents for the future competition (Fukuoka, June
2002). The people who framed us strongly advised to conceive new agents
completely, without drawing one's inspiration from agents already
developed. The agents we developed are not of a high level, they obey to
algorithms of simple behaviours, but we did not have the time to deepen the
behavioural algorithms, or to add an additional layer: an agent layer.
However, since the first weeks we worked on the project, we modified our
goal in front of the difficulties encountered to collect the necessary
information for the development of agents in the RoboCupRescue. Granting
more time to formalisation of the agent development, we decided to provide
a totally new work.

To this ends, we exposed, within context of this thesis, an theoretical
approach as much as practical of the agents development in the
RoboCupRescue. On the basis of the theory and leading to practical
example of our design of first-aid agents, we have the ambition to add
something to the project. Concretely, we have develop a practical handbook
for the development of rescue agents. We have specified and formalised as
well as possible the design of first-aid workers. This should allow the future
developers to integrate more easily the project.

Hoping that our work helps the future generations of rescue agent
developers in the RoboCupRescue project!

-117 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

VII. BIBLIOGRAPHICAL REFERENCES

[AGAG8]

[ATT97]

[BOIO1]

[BON00]

[BROS6]

[CHAO1]

[CHAO2]

[DUR95]

[FER99]

[FEU71]

AGARD, J. (1968) Les méthodes de simulation. Dunod
Paris.

Attoui, A. (1997) Les systemes multi-agents et le temps
réel. Eyrolles Paris.

Boissier, 0. (2001) Systemes — Multi-Agents,
Environnement. Cours de DEA Communication et
Coopération dans les systémes a agents, SMA/ENS Mines
Saint-Etienne.

Bonaventure, O. (2000) T7éléinformatique et réseaux:
fonctions et concepts. Facultés universitaires Notre-Dame
de la paix de Namur.

Brooks, R.A. (1986) A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automation.

Chaib-draa, B., Jarras, 1. and Moulin, B. (2001) Systémes
multi-agents: principes généraux et applications.
Principes et architecture des Systemes multi-agents.
Hermes.

Chaib-draab, B. (2001-2002) Agents et systemes
multiagents. Cours IFT-64881A, Laboratoire de recherche
DAMAS, Dep. dInformatique et de génie logiciel,
Université LAVA,
http://www.damas.ift.ulaval.ca/~coursMAS.

Durfee, EH., Lesser, V.R. and Corkill, D.D. (1995)
Trends in Cooperative Distributed Problem Solving. IEEE
Transactions on Knowledge and Data Engineering.

Ferber, J. (1999) Multi-Agent Systems: An Introduction to
Distributed Artificial Intelligence. Pearson Education
Limited.

Feuvrier, C.V. (1971) La simulation des systémes:
maitrise d'informatique. Dunod Paris.

-118 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

[FIC00]

[HAD93]

[JENOS8]

[JIA]

[KIT99]

[MAG96]

[PAQOI1]

[POUO02]

Fichefet, J. (2000) Théorie des graphes et compléments de
mathématiques. Facultés universitaires Notre-Dame de la
paix de Namur.

Haddadi, A. and Sundermeyer, K. (1993) Knowledge
about other agents in heterogeneous dynamic domains,
International conference on intelligent and cooperative
information systems, p.64-70. 1IEEE computer society

press Washington (D.C.).

Jennings, N.R., Sycara, K., Wooldridge M. (1998) 4
Roadmap of Agent Research and Development. Journal of
Autonomous Agents and Multi-Agent Systems.

Jiang, B., Agent-based approach to modelling
environmental and urban systems within GIS. Division of
Geomatics Institutionen for Teknik, Univerty of Gévle,
Sweden.

Kitano, H., Tadokoro, S., Noda, I, Matsubara, H.,
Takahashi, T., Shinjou, A. and Shimada, S. (1999)
RoboCupRescue: Search and Rescue for Large Scale
Disasters as Domain for Multi-Agent Research. 1IEEE
Conference on Man, Systems, and Cybernetics(SMC-99).

Magnin, L. (1996) La simulation de RMC sur ordinateur.
Université de Paris.

Paquet, S. (2001) Coordination de plans d'agants:
Application a la gestion des ressources d'une frégate.
Université de Laval.

Poudade and Elkouby (Directeur de Recherche CNRS:
Jean-Paul Sansonnet) (2002) Langages de communication
et d'échange d'informations entre agents. Université de
Paris,
http://www limsi.fr/Individu/jps/sma/poudadeelkouby/inde
x.htm.

-119 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

[PYNO1]

[QUI00]

[SPR82]

[SUGY9]

[RAQ95]

[ROBOO]

[WEB]

[WOO95]

[WOO098]

[YABOI1]

Pynadath, D. and Tambe, M. (2001) An automated
Teamwork Infrastructure for Heterogeneous Software
Agents and Humans. Information Sciences Institute and
Computer Science Department, University of Southern
California.

Quinqueton, J. (2000) Systemes multi-agents: une
introduction. Cours de 1'Inria et Lirmm Montpellier.

Spriet, J.LA. and Vansteenkiste, G.C. (1982) Computer-
aided modelling and simulation. Academic press London.

Sugasaka, T., Masuoka, R., Sato, A., Kitajima, H. and
Maruyama, F. (1999) SAGE and Its Application to
Electronic Commerce - SAGE:Francis: A System Based
on "Virtual Catalog”. Systems and Computers in Japan.

Rao, A.S. and Georgeff, M.P. (1995) BDI-Agents: from
theory to practice. Proceedings of the First Intl.
Conference on Multiagent Systems (San Francisco).

RoboCupRescue technical committee (2000)
RoboCupRescue Simulator Manual version 0 revision 4.

http://cormas.cirad.fr/fr/demarch/sma.htm, Centre de
coopération internationale en recherche agronomique pour
le développement (CIRAD).

Wooldrige, M. and Jennings, N.R. (1995) Intelligent
Agents: Theory and Practice. Knowledge Engineering
Review.

Woolridge, M. and Jennings, N. (1998) Agent Technology,
Foundations, Applications, and Markets. Springer, 1998,
New York.

Morito, T., Kono, K. and Takeuchi, 1. (2001) YabAI The
first Rescue Simulation League Champion. Department of
Computer Science, University of Electro-
Communications, Tokyo,
http://ne.cs.uec.ac.jp/~morimoto/.

- 120 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

-121 -

DEVELOPING AGENTS IN THE ROBOCUPRESCUE SIMULATION PROJECT
EMMELINE LECONTE AND HUGUES VAN PETEGHEM

VIII. ANNEXES

All our annexes are written on the CD you will find at the end of this
document. You can also download all these annexes from our Web site:
http://www.info.fundp.ac.be/~eleconte. Here follows the description of the
different CD's component:

e Codes (java)

In this directory, you will find our source codes. There are two packages and
they are already compiled. This will be very interesting for new agent
developers to understand how the Simulation goes. These codes are runable
with the kernel Ver. 0.31.

e Code documentation (html)
Here, you will find all the information (generated with javadoc) needed to
clearly understand our codes.

e Manual VOr4 (in two formats: ps and pdf)
This is the official RoboCupRescue manual. Our thesis is filling certain lack
of information of this guidebook, but it is still useful to attentively read it.

e Presentation (in three formats: ppt, ps and pdf)

Here is the presentation of our four mouths of work in Kobe. We present
here all the steps of our work for the RoboCupRescue project. This could be
useful too for new developers.

e Simulation movie (avi)
It is a recording of what the 2D viewer shows during the 300 turns of the
Simulation.

e Thesis (in three formats: doc, ps and pdf)
Finally, you will find in this directory the electronic version of our thesis.

-122 -

