
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

What's in a Feature? A Requirements Engineering Perspective.

Classen, Andreas; Heymans, Patrick; Schobbens, Pierre-Yves

Published in:
Proceedings of the 11th International Conference on Fundamental Approaches to Software Engineering
(FASE'08)

Publication date:
2008

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Classen, A, Heymans, P & Schobbens, P-Y 2008, What's in a Feature? A Requirements Engineering
Perspective. in J Luiz & F Paola (eds), Proceedings of the 11th International Conference on Fundamental
Approaches to Software Engineering (FASE'08): Held as part of the Joint European Conferences on Theory and
Practice of Software (ETAPS'08), Budapest, Hungary. vol. 4961, Springer, Heidelberg, pp. 16-30.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Sep. 2024

https://researchportal.unamur.be/en/publications/d8b3a0a2-de1e-4e6d-aff1-1aa5433ffe93

What’s in a Feature:
A Requirements Engineering Perspective

Andreas Classen?, Patrick Heymans, and Pierre-Yves Schobbens

PReCISE Research Centre, Faculty of Computer Science, University of Namur
5000 Namur, Belgium

{acs,phe,pys}@info.fundp.ac.be

In J. Fiadeiro and P. Inverardi (Eds.): FASE 2008, LNCS 4961, Proceedings of the 11th International Conference on Fundamental

Approaches to Software Engineering, held as part of ETAPS 2008, pp. 16–30, March-April 2008, Budapest, Hungary.

Abstract. The notion of feature is heavily used in Software Engineer-
ing, especially for software product lines. However, this notion appears
to be confusing, mixing various aspects of problem and solution. In this
paper, we attempt to clarify the notion of feature in the light of Zave
and Jackson’s framework for Requirements Engineering. By redefining a
problem-level feature as a set of related requirements, specifications and
domain assumptions—the three types of statements central to Zave and
Jackson’s framework—we also revisit the notion of feature interaction.
This clarification work opens new perspectives on formal description and
verification of software product lines. An important benefit of the ap-
proach is to enable an early identification of feature interactions taking
place in the systems’ environment, a notoriously challenging problem.
The approach is illustrated through a proof-of-concept prototype tool
and applied to a Smart Home example.

1 Introduction

Software product lines engineering (SPLE) is an emergent software engineering
paradigm institutionalising reuse throughout the software lifecycle. Pohl et al. [1]
define a software product line (SPL) as “a set of software-intensive systems
that share a common, managed set of features satisfying the specific needs of a
particular market segment or mission and that are developed from a common
set of core assets in a prescribed way”. In SPLE, features appear to be first class
abstractions that shape the reasoning of the engineers and other stakeholders [2,
1]. This shows up, for instance, in feature modelling languages [3–5], which are
popular notations used for representing and managing the variability between
the members of a product line in terms of features (see Fig. 1 and Section 2.2).

In their seminal paper, Kang et al. introduce FODA (Feature-oriented do-
main analysis), a SPL approach based on feature diagrams [3]. In this context,
they define a feature as “a prominent or distinctive user-visible aspect, qual-
ity or characteristic of a software system or systems”. We term this definition
problem-oriented as it considers features as being an expression of the user’s
requirements. Eisenecker and Czarnecki, on the other hand, define a feature in

? FNRS Research Fellow. Work originated in a research stay at the Open University.

Reference Definition R W S D other

Kang et al. [3] “a prominent or distinctive user-visible aspect,
quality or characteristic of a software system
or systems”

X X

Kang et al. [8] “distinctively identifiable functional abstrac-
tions that must be implemented, tested, de-
livered, and maintained”

X X X

Eisenecker and
Czarnecki [6]

“anything users or client programs might want
to control about a concept”

X X X X X

Bosch et al. [9] “A logical unit of behaviour specified by a
set of functional and non-functional require-
ments.”

X X X

Chen et al. [10] “a product characteristic from user or cus-
tomer views, which essentially consists of a co-
hesive set of individual requirements”

X

Batory [11] “an elaboration or augmentation of an en-
tity(s) that introduces a new service, capabil-
ity or relationship”

X X X

Batory et al. [12] “an increment in product functionality” X X

Apel et al. [13] “a structure that extends and modifies the
structure of a given program in order to sat-
isfy a stakeholder’s requirement, to implement
and encapsulate a design decision, and to offer
a configuration option.”

X X X

Table 1. Definitions for the term “feature” found in the literature and their overlaps
with the descriptions of the Zave and Jackson framework (excerpt of [14]).

a more general way as “anything users or client programs might want to con-
trol about a concept” [6]. This broader definition also subsumes elements of the
solution space such as communication protocols, for instance.

As shown in the first two columns of Table 1, many other definitions exist that
mix to a varying degree elements of solution and problem. This leads to confusion
as to what a feature generally represents, and hence to a need for clarification.
Most definitions, however, make sense in their respective context. Judging them
by comparing them to one another irrespective of this context would not be
very sensible. In this paper, we limit our scope to requirements engineering, and
complement our previous work on disambiguating feature models. In [4, 5], we
devised a generic formal semantics for feature diagrams. There, we clarified and
compared constructs used to combine features, but did not question the notion of
feature itself. In [7], we further disambiguated feature models by distinguishing
features and variability that represent product management decisions from those
that denote extension capabilities of the SPL’s reusable software assets.

In this paper, we propose a complementary perspective that looks at fea-
tures as expressions of problems to be solved by the products of the SPL. We
rely on the extensive work carried out by Jackson, Zave and others during the
past decade in a similar attempt to clarify the notion of requirement [15, 16].
Their work has resulted in more precise definitions of the terms “requirement”,
“specification” and “domain assumption”. Their clarifications have allowed to
improve the methodological guidance given to requirements engineers in elicit-
ing, documenting, validating and verifying software related needs. One of the
most notable outcomes of their work is the identification of a fundamental re-
quirements concern, i.e. a logical entailment that must hold between the various
components of a requirements document. Roughly, this concern can be stated
as: given a set of assumptions W on the application domain, and given a system
that behaves according to its specification S, we should be able to guarantee
that the requirements R are met. More formally: S,W ` R.

In their ICSE’07 roadmap paper, Cheng and Atlee [17] acknowledge that
“reasoning about requirements involves reasoning about the combined behaviour
of the proposed system and assumptions made about the environment. Taking
into consideration environmental conditions significantly increases the complex-
ity of the problem at hand”. In this paper, we propose concepts, methods and
tools to address the combined complexity of highly environment-dependent sys-
tems and systems that have to be developed in multiple (possibly many) ex-
emplars. In such systems, a particularly difficult problem is to detect feature
interactions that involve the environment [18].

In the present paper, building on Jackson et al.’s clarification work, we rede-
fine the notion of feature as a subset of correlated elements from W , S and R.
Doing so, we ambition to demonstrate that:

(i) a clearer definition of the notion of feature is useful to guide modellers in
their abstraction process;

(ii) the relationships between feature models and other kinds of descriptions
needed during SPL requirements engineering become clearer;

(iii) the requirements concern can be redefined in the context of SPLE, giving
the engineers a clear target in terms of a “proof obligation”;

(iv) the notion of “feature interaction” can be revisited in the light of this adapted
proof obligation, further clarifying concepts and guidelines for SPL engineers.

The remainder of this paper is structured as follows. In Section 2 we recall
Feature Diagrams as well as Zave and Jackson’s framework for requirements en-
gineering. We illustrate them on a Smart Home System example. The redefinition
of “feature” follows in Section 3, accompanied by a discussion of its implications
on the concept of “feature interaction” and a proposal for a general approach to
feature interaction detection in SPLs. As a proof of concept for the definitions
and the general approach, we present a particular verification approach and pro-
totype tool in Section 4. This is followed in Section 5 by a discussion on possible
improvements and future work. Related works are described in Section 6 before
Section 7 concludes the paper.

2 Background

2.1 Zave & Jackson’s reference model

The starting point of Zave, Jackson et al.’s work is the observation that speci-
fying indicative and optative properties of the environment is as important as
specifying the system’s functionality [15, 16, 19].

They identify three types of descriptions: Requirements R describe what the
purpose of the system is. They are optative descriptions, i.e. they express how the
world should be once the system is deployed. For an alarm system, this could be:
‘Notify the police of the presence of burglars’. Domain assumptions W describe
the behaviour of the environment in which the system will be deployed. They
are indicative, i.e. they indicate facts, as for instance ‘Burglars cause movement
when they break in’ and ‘There is a movement sensor monitoring the house,
connected to the system’. The specification then describes how the system has
to behave in order to bring about the changes in the environment as described in
R, assuming the environment to be as described in W . In our example, this would
be ‘Alert the police if the sensor captures movement’. The central element of the
reference model is the following relationship between these three descriptions:

S,W ` R, (1)

i.e. the machine satisfies the requirements if S combined with W entails R. For
the remainder of the paper, we will use the symbol |∼ to make explicit the fact
that the entailment relationship is not necessarily monotonic [20].

2.2 Modelling variability

To reason on the variability of a SPL, Feature Diagrams (FDs) are perhaps
the most popular family of notations. An example (using the FODA [3] syntax)
is shown in Fig. 1 and further discussed in Section 2.3. Generally, a FD is a
tree or a directed acyclic graph that serves as a compact representation of all
valid combinations of features (depicted as boxes). A formal semantics of FDs
can be devised by considering non-leaf boxes as Boolean formulae over their
descendants [21, 4]. For example, Fig. 1 uses three or-decompositions (depicted
as dark ‘pie slices’), but other operators (and, xor, cardinalities. . .) as well as
cross-cutting constraints (excludes, requires) are also commonly used.

In our previous work [4, 5], we devised a generic formalisation of the syntax
and semantics of FDs, on top of which most popular FD dialects were (re)defined
and compared. In this paper, we reuse this formalisation and its associated tool.
More specifically, we will make use of the tool’s product derivation capabilities,
that is, its ability to generate valid feature combinations.

2.3 Illustrative example

As an illustration, let us consider the case of a Smart Home System (SHS) [22].
Such a system has a high degree of integration with its environment as it mainly

observes and controls properties of a house that are part of the physical world.
In order to be able to build a SHS right, it is important to understand how these
properties influence each other [22].

A SHS is also a typical product line [1] since the company developing and
selling such systems has to be able to adapt them to each customer’s home.
In addition, such companies need to be able to leave configuration choices to
the customer, such as the features to be included, and specificities of theses
features, which allows to address different market segments. A house located in
a very warm region, for instance, will probably not need a heating system. A
house under surveillance by an external security company will need an adapted
security system as part of the smart home package, and so on.

 emoH tramS

gnitaeH ytiruceS

gnitaeH gninoitidnoC riA naF gnilieC mralA ralgruB llaC eciloP

Fig. 1. Feature diagram for the SHS.

The simplified system we use as an illustration consists of two features. Each
feature has several sub-features as depicted on the FD in Fig. 1. All features are
decomposed with an or -operator. This means that a product might only consist
of the security feature, for instance. A short description of the two main features
is given below.

Heating. Its objective is to assure that the temperature of the room lies within
a range of user-defined values. In order to achieve this, the system can use
the heating, the air conditioning and a ceiling fan.

Security. The security feature has to make sure that the police and the neigh-
bourhood are alerted of any burglars and intruders. The system is equipped
with a movement sensor, a telephone connection to alert the police, and an
alarm to alert the neighbours.

A problem diagram [19] for a particular product consisting of the ceiling
fan and the police call features is depicted in Fig. 2. It shows two requirements
(dashed ovals) on the right-hand side, one for each feature, and the SHS on
the left-hand side (rectangle with two stripes). In between there are real world
domains. When a domain can directly control or observe properties of another
domain, those domains are said to share phenomena. This is depicted by a line
between the domain boxes. Dashed lines denote the phenomena in terms of which
the requirements are defined. The arrow heads point to the domains of which the
phenomena are constrained by the requirement. The problem diagram basically

shows the problem’s topology, it is schematic and is to be completed by precise
descriptions of R, S and W .

emoHtramS
metsyS

erutarepmeTpeeK
tnasaelpnaF

rosneSerutarepmeT

rosneStnemevoM

eciloP

mooR

sralgruB

Police Call

Fig. 2. Composite problem diagram for the simplified SHS.

As shown in Section 2.1 and in Fig. 2, the description of the security feature
indeed covers all of the above constituents. We also showed that, intuitively,
its S,W |∼ R relation holds. Yet, it is still easy to imagine that other features
can differ, overlap or conflict with this feature in terms of their S, W and R
constituents. Conflicts are typically called feature interactions. As we will see in
the next section, a new and precise definition of “feature interaction” will follow
from our redefinition of “feature”.

3 Towards a general definition of “feature” in
requirements engineering

Table 1 shows how, in the context of requirements engineering, current defini-
tions of “feature” mix or ignore the various elements (R,W,S) and sometime
also subsume design (D) or other concerns. The irregular distribution of check-
marks, although subjective and debatable, still suggests that there is room for
clarification.

3.1 “Feature” revisited

Based on the previous observations, and following to some extent an idea sug-
gested by Chen et al. [10], we redefine a feature as a set of related requirements,
domain properties and specifications:

Definition 1 (Feature). A feature is a triplet, f = (R,W,S), where R repre-
sents the requirements the feature satisfies, W the assumptions the feature takes
about its environment and S its specification.

By adopting this definition, we emphasise three essential constituents of fea-
tures. We can then relate them using the central proof obligation of the ref-
erence model, which acts as a consistency criterion for a feature. A feature
f1 = (R1,W1, S1) is said to be consistent if we have S1,W1 |∼ R1.

Just as in the Zave-Jackson framework, we are not prescriptive about the
formalisms to use for the descriptions of S1,W1 and R1. Hence, they can be
chosen freely. This also means that the form this proof should take is not fixed
either. In this, we follow Hall et al. in [23]: if judged sufficiently dependable,
the proof can be provided by any mean, including non-exhaustive tests, or even
arguments such as “Dijkstra programmed it”, as long as the choice is justified
with respect to the level of confidence expected by the developers. Being general,
the definition thus allows all kinds of formal or informal proofs. If we want to
be able to automate the approach, however, we have to restrict ourselves to
automatable modes of proof. This path will be further explored in Section 4,
where we present a prototype tool that automates this proof.

Checking each feature on its own, however, is not sufficient. A SPL can
contain hundreds of features, the combination of which define the products.
Most of the complexity of variability management resides in the interoperation
of features: some can depend on each other, and some, conversely, can disrupt
each other. This means that a system cannot be proven correct by proving each
feature separately. We now address this issue.

3.2 “Feature interaction” revisited

Feature interactions have long been a research topic in the telecommunications
domain. The particularity of an interaction is that it is a property that two or
more features only exhibit when put together, and not when run individually [24].

Based on the previous definition of feature, and based on the Zave-Jackson
framework, we propose the following definition.

Definition 2 (Feature interaction). Given a set of features p = f1..fn, ex-
pressed as Ri,Wi, Si for i = 1..n and n ≥ 2, features f1..fn are said to interact
if

(i) they satisfy their individual requirements in isolation,
(ii) they do not satisfy the conjunction of these requirements when put together,

(iii) and removing any feature from p results in a set of features that do not
interact.

i.e. if:

∀fi ∈ p . Si,Wi |∼ Ri

∧
∧n

i=1 Si,
∧n

i=1Wi |∼/
∧n

i=1Ri

∧ ∀fk ∈ p .
∧

i∈{1..k−1,k+1..n} Si,
∧

i∈{1..k−1,k+1..n}Wi |∼
∧

i∈{1..k−1,k+1..n}Ri

A feature interaction in a system s = {f1..fq} is then any set p ⊆ s such that
its features interact.

Points (i) and (ii) of Definition 2 express the fact that an interaction only
occurs when features are put together. The objective of point (iii) is to make
sure that a feature interaction is always minimal, i.e. all features that are part of
an interaction have to be present for the interaction to occur. If a feature could
be taken out of a set of interacting features without affecting the interaction, it
would not be part of the interaction anyway. Ignoring (iii) would also mean that
for each interaction between i features (i < |allfeatures|), a new interaction of
i+ 1 features could be found simply by adding any of the remaining features.

3.3 Two kinds of interactions

Since a feature can add elements on both sides of the |∼ relation, non-satisfaction
of the proof obligation is not necessarily a monotonic relation. This is, however,
assumed in the previous paragraph, i.e. we assumed that:

k∧
i=1

Si,

k∧
i=1

Wi |∼/
k∧

i=1

Ri ∧ Sk+1,Wk+1 |∼ Rk+1 ⇒
k+1∧
i=1

Si,

k+1∧
i=1

Wi |∼/
k+1∧
i=1

Ri

As a counterexample consider a situation in which two features need a third one
to work properly: features f1 and f2, for instance, both do print logging, which
means that both require access to some dot-matrix printer connected to the
system in order to print their logs. These features interact because each works
fine in isolation, but once both are put together the first one that gains access
to the printer would exclude the other from doing so, thereby preventing it from
printing its logs, hence violating the global requirement. If we consider now a
third feature f3 that is a wrapper for the printer API and allows simultaneous
access from multiple processes, then it is easy to imagine that f3 would prevent
f1 and f2 from interacting. Assuming that fi = (Si,Wi, Ri) we would have the
following relations:

S1,W1 |∼ R1 S2,W2 |∼ R2 S3,W3 |∼ R3

S1, S2,W1,W2 |∼/ R1, R2 S1, S2, S3,W1,W2,W3 |∼ R1, R2, R3

The above example shows that adding a feature to a set of interacting fea-
tures could as well solve the interaction. This observation does not invalidate
the preceding definition of a feature interaction. It merely points out a second
type of interaction, which we do not consider. What we define as an interac-
tion is basically the fact that simultaneous presence of several features causes
malfunctions, and that these features cannot be present in the system at the
same time. A second type of interaction would be just the opposite, i.e. the fact
that a number of features have to be present in the system at the same time,
because individual presence would lead to malfunctions. While interactions of
the first type are harmful and have to be prevented, interactions of the second
one are desired and have to be assured. For the FD, this generally results in
adding excludes-constraints between features concerned by the first case and
requires-constraints between features concerned by the second case.

3.4 Systematic consistency verification

Building on the preceding definitions and assuming that descriptions S, W and R
are provided for each feature of a SPL, we now propose a set of consistency rules
that need to be satisfied by these descriptions. We then present four algorithms
as a general approach to feature interaction detection based on these consistency
rules. A proof-of-concept instance of this approach is presented in Section 4.

The starting point is again the S,W |∼ R relation which has to be proven
correct for all products of the SPL. Unfortunately, proving this relation alone is
not sufficient, as it would be trivially satisfied if we had S,W |∼ false. Similarly,
if R |∼ false, or R,W |∼ false, the requirement would be too restrictive. As
these cases need to be excluded, we have to perform several preliminary proofs.
In consequence, we identify a total of six proofs:

S |∼/ false W |∼/ false R |∼/ false

S,W |∼/ false W,R |∼/ false

S,W |∼ R
(2)

These proofs have to be verified for each single feature, as well as for each
product of the SPL. The whole process can be described by the following four
algorithms.1

A1 Feature consistency check: verify the proofs (2) on all features of the SPL.
This algorithm has to be run first, because we have to make sure that all
features are consistent before the SPL is verified. Its algorithmic complexity
is O(nγ) where γ is the complexity of verifying one relation of the form
Si,Wi |∼ Ri an n the number of features in the SPL.

A2 Product consistency check: verify the proofs (2) for a given product that
is part of the SPL. If the complexity of verifying a relation of the form∧n

i=1 Si,
∧n

i=1Wi |∼
∧n

i=1Ri is assumed to be Γ (n), then this algorithm is
of complexity O(Γ (n)). It is invoked by algorithm A3.

A3 Product line consistency check: verify the consistency of the whole SPL.
Given the feature diagram d, generate all products that are part of the SPL
and invoke the preceding algorithm (A2) for each one. The complexity in
this case is O(2n + |[[d]]|Γ (n)).

A4 Find interactions: identify the actual feature interaction in the case an incon-
sistency has been detected by algorithm A3. This algorithm will be invoked
by A3 as needed. The complexity here is O

(
2nΓ (n)

)
.

We believe that this approach is sufficiently general to act as an umbrella
for a large number of feature interaction detection techniques, depending on the
form the S,W |∼ R proof takes. The next section provides one proof-of-concept
instance.
1 Due to space constraints, the descriptions of these algorithms as well as their com-

plexity results are shortened and simplified. For a detailed account please refer to [14].

4 A proof-of-concept instance

In order to experiment with the general approach introduced in the preceding
section we created an instance of this approach by choosing an automatable
formalism (viz. the Event Calculus), based on which we developed a proof-of-
concept prototype that automates all composition and validation tasks.

4.1 Prototype tool

If all descriptions are expressed in a formalism that allows for automated reason-
ing, the algorithms presented in Section 3.4 can be largely automated. We chose
the Event Calculus (EC) [25], because it is intuitive and well suited for “com-
monsense” descriptions such as those found in many domain properties. Among
the available EC implementations, we chose the discrete event calculus reasoner
(Decreasoner), an EC implementation by Mueller [25]. Decreasoner does model-
checks on a set of EC formulae by transforming them into a SAT problem to be
solved by a third-party SAT solver. After running the SAT-solver, Decreasoner
analyses the model it found and presents it as a narrative of time points, events
and fluents.

Using the EC and the Decreasoner implementation, we developed a prototype
reasoning tool, called FIFramework,2 as a plugin for the Eclipse platform. The
tool offers a dedicated EC editor, which simplifies the editing of formulae through
syntax highlighting and code assistance and enforces feature descriptions to be
conform to Definition 1. It also adds a number of new buttons to the toolbar,
which allow the user to launch the verifications introduced in Section 3.4 and
thus provides the capability of proving the absence of interactions as defined in
Definition 2 behind a push-button interface. Each time a specific verification is
launched, the tool automatically gathers all formulae needed for the particular
verification. These formulae are then written to a Decreasoner compatible input
file, and Decreasoner is invoked to process the file. Once this is done, the result
is analysed, a report generated and the final result presented to the user.

As depicted on the workflow shown in Fig. 3, the tool builds on and im-
plements the ideas and definitions of Section 3. The starting point is a SPL
which has its variability documented in a FD. The features of this diagram are
modelled using problem diagrams, and formalised using the EC. Processing the
feature diagrams delivers a list of products (sets of features) [4], and the asso-
ciated problem diagrams are represented by a set of EC files. Given this input,
our tool automates all EC formulae composition and verification tasks. Through
interactive usage, the algorithms of Section 3.4 (except algorithm A4) can then
be effectively automated.

4.2 Results

An in-depth illustration of the approach as well as of FIFramework can be found
in [14], where the author models and analyses a SHS product line consisting of
2 Available online at www.classen.be/work/mscthesis

PD: Problem
description

emoHtramS
metsyS

erutarepmeTpeeK
tnasaelpnaF

rosneSerutarepmeT

rosneStnemevoM

eciloP

mooR

sralgruB

Police Call

emoHtramS

gnitaeH ytiruceS

gnitaeH gninoitidnoCriA naFgnilieC mralAralgruB llaCeciloP

FD: PL
variability

EC files

Product
Listing

Composition

Decreasoner
SAT checking

Consistent?
Yes/No

Fig. 3. FIFramework workflow.

16 different features (actually an extended version of the example used in Sec-
tion 2.3). The illustration starts with a feature analysis and a problem analysis
which identifies the different domains and requirements. Based on this analysis,
a product consisting of 11 features is specified formally with the EC. This results
in a total of 30 EC formulae expressing domain assumptions, requirements and
specifications which are then introduced into FIFramework.

Using the feature interaction detection algorithms of Section 3.4, we were able
to identify two interactions, one between the away-from-home and the energy
control feature (two features not included in this paper) and one between the
police call and the heating feature (those of the Section 2.3). The two features
work just fine in isolation. Once deployed in the same room, however, they
interact. This is due to the fact that the movement sensor of the police call
feature will not only capture burglars, but also the movement of the ceiling fan,
leading to false alarms.

We reiterate that our example and tool are not realistic, but only intend to
demonstrate the feasability of the general approach. Before trying a real-world
case study, we need to improve the scalability of our tool.

5 Discussion

During SPL requirements engineering, if one looks at variability only from the
lens of FDs, one will be limited by the fuzzy notion of feature. The only formal
notion of product validity that one will be able to use is that of a product (set
of features) satisfying the constraints in the FD. Since features are very coarse-
grained abstractions, and in the absence of more detailed verification, the safety
of such approaches can seem questionable. On the contrary, further distinction
and formalisation of the features’ constituents (S,W and R), as proposed in
this paper, allows to uncover hidden interactions while still remaining at the
problem definition level. The approach relies on a stronger notion of product

satisfiability relying on the satisfaction of its first proof obligation, i.e. absence
of feature interactions and a guarantee of the overall requirement being met. The
results of this formal analysis, however, should be in turn reflected in the FD,
updating it with excludes and xor constraints so that their satisfaction implies
satisfaction of the first proof obligation. Furthermore, it is conceivable to use the
approach to identify unnecessary constraints in the FD that should be relaxed
because they prevent useful combinations that have no harmful interaction. This
bi-directional model co-evolution process, further discussed in [14], is a topic of
on-going work.

As we have seen, the first instance of our general feature interaction detection
framework is a running prototype that relies on the EC and its Decreasoner im-
plementation. Although the EC and Decreasoner are powerful tools to express
and reason on many “common sense” descriptions, branching time properties
and behaviour are out of its scope. Furthermore, the Decreasoner implementa-
tion only uses finite-time discrete EC, putting the burden of defining valid time
intervals on the analyst. We are already considering moving to temporal logic,
because of the abundance of literature and powerful model checkers.

On a more conceptual note, we found in various experiments that several
descriptions, mainly among the domain assumptions, are shared by all features.
We thus intend to extend Definition 2 (and consequently our consistency check-
ing procedure) so that it accounts for shared descriptions explicitly. It is, for
instance, conceivable to assume that there exists a base configuration, i.e. some
Rb,Wb and Sb that hold for all features, and to include it in each proof.

Another crucial point for the scalability of our approach is the modularity of
the manipulated models. Although there exist guidelines for structuring FDs [8,
26], such models can become very large, and feature decomposition criteria can
be quite subjective, making it hard to navigate through models. On the other
hand, over the years, the Zave-Jackson framework has evolved into the Problem
Frames (PF) approach [19]. PFs facilitate the description of complex problems
by decomposing them into “basic problems” that match patterns (frames) from a
repertoire of recurrent simple situations. This decomposition approach provides
much clearer criteria and better modularity than feature-based decomposition.
However, it sometimes appears that very large problems are hard to decom-
pose, and a prior feature decomposition allows for a high-level exploration of
the problem space. Also, PFs lack a way to represent variability explicitly. The
complementarity of the two approaches and the co-evolution of their respective
diagrams (FDs and problem diagrams) was already investigated by the authors
in [27], but still has to be linked to our feature interaction detection approach.

6 Related work

The Feature-Oriented Reuse Method (FORM) [8] has its own typology of fea-
tures. It extends the basic FD notation with four classes of features organised
in four respective layers: capability features, operating environment features,
domain technology features and implementation technique features. This classi-

fication is similar to the S,W,R classification of the reference framework, but is
less formal. In particular, no proof obligation is proposed. The main purpose is
to structure the FD.

Several authors suggest other classifications for variability in general. Pohl et
al. [1] distinguish internal and external variability. External variability is what is
relevant to customers, while internal variability is technical. No formal relation
between them is defined though. Similar, yet different, is the distinction of prod-
uct line variability and software variability by Metzger et al. [7], who separated
business-related variability decisions from platform variability data. However,
all these distinctions consider features as black boxes. They do not distinguish
or restrict the content of the features for each variability class.

Silva [28] introduces a method for detecting and solving discrepancies be-
tween different viewpoints. The suggested approach is similar to what we pre-
sented here, in that Silva also uses the same RE framework and compares dif-
ferent descriptions against each other. It differs from our case, in that Silva
considers descriptions of the same feature, that stem from different analysts,
while we consider descriptions of different features.

Laney et al. [29] also work with problem diagrams and EC to detect and
solve run-time behavioural inconsistencies. In case of a conflict, the feature with
the highest priority (expressed using composition operators) prevails. Their ap-
proach is focused on run-time resolution using composition operators whereas
ours focuses on design-time resolution in the SPLE context.

We also note that there are efforts underway in the feature interaction com-
munity to detect and solve inconsistencies in SHS [22]. Although they allow
to discover interactions in the physical world, their approach remains domain-
specific whereas our framework is domain-independent.

7 Conclusion

In this paper, we laid down the foundations for a general approach to automated
feature interaction detection supporting the early stages of software product line
engineering. Central to this approach are novel definitions of two fundamental
concepts: “feature” and “feature interaction”. These definitions are themselves
grounded in the Zave-Jackson framework for requirements engineering and al-
low to link it to the popular notation of feature diagrams. The most important
benefit of the approach is to allow for a formal, fine-grained analysis of feature
interactions, which is one of the most challenging problems in software product
lines. More and more widespread, but particularly difficult to detect, are interac-
tions that involve the environment. Our framework provides a general means to
tackle them as early as possible in the development lifecycle, when the corrective
actions are orders-of-magnitude cheaper than in subsequent stages.

We also reported on the instance of the general approach into a proof-of-
concept prototype that uses the Event Calculus as a concrete specification lan-
guage, and an off-the-shelf SAT solver. The tool could be tried out on a SHS,

exemplifying our concepts and allowing to uncover non-trivial feature interac-
tions occurring in the system’s environment.

Our future work will target scalability mainly by (i) adopting temporal logic
and its associated industrial-strength model-checkers, (ii) improving the modu-
larity of the models by integrating our approach with problem frames, (iii) in-
vestigating possibilities to do compositional verification, and (iv) integrating the
tool into a toolchain that we are currently developing for formal specification and
analysis of software product lines. Cooperation is also underway with industry
to apply our techniques to a real SHS.

Acknowledgements

This work was partially funded by the Interuniversity Attraction Poles Pro-
gramme, Belgian State, Belgian Science Policy, by the Belgian National Bank
and the FNRS.

References

1. Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer (July 2005)

2. Batory, D.S.: Feature-oriented programming and the ahead tool suite. In: 26th
International Conference on Software Engineering (ICSE’04), Edinburgh, United
Kingdom (23-28 May 2004) 702–703

3. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University (November 1990)

4. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Feature Diagrams:
A Survey and A Formal Semantics. In: Proceedings of the 14th IEEE Interna-
tional Requirements Engineering Conference (RE’06), Minneapolis, Minnesota,
USA (September 2006) 139–148

5. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of
feature diagrams. Computer Networks (2006), doi:10.1016/j.comnet.2006.08.008,
special issue on feature interactions in emerging application domains (2006) 38

6. Eisenecker, U.W., Czarnecki, K.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

7. Metzger, A., Heymans, P., Pohl, K., Schobbens, P.Y., Saval, G.: Disambiguating
the documentation of variability in software product lines: A separation of concerns,
formalization and automated analysis. In: Proceedings of the 15th IEEE Interna-
tional Requirements Engineering Conference (RE’07), New Delhi, India (October
2007) 243–253

8. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented
reuse method with domain-specific reference architectures. Annales of Software
Engineering 5 (1998) 143–168

9. Bosch, J.: Design and use of software architectures: adopting and evolving a
product-line approach. ACM Press/Addison-Wesley, New York, USA (2000)

10. Chen, K., Zhang, W., Zhao, H., Mei, H.: An approach to constructing feature
models based on requirements clustering. In: Proceedings of the 13th IEEE Inter-
national Conference on Requirements Engineering (RE’05). (2005) 31–40

11. Batory, D.: Feature modularity for product-lines. Tutorial at: OOPSLA’06 Gen-
erative Programming and Component Engineering (GPCE) (October 2006)

12. Batory, D., Benavides, D., Ruiz-Cortes, A.: Automated analysis of feature models:
Challenges ahead. Communications of the ACM (December 2006)

13. Apel, S., Lengauer, C., Batory, D., Möller, B., Kästner, C.: An algebra for feature-
oriented software development. Technical report, Fakultät für Informatik und
Mathematik, Universität Passau (2007)

14. Classen, A.: Problem-oriented modelling and verification of software product lines.
Master’s thesis, Computer Science Department, University of Namur, Belgium
(June 2007)

15. Zave, P., Jackson, M.A.: Four dark corners of requirements engineering. ACM
Transactions on Software Engineering and Methodology 6(1) (1997) 1–30

16. Gunter, C.A., Gunter, E.L., Jackson, M., Zave, P.: A reference model for require-
ments and specifications. IEEE Software 17(3) (2000) 37–43

17. Cheng, B.H., Atlee, J.M.: Research directions in requirements engineering. In: Pro-
ceedings of the 29th International Conference on Software Engineering (ICSE’07),
Minneapolis (20 - 26 May 2007)

18. Metzger, A., Bühne, S., Lauenroth, K., Pohl, K.: Considering Feature Interactions
in Product Lines: Towards the Automatic Derivation of Dependencies between
Product Variants. In: Feature Interactions in Telecommunications and Software
Systems VIII. (ICFI’05). IOS Press, Leicester, UK (June 2005) 198–216

19. Jackson, M.A.: Problem frames: analyzing and structuring software development
problems. Addison-Wesley, Boston, MA, USA (2001)

20. Makinson, D.: General Patterns in Nonmonotonic Reasoning. In: Handbook of
Logic in Artificial Intelligence and Logic Programming. Volume 2. Oxford Univer-
sity Press (1994) 35–110

21. Batory, D.S.: Feature Models, Grammars, and Propositional Formulas. In: Pro-
ceedings of the 9th Int. Software Product Line Conference (SPLC). (2005) 7–20

22. Wilson, M., Kolberg, M., Magill, E.H.: Considering side effects in service inter-
actions in home automation - an online approach. In: Proceedings of the 9th
International Conference on Feature Interactions in Software and Communication
Systems (ICFI’07), Grenoble, France (September 2007) 187–202

23. Hall, J.G., Rapanotti, L., Jackson, M.: Problem frame semantics for software
development. Software and System Modeling 4(2) (2005) 189–198

24. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature interaction: a
critical review and considered forecast. Computer Networks 41(1) (2003) 115–141

25. Mueller, E.T.: Commonsense Reasoning. Morgan Kaufmann (2006)
26. Lee, K., Kang, K.C., Lee, J.: Concepts and guidelines of feature modeling for

product line software engineering. In: ICSR-7: Proceedings of the 7th International
Conference on Software Reuse, London, UK, Springer-Verlag (2002) 62–77

27. Classen, A., Heymans, P., Laney, R., Nuseibeh, B., Tun, T.T.: On the structure
of problem variability: From feature diagrams to problem frames. In: Proceedings
of the First International Workshop on Variability Modelling of Software-intensive
Systems, Limerick, Ireland, LERO (January 2007) 109–117

28. Silva, A.: Requirements, domain and specifications: a viewpoint-based approach
to requirements engineering. In: ICSE ’02: Proceedings of the 24th Int. Conference
on Software Engineering, New York, NY, USA, ACM Press (2002) 94–104

29. Laney, R., Tun, T.T., Jackson, M., Nuseibeh, B.: Composing features by managing
inconsistent requirements. In: Proceedings of the 9th International Conference on
Feature Interactions in Software and Communication Systems (ICFI’07), Grenoble,
France (September 2007) 141–156

