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Towards the Comparative Evaluation of Feature
Diagram Languages

Patrick Heymans, Pierre-Yves Schobbens, Jean-Christophe Trigaux!,
Raimundas Matulevičius, Andreas Classen and Yves Bontemps

PReCISE research centre, Computer Science Faculty, University of Namur
21, rue Grandgagnage – B-5000, Namur (Belgium)

{phe,pys,jtr,rma,aclassen,ybo}@info.fundp.ac.be

Abstract. This paper proposes a path to defragmenting research on feature dia-
gram languages: (1) a global quality framework to serve as a language quality im-
provement roadmap; (2) a set of formally defined criteria to assess the semantics-
related qualities of feature diagram languages; (3) a systematic method to for-
malise these languages and make them ready for comparison and efficient tool
automation. The novelty of this paper resides in the latter point and the integra-
tion. The results obtained so far are summed up and future works are identified.

1 Introduction

During the last fifteen years or so, more than ten different Feature Diagram (FD) lan-
guages were proposed starting from the seminal work of Kang et al. on FODA back
in 1990 [1]. An example of a FODA FD appears in Fig. 1. We assume the reader is
familiar with the notation.
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Since Kang et al.’s proposal, several extensions to FODA were devised [3–9] (see
also Table 1). When looking at these FD languages, one immediately sees aesthetic dif-
ferences (see, e.g., Fig.2). Although concrete syntax is an important issue in its own
right [10], this work focusses on what is really behind the pictures: semantics. We
noticed that proponents of FD languages often claimed for added value of their lan-
guage in terms of precision, unambiguity or expressiveness. Nevertheless, our previous
work [11–15] demonstrated that the terminology and evaluation criteria that they used
to justify these claims were often vague, and sometimes even misleading. We also tried
to give a precise meaning to the constructs of those languages.

OFT,OFD,GPFT        RFD               VBFD                      EFD                     PFT

1..1

s s

Fig. 2. Concrete syntaxes for xor-decomposition

Although we note that recent research has devoted more attention to the semantic
foundations of these languages [16–22], we still lack concrete means to discriminate
between these proposals.

This paper suggests a method to evaluate and compare FD languages focused on
the study of their semantics. This method relies on formally defined criteria and ter-
minology, based on the highest standards in formal language definition [23]. It is also
situated with respect to SEQUAL [24, 25], a comprehensive framework for assessing
and improving the quality of modelling languages.

In Section 2, we briefly present SEQUAL. Section 3 recalls good language defi-
nition principles from [23]. On these grounds, Section 4 continues with the definition
of the criteria that our method aims to investigate: expressiveness, embeddability (also
called naturalness), succinctness and (computational) complexity. The method is de-
scribed in Section 5 and constitutes the main contribution of this paper. Section 6 sum-
marises the results obtained so far [13–15]. The paper finishes by discussing the current
limitations of the method and the remaining research challenges (Section 7), before it
concludes (Section 8). This paper is short version of a technical report [26]1.

2 Quality of Models and Languages

Assessing and improving the quality of modelling is a complex and multidimensional
task. A comprehensive view of the concerns involved is given in the SEQUAL (semiotic

1 Available at http://www.info.fundp.ac.be/∼phe/docs/papers/TechRep Eval FP
of FDL 06.pdf
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quality) framework, developed over the last decade by Krogstie et al. [25]. SEQUAL
is based on a distinction between semiotic levels: syntactic, semantic and pragmatic.
It adheres to a constructivistic world-view that recognises model creation as part of a
dialog between participants whose knowledge changes as the process takes place.

SEQUAL is amenable to specific criteria and guidelines by tailoring. Its main ad-
vantages are that (1) it helps situate one’s investigations within a comprehensive quality
space, (2) it acts as a checklist of qualities to be pursued and (3) it recommends general
guidelines on how to proceed.

Our investigation is targeted semantic and pragmatic qualities of FDs which we
have found to be somehow neglected in the current state of the art. So doing, we will
see that we inevitably interfere with the other qualities, mainly syntactic quality.

The problem we encounter is that representative objects of study – models – do
not always exist, or at least are not easily available. And this is indeed the case for
FDs which (1) are an emerging modelling paradigm, and (2) have the purpose of repre-
senting highly strategic company information. Since representative models2 are almost
nowhere to find, we concentrate on improving the quality of FD languages.
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Fig. 3. SEQUAL : Language Quality [24, 25]

SEQUAL has been adapted to evaluate language appropriateness [24] (see Fig. 3).
Six quality areas were proposed. Domain appropriateness means that language L must
be powerful enough to express anything in the domain D, and that, on the other hand it
should not be possible to express things that are not in D. Participant language knowl-
edge appropriateness measures how the statements of L used by the participants match
the explicit knowledge K of the participants. Knowledge externalisability appropriate-

2 Except illustrative examples used in research papers.
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ness means that there are no statements in K that cannot be expressed in L. Comprehen-
sibility appropriateness means that language users understand all possible statements of
L. Technical actor interpretation appropriateness defines the degree to which the lan-
guage lends itself to automatic reasoning and supports analysability and executability.
Finally, organisational appropriateness relates L to standards and other needs within
the organisational context of modelling.

Not being able to assess model qualities directly, our investigations were re-targeted
at three main language qualities: domain appropriateness, comprehensibility appropri-
ateness and technical actor interpretation appropriateness. The matching of the inves-
tigated criteria wrt these qualities is further discussed in Section 7. In the next section,
we will first introduce the basic notions behind these criteria (Section 3), and then the
criteria themselves (Section 4).

3 Formal definition of visual languages

In [23], Harel and Rumpe recognise that: “Much confusion surrounds the proper defi-
nition of complex modelling languages [. . . ]. At the root of the problem is insufficient
regard for the crucial distinction between syntax and true semantics and a failure to
adhere to the nature and the purpose of each.” [23] Although they are far less complex
than, e.g., the UML3, we demonstrated in previous papers [11–14] that FDs were also
“victims” of similar “mistreatments”.

Harel and Rumpe make it clear that the unambiguous definition of any modelling
language must consist of three equally necessary elements: a syntactic domain (L), a
semantic domain (S) and a semantic function (M) (see Fig. 4). All three should be
defined through explicit, rigid and unambiguous rules, hence the use of mathematics.

Syntactic domain (L) Semantic domain (S)

All the diagrams
one can write in L

All the possible meanings
of L

 
diagrams

Semantic function
(M: L ! S)myDiagram

yourDiagram
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Fig. 4. The 3 constituents of a formal language

During our survey, we could observe that many FD languages were never formally
defined. Maybe, some answers to why this is so are given in [23] where the authors point

3 In [23], one of Harel and Rumpe’s main motivations is to suggest how to improve the UML.
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out of set of frequent misconceptions about formal semantics, e.g., “Semantics is the
metamodel”, “Semantics is dealing with behaviour”, “Semantics is being executable”,
“Semantics means looking mathematical”, etc. This folklore is demystified [23]. For
now, we turn to the definitions of L, S andM.

3.1 Syntax

Concrete syntax is the physical representation of the data (on screen, or on paper) in
terms of lines, arrows, closed curves, boxes and composition mechanisms involving
connectivity, partitioning and “insideness” [23].

Although discouraged by best pratice, most of the (informal) definitions of the se-
mantics of FDs we found in the literature were based on concrete syntax, usually dis-
cussed on FD examples. Most of the time, a substantial part of the semantics was im-
plicit, leaving it to the diagrams to “speak for themselves”.

The abstract syntax (L) is a representation of data that is independent of its physical
representation and of the machine-internal structures and encodings. It thus makes the
syntactic rules simpler and more portable. The set of all data that comply with a given
abstract syntax is called the syntactic domain.

In [13, 14], we provided an abstract syntax (and semantics) for several FD languages
at once through a generic mathematical structure we called FFD (see Fig. 5 and Table
1). LFFD has 4 parameters reflecting the 4 abstract syntax variation points we observed
among languages: the graph type (GT = TREE or DAG4), the node types (NT , i.e. what
decomposition operators can be used: and, xor, or,. . . ), the additional graphical con-
straint types used (GCT , usually requires/⇒ and mutex/|), and the texual constraint
language (TCL, usually Composition Rules (CR) [1]).

3.2 Semantics

The semantic domain (S) “[. . . ] specifies the very concepts that exist in the universe
of discourse. As such, it serves as an abstraction of reality, capturing decisions about
the kinds of things the language should express”. S is a mathematical domain built to
have the same structure as the real-world objects the language is used to account for,
up to some level of fidelity. The semantic domain that we have proposed for FODA-
inspired languages is named PL (Product Lines) [13, 14]. It is recalled in Definition 1.
It assumes that FDs are graphs whose nodes (N) represent features and where P, a
subset of N, is the set of features that the user considers relevant. We call P the set of
primitive features/nodes5:

Definition 1 (Configuration, Product, Product Line). (1) A configuration is a set of
nodes, i.e., any element of PN. (2) A product is a configuration that contains only
primitive features, i.e., any element of PP. (3) A product line is a set of products, i.e.,
any element of PL = PPP.

4 Directed Acyclic Graph.
5 Hence, primitive nodes and leaf nodes are different concepts, although the former usually

includes the latter, but can include intermediate nodes as well; this is up to the modeller.
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Other formalisations [16–22] chose semantic domains different from PL, for exam-
ple using lists instead of sets [22] or keeping the full shape of the FD [19]. How to
compare PL with other semantic domains will be discussed in Section 5.

The semantic functionM : L → S eventually assigns a meaning in S to each syn-
tactically correct diagram d, notedM[[d]]. Again, a mathematical definition is recom-
mended. In [13, 14], we defined a generic semantic function (MFFD) giving a semantics
to several FD languages at once (see Fig. 5).
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Fig. 5. Semantics for a family of FD languages

SinceM is a function, there is at most one semantics for each diagram. Ambiguity
in this context is therefore not possible. The term “ambiguity” was not always properly
used in the surveyed literature. For example, FODA FDs have been criticised for be-
ing ambiguous [8]. However, having reconstructed a proper formal semantics from the
original plain English definition [1], we could check that this was not the case [11].

Finally, the semantic function should be total, that is, it should not be possible to
have a diagram in L which is not given a meaning in S byM. The converse question
(is every element in S expressible by a diagram in L?) is called the expressiveness of a
language and is another term used confusingly in the literature. It is clarified, together
with other comparison criteria, in the next section.

4 Comparison criteria

When a language receives a formal semantics, it can then be evaluated according to
various objective criteria. We first address (computational) complexity. In a formal lan-
guage, we can precisely define decision problems, i.e., tasks to be automated. A math-
ematical definition of the tasks is necessary to prove the correctness of algorithms. It

Other formalisations [16–22] chose semantic domains different from PL, for exam-
ple using lists instead of sets [22] or keeping the full shape of the FD [19]. How to
compare PL with other semantic domains will be discussed in Section 5.

The semantic functionM : L → S eventually assigns a meaning in S to each syn-
tactically correct diagram d, notedM[[d]]. Again, a mathematical definition is recom-
mended. In [13, 14], we defined a generic semantic function (MFFD) giving a semantics
to several FD languages at once (see Fig. 5).

LOFT

LOFD

LPFT

...

Generic syntactic domain
LFFD(GT,NT,GCT,TCL)

All the diagrams one can write
in a language of the FD family 

(L
OFT

, L
OFD

, ... , L
PFT 
! LFFD)

All the diagrams one
can write in L

OFT

All the diagrams one
can write in L

OFD

All the diagrams one
can write in L

PFT

Common semantic domain
PL

All the possible meanings
of FDs

Common semantic
function MFFD

Fig. 5. Semantics for a family of FD languages

SinceM is a function, there is at most one semantics for each diagram. Ambiguity
in this context is therefore not possible. The term “ambiguity” was not always properly
used in the surveyed literature. For example, FODA FDs have been criticised for be-
ing ambiguous [8]. However, having reconstructed a proper formal semantics from the
original plain English definition [1], we could check that this was not the case [11].

Finally, the semantic function should be total, that is, it should not be possible to
have a diagram in L which is not given a meaning in S byM. The converse question
(is every element in S expressible by a diagram in L?) is called the expressiveness of a
language and is another term used confusingly in the literature. It is clarified, together
with other comparison criteria, in the next section.

4 Comparison criteria

When a language receives a formal semantics, it can then be evaluated according to
various objective criteria. We first address (computational) complexity. In a formal lan-
guage, we can precisely define decision problems, i.e., tasks to be automated. A math-
ematical definition of the tasks is necessary to prove the correctness of algorithms. It

Page 6Page 6



also allows to study complexity, thereby assessing their scalability. Results give an in-
dication about the worst case, and how to handle it. Heuristics taking into account the
most usual cases can be added to the backbone algorithm, to obtain practical efficiency.

In [13], we studied the complexity of a selection of FD-related decision problems:
(1) satisfiability: given a diagram d, is M[[d]] = ∅ true? (2) equivalence: given two
diagrams d1 and d2, is M[[d1]] = M[[d2]] true? (3) model-checking (called product-
checking for FDs): given a product c and a diagram d, is c ∈ M[[d]] true? (4) inter-
section: compute a new diagram d3 such thatM[[d3]] = M[[d1]]

⋂M[[d2]]. (5) union:
compute a new diagram d3 such thatM[[d3]] =M[[d1]]

⋃M[[d2]]. (6) reduced product:
compute a new diagram d3 such thatM[[d3]] = {c1 ∪ c2|c1 ∈M[[d1]], c2 ∈M[[d2]]}.

When languages, in addition to having a formal semantics, also share a common
semantic domain (S), we can compare them with additional criteria. We use three com-
mon criteria:

– expressiveness: what can the language express?
– embeddability (or macro-eliminability): when translating a diagram to another lan-

guage, can we keep its structure?
– succinctness: how big are the expressions of a same semantic object?

Formal semantics opens the way for a fully formal definition and objective assess-
ment of these criteria. For example, Def. 2 naturally formalizes expressiveness as the
part of a languages’s semantic domain that its syntax can express. Fig. 6 illustrates it.

Definition 2 (Expressiveness).
The expressiveness of a language L is the set E(L) = {M[[d]]|d ∈ L}, also noted

M[[L]]. A language L1 is more expressive than a language L2 if E(L1) ⊃ E(L2). A
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In case linear translations are not possible, the blow-up in the size of the diagram
must be measured by succinctness. If L1 is more succinct than L2, this usually entails
that L1’s diagrams are likely to be more readable. Also, if one needs to translate from
L1 to L2

6, succinctness will be an indicator of the difficulty to maintain traceability
between the orginal and the generated diagram. Traceability of linear translations is
usually easier but is likely to become more difficult as the size of the generated diagrams
grows bigger. However, this should not be concluded too hastily since succinctness
does not provide information on the structure of the generated diagrams7. In this sense,
succinctness is a coarser-grained criteria than embeddability.
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5 A Comparison Method for FD languages

In order to compare FD languages X1,. . . ,Xn according to the criteria exposed in the
previous section, we need formally defined languages. That is, for language Xi, we
need LXi , SXi and MXi . To compare expressiveness, embeddability and succinctness,
we also need to have SX1 = SX2 = . . .= SXn . Unfortunately, this ideal situation almost
never occurs in practice. Instead, we have to cope with:

– languages that have no formal semantics (this is the most frequent case [13, 14]),
– languages with a formal semantics defined in a different way from [23],
– or languages with a formal semantics compliant with [23] but different semantic

domains.

6 E.g., because a tool for achieving some desired functionality is only available in L2.
7 However, looking at the transformation’s definition will provide the information.
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Hence, the overall comparison process should be carried out in two steps: (1) make
the languages suitable for comparison, (2) make the comparisons. We now detail the
first step.

Let X1 be the language we want to compare with the others (X2, ..., Xn) which, we
assume, are fully and clearly formalised according to [23] and have identical semantic
domains. We distinguish three cases:

5.1 Case 1: X1 has no formal semantics

There are two alternatives:

– The first alternative is to define the syntax and semantics for each FD language
individually following [23]. That is, we define X1 independently from X2, ..., Xn.
This is what we did in [11] where we formalised FODA FDs (OFT) [1]. FORM
FDs (OFD) [3] are treated the same way in [26].

– The second alternative is to make scale economies and define several languages at
once. In [14], we observed that most of the FD languages largely share the same
goals, the same constructs and, as we understood from the informal definitions, the
same (FODA-inspired) semantics. For this reason, we proposed to define not one
FD language but a family of related FD languages (see Fig. 5). We defined a para-
metric abstract syntax, called FFD, in which parameters correspond to variations in
LX1 , ...,LXn . This definition follows, but slightly adapts, the principles of Section 3.
The semantic domain (PL) and semantic function are common to all FD variants,
maximizing semantic reusability. With this method, we are confined to handle lan-
guages whose only significant variations are in abstract syntax. For languages with
very different semantic choices, e.g. [19], it is much harder to describe (and justify)
the introduction of variation points in the semantics. Then, we should rather follow
either the first alternative in Case 1 if the language is informal, or Cases 2 or 3
otherwise.

5.2 Case 2: X1 has formal semantics but LX1 , SX1 andMX1 need to be clarified

Another frequent case is when X1 actually has a formal semantics, but irrespective of
[23]. That is, we cannot see explicit and self-contained mathematical definitions ofLX1 ,
SX1 andMX1 . Typically,LX1 is clear and self-contained, but SX1 andMX1 are not. Most
of the time, the semantics of X1 is given by describing a transformation of X1’s diagrams
to another language, say W, which is formal. W does not even need to be a FD language,
and usually it is not. Therefore, the semantic domain might be very different from the
one intuitively thought of for FDs. The main motivation for formalising this way is
usually because W is supported by tools. The problem is that these kinds of “indirect”,
or tool-based, semantics complicate the assessment of the language8.

Several proposals of this kind for FDs can be found in recent work [17–22]. We
thus need to reformulate the semantics of those languages. In [15], we treated the FD
language proposed by van Deursen and Klint [22] (renamed vDFD) before comparing

8 Even more if W’s semantics also does not follow [23].

Hence, the overall comparison process should be carried out in two steps: (1) make
the languages suitable for comparison, (2) make the comparisons. We now detail the
first step.

Let X1 be the language we want to compare with the others (X2, ..., Xn) which, we
assume, are fully and clearly formalised according to [23] and have identical semantic
domains. We distinguish three cases:

5.1 Case 1: X1 has no formal semantics

There are two alternatives:

– The first alternative is to define the syntax and semantics for each FD language
individually following [23]. That is, we define X1 independently from X2, ..., Xn.
This is what we did in [11] where we formalised FODA FDs (OFT) [1]. FORM
FDs (OFD) [3] are treated the same way in [26].

– The second alternative is to make scale economies and define several languages at
once. In [14], we observed that most of the FD languages largely share the same
goals, the same constructs and, as we understood from the informal definitions, the
same (FODA-inspired) semantics. For this reason, we proposed to define not one
FD language but a family of related FD languages (see Fig. 5). We defined a para-
metric abstract syntax, called FFD, in which parameters correspond to variations in
LX1 , ...,LXn . This definition follows, but slightly adapts, the principles of Section 3.
The semantic domain (PL) and semantic function are common to all FD variants,
maximizing semantic reusability. With this method, we are confined to handle lan-
guages whose only significant variations are in abstract syntax. For languages with
very different semantic choices, e.g. [19], it is much harder to describe (and justify)
the introduction of variation points in the semantics. Then, we should rather follow
either the first alternative in Case 1 if the language is informal, or Cases 2 or 3
otherwise.

5.2 Case 2: X1 has formal semantics but LX1 , SX1 andMX1 need to be clarified

Another frequent case is when X1 actually has a formal semantics, but irrespective of
[23]. That is, we cannot see explicit and self-contained mathematical definitions ofLX1 ,
SX1 andMX1 . Typically,LX1 is clear and self-contained, but SX1 andMX1 are not. Most
of the time, the semantics of X1 is given by describing a transformation of X1’s diagrams
to another language, say W, which is formal. W does not even need to be a FD language,
and usually it is not. Therefore, the semantic domain might be very different from the
one intuitively thought of for FDs. The main motivation for formalising this way is
usually because W is supported by tools. The problem is that these kinds of “indirect”,
or tool-based, semantics complicate the assessment of the language8.

Several proposals of this kind for FDs can be found in recent work [17–22]. We
thus need to reformulate the semantics of those languages. In [15], we treated the FD
language proposed by van Deursen and Klint [22] (renamed vDFD) before comparing

8 Even more if W’s semantics also does not follow [23].

Page 9Page 9



it to FFD. The main difference w.r.t. Case 1 is that here formalisation decisions are
usually much more straightforward since they have already been made. However, they
might be hard to dig out if they are coded in some tool. Also, formalisations are not
necessarily error-free, and errors can thus be discovered when re-formalising [15].

5.3 Case 3: X1 has formal semantics with clear LX1 , SX1 and MX1 but
SX1 ! SX2 , ...,SXn

The third and last case is when we have a clear and self-contained mathematical defini-
tion of L, S andM for all languages (either from the origin, or having previously gone
through Case 1 or 2) but the semantic domains of the languages differ. We thus need
to define a relation between the semantic domains. We met this problem, for instance,
when comparing vDFD with FFD [15]. On the one hand, we had SFFD = PL = PPP
(sets of sets of nodes), and on the other, SvDFD = OON (lists of lists of nodes). The lat-
ter introduces an order relation on features, and one on products. Comparing languages
with different semantic domains is actually possible, but it requires preliminary work
which is now explained.
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Fig. 7. Abstracting a semantic domain

We need to define an abstraction function (A in Fig. 7) whose purpose is to re-
move extra information from the richer domains and keep the “core” of the semantic
domain, where we will perform the comparisons. We used such a function to remove
the ordering of features and products from SvDFD [15]. However, the question of the rel-
evance of this discarded information remains and should be studied carefully. A fairly
general case is illustrated in Fig. 7, where domain S1 contains more information than
S2; we then take S2 as the common domain. A removes extra information from ele-
ments of S1 and maps them in S2. It then makes sense to look for quasi-translations
T : L1 → L2 between their syntactic domains. They are translations for the abstracted
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semantics A ◦M1, and can thus be used to compare languages for expressiveness,
embeddability or succinctness. Hence, if we apply T to a diagram d1 in the syntactic
domain L1 we will obtain a diagram d2 in the syntactic domain L2 with the same ab-
stracted semantics. Semantically, if we apply the semantic functionM1 to d1 and then
the abstraction functionA, we will map on the same element of S2 as if we apply T to
d1 and thenM2:A(M1[[d1]]) =M2[[T (d1)]].

When applied to more than two languages, this method will create many semantic
domains related by abstraction functions. The abstraction functions can be composed
and will describe a category of the semantic domains. At the syntactic level, the transla-
tions can also be composed to yield expressiveness and succinctness results. Similarly,
the composition of embeddings yields an embedding.

6 Language Evaluation Results

We summarise the results obtained by applying our general comparative semantics
method. For the languages defined generically with FFD (see Table 1), the details and
proofs can be found in [13]. The treatment of vDFD [22] is found in [15].

Survey short name GT NT GCT TCL
OFT [1] TREE and ∪ xor ∪ {opt1} ∅ CR
OFD [3] DAG and ∪ xor ∪ {opt1} ∅ CR

RFD [4]=VBFD [9] DAG and ∪ xor ∪ or ∪ {opt1} {⇒, |} CR
EFD [7, 8] DAG card ∪ {opt1} {⇒, |} CR
GPFT [5] TREE and ∪ xor ∪ or ∪ {opt1} ∅ CR
PFT [6] TREE and ∪ xor ∪ or ∪ {opt1} {⇒, |} ∅
VFD [13] DAG card ∅ ∅

Table 1. FD languages defined through FFD

6.1 Complexity

For FDs, solving all the standard problems of Section 4 turns out to be practically useful:

– Equivalence of two FD is needed whenever we want to compare two versions of
a product line (for instance, after a refactoring). When they are not equivalent, the
algorithm can produce a product showing their difference. For FD languages based
on DAGs, and that allow non-primitive features, such as OFD, EFD, VFD, this
problem is Π1-complete [13] (just above NP-complete).

– Satisfiability is a fundamental property. It must be checked for the product line but
also for the intermediate FDs produced during a staged configuration [20]. For FD
languages based on DAGs, this problem is NP-complete.
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– Model-checking verifies whether a given product (made of primitive features) is in
the product line of a FD. It is not as trivial as expected, because the selection per-
formed for non-primitive nodes must be reconstructed. This gives an NP-complete
problem. When recording this selection, the problem becomes linear again.

– Union is useful when parallel teams try to detect feature interference in FDs. Their
work can be recorded in separate FDs, the union of which will represent the vali-
dated products. For FD languages based on DAGs, this problem is solved in linear
time, but the resulting FD should probably be simplified for readability. Intersection
and reduced product are similar.

The complexity results show the role of non-primitive features. On one hand, it is
useful to record them to accelerate the checking of products. However, they should not
become part of the semantics since this would restrict the expressiveness and strongly
reduce the possible transformations of diagrams.

6.2 Expressiveness

The distinction between languages that only admit trees and the ones that allow shar-
ing of features by more than one parent (DAGs or vDFD) turns out to be important.
While tree-shaped languages are usually incomplete, OFD [3] are already expressively
complete without the constraints, and thus a fortiori RFD [4], EFD [7, 8] and VFD [13].
vDFD are “almost” trees in that only terminal features (i.e. the leaves) can have multiple
parents (justifications), but this is sufficient to obtain expressive completeness.

In contrast, tree-shaped diagrams turned out to be expressively incomplete; in par-
ticular, OFT [1] cannot express disjunction. This justifies a posteriori the proposal [9]
(VBFD) to add the or operator to OFT. But even so, we do not attain expressive com-
pleteness: this language is still unable to express card3[2..2], the choice of two features
among three9. This justifies similarly the proposal [7] (EFD) to use the card operators.
Both [9] and [7] also propose to allow DAGs: this extension alone, as we have seen,
ensures expressive completeness. But we will see below better justifications in terms of
embeddability rather than succinctness.

When designing a FD language, is thus essential to have more than trees to reach ex-
pressive completeness. Trees, however, are easier to understand and manipulate because
they have a compositional semantics. vDFD [22] manage to have both advantages.

6.3 Embeddability

An optional node n can be translated into a xor2-node, say n?, with two sons: the original
node n, and the TRUE node v which is an and0-node (i.e., with no son). As we see in
Fig.8, all incoming edges from parents of n are redirected to the new top node (n?),
and all outgoing edges to sons start from the node n. This supports our view [13] that
optionality is better treated as a decomposition operator (opt1).

We constructed an embedding from OFD without constraints (called COFD in [13])
to VFD, presented in Table 2. To save space, we use the textual form for the graphs. For

9 Operator arity is denoted by an underscript.
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Fig. 8. Graphical embedding of redundant optional node (in OFD concrete syntax)

instance, a node bearing a xorm operator is translated to a node bearing a cardm[1 . . . 1]
operator. In the next section, we will consider how those embeddings increase the size
of the graph. Here we see that the VFD resulting from the embedding of a COFD di-
agram has the same size. This result indicates that card-nodes proposed by [7] can
embed all the other constructs. We proposed thus to use them systematically inside
tools. We slightly differ from [7] that also uses optional edges: these can be modelled
by card1[0..1]-nodes and would be harmfully redundant. We proposed VFD to elimi-
nate this slight drawback. Please note that this latter suggestion only concerns abstract
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would decrease the size and visual complexity of the diagrams.

Instead of . . . write . . .
opt1( f ) card1[0 . . . 1]( f )

xorm( f1, . . . , fm) cardm[1 . . . 1]( f1, . . . , fm)
ands( f1, . . . , fs) cards[s . . . s]( f1, . . . , fs)
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When translations are not linear, it is still interesting to compute the increase in size of
the graph, as measured by succinctness. RFD and OFD are of similar succinctness, but
when translating VFD or EFD to OFD we translate a cardk-node to a OFD graph of size
O(k2) [13]. A VFD of size O(k) could contain k cardk-nodes, giving a cubic translation
at the end: COFD ≤ O(VFD3). This result indicates again that card-nodes are a useful
addition, but for different reasons than presented in [7].
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The main limitation of our work is explicit in its scope: we address only formal seman-
tics-related properties. In order not to over-interpret our conclusions, one should keep
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required qualities: Domain appropriateness is addressed by looking at language expres-
siveness. Comprehensibility appropriateness is addressed by looking at embeddability
and succinctness. Technical actor interpretation appropriateness is addressed by look-
ing at complexity and also embeddability and succinctness. Furthermore, our criteria
cover only part of each of the three qualities. Future research should therefore devote
similar attention to other qualities and criteria.

In contrast, a more holistic (quality-wise) attempt to compare FD languages is re-
ported in [27]. It is specific though in the sense that it concerns the usage of FDs in
a particular company, for a given kind of project. This leads us to point out that the
notion of a “good” modelling language is only relative to the context of use of the lan-
guage. The priorities to be put on the expected qualities and criteria are very likely to
be different from one company, or projet, to another. This could lead us to relativise
in some contexts the importance of formality. Still, we think that for FDs formality is
very likely to deliver more than it will cost since (1) languages are relatively simple,
(2) formality can be made largely transparent to the users (hidden behind a graphical
concrete syntax), (3) the automation possibilities are many [13, 14, 28], and (4) correct
FDs are mission-critical company assets that should suffer no ambiguity.

SEQUAL also helps identify another limitation: for now, we have only looked at
language quality adopting a theoretical approach. A complementary work is to investi-
gate models empirically. In Section 2, we emphasised the difficulty of such an endeav-
our because of the limited availability of “real” FDs. Nevertheless, we do not consider
it impossible and can certainly learn a lot by observing how practitioners create and use
FDs. Although we have focussed on studying theoretical properties of FD languages,
we need to recognise that no formal semantics, nor criteria, can ever guarantee by itself
that the languages help capture the right information (neither too little, nor too much)
about the domain being modelled. Only empirical research can help us give a convinc-
ing answer to this other aspect of domain appropriateness.

A threat to validity is that all our reasoning (comparisons, demonstrations of theo-
rems) was done by humans only, no tools. Human errors, miss- or over-interpretations
are thus possible. Also, our formalisations were made only by considering the published
documents, and without contacting the authors for clarifications, nor testing their tools.
However, making L, S andM explicit, we open the way for constructive discussion.

Finally, our method is yet to be applied to some relevant FD language proposals [16–
21]. This is a prioritary topic of future work.

8 Conclusion

The bad news confirmed by this paper is that current research on variability modelling
is fragmented. Existing research in the field is characterised by a growing number of
proposals and a lack of accurate comparisons between them. In particular, the formal
underpinnings of feature diagrams need more careful attention.

The nocuous consequences of this situation are: (1) the difficulty for practitioners to
choose appropriate feature modelling techniques, (2) an increased risk of ambiguity in
models, (3) underdeveloped, suboptimal or unsafe (i.e., not proved correct) tool support
for reasoning on feature diagrams.
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The good news that this paper delivers is that there are remedies to this situation.
The ones that we propose are: (1) a global quality framework (e.g. Krogstie et al.’s
SEQUAL) to serve as a roadmap for improving the quality of feature modelling tech-
niques; (2) a set of formally defined criteria to assess the semantics-related qualities of
feature diagram languages; (3) a systematic method to formalise these languages and
make them ready for comparison and efficient tool automation; and (4) a first set of
results obtained from the application of this systematic method on a substantial part of
the feature modelling languages encountered in the literature.

Although the road ahead is still quite long, we are confident that the community
can take profit of our proposal. It could be used for example as part of an arsenal to
elaborate a standard feature modelling language. This standard would not suffer from
ambiguity, and its formal properties (among others) would be well known, allowing
to devise proved correct efficient reference algorithms. A similar approach could also
be transposed to cognate areas where existing modelling techniques face similar chal-
lenges. In particular, we think of goal modelling techniques.
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Evaluating Formal Properties of Feature Diagrams. Technical report, University of Namur
(2006)

27. Djebbi, O., Salinesi, C.: Criteria for Comparing Requirements Variability Modeling Nota-
tions for Product Lines. Workshop on Comparative Evaluation in Requirements Engineering
(CERE’06) 0 (2006) 20–35

28. Benavides, D., Ruiz-Cortés, A., Trinidad, P., Segura., S.: A Survey on the Automated Anal-
yses of Feture Models. In: Jornadas de Ingenierı́a del Software y Bases de Datos (JISBD).
(2006)

Page 16Page 16


