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Synchronization in adaptive higher-order networks
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1Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
2Department of Mathematics and Namur Institute for Complex Systems,

naXys, University of Namur, 2 rue Grafé, Namur B5000, Belgium
3Department of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India

Many natural and human-made complex systems feature group interactions that adapt over time
in response to their dynamic states. However, most of the existing adaptive network models fall
short of capturing these group dynamics, as they focus solely on pairwise interactions. In this
study, we employ adaptive higher-order networks to describe these systems by proposing a general
framework by incorporating both adaptivity and group interactions. We demonstrate that global
synchronization can exist in those complex structures and we provide the necessary conditions for
the emergence of a stable synchronous state. We first study the setting in which both pairwise
and higher order interactions are allowed, but only the former adapt in time, then we extend this
framework by considering also higher order adaptive interactions. In both analyzed settings we
show that the necessary condition is strongly related to the master stability equation, allowing to
separate the dynamical and structural properties. We illustrate our theoretical findings through
the relevant examples involving adaptive higher-order networks of coupled generalized Kuramoto
oscillators with phase lag, coupled with an all-to-all and a nonlocal ring–like structure. We also show
that the interplay of group interactions and adaptive connectivity results in the formation of stability
regions that can induce transitions between synchronization and desynchronization. Our findings
also reveal that the introduction of higher-order adaptation significantly alters the synchronization
stability when compared with the case with constant higher-order interactions.

I. INTRODUCTION

In the realm of complex systems, synchronization is a
captivating and widespread phenomenon where coupled
systems spontaneously self-organize by displaying a co-
ordinated behavior [1, 2]. This phenomenon, emerging
in both natural and artificial systems, has long intrigued
scientists seeking to understand its underlying principles
[3].

Network science has emerged as a powerful framework
for studying synchronization, where interconnected non-
linear oscillators are represented as nodes, and their in-
teractions as pairwise links [4]. However, traditional net-
work models have limitations when applied to many nat-
ural and human-made systems, such as brain networks [5]
and social networks [6], where connections between indi-
vidual units are dynamic and evolve over time. To ad-
dress this issue, the concept of networks has been general-
ized as to include temporally evolving connectivity topol-
ogy [7]. A particularly intriguing class of these general-
ized network structures is given by the adaptive networks,
where the temporal evolution of the network structure
is intricately linked to the dynamical state of its nodes,
leading to the coevolution of both the network topol-
ogy and its individual components [8–11]. For example,
synaptic connections between neurons adjust based on
the relative timing of neuronal spikes [12–15]. Likewise,
in certain chemical systems, reaction rates dynamically
adapt according to the system variables [16]. Activity-
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dependent plasticity is also prevalent in epidemics and
various biological or social systems [17, 18]. Researchers
have investigated synchronization within adaptive net-
works [19–26], as well as in conventional time-varying
networks [27–31], where the temporal evolution of con-
nections is predefined and independent of node dynamics.

Another limitation of traditional network models is
their focus on pairwise interactions, which fails to capture
the complexity of many real-world systems. To overcome
this limitation, researchers have highlighted the impor-
tance of higher-order structures that go beyond pairwise
links by allowing for simultaneous interactions among
multiple agents [32–35]. Higher-order structures, such
as simplicial complexes [36] and hypergraphs [37], of-
fer a more nuanced understanding of complex systems
and have revealed new features in various dynamical pro-
cesses, including epidemics [38], random walks [39, 40],
consensus [41], pattern formation [42, 43], synchroniza-
tion [44–54], swarmalation [55] and more [56, 57].

Despite these advances, the current frameworks still
fall short in describing systems with both adaptivity and
higher-order interactions. For instance, in neuronal net-
works, a group of neurons interact simultaneously [58, 59]
and also, the synaptic connectivity between them de-
pends on the neuronal spike timing [13–15]. In this
work, we thus aim to close this gap by exploring the
interplay between higher-order and adaptive interactions
by proposing a general framework for studying synchro-
nization involving nonlinear oscillators coupled via adap-
tive higher-order network structures. To the best of our
knowledge, only a few recent studies have explored the
adaptive nature of higher-order interactions and their
effects on the synchronization process [60–63]. For in-
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stance, it has been shown that group interactions in adap-
tive networks can influence synchronization transitions
within the Kuramoto model [61, 62]. Let us observe that
these studies have restricted their focus on the Kuramoto
model and have been limited to examining only the routes
to transitions between synchronization and desynchro-
nization, such as continuous or abrupt transitions.

In this work, we overcome the limitations of the above-
cited results and introduce a broad framework for study-
ing dynamical systems within adaptive higher-order net-
works. Specifically, we consider a finite ensemble of
generic (but identical) dynamical systems anchored to
the nodes of an adaptive higher-order network, where
the interactions are governed by general coupling func-
tions. For simplicity, we focus on simultaneous interac-
tions up to three bodies, but the proposed framework can
be easily extended as to accommodate for interactions of
any order. Within such context, we examine the syn-
chronization, specifically global synchronization in adap-
tive higher-order networks. This approach extends the
study by Berner et al. [19] on synchronization in adap-
tive networks to the domain of higher-order networks.
Given the existence of a synchronous solution, we derive
the necessary conditions for its stability in two scenarios:
first, when only the pairwise connections adapt accord-
ing to node dynamics while higher-order connections re-
main fixed, and second, when both pairwise and higher-
order connections adapt based on node dynamics. We
considered a couple of relevant higher-order structures,
all-to-all and ring-like, and we shown that the analyt-
ical stability conditions we derived, resemble the Mas-
ter Stability Equation (MSE) approach [64, 65]. This
is a method originally developed for static pairwise net-
works, and since then extended to various complex net-
works, including time-varying networks [29, 30, 66] and
static higher-order networks [49, 51]. To validate the ana-
lytic derivations we obtained, we use the generalized Ku-
ramoto model with phase lag defined on adaptive higher-
order networks. We show how the combined effect of
adaptivity and higher-order interactions change the sta-
bility of the synchronous state. We also demonstrate that
the interplay between adaptation and group interactions
can lead to the formation of stability regions, which in-
duce transitions between synchronization and desynchro-
nization.

II. ADAPTIVE PAIRWISE AND STATIC
HIGHER-ORDER INTERACTIONS

Let us first consider the case where both pairwise and
higher-order interactions are present, but only the for-
mer can evolve in time as a function of the system state
variables; the three-body terms are thus supposed to be
given by a stationary tensor. More precisely, we are con-

sidering the system,

ẋi =f(xi)− σ1

N∑
j=1

a
(1)
ij k

(1)
ij (t)g(1)(xi,xj)

− σ2

N∑
j=1

N∑
p=1

a
(2)
ijpk

(2)
ijpg

(2)(xi,xj ,xp) , (1)

where the smooth function f (assumed to be same for
all nodes) describes the dynamics of d-dimensional iso-
lated nodes, a

(1)
ij (resp. a

(2)
ijp), is the adjacency matrix

(resp. adjacency 2-tensor) encoding for the “topological”
pairwise (resp. three-body) interactions, namely for the
possible interactions among the constituting basic units
despite their actual realization due to the adaptation of
the structures. The time-varying matrix k

(1)
ij (t) describes

the adaptation of the weight links due to the time evo-
lution of the state variables. The 2-tensor k

(2)
ijp encodes

for the weights of the three-body interaction; let us ob-
serve that for the time being, we assume it to be constant
and thus we could have merged it with a

(2)
ijp, we, however,

preferred to keep them separate from each other to use a
similar notation in the following section, where also the
higher-order interactions can adapt to the system state
evolution. Finally, the function g(1) (resp. g(2)) encodes
the coupling involving two-body (resp. three-body) and
σj , j = 1, 2, denote the corresponding coupling strengths.

As already stated, weights of pairwise interactions
adapt because of the evolution of the system state
[19, 67, 68], more precisely, we assume for all i, j ∈
{1, 2, . . . , N},

k̇
(1)
ij = −ϵ[k

(1)
ij + a

(1)
ij h(xi − xj)] , (2)

for some scalar coupling function h and 0 < ϵ ≪ 1 is a
parameter that separates the time scales of the slow dy-
namics of the coupling strengths from the fast dynamics
of the oscillatory system. On the other hand, we assume
the strengths of the higher-order interactions to be fixed
over time,

k
(2)
ijp = 1 ∀i, j, p ∈ {1, 2, . . . , N} . (3)

Without any further assumption on the coupling func-
tions, we require the following to hold true for the syn-
chronization to occur

1.
N∑
j=1

a
(1)
ij = r(1), i.e., each node must participate in

the same number of pairwise interactions.

2.
N∑
j=1

N∑
p=1

a
(2)
ijp = 2r(2), i.e., each node must participate

in the same number of triadic interactions.

Stated differently, we are assuming that the pairwise
structure, a

(1)
ij , and the higher-order one, a

(2)
ijp, are reg-

ular. This assumption of constant degree is essential to
enable synchronization for generic coupling functions.
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Let us observe that we can overcome the above lim-
itation of constant degree by considering the coupling
functions g(1) and g(2) to be synchronization noninva-
sive, i.e., g(1)(s, s) = 0 and g(2)(s, s, s) = 0. By impos-
ing the noninvasive condition on the coupling functions,
we can accommodate any network topology to achieve
global synchronization. A detailed study of this case will
be provided in Appendix A.

A. Emergence of synchronization

Based on the above, we can look for a global
synchronous solution s(t) of the system described by

Eqs. (1) - (2), namely a solution independent from the
nodes indexes, it then follows that the latter should sat-
isfy

ṡ = f(s) + σ1r
(1)h(0)g(1)(s, s)− 2σ2r

(2)g(2)(s, s, s), (4)

k
(s)
ij = −a

(1)
ij h(0) . (5)

To analyze the stability of this synchronous state, we per-
form linear stability analysis; namely, we consider per-
turbations of the form ξi = xi − s and χij = k

(1)
ij − k

(s)
ij ,

whose time evolution is obtained by solving

ξ̇i =Df(s)ξi − σ1

N∑
j=1

a
(1)
ij g(1)(s, s)χij + σ1r

(1)h(0)[D1g
(1)(s, s) +D2g

(1)(s, s)]ξi+

− σ1h(0)

N∑
j=1

L
(1)
ij D2g

(1)(s, s)ξj − 2σ2r
(2)[D1g

(2)(s, s, s) +D2g
(2)(s, s, s) +D3g

(2)(s, s, s)]ξi+

+ σ2

N∑
j=1

L
(2)
ij [D2g

(2)(s, s, s) +D3g
(2)(s, s, s)]ξj , (6)

χ̇ij =− ϵ
(
χij + a

(1)
ij [Dh(0)(ξi − ξj)]

)
, (7)

where L(1) and L(2) are the Laplace matrices for pairwise
and three-body interactions, namely

L
(1)
ij =


−a

(1)
ij , i ̸= j

N∑
j=1

a
(1)
ij = r(1), i = j

(8)

and,

L
(2)
ij =


−

N∑
k=1

a
(2)
ijk, i ̸= j

N∑
j=1

N∑
k=1

a
(2)
ijk = 2r(2), i = j.

(9)

Dig
(j) denotes the Jacobian of the function g(j), j = 1, 2,

with respect to the i-th variables, i = 1, 2, 3.
To write the previous equations into a more com-

pact form, we assume to cast the N × N ma-
trix χij into a N2-dimensional vector by stack-
ing the rows on rows successively, i.e., χχχ =
(χ11, . . . , χ1N , χ21, . . . , χ2N , . . . , χN1, . . . , χNN )⊤. We
can thus rewrite Eqs. (6) and (7) as follows,[

ξ̇ξξ
χ̇χχ

]
=

[
S −σ1B

(1) ⊗ g(1)(s, s)
−ϵC(1) ⊗Dh(0) −ϵIN2

] [
ξξξ
χχχ

]
.

(10)

Here, we define

S =IN ⊗Df(s) + σ1h(0)(r
(1)IN ⊗Dg(1))

− 2σ2(r
(2)IN ⊗Dg(2))− σ1h(0)L

(1) ⊗D2g
(1)

+ σ2L
(2) ⊗Dsg

(2) , (11)

with Dg(1) = D1g
(1)+D2g

(1), Dg(2) = D1g
(2)+D2g

(2)+
D3g

(2) and Dsg
(2) = D2g

(2) + D3g
(2). IN is the N ×

N identity matrix, B(1) and C(1) are suitable constant
matrices of order N×N2 and N2×N (see Appendix B for
the explicit form of the latter) that satisfy B(1)B(1)⊤ =
r(1)IN and B(1)C(1) = L(1).

Solving the (N2 + Nd) dimensional variational equa-
tion (10) to calculate the Lyapunov exponents provides
the necessary condition for the stability of the syn-
chronous solution. The high dimensionality of the varia-
tional equation prevents from an analytical study of the
latter; however, the structure of the Jacobian matrix in
Eq. (10) indicates that there are (N2 − N) eigenvalues
equal to −ϵ, hence (N2 −N) stable directions with neg-
ative Lyapunov exponents, remember that ϵ > 0. The
invariant subspace spanned by these eigenvalues allows
us to introduce new coordinates, eventually reducing the
dimension of (10) by separating the (N2 − N) stable
directions from the remaining (Nd + N) ones. There-
fore, the condition for the synchronization can be proved
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by studying the remaining (Nd + N) dimensional sys-
tem. Thereafter, in order to further simplify it and
align with the strategy of the Master Stability Equa-
tion, we introduce the matrix U whose columns are
the orthonormal eigenvectors of the Laplacian L(1), i.e.,
U⊤L(1)U = diag{0 = µ

(1)
1 , µ

(1)
2 , . . . , µ

(1)
N }. Then, we can

perform the change of variables(
U⊗ Id 0

0 U

)(
ξξξ
χχχ

)
=

(
ζζζ
ηηη

)
,

and obtain, after some straightforward but lengthy com-
putation that we postpone to the Appendix B, the fol-
lowing master stability equation (MSE):

ζ̇i =
[
Df(s) + σ1h(0)r

(1)Dg(1) − σ1h(0)µ
(1)
i D2g

(1)+

− 2σ2r
(2)Dg(2)

]
ζi + σ2

N∑
j=1

L̃2
ijDsg

(2)ζj − σ1g
(1)(s, s)ηi,

η̇i = −ϵ
[
µ
(1)
i Dh(0)ζi + ηi

]
, i = 1, 2, . . . , N, (12)

where we introduced the matrix L̃(2) = U⊤L(2)U.
Therefore, the stability problem of the synchronous so-
lution (s, k

(s)
ij ) is reduced to evaluating the maximum

Lyapunov exponent of the above (non-autonomous) lin-
ear system of ODE (12); let us recall that negativity of
the latter implies the existence of a stable synchronous
solution. Let us also observe that the MSE is still an
(Nd+N) dimensional coupled equation, and unlike the
classical master stability approach, it cannot be further
decoupled in N equations of dimension (d + 1). Still,
analogous to the classical master stability approach, we
can separate the modes associated to the parallel and the
transverse directions. The variables (ζ1, η1) correspond
to the parallel modes, whereas the variables associated
to i = 2, 3, . . . , N represent the transverse modes. Here,
we use the fact that µ

(1)
1 = 0 and L(2) being a zero row

sum matrix, the elements in the first row and column of
the matrix L̃(2) are zero.

In general, the MSE can not be decoupled any further;
there are, however, relevant cases in which one can take
some steps further in the analytical understanding of the
problem, as we will hereby show. In these scenarios, as in
the classical master stability approach, we can decouple
the MSE into N equations of dimension (d+ 1).

1. all-to-all connection topology

We first consider the case where the higher-order
Laplacian L(2) is a scalar multiple of the pairwise Lapla-
cian L(1), i.e., L(2) = νL(1) for some ν > 0. A straightfor-
ward example of this scenario occurs when the oscillators
are globally connected to each other. For all-to-all con-
nection involving N nodes, we have L(2) = (N − 1)L(1).
Therefore, in this case Eq. (12) can be simplified and

returns for all i = 1, 2, . . . , N

ζ̇i = [Df(s) + σ1h(0)r
(1)Dg(1) − σ1h(0)µ

(1)
i D2g

(1)+

−2σ2r
(2)Dg(2) + νµ

(1)
i Dsg

(2)]ζi − σ1g
(1)(s, s)ηi,

η̇i = −ϵ[µ
(1)
i Dh(0)ζi + ηi] . (13)

Since, for the globally coupled topology, ν = (N −1) and
µ
(1)
i = N , for all i = 2, 3, . . . , N , to find the stability of

the system, we just need to find the maximum Lyapunov
exponent (λmax) of the (d+ 1) dimensional equation

ζ̇ = [Df(s) + σ1h(0)r
(1)Dg(1) − σ1h(0)(N − 1)D2g

(1)+

−2σ2r
(2)Dg(2) +N(N − 1)Dsg

(2)]ζ − σ1g
(1)(s, s)η,

η̇ = −ϵ[NDh(0)ζ + η] . (14)

2. Commuting Laplacian matrices

Another interesting case where one can simplify the
MSE, is the one where the pairwise and higher-order
Laplacians commute each other, i.e., L(1)L(2) = L(2)L(1).
Let us observe that such a scenario can be obtained
by assuming the underlying supports to have nonlocal
ring-like topology, where each node is connected to k
neighboring nodes on the left and k on the right via
pairwise or higher-order connections. Under this as-
sumption the matrices L(1) and L(2) are circulant ma-
trices and thus they commute. The latter conclusion
implies that the matrix U diagonalizes also L(2), i.e.,
U⊤L(2)U = diag{µ(2)

1 , µ
(2)
2 , . . . , µ

(2)
N }. Eventually the

MSE (12) simplifies into

ζ̇i = [Df(s) + σ1h(0)r
(1)Dg(1) − σ1h(0)µ

(1)
i D2g

(1)+

−2σ2r
(2)Dg(2) + µ

(2)
i Dsg

(2)]ζi − σ1g
(1)(s, s)ηi, (15)

η̇i = −ϵ[µ
(1)
i Dh(0)ζi + ηi] , i = 1, 2, . . . , N. (16)

Thus, the MSE decouples into N blocks of (d + 1)-
dimensional equations. Solving these low dimensional
equations for the calculation of maximum Lyapunov ex-
ponent, λmax, provides the necessary conditions for the
stability of the synchronous solution. It is important to
note that λmax depends only on the coupling strengths
and the structural properties of the connection topology,
via the eigenvalues and the (generalized) degrees, resem-
bling thus to the classical MSE approach.

B. Numerical Results

Let us now present some numerical results to sup-
port the theory presented above. Because we will not
make any assumption on the coupling function, in par-
ticular, they will not be noninvasive, we recall that the
underlying support should satisfy

∑N
j=1 a

(1)
ij = r(1) and
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N∑
j=1

N∑
p=1

a
(2)
ijp = 2r(2), for all i, for the synchronous so-

lution to exist. To perform the numerical simulations,
we integrate the adaptive higher-order system using the
fourth-order Runge-Kutta (RK4) algorithm with adap-
tive time-stepping, maintaining a relative tolerance of
10−8 for T = 104 time units and unless stated otherwise,
the number of oscillators is set fixed to N = 200.

1. Kuramoto oscillators with all-to-all topology

The first example we propose is a Kuramoto model
with pairwise and three-body interactions and phase lags
[19, 67] defined via an all-to-all coupling. The system’s

0 0.5 1 1.5 2 2.5 3 3.5
−1

0

1

σ
2

(a)

0 0.5 1 1.5 2 2.5 3 3.5
σ1

0.0

0.5

1.0

R
c

(b)

FIG. 1. (a) Phase diagram in the σ1 − σ2 plane illustrat-
ing synchronization in the Kuramoto model with lag and all-
to-all coupling (model I). Regions associated with positive
Lyapunov exponents are colored blue (dark) and thus cor-
respond to absence of synchronization, while yellow (bright)
zones indicate negative MSF returning parameters values for
which the system synchronizes. (b) The order parameter
Rc is plotted as a function of σ1 for σ2 = 0.1, starting
from the synchronization state with initial conditions close
to θi(0) = 0 and k

(1)
ij = −a

(1)
ij sin(β1) indicated by the hor-

izontal red-dashed line in (a). It is observed that the MSF
becomes positive precisely at the value of σ1 where Rc < 1,
signifying a decrease from synchrony. Other parameters are
N = 200, α1 = α2 = 0.49π, β1 = 0.88π, ϵ1 = 0.01. The order
parameterRc is calculated by averaging over the last 25% of
the integration interval and by performing 20 realizations.

state is thus described by N angular variables, θi, and
N2 links weights; we recall that we are still assuming the
three-body interaction to not evolve and thus be fixed to

1. In equations,

θ̇i = ω − σ1

N

N∑
j=1

a
(1)
ij k

(1)
ij sin(θi − θj + α1)+

− σ2

N2

N∑
j=1

N∑
p=1

a
(2)
ijp sin(2θi − θj − θp + α2), (17)

k̇
(1)
ij =− ϵ1[k

(1)
ij + a

(1)
ij sin(θi − θj + β1)] , (18)

where α1 > 0 (resp. α2) determines the pairwise (resp.
three-body) lag, while β1 is the lag in the evolution of
links weights. To allow for a global synchronous solution
we assume the proper frequency to be equal each other
and without any loss of generality, we consider ω = 0 here
and throughout the rest of the manuscript by choosing a
suitable frame of reference.

The global synchronous solution is given by

s(t) =

(
σ1

N
r(1) sinα1 sinβ1 −

σ2

N2
2r(2) sinα2

)
t, (19)

k
(s)
ij =− a

(1)
ij sinβ1 , (20)

whose stability can be studied by using Eq. (14), namely[
ζ̇
η̇

]
=

[
M11 M12

M21 M22

] [
ζ
η

]
, (21)

where

M11 = σ1 cosα1 sinβ1 − 2
σ2

N
(N − 1) cosα2,

M12 = −σ1

N
sinα1, M21 = −ϵ1N cosβ1 and M22 = −ϵ1 .

The characteristic polynomial of the latter system is

λ2+λ
(
ϵ1 − σ1 cosα1 sinβ1 + 2

σ2

N
(N − 1) cosα2

)
−ϵ1

(
σ1 sin(α1 + β1)− 2

σ2

N
(N − 1) cosα2

)
= 0 ,

(22)

whose roots can be straightforwardly computed, and
thus, the stability of the synchronous solution can be
inferred. The results are reported in Fig. 1 (a), where we
show the synchronization region as a function of the cou-
pling parameters σ1 and σ2 by using a color code: yellow
max(Reλ) < 0 and blue otherwise. It can be observed
that for σ2 ≥ 0, the system goes through a transition
from synchronization to desynchronization until a criti-
cal value of σ2 ≈ 0.58. Beyond this, the system always
remains in synchrony. On the other hand, for σ2 < 0,
up to a small range of σ2 (≈ −0.15), a bounded region
of synchronization can be observed, i.e., at first a transi-
tion from desynchrony to synchrony is observed within a
small window of σ1, and then synchrony to desynchrony
emerges. Beyond this, the system never settles in a stable
synchronous solution.
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To perform numerical investigations, we utilize the
cluster order parameter Rc [19, 68, 69] to measure the
system coherence. Rc is given by the number of pairwise
coherent oscillators normalized by the total number of
pairs N2. Mathematically, it is defined as,

Rc =
1

N2

N∑
i,j=1

Rij , (23)

where

Rij =

∣∣∣∣∣ 1

∆t

∫ T

T−∆t

exp{i[θi(t)− θj(t)]}dt
∣∣∣∣∣ . (24)

Thus, in an incoherent (resp. fully coherent) state, Rc

returns the values 0 (reps. 1). While for the frequency
cluster states, it takes the value 0 < Rc < 1. Figure 1(b)
portrays the variation of Rc as a function of σ1 for a fixed
higher-order coupling, σ2 = 0.1; the system has been in-
tialized starting from the synchronization state with ini-
tial conditions close to θi(0) = 0 and k

(1)
ij = −a

(1)
ij sin(β1).

We can observe the existence of a transition from full syn-
chronization to desynchronization through intermediate
cluster states (decreasing Rc), which shows good agree-
ment with the analytical findings.

Let us now consider a slightly different higher-order
Kuramoto model still involving pairwise and three-body
interactions defined through all-to-all coupling topology.
In this case, the chosen higher-order interaction term has
an asymmetric form, similar to those recently used by
several researchers [45]. The dynamics of the system is
given by

θ̇i =ω − σ1

N

N∑
j=1

a
(1)
ij k

(1)
ij sin(θi − θj + α1)+

− σ2

N2

N∑
j=1

N∑
p=1

a
(2)
ijp sin(2θj − θp − θi + α2), (25)

k̇
(1)
ij =− ϵ1[k

(1)
ij + a

(1)
ij sin(θi − θj + β1)] . (26)

The synchronous solution is

s(t) =

(
σ1

N
r(1) sinα1 sinβ1 −

σ2

N2
2r(2) sinα2

)
t, (27)

k
(s)
ij =− a

(1)
ij sinβ1 , (28)

whose stability can be studied by applying strategy sim-
ilar to the one used above and thus returning the linear
system [

ζ̇
η̇

]
=

[
M11 M12

M21 M22

] [
ζ
η

]
, (29)

where

M11 = σ1 cosα1 sinβ1 +
σ2

N
(N − 1) cosα2,

M12 = −σ1

N
sinα1, M21 = −ϵ1N cosβ1 and M22 = −ϵ1.

0 0.5 1 1.5 2 2.5 3 3.5
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1
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0.5

1.0

R
c

(b)

FIG. 2. (a) Phase diagram of the MSF in the σ1 − σ2

plane (coupling parameters), illustrating synchronization be-
havior in the Kuramoto model with lag and all-to-all coupling
(Model II). In the diagram, regions with positive Lyapunov
exponents are shown in blue (dark), indicating instability and
thus desynchronization, while yellow (bright) zones represent
regions of negative MSF, corresponding to stability, hence to
a stable synchronous state. (b) The order parameter Rc is
shown as a function of σ1 for σ2 = −0.5 by starting from the
synchronization state with initial conditions close to θi(0) = 0

and k
(1)
ij = −a

(1)
ij sin(β1) corresponding to the horizontal red-

dashed line in (a). The MSF is observed to become positive
precisely at the σ1 value where Rc < 1, signifying a decrease
from synchrony. Other model parameters are kept the same
as in Fig. 1.

The corresponding characteristics polynomial to the
above linear system is

λ2 +
(
ϵ1 − σ1 cosα1 sinβ1 −

σ2

N
(N − 1) cosα2

)
λ

−ϵ1

(
σ1 sin(α1 + β1) +

σ2

N
(N − 1) cosα2

)
= 0 . (30)

In Fig. 2 we report the MSF [Fig. 2(a)] computed again
as a function of σ1 and σ2 and compared with the order
parameter Rc [Fig. 2(b)]. Here, we can observe a rela-
tively opposite scenario as compared to the results of the
first model. It can be remarked that for σ2 ≤ 0, the sys-
tem goes through a transition from synchronization to
desynchronization until a critical value of σ2 ≈ −0.97 is
reached. Beyond this value, the system always remains
synchronized. On the other hand, for σ2 > 0, up to a
small range of σ2(≈ 0.3), a bounded region of synchro-
nization can be observed, beyond which the system never
settles in a stable synchronous solution.

2. Kuramoto oscillators with nonlocal connection topology

To move forward, we again consider the higher-order
Kuramoto model, given by Eqs. (17) and (18) but with
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the pairwise and higher-order coupling realized via a non-
local connection topology. More precisely, the oscillators
are connected through a ring-like topology where each
node is connected to k = 30 neighboring nodes on the
left and k = 30 on the right via pairwise connections.
The associated triadic connections are formed by promot-
ing all the triangles composed of three different pairwise
links. In this way, the oscillators can engage in both pair-
wise interactions, when connected by a network link, and
three-body interactions, when they are part of the same
triangle. By following Eqs. (15) and (16), the stability
of the synchronous solution can be inferred by solving
the roots of the characteristics equation corresponding
to each one of the (N − 1) blocks (since the first block is
associated with the parallel modes). The characteristics
equation for each block i = 2, 3, . . . , N is given by,

λ2
i+λi

(
ϵ1 −

σ1

N
µ
(1)
i cosα1 sinβ1 + 2

σ2

N2
µ
(2)
i cosα2

)
−ϵ1µ

(1)
i

(σ1

N
sin(α1 + β1)− 2

σ2

N2
(N − 1) cosα2

)
= 0 .

(31)
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FIG. 3. (a) Phase diagram of the MSF in the σ1 − σ2

plane (coupling parameters) illustrating synchronization in
the Kuramoto model with lag and nonlocal coupling topology.
Regions with positive Lyapunov exponents are colored blue
(dark) and are thus associated to an unstable synchronous
state, while yellow (bright) zones indicate negative MSF to
which one can associate synchronization. (b) Plot of the or-
der parameter Rc as a function of σ1 for σ2 = 0.5 starting
from the synchronization state with initial conditions close
to θi(0) = 0 and k

(1)
ij = −a

(1)
ij sin(β1), as represented by the

horizontal red-dashed line in (a). The remaining model pa-
rameters are kept constant as in Fig. 1, with the number of
connected oscillators on both sides set to k = 30.

A negative value of λmax = max{Reλi} signifies the
emergence of stable synchronous solution. Results are
reported in Fig. 3 where λmax (panel (a)) is computed
as a function of σ1 and σ2 and compared with the or-
der parameter Rc (panel (b)) for a fixed σ2. It can be

observed that the system goes through a transition from
full synchronization to desynchronization with increasing
σ1 for σ2 ≥ 0. On the other hand, for σ2 < 0, the system
achieves synchronization in a bounded region. It is also
worth noticing that with increasing σ2 from negative to
positive, the synchronization region becomes much wider.

III. ADAPTIVE PAIRWISE AND
HIGHER-ORDER INTERACTIONS

The aim of this section is to generalize the previous
study by relaxing the assumption about the static higher-
order interactions; more precisely, we now assume the
pairwise weights and the higher-order ones to evolve as
functions of the system state. More precisely, by restrict-
ing again, for the sake of pedagogy, our analysis to the
three-body interaction, we are considering the model

ẋi =f(xi)− σ1

N∑
j=1

a
(1)
ij k

(1)
ij (t)g(1)(xi,xj)+

− σ2

N∑
j=1

N∑
p=1

a
(2)
ijpk

(2)
ijp(t)g

(2)(xi,xj ,xp) , (32)

where g(1)(xi,xj) and g(2)(xi,xj ,xk) are the coupling
functions, and the weights of pairwise, k

(1)
ij , and three-

body interactions, k(2)ijp, evolve as follows

k̇
(1)
ij =− ϵ1[k

(1)
ij + a

(1)
ij h(1)(xi − xj)], (33)

k̇
(2)
ijp =− ϵ2[k

(2)
ijp + a

(2)
ijph

(2)(2xi − xj − xp)] . (34)

Here, h(1) and h(2) denote adaptation functions. ϵi,
i = 1, 2 is the time scale separation parameter, which is
generally taken to be a very small positive real number.

The global synchronous solution of the above adaptive
model is given by (s, k

(s)
ij , k

(s)
ijk) and it satisfies

ṡ =f(s) + σ1r
(1)h(1)(0)g(1)(s, s)

+ 2σ2r
(2)h(2)(0)g(2)(s, s, s), (35)

k
(s)
ij =− a

(1)
ij h(1)(0), (36)

k
(s)
ijp =− a

(2)
ijph

(2)(0) . (37)

It is important to note that here, once again, we have
not imposed any conditions on the coupling functions,
and thus, the underlying connectivity has constant (gen-
eralized) degrees r(i), i = 1, 2. The analysis with non-
invasive coupling functions is illustrated in Appendix A.

A linear stability analysis about this solution can be
performed to infer the existence of a stable synchronous
solution. We thus perturb the system with small per-
turbation terms ξi = xi − s, χij = k

(1)
ij − k

(s)
ij and

ηijp = k
(2)
ijp − k

(s)
ijp, and we study their time evolution

via the variational equations,
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ξ̇i =Df(s)ξi + σ1r
(1)h(1)(0)Dg(1)(s, s)ξi + 2σ2r

(2)h(2)(0)Dg(2)(s, s, s)ξi − σ1h
(1)(0)

N∑
j=1

L
(1)
ij D2g

(1)(s, s)ξj+

− σ2h
(2)(0)

N∑
j=1

L
(2)
ij Dsg

(2)(s, s, s)ξj − σ1

N∑
j=1

a
(1)
ij χijg

(1)(s, s)− σ2

N∑
j=1

N∑
p=1

a
(2)
ijpηijpg

(2)(s, s, s),

χ̇ij =− ϵ1(χij + a
(1)
ij Dh(1)(0)(ξi − ξj)),

η̇ijp =− ϵ2(ηijp + a
(2)
ijpDh(2)(0)(2ξi − ξj − ξp)) , (38)

which is a (N3 + N2 + Nd)-dimensional coupled linear differential equation. In matrix form, the above variational
equations can be written asξ̇ξξχ̇χχ

η̇ηη

 =

 S2 −σ1B
(1) ⊗ g(1)(s, s) −σ2B

(2) ⊗ g(2)(s, s, s)
−ϵ1C

(1) ⊗Dh(1)(0) −ϵ1IN2 0
−ϵ2C

(2) ⊗Dh(2)(0) 0 −ϵ2IN3

ξξξχχχ
ηηη

 , (39)

where we consider again the matrix χχχ, resp. the tensor
ηηη, as N2, resp. N3, columns vectors by stacking the
rows over rows similarly to the previous case, and we
introduced suitable matrices

S2 =IN ⊗Df(s) + σ1h
(1)(0)(r(1)IN ⊗Dg(1))

+ 2σ2h
(1)(0)(r(2)IN ⊗Dg(2))− σ1h

(1)(0)L(1) ⊗D2g
(1)

− σ2h
(2)(0)L(2) ⊗Dsg

(2), (40)

B(1) and C(1) are the same constant matrices of order
N ×N2 and N2 ×N used in Section II, while B(2) and
C(2) are constant matrices of order N ×N3 and N3×N ,
satisfying B(2)B(2)⊤ = 2r(2)IN and B(2)C(2) = L(2) (we
refer the interested reader to Appendix B for a longer
description of the derivation of those matrices).

It is important to note that an analytical stability con-
dition for the synchronization solution can be derived for
arbitrary ϵ1 and ϵ2. However, in such case, one must
deal with the very large (N3 + N2 + Nd)-dimensional
coupled variational equation (38) or (39) to compute
the maximum Lyapunov exponent. Moreover, this high-
dimensional system cannot generally be decoupled into
lower-dimensional equations, making the analysis signif-
icantly more challenging. Thus, to move forward in re-
ducing the dimension of the higher dimensional varia-
tional equation (38) and to be able to get clear analyt-
ical insight, hereafter we assume ϵ1 = ϵ2 = ϵ. Let us
also observe that one can relax the above assumption by
considering noninvasive coupling functions g(1) and g(2)

(see Appendix A). Leaving the details of the computa-
tion to the Appendix B, we can eventually obtain the
(Nd+ 2N)-dimensional MSE ruling the evolution of the

perturbations

˙̂
ξi =

[
Df(s) + σ1h

(1)(0)r(1)Dg(1)

+2σ2r
(2)h(2)(0)Dg(2) − σ1h

(1)(0)µ
(1)
i D2g

(1)
]
ξ̂i

− σ2h
(2)(0)

N∑
j=1

L̃2
ijDsg

(2)ξ̂j − σ1g
(1)(s, s)χ̂i

− σ2g
(2)(s, s, s)η̂i,

˙̂χi =− ϵ[µ
(1)
i Dh(1)(0)ξ̂i + χ̂i],

˙̂ηi =− ϵ[

N∑
j=1

L̃2
ijDh(2)(0)ξ̂j + η̂i] , (41)

where we introduced new coordinates (ξ̂ξξ, χ̂χχ, η̂ηη)⊤ related
to the previous ones byU⊗ Id 0 0

0 U 0
0 0 U

ξξξ
χχχ
ηηη

 =

ξ̂ξξ
χ̂χχ
η̂ηη

 ,

with U the matrix whose columns are the orthonor-
mal eigenvectors that diagonalizes the pairwise Lapla-
cian L(1), i.e., U⊤L(1)U = diag{µ(1)

1 , µ
(1)
2 , . . . , µ

(1)
N } and

L̃(2) = U⊤L(1)U.
Therefore, the stability problem of the synchronous so-

lution is reduced to evaluating the maximum Lyapunov
exponent of the above coupled linear differential equation
(41). Once again, we are faced with the problem that,
in general, the MSE (41) can not be decoupled further.
Still, analogous to the classical master stability approach
[64, 65], we can separate the modes associated with par-
allel and transverse directions. The variables (ξ̂1, χ̂1, η̂1)
correspond to the parallel models, whereas the variables
associated with i = 2, 3, . . . , N represent the transverse
modes. Here, we once again use the fact that µ

(1)
1 = 0
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and L(2) being a zero row sum matrix, the elements in
the first row and column of the matrix L̃(2) are zero.
In general, the transverse modes of the MSE (41) can
not be further separated. However, there are interesting
cases in which the MSE can be fully decoupled, similar
to what has been addressed for the only pairwise adap-
tation case, i.e., when the higher-order Laplace matrix
is a scalar multiple of the pairwise one and the scenario
of commuting Laplacian matrices. In these cases, thus,
the MSE can be separated into N (d + 2)-dimensional
equations, and the maximum Lyapunov exponents de-
pend only on the interaction coupling strengths and the
underlying structure properties via the eigenvalues of the
Laplace matrices and the (generalized) degrees.

For the all-to-all coupling configuration similar to the
only pairwise adaptation case, the MSE reduced into (d+
2)-dimensional equations given by

˙̂
ξ =

[
Df(s) + σ1h

(1)(0)r(1)Dg(1)

+2σ2r
(2)h(2)(0)Dg(2) − σ1h

(1)(0)µ(1)D2g
(1)

]
ξ̂

− σ2h
(2)(0)νµ(1)Dsg

(2)ξ̂ − σ1g
(1)(s, s)χ̂

− σ2g
(2)(s, s, s)η̂,

˙̂χ =− ϵ[µ(1)Dh(1)(0)ξ̂ + χ̂],

˙̂η =− ϵ[νµ(1)Dh(2)(0)ξ̂ + η̂] , (42)

where ν = N−1 and µ(1) = N . Thus, the problem of sta-
bility analysis is reduced to solve the (d+2)-dimensional
equation for the calculation of the maximum Lyapunov
exponent.

For the nonlocal ring like topology (i.e., where the pair-
wise and higher-order Laplacians commute each other),
following the similar procedure as in the case of only
pairwise adaptation, the MSE reduced into N blocks of
(d+ 2)-dimensional equations given by

˙̂
ξi =

[
Df(s) + σ1h

(1)(0)r(1)Dg(1)

+2σ2r
(2)h(2)(0)Dg(2) − σ1h

(1)(0)µ
(1)
i D2g

(1)
]
ξ̂i

− σ2h
(2)(0)µ

(2)
i Dsg

(2)ξ̂i − σ1g
(1)(s, s)χ̂i

− σ2g
(2)(s, s, s)η̂i,

˙̂χi =− ϵ[µ
(1)
i Dh(1)(0)ξ̂i + χ̂i],

˙̂ηi =− ϵ[µ
(2)
i Dh(2)(0)ξ̂i + η̂i] , i = 1, 2, . . . , N, (43)

where µ
(1)
i and µ

(2)
i are the eigenvalues of the pairwise

and higher-order Laplacian matrices, respectively. The
first block of the system of equations, corresponding to
i = 1, is associated with the modes that are parallel to the
synchronization manifold. The remaining N − 1 blocks
correspond to the modes that are transverse to the syn-
chronization solution. Therefore, the stability analysis
can be reduced to solving these N − 1 blocks of (d+ 2)-
dimensional equations in order to compute the maximum
Lyapunov exponent.

A. Numerical Analysis

The above presented theory will be illustrated by using
the adaptive higher-order Kuramoto oscillators with a
lag whose equations of motions are given for all i, j, p ∈
{1, 2, . . . , N} by

θ̇i =ω − σ1

N

N∑
j=1

a
(1)
ij k

(1)
ij sin(θi − θj + α1)

− σ2

N2

N∑
j=1

N∑
p=1

a
(2)
ijpk

(2)
ijp sin(2θi − θj − θp + α2),

k̇
(1)
ij =− ϵ1[k

(1)
ij + a

(1)
ij sin(θi − θj + β1)],

k̇
(2)
ijp =− ϵ2

[
k
(2)
ijp + a

(2)
ijp sin (2θi − θj − θp + β2)

]
. (44)

As examples in which the MSE can be further simpli-
fied, we consider again the case of globally connected
and nonlocal ring like networks. We fixed the number
of nodes to N = 200, the lag parameters α1 = 0.49π,
β1 = 0.88π, α2 = 0.49π and we consider three values
β2 ∈ {0.5π, 0.88π, 1.2π}. Then, for each value of the lat-
ter, we compute the order parameter Rc starting from
the synchronous state (i.e., θi(0) = 0, k(1)ij = −a

(1)
ij sinβ1

and k
(2)
ijp = −a

(2)
ijp sinβ2) in the (σ1, σ2) parameter space

where σ1 ∈ [0, 4] and σ2 ∈ [−1, 1].

1. All-to-all topology

The results with all-to-all network topology are re-
ported in Fig. 4 where we show (top panels (a)-(c)) the or-
der parameter as a function of σ1 and σ2 and we compare
it with the analytical prediction obtained by solving the
MSE, given by Eq. (42) (bottom panels (d)-(f)). We can
observe an excellent agreement between the two meth-
ods indeed in both cases, Rc ≪ 1 and max(Reλ) > 0
(blue areas), testifying the absence of synchronization,
do (almost) coincide.

Let us now observe that the higher-order adaptation
coupling β2 in Fig. 4 is chosen in such a way that it
satisfies the relations β2 < β1, β2 = β1, and β2 > β1, re-
spectively, while all the other parameter values are kept
fixed as in Fig. 1 where only the pairwise adaptation is
active. We select these values of β2 to investigate how,
depending on the choice of β2, the stability region is af-
fected by higher-order adaptation, in contrast to constant
higher-order interactions. We observe a relatively oppo-
site scenario in the case of β2 < β1 as compared to the
result of Fig. 1. The system never settles into the stable
synchronization state for larger values of σ2 > 0, while for
larger negative values of σ2, the system always remains
in the synchronized solution [see Fig. 4 (a), (d)]. For the
intermediate values of σ2, a transition from synchrony to
desynchrony emerges with increasing value of σ1. Fig-
ures 4 (b) and 4 (e) portray the result for β2 = β1. Here,



10

−1

0

1
σ

2

(a)

0.0 0.5 1.0

0 1 2 3 4
σ1

−1

0

1

σ
2

(d)

(b)

0.0 0.5 1.0

0 1 2 3 4
σ1

(e)

(c)

0.0 0.5 1.0

0 1 2 3 4
σ1

(f)

FIG. 4. Globally connected Kuramoto oscillators with both pairwise and higher-order adaptations. Phase diagrams in the
σ1 − σ2 plane depict the order parameter starting from a synchronization state with initial conditions close to θi(0) = 0,
k
(1)
ij = −a

(1)
ij sinβ1 and k

(2)
ijp = −a

(2)
ijp sinβ2, for three values of β2: (a) β2 = 0.5π, (b) β2 = 0.88π, and (c) β2 = 1.2π for the case

of adaptive higher-order Kuramoto model with lag and an all-to-all coupling. Panels (d)-(f) display the MSF for the adaptive
Kuramoto model, wherein the regions with positive MLE are colored blue (dark) and correspond to desynchronization, while
those with negative MLE are yellow (bright) for which the system exhibits synchronization. It is observed that the MSF is
positive precisely where the order parameter Rc deviates from synchrony, i.e., Rc = 1 The remaining parameters were set to
N = 200, α1 = α2 = 0.49π, β1 = 0.88π, ϵ1 = ϵ2 = 0.01.

we observe that for negative values of σ2, the system
went through a double transition with increasing σ1, i.e.,
at first desynchrony to synchrony and then synchrony
to desynchrony. Therefore, a significantly large bounded
region of stable synchronous solution is observed. While
for σ2 ≥ 0, a transition from synchrony to desynchrony
emerges up to σ2 ≈ 0.42, beyond which the system never
settles into the stable synchronous solution. Lastly, the
results for β2 > β1 are illustrated through Figs. 4 (c)
and 4 (f), respectively. In this case, the system exhibits
qualitatively similar behavior as in the case of no higher-
order adaptation, but the region of the stable synchro-
nized state becomes wider.

Therefore, the introduction of higher-order adaptation
leads to significantly different qualitative behaviors com-
pared to the case without it. Depending on the choice of
higher-order adaptation coupling, synchronization may
emerge, be enhanced, weakened, or even completely sup-
pressed.

2. Nonlocal connection topology

We now move forward to the next scenario, where the
Kuramoto oscillators interact through a nonlocal connec-
tion topology. Similar to the case involving only pairwise
adaptation (Sec. II), we again consider that the oscilla-
tors are connected through a ring-like topology where
each node is connected to k = 30 neighboring nodes on

the left and k = 30 on the right via pairwise connections.
The associated triadic connections are formed by promot-
ing all the triangles composed of three different pairwise
links. In this way, the oscillators can engage in both
pairwise interactions, when connected by a network link,
and three-body interactions, when they are part of the
same triangle. The corresponding results are presented
in Fig. 5. The top panels (Fig. 5(a-c)) show the order pa-
rameter Rc as a function of σ1 and σ2, and these results
are compared with the analytical predictions obtained by
solving the MSE (43) in the bottom panels (Fig. 5(d-f)).
We observe excellent agreement between the numerical
and analytical findings. In both cases, regions where
Rc ≪ 1 and max(Re λ)>0 (blue areas), indicating the
absence of synchronization, almost perfectly overlap.

Let us once again note that by incorporating higher-
order adaptations (Fig.5), we qualitatively alter the sta-
bility region of the synchronization solution compared to
the case with constant higher-order interactions (Fig.3),
depending on the choice of higher-order adaptive cou-
pling strength β2. Similar to the all-to-all connection
topology, here too, for β2 < β1, we observe a contrasting
scenario compared to the case with only pairwise adap-
tation. Notably, when β2 < β1, as σ2 decreases from
positive to negative, the synchronization region widens
significantly [Fig.5(a,d)], which is qualitatively opposite
to the result shown in Fig.3(a). For β2 = β1, a clearly de-
fined bounded synchronization region emerges when the
higher-order coupling is repulsive (i.e., σ2) [Fig.5(b,e)].
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FIG. 5. Nonlocally connected Kuramoto oscillators with both pairwise and higher-order adaptations. Phase diagrams in
the σ1 − σ2 plane depict the order parameter starting from a synchronization state with initial conditions close to θi(0) = 0,
k
(1)
ij = −a

(1)
ij sinβ1 and k

(2)
ijp = −a

(2)
ijp sinβ2, for three values of β2: (a) β2 = 0.5π, (b) β2 = 0.88π, and (c) β2 = 1.2π for the case

of adaptive higher-order Kuramoto model with lag. Panels (d)-(f) display the MSF for the adaptive Kuramoto model, wherein
the regions with positive MLE are colored blue (dark), while those with negative MLE are yellow (bright). It is observed that
the MSF is positive precisely where the order parameter Rc deviates from synchrony, i.e., Rc = 1 The remaining parameters
were set fixed as in Fig. 4 and the number of connected oscillators on the both sides of the ring is k = 30.

However, for σ2 > 0, we again observe a scenario op-
posite to the pairwise adaptation case, where decreasing
σ2 leads to a broader synchronization region. Finally,
for β2 > β1 [Fig.5(c,e)], the system exhibits a similar
trend to the case without higher-order adaptation: as
σ2 increases from negative to positive, the synchroniza-
tion region widens. However, in the negative σ2 regime,
a prominent bounded region of synchrony is observed,
resulting in a relatively narrower stable synchronization
region compared to the pairwise adaptation scenario.

Thus, the results with nonlocal connection topology
strengthen our finding that the introduction of higher-
order adaptation leads to qualitatively different behav-
iors compared to the case without it, depending on the
higher-order adaptive coupling.

B. Different ϵ1 and ϵ2

As previously mentioned, the preceding dimension re-
duction analysis with generic coupling functions is only
feasible when ϵ1 = ϵ2. However, to what extent can it
predict the stable synchronized region when ϵ1 ̸= ϵ2? In
this regard, here, we consider a scenario of unequal ϵ1
and ϵ2, and we thus challenge the theory presented so far
under the assumption ϵ1 = ϵ2, to test its validity beyond
the latter assumption. To do so we again consider the
coupled Kuramoto dynamics given by Eq. (44) with all-
to-all connection topology. In Fig. 6(a), we numerically
calculate the order parameter for the case with ϵ1 = 0.01,

ϵ2 = 0.011, and β1 = β2 = 0.88π. We observe that the
analytical prediction with ϵ1 = ϵ2 = 0.01 [Fig. 4(e)] is ca-
pable of determining the synchronization reasonably well
for this small parameter mismatch.

However, if we plug two different values of ϵ1 and ϵ2 (in
place of ϵ1 = ϵ2) in the ˙̂χi and ˙̂ηi equations of MSE (42)
we can observe that the analytical prediction with this
relatively small parameter mismatch [see Fig. 6(b)] is not
capable of determining the synchronization reasonably
well for a large set of parameters (σ1, σ2). Thus, the
above observation reasserts the fact that the dimension
reduction analysis for generic coupling function is valid
only with ϵ1 = ϵ2.

IV. CONCLUSION

Summing up, we hereby provide a profound theoreti-
cal approach to study collective phenomena, specifically
the synchronization, under the combined effect of higher-
order interactions and adaptive connectivity. By as-
suming pairwise and higher-order structures to be reg-
ular or by considering noninvasive coupling functions, we
have derived the necessary conditions for the stable syn-
chronous solution to exist. Furthermore, we have shown
that for two relevant settings, i.e., all-to-all and ring-
like, the developed theory resembles the classical MSE
approach and thus significantly reduces the intricacy of
analytical calculations due to the presence of both adap-
tivity and higher-order interactions. Finally, our analyt-
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FIG. 6. Phase diagrams in the σ1−σ2 plane showing (a) the
order parameter, numerically computed for β2 = 0.88π, and
(b) the MSF obtained from analytical derivations, presented
for the case of an adaptive higher-order Kuramoto model
with lag, all-to-all coupling, and ϵ1 ̸= ϵ2. Regions associated
with positive Lyapunov exponents, indicating asynchronous
regimes, are colored blue (dark), and the yellow (bright) re-
gions correspond to negative MSF, hence to synchronization.
Other parameters are fixed as in Fig. 4(b,e) with ϵ1 = 0.01
and ϵ2 = 0.011.

ical findings have been supported by dedicated numer-
ical simulations, which have fully confirmed the valid-
ity of the approach. Additionally, our results highlight
how our technique crucially incorporates the fundamen-

tal presence of higher-order interactions in adaptive net-
works, which previously could not be addressed. Our case
studies show that the system displays markedly different
behaviors when comparing scenarios with and without
higher-order adaptation.

We note that the provided theoretical approach leads
to a necessary condition that depends only on the in-
teraction strengths and underlying structural properties
of the higher-order structure. Thus, the fact that our
approach can be used irrespective of any specific model
or choice of coupling functions offers the possibility of
extending it to different coupling mechanisms and sys-
tems, even those with single or distributed delays [70].
One of the most realistic examples of a complex system
where both higher-order interactions and adaptivity play
a pivotal role is the neuronal network. Our generalized
approach, therefore, may provide a powerful tool for in-
vestigating collective phenomena in neuronal networks,
even those involving synaptic plasticity [71]. Apart from
the neuronal networks, adaptation is widely recognized in
control theory [72, 73]. Our theoretical approach, there-
fore, offers a versatile framework for examining various
adaptive control schemes across a broad spectrum of dy-
namical systems, including those with many-body inter-
actions.
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1. Only pairwise adaptation

In this case, the synchronized solution evolves accord-
ing to the following equations,

ṡ = f(s), (A1a)

k
(s)
ij = −a

(1)
ij h(0). (A1b)

To analyze the stability of this synchronized state, we
slightly perturb the system around the synchronized state
with small perturbations ξi = xi−s and χij = k

(1)
ij −k

(s)
ij .

Then, the variational equation can be written as

ξ̇i =Df(s)ξi − σ1h(0)

N∑
j=1

L
(1)
ij D2g

(1)(s, s)ξj

+ σ2

N∑
j=1

L
(2)
ij [D2g

(2)(s, s, s) +D3g
(2)(s, s, s)]ξj ,

(A2a)

χ̇ij =− ϵ
(
χij + a

(1)
ij [Dh(0)(ξi − ξj)]

)
. (A2b)

In matrix form, the variational equation becomes[
ξ̇ξξ
χ̇χχ

]
=

[
S 0

−ϵC(1) ⊗Dh(0) −ϵIN2

] [
ξξξ
χχχ

]
, (A3)

where

S = IN⊗Df(s)−σ1h(0)L
(1)⊗D2g

(1)+σ2L
(2)⊗Dsg

(2),

with Dsg
(2) = D2g

(2)(s, s, s) + D3g
(2)(s, s, s). C(1) is a

constant matrix of order N2×N (details are provided in
the Appendix B).

To determine the stability condition for the associated
synchronous solution, one needs to solve the system of
equations (A3) to calculate the maximum Lyapunov ex-
ponents. The form of Eq. (A3) implies that the Jacobian
matrix possesses N2 numbers of −ϵ eigenvalues. Fur-
thermore, it is a lower diagonal block matrix. Hence, the
stability of S, i.e., finding the maximum Lyapunov expo-
nents by solving ξ̇ξξ = Sξξξ provides the necessary condition
for the stable synchronized solution, subject to ϵ > 0.
Now, ξ̇ξξ = Sξξξ is a coupled linear differential equation of
dimension Nd. To further simplify it, we project the
projection variables ξ onto the eigenspace of the pairwise
Laplacian matrix L(1) by introducing a new set of vari-
ables ζζζ = (U⊗ Id)

⊤ξξξ. Here, U is a N ×N matrix whose
columns are the orthonormal eigenvectors of the Lapla-
cian L(1), i.e., U⊤L(1)U = diag{0 = µ

(1)
1 , µ

(1)
2 , . . . , µ

(1)
N }.

Using this new coordinate system, the variational equa-
tion becomes

ζ̇i = [Df(s)− σ1h(0)µ
(1)
i D2g

(1)]ζi + σ2

N∑
j=1

L̃2
ijDsg

(2)ζj ,

(A4)

where we introduced L̃(2) = U⊤L(2)U whose entries on
the first row and column are all zero. Thus, ζ1 corre-
sponds to the modes parallel to the synchronous solution,
and ζi, i = 2, 3, . . . , N is associated with the transverse
modes. In general, this transverse variation equation can
not decouple further. However, when the higher-order
Laplacian is a scalar multiple of the pairwise one and
in the scenario of commutating Laplacian matrices, the
variational equation can be fully decoupled into N num-
bers of d-dimensional equation.

2. Both pairwise and higher-order adaptation

In this case, the synchronized solution follows

ṡ = f(s), (A5a)

k
(1),s
ij = −a

(1)
ij h(1)(0), (A5b)

k
(2),s
ijp = −a

(2)
ijph

(2)(0). (A5c)

The corresponding variation equation can be written as,

ξ̇i = Df(s)ξi − σ1h
(1)(0)

N∑
j=1

L
(1)
ij D2g

(1)(s, s)ξj

−σ2h
(2)(0)

N∑
j=1

L
(2)
ij (D2g

(2)(s, s, s) +D3g
(2)(s, s, s))ξj

−σ1

N∑
j=1

a
(1)
ij χijg

(1)(s, s)− σ2

N∑
j=1

N∑
p=1

a
(2)
ijpηijpg

(2)(s, s, s),

(A6a)

χ̇ij = −ϵ1(χij + a
(1)
ij Dh(1)(0)(ξi − ξj)), (A6b)

η̇ijp = −ϵ2(ηijp + a
(2)
ijpDh(2)(0)(2ξi − ξj − ξp)). (A6c)

Then, in matrix form, the variational equations can be
written as[

ξ̇ξξ
χ̇χχ
η̇

]
=

[
S2 0 0

−ϵ1C
(1) ⊗ Dh(1)(0) −ϵ1IN2 0

−ϵ2C
(2) ⊗ Dh(2)(0) 0 −ϵ2IN3

] [
ξξξ
χχχ
ηηη

]
(A7)

where

S2 = IN ⊗Df(s)− σ1h
(1)(0)L(1) ⊗D2g

(1)

− σ2h
(2)(0)L(2) ⊗Dsg

(2).

To determine the stability condition for the associated
synchronous solution, one needs to solve the above sys-
tem of variation equations to calculate the maximum
Lyapunov exponents. The form of the equation implies
that the Jacobian matrix possesses N2 numbers of −ϵ1
eigenvalues and N3 numbers of ϵ2 eigenvalues. Further-
more, it is a lower diagonal block matrix. Hence, the



15

stability of S2, i.e., finding the maximum Lyapunov ex-
ponents by solving ξ̇ξξ = S2 ξξξ provides the necessary con-
dition for the stable synchronized solution, subject to
ϵ1, ϵ2 > 0. Further simplification of the variation equa-
tion ξ̇ξξ = S2 ξξξ can be done similarly to the previous case.
Hence, in this case, we can analytically predict the sta-
bility of the synchronous solution even if ϵ1 and ϵ2 are
different.

−1

0

1

σ
2

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0 1 2 3 4
σ1

−1

0

1

σ
2

(b)

FIG. 7. Phase diagrams in the σ1−σ2 plane showing (a) the
order parameter, numerically computed for β2 = 0.88π, and
(b) the MSF obtained from analytical derivations, for the case
of a higher-order Kuramoto model with lag, all-to-all topol-
ogy having both pairwise and higher-order adaptation, and
noninvasive coupling schemes. Regions associated with pos-
itive Lyapunov exponents, indicating asynchronous regimes,
are colored blue (dark), whereas yellow (bright) represents the
region of negative Lyapunov exponents. Other parameters are
fixed as follows: N = 100, α1 = α2 = 0, β1 = β2 = 0.88π,
ϵ1 = 0.01, ϵ2 = 0.02.

To show that the presented theory corresponding to
the noninvasive coupling works even for ϵ1 ̸= ϵ2, we con-
sider an ensemble of N = 100 globally coupled phase-
lagged Kuramoto oscillators given by Eq. (44). Since the
coupling functions g(i), i = 1, 2 are synchronization non-
invasive, we consider the lag parameters αi = 0. The
time scale separation parameters are taken as ϵ1 = 0.01
and ϵ2 = 0.02. All the other parameters are kept fixed at

a nominal value. The results are reported in Fig. 7 where
the MSF [see Fig. 7(b)] is computed as a function of σ1

and σ2 and compared with the order parameter Rc [see
Fig. 7(a)]. It is observable that the analytical prediction
can determine the region of stable synchronous solution
very well.

Appendix B: Derivation of the master stability
equations

Here, we provide a detailed, step-by-step derivation of
the master stability equations discussed in the main text.

1. Derivation of the master stability equation for
the system with pairwise adaptation and constant

higher-order interactions

The general dynamical equations of the adaptive
higher-order networks with adaptation only in pairwise
interactions are given by

ẋi =f(xi)− σ1

N∑
j=1

a
(1)
ij k

(1)
ij (t)g(1)(xi,xj)

− σ2

N∑
j=1

N∑
p=1

a
(2)
ijpk

(2)
ijpg

(2)(xi,xj ,xp), (B1a)

k̇
(1)
ij = −ϵ[k

(1)
ij + a

(1)
ij h(xi − xj)], (B1b)

where the adjacency matrix (tensor) satisfies the constant
degree property for each node, i.e.,

∑
a
(1)
ij = r(1) and∑N

j=1

∑N
p=1a

(2)
ijp = 2r(2). Let us observe that (s, k(s))

is the synchronized solution for the adaptive dynamical
system when it satisfies the following evolution equations:

ṡ = f(s) + σ1r
(1)h(0)g(1)(s, s)− 2σ2r

(2)g(2)(s, s, s),

(B2a)

k
(s)
ij = −a

(1)
ij h(0). (B2b)

Now, to analyze the stability of this synchronized state,
we slightly perturb the system around the synchronized
state with the perturbations defined as ξi = xi − s and
χij = k

(1)
ij − k

(s)
ij . Using Taylor series expansion to lin-

earize the system around the synchronized state, we can
obtain the variational equations as follows,

ξ̇i =Df(s)ξi − σ1

N∑
j=1

a
(1)
ij g(1)(s, s)χij + σ1r

(1)h(0)D1g
(1)(s, s)ξi + σ1h(0)

N∑
j=1

a
(1)
ij D2g

(1)(s, s)ξj

− 2σ2r
(2)D1g

(2)(s, s, s)ξi − σ2

N∑
j=1

N∑
p=1

a
(2)
ijp[D2g

(2)(s, s, s)ξj +D3g
(2)(s, s, s)ξp], (B3a)
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χ̇ij = −ϵ(χij + a
(1)
ij [Dh(0)(ξj − ξi)], (B3b)

where Df and Dh(1) are the Jacobians of f and h, Dig
(j)

denotes the Jacobian of the function gj , (j = 1, 2), with
respect to the i-th variables, i = 1, 2, 3.

By introducing the pairwise and higher-order Lapla-
cians L(1) and L(2), defined as

L
(1)
ij =


−a

(1)
ij , i ̸= j

N∑
j=1

a
(1)
ij = r(1), i = j

(B4)

and,

L
(2)
ij =


−

N∑
k=1

a
(2)
ijk, i ̸= j

N∑
j=1

N∑
k=1

a
(2)
ijk = 2r(2), i = j

(B5)

we can rewrite the variational equation as,

ξ̇i =Df(s)ξi − σ1

N∑
j=1

a
(1)
ij g(1)(s, s)χij + σ1r

(1)h(0)[D1g
(1)(s, s) +D2g

(1)(s, s)]ξi

− σ1h(0)

N∑
j=1

L
(1)
ij D2g

(1)(s, s)ξj − 2σ2r
(2)[D1g

(2)(s, s, s) +D2g
(2)(s, s, s) +D3g

(2)(s, s, s)]ξi

+ σ2

N∑
j=1

L
(2)
ij [D1g

(2)(s, s, s) +D2g
(2)(s, s, s)]ξj (B6)

and

χ̇ij = −ϵ(κij + aij [Dh(0)(ξj − ξi)]. (B7)

Now, to write the variational equation in matrix form,
we introduce the vectorized form for the perturbations
as ξ = x− IN ⊗ s and χ = k − ks with

x =(x⊤
1 , . . . ,x

⊤
N )⊤,

k = (k11, . . . , k1N , k21, . . . , k2N , . . . , kN1, . . . , kNN )⊤,
(B8)

where we stack the rows of kij successively to make the
N ×N matrix χij to a N2 dimensional vector.

Thereafter, to proceed further we introduce few nota-
tions and matrices as follows. We consider

a
(1)
i = (a

(1)
i1 , . . . , a

(1)
iN ), diag(a

(1)
i ) =

a
(1)
i1

. . .

a
(1)
iN


and the N ×N2, N2 ×N matrices as,

B(1) =

a
(1)
1

. . .

a
(1)
N

 , D(1) =

diag(a
(1)
1 )

...
diag(a

(1)
N )

 .

We further can construct the C(1) matrix of dimension
N2 ×N from B(1) and D(1) as,

C(1) = B(1)⊤ −D(1) (B9)

Using all the above notations and matrices, the varia-
tional equation can be written in block matrix form as,(

ξ̇ξξ
χ̇χχ

)
=

(
S −σ1B

(1) ⊗ g(1)(s, s)
−ϵC(1) ⊗Dh(0) −ϵIN2

)(
ξξξ
χχχ

)
,

(B10)

where S = IN⊗Df(s)+σ1h(0)[rIN⊗(D1g
(1)+D2g

(1))]−
2σ2[r

(2)IN ⊗ [D1g
(2) + D2g

(2) + D3g
(2)] − σ1h(0)L

(1) ⊗
D2g

(1) + σ2L
(2) ⊗ [D2g

(2) + D3g
(2)]. IN is the N ×

N identity matrix, B(1) and C(1) satisfy the relation
B(1)B(1)⊤ = r(1)IN and B(1)C(1) = L(1).

From the structure of the variational equation, one can
easily find that it has (N2−N) eigenvalues λ = −ϵ. The
eigenspace corresponding to those eigenvalues are time-
independent and can be obtained from,(

S+ ϵINd −σ1B
(1) ⊗ g(1)(s, s)

−ϵC(1) ⊗Dh(0) 0

)(
ξξξ
χχχ

)
= 0.

(B11)

From this it is obvious that (ξξξ,χχχ) satisfying ξξξ = 0 and
B(1)χχχ = 0 are the time-independent eigenvectors. Now,
since χχχ is N2 dimensional and rank(B(1)) = N when the
row sum r(1) is nonzero, we can say that there exists
(N2 −N) linearly independent eigenvectors which spans
the eigenspace corresponding to the eigenvalue −ϵ.

For the (N2−N) eigenvalues, there exists (N2−N) in-
dependent eigenvectors vl(l = 1, 2, . . . , N2−N) spanning
the kernal of B(1). By using the Gram-Schmidt proce-
dure, we can find the orthonormal basis for the kernel of
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B(1) as ker(B(1)) = span(y1, . . . , yN2−N ). With this ba-
sis, we can define matrices R(1) and Q(1) of dimensions
N2× (N2−N) and (N2+Nd)× (N2+Nd), respectively
as R(1) = (y1, y2, . . . , yN2−N ) and Q(1),

Q(1) =

(
INd 0 0

0 (1/r(1))B(1)⊤ R(1)

)
. (B12)

The left inverse of Q(1) is

Q(1)−1

=

INd 0
0 B(1)

0 R(1)

 , (B13)

So that, Q(1)−1

Q(1) = IN2+Nd. The variational equation
can be written as,

(
ξ̇ξξ
χ̇χχ

)
= Q(1)−1

(
S −σ1B

(1) ⊗ g(1)(s, s)
−ϵC(1) ⊗Dh(0) −ϵIN2

)
Q(1)

(
ξξξ
χχχ

)
, (B14)

where with a slight abuse we use the same letter to indicate the new transformed co-ordinates. Now,

Q(1)−1

(
S −σ1B

(1) ⊗ g(1)(s, s)
−ϵC(1) ⊗Dh(0) −ϵIN2

)
Q(1) =Q(1)−1

(
S −σ1B

(1) ⊗ g(1)(s, s)
−ϵC(1) ⊗Dh(0) −ϵIN2

)
×

(
INd 0 0

0 (1/r(1))B(1)⊤ R(1)

)
=Q(1)−1

(
S −σ1IN ⊗ g(1)(s, s) 0

−ϵC(1) ⊗Dh(0) −ϵ/r(1)B(1)⊤ −ϵR(1)

)

=

INd 0
0 B(1)

0 R(1)

(
S −σ1IN ⊗ g(1)(s, s) 0

−ϵC(1) ⊗Dh(0) −ϵ/r(1)B(1)⊤ −ϵR(1)

)

=

 S −σ1IN ⊗ g(1)(s, s) 0
−ϵL(1) ⊗Dh(0) −ϵIN 0

−ϵR(1)⊤C(1) ⊗Dh(0) 0 −ϵIN2−N



From this, we can obtain (N+Nd) coupled master equa-
tions as(

ξ̇ξξ
˙χχχM

)
=

(
S −σ1IN ⊗ g(1)(s, s)

−ϵL(1) ⊗Dh(0) −ϵIN

)(
ξξξ

χχχM

)
,

(B15)

where χχχM = χχχ1. Moreover, we yield N2 −N salve equa-
tions which can be solved explicitly once the variables
associated with the master equations are known. This
equations are given by

χ̇χχS =
(
−ϵR(1)⊤C(1) ⊗Dh(0) 0 −ϵIN2−N

) ξξξ
χχχM

χχχS

 ,

(B16)

where χχχS = (χ⊤
2 , χ

⊤
3 , . . . , χ

⊤
N )⊤. Now, corresponding to

the zero row-sum symmetric Laplacian matrices there ex-
ists the matrices with its columns as orthonormal eigen-

vectors that diagonalize the Laplacian matrices. For ex-
ample, there exists the matrix U such that U⊤L(1)U =
D, where D is the diagonal matrix with the diagonal en-
tries being the eigenvalues of L(1). In order to use this
relation to decouple the master variational equation, we
introduce a change of co-ordinates defined as(

U⊗ Id 0
0 U

)(
ξξξ

χχχM

)
=

(
ζζζ
ηηη

)
. (B17)

This yields(
ζ̇ζζ
η̇ηη

)
=

(
S̃ −σ1IN ⊗ g(1)(s, s)

−ϵD
(1)
L ⊗Dh(0) −ϵIN

)(
ζζζ
ηηη

)
,

(B18)

where S̃ = U⊤SU = IN ⊗ Df(s) + σ1h(0)[r
(1)IN ⊗

(D1g
(1) + D2g

(1))] − 2σ2[r
(2)IN ⊗ [D1g

(2) + D2g
(2) +

D3g
(2)] − σ1h(0)D ⊗ D2g

(1) + σ2U
HL(2)U ⊗ [D2g

(2) +



18

D3g
(2)]. In explicit form it can be expressed as,

ζ̇i =[Df(s) + σ1h(0)r
(1)Dg(1) − σ1h(0)µ

(1)
i D2g

(1)

− 2σ2r
(2)Dg(2)]ζi +

N∑
j=1

L̃2
ijDsg

(2)ζj − σ1g
(1)(s, s)ηi,

(B19a)

η̇i =− ϵ[µ
(1)
i Dh(0)ζi + ηi], (B19b)

with L̃(2) = U⊤L(2)U. This is the required master sta-
bility equation.

2. Derivation of the master stability equation for
the system with both pairwise and higher-order

adaptations

The general dynamical equations of the adaptive
weighted simplicial complexes with adaptation in both

pairwise and higher-order interactions are

ẋi =f(xi)− σ1

N∑
j=1

a
(1)
ij k

(1)
ij (t)g(1)(xi,xj)

− σ2

N∑
j=1

N∑
p=1

a
(2)
ijpk

(2)
ijp(t)g

(2)(xi,xj ,xp) , (B20a)

k̇
(1)
ij =− ϵ1[k

(1)
ij + a

(1)
ij h(1)(xi − xj)], (B20b)

k̇
(2)
ijp =− ϵ2[k

(2)
ijp + a

(2)
ijph

(2)(2xi − xj − xp)] . (B20c)

The corresponding synchronized solution is given by,

ṡ =f(s) + σ1r
(1)h(1)(0)g(1)(s, s)

+ 2σ2r
(2)h(2)(0)g(2)(s, s, s), (B21a)

k
(s)
ij =− a

(1)
ij h(1)(0), (B21b)

k
(s)
ijp =− a

(2)
ijph

(2)(0) . (B21c)

A linear stability analysis about this solution can be per-
formed to infer the existence of a synchronous solution.
We thus perturb the system with small perturbation
terms ξi = xi− s, χij = k

(1)
ij −k

(s)
ij and ηijp = k

(2)
ijp−k

(s)
ijp,

ans we study their time evolution via the variational
equations

ξ̇i =Df(s)ξi + σ1r
(1)h(1)(0)Dg(1)(s, s)ξi + 2σ2r

(2)h(2)(0)Dg(2)(s, s, s)ξi − σ1h
(1)(0)

N∑
j=1

L
(1)
ij D2g

(1)(s, s)ξj+

− σ2h
(2)(0)

N∑
j=1

L
(2)
ij Dsg

(2)(s, s, s)ξj − σ1

N∑
j=1

a
(1)
ij χijg

(1)(s, s)− σ2

N∑
j=1

N∑
p=1

a
(2)
ijpηijpg

(2)(s, s, s), (B22a)

χ̇ij =− ϵ1(χij + a
(1)
ij Dh(1)(0)(ξi − ξj)), (B22b)

η̇ijp =− ϵ2(ηijp + a
(2)
ijpDh(2)(0)(2ξi − ξj − ξp)) , (B22c)

where Dg(1) = D1g
(1) + D2g

(1), Dg(2) = D1g
(2) +

D2g
(2) +D3g

(2) and Dsg
(2) = D2g

(2) +D3g
(2).

Now, we consider ξ = x − IN ⊗ s, χ = k(1) − ks and
η = k(2) − ks with

x = (x⊤
1 , . . . ,x

⊤
N )⊤,

k(1) = (k
(1)
11 , . . . , k

(1)
1N , k

(1)
21 , . . . , k

(1)
2N , . . . , k

(1)
N1, . . . , k

(1)
NN )⊤,

k(2) = (k
(2)
111, . . . , k

(1)
1NN , k

(1)
211, . . . , k

(1)
2NN ,

. . . , k
(1)
N11, . . . , k

(1)
NNN )⊤. (B23)

Now analogous to the previous case here we again intro-
duce few other notations and matrices to be used in the
following derivations. We consider

a
(2)
i = (a

(2)
i11, a

(2)
i12, . . . , a

(2)
iNN ),

and N ×N3, N3 ×N matrices as,

B(2) =


a
(2)
1

a
(2)
2

. . .

a
(2)
N

 ,

C(2) = 2B(2)⊤ −D
(2)
1 −D

(2)
2 , (B24)

where the N3 ×N matrices D
(2)
1 and D

(2)
2 is given by

D
(2)
1 =

d1
...

dN

 , D
(2)
2 =

 e1
...
eN

 .

The elements of the matrices D(2)
1 and D

(2)
2 are given for
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i = 1, 2, . . . , N as

di =

pi1
pi2

. . .
piN

 , and ei =


qi1
qi2
...

qiN



with

pij =


a
(2)
ij1

a
(2)
ij2
...

a
(2)
ijN

 , and qij =


a
(2)
ij1

a
(2)
ij2

. . .

a
(2)
ijN

 ,

where j = 1, 2, . . . , N . Using all these notations together,
the variational equation in the block matrix form can be
expressed as

ξ̇ξξχ̇χχ
η̇ηη

 =

 S2 −σ1B
(1) ⊗ g(1)(s, s) −σ2B

(2) ⊗ g(2)(s, s, s)
−ϵ1C

(1) ⊗Dh(1)(0) −ϵ1IN2 0
−ϵ2C

(2) ⊗Dh(2)(0) 0 −ϵ2IN3

ξξξχχχ
ηηη

 , (B25)

where we consider again the matrix χχχ, resp. the tensor
ηηη, as N2, resp. N3, columns vectors, and we introduce
suitable matrix

S2 =IN ⊗Df(fs) + σ1h
(1)(0)(r(1)IN ⊗Dg(1))

+2σ2h
(1)(0)(r(2)IN ⊗Dg(2))− σ1h

(1)(0)L(1) ⊗D2g
(1)

−σ2h
(2)(0)L(2) ⊗Dsg

(2). (B26)

B(1) and C(1) are the same constant matrices of order
N ×N2 and N2 ×N used in Section B 1, while B(2) and
C(2) are constant matrices of order N ×N3 and N3×N ,
satisfying B(2)B(2)⊤ = 2r(2)IN and B(2)C(2) = L(2).

Now to move forward we consider ϵ1 = ϵ2 = ϵ. Then,
from the structure of the variational equation, it is obvi-
ous that it has (N3 +N2 − 2N) numbers of eigenvalues
λ = −ϵ. Thereafter proceeding similarly as the pairwise
adaptation case, we can define two matrices Q(2) and

R(2) as,

Q(2) =

INd 0 0 0

0 (1/r(1))B(1)⊤ 0 0

0 0 (1/r(2))B(2)⊤ R(2)


(B27)

and the left inverse of Q(2) is

Q(2)−1

=


INd 0 0
0 B(1) 0
0 0 B(2)

0 0 R(2)⊤

 . (B28)

So that, Q(2)−1

Q(2) = IN3+N2+Nd. Then, the variational
equation can be transformed as,

ξ̇ξξ
χ̇χχ
η̇ηη

 = Q(2)−1

 S2 −σ1B
(1) ⊗ g(1)(s, s) −σ2B

(2) ⊗ g(2)(s, s, s)
−ϵC(1) ⊗Dh(1)(0) −ϵIN2 0
−ϵC(2) ⊗Dh(2)(0) 0 −ϵIN3

Q(2)

ξξξ
χχχ
ηηη

 , (B29)

where again, with a slight abuse, we use the same letter to indicate the new transformed coordinates. Now,

Q(2)−1

 S2 −σ1B
(1) ⊗ g(1)(s, s) −σ2B

(2) ⊗ g(2)(s, s, s)
−ϵC(1) ⊗Dh(1)(0) −ϵIN2 0
−ϵC(2) ⊗Dh(2)(0) 0 −ϵIN3

Q(2)

= Q(2)−1

 S2 −σ1IN ⊗ g(1)(s, s) −σ2IN ⊗ g(2)(s, s, s) 0

−ϵC(1) ⊗Dh(1)(0) −ϵ/r(1)B(1)⊤ 0 0

−ϵC(2) ⊗Dh(2)(0) 0 −ϵ/2r(2)B(2)⊤ ϵR(2)



=


S2 −σ1IN ⊗ g(1)(s, s) −σ2IN ⊗ g(2)(s, s, s) 0

−ϵL(1) ⊗Dh(1)(0) −ϵIN 0 0
−ϵL(2) ⊗Dh(2)(0) 0 −ϵIN 0

−ϵR(2)⊤C(2) ⊗Dh(2)(0) 0 0 −ϵIN3+N2−2N

 (B30)
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From this, we can write (Nd+2N) dimensional coupled master equations and (N3+N2−2N) coupled salve equations
as  ξ̇ξξ

χ̇χχM

η̇ηηM

 =

 S2 −σ1IN ⊗ g(1)(s, s) −σ2IN ⊗ g(2)(s, s, s)
−ϵL(1) ⊗Dh(1)(0) −ϵIN 0
−ϵL(2) ⊗Dh(2)(0) 0 −ϵIN

 ξξξ
χχχM

ηηηM

 . (B31)

Here, (χχχM , ηηηM ) = (χχχ1, ηηη1) and the slave equations read as,

(
χ̇χχS

η̇ηηS

)
=

(
−ϵR(2)⊤C(2) ⊗Dh(2)(0) 0 −ϵIN2−N0 −ϵIN3−N

)
ξξξ

χχχM

χχχS

ηηηM
ηηηS

 , (B32)

where χχχS = (χ⊤
2 , . . . , χ

⊤
N )⊤ and ηS = (η⊤2 , . . . , η

⊤
N )⊤.

Now again, to decouple the coupled master variational
equation, we introduce a similar unitary transform like
the pairwise adaptation case and introduce the new sets
of co-ordinates as,U⊗ Id 0 0

0 U 0
0 0 U

 ξξξ
χχχM

ηηηM

 =

ξ̂ξξ
χ̂χχ
η̂ηη

 ,

with U the matrix whose columns are the orthonormal
eigenvectors that diagonalize the pairwise Laplacian L(1),
i.e., U⊤L(1)U = D = diag{µ(1)

1 , µ
(1)
2 , . . . , µ

(1)
N }. In terms

of the changed coordinate frame the variational equation
becomes

 ˙̂
ξξξ
˙̂χχχ
˙̂ηηη

 =

 S̃2 −σ1IN ⊗ g(1)(s, s) −σ2IN ⊗ g(2)(s, s, s)
−ϵD⊗Dh(1)(0) −ϵIN 0

−ϵL̃(2) ⊗Dh(2)(0) 0 −ϵIN

ξ̂ξξ
χ̂χχ
η̂ηη

 , (B33)

where L̃(2) = U⊤L(2)U and S̃2 = U⊤S2U. In explicit form, it can be rewritten as

˙̂
ξi =

[
Df(s) + σ1h

(1)(0)r(1)Dg(1) + 2σ2r
(2)h(2)(0)Dg(2) − σ1h

(1)(0)µ
(1)
i D2g

(1)
]
ξ̂i − σ2h

(2)(0)

N∑
j=1

L̃2
ijDsg

(2)ξ̂j

− σ1g
(1)(s, s)χ̂i − σ2g

(2)(s, s, s)η̂i, (B34a)
˙̂χi =− ϵ[µ

(1)
i Dh(1)(0)ξ̂i + χ̂i], (B34b)

˙̂ηi =− ϵ[

N∑
j=1

L̃2
ijDh(2)(0)ξ̂i + η̂i] , (B34c)

which is the master stability equation we need.


