
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Multi-Agents based Architecture for IS Security Incident Reaction

Gateau, Benjamin; Feltus, Christophe; Khadraoui, Djamel; de Remont, Benoît

Published in:
Proceedings of RIVF'08 : IEEE International Conference on Research, Innovation and Vision for the Future in
Computing & Communication Technologies, Ho Chi Minh, Vietnam.

Publication date:
2008

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Gateau, B, Feltus, C, Khadraoui, D & de Remont, B 2008, Multi-Agents based Architecture for IS Security
Incident Reaction. in Proceedings of RIVF'08 : IEEE International Conference on Research, Innovation and
Vision for the Future in Computing & Communication Technologies, Ho Chi Minh, Vietnam..
<http://www.infres.enst.fr/~rivf/rivf2008/>

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. Aug. 2024

https://researchportal.unamur.be/en/publications/d4ba4ee5-8442-4b2e-b3f6-4ae04575e356
http://www.infres.enst.fr/~rivf/rivf2008/

Multi-Agents based Architecture for IS Security
Incident Reaction

Benjamin Gâteau, Djamel Khadraoui, Christophe Feltus and Benoît de Rémont
Centre for IT Innovation

Public Research Centre Henri Tudor
29, Avenue John F. Kennedy, L-1855 Luxemburg

{benjamin.gateau}@tudor.lu

Abstract— The main focus of this paper is to provide a global
architectural solution built on the requirements for a reaction
after alert detection mechanisms in the frame of Information
Systems Security and more particularly applied to telecom
infrastructures security. These infrastructures are distributed in
nature, therefore the targeted architecture is developed in a
distributed perspective and is composed of three basic layers: low
level, intermediate level and high level. The low level is dedicated
to be the interface between the main architecture and the
targeted infrastructure. The intermediate level is responsible of
correlating the alerts coming from different domains of the
infrastructure and to deploy smartly the reaction actions. This
intermediate level is elaborated using multi-agents system that
provide the advantages of autonomous and interaction facilities.
The high level permits to have a supervision view of the whole
infrastructure, and to manage business policy definition. The
proposed approach has been successfully experimented for data
access control mechanism.

Keywords- Security Policy, Multi-agents systems, Architecture,
Distributed networks

I. INTRODUCTION

Today telecommunication and information systems are
more widely spread and mainly heterogeneous. This basically
involves more complexity through their opening and their
interconnection. Consequently, this has a dramatic drawback
regarding threats that could occur on such networks via
dangerous attacks. This continuously growing amount of carry
out malicious acts encompasses new and always more
sophisticated attacks techniques, which are actually exposing
operators as well as the end user.

State of the art in terms of security reaction is limited to
products that detect attacks and correlate them with a
vulnerability database but none of these products are built to
ensure a proper reaction to attacks in order to avoid their
propagation and/or to help an administrator deploy the
appropriate reactions [1]. In the same way, [3] says that at the
individual host-level, intrusion response often includes security
policy reconfiguration to reduce the risk of further penetrations
but doesn't propose another solution in term of automatic
response and reaction. It is the case of CISCO based IDS
material providing mechanisms to select and implement
reaction decision.

The realm of security management of information and
communication systems is actually facing many challenges [5]
due to the fact that it is very often difficult to:

• Establish central or local permanent decision
capabilities;

• Have the necessary level of information;

• Quickly collect the information, which is critical in
case of an attack on a critical system node;

• Launch automated counter measures to quickly block a
detected attack;

Based on that statements, it appears crucial to elaborate a
strategy of reaction after detection against these attacks

Our previous work around that topic has provided first
issues regarding that finding and has been somewhat presented
in [5]. This paper has proposed an architecture to highlight the
concepts aiming at fulfilling the mission of optimizing security
and protection of communication and information systems
which purpose was to .achieve the following:

• Reacting quickly and efficiently to any simple attack
but also to any complex and distributed ones.

• Ensuring homogeneous and smart communication
system configuration, that are commonly considered
and the main sources of vulnerabilities.

One of the main aspects in the reaction strategy consists of
automating and adapting policies when an attack occurs. It
exists in the scientific literature a large number of policy’s
definitions and conceptual model. For the purpose of that
paper, we prefer the one provided by Damianou et al. in [14]
that is “Policies are rules that govern the behavior of a system”
(actors and sub components). The foreseen policy adaptation is
considered as a regulation process. The main steps of the policy
regulation are described in Figure 1, which shows the process
that takes the business rules as input, and maps them into
technical policies. These technical policies are deployed and
instantiated on the infrastructure in order to have a new state of
temporary network security stability adapted to the ongoing
attack. This policy regulation is thereafter achieved in
modifying/adding new policy rules to reach a new standing (at
least up to the next network disruption) policy based on the
observation of the current situation of the system. It must be

specified that this regulation process rely also on policies
adaptation to a specific context. Those contexts and the
modeling of concepts of org, role, activity, view are explained
in [10]. Efficiently react against an attack, especially if this
needs a change on an equipment configuration, often
necessitates many checks that have to be performed in order to
avoid bad side effects (conflict creation, services stability, etc.)

Figure 1. Policy regulation

Consequently, policy regulation’s automation needs in one
hand the existence of a hierarchy between the rules in case of

multiple choices due to multiple attacks, and in second hand an
automatic method to validate the policy’s modifications. At the
business level, the targeted foreseen solution will be able to
improve the resilience to attacks of core IP networks and, by
extension to large information systems, which form critical
infrastructures for communication and services today.

The second section of this paper introduced requirement
that has to be taken into account for the definition the presented
architecture, section III introduce the architecture and section
IV illustrate it through a use case in telecommunication
networks.

II. REQUIREMENTS ANALYSIS AND DESIGN

The architecture of such a reaction system must respect
some classes of requirements that has been synthesized in the
following: (TABLE I.)

TABLE I. REQUIREMENT ANALYSIS

Requirement list Description
Business needs Laws and regulations dedicated to private sector exist and are continuously improving requirements that enforce the top

management to be responsible regarding the needs for information security (SOX, Basel 2, ISO27000).
Corporate policy and security policies are tools under the cover of the business that face IS security issues. In that sense,
security requirements are dictated by the business and IT staff implements them.
Accordingly, a business requirement is: when an attack occurs, the technical IT committee adapts the basic policy to solve
the problem. This emergency modification of the consign policy needs to be validated or improved by the policy business
owner before being introduced in production.

Scalability The system should be able to manage and ensure security of several sub-systems (e.g. LAN and subs-LAN) called
“managed systems”.

Availability There’s always in IT systems a single element, component, system, device, or person that is crucial for the mission and of
course the security; these item are called “single points of failure” and the management system should avoid them.

Confidence Current usage of automatic reaction technologies is narrowed by end-user confidence into the system. As a result,
operators often deactivate automatic features of the system.
Strong confidence can be established by design, ensuring that reaction don’t contravene known business policies. Besides,
a confidence measure must be provided for each non-trivial process, where low confidence involves human support
(Agreement, Manual investigation, Reaction selection). Thus the system should provide granularity in the automatic
process.

Autonomy However, certain autonomy should be provided to the managed systems, to avoid paralyzing situation in case of loss of
connection with the global system. This autonomy could enable the system on highly scalable network (as P2P or Ad-
Hoc networks) and specifically when a peer could be a managed system or part of it.

Survivability and robustness The management system should implements means for being able to continue to function during and after a damage or
loss due to intentional malicious threats (i.e. survivability), and unintentional hardware failures, human errors, etc. (e.g.
robustness).

Reaction applicability A reaction should be applicable to several managed systems or to targeted objects. The reaction applicability should be
specified and adaptable considering the reaction. Furthermore, a time defining the validity of the reaction should be
specified (temporary reactions for a certain time, or permanent).

Alert management correlation Relatively to the alerts management, a global correlation between the alerts coming from different managed systems
should be realized. The existing intrusion detection tools generate alerts and the system just collect and process them, as
observation input. The alert should be used immediately by the local level, for an rapid reaction but also in a second time
for a more adapted reaction (if needed).

Global supervision Furthermore, a global supervision (common to all the managed systems) must available in order to manage detection and
reaction (based on policy) on widely spread systems. Indeed, alerts from all the managed systems should be correlated
together at the higher level of hierarchy. This supervision should be useful to check if the business policies are respected
at both management levels.

III. AGENT BASED POLICY MANAGEMENT
ARCHITECTURE

A. Overview and definitions

A Multi-Agent System (MAS) is a system composed of
several agents, capable of mutual interaction. The interaction
can be in the form of message passing or producing changes in
their common environment.

Agents are pro-active, reactive and social autonomous
entities able to exhibit organized activity, in order to meet their
design objectives, by eventually interacting with users. Agent
is collaborative by being able to commit itself to the society
or/and another agent.

An agent, like an object, encapsulates a state and a behavior
and provide moreover a number of facilities that are ::

• An agent has control on its behavior

• An agent decides in which state it is, even if external
event may influence this decision..

• An agent exerts this control in various manners
(reactive, directed by goals, social)

• MAS have several control flows while a system with
objects has a priori only one control flow.

The agents also have global behavior into the MAS, such
as:

• Cooperation: agents share the same goal

• Collaboration: agents share intermittently the same
goal,

• Competition: incompatible goals between agents

An architecture description has been developed considering
the requirements described in the previous section. To manage
several different systems, due to their location, the focused
business domain or organization type, a distributed system is
appropriate. Furthermore, a distributed solution should be able
to bring some autonomy to the managed systems; robustness,
survivability and availability are also impacted.

The architecture will be composed of several components,
called “nodes”, having different responsibilities. Theses nodes
will be organized in two dimensions, as presented in Figure 2. .

The vertical dimension, structured in layers relatively to the
managed network organization, allows adding abstraction in
going upward. Indeed, the lowest layer will be close to the
managed system and thus being the interface between the
targeted network and the management system. The higher
layer will expose a global view of the whole system and will
be able to take some decisions based on a more complete
knowledge of the system, business, and organization.

Intermediate levels (1 to n-1) will guarantee flexibility and
scalability to the architecture in order to consider management
constraints of the targeted infrastructure. Those middleware
levels are optional but allow the system to be better adapted to

the complexity of a given organization and the size of the
information system.

Figure 2. Architecture Overview

The horizontal dimension, containing three basic components,
is presented in Figure 3. and its three main phases are described
below:

1) Alert: Collect, normalize, correlate, analyze the alerts
coming from the managed networks and representing an
intrusion or an attack. If the alert is confirmed and coherent, it
is forwarded to the reaction decision component. (Alert
Correlation Engine-ACE).

2) Reaction Decision: Receive confirmed alerts for which a
reaction is expected. Considering the knowledge of: the policy,
the systems organization and the specified behaviour, this
component decide if a reaction is needed or not and define the
reaction, if any. The reaction will be modification(s),
addition(s) or removal(s) of current policy rules. (Police
Instantiation Engine-PIE).

3) Reaction: Instantiation and deployment of the new
policies, on the targeted networks. The deployment (Policy
Deployment Point – PDP) and enforcement (Policy
Enforcement Point – PEP) of these new policies, lead to a new
security state of the network. The terminology in italic used in
this section 4 is extracted from both: XACML [9] and OrBAC
Model [11].

Figure 3. The three basic components

An issue is raised considering which layer will be allowed
to take a decision reaction: only one layer, two, several or all?
If more than one layer can trigger a reaction on the same
object(s), there will be a conflict issue. Thus, the system should
be able to provide mechanisms to solve conflicts between
several selected reactions. Another issue concerns the
agreement: at which level should it be asked? : A solution
could be to ask it at the same level (or at an upper one) that the
reaction decision is made, this should be specified by the user.
A possible solution is a distributed, vertically layered and
hierarchical architecture. The layer's number could be adapted
according to the organization of the managed systems. In our
case, three layers are sufficient (local, intermediate and global).
The reaction system is composed of three main parts: the alert
management part, the reaction part and the police definition-
deployment part. Three trees (alert, reaction and policy) could
be placed side by side, as presented in Figure 2. These trees are
the same but their nodes have different functions. The alert tree
collects the alerts with the local nodes and correlate them in
several steps, one step by layer. A certain response time is used
by the system from the intrusion detection to the reaction
application. This time is increased if the reaction process is
propagated to the upper layers, as presented in Figure 4. A
global goal is of course to shorten it.

()
() timedeployment and Processing

levelsbetween n timePropagatio2

 timeResponse

+
×

=

Figure 4. Response time.

The next step of our research development is firstly the
definition of a reaction engine that encompass both architecture
components defined in that paper and communication engine
between these components. This engine will be based on a
message format and on a message exchange protocol based on
standards such as [12]. Secondly, real cases must be studied in
order to experiment with the architecture and its associated
protocol.

The message format will be defined in XML format and
will be structured around a number of attributes that will
specify the message source, the message destination and the
message type (alert, reaction, policy request, policy
modification, policy modification validation, decision and
synchronization). The protocol will define the exchange format
and the workflow of messages between the architecture

components. It will encompass a set a rules governing the
syntax, semantics, and synchronization of communication. In
the section relating to technical requirements, we have seen
that nodes structure must be flexible in order to be able to
reorganize itself if a node fails or disappears. Each node must
also be autonomous in order to permit reorganization. Given
these requirements, we think that the use of Multi-Agents
Systems is a solution to provide autonomy, flexibility and
decision mechanisms to each node by representing them by
agents.

As studied in the state of the art presented in [4], a set of
agents could be managed and controlled through an
organization. An organization is a set of agents playing roles,
gathered in a normative structure and expecting to achieve
some global and local objectives. Several models like the roles
model, the tasks model, the interaction model, the norms
models etc specify an organization.

In our context we need an interaction definition in order to
specify communication protocols between agents representing
nodes. We also need roles in order to specify what agent will
have to communicate or act in order to detect intrusions and
then react. Based on this needs, the use of an electronic
institution based on agents is one of the possibilities that we
will investigate.

The main goal of the reaction policy enforcement engine is
to apply policies in terms of specific concrete rules on
“technical” devices (firewall, fileserver, and other systems
named PEP). For that, we need means to make PIE, PDP and
PEP interacting and collaborating. As we will see in the
following section, the multi-agents systems concept already
defines architectures and models for autonomous agents’
organization and interaction. Existing platform like JADE
(Java Agent DEvelopment Framework) [18][19] implements
agents’ concepts as well as their ability to communicate by
exchanging messages and could simplify the reaction
components integration. This is the solution, which is detailed
hereafter. Foundation for Intelligent Physical Agents (FIPA)
[16], promotes the success of emerging agent-based
applications, services and equipment. Making available in a
timely manner, internationally agreed specifications that
maximize interoperability across agent-based applications,
services and equipment pursues this goal. This is realized
through the open international collaboration of member
organizations, which are companies and universities active in
the agent field. FIPA's specifications are publicly available.
They are not a technology for a specific application, but
generic technologies for different application areas, and not just
independent technologies but a set of basic technologies that
can be integrated by developers to make complex systems with
a high degree of interoperability.

The multi-agent framework that will be used her is JADE.
We base ourselves on a survey made in [15] to argue that this
agent platform responds to the expectations in terms of agents'
functionalities, security, safe communication between agents,
performance and standardization.

The following sections present the specification of the
policy enforcement engine deployment based on agents. After
motivating this solution, we introduce agents and multi-agents

theory and we detail the Policy Enforcement Point, Policy
Decision Point and the communications between them.

System Management Security Policy
 Management Context

Data
Policy

definition

Multi–Agent
System Platform

Topology
information

White Pages
Services

Yellow Pages
Services

Active
Directory

PDP
Agent

Facilitator
Agent

PDP

Reaction
Registration
(FIPA-ACL)

FIPA-ACL

FIPA-ACL
PIE

PEP

FIPA-ACL

Policy Rules Status

PEP
Agent

Firewall

PEP

PEP
Agent

Fileserver

PEP

PEP
Agent

PIE
Agent

Figure 5. Multi-Agent System based enforcement process deployment

B. Policy Enforcement Point

We consider here the flow starting with a set of new
policies to apply on physical PEP. We also consider that the
main components of the “policy enforcement architecture”
(PIE, PDP and PEP) are composed of an agent (or more) as
depicted on Figure 5. The PIE decides to apply new policies.
Its PIE Agent sends the policies to the PDP Agent, which
decides which PEP is able to implement policies in terms of
rules or script on devices (firewall, fileserver, etc,). Then, the
PDP Agent sends to PEP Agent of which PEP are concerned
by their corresponding policies. Finally, each PEP Agent
knowing how transforming a policy into a rule or script
understandable by the device interfaced implements the policy.
Consequently, agents do not represent only PDP but each
component of a node (in the enforcement loop at least). This
solution provides a multi-agent framework making possible
agents cooperating and communicating between them.

C. Policy Decision Point

Figure 5. represents the PDP architecture composed by
several modules. For the multi-agent system point of view, the
Component Configuration Mapper results from the interaction
between the PDP Agent and the Facilitator Agent while the
Policy Analysis module is realized by the PDP Agent. The
Facilitator manages the network topology by retrieving PEP
Agents according to their localization (devices registered with
IP address or MAC address) or according to actions they could
apply and their type (firewall, file server, etc.). For that the
Facilitator uses white pages and yellow pages services. The
JADE platform already provides implemented facilitator and
searching services. Besides, the use of a multi-agent system as
the framework provides flexibility, openness and
heterogeneity. Actually, when we decide to add a new PEP, we
just have to provide its PEP Agent able to concretely apply the
policies that will register itself through the Facilitator that will
update databases.

D. Communication specifications using Jade

JADE is a software framework fully implemented in Java
language. It simplifies the implementation of multi-agent
systems through a middleware, which is FIPA compliant. The
agent platform can be distributed across machines (which not
even need to share the same OS) and the configuration can be
controlled via a remote GUI. JADE ensures standard
compliance through a comprehensive set of system services
and agents in compliance with the FIPA specifications: naming
service and yellow-page service, message transport and parsing
service, and a library of FIPA interaction protocols ready to be
used.

Figure 6. FIPA-ACL Overview

The AMS (Agent Management System) provides the
naming service (i.e. ensures that each agent in the platform has
a unique name) and represents the authority in the platform (for
instance it is possible to create/kill agents on remote containers
by requesting that to the AMS). The DF (Directory Facilitator)
provides a Yellow Pages service by means of which an agent
can find other agents providing the services he requires in order
to achieve his goals. The ACC (Agent Communication
Channel) is a high-level interface, through which messages are
sent using a MTP (Message Transport Protocol). FIPA-ACL
[17] is the standardization of ACLs developed by FIPA. ACLs
(Agent Communication Languages) are high level languages
based on speech acts (inform, request. cfp, agree, understood,
...) in order to establish collaboration, negotiation etc. A
message written by using an ACL describes a desired state
instead of procedure or method call. ACLs are based on low-
level languages for messages transportation (SMTP, TCP/IP,
IIOP, HTTP).

FIPA-ACL messages are structured among other things
with performatives (type of communication acts), sender,
receiver, content, a language in which the content is expressed
and an ontology used to give sense to symbols used in the
content expression. For instance, Agent A (the sender) can
send a FIPA-ACL message to Agent B (the receiver)
requesting (use of performative request) something (content of
the message) in language SPL by respecting the protocol
“policyApply”. We choose SPL [7] to represent policies within
the agent platform. Therefore, the content of the message will
be a XML file defining the policy to apply. The full FIPA

communication model is implemented in JADE and its
components have been clearly distinct and fully integrated:
interaction protocols, envelope, ACL, content languages,
encoding schemes, ontologies and, finally, transport protocols.
The transport mechanism, in particular, is like a chameleon
because it adapts to each situation, by transparently choosing
the best available protocol. Java RMI, event-notification,
HTTP, and IIOP are currently used, but more protocols can be
easily added via the MTP and IMTP JADE interfaces. Inside
this platform, a communication support is defined and agents
communicate by exchanging messages structured in
accordance with the FIPA-ACL formalism. As mentioned
before, the full FIPA communication model is implemented in
JADE. Being composed by agents, PIE, PDP and PEP are able
to communicate by exchanging messages. As a consequence,
using an agent platform as JADE is in concurrency with other
PDP-PEP communications protocols and has the advantage to
already been implemented. A multi-agent system is a solution
to make the reaction components communicating and
collaborating without defining specific communication
techniques.

IV. RESUTS

A. Use case

Our use case focuses on accessing files through
telecommunication networks where we have to apply access or
restriction, in writing, reading and executing rights on a file. To
achieve that, the mechanism is based on the real application of
the access rights permission on a file server for a specific user,
under Windows and Linux environment.

Jade environments are called containers. Typically, in a
multi-agent application, there will be several containers (with
agents) running on different machines. The first container
started must be the main container that maintains a central
registry of all the others in order to permit that agents discover
and interact with each other.

After the platform start, the following operations are
executed:

1) PIE registers with its IP address to the main
container.

2) PDP registers with its IP address to a container of the
main container.

3) PEP also registers with its IP address to another
container of the main container.

4) The policy is send to the PIE.
5) PDP receives the message (policy) from the PIE.
6) The PDP knows all PEP services, and according to

this, it identifies and sends the policy to the right
PEP.

7) The PEP parses the policy in order to remove
necessary element for the mapping.

8) The PEP then mapped the policy to a specific
execution command (setfacl).

9) The policy is finally applied.

The PEP will afterward send node after node to the console,
through the communication channel the state of the policy
application and whether or not it is successfully applied. The
dash lines with OK annotation illustrate it on Figure 7.

test.txt

Policy repository

Administrator

PIE PDP

PEP

PEP
(fileServer)

Container ContainerMain container

1

6

2

5

Policy parsing (7)

Policy mapping (8)

policy application (9)

3

O
K

OK

OK

O
K

Console

4

Host: 127.0.0.1
Local host :127.0.0.1

Port: 1099
Local port: 1099

Host: 127.0.0.1
Local host :127.0.0.1

Port: 1099
Local port: 1099

policy

Figure 7. Use case mechanism

Practically, concerning our prototype, for a sample of the
DTD (Document Type Definition), we have:

<!DOCTYPE POLICY[

<!--Object-->

<!ELEMENT object (target,path)>
<!ELEMENT target href #PCDATA #REQUIRED>
<!ELEMENT path #PCDATA>

<!--Subjects-->

<!ELEMENT subject(uid?,role*,group*)>
<!ELEMENT uid (#PCDATA)>
<!ELEMENT role (#PCDATA)>
<!ELEMENT group (#PCDATA)>

<!--Actions-->

<!ELEMENT action (parameter*, provision*)>
<!ATTLIST action name (read¦write¦create¦delete) #REQUIRED
 permission(grant¦deny)
#REQUIRED>
<!ELEMENT provisional_action(parameter*)>
<!ATTLIST provisional_action name #CDATA #REQUIRED
timing(before¦after) "after">

<!--Condition-->

<!ELEMENT condition ANY>

<!--Policy-->
<!ELEMENT policy (property?,xacl*,policyType+)>
<!ELEMENT xacl (object+,rule+)>
<!ELEMENT rule (acl)+>
<!ELEMENT acl (subject*,privilege+,condition?)>
<!ELEMENT policyType (#PCDATA)
<!ELEMENT property (propagation?,conflict-resolution?,default?)>
<!ELEMENT propagation EMPTY>
<!ATTLIST propagation read(no¦up¦down) "down"
 write(no¦up¦down) "down"
 create(no¦up¦down) "down"
 delete(no¦up¦down) "up">
<!ELEMENT conflict-resolution EMPTY>
<!ATTLIST conflict-resolution read(dtp¦ptp¦ntp) "dtp"
 write(dtp¦ptp¦ntp) "dtp"
 create(dtp¦ptp¦ntp) "dtp"
 delete(dtp¦ptp¦ntp) "dtp">
<!ELEMENT default EMPTY>
<!ATTLIST default read (grant¦denial) "denial"
 write (grant¦denial) "denial"
 create (grant¦denial) "denial"
 delete(grant¦denial) "denial">]>

This rule is written according to the DTD provided above
and based on the access control language.

<policy>
 <policyType>FileServer</policyType>
 <xacl>
 <object>
 <object>
 <target>text.txt</target>
 <path>/tmp</path>
 </object>
 </object>
 <rule>
 <acl>
 <subject>
 <uid>bob</uid>
 <roles><role>Administrator</role></roles>
 </subject>
 <action name="read" permission="grant"/>
 <action name="write" permission="grant"/>
 <action name="execute" permission="deny"/>
 </acl>
 </rule>
</xacl>
</policy>

By applying the mentioned above policy, the administrator

called Bob receives the permission to read and write on a given
file (“TEST:TXT” in our case) located in a given directory
(“TMP” in our case). However, the permission to execute the
file is denied.

The approach presented here is based on a system that uses
(1) multi agents’ architecture, (2) the access rights permission
on a file server, (3) the use case mechanism, (4) the policy’s
DTD, and (4) a policy example.

B. Implementation

The common package is composed of GenericAgent and
MASPlatform classes. This package is necessary for all other
packages. The application initializes service registration and

deregistration into the directory facilitator. Then a PIE’s agent
registers into the main container and the other agents into the
same or other containers. During the initialization and before
starting the platform, it also checks if the configuration
parameters are correct.

The following platform’s configuration settings are
verified:

• The name of the host where the main-container should
listen

• The Port number where the main-container should
listen for other containers.

• The platform-id.

• The Container local port number.

• The local port number.

• The local hosts IP address.

Figure 8. shows the two main classes used during the
application implementation.

Figure 8. Common package class diagram

• Parsing
With the “JDOM” libraries, we implement a policy parsing

class, which receives a XML policy file and extract the needed
elements as for example the target, the action and the privileges
concerning the policy to be applied

• Mapping
Policy rules are mapped to real commands. According to

our use case, the prototype is focused on the Linux
environment so as the kernel handles access right on files via
ACL option.

• Linux ACLs
With this model, it is possible to give or restrict rights on a

file. Basically, in the Linux environment, rights are given to the
user, to the group to who belongs the file or to the other. But
with the ACL’s we can expand the right to a number of users
and groups. Setfacl and getfacl are the basic ACL commands.
Setfacl sets the rights by using the mounted ACL option of the
kernel. Example:

setfacl –m u:Geronimo :rw,g :red :r-x,o:--- ./test .txt

This example enables read and write rights to the user
Geronimo; it enables read and execute rights to the red group
and finally no rights to the other. It is the setfacl command that
we have implemented in our command mapping class. Getfacl
shows the user, the group and the other files access right
values. According to the version of the kernel used, we enabled
the kernel to support Access Control List (ACL) by mounting
the ACL option in the partition containing the files on which
we want to extend rights. The policy java package creates and
manages a vector with many policy rules. Each policy rule is a
Hash Table and each Hash Table is characterized by its key
and value. The Hash Table’s keys are the XML tags and their
values are the corresponding attributes. This package through
its classes gets all the characteristics of the policy to be applied.
The elements like the action, the policy rule and the policy type
are extracted from the parsed policy file.

V. CONCLUSIONS

In this paper we have presented an architecture developed
for an incident reaction system based on policy. As explained
in section 4, the main advantage of this architecture is its
distributed structure. Moreover, the architecture covers the
requirements needs described in section II. The future works of
our achievements will be the specification of a protocol,
specification of the messages and thus the reaction
methodology. This protocol and methodology will be dedicated
to the architecture presented in this paper and should reply to
the issues raised in this paper.

We have tested our approach in many configurations. For
example, we launched each node of the application on a
different machine of the test bed network. And it works: by this
we proved the distributed property of the application. Figure 30
represents the basic case where all agents are launched on a
single machine. As it is shown on this figure, the host IP
address and the local host IP address are the same (127.0.0.1)

For the testing phase we made independently, executable
.jar files for each agent. They are composed as followed:

The PIE agent is composed of: The common (setting,
starting the platform), the configfiles (platform’s configuration
files), the lib (libraries, jar files used by JADE), and the PIE
packages.

The PDP agent is composed of: The common (setting,
starting the platform), the configfiles (platform’s configuration
files), the lib (libraries, jar files used by JADE), the policyfiles
(policy parsing class) and the PDP packages. The PEP agent is
composed of: The common (setting, starting the platform), the
configfiles (platform’s configuration files), the lib(libraries, jar
files used by JADE), the policy(policy mapping , policy
execution command class) and the PEP packages. The
following figure, represents the PIE, PDP, PEP agents running.

REFERENCES
[1] Leonard J. LaPadula. "State of the Art in Anomaly Detection and

Reaction" Technical Report MP 99B0000020, Mitre, July 1999.

[2] G.L.F. Santos, Z. Abdelouahab, R.A. Dias, C.F.L. Lima, E. Nascimento
(Brazil), E.M. Cochra. "An Automated Response Approach for Intrusion
Detection Security Enhancement" in Proceedings of Software
Engineering and Applications (SEA), 2003.

[3] M. Petkac and L. Badger" Security agility in response to intrusion
detection" in 16th Annual Conference on Computer Security
Applications (ACSAC '00), 2000.

[4] B. Gâteau. Modélisation et Supervision d'Institutions Multi-Agents.
Ph.D. Thesis, Ecole Supérieure des Mines de Saint-Etienne, 2007.

[5] Christophe Feltus, Djamel Khadraoui, Benoît de Rémont and André
Rifaut, Business Gouvernance based Policy regulation for Security
Incident Response. Centre de Recherche Public Henri Tudor,
Luxembourg. 2007. IEEE GIIS 2007 Global Infrastructure Symposium,
6 July 2007.

[6] A. Rifaut and C. Feltus, Improving Operational Risk Management
Systems by Formalizing the Basel II Regulation with Goal Models and
the ISO/IEC 15504 Approach, Proceeding, REMO2V'2006,
International Workshop on Regulations Modelling and their Validation
& Verification, to be held in conjunction with the 18th Conference on
Advanced Information System Engineering (CAiSE'06), 6 June 2006,
Luxembourg.

[7] Security Policy Language : http://www.positif.org/ispl.html

[8] Cuppens, F., Cuppens-Boulahia, N., Miège, A.: Inheritance hierarchies
in the Or-BAC Model and application in a network environment. In:
Second Foundations of Computer Security Workshop (FCS’04), Turku,
Finland (2004).

[9] http://xml.coverpages.org/draft-seitz-netconf-xacml-00.txt

[10] H. Debar, Y. Thomas, N. Boulahia-Cuppens, F. Cuppens; Using
contextual security policies for threat response. Third GI International
Conference on Detection of Intrusions & Malware, and Vulnerability
Assessment (DIMVA). Germany. Juillet 2006.

[11] F. Cuppens and A. Miège, Modelling contexts in the Or-BAC model,
19th Annual Computer Security Applications Conference, Las Vegas,
December, 2003

[12] IDMEF/RFC4765, Network Working Group: Hervé Debar, France
Telecom; D. Curry, Guardian; B. Feinstein, SecureWorks, Inc.; March
2007

[13] http://www.rfc-archive.org/getrfc.php?rfc=4765.

[14] N. Damianou, N. Dulay, E. Lupu, M. Sloman , The Ponder Policy
Specification Language Workshop on Policies for Distributed Systems
and Networks (Policy2001), HP Labs Bristol, 29-31. Springer-Verlag.

[15] E. Bulut, D. Khadraoui, and B. Marquet, Multi-Agent based Security
Assurance Monitoring System for Telecommunication Infrastructures in
Communication, Network, and Information Security conference (CNIS
2007), Berkeley, California, USA, september 2007.

[16] FIPA, http://www.fipa.org/

[17] FIPA, “Agent Communication Language“, FIPA Specification,
November 1997

[18] Fabio Bellifemine, Agostino Poggi, Giovanni Rimassa. JADE - A FIPA-
compliant agent framework, CSELT internal technical report. Part of
this report has been also published in Proceedings of PAAM'99,
London, April 1999, pp.97-108

[19] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, JADE - A White Paper.
Sept. 2003

