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Dynamical affinity in opinion dynamics modelling
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We here propose a model to simulate the process of opinion formation, which accounts for the
mutual affinity between interacting agents. Opinion and affinity evolve self-consistently, manifesting
a highly non trivial interplay. A continuous transition is found between single and multiple opinion
states. Fractal dimension and signature of critical behaviour are also reported. A rich phenomenol-
ogy is presented and discussed with reference to corresponding psychological implications.

PACS numbers: 87.23.Ge Dynamics of social systems. 05.45.-a Nonlinear dynamics and nonlinear dynamical

systems.

The paradigms of complex systems are nowadays be-
ing applied to an ample spectrum of interdisciplinary
problems, ranging from molecular biology to social sci-
ences. The challenge is to model the dynamical evolution
of an ensemble made of interacting, microscopic, con-
stituents and infer the emergence of collective, macro-
scopic, behaviours that are then eventually accessible
for direct experimental inspection. Statistical mechan-
ics and non-linear physics provide quantitative tools to
elucidate the key mechanisms underlying the phenom-
ena under scrutiny, often resulting in novel interpretative
frameworks. Agent-based computational models have
been widely employed for simulating complex adaptive
systems, in particular with reference to sociophysics ap-
plications. Within this context, opinion dynamics has
recently attracted a growing interests clearly testified by
the vast production of specialised contributions [1]. Pe-
culiar aspects of its intrinsic dynamics make opinion for-
mation a rich field of analysis where self-organisation,
clustering and polarisation occur.

Opinion dynamics models can be ideally grouped into
two large classes. The first deals with binary opinions:
agents behave similarly to magnetic spins and just two
states are allowed (up or down) [2]. Here social actors up-
date their opinions driven by a social influence pressure,
which often translates into a majority rule. Alternatively,
opinions can be schematised with continuous variables [9]
, the latter being dynamically evolved as a result of sub-
sequent interactions among individuals.

In the celebrated Deffuant et al. [3] model agents ad-
just their opinion as a results of random binary encoun-
ters whenever their difference in opinion is below a given
threshold. The rationale behind the threshold ansatz re-
flects humans’ natural tendency to avoid conflicting inter-
ests and consequently ignore the perception of incompati-
bility between two distant cognitions. In this respect, the
threshold value measures the average openness of mind
[3] of the community.

In real life, the difference in opinion on a debated issue
is indeed playing a crucial role. However, the actual out-
come of an hypothetic binary interactions also relies on a
number of other factors, which supposedly relate to the
quality of the inter-personal relationships. Mutual affin-
ity condensates in fact past interactions’ history and con-
tributes to select preferential interlocutors for future dis-
cussions. Previous attempts aimed at incorporating this
effect resulted in static descriptions, which deliberately
disregarded affinity’s self-consistent evolution [4]. In this
Letter we take one step forward by proposing a novel for-
mulation where the affinity is dynamically coupled to the
opinion, and consequently updated in time. Moreover,
affinity translates in a social distance, a concept that is
here introduced to drive preferential interactions between
affine individuals. Macroscopically, the system is shown
to asymptotically organise in clusters of agents sharing a
common opinion, whose number depends on the choice
of the parameters involved. Interestingly, a continuous
transition is identified that separates the mono-clustered
from the fragmented phase. Scaling laws are also found
and their implications discussed. Most importantly, our
proposed theoretical scenario captures the so-called cog-
nitive dissonance phenomenon, a qualitatively well docu-
mented theory in psychology pioneered by Leon Festinger
in 1956 [5].

Consider a population of N agents, each bearing at
time ¢ a scalar opinion O! € [0,1]. Moreover, let us in-
troduce the N x N time dependent matrix o, whose ele-
ments o; are bound to the interval [0,1]. Such elements
specify the affinity of individual 7 vs. j, larger numbers
being associated to more trustable relationships. Both
the opinions vector and the affinity matrix are randomly
initialized at time t = 0. At each time step ¢, two agents,
say ¢ and j, are selected according to a strategy that we
shall elucidate in the forthcoming discussion. They in-
teract and update their characteristics according to the
following recipe [10]:



ot = of - uAijl"l (afj) (1)
oyt = aly + agll = T2 (AO) (2)

where the functions I'y and I's respectively read:

r) (o)) = %[tanh(gl(agj_ac))ﬂ} 3)
FQ (AO”) = —tanh(52(|Aij —AOC)) (4)

Here, AO}; = O} — O}, while a., AO,. are constant
parameters. For the sake of simplicity we shall consider
the limit 812 — oo, which practically amounts to replace
the hyperbolic tangent, with a simpler step function pro-
file. Within this working assumption, the function I'y
is 0 or 1, while I's ranges from -1 to 1, depending on
the value of the arguments. I'y and I'; act therefore as
effective switchers. Notice that, for a. — 0, equation
(1) reduces to Deffuant et al. scheme [3]. To clarify
the ideas inspiring our proposed formulation, we shall
focus on specific examples. First, suppose two subjects
meet and imagine they confront their opinions, assumed
to be divergent (JAO;;| ~ 1). According to Deffuant’s
model, when the disagreement exceeds a fixed threshold,
the agents simply stick to their positions. Conversely,
in the present case, the interaction can still result in
a modification of each other beliefs, provided the mu-
tual affinity a‘l?j is larger than the reference value a.. In
other words, individual exposed to conflicting thoughts,
have to resolve such dissonance in opinion by taking one
of two opposite actions: If aﬁj < ag, the agent ignores
the contradictory information, which is therefore not as-
similated; when instead the opinion is coming from a
trustable source (aﬁj > a.), the agent is naturally in-
clined to seek consistence among the cognitions, and con-
sequently adjust its belief. The mechanism here outlined
is part of Festinger’s cognitive dissonance theory [5]: con-
tradicting cognitions drive the mind to modify existing
beliefs to reduce the amount of dissonance (conflict) be-
tween cognitions, thus removing the feeling of uncom-
fortable tension. The scalar a;; schematically accounts
for a larger number of hidden variables (personality, at-
titudes, behaviours,..), which are non trivially integrated
in an abstract affinity concept. Notice that the matrix o
is non symmetric: hence, following a random encounter
between two dissonant agents, one could eventually up-
date his opinion, the other still keeping his own view.
A dual mechanism governs the self-consistent evolution
for the affinity elements, see equation (2). If two people
gather together and discover to share common interests
(JAOL;| < AO.) they will increase their mutual affinity
(af; — 1). On the contrary, the fact of occasionally fac-
ing different viewpoints (JAO};| > AO,), translates in a
reduction of the affinity indicator (af; — 0). The logistic
contribution in equation (2) confines a‘l?j in the interval
[0,1]. Moreover, it maximises the change in affinity for

pairs with a‘l?j ~ (.5, corresponding to agents which have
not come often in contact. Couples with af; ~ 1 (resp. 0)
have already formed their mind and, as expected, behave
more conservatively.

Before turning to illustrate the result of our investi-
gations, we shall discuss the selection rule here imple-
mented. First the agent ¢ is randomly extracted, with
uniform probability. Then we introduce a new quantity
d;j, hereafter termed social distance, defined as [11]

j# i (5)

di; = AO(1—af;)  j=1,.,N

J

The smaller the value of dgj the closer the agent j to i,
both in term of affinity and opinion. A random, normally
distributed, vector 7,(0,0) of size N — 1 is subsequently
generated, with mean zero and variance o. The social
distance is then modified into the new social metric D;’j =
dﬁj +n;(0,0). Finally, the agent j which is closer to ¢ with
respect to the measure D;’j is selected for interaction.
The additive random perturbation 7 is hence acting on
a fictictious 1D manifold, which is introduced to define
the pseudo-particle (agent) interaction on the basis of a
nearest neighbors selection mechanism. 7 is thus formally
equivalent to a thermal noise [6]. Based on this analogy,
o is here baptized social temperature and set the level
of mixing in the community. Notably, for any value of
o, it is indeed possible that agents initially distant in
the unperturbed social space dﬁj mutually interact: their
chances to meet increase for larger values of the social
temperature.

Numerical simulations are performed and the dynam-
ical evolution of the system monitored. Qualitatively,
asymptotic clusters of opinion are formed, whose num-
ber depends on the parameters involved. The individ-
uals that reach a consensus on the question under de-
bate are also characterised by large values of their re-
ciprocal affinity, as clearly displayed in Figure 1. The
final scenario results from a non trivial dynamical inter-
play between opinion and affinity: the various agglomer-
ations are hence different in size and, centred around dis-
tinct opinion values, which cannot be predicted a priori.
The dynamics is therefore significantly more rich, and
far more realistic, than that arising within the frame-
work of the original Deffuant et al. scheme [3], where
cluster number and average opinions are simply related
to the threshold amount. Notice that, in our model, the
affinity enters both the selection rule and the actual dy-
namics, these ingrendients being crucial to reproduce the
observed self-organization.

To gain quantitative insight into the process of opinion
formation, we run several simulations relative to differ-
ent initial realizations and recorded the final (averaged)
number of clusters, N., as function of the social temper-
ature o, for different values of the critical parameter ..
Results of the numerics are reported in Figure 2. All the
curves are approximately collapsed together plotting N,
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FIG. 1: Left: Typical evolution of the opinion versus time,
i.e. number of iterations. Right plot: Final affinity matrix.
Here o = 0.02, AO. = 0.5, a. = 0.5. Initial opinion are
(random) uniformly distributed within the interval [0, 1]. af;
is initialised with uniform (random) values between 0 an 0.5.
Here, 81 = (32 = 1000.

as function of the rescaled quantity (ca.)~'/2. A con-
tinuous phase transition is identified, above which the
system is shown to asymptotically fragment in several
opinion clusters. The proposed scaling is sound in term
of its psychological interpretation. When «, gets small
the barrier in affinity fades off and the agents update their
beliefs virtually at any encounter. The imposed selection
rule drives a rapid evolution towards an asymptotic frag-
mented state, by favouring the interaction of candidates
that share a similar view (AO;; small). This tendency
can be counter-balanced by adequately enhancing the so-
cial mixing, which in turn amounts to increase the value
of o oc ;1. On the other hand, for large values of «.. the
system is initially experiencing a lethargic regime, due
to the hypothesized thresholding mechanism. Agents’
opinions are therefore temporarily freezed to their initial
values, while occasional encounters contribute to increase
the degree of coehesion (synchronization) of the commu-
nity. As the affinity grows, the social metric D;; becomes
less sensitive to AO;; and the system naturally flows to-
wards an ordered (single-clustered) configuration. Notice
that our system displays intriguing similarities with gran-
ular media, that have been shown to develop analogous
self-organization features. This entails the possibility of
addressing the analysis of the observed structures within
a purely statistical mechanics setting, where the balance
between competing effects is esplicitly modelled [7].

Aiming at further characterising the process of conver-
gence we have also analysed the following indicators: the
fractal dimension of the orbits topology and the distri-
bution of opinion differences. First, we focused on the
single-clustered phase (main plot in Figure 3) and cal-
culated the fractal dimension in the (O,t) plane, a pa-
rameter that relates to the geometrical aspects of the dy-
namical evolution. A standard box-counting algorithm is
applied, which consists in partitioning the plan in small
cells and identifying the boxes visited by the system tra-
jectory. In this specific case, the space (O,t) is mapped
into [0, 1] x [0, 1], and covered with a uniform distribution
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FIG. 2: Average number of clusters as function of the
rescaled quantity (erc)flm. A phase transition is found at
(cae)~'/? ~ 20. Above the transition, histograms of the num-
ber of clusters are computed and enclosed as insets in the main
frame: symbols refer to the numerics, solid lines are fitted in-
terpolation. Here, AO. = 0.5. The variables O? and oz?j are
initialised as described in the caption of Figure 1.

of squares of linear size [. The number of filled box N}, is
registered and the measure repeated for different choices
of [. In particular we set [ = 27", where n, = 1,2, ...
For each ny,, N is plotted vs. [, in log-log scale (see in-
set of Figure 3): A power-law decay is detected, whose
exponent vy ~ 1.57, quantifies the fractal dimension. The
orbits are also analyzed in the multi-clustered regime and
similar conclusion are drawn. In addition, every single
cluster is isolated and studied according to the above
procedure, leading to an almost identical ~. In Figure
4 we also report the probability distribution function of
60 = |0 — O!|. 60 measures the rate of change of
individuals’ opinion. A power-law behaviour is found, an
additional sign of system’s criticality.
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FIG. 3: Main plot: typical evolution in the mono-clustered
phase. Inset: N, vs. [ = 27" in log-log scale. For the choice
of the parameters refer to the caption of Figure 2

Finally, working in the relevant mono-clustered regime,
we also performed a dedicated campaign of simulations
to estimate the convergence time, 77 (c.), i.e. the time
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FIG. 4: Main frame: Histogram of 6O, as follows from the nu-
merics (N=100, averaged over 1000 independent realizations),
plotted in log-log scale (symbols). The solid line is a guide
for the eye. Inset: Cumulative distribution of the differences
00, in log-log scale.

needed to completely form the cluster under scrutiny.
The experiments are conducted fixing the social temper-
ature o, and allowing a. to span the interval [0, mnaz],
where e, = max; oz?j In Figure 5 the rescaled con-
vergence time T () /T (0) is plotted as function of a,
for various choices of o. All the different curves nicely
collapse together, revealing an interesting positive cor-
relation between the relative convergence time and the
threshold a.. Again, this finding is certainly bound to
reality: when a. increases, individuals stick more rigidly
to their opinion and changes happen only when encoun-
ters among neighbours occur. Instead, when reducing
a. large jumps in opinion are allowed which dynamically
translate in a more effective mixing, hence faster conver-
gence. To make this argument more rigorous, introduce
p' = pltanh(Bi(af; — ac)) +1]/2. A reduced dynamical
formulation can obtained by averaging out the depen-
dence on ¢ ; in (1), thus formally decoupling it from eq.
(2). This is accomplished, at fixed i, as follows:

<> = M/Fl(aﬁj)ft(agj)dafj (6)

Omax
= [T olot o
~ Omar — Q¢
a amaz
where in the last passage we made use of the fact that
B1 — oo and fo(a%) = 1/mas as it follows from the
normalisation condition. The function f¢(-) (resp. fo(-)
) represents the affinity distribution of agents j versus
i, at time ¢ (resp. at time zero). Within this simplified
scenario, the time of convergence scales as 1/ < p/ > [§]
and therefore expression (7) immediately yields to:

TCU(O‘C) o

Amax — Q¢

Relation (7) is reported in Figure 5 (dashed line) and
shown to approximately reproduce the observed func-

tional dependence. A good agreement with direct simu-
lations is found for small a... It however progressively de-
teriorates for larger a., due to non-linear contributions.
The latter can be incorporated into our scheme by re-
placing aunqs in eq. (7) with an effective value a.sy, to
be determined via numerical fit (solid line in Figure 5).
Such a value accounts for the system tendency to popu-
late the complementary domain 1 — ay,q, and results in
an excellent agreement with the simulated data.

oo

T (a,)/T.°(0)

FIG. 5: Rescaled convergence time Ty (a.)/T¢ (0) is plotted
as function of a.. Different symbols refer to different values of
the social temperature o, see legend. The dashed line stands
for the theoretical prediction (7). The solid line is a numeri-
cal fit based on equation (7), where tmaz is replaced by the
effective value aesy = 0.66 (see main text for further details).

In this Letter we introduced a model for studying the
process of opinion formation. The proposed interpreta-
tive framework allows us to account for the affinity, an
effect of paramount importance in real social systems.
Mutual affinity plays in fact a significant role in selecting
preferential interlocutors, based on the past history of
encounters events. Numerical investigations are carried
on and reveal the presence of a phase transition between
an ordered (single clustered) and a disordered (multi-
clustered) phase. Evidence of critical behaviours is pro-
vided, and the role of different parameters elucidated.
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