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Abstract

A feature model captures various possible configurations
of products within a product family. When configuring a
product, several features are selected and composed. Se-
lecting features at the program level has a general limi-
tation of not being able to relate the resulting configura-
tion to its requirements. As a result, it is difficult to decide
whether a given configuration of features is optimal. An
optimal configuration satisfies all stakeholder requirements
and quantitative constraints, while ensuring that there is no
extraneous feature in it. In relating requirements and fea-
ture configurations, we use the description of the problem
world context in which the software is designed to operate
as the intermediate description between them. The advan-
tage of our approach is that feature selection can be done at
the requirements level, and an optimal program level con-
figuration can be generated from the requirements selected.
Our approach is illustrated with a real-life problem of con-
figuring a satellite communication software. The use of an
existing tool to support our approach is also discussed.

1. Introduction

A software product family provides several features, sub-
sets of which may be configured into products. Feature
selection is concerned with the issue of determining fea-
tures that should be included in a product in order to satisfy
requirements expressed by various stakeholders [10, 26].
Typically, there are several sources of constraints that affect
feature selection.

Some of these constraints may come from implemen-
tation platform or language: for instance, the use of a
single-threaded operating system may prevent composition
of features which require multi-threading. Some constraints
may come from requirements: for instance, a user require-
ment for two-way transmission between a ground user and
a spacecraft requires selection of features for “uplink” and

“downlink”. Some constraints may come from the problem
world context, i.e. from the physical context in which the
software is used. For instance, the fact that some users will
send or receive files to a spacecraft remotely (away from
a network control centre) may require inclusion of remote
login features.

Although feature configuration has to happen ultimately
at the program level, focusing on the code, without suffi-
cient attention to the requirements and the problem world
context, creates several difficulties [25]. In cases where
resources—such as CPU time and memory capacity—
are limited, inclusion of extraneous features needs to be
avoided, while ensuring that the configuration satisfies all
stakeholder requirements. We call this an “optimal config-
uration” of features. In this paper, we propose a systematic
approach to generating feature configurations from selected
requirements.

We use the Jackson-Zave framework to requirements en-
gineering [36, 17] as our conceptual basis. One main prin-
ciple of this framework is a systematic separation of sys-
tem descriptions into (1) requirements, (2) problem world
context and (3) specifications (features). Following this
framework, we express differences in requirements, prob-
lem world context and the software, of products within a
product line using three separate feature models (other alter-
native variability models such as OVM or decision models
may be used instead). The first feature model (FM) repre-
sents different sets of stakeholder requirements that need to
be satisfied in different products, the second FM represents
the different contextual settings in which the software may
be used, whilst the third FM represents the different possi-
ble configurations of the software. In addition, quantitative
constraints, such as on the memory consumption of a con-
figuration, are expressed.

Separation of FMs in this way allows the developers to
consider feature configurations at the level of stakeholder
requirements. Our approach can be used to generate the op-
timal configuration(s) for selected requirements, thus pro-
viding a way of relating requirements to feature configura-



tions. We demonstrate the proposed approach with the con-
figuration of a file delivery protocol CFDP used by a satel-
lite communication software company. An off-the-shelf
tool-support is presented, and its limitations discussed. The
main contribution of the paper is a systematic approach to
relate requirements to feature configurations in order to ob-
tain optimal feature configurations.

The remainder of the paper is organised as follows. Sec-
tion 2 discusses the background to our work. The quantita-
tive constraints are introduced in Section 3. The proposed
approach to relating requirements to feature configuration is
presented in Section 4. Application of the approach to the
motivating example, and the use of an off-the-shelf tool to
support our approach are illustrated in Section 5. Related
work is discussed in Section 6. Section 7 provides some
concluding remarks.

2 Background

This section describes the motivating example used in
this paper, an overview of the Jackson-Zave framework, and
the way FMs will be used.

2.1 Movivating Example

The CCSDS File delivery Protocol (CFDP), defined
by the Consultative Committee for Space Data Systems
(CCSDS) [9], provides the protocol to transfer files between
file systems across interplanetary distances. The protocol
is independent from the data storage implementation and
requires only a few basic file storage capabilities. It also
assumes a minimum of two filestores, typically one within
the spacecraft and another on the ground. Capabilities of
the protocol include deferred transmission (if the communi-
cation link is unavailable, the transfer will be performed at
the next transmission opportunity), concurrent transfer and
transfer suspend/resume.

Figure 1 is an example of the problem world context for
CFDP. A typical problem world context for data transmis-
sion using the CFDP protocol includes a spacecraft, one or
more ground stations, a network control centre and a third
party, such as a laboratory or a remote user1. The remote
user connects her/his laptop (containing a CFDP entity) to
the NCC via the Internet, the NCC is then connected to a
ground station which is itself connected to the spacecraft.
This is an example of a “three parties” communication. In
“two parties” communication, there is no third party: data is
transferred between a spacecraft and a NCC. The protocol
supports different qualities of service (reliable or unreliable)

1In principle, there can be more than one spacecraft and several remote
users in some settings. The context of CFDP in Figure 1 is an illustrative,
rather than definitive, example used in this paper.
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Figure 1. Problem World Context of CFDP [9]

and different kinds of links: up (from ground to spacecraft),
down (from spacecraft to ground), or both.

In order to cater for customers with different CFDP
needs, the developers have created a library of CFDP fea-
tures as a software product line. Depending on the needs of
customers, developers select various features into a product.
In doing so, several constraints need to be satisfied:

• Stakeholder Requirements: The requirements relating
to the behaviour of the system have to be satisfied by
the product.

• Feature Dependencies: Some features are dependent
on other features, and the product created needs to re-
spect those dependencies.

• Contextual Constraints: In the field of on-board soft-
ware, CPU usage and memory footprint are two quan-
tities that have to be minimised, for reasons of the cost
of the hardware. There should be no extraneous feature
in feature configurations.

Currently, there is no formal way of systematically re-
lating the feature configuration to the stakeholder require-
ments and the contextual constraints. Configuring large
systems requires a high degree of knowledge about fea-
ture implementation and domain expertise, and when the
configurator does not have access to the knowledge and
expertise, producing appropriate configurations is time-
consuming and error-prone. Therefore, configuring a prod-
uct that meets the requirements for system behaviour as well
as satisfies the constraints imposed by the hardware is a real
challenge faced by the developers.

2.2 The Jackson-Zave Framework

Introduced in [36] and further expanded in [17], the
Jackson-Zave framework is an important paradigm in re-
quirements engineering. It has some key principles, two
of which are relevant to our discussions in this paper. One



principle is concerned with the properties of software arti-
facts. Intuitively, it suggests that requirements (R) are ex-
pressed in terms of properties of the problem world con-
text (W ), and specifications (S) which, within the problem
world context, are expected to satisfy the requirements. This
relationship is often described using the logical entailment
operator as: S,W ` R.

For example, the simplified requirement for a reliable
uplink in a two party communication (Rru) is to ensure that
the file sent by a user at NCC arrives at the spacecraft with a
high degree of success. The specification of this feature will
describe the behaviour of the software at the NCC end and
at the spacecraft end (Sru). It has to rely on the structure
and behaviour of the problem world context, including the
fact that the NCC is connected to one or more ground sta-
tions, which are in turn connected to the spacecraft, and how
the ground stations behave when a file is relayed (Wru).
The important point here is that the specification and the
requirements are two separate descriptions that can be con-
nected through the description of the problem world context
in which the specification is deployed.

The second principle is related to the notion of “ade-
quacy argument”, which describes how the three descrip-
tions are related and thus justifies that the logical entailment
S,W ` R holds. In essence, it describes the causality that
binds the three descriptions. In the case of the reliable up-
link feature, it shows how the requirement (Rru) is satisfied
by (Sru) and (Wru).

2.3 Feature Modelling

Our approach is non-prescriptive about the specific syn-
tax used to describe the dependencies between features. We
assume that an FM is a description of how features are re-
lated, typically involving the and/or, requires/excludes, and
cardinality relationships. Graphically, an FM may be either
a tree or a table or simple textual descriptions. For readabil-
ity, we use single-rooted DAGs (Directed Acyclic Graphs)
as defined by Schobbens et al. [28]. Additionally, each FM
may have constraints that cannot be easily expressed dia-
grammatically, which are written as in a logical language
such as propositional logic [3]. We assume that such an
FM can be translated into a propositional formula FM so
that a feature configuration (i.e. a set of features) fc is
a valid assignment of values to variables in the formula:
fc |= FM [3, 23].

3 Quantitative Constraints

In our approach, we follow existing suggestions to ex-
tend classical FMs with quantitative attributes [4, 26], but
try to be more systematic and align them with the Jackson-
Zave framework introduced before. We will first discuss

the syntactic changes wrt. FMs introduced in Section 2.3
and then revise the semantics.

3.1 Extending the syntax

In the syntax, we distinguish three main concepts: qual-
itative attributes, statements and constraints.

3.1.1 Attribute declaration

A quantitative (or feature) attribute is a named and typed
property of a feature, which can be measured. We may, for
instance, consider attributes such as CPU time or memory
usage of a feature. An attribute is defined on a per-feature
basis and written as a syntactic annotation of a feature node.

<qattribute> ::= <type> <name>

Where <type> denotes a primitive datatype and <name>

a unique identifier. Which datatypes can be used is dic-
tated by the reasoning engine used to implement these q-
constraints. For the purpose of this paper, we limit ourselves
to integers.

Note that the assumption that a quantitative attribute,
generally representing a software quality, can be measured
is rather strong. Actually, there are two factors. Firstly, it
is generally acknowledged that many of the classical soft-
ware qualities are too subjective to be quantified [21]. This
problem can be overcome by considereing technically well-
defined properties, such as memory or CPU consumption.
Secondly, it might be hard to specify these qualities on a
per-feature basis. This limitation also depends on what a
“feature” denotes, in our example case, memory consump-
tion, for instance can be specified for each feature2. CPU
consumption, however, is not strictly additive and requires
a domain-specific calculus. To this end, statements are a
flexible mechanism for defining and aggregating attribute
values.

3.1.2 Statements

A feature attribute is only a declaration of a (generally nu-
meric) variable. To define the values of the attributes, fea-
tures have to be annotated with statements:

<qstatement> ::= "[" <guard> "]" <definition>
<guard> ::= "selected" | "deselected"
<definition> ::= <name> "=" <function>

The <guard> denotes whether the definition holds for
the case when the feature is selected or deselected. For
each feature, there should be two statements with different

2Provided that strict coding conventions are followed by programmers,
as it is the case with our industry partner.



guards. The <definition> is a function over the attributes
of the feature’s sub-features.

This system can either be used to assign each feature at-
tribute a static value, or to define a hierarchical domain-
specific calculus, where the value of the attribute of a par-
ent feature is calculated as a function of the child feature’s
values.

In general, the definition of a parent feature attribute will
be a function aggregating the values of its children, and the
definition of a leaf feature attribute a static value. The def-
initions of ‘deselected’ feature attributes will then be con-
stants neutral wrt this aggregation function. For example,
if the parent feature is calculated by adding up the attribute
values of its children, the definition for a ‘deselected’ child
feature would be simply “0”. Note that this is not the only
use of the ‘deselected’ guard as it can be used, just as the
‘selected’ guard for any kind of constraint.

3.1.3 Constraints

Whereas statements describe the values that feature at-
tributes take, constraints defined on these attributes allow
to limit the variability of the FM. They are also feature an-
notations with the following syntax:

<qconstraint> ::= "[" <guard> "]" <expression>

The <guard> has the same meaning as before. The
<expression> is a predicate over all attributes which will
evaluate to true or false for given attribute values. As for
attribute types, the syntax of these expressions depends
largely on the reasoner used to automate q-constraints. Ba-
sically, they have two effects: they can be used to restrict
the values of feature attributes, or to exclude feature combi-
nations that violate certain rules. The choice of a given type
of spacecraft could, for instance, limit the allowed memory
usage of a configuration of the CFDP library.

Note, however, that most constraints ought to have a
‘selected’ guard; intuitively the non-selection of a certain
spacecraft type should have no influence on the memory
usage limit; this aspect would thus be captured by a sin-
gle constraint with a ‘selected’ guard attached to the feature
representing the spacecraft type.

3.2 Revising the satisfaction relation

In Section 2.3, we defined the basic satisfaction relation
|=B : a configuration fc is valid if its boolean encoding sat-
isfies the boolean encoding of the feature digram FM :

fc |=B FM.

Now that attributes and constraints have been added, a con-
figuration of an FM consists of a set of features and a set
of values for the feature attributes. For such a configuration

to be valid, it needs to satisfy the constraints on its attribute
values as well, i.e.

fc |=CSP FM,

where |=CSP denotes that the Constraint Satisfaction Prob-
lem (CSP) encoding of fc satisfies the CSP encoding of the
FM. These encodings are defined by Benavides et al. [4],
whose algorithm covers most of the constructs identified in
the previous section. Their algorithm translates an FM with
annotations such as ours into a CSP [24]. The algorithm
cannot be used as-is, as Benavides et al. do not make use of
explicit guards (they assume “0” to be the default value in
all cases). Indeed, a statement/constraint stmt with a ‘se-
lected’ guard attached to a feature f will become the CSP
constraint (f ⇔ stmt) whereas one with a ‘deselected’
guard translates to (¬f ⇔ stmt).

This leads us to define the general satisfaction relation.

Definition 1 Let fc be a configuration and d an FM, then

fc |= d iff fc |=B d ∧ fc |=CSP d.

3.3 Optimisation

During the configuration of an FM, constraints help to
reduce the number of choices that have to be made. Addi-
tional use can be made of the feature attributes by specifying
an optimisation goal [4].

The idea is to specify a function over the feature at-
tributes, which has then to be optimised (maximised or min-
imised) given the CSP encoding of the diagram. This way
one can obtain configurations that are optimal wrt an objec-
tive function. In the present case, memory and CPU usage
will be restricted by constraints, but can in addition be min-
imised to obtain not only configuration within the limits,
but truely minimal configurations. The objective is not part
of the FM itself, since it depends on the requirements and
as such is assumed to be added towards the end of the con-
figuration process. For instance, if a configuration of the
CFDP library is built for a network control centre (rather
than a spacecraft), memory usage need not necessarily be
minimised.

4 The Proposed Approach

The section discusses our approach, including the sepa-
ration of FMs into FMs related to requirements, problem
world contexts, specifications, expression of quantitative
constraints, and a general procedure for obtaining an op-
timal configuration.
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Figure 2. A Schematic overview of our ap-
proach

4.1 Overview

As shown in Figure 2, in this approach, feature de-
scriptions are separated into three FMs relating to the re-
quirements, problem world contexts and the specifications
(RFM, WFM and SFM) respectively. These models are
connected by two sets of cross links (xlinks) [25] over them
(RW and WS). In addition, there may be quantitative con-
straints (Q-constraints) over each of the models.

Propositional formulae of RFM, WFM and SFM will be
referred to as R, W and S, while rc denotes the config-
uration of R available to the customer. Propositional for-
mulae of links between the FMs will be referred to as RW
and WS respectively. Formulae of Q-constraints will be
referred to as Q.

The challenge is to find one or more optimal configu-
ration of the feature specifications for the selected require-
ments, represented by s, if they exist.

4.2 Separating Descriptions of Feature
Models

The three FMs of our approach are as follows:

1. Requirement FM (RFM): RFM describes different re-
quirements that can be satisfied by the product line.
This model is “high-level”, in the sense of reflecting
the requirements engineers view of the system, and
the number of features in this model being fewer than
other models. Therefore, the ability to generate opti-
mal configurations largely from this model helps solve
the problem of relating requirements to feature config-
urations.

2. Problem World FM (WFM): This model describes the
features in the system context by showing different
physical settings in which the software system might

be deployed. This model reflects the view of system
engineers who design the system hardware.

3. Specification FM (SFM): This model describes the
feature of the software, reflecting software engineers’
view of the system.

4.3 Linking RFM, WFM and SFM

In principle there are two sets of xlinks: between the re-
quirements and the problem world FMs, and between the
problem world and the specifications FMs. The first set of
links (RW) shows the problem world configuration required
by the requirements, and the requirements satisfied by the
problem world configurations. The second set of links (WS)
shows similar relationships between problem world config-
urations and features of the software.

4.4 Q-Constraints in RFM, WFM and
SFM

The different elements related to Q-constraints presented
in Section 3 can be attached to our 3 different FMs in order
to obtain a more accurate configuration of SFM. Attribute
declarations and statements, defining attributes types and
values, are typically attached to features of SFM but can
also be associated to RFM and WFM. Then, constraints on
the quantitative attributes defined in the statements can be
associated to RFM and WFM in order to, for example, re-
strict the amount of memory available for a configuration.
Finally, an objective function can be added to RFM. Optimi-
sation of the memory usage of a configuration of the CFDP
library is an example of such an optimisation function de-
fined on the memory load attributes of SFM.

4.5 Generating Optimal Configurations

In this approach there are three FMs connected by xlinks.
The developer will select a configuration of the require-
ments, and sometimes also in the problem world, and this
approach will automatically generate optimal configura-
tion(s) of software features.

With an optimal configuration, we refer to any config-
uration of SFM that satisfies the requirements (a selected
configuration RFM) within a particular context (a configu-
ration of WFM implied by the configuration of RFM), and
the quantitative constraints.

We now describe a general procedure for obtaining the
optimal configurations. Recall that R, W and S denote re-
spective propositional formulae describing the requirement,
problem world and specification FMs. Let [[R]], [[W ]] and
[[S]] be respective sets of valid assignments.



First, R, W and S should be independently satisfiable,
i.e. the sets [[R]], [[W ]] and [[S]] should be non-empty. Addi-
tionally, R, W and S should be collectively satisfiable, i.e.
there is at least one valid assignment for R, W , S, RW ,
WS, and Q.

Given a valid configuration of the requirements (rc ∈
[[R]]), a valid set of configurations of the problem world con-
text (w ⊆ [[W ]]) is one satisfying the constraints RW : for
any wc ∈ w, the following holds

wc |=B rc,RW,W

Again, given any wc ∈ w, a valid set of feature configura-
tions (s ⊆ [[S]]) is one satisfyingWS andQ: for any sc ∈ s,
the following holds

sc |=B wc,WS, S

sc |=CSP Q

If the set s is empty, then there is no possible configu-
ration for requirements selected in rc. If there is only one
member in sc, then the configuration is the optimal one. If
there is more than one member in sc, then there are several
optimal configurations, where additional constraints may be
applied.

The feature configurations identified satisfy the require-
ments and the quantitative constraints, and therefore should
be optimal. In order to ensure that this is really the case,
the following sanity check can be performed on the config-
urations. The aim is to identify any unnecessary feature in
the configurations. Let f be a feature in sc, and let δ be
sc \ {f}. Then we need to show that

δ 2B rc,RW,W,WS, S

That is, removal of any feature from the configuration will
lead to a failure to satisfy the requirements.

Notice that we regard the requirements and the quantita-
tive constraints as equally important. Therefore, all config-
urations found satisfy them. In cases where either quanti-
tative constraints or requirements are regarded as more im-
portant, then they may be evaluated in a particular order so
that when no configuration is found, it is possible to identify
conditions that are too strong.

In summary, the developer in this approach chooses a
particular configuration of the requirements by selecting
and deselecting features in the requirements FM. Once a
configuration is chosen, the validity of the configuration
within RFM is checked. If valid, all valid configurations of
WFM that satisfy the constraints over the RFM and WFM
are selected (if they exist). For each configuration WFM,
SFM are further generated. Since constraints prevent se-
lection of unnecessary features, the configuration generated
will be optimal for the requirements chosen.

Linking requirements and specifications allows us to rea-
son meaningfully about feature configurations. It is now
possible to obtain feature configurations that satisfy func-
tional requirement as well as quantitative constraints. In ad-
dition, it is possible to identify configurations of SFM never
required by the configurations of RFM and WFM, and a
configuration of RFM that can never be satisfied by SFM.

5 Running Example

We now turn to the running example introduced in Sec-
tion 2, and work through the configuration of the CFDP file
delivery protocol developed by Spacebel, while providing
further details of our approach. We also discuss how an off-
the-shelf tool can be used to support our approach, whilst
noting some of its limitations.

5.1 Expressing the RFM, WFM and SFM

In the CFDP example, features of the requirements FM,
extracted from the CFDP documentations, are shown in Fig-
ure 3. The diagram shows that there are three main features
in the requirements model: the sizes of files to be sent or
received can be small, large or both, the number of parties
involved may be either 2 or 3, and the quality of services
(QoS) for uplinks and downlinks may be either reliable or
unreliable.

Requirements

File Size Party # QoS

Small Large 2 3 Unreliable Reliable

Downlink Uplink Downlink Uplink

Figure 3. RFM

Features in the problem world context were obtained in
the same way as ones in the requirements (see Figure 4). In
every configuration, there has to be a spacecraft, NCC and
at least one ground station. If the number of parties is 3,
the third party has to be either a remote user or a laboratory,
and if it is a laboratory, it may send, receive or do both.
Moreover, there can be different types of spacecraft having
different characteristics (Type 1 and Type 2)

In the specifications of Spacebel, there are several fea-
tures (see Figure 5): a terminal (such as spacecraft, NCC,
remote user or laboratory) has to have at least one of the two
features recv min or snd min in order to be able to receive
or send files. Then, one can also select pus feature which
is a protocol allowing remote control of a CFDP entity,
extended to support file forward procedures and reboot to
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Third Party Network Control Centre Ground Station

Laboratory Remote user

Sender Receiver

Spacecraft
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Figure 4. WFM

manage reboot of a CFDP entity in case of software crash.
Those five features have themselves child features, but they
are omitted for space reasons.

...
... ...

............ ............

......

Software

pus rebootrecv_min

recv_min_excl

extendedsnd_min

recv_min_ackrecv_inactivity recv_reception
_oppor recv_fsrecv_usr_

proxy_put

......

recv_keep_alive recv_asynch_nak recv_prompt_nak recv_suspend
_resume

recv_immediate
_nak

.........

<<excludes>>

Figure 5. SFM

When translated into propositional formulae, nodes
representing “significant features” in the models become
propositions, while other nodes become logical connec-
tives.

5.2 Expressing constraints

Having described RFM, WFM and SFM of Spacebel, we
can now express the constraints of the models according to
our approach. The relationships between RFM and WFM
are as follows:

3 ↔ Third Party (1)
2 ↔ ¬ Third Party (2)

Remote User → Reliable (3)
Sender → Uplink (4)

Reicever → Downlink (5)

It says that if the option 3 (which indicates the number
of parties) is selected in RFM, then Third Party has to be
selected in WFM, and vice versa. It means that the world
context has to include a third party if the user requires 3 par-
ties. Similarly, if the option 2 is chosen, then Third Party

has to be excluded from WFM. The problem world context
requires that if Remote User is selected, then the require-
ment Reliable has to be selected too. Finally, if a laboratory
is declared as Receiver or Sender in the world model then,
features Downlink or Uplink, respectively, have to be se-
lected in RFM.

We can also express the relationships between WFM and
SFM as follows:

Spacecraft → snd min

∨ recv min (6)
Network Control Center → snd min

∨ recv min (7)
Sender → snd min (8)

Receiver → recv min (9)

The two first formulae are similar: they mean that if a
CFDP entity, Spacecraft or Network Control Center, is se-
lected that entity should at least be able to send or receives
files, i.e. snd min or recv min should be selected in SFM.
The two last formulae are also linked together: if a CFDP
third party entity is declared as Sender (Receiver) in WFM
then snd min (recv min) feature should be selected in SFM.

Finally, we will define the Q-constraints of our CFDP ex-
ample. For the purpose of this illustration, we will consider
a single quality only: memory consumption. The values
and constraints presented here are chosen to illustrate. We
first need to declare an attribute for each feature which we
call [featurename].mem, of type integer. The statements for
recv keep alive.mem are then the following:

[selected] recv keep alive.mem = 4
[deselected] recv keep alive.mem = 0

The first one means that if feature recv keep alive is se-
lected, the value of its mem attribute will be 4. Otherwhise,
its memory consumption will be 0. The attribute statements
of the other leaf features are similar.

For the non-leaf features, the statements express aggre-
gation. For recv min, this means:

[selected] recv min.mem
= Σf in children(recv min)f.mem+ 2
[deselected] recv min.mem = 0

where children() returns the direct children of a feature.
Again, the statements of the other non-leaf feature are sim-
ilar. They mean that the memory usage of recv min is
the sum of the mem attributes of its sub-features plus 2
for overhead. The value of ‘deselected’ statements of the
sub-features have to be defined in such a way that they
will be neutral wrt the calculation of the memory usage of



recv min. All statements are not represented here for rea-
sons of conciseness.

Whereas SFM declares attributes and specifies their val-
ues, WFM will contain constraints over these attributes.
Namely, we will attach two constraints to the subfeatures
of the Spacecraft feature.

[selected]Software.mem ≤ 15 for Type 1 (10)
[selected]Software.mem ≤ 25 for Type 2 (11)

Those constraints mean that if a spacecraft of Type 1 is se-
lected in WFM, the memory load of a configuration of the
CFDP library (represented in the mem attribute of the root
of SFM) must be smaller than 15. For Type 2, the limit is 25.
Those constraints, applied depending on the type of space-
craft selected, will rule out any product that have a memory
load superior to the respective limits.

In this example, we have no constraints to attach to re-
quirements. However, we can consider the following opti-
misation goal:

min(Software.mem), (12)

meaning that the chosen configuration should be the one
with the minimal memory load. Note that the goal depends
on the requirements: if the configuration is built for a net-
work control centre (with no memory limitation) the goal
would not need to be considered.

5.3 From RFM, WFM and SFM to Fea-
ture Configurations

Having described the models and the constraints, we se-
lected Large file size, a number of parties equal to 3 and
a Reliable quality of service in RFM. The choice to have
only 3 parties implies that one has to choose at least one
of the two third parties in WFM (Remote User and Labora-
tory). We selected a Remote User and a Type 1 spacecraft
but SFM is not completely configured as one has to choose
at least one of the two features snd min or recv min. Q-
constraints should help to reduce the set of configurations
by discarding those with a memory usage higher than 15.
Morever, the objective function defined in RFM will give
an optimal configuration.

5.4 Pure::Variants

The off-the-shelf tool we used is pure::variants, an
Eclipse plug-in developed by pure-systems GmbH [5]. We
chose pure::variants because of its maturity, stability and
support for several aspects of our approach.

The use of pure::variants in our Spacebel example was
done in three main steps. First, we represented the three
FMs (RFM, WFM and SFM) using the syntax of the tool.

Figure 6. WFM in pure::variants

This step includes the definition of the constraints linking
elements of the same model. The <<excludes>> rela-
tionship between features recv min excl and recv min ack
of SFM (Figure 5) is an example of such a relationship. The
result of this first step for WFM is shown in Figure 6. Ex-
clamation marks in front of features Spacecraft, Network
Control Centre and Ground Station indicate that they are
mandatory while the question mark associated with Third
Party indicates that it is optional. Crosses in front of Re-
mote User, Laboratory, Sender and Receiver indicate or-
decompositons while the xor-decomposition involving Type
1 and Type 2 is represented by a double-headed arrow.

In the second step, relationships between features of dif-
ferent FMs were defined. The developer could then select a
specific member of the requirement model in order to obtain
the feature configurations. The running example has been
fully worked out in pure::variants, and can be found in [31].

5.5 Limitations

Although we were able to implement a part of our ap-
proach in pure::variants, there are some important limita-
tions, which are now discussed.

The first limitation was the impossibility to select several
instances of the same feature in pure::variants. This option
could be useful if we had a constraint like:

Large → #GroundStation > 1 (13)

It means that if large files have to be transferred, there
should be several ground stations involved in the transfer.

The impossibility to easily check quantitative constraints
over attributes was another weakness of the tool. We were
able to calculate, for example, the sum of attributes of
selected features and show it in the graphical user inter-
face but it was not possible to automatically discard so-
lutions wrt constraints and optimisation goals defined in
WVM and RVM. Consequently, the part of our approach
related to Q-constraints could not be fully implemented in
pure::variants.



6 Related Work

In this paper, we chose to build on the extensive work
carried out by Jackson, Zave and others in an attempt to
clarify the notions “requirement” R, “specification” S and
“context” W [37, 15, 17]. Jureta et al. [19] recently ex-
tended this work; they introduce the concepts of “qual-
ity constraint” Q and “attitude” A and change the mono-
tonic entailment relation of the adequacy argument (shown
in Section 2.2) to a non-monotonic one. This core ontol-
ogy allows to structure the modelling/description space and
makes relationships between different types of descriptions
explicit. Our goal was to propose an approach that covers
this ontology, and that preserves the distinction of the differ-
ent types of descriptions. This is, to the best of our knowl-
edge, the first approach to do so, as shown in the following
survey of existing approaches.

Requirements Engineering Approaches. The goal-
oriented approach KAOS refines high-level goals into sub-
goals and then into operational requirements [32]. Opera-
tional requirements are then assigned to agents in the solu-
tion space [22]. Using a similar notion of goals and goal-
refinement, the NFR framework discusses how goals may
contribute to achieving software quality [6]. The i∗ ap-
proach to RE attempts to augment specifications with con-
textual information such as the business model [33, 1]. They
all deal, however, with single system development, rather
than SPLE.

Previous work by the authors. This work is also an exten-
sion of earlier work by some of the authors. In [7], Classen
et al. suggested using the Problem Frames approach, deriva-
tive of the above Jackson-Zave framework, to structure and
identify problem variability. This rather exploratory work
was refined in [8] with a generic definition of “feature” as
a tuple of R,W and S. Based on this definition, the satisfi-
ability criterion for an FM was revised, taking into account
the Zave and Jackson adequacy argument [37]. However,
this paper failed to explicitly consider variability in W and
S, assuming them to be part of a feature; that is variability
in R,W and S was considered, but all in one dimension.
A first move towards a multi-dimensional view was under-
taken in [25], where Metzger et al. identify the necessity,
and propose an approach for, distinguishing variability in S
from variability in R.

Partial consideration of dimensions. Other authors have
already proposed to consider multi-dimensional FMs. Kang
et al. [20], as part of the FORM approach, define four lay-
ers, each containing a number of FDs. The paper, how-
ever, discusses these layers and their FMs on a rather in-
formal level, and it is not made clear what links between
features of different levels mean. Thiel and Hein [30] cap-
ture context variability and software variability in the same
diagram. Yet, they never explicitly attribute features to con-

text or software and do not discuss this aspect. Similarly,
Hartmann and Trew [16] combine context and requirements
in the same diagram. The context, in their case, however,
is closer to the requirements than to the software, and ba-
sically serves to eliminate variability in the requirements.
Desmet et al. [12] capture context and software variability
in the same FM. However, as opposed to our and the previ-
ously mentioned approaches, they do not explicitly model
variability in the context. They rather annotate decompo-
sition links with context rules that merely decide when a
feature should be activated or not.

Orthogonal and multi-level models. Batory [2] uses sev-
eral orthogonal FMs for representing different aspects of
the requirements. These FMs are, however, assumed to be
unrelated. Reiser and Weber [27] propose to use multi-level
feature trees; their purpose is to cope with large diagrams
and distributed teams, rather than different concerns. Some-
what related is also the approach of multi-level staged con-
figuration [11], where multiple FMs are used to model deci-
sions that need to be taken by different people or at different
points of the development cycle. Our work is complemen-
tary in that we provide a systematic way of separating the
FMs and reason about the relationships between require-
ments and feature configurations.

Approaches to quantitative constraints in SPLE. Quan-
titative constraints were already part of earlier variability
notations, such as the COVAMOF framework [29, 13]. In
COVAMOF, constraints on quality attributes are expressed
using dependencies, i.e. restrictions on variant selection,
but so are also requirements and even excludes links be-
tween variants, which leads to a situation where different
kind of information (R, S and Q) is mixed. As mentioned
before, goal modelling approaches explicitly deal with non-
functional requirements, generally represented through soft
goals. In this context, Yu et al. [35, 34] propose an ap-
proach for translating goal models to FMs, where contribu-
tion to softgoals is translated to guarded requires and ex-
cludes links in the FM. Jarzabek et al. [18] model quality
attributes in a goal model which is linked to features of a set
of orthogonal FMs that represent both S and W . Their ap-
proach is, however, not formalised or tool supported. Baix-
auli et al. [14] analyse variability at the level of the goal
model only as a way to identify optimal alternatives wrt.
to contribution links. However, they only consider goals,
rather than features or domain concepts, making their ap-
proach suitable for early requirements engineering, rather
than configuration as we do here.

In conclusion, existing work has looked at the problem
of multi-dimensional FMs from various angles. In this pa-
per, we have provided a systematic way of separating and
linking FMs in order to reason about relationships between
requirements and feature configurations.



7 Conclusions and Future Work

When configuring software features at the implementa-
tion level, it is often difficult to ascertain whether a given
configuration is optimal with respect to stakeholder require-
ments and contextual constraints, and whether all require-
ments have been met by the configuration. In this paper we
presented a systematic approach to relating requirements to
feature configurations. Based on the Jackson-Zave frame-
work, the proposed approach separates feature descriptions
into FMs relating to the requirements, the problem world
context and the specifications. Quantitative constraints such
as the limitations of the CPU and memory costs of configu-
rations are also taken into account.

As a result, by simply selecting requirements for a de-
sired product, one or more feature configurations that sat-
isfy the requirements and the quantitative constraints are
generated. The advantages of our approach are twofold.
First, the developer can work at the high level of require-
ments where the number of features is much lower than the
feature in the specifications. Secondly, perhaps more im-
portantly, because we take into the account the requirements
and the context it entails, the feature configuration obtained
is always optimal. Our approach is illustrated with an ap-
plication to a real-life example of a satellite communication
software, and off-the-shelf tool to support our approach, and
its limitations, were also discussed.

In future, we intend to extend this work in several ways.
First, we intend to evaluate our approach on larger case
studies, including those from Spacebel. Second, we intend
to provide better tool-support for describing and evaluating
quantitative constraints. Finally, we intend to explore how
our approach can be synthesised with the multi-stage con-
figuration framework.
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