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Abstract In this paper, we exploit the fact that the dynamics of homogeneous and
isotropic Friedmann–Lemaître universes is a special case of generalized Lotka–
Volterra system where the competitive species are the barotropic fluids filling the
Universe. Without coupling between those fluids, Lotka–Volterra formulation offers
a pedagogical and simple way to interpret usual Friedmann–Lemaître cosmological
dynamics. A natural and physical coupling between cosmological fluids is proposed
which preserves the structure of the dynamical equations. Using the standard tools
of Lotka–Volterra dynamics, we obtain the general Lyapunov function of the system
when one of the fluids is coupled to dark energy. This provides in a rigorous form
a generic asymptotic behavior for cosmic expansion in presence of coupled species,
beyond the standard de Sitter, Einstein-de Sitter and Milne cosmologies. Finally, we
conjecture that chaos can appear for at least four interacting fluids.
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1 Introduction

“Modern dynamical system theory can help us in understanding the evolution of
cosmological models”. This remark in the introduction of the classical Wainwright
and Ellis textbook [1], is both true and full of sense: it is often confronting approaches
that one can really understand problems. In the context of spatially homogeneous and
anisotropic universes it was fully investigated since the pioneering famous works of
the 70s (e.g. [2] for the BKL conjecture [3], for mixmaster universes or [4] for the
triangle map) up to mathematical proofs and deep understanding of this dynamics
by Ringström [5] or extension to space–time dimensions D > 4 e.g. [6].

The situation is a little bit less rich in the context of spatially homogeneous and
isotropic universes. Concerning the classical Friedmann–Lemaître (FL) Universes
containing non-interacting barotropic fluids, various scenari for the fate of the Universe
have been popularized. Among these are the Big Chill—when cosmic expansion is
endless or the Big Crunch—a final singularity of same nature than the Big Bang for
spatially closed cosmologies with vanishing or small cosmological constant, or more
recently Big Rip [7], when Universe’s scale factor become infinite at a finite time in the
future. Dynamical systems tools have allowed some important results in the question
of future asymptotic behavior of cosmic expansion, for instance by demonstrating the
existence of attracting regimes and scaling solutions in quintessence models [8–11].
Solutions to cosmological dynamics consist of time evolution of density parameters
associated to the barotropic fluids usually invoked to model matter contents of the
universe. The fate of the Universe is completely related to its matter content. For
example, Big Rip singularity occurs when Universe contains the so-called “Phantom
dark energy” associated to a barotropic fluid with equation of state p = ωρ where
the barotropic index ω < −1. Recently, it appears that cosmological FL models with
interacting components have gained interest because it might be expected that the most
abundant components in the present Universe, dark energy (DE) and dark matter (DM),
probably interact with each other. Such interactions are considered by some authors to
be promising mechanisms to solve some of the �CDM problems like coincidence (see
for instance [12–15] and references therein). In the literature the coupling between
interacting fluids is generally time-independent and quadratic in energy density Qi j =
γρiρ j (see [16] and reference therein) where γ is a dimensioned constant or time-
dependant and polynomial in energy density Qi j = γ Hρm

i ρm−n
j where H is the

Hubble parameter and m and n relevant integers (see [17] and references therein).
In these two categories of papers, new behaviors are speculated for cosmological
dynamics with non-linear interactions. In particular the existence of cycles have been
postulated if one of the species is barotropic with an index ω < −1.

In this paper, we present for the first time FL Universe containing fluids in interaction
as a particular case of the well known Lotka–Volterra system. This formulation is
possible when one considers the system in term of density contrasts �i = 8πG

3H2 ρi

evolving through the variable ln a where a is the scale factor of the FL universe. On
the one hand this make us able to use a lot of standard techniques of dynamical systems
analysis in the context of cosmology; and, on the other hand, this allows (as billiards
do for anisotropic models) a global comprehension of this important cosmological
problem.
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When there are no interactions between constitutive fluids, this formulation allows
to interpret those dynamics in a pedagogical way through an intuitive and simple
formulation. The FL cosmological dynamics can then be seen as a competition between
several species, each associated to one of the fluids filling the universe. Those species
all compete for feeding upon the same resource which is spatial curvature. The usual
asymptotic states of FL dynamics, de Sitter, Einstein-de Sitter and Milne universes,
can all be seen as a particular equilibrium between cosmic species. This is the simplest
picture of the Jungle Universe.

In this paper we propose a new kind of coupling between fluids of the form
Qi j = γ H−1ρiρ j . This is not an ad hoc approach since this is the only way to preserve
the natural Lotka–Volterra form of the FL dynamics. Moreover this time-dependent
coupling, once analyzed following the scaling cosmology method presented by Zim-
dahl and Pavon [18], shows that it grows with the cosmic time. This last property makes
this ansatz relevant both with observational constraints and to avoid the coincidence
problem.

The paper is structured as follow: in Sect. 2 we show that FL cosmological dynam-
ics is actually a generalized Lotka–Volterra system; in Sect. 3 we interpret the FL
cosmological dynamics in terms of the generalized Lotka–Volterra system: The Jun-
gle Universe; in Sect. 4, we show how a general and physical interaction between two
fluids can preserve the structure of this dynamical system and we obtain the general
Lyapunov function for this kind of dynamics; in Sect. 5, we generalize the formulation
to N directly coupled species and focus in particular to triads (N = 3) and quartets
(N = 4); finally, we draw some conclusions in Sect. 6.

Notation In what follows, vectors are written bold faced (e.g. r ∈ R
n) and the

associated coordinates in the canonical basis are denoted by the italic corresponding
letters with an index (e.g. r = (r1, . . . , rn)�).

2 Friedmann–Lemaître cosmology as generalized Lotka–Volterra dynamical
systems

Taking into account a cosmological constant �, Einstein’s equations of general rela-
tivity write

Rμν − 1

2
gμν R + �gμν = χTμν

where gμν and Rμν are respectively the metric and the Ricci tensors, R is the scalar cur-
vature (contraction of the Ricci), Tμν is the stress-energy tensor and χ = 8πGc−4. The
general paradigm of standard cosmology consists of imposing Friedmann–Lemaître–
Robertson–Walker metric as an isotropic and homogeneous description of the universe
i.e.

ds2 = c2dt2 − a2 (t)

[
dr2

1 − kr2 + r2
(

dθ2 + sin2 θdφ2
)]

where a (t) and k are respectively the scale factor and the curvature parameter, t and
(r, θ, φ) being the synchronous time and usual spherical coordinates, respectively. If
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one assumes that this universe is filled by a perfect fluid of density ρ, pressure p
and quadri-velocity field uμ for whichTμν = (

ρ + c−2 p
)

uμuν − pgμν , it is well
known that the dynamics of the universe are governed by Friedmann–Lemaître and
conservation equations:

H2 = 8πG

3
ρ + �c2

3
− kc2

3
(1)

ä

a
= −4πG

3

(
ρ + 3

p

c2

)
+ �c2

3
(2)

ρ̇ = −3H
(
ρ + p

c2

)
(3)

where H(t) = ȧ

a
is the Hubble parameter and a dot over a quantity indicates a

derivation with respect to the synchronous time t , the independent variable of the
cosmological differential system. Both parameters k and � might be seen as fixing
the spatial and intrinsic curvature of the geometry.1 Among the three above equations,
only two are independent since all are related through the second Bianchi identities.
The remaining two equations still include three unknown functions: ρ (t) , p (t) and
a (t). This under-determination can be raised by introducing an equation of state for
the matter fluids. For example, barotropic fluids are such that p = ωρ where the
constant ω is called the barotropic index. In a general physical way, this index ranges
from ωmin = −1 for scalar field frozen in unstable vacuum to ωmax = +1 for stiff
matter (e.g. free scalar field) where sound velocity equals to speed of light. In this
paper we generally restrict our analysis to such barotropic fluids in general relativity,
values of ω /∈ [−1, 1] generally correspond to other theories of gravity.

Following standard procedure, we rewrite the above equations in terms of density
parameters for matter �m = 8πGρ

3H2 , cosmological constant �� = �
3H2 , curvature

�k = − k
3a2 H2 and deceleration parameter q = − äa

ȧ2 . Friedmann–Lemaître equations
and energy conservation write for barotropic fluids therefore become

⎧⎨
⎩

1 = �m + �� + �k

q = 1
2�m (1 + 3ω) − ��

ρ̇ = −3Hρ (1 + ω)

Please note that the latter equation can be directly integrated for constant equation of
state to give ρ ∼ a−3(1+ω).

Finally, we rewrite the above equations by changing the independent variable to
the number of efoldinds λ = log(a) and noting ′ for λ-derivatives, one gets⎧⎨

⎩
1 = �m + �� + �k

�′
m = �m [− (1 + 3ω) + (1 + 3ω) �m − 2��]

�′
� = �� [2 + (1 + 3ω) �m − 2��]

1 If one interprets the cosmological constant as the curvature associated to vacuum.
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The dynamics of the Friedmann–Lemaître universe is contained in the two last equa-
tions which form a differential system of generalized Lotka–Volterra [19–21] equa-
tions well known in population dynamics (see “Appendix 1” for an introduction). As
a matter or fact, introducing the dynamical vector x = (�m,��)�and the capacity
vector r = (− (1 + 3ω) , 2)�, for i = 1, 2 we have x ′

i = xi fi (x) where the vector
function f(x) = r + Ax is linear in the variables xi , the community matrix A being
defined by

A =
[

(1 + 3ω) −2
(1 + 3ω) −2

]

This formulation allows us to assimilate the dynamics of Friedmann–Lemaître uni-
verses to those of a competition between species, represented by �m and ��, for the
resources in �k . This point of view is not anecdotal and will reveal a lot of bene-
fit: such equations are very well known to the dynamical system specialist, it allows
a lot of intuitive non trivial results, establish an analogy that will help us deriving
new cosmological behavior for coupled models besides of providing a pedagogic and
interesting insight on cosmic expansion.

First of all, it is easy to see that orbits cannot cross the�m = 0 or�� = 0 axes which
are orbits themselves.2 As the matrix A fully degenerates (rank equal to 1) it is clearly
not invertible, equilibrium points must lie on axis. In particular as denoted by Uzan and
Lehoucq [22] or Hobson et al. [23] using a slightly different dynamical system, there
exists 3 equilibria which are Milne universe x0 = (0, 0), Einstein-de Sitter universe
x1 = (1, 0) and de Sitter universe x2 = (0, 1). Using the large knowledge of such
systems from bio-mathematics (e.g. [24,25]) the r vector contains the intrinsic birth
or death rates of the species. The dynamics of competitive Lotka–Volterra systems
with such a degenerate matrix is well known:

• If the initial condition is located in the positive quadrant Q+ = {�m > 0} ×
{�� > 0} then x → x2 when t or λ goes to infinity, the reason of this attrac-
tive character of the de Sitter universe is uniquely contained in the fact that r2 ≥ r1
for all physical values of the barotropic index ω. If we extend values of ω consid-
ering phantom dark energy instead of pressureless matter by letting ω < −1 the
attractor become the (phantom DE-dominated) Einstein-de Sitter universe (x1) sim-
ply because in this case r1 ≥ r2. This is obvious since in this case the energy density
of the phantom DE grows like a power-law with the scale factor (ρDE ∼ a−3(1+ω)

where ω < −1), therefore asymptotically dominating the constant density associ-
ated to the cosmological term.

• If the initial condition lies on the �m axis the attractor is the Einstein-de Sitter
universe if ω < − 1

3 and Milne universe (x0) if ω ≥ − 1
3 . This is obvious since, in the

absence of a cosmological constant (�� = 0), the competition is left between matter
and curvature energy densities, the latter decreasing as a−2. Therefore, asymptotic
dominance of matter is only possible when ω < −1/3, so that the related density
can eventually dominate (since it scales as ρm ∼ a−3(1+ω)).

2 This point doesn’t exclude the possibility of negative values for � in the Friedmann–Lemaître equations,
but it doesn’t allow changes for �’s signum in a given Friedmann–Lemaître universe.
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• If the initial condition lies on the �� axis the attractor is the de Sitter universe
for any values of ω. Once again, this is obvious since asymptotically the constant
energy density of the cosmological term will dominate the decreasing energy density
related to the curvature.

These results are well known and presented in a slightly different manner in [22]
or [23]. The new point here is the dynamical population formulation of the problem
and interesting results will be derived through usual techniques in dynamical system
theory. We will also present new cosmological consequences on coupled models which
are directly inspired by the analogy with evolution of populations in competition. One
possibility consists of investigating how far the natural cyclic orbits appearing usually
in population dynamics could appear in standard cosmology. This is the object of the
next section.

3 Multi-components Friedman–Lemaître universes: Jungle Universes

In the latter section we have presented the generalized Lokta–Volterra formulation
for the dynamics of usual Friedmann–Lemaître universe with non-vanishing cosmo-
logical constant. In particular we have only considered one simple barotropic fluid
characterized by a given value of ω. We can generalize this situation to the more com-
plicated yet realistic case where the universe is filled by several kinds of barotropic
fluids without any direct interactions. In this section, we consider for example bary-
onic matter (b—indiced and for which ωb = 0) and radiation (r—indiced and for
which ωr = 1

3 ). It is well known that the repulsive feature obtained with a positive
cosmological constant can also advantageously be obtained through some dark energy
fluid component (e—indiced) associated to a barotropic index ωe ∈ [−1,−1/3] ; the
cosmological constant term could then be obtained taking ωe = −1. In the following,
roman indexes refer to the fluid component considered.

The cosmological term in Friedmann–Lemaître equations can therefore be removed,
introducing the densities �x = 8πGρx

3H2 for x = b, r and e including the conservation
of each kind of fluids they write

1 = �b + �r + �e + �k

2q = �b + 2�r + (1 + 3ωe)�e

(ln ρx )
′ = −3(1 + ωx ) for x = b, r and e;

A basic calculus shows that (ln H)′ = −q − 1 hence Friedmann–Lemaître equations
write

�′
x

�x
= (ln �x )

′ = �b + 2�r + (1 + 3ωe) �e − 3ωx − 1 for x = b, r and e

The three dimensional differential system for �e, �b and �r is always a generalized
Lotka–Volterra form with a fully degenerate community matrix. The dynamics is then
always governed by the capacity vector r = [−1,−2,−3ωe − 1] which actually rules
the asymptotic behavior. Besides of the origin, there is now one additional equilibrium
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on each axis and if r possesses a component which is greater than all others, the
corresponding equilibrium with this component maximal is globally stable over the
positive orthant. This smart result is sufficient to claim that dark energy (for which ωe ∈
[−1,−1/3]) corresponds to this r maximal components and then the universe such
that �b = �r = 0 and �e = 1 is globally stable out from axis �b = 0 and �r = 0.

This three dimensional situation is readily generalizable to any number of non
interacting fluids each governed by a separated conservation equation. The dynamical
behavior is asymptotically always the same: the system evolves like a competitive
one in which all species (predators) are fed by the same prey (which is curvature…).
Asymptotically and out of axis, only one species survives, the one which possesses the
greater value of −3ωx −1. This species is always the dark energy fluid in our physical
hypotheses ω ∈ [−1, 1]. Once the Universe is filled with even a small amount of
dark energy, there is no way it cannot dominate forever the fate of the cosmos. This is
Jungle Law for a Jungle Universe. Fortunately, this will cease to be true, as we shall
see in the next section, if dark energy is not so dark, but it is in interaction with the
other components.

4 Cooperation in the Jungle Universes

4.1 General dynamics with dark coupling

In the last sections we have presented a way to express the dynamics of Friedmann–
Lemaître universes using generalized Lotka–Volterra differential system theory. This
also offers new perspectives in determining cosmological analogues of specific cases
in competitive dynamics. It is well known that the generic dynamics of such systems
contains limit cycles or periodic orbits. We will describe in this section how direct
coupling can be used to bring such a behavior in the context of cosmology.

When the fluids filling the universe are not interacting with each other, the com-
munity matrix of the generalized Lotka–Volterra system must have the same rows and
then must be fully degenerated. In order to make its rank greater than one, we must
introduce coupling between species, i.e. interactions between cosmological fluids. On
the other hand, this kind of interactions is broadly used in cosmology, with the cou-
pling between inflaton and radiation during reheating (e.g. [26]) or the one between
dark matter and dark energy (e.g. [8,27–29]), or even the decay of heavy matter parti-
cles like WIMPS into light relativistic particles (e.g. [30]). Modern cosmology make
strong use of coupled fluids for a variety of purposes, therefore making this study of
coupled models in terms of Lotka–Volterra systems of first heuristic interest.

In order to show the phenomenon we will present in this section the situation
where the universe contains radiation, baryonic matter, dark matter (d—indiced),3 dark
energy and we suppose a coupling between the two dark components. This constitutes
a coupled quintessence scenario [28,29]. On one hand, it is necessary to preserve the
global energy conservation as imposed by Noether theorem and Poincare invariance,
energy transfer must compensate in the global energy balance. Hence, at each time,

3 Although both are pressureless with ω = 0, we split both to allow for different couplings.
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the part of the energy taken by the first component must be given to the other to which
it couples. To achieve this, conservation equations for two coupled dark fluids must
be of the following form: {

ρ̇d = −3Hρd (1 + ωd) + Q
ρ̇e = −3Hρe (1 + ωe) − Q

where Q represents the energy transfer. This coupling leaves unchanged the global
energy-momentum conservation, it is then invisible in standard general relativity and
it glimpses at (micro-)physics describing dark components of the universe. In liter-
ature, one usually finds that this energy transfer is arbitrarily expressed as a linear
combination of the dark sector densities:

Q = Adρd + Aeρe

where the coefficients are either proportional to Hubble parameter H either constant
(see [8,27–29]). In this paper, we introduce a new non-linear parametrization of the
energy transfer that allows us matching the coupled model to a general Lotka–Volterra
system. This ansatz is given by

Q = 8πG

3H
ερeρd = εH�e,dρd,e (4)

where the coupling parameter ε is a positive constant. This form of coupling is required
to preserve the fundamental generalized Lotka–Volterra form of the FL dynamical
system, but it also has an interesting phenomenological motivation. When the energy
transfer is written Q ∼ Hρd,e, this means that the energy moved from one species to the
other varies with the volume of the cosmological fluid. Our original suggestion, Q ∼
H�e,dρd,e, now assumes that, in addition to the abovementioned volume variation, the
energy transfer Q is also proportional to the cosmological abundance of one species.
This is very different than assuming that the energy transfer is related to the local
energy density, as in an expression like Q ∼ ρe,dρd,e, which could be encountered in
the case of two species undergoing reactions at the microscopic level (see [31]). The
energy transfer considered here, Q ∼ H�e,dρd,e, is proportional to the proportion
�e,d of one species e, d. This glimpses at more complex microscopic interactions
between the coupled species, maybe including agglomeration or saturation effects,
that should be further investigated.

In conclusion, the motivation for this particular coupling is twofold: a mathemati-
cal one, by ensuring a Lotka–Volterra interpretation of cosmological dynamics and a
phenomenological one, by supposing the energy transfer is proportional to the cosmo-
logical abundance of the coupling species. Such coupling has still to be motivated by
microscopic physics (see also [31]), maybe through sophisticated microscopic inter-
actions with saturation effects that affects the amplitude of the energy transfer when
one of the coupled species grow.

In addition, if we consider only the dark components of the universe—the dark
plane where �b = �r = 0—in the case where the non baryonic dark matter is non-
relativistic and pressureless, i.e. ωd = 0 and following the scaling method introduced
by Zimdahl and Pavon [18], we get
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d

dt

(
ρd

ρe

)
= ρd

ρe

[
ρ̇d

ρd
− ρ̇e

ρe

]
= ρd

ρe

[
3Hωe + 8πGε (ρd + ρe)

3H

]

In the dark plane we have

8πG

3
(ρd + ρe) = H2

as H = d ln a
dt we obtain

d

dt

(
ρd

ρe

)
= ρd

ρe
H [3ωe + ε] �⇒

d ln
(

ρd
ρe

)
dt

= [3ωe + ε]
d ln a

dt

and finally

ρd

ρe
= ρd,0

ρe,0

(
a

a0

)3ωe+ε

(5)

which avoid the coincidence problem if 3ωe + ε > 0.
Since the Raychaudhuri equation (2) and consequently (ln H)′ are left unchanged

by the introduction of such couplings,4 but we have now

(ln �d)
′ = (ln ρd)

′ + 2q + 2

= �b + (1 + 3ωd)�d + 2�r + (ε + 1 + 3ωe)�e − (3ωd + 1)

and

(ln �e)
′ = (ln ρe)

′ + 2q + 2
= �b + (1 + 3ωd − ε) �d + 2�r + (1 + 3�d)�d − (3ωe + 1) .

The other two remaining equations for �b and �d are not affected by the dark coupling.
With this coupling and under these last hypotheses the generalized Lotka–Volterra
equations associated to isotropic, homogeneous and barotropic fluid filled universe
for the dynamical variable x = (�b,�d,�r,�e)

� are defined by a capacity vector r
and a community matrix A such that

A =

⎡
⎢⎢⎣

1 1 2 1 + 3ωe
1 1 2 ε + 1 + 3ωe
1 1 2 1 + 3ωe
1 1 − ε 2 1 + 3ωe

⎤
⎥⎥⎦ and r =

⎡
⎢⎢⎣

−1
−1
−2

−1 − 3ωe

⎤
⎥⎥⎦ (6)

As desired this matrix is not fully degenerate but generally has rank equals to 3.
This dynamic is characterized by five equilibria in the positive quadrant which are
x̃0 = (0, 0, 0, 0)� , x̃1 = (0, 0, 1, 0)� , x̃2 = (0, 0, 0, 1)� , x̃3 = (1 − α, α, 0, 0)�

4 This is so since gravity is still minimally coupled to matter fluids.
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withα ∈]0, 1] and x̃4 = ε−1 (0,−1 − 3ωe, 0, 1)� the first four being globally unstable
while the last is by far the most interesting.

Provided that

ωe < −1

3
and ε > −3ωe > 0 (7)

the equilibrium x̃4 is always in the positive quadrant but it is no more hyperbolic and
two complex eigenvalues, namely

λ± = ±i

√∣∣9ω2
e + 3εωe + 3ωe + ε

∣∣
ε

,

occur in the spectrum of the linearized dynamics around x̃4. A precise analysis of
the dynamical behavior of the system is then required. In order to do this we have
decomposed the job into two parts:

1. In a first step (Sect. 4.2), we have restricted the analysis to the dark plane (�d,�e)

where we have rigorously proven that the dynamic is generally cyclic; this proof
was exhibited using a general new Lyapunov function.

2. In a second step (Sect. 4.3), we have shown that this dark plane is attractive for all
orbits whose initial conditions belong to the hyper-tetrahedron

T4 = {�b > 0} ∪ {�d > 0} ∪ {�r > 0} ∪ {�e > 0} ∪ {�b+�d+�r +�e < 1}.
(8)

4.2 Cyclicity of orbits in the dark plane: Lyapunov function for FL dynamics

Cyclic behaviors for coupled FL cosmologies has been proposed by some papers
(see [16] or [17]) but in each cases the polytropic index ωe required for dark energy
is less than −1. Moreover their conclusion of cyclic orbits are obtained from linear
analysis around non hyperbolic equilibria; however, it is well known in dynamical
system analysis that one cannot conclude anything in this case: we have devoted the
“Appendix 2” to this point. In order to be sure to have such cyclic behavior it is
necessary in this context to use more refined tools like Lyapunov functions.

Such tools are fundamental in physics but generally it is very hard to find them.
However, it is possible in a very general manner in the context of our coupled FL
dynamics thanks to the fact that it is a generalized Lotka–Volterra system.

In a pedagogical objective we propose to show how to construct such kind of
fundamental functions for Jungle Universes containing a coupling in the dark sector.
Using this method, this result is widely generalizable to another cases.

In the so-called dark-plane (�b = �r = 0) and with the notations x = �d and
y = �e, the dynamics is then governed by the generalized Lotka–Volterra system

{
x ′ = x [x + (1 + 3ωe + ε) y − 1]
y′ = y [(1 − ε) x − (1 + 3ωe) y − 1 − 3ωe]
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hence

r2 =
[ −1

−1 − 3ωe

]
and A2 =

[
1 1 + 3ωe + ε

1 − ε 1 + 3ωe

]

As indicated in the previous section, for the dark sector and under the restric-
tion (7), there is a unique equilibrium in the strict positive quadrant, namely (x̃, ỹ) =
ε−1 (−1 − 3ωe, 1). The interval of study ωe ∈ (−∞,− 1

3

]
include the cosmological

constant (ωe = −1), a large variety of quintessence scenario, and of course the hypo-
thetical phantom dark matter such that ωe < −1. In all these cases, non hyperbolic
eigenvalues appear for a sufficient strength of coupling ε > |3ωe|, for lighter coupling
x̃4 is unstable.

Let us turn now to the construction of the Lyapunov function.
Using a bit of intuition and dynamical population analysis tools (e.g. [24]) one

can use the function Vε,ωe (x, y) = xα yβ (a + bx + cy) where α and β are functions
of ε and ωe; a, b and c are three constants, all being determined in order to obtain
a Lyapunov function. As A2 is now invertible choosing (α, β)� = A−�

2 r2 i.e. α =
− 1+3ωe

ε+3ωe
and β = 1

ε+3ωe
, it is easy to check that

V ′
ε = xα yβ [(b − c) εxy − (3ωea + c + 3cωe + a) y − (a + b) x]

Hence, choosing finally a = −c, b = c we can construct the function

Lε,ω (x, y) = κVε,ωe (x, y) − 1

where

Vε,ωe (x, y) = x− 1+3ωe
ε+3ωe y

1
ε+3ωe (x + y − 1) and κ−1 = Vε,ωe (x̃, ỹ)

one can verify that

1. Lε,ωe (x̃, ỹ) = 0,
2. Lε,ωe (x, y) > 0 if (x, y) ∈ R

2 \ (x̃, ỹ)

3. L ′
ε,ωe

(x, y) = 0 for all values of (x, y) ∈ R
2

Hence the function L (x, y)ε,ωe
is a Lyapunov function for this dynamics system

and orbits are confined on level curves Lε,ωe (x, y) = μ where μ is any positive
constant. Such curves are plotted on Fig. 1 for the generic values ε = 4 and ωe = −1.

It must be noted that when �d+�e < 1, the dynamics in the dark plane is periodic as
all the contour levels of Vε are closed and all solutions are maximal. The corresponding
cosmological solution correspond to endless oscillations of the density parameters
(�d,�e) who forever compete with each other for ruling the curvature parameter.
Cosmic expansion is in this case an eternal sequence of transient acceleration (when
DE dominates) and deceleration (when DM dominates) phases.

Solutions such that �d+�e > 1 are unbounded. They correspond to spatially closed
universes, since �k < 0, in which cosmic expansion can reverse into contraction at
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Fig. 1 Contour levels of
L4,−1 (x, y)

some stage, leading to H = 0 and consequent singularities in all density parameters.
The present formalism with monotonically growing λ = ln(a) cannot extrapolate
beyond in vanishing H toward cosmic contraction H < 0, since this would imply
decreasing λ.

4.3 Attractiveness of the dark plane

We now turn our attention to the behavior of orbits whose initial conditions are not
in the dark plane but have non vanishing components in �b and/or �r. Intuitively
one could claim that these components are going to vanish because the eigenvalues
associated to them are negative, but as the two others, associated to the dark com-
ponents, are purely imaginary, the equilibrium is no longer a hyperbolic one hence
Hartmann–Groβman theorem says that the linear analysis is not sufficient to have a
complete description of the system behavior. This point is important and it is often
forgotten in the physical literature, it is why we give a counter example in the “Appen-
dix 2”. However, even if the invariant manifold methods cannot be straightforwardly
used, because the centre manifold is infinitely flat at x̃4, we are able, using dynamical
systems tools, to prove the attractiveness of the dark plane, for all orbits whose initial
conditions belong to the hyper-tetrahedron (8). A detailed proof of the latter statement
will be provided in the “Appendix 3”.

4.4 Numerical illustration

As we have obtained a general proof of the attractiveness of the dark plane, we give
only a simple numerical illustration of this fact. We have numerically solved the
dynamical system (ln(x))′ = r + Ax with x = (�b,�d,�r,�e)

�, the commu-
nity matrix and the capacity vector defined in (6) with ε = 4. Considering vari-
ous initial conditions x0 we always recover an exponential convergence to the dark
plane when x0 has non vanishing first and third components. The Fig. 2 illustrate
such a behavior: from the initial condition x0 = (0.3008, 0.2683, 0.0418, 0.2983)�,
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Fig. 2 Time evolution of the orbit inside T4. Left panel 3D plot of the orbit (the vertical axis is �r(t) +
�b(t)). Right panel 2D projection on the (�d, �e) plane. Parameter and initial conditions: ε = 4, �d(0) =
0.2683, �e(0) = 0.2983, �r(0) = 0.0418 and �b(0) = 0.3008

which belongs to the stable hyper-tetrahedron, we have 3D-plotted the dynam-
ical evolution of the vector (�d,�e,�b + �r)

�. As expected the third compo-
nent vanishes and the two others are caught by a contour level of V4. View
from the top in the right part of the Fig. 2 is particularly explicit about this last
fact.

5 General correspondence between coupled models and Lotka–Volterra
competitive dynamics

In the previous section, we have deduced the general behavior of two coupled species in
Jungle Universes. We propose to call such cosmological components twisting species
since the special example proposed in the last section represent an eternal exchange
between dark energy and dark matter. We will illustrate now that such a behavior can
be generalized introducing more couplings.

In this section, we extend the previous discussion to a set of N inter-coupled cos-
mological species and establish the correspondence with general formulation of com-
petitive Lotka–Volterra models. The goal here is therefore to rewrite the evolution,
with the variable λ = ln(a), of cosmological density parameters of interacting fluids
under the following Lotka–Volterra form:

x′ = diag(x)f(x) with x ∈ R
n (9)

where diag(x) is the diagonal matrix with x on its diagonal, the i th component of the
vector x denotes the population of the i th species, f(x) = r + Ax is the previously
defined linear function which combines the capacity vector r and the community
matrix A. Each coupled fluid characterized by energy density ρi , equation of state
parameter ωi and obey the following modified conservation equation:

ρ̇i + 3Hρi (1 + ωi ) = Qi ; i = 1, . . . , N (10)
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with the energy balance condition imposing that

N∑
i=1

Qi = 0 (11)

where the interaction terms Qi take the form of a combination of the involved energy
densities:

Qi =
N∑

j=1

βi jρ j . (12)

Defining the density parameters �i = 8πGρi
3H2 , and recalling that the deceleration

parameter can be written as

q = − äa

ȧ2 = 1

2

N∑
i=1

�i (1 + 3ωi )

then Eq. (10) becomes

�̇i = 8πGQi

3H2 + H�i

⎛
⎝2 − 3(1 + ωi ) +

N∑
j=1

� j (1 + 3ω j )

⎞
⎠ . (13)

To rewrite the above equation under Lotka–Volterra form, it is then mandatory to set

Qi =
N∑

j=1

βi jρ j ≡ H�i

N∑
j=1

εi jρ j (14)

or, equivalently that the coefficients βi j are no longer constant but are given by

βi j = H�iεi j

with εi j arbitrary parameters to be specified further. Lotka–Volterra dynamics therefore
requires non-linear interaction terms. Given Eq. (14), one can directly rewrite Eq. (13)
under Lotka–Volterra form (9) with the following glossary:

xi = �i

(·)′ = d(·)
d ln(a)

ri = −(1 + 3ωi ) (15)

Ai j = 1 + 3ω j + εi j

The energy balance constraint Eq. (11) with the hypothesis (14) now reduces to

N∑
i=1

�i

⎛
⎝ N∑

j=1

εi j� j

⎞
⎠ = 0 (16)
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which imposes that the interaction parameters εi j are antisymmetric:

εi j = −ε j i ; εi i = 0.

In the context of cosmology we find solution of this ODE system in the hyper-
tetrahedron

T =
{

1 >

N∑
i=1

x1

}
N⋂

i=1

{xi > 0}

The generalization of the results obtained in the previous section show that ODE system
(9) has generically a lot of equilibria but we are interested only by the ones who haven’t
vanishing component (i.e. the ones not lying on an axis). These “interesting” equilibria
are x̃ such that Ax̃ + r = 0. We can now apply this general formulation to the case of
several interacting species.

5.1 Two species in interaction

This case N = 2 has been treated in details in Sect. 3 for specific values of the
equation of state parameters (ω1, ω2) = (0,−1) and serves here as a validation of the
glossary (15). Setting ε12 = −ε21 ≡ ε the unique non-vanishing component of the
interaction tensor εi j , we obtain after some computation the following equilibria of
the cosmological Lotka–Volterra system

�
eq
1 = −3ω2 + 1

ε
(17)

�
eq
2 = +3ω1 + 1

ε
(18)

These equilibria are density parameters in open universes (�k < 1) and then must
satisfy 0 < �

eq
i < 1. This condition constrains the choice of ε once the choice of the

nature of the interacting fluids has been chosen by fixing ω2 and ω1.

5.2 The interplay between three coupled species: Jungle triads

Let us set ε12 = e1, ε13 = e2 and ε23 = e3 and compute the corresponding equilibria
to find

�
eq
1 = +e3 − 3ω2 + 3ω3

e1 − e2 + e3

�
eq
2 = −e2 − 3ω1 + 3ω3

e1 − e2 + e3
(19)

�
eq
3 = +e1 − 3ω1 + 3ω2

e1 − e2 + e3
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Fig. 3 Evolution of the three coupled density parameters, in the 3D phase space. The beginning of the orbit
is overlined. Initial condition is indicated by a black dot. Relevant equilibria are indicated by a star

Let us remark that in all cases of fluids and coupling we have
∑3

i=1 �
eq
i = 1. This

fact seems generic for odd values of the number of interacting fluids. If we now impose
the fact that the density parameters are comprised between 0 and 1 (0 < �

eq
i < 1)

the constraint on interaction parameters e1, e2, e3 is very complicated, but allows a lot
of possibilities. Let us illustrate this case with an example. We consider that the three
fluids are made of (1) non-relativistic matter ω1 = 0, (x1 = �d); (2) dark energy
ω2 = −1, (x2 = �e) and (3) some relativistic particles ω3 = 1/3, (x3 = �r) all
coupled with interaction parameters e1 = e2 = e and e3 = ε. The corresponding
equilibria are

�
eq
d = 4 + ε

ε
, �eq

e = −1 + e

ε
and �eq

r = e − 3

ε

Providing ε < −4 and e ∈ [−1, 3] equilibria are cosmologically acceptable. Choosing
for example ε = −8, the spectrum of the jacobian matrix near the equilibrium is
composed by a real number λ = 1 − e

2 and two purely imaginary and complex
conjugated numbers λ± = ± i

2

√
2 |(e + 1)(e − 3)|. When e ∈ [−1, 2], as λ > 0

the system twists outward (0,�
eq
e ,�

eq
r ) staying in the corresponding 3-tetrahedron,

collapsing on the �d = 0 plane. When e ∈ [2, 3], as λ < 0 the system twists toward a
limit cycle contained in a plane of non vanishing density and including the equilibrium.
These results are illustrated on the Fig. 3.

5.3 Jungle quartets

With N = 4, the number of free parameters in the scheme (10 in total with 6 for
interactions and 4 for equations of state) is too high to be fully constrained by require-
ments of positiveness and boundedness of density parameters for instance. As for
N = 2, the positions of the equilibria once again depend on all parameters. If we set
ε12 = e1, ε13 = e2, ε14 = e3, ε23 = e4, ε24 = e5 and ε34 = e6, we find that the
positions of the equilibria are given by
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�
eq
1 = −e4 − e5 + e6 + 3(e4ω4 − e5ω3 + e6ω2)

e1e6 − e2e5 + e4e3

�
eq
2 = +e2 − e3 + e6 + 3(e2ω4 − ω3e3 + e6ω1)

e1e6 − e2e5 + e4e3

�
eq
3 = −e1 − e3 + e5 + 3(e1ω4 + ω1e5 − ω2e3)

e1e6 − e2e5 + e4e3

�
eq
4 = +e1 − e2 + e4 + 3(e1ω3 − e2ω2 + e4ω1)

e1e6 − e2e5 + e4e3

(20)

Since this system of 4 cosmological coupled species is equivalent to 4D Lotka–Volterra
system, chaos can emerge [32] for specific choices of parameters in a so-called normal
system where all ri are positive, which means among cosmological fluids with ωi <

−1/3. As an illustration we propose a double twist in a universe filled by two kinds of
dark energy and two kinds of dark matter all interacting. We choose ω1 = −1, (x1 =
�e,1);ω2 = 0, (x2 = �d,1); ω3 = 0, (x3 = �d,2) and ω4 = −1, (x4 = �e,2) for
the fluid components, and e1 = −4, e2 = 1, e3 = −2, e4 = −1/2, e5 = 1 and
e6 = ε, we get the following equilibria

�
eq
e,1 = 1

4
, �

eq
d,1 = 1

2
, �

eq
d,2 = 2

ε
, �

eq
e,2 = 1

ε

The condition on the density parameters then gives ε > 12. Taking ε = 16 we get
four complicated but, purely imaginary and conjugated eigenvalues for the Jacobian
matrix around the equilibrium:

λ±
1 = ±i

√
51134 + 6

√
69956601

262
and λ±

2 = ±i

√
51134 − 6

√
69956601

262

The corresponding dynamics is the double twist plotted on Fig. 4.
In the right top panel of Fig. 4, we can have a flavor about the various �’s depen-

dances in the variable λ = log a. In this example the period for the cycles occuring
in the dynamics is of order λ = 6 or 7, it corresponds to an interval of time during
which the universes expands by a factor 106 − 107: if this interval does not include an
inflation period, it is a very long duration in comparison of H−1

0 . In other examples
one will find other intervals depending on the values of εi j and ωi .

6 Conclusion

Let us summarize the main points obtained in this paper:

• We have formulated the classical dynamics of Friedmann Universes in the context of
the generalized Lotka–Volterra equation. Without coupling, this formulation allows
a very simple and pedagogic interpretation of the evolution of these universes.
Varying parameters describing the nature of the fluids one can easily understand
the corresponding behavior of the so-called Jungle universes.
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Fig. 4 Jungle quartet: The left top panel is a 3D section of the 4D phase space. The right top panel is
a representation of �

eq
d,1(λ) and �

eq
d,2(λ), the corresponding equilibria are indicated by doted horizontal

lines. The two bottom panels are 2D sections of the 4D phase space. For the phase space sections, the
beginning of the orbits are overlined and the relevant equilibria are indicated by a star. Initial conditions
for the numerical integration are x1(0) = 0.11, x2(0) = 0.12, x3(0) = 0.13 and x4(0) = 0.14

• Cyclic behaviors has been speculated by Lip [16] and Arevalo et al. [17] when FL
universe contains exotic “phantom dark matter” fluids (with barotropic index ω <

−1) coupled with dark matter; using the generalized Lotka–Volterra formulation of
the coupled FL universe we have obtained a general Lyapunov function in the con-
text of the standart cosmological model. This function allows us to rigorously prove
the existence of cyclic behavior of FL universe when standart fluids (with barotropic
index ω > − 1

3 ) are coupled to dark energy (with barotropic index ω < − 1
3 ).

• In the case of 3 or 4 interacting batrotropic fluids, we have found more complex
cyclic behavior of the universe: an expanding twist for N = 3 and a double twist
for N = 4.

• Following the results of the population dynamics, we conjecture that chaos could
occur in the dynamics of universes filled by more than 3 interacting fluids: for
example, in the case of competitive population dynamics (ri < 0 and Ai j < 0 in
Eq. 15) chaos is the rule (see [32]).

We conclude by claiming that the presented analogy with Lotka–Volterra dynami-
cal systems has offered new unexpected and interesting applications to coupled mod-
els in cosmology. Twisting species naturally produce transient phenomena in cosmic
expansion, an original feature that could make cosmic coincidence a non unique and
therefore less problematic feature.
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Appendix 1: The Lotka–Volterra equation

The Lotka–Volterra equation is defined by a set of two coupled ordinary differential
equation of the form

{
x ′

1 = x1 (+r1 − a12x2)

x ′
2 = x2 (−r2 + a21x1)

where x1 (t) and x2 (t) are two function of the variable t , a prime indicate the t-
derivative and r1, r2, a12 and a21 are four positive constants. It is one of the simplest
model to describe interactive dynamical population between some prey (which number
is x1) and its predator (which number is x2). The constant have intuitive interpretation:

• r1 (resp. r2) is the growth rate for preys (resp. predators) to increase (resp. decrease)
when there is no predators (resp. preys);

• a12 and a21 are the coupling factors between the two populations; in ecological
systems they are related to the mobility, the agressivity and other natural properties
of the different concerned populations.

The properties of such a set of equation are very well known and a lot of classical
books (see [24] and reference within) explain and demonstrate that starting with strictly
positive initial conditions, the solution x1 (t) and x2 (t) are periodic functions. The
orbits in the phase space are concentric closed curves centered on the equilibrium

(x̃1, x̃2) =
(

r1
a12

, r2
a21

)
. These curves correspond to the isocontours of the Ljapunov

function V (x1, x2) = a21x + a12 y − (r2 ln x + r1 ln y).
When r1, r2, a12 and a21 have different signs the situation is changed and the

system can describe other situations like competition, symbiose, etc (see [24]).
Lotka–Volterra systems is often considered as an unrealistic model in the context

of population dynamics because there is no limitation when one specie is ruled out. A
better model could be implemented introducing a logistic limitation such that

{
x ′

1 = x1 (+r1 − a11x1 − a12x2)

x ′
2 = x2 (−r2 + a21x1 − a22x2)

The sign of the new parameters a11 and a22 is always related to the physical nature of
the dynamical system. When all constants are positives, the system admits a general
treatment: the Lotka–Volterra curves are generally replaced by spirals which converge
to the equilibrium (x∗ �= 0, y∗ �= 0) solution of the system

{
r1 = +a11x1 + a12x2
r2 = −a21x1 + a22x2
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When the matrix A = (ai j
)

is non invertible ( singular) the situation is called degen-
erated and equilibria lie on the axes.

Such models could be generalized to n-dimensional systems introducing the gen-
eralized Lotka–Volterra equation occuring in this paper. Less things can be said about
dynamical properties of such systems when the coefficient of r and A are generic ones,
in particular the dynamics can change strongly giving rise to cyclic competition or
cooperation [33].

Appendix 2: Counter example: a linear center which is actually nonlinearly
unstable

Consider the dynamical system

{
ẋ = −y + x3

ẏ = x + y3

The origin is an equilibrium, the eigenvalues of the jacobian near this equilibrium are
±i. In the linear approximation the origin seems to be a center. But as the eigenvalues
have no real part, the system is not hyperbolic and almost nothing can be assumed
about the non linear dynamics considering only the linear one around the equilibrium.
In this particular case one can prove that the origin is a repulsive focus, and it is then
actually unstable. As a matter of fact, considering the intersection M between an orbit
and the circle x2 + y2 = R2. The angle α between the tangent in M to the orbit and
the tangent in M to the circle is given for any radius R by the expression

cos α = (ẋ, ẏ) · (2x, 2y) =
(
−y + x3, x + y3

)
· (2x, 2y) = 2x4 + 2y4 > 0

Hence, each orbit is going out from any circle of radius R > 0 and the origin is
unstable.

Appendix 3: Proof of the stability of the �d − �e plane

The aim of this section is to provide a simple proof of the attractiveness of the �d −�e
plane for all orbits whose initial conditions belong to the hyper-tetrahedron:

T4 = {�d > 0} ∪ {�e > 0} ∪ {�r > 0} ∪ {�b > 0} ∪ {�d + �e + �r + �b < 1} .

Let us recall the ODE system describing the equations of motion:

⎧⎪⎪⎨
⎪⎪⎩

�′
d = �d [�d + (ε + 1 + 3ωe)�e + 2�r + �b − 1]

�′
e = �e [(1 − ε)�d + (1 + 3ωe)�e + 2�r + �b − 1 − 3ωe]

�′
r = �r [�d + (1 + 3ωe)�e + 2�r + �b − 2]

�′
b = �b [�d + (1 + 3ωe)�e + 2�r + �b − 1]

(21)
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To prove our claim we need to prove first the invariance with respect to the flow (21)
of the hyper-tetrahedron T4. The invariance of each coordinates hyperplanes is trivial
and follows straightforwardly from (21). For instance any solution such that �d(0) = 0
will have �d(λ) = 0 for all λ, then using the uniqueness of the Cauchy problem we
can ensure that any solution with �d(0) > 0 will never cross the hyperplane �d = 0.
A very similar analysis can be performed for the remaining cases.

Let us now consider the remaining piece of the boundary of T4, that is the
hyperplane{�d + �e + �r + �b = 1}. A straightforward computation gives:

(�d+�e+�r +�b)
′ = [�d+(1+3ωe)�e+2�r +�b] [�d+�e+�r +�b − 1] ,

thus any solution with initial conditions

�d(0) + �e(0) + �r(0) + �b(0) = 1,

will always satisfies the constraint

�d(λ) + �e(λ) + �r(λ) + �b(λ) = 1 ∀λ.

Thus once again the uniqueness result of the Cauchy problem implies that any solution
such that �d(0) + �e(0) + �r(0) + �b(0) < 1, will never reach the hyperplane
�d + �e + �r + �b = 1.

Finally putting together the above partial results, we can conclude that any orbit
with initial condition inside T4 will never leave it.

A by-product of the invariance of the tetrahedron is that orbits inside T4 will always
have positive projections on the axes. This allows us to compute the distance from the
plane (�d,�e) using the linear function F(�r,�b) = �r + �b, which is zero if and
only if �r = �b = 0, that is the point belongs to the plane (�d,�e).

We can then compute the Lie derivative of F and prove that its restriction to T4
is strictly negative, hence F(�r(λ),�b(λ)) → 0 for λ → +∞ and because of the
positiveness of �r (λ) and �b (λ) we can conclude that both �r (λ) and �b (λ) goes
asymptotically to zero.

To prove the latter claim let us compute the derivative of F along the flow of (21):

d F

dt

∣∣∣∣
flow

= [�d + (1 + 3ωe)�e + 2�r + �b − 1] [�r + �b] − �r,

because of our previous result �d(λ)+�b(λ)−1 < −�e(λ)−�r(λ) for all λ. Using
this inequality we get

d F

dt

∣∣∣∣
flow

< (3ωe�e+�r) (�r+�b) − �r = 3ωe�e (�r+�b)+(�r+�b − 1 ) �r

let us observe that the right hand side is strictly negative, in fact

3ωe�e(�r + �b) < 0
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provided and �e is associated to the dark energy
(
ωe < − 1

3 < 0
)

and

�r + �b − 1 < �d + �e + �r + �b − 1 < 0.

This concludes our proof of the attractiveness of the dark plane for all orbits whose
initial conditions belong to T4.
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