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Client-Network Interactions in Quality of Service
Communication Environments'

Domenico Ferrari, Jean Ramaekers? and Giorgio Ventre

The Tenet Group, Computer Science Division, Department of EECS, University of California,
Berkeley, and International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley,
CA 94704-1105, USA.

Abstract

Multimedia communication, with its strong requirements for high speed, assured qual-
ity, and reliable networking, is stimulating a great research effort towards the development
of real-time protocols. Some protocols of this type have been proposed, which offer com-
munication services with different levels of commitment in providing quality of service
guarantees. In this paper we study the feasibility of an extended client interface that
allows more flexibility in the client-network interactions. The proposed model improves
the utilization of network resources, and increases the network’s capability to support
multimedia traffic, while continuing to offer a guaranteed quality of service.

Keyword Codes: C.2.0; C.2.1; C.2.2
Keywords: Computer-Communication Networks, General; Network Architecture and
Design; Network Protocols

1. Introduction

Multimedia applications, with their strong requirements for high-speed and high-quality
communication services, have stimulated the development of new network architectures
and protocols. One of the most important problems to be solved is how to provide
network clients with an improved quality of service (QoS); this does not only requires
higher bandwidths, low delays and low loss rates, but also guaranteed upper or lower
bounds for these performance indexes.

Any solution to this problem will necessarily imply a move from the traditional, best-
effort kind of service, currently provided, for example, by the Internet architecture, to a
new kind of communication infrastructure. New models for internetworks are required,
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where traffic with different communication requirements will be differently managed, so
that applications with stronger needs will be privileged over and protected from the usual
data traffic that floods today’s computer networks [2].

Several protocols have been presented in literature that allow a client to obtain com-
munication services with guaranteed performance. Most of the proposed solutions are
based on a communication abstraction consisting of a connection with specified perfor-
mance characteristics. We shall call this abstraction a channel. The establishment of a
channel and the resources to be associated to it are controlled by the network through
the us of an admission policy. In some schemes, the admission of a new channel depends
on the availability of a sufficient amount of resources in the network nodes, to prevent the
new channel from jeopardizing the performance of the already established connections.

But what kinds of communication requirements do multimedia applications have? A
precise answer to this question is very difficult, due to the high number of these appli-
cations that have been and are being proposed in the literature [7]. They range from
home video distribution and distributed education, to electronic collaboration (CSCW)
and remote system control. While the first two applications, albeit very demanding in
terms of bandwidth, can admit some degradation in the reliability of delivery and in com-
munication delays, the latter two impose stronger requirements on the overall quality of
the communication service.

Project Sequoia 2000 and the Bay Area Gigabit Network can be considered as two
interesting experiments involving multimedia communications with very demanding but
different requirements. Project Sequoia 2000 is a project jointly sponsored by the Digital
Equipment Corporation and the University of California and aimed at proposing new
techniques for solving research problems related to a new scientific discipline, earth system
science. The major goal of this discipline is to develop an integrated approach to observing
the Farth, and to devise remedies to the negative impact of human activities on the
global environment. This requires the availability of a large amount of data produced by
researchers in a number of disciplines, such as meteorology, bioclimatology, oceanography,
hydrology and geochemistry [10].

From the networking point of view, this project poses a number of challenging prob-
lems, like determining effective ways of visualizing satellite data. An example of these
problems is to allow the fast-forwarding in either the temporal or spatial dimension of a
composite sequence of frames collected from a weather satellite and stored in a remote file
server. The goal is to have an effect similar to that achieved by TV weather forecasters,
who show movement of a storm by composing a sequence of images collected in a 24-hour
period. A single frame from a satellite instrument contains 4 Mbytes, assuming 2K x 2K
pixels and 1 byte/pixel for color; we need a broadband network that can not only deliver
the 640 Mbits/sec required by a 20 frames per second rate, but also guarantee that the
delivery of these data will not suffer any pause or strong delay that would degrade the
real-time viewing.

On the other hand, the Bay Area Gigabit Network will be a testbed for experimenting
with applications such as teleseminars, teleconferencing and other forms of electronic
interaction among a large number of individuals from research and industrial organizations
located in the areas surrounding the San Francisco Bay. For these applications, the
bandwidth requirements are expected to be much lower (i.e. 50 Mbits/sec for a single
video channel), but with stronger delay and delay variation requirements. In fact, for



this kind of application it is very important to achieve not only a low communication
delay, but also a good synchronization among the multimedia streams received by all the
participants, to allow interactions to be as similar as possible to those achievable, for
example, in a traditional seminar [12].

We believe that, regardless of their differences, all these new applications require
networks capable of providing a guaranteed quality of service. This means that, even if
less critical applications, like for example distributed video advertising, may actually ask
for a quality of service lower than the one needed by a medical information system, both
these applications will require from the network provider a communication service with
well defined quality indexes, such as those related to performance and reliability of the
communication.

Several proposals for the design of such a service have been recently presented in the
literature, and will be briefly described in the next section. However, the design of most
of these proposals suffers of a very primitive and inflexible interface between the client
and the service.

The problem of providing a flexible real-time communication service, suitable for a
wide range of multimedia applications, can be helped by improving the adaptivity of
the reservation and control mechanisms of real-time protocols. In this paper, we present
a client interface model that can improve the flexibility and the adaptivity of real-time
communication networks, and describe how we plan to use it for the next version of the
Tenet protocol suite, developed by the Tenet Group at the International Computer Science
Institute and the University of California at Berkeley. The proposed model improves the
utilization of the network resources, and is expected to increase the network’s ability to
support real-time channel, while continuing to offer a guaranteed quality of service.

2. Quality of Service Characterization

In spite of the several research efforts made in recent years to provide quality of service
in real-time networks, there is still no wide consensus on what should be the features and
mechanisms of such networks.

From the client’s point of view, the quality of service of a real-time network is deter-
mined by the values of some end-to-end performance parameters. Such parameters may
be expressed in terms of three quality indexes:

1. traffic throughput: this index is related to the amount of data that will be sent
through the network per unit time. It usually specifies the traffic communication
needs in terms of the bandwidth required. These needs may be specified, for exam-
ple, as a packet transmission rate or as an interpacket distance. These values may
refer to the peak performance or to an average over a specified interval. In addition
to representing a requirement of the client, a throughput specification can be used
by the network to determine the amount of traffic that will be produced by that
particular client. In this sense, this index may be interpreted by the network as a
client’s pledge to obey certain traffic restrictions.

2. transmission delay: this quality index is the delay that the transmitted data will
suffer through the network. This parameter may be expressed in terms of an abso-



lute bound or of a probabilistic one. In addition to a delay bound, a bound on the
delay variation, or jitter, can also be specified. Depending on the real-time protocols
being used, bounds on communication delay and jitter may be either client-specified
quality requirements or a measure, evaluated by the network, of the current per-
formance of the real-time service. In the first case these indexes are used by the
network to evaluate the feasibility of a connection and the amounts of resources re-
quired for its establishment. In the second case they are the result of an evaluation
of the capabilities currently available in the network, and are submitted to the client
who can accept or refuse the proposed QQoS.

3. transmission reliability: this quality index is primarily related to the buffering mech-
anisms involved in data transmission along the network. In packet-switching net-
works, packets are received by intermediate nodes, and, until they are transmitted
to the next node on the communication path, are stored in buffers. Because of the
limited size of these buffers, it might happen that, due to traffic congestion, over-
flows cause some packets to be lost. A probabilistic bound on such kind of losses
can be used as a measure of the reliability of a communication service; its value will
influence the amount of resources required for the establishment of a connection. In
a way similar to what happens for the delay indexes, transmission reliability can be
a client-specified parameter, or a parameter measured by the network!.

The above mentioned indexes can be used alone or in various combinations as quality
of service specifiers. As we have seen, in some cases they are specified by the clients, while
in other cases they are evaluated by the network and proposed to the client for approval.
In all cases they should be considered as representing a commitment by the network to
provide a transmission service conforming to given performance parameters. However, a
crucial problem is still unresolved in the area of real-time communication networks: how
strong this commitment has to be, and what kinds of guarantees a client should receive
from the service provider.

The majority of the solutions proposed during the last few years try to solve this
problem by using one of two different approaches:

o Hard Guarantees: the network commits to offer a service, whose quality is precisely
specified through a number of traffic and performance parameters. A contract is
required between a client and the network, in which the former specifies the char-
acteristics of its traffic and makes a pledge to respect them for the duration of the
contract, while the latter promises to provide a service conforming to the client’s
requirements. To protect the guaranteed level of quality from the effects of mis-
behaving clients and fluctuations in the network’s load, mechanisms for resource
reservation, traffic admission control and rate control have to be enforced. Service
is not provided if the available resources and the traffic characteristics of the client
do not allow the expected service to be achieved.

o Soft Guarantees: in this case, when a client requests a real-time service, the net-
work evaluates the current traffic load and the characteristics of the traffic of the

T Another aspect of reliability is related to the occurrence of permanent or temporary failures in the
network, but 1t will not be considered in this paper



requesting client. Such characteristics do not have to be related to the worst-case
situation as in the hard guarantees approach, but can be descriptive of the average
behavior of the client. With these data, the network evaluates an achievable level
of quality and submits it to the client for approval. Since this level depends on the
assumption that the network’s load will conform to the current situation, and that
the existing and future clients will not modify it, no strong commitment can be
made by the network. In fact, whenever the load conditions of the network change,
the quality of service provided changes as well; this calls for adaptive clients, i.e.
clients capable to tolerate and compensate fluctuations, and even disruptions, in the
network’s service.

In the SRP protocol [1], clients can specify their requirements by using three traffic
parameters and one performance index. The first three are respectively the maximum
message size, the maximum message rate, and the maximum burst size. The performance
index is a delay specification, given as a target, and a maximum value for the end-to-end
transmission delay. Two classes of services are distiguished, guaranteed and best-effort.
For guaranteed service, a resource reservation is made on the basis of the linear bounded
arrival process abstraction; in this sense SRP offers hard guarantees for the expected
quality of service.

A more general approach to hard guarantees is proposed by the Tenet Group [6].
The client specifies its throughput requirements in terms of a minimum and an average
interpacket time, the latter averaged over a client-specified interval. The delay require-
ments can be specified in terms of an absolute upper bound on the transmission delay
(deterministic service), or of a probabilistic bound (statistical service), or as a delay jitter
upper bound (bounded-jitter service) [11]. A communication reliability requirement can
also be specified with a probabilistic bound on packet losses.

A different solution is proposed in the Flow Protocol [13]: a traffic control algorithm
is introduced to control the average transmission rate of data flows. The client can specify
its traffic by means of an average transmission rate and an average interval, so that the
network can reserve the resources required to satisfy the client’s needs. The proposed
algorithm has also a beneficial effect on the delay that packets will suffer in the network.
However, no guarantee is given in terms of a bound on the communication delay. For
these reasons, the Flow Protocol can be considered as offering hard guarantees only for
what concerns traffic throughput.

The Stream Protocol Version 11 (ST-II) [4] requires that the client specify its traffic
requirements with a set of throughput parameters such as, for example, the desired and the
minimum packet size and rate. From these data and the current traffic load, the network
evaluates the throughput and delay figures actually obtainable and proposes them to the
client. Throughput is expressed by an allowed packet size and rate, while communication
delay is represented by an accrued mean delay and delay variance. The capabilities of
the network to guarantee the promised quality of service are difficult to determine, since
neither in the protocol specification nor in its implementations (e.g. [9]) are algorithms
presented for resource reservation and scheduling. However, the suggested solution of
providing a guaranteed service only for the average data rate of each communication, and
of sharing with the other connections additional network capacity for accommodating
bursts, seems to be able to offer only soft guarantees.



In [3] a particular class of multimedia applications, called playback applications, is
introduced. The clients of these applications can adapt to variations in the quality of
service provided by the network and even endure temporary disruptions in the service.
For this kind of application, a new type of real-time communication service is introduced
in addition to the guaranteed one provided for non-playback applications. In this service,
called predicted, the network attempts to deliver a service that satisfies the client’s requests
by reserving an amount of resources related to recent measurements of the traffic load;
however, when the traffic conditions change, the quality of service provided will generally
change as well.

The soft guarantees approach is likely to exhibit an important advantage when com-
pared with solutions offering a guaranteed service: since all protocol computations and
reservations are made on the basis of the current traffic situation, the amount of resources
to be booked for each client in the network nodes may be smaller. This should allow the
establishment of a greater number of communications and an improvement in the utiliza-
tion of the network’s resources. The latter effect could be due to the fact that clients of
this kind of service will be able to endure reductions and disruptions in the service, as a
consequence of the admission of new, more demanding, traffic or of unpredictable changes
in the behavior of some other client.

The validity of the soft guarantees approach relies mainly on the existence of this very
particular class of clients and multimedia applications. Indeed, as we have shown in the
examples before, it is true that some applications have less restrictive requirements than
others and show a more regular traffic pattern. However, this does not necessarily imply
that such applications and their users will be willing to accept a service whose quality is
not guaranteed in all conditions.

The level of flexibility available in most of the current real-time protocols is unsat-
isfactory, leading to inefficiencies in the network’s utilization. The solution we propose
for this problem is to introduce new mechanisms in the protocols that provide hard guar-
antees for quality of service, in order to improve their adaptability to changes in load
conditions. To do so, we have devised a new, and as general as possible model for client-
network interactions, and a new, architecture independent service interface that can be
adopted by networks using different mechanisms to offer guaranteed quality of service.
The introduction of the new model and service interface is advantageous also from the
network clients’ point of view since, by improving their capability to negotiate the quality
of service with the network, it allows them to request a communication service that better
conforms to their needs, and increases the chances to have such a service established.

3. The Client-Network Interaction Model

Most of the real-time protocols proposed in the literature include a very simple scheme
for the interactions between the clients on one side, and the network on the other. A real-
time communication client has in general a set of performance requirements reflecting
the quality of service it expects to obtain from the network. In the case of protocols
providing hard guarantees for the quality of service, the network can be considered as a
communication server that, if sufficient resources are available, is able fully to satisfy the
client’s requirements for the whole duration of the connection.
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Fig. 1. States of a Real-Time Network Client

A client who requests the establishment of a real-time connection has to describes its
requirements to the communication server. Then the server evaluates the request, and
produces a positive or negative answer. In the first case, the server has been able to
reserve the resources needed for establishing the connection and to ensure the requested
quality of service; a positive answer enables the client to start the communication by
sending packets along the established channel.

If the client receives a negative answer, it may abandon the request, or retry later
with the same requirements, hoping that this time it will be accepted. The client may
also decide to input a new request with different requirements, especially if additional
information explaining the reason for the rejection was included with the network’s answer.
Once the connection has been established there is no other form of interaction between
the client and the network, except that the client will eventually request the tear-down
of the connection.

The behavior of a client of such a service can be described by means of a state diagram
(Fig. 1), where only the states related to communication have been included. The client
is in the connecting state when requesting a connection with a guaranteed QoS. If the
server gives a positive answer (accepted transition) the client is allowed to move to the
running state and to start the transmission. It will remain in this state until it closes the
connection (end transition), or until killed for some reasons (e.g. a failure) by the network
(kill transition).

The simplicity of this model can lead to inefficiencies in the network utilization and
to a high number of rejected calls. In some cases, for example, the network could accom-
modate a request with slightly different performance or traffic parameters, but the client
does not have enough information about the network’s state to modify its requirements
accordingly. In other cases, a saturation situation could be easily resolved by modifying
existing connections.

Our intention in this paper is to examine the conditions for allowing a more complete
dialog between the client and the network. We also want to see whether some parts of
this dialog can be automated, and analyze the feasibility of its implementation.



4. A Profile for Real-Time Network Clients

We will develop our proposal by using as an example the Tenet real-time communication
model. In the protocol suite based on the Tenet model [8], real-time communication is
based on simplex fixed-route connections, called real-time channels, or simply channels.
The establishment of a new channel is realized in four steps:

1. The client determines the values of the network parameters characterizing a con-
nection to be established with a specific destination. The client is presumed not to
have, in general, any information on the network’s state.

2. The network receives the request and evaluates it. This evaluation is not centralized
in a particular node, but is performed by submitting the request to each node on
the path selected between the source and the destination. If a node has sufficient
resources to accept the new connection without compromising the performance of
the already existing channels, an adequate amount of resources is conditionally
reserved for the new channel.

3. The request proceeds toward the destination until one of the following events occurs:
(i) one of the nodes along the path cannot accommodate the new channel, (ii) the
destination is successfully reached and can accomodate the new channel. In the first
case, that node sneds a negative answer toward the source. In the second case, the
destination sends a postive message back to the source.

4. Starting from the last node reached, the answer message proceeds backwards to the
source, following the same path of the request message. If the answer is a rejection,
the resources tentatively reserved are released; otherwise they are confirmed and the
channel is established.

First, the client sends a request for a channel that will best fit its traffic and perfor-
mance requirements. Then, the network replies with a channel established or a channel
rejected message. In the latter case, a brief description of the cause of rejection is provided.
In fact, the network only specifies the resource whose shortage was responsible for the
rejection. This kind of information does not give much help to the client in deciding what
to do, since the client has no quantitative data on the basis of which an acceptable request
could be formulated. In some cases, the network might be very close to establishing the
channel, while in others the current load conditions could preclude the acceptance of all
practical requests.

If the connection has been refused, then the client has two possibilities. The first
is to repeat the same request until it is accepted. In addition to generating a flood of
establishment related traffic on the network, this solution will cause the client to wait and
to waste some of its computing resources. Since rejections of channel establishments are
most likely to occur during periods of heavy network load, this approach seems particularly
inappropriate.

The second possibility is that the client modifies its request, if this is acceptable to
its application, by changing the values of some of its requirements, and submits it again
to the network. To do so, the client needs more detailed information about the current
network state.



Furthermore, the network can profit from an improvement in the amount of infor-
mation that a client provides when it requests the establishment of a connection. For
example, a client could specify, as a performance index, a range of acceptable values
rather than a single one. The network could then choose the value, compatible with the
client’s requirements, that fits best the current situation.

5. A Performance-Oriented Classification

As we have shown in the previous section, during its lifetime a real-time client is either in
the connecting state or in the running state. In the Tenet scheme, to request the creation
of a real-time connection a client has to specify the following parameters [5]:

o for the traffic description, the minimum packet interarrival time x,,;,, the average
packet interarrival time z,,., averaged over an interval I, and the maximum packet
S1Z€ Spmau;

e for the performance requirements, a bound on the end-to-end packet communication
delay and, optionally, on its variation, or jitter;

o for the reliability requirements, a lower bound W on the probability of successtul
delivery of packets to the destination.

A real-time channel is called deterministic, statistical or jitter bounded depending on
whether the delay bound is specified respectively i) as an absolute upper bound D, ii)
as a bound D to be satisfied with client-requested probability Z, or i) as a pair (D, .J),
where J is the client-requested delay jitter upper bound.

We now propose an extension to this classification, based on the capability of a client
to be statisfied by a range of values for the traffic and performance parameters. A client is
said to be inflexible when it has fixed requirements, i.e. requirements that do not provide
the network with any latitude at the establishment of the connection. Because of this
lack of latitude, for such a client the network’s only possible answers to an establishment
request are the rejection of the request or its acceptance as it is.

A client is said to be flexible when it is willing to accept a range of qualities of service.
The client indicates its flexibility by specitying ranges of acceptable values for one or more
components of the set of performance and traffic parameters. Note that a flexible client
reduces to an inflexible one when all the ranges of its parameters go to zero.

Let us consider a client whose performance requirement is a bound D on the end-to-
end packet delay. If the client is inflexible, only the value of this parameter needs to be
assigned. If the client is flexible, it also has to specify a range of acceptable values for the
specified quality-of-service index. In the case of the delay bound, this could be specified
as a desired delay bound D and a delay range 6 such that the network-proposed delay
bound D, is acceptable by the client if:

D<D,<D+¢

Since for this new class of clients the network can choose the deliverable QoS in a range
of values, the probability of channel rejection is generally reduced without increasing the
complexity of the channel establishment algorithm.



It might be argued that a network provider should adopt a conservative approach
and always choose for a flexible client the value of each parameter most favorable to the
network and least favorable to the client. Following such an approach, in the previous
example the network would select a delay bound equal to the upper bound D + 6.

Two considerations can be made against this argument. The first consideration is
that client satisfaction, intended as a commitment by the network to adhere as much as
possible to the desired (rather than the tolerable) QoS specification, should be privileged
over other issues, especially when the pricing policy is appreciably influenced by parameter
the parameter in question.

The second is that the amount and the kind of the resources to be allocated to a
real-time channel are functions of all three client-specified quality of service parameters,
i.e. traffic throughput, delay, and reliability. For example, in the case of a heavily loaded
network where most of the communication delay is generally due to queuing, by choosing
a lower delay bound the network could reduce the amount of buffers to be allocated to a
channel in the nodes.

We would like to insist on the point that, in our proposal, even a flexible client would
still receive a well-defined and guaranteed quality of service. Indeed, the flexibility of a
client is related only to the establishment phase of a real-time connection. Once the con-
nection is created and its QoS is determined, the corresponding values of the performance
and reliability parameters are guaranteed for the whole duration of the communication.

6. A Time-Oriented Classification

In addition to the performance-oriented profile discussed in the previous section, we now
propose another one based on the capability of a client to specify the expected starting
time and duration of a real-time communication at the time such a service is requested
to the service provider.

A duration parameter has never been considered in any of the real-time protocols
proposed in the literature. However, we believe that the next generation of real-time
network models should also cope with this aspect, since the ability to book a communi-
cation service in advance seems to be an essential requisite in several future multimedia
applications scenarios.

In the current version of the Tenet protocol suite, the reservation of the resources for
establishing a real-time connection is made just at the time at which this connection is
needed. We propose an extended model where the client is given the possibility of booking
in advance the resources it needs for its communication requirements. This should improve
the network’s utilization and reduce the probability that a request for one or more new
channels is refused for lack of resources.

In the model we propose, a client can be defined to be time-specified or time-unspecified.
In the first case, the client specifies to the network the time when the requested service
should be made available, as well as its expected duration. This is done by using two
new traffic parameters, i.e. T and AT, respectively. In the second case, the client does
not specify any duration but only the desired starting time. A request for the immediate
establishment of a connection will be specified by setting T equal to zero.

A reservation mechanism, to be successful, has to be enforced by means of control



mechanisms. For this reason the network must verify that a time-specified client does
not exceed the time interval granted to it, unless the amount of resources available in the
network allows an extension of that interval without jeopardizing the satisfaction of the
needs of other clients who are either running or have pre-reserved resources for the very
near future.

Clients should be encouraged by the service provider by means of an appropriate
pricing policy to specify a duration for their real-time connections. Knowledge of starting
times and durations should allow the service provider to predict more accurately the
evolution of the real-time load. Given the estimated duration of a connection, the network
could decide to spend more time to establish an optimized connection for a long-duration
client, or to devise, for a client demanding a large amount of resources, a path that can
reduce the probability of saturating the capabilities of the network to accept real-time
traffic.

The addition of two traffic parameters to the client-service interface may be seen as
a new burden on the client. However, there are a number of multimedia applications
where time constraints are already part of the problem. For example, teleconferences and
collaborative work sessions are to be scheduled in advance like any traditional meeting, to
allow participants to avoid conflicts with other commitments and to reserve the facilities
needed.

7. Dynamic Management of Communications

We have outlined the main features of a new client-service interface that increases the
flexibility of both parties during real-time channel establishment. However, it would be
advantageous to exploit this greater flexibility also throughout the lifetime of a real-time
channel. This feature would allow the network to increase its capabilities to accept real-
time traffic, and should permit the introduction of load-balancing procedures and fault-
tolerance mechanisms in the management of a network providing real-time communication
services.

From the viewpoint of this dynamic management, the behavior of a client can be
defined as being either static or dynamic. A static client requires that, once the connec-
tion has been established, the quality-of-service bounds will be obeyed during the whole
duration of the connection. Thus, for a static client the QoS is constant throughout the
session.

For a dynamic client, the status of the connection can be modified, with the client’s
agreement, even while transmission is taking place. A modification in the quality of an
existing connection might be requested by the network (e.g. to react to the occurrence of
particular traffic conditions, such as the saturation of resources by the real-time load) or
by the client it (e.g., to adapt the channel to new conditions in the application).

In the first case, a dynamic client must have indicated at the time the channel is
established, a range of acceptable values for one or more of the quality-of-service indexes.

In the second case, the network has to modify the allocation of resources to accommo-
date the new QoS requested by the client. Consequentely, the modification of a channel’s
parameters by the client is subjected to approval by the network, and, in general, can be
treated as a request for a new connection.
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Fig. 2. The Extended State Diagram for Real-Time Network Clients

The behavior of a client can therefore be described by means of an improved state
diagram (see Figure 2). In this diagram two more states have been added to that shown
in Figure 1. A client is in the wait state whenever the service requested is still to be
made available by the network. The suspended state includes all the situations when the
network might have to suspend a running communication, as, for example, in the case a
client’s traffic would not conform to the original commitment, or for the occurrence of a
failure in the network.

8. Conclusions

The problem of providing a flexible real-time communication service, suitable for a wide
range of multimedia applications, can be solved by improving the flexibility of the hard
guarantees approach to real-time service design.

In this paper we have presented a general model to improve the flexibility and the
adaptivity of real-time communication protocols, and we have described how it can be
applied to the Tenet real-time protocol suite.

The proposed model improves the utilization of network resources and increases the
network’s capability to face saturation of resources by real-time requests, while continuing
to offer guaranteed qualities of service. A new profile for the clients of real-time communi-
cation services has been introduced, which takes into account the possibility of negotiating
the QoS of a connection during its establishment, and of modifying the characteristics of
an existing connection.
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