Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

Introducing TVL, a Text-based Feature Modelling Language
Boucher, Quentin; Classen, Andreas; Faber, Paul; Heymans, Patrick

Published in:
Proceedings of the Fourth International Workshop on Variability Modelling of Software-intensive Systems
(VaMo0S'10), Linz, Austria, January 27-29

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication

Citation for pulished version (HARVARD):

Boucher, Q, Classen, A, Faber, P & Heymans, P 2010, Introducing TVL, a Text-based Feature Modelling
Language. in Proceedings of the Fourth International Workshop on Variability Modelling of Software-intensive
Systems (VaMo0S'10), Linz, Austria, January 27-29. University of Duisburg-Essen, pp. 159-162.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Dec. 2024

https://researchportal.unamur.be/en/publications/7c1ac514-6477-47ee-8988-8324ef863f33

Introducing TVL, a Text-based
Feature Modelling Language

Quentin Boucher, Andreas Classen,* Paul Faber and Patrick Heymans
PReCISE Research Centre
Faculty of Computer Science
University of Namur
5000 Namur, Belgium
Email: {gbo,acs,pfaber,phe } @info.fundp.ac.be

Abstract—Feature models are a common way to represent
variability in software product line engineering. For this purpose,
most authors use a graphical notation based on FODA. The main
drawback of those approaches is their lack of scalability: they
generally do not fit real-size problems. Indeed, their graphical
syntax does not account for attributes or complex constraints
and becomes a burden for large feature models.

In this paper, we present TVL, a text-based feature mod-
elling notation that is both light and comprehensive, meaning
that it covers most constructs of existing languages, including
cardinality-based decomposition and feature attributes. The main
objective of TVL is to provide engineers with a human-readable
language supporting large-scale models through modularisation
mechanisms. Furthermore, TVL can serve as an extensible storage
format for feature modelling tools. We illustrate the various
concepts of the language with short code fragments.

I. INTRODUCTION

In software product line engineering (SPLE), Feature Mod-
els (FMs) are a common means to represent the variability
of a software product line (SPL) [1]. Almost all existing FM
languages are graphical notations based on FODA Feature Di-
agrams (FDs) which were introduced in the seminal paper by
Kang et al. [2]. Since this original proposal, several extensions
have been proposed by various authors. In all those dialects,
FMs are represented as trees whose nodes denote features and
whose edges represent top-down hierarchical decomposition
of features. Consider the example FD in Figure [[| modelling a
product line of personal computers. The Computer consists of
a Motherboard, a CPU, a Graphic Card and some Accessories,
which are optional (indicated by the hollow circle); all of
these features are further decomposed. In addition, although
not shown in the figure, each of the features has a price, which
can be modelled as an attribute [3].

While such a graphical representation is supposedly more
accessible to non-technical stakeholders, we believe that work-
ing with large industry-size FDs can become a tricky task
for several reasons. First, to create a large FD, the graphical
syntax is a burden that cannot be mastered without dedicated
tool support (though many FM tools use directory tree-like
representations themselves). Secondly, given that a FD is a tree
on a two-dimensional surface, there will inevitably be large
physical distances between features, which makes it hard to

*FNRS Research Fellow

navigate, search or interpret the FD. Finally, most notations do
not have graphical means to represent constructs like attributes
and constraints which are essential for industrial FMs.

Even though future tools might solve some of these issues,
they would just attack the symptoms of the underlying prob-
lem. We attack its cause and propose to change the medium
of the notation to just plain text. We do not question the need
for a graphical representation, we rather propose an alternative
and complementary textual notation. This would allow one to
view and edit FMs either graphically or textually, depending
on one’s skills and preferences. We thereby hope to facilitate
the dissemination of FMs in industrial settings. The goals for
the new language are to be scalable by being succinct and
modular as well as comprehensive.

Our language is called TVL, for text-based variability
language. Plain text has a number of advantages the most
important of which is the abundance of established tools
dealing with text, generally program code. Moreover, the
syntax of TVL is inspired by the syntax of C and should
appear intuitive to any engineer who has come in contact
with one of the many programming languages with a C-like
syntax. We believe that these choices will also ease acceptance
of FMs in industrial contexts because TVL is similar to the
languages used in such environments and because it does not
need dedicated modelling tools to be deployed.

TVL is scalable because it is succinct (its syntax is very
light, as opposed to XML, for instance) and because it offers
a number of mechanisms for modularisation and separation of
concerns. The language is comprehensive because it integrates
most of the FM constructs proposed in the twenty years since
the advent of FODA.

At this stage, TVL is a language proposal. It is formally
defined with an LALR grammar, a formal semantics [4] and
comes with a reference implementation available online Itis
meant to be a basis for discussion and we are mainly interested
in feedback about the language and its syntax.

The remainder of the paper is structured as follows: Sec-
tion [II} introduces the TVL syntax, we survey related work in
Section [l and conclude in Section

'Download at the TV, website jhttp://www.info.fundp.ac.be/~acs/tvl,

http://www.info.fundp.ac.be/~acs/tvl

II. SYNTAX

In this section we present an overview of the TVL syntax
using code snippets. The formal BNF grammar is available
online. The different sub-sections introduce five major parts of
the language i.e. features, attributes, expressions, constraints
and modularisation mechanisms.

The different concepts of TVL will be illustrated using a ba-
sic personal computer product family example FD introduced
in Section [I| and shown in Figure [}

Computer

[Motherboard | [cPu| [Graphiccard |

Accessories

‘ Asus H Aopen H Corel7 H Athlon H Nvidia H ATI H Key

<<excludes>>

Legend
AN and-decomposition F group cardinality [i..j]
/?\ xor-decomposition & optional feature

Fig. 1. Computer example FD

A. Feature hierarchy

The TVL language has a C-like syntax: it uses braces to
delimit blocks, C-style comments and semicolons to delimit
statements. The rationale for this syntax choice is that nearly
all computing professionals have come across a C-like syntax
and are thus familiar with this style. Furthermore, many text
editors have built-in facilities to handle this type of syntax.

In our example, the root feature, Computer, is decomposed
into four sub-features by an and-decomposition: Motherboard,
CPU, GraphicCard and Accessories. Furthermore, the Acces-
sories feature is optional while the other three features are
mandatory. In TVL, this is written as follows:

root Computer {
group allof {
Motherboard,
CPU,

GraphicCard,
opt Accessories

}

A decomposition type in TVL is defined with the group
keyword. Predefined decomposition operators are allOf, as
used in this example for an and-decomposition, oneOf for
xor-decompositions and someOf for or-decompositions. It is
also possible to specify a cardinality-based decomposition with
the group [i..j] syntax, where ¢ and j are the lower and upper
bounds of the cardinality. When defining a cardinality, one can
use the asterisk character * to denote the number of children
in the group, for instance group [1..*] would be equivalent to
group someOf. Optional features like Accessories are declared
by putting the opt keyword in front of their name.

FMs most commonly have a tree structure but, sometimes,
a directed acyclic graph (DAG) structure — a feature can have

several parents — might be useful [5]. DAG structures can also
be modelled in TVL with the shared keyword associated to a
feature name. It is illustrated in the following example where
feature D has features B and C as parents:
root A
group oneOf {

B group allof (D},
C group allOof {shared D}

B. Attributes

In our example, the Motherboard has four attributes: a
price, a width, an height and a socket type. TVL supports
four different attribute types: integer (int), real (real), Boolean
(bool) and enumeration (enum). Furthermore, in our example,
the price value is limited to values between 0 and 500. In TVL,
this is expressed as follows:

Motherboard {
int price in
int width;
int height;

[0..5001];

}

Attributes are thus declared by defining their type and name
inside the definition block of the feature they belong to. Each
attribute declaration is terminated by a semicolon. The in
keyword is optional, it can be used to restrict the domain of an
attribute. When declaring an attribute as an enumeration type,
this means that it will take exactly one of a set of predefined
values. The socket, for instance, is either LGAI156 or ASBI.

Motherboard {

enum socket in {LGA1156, ASBl};

}

For enumerations, the in keyword is mandatory. Notice the
use of curly braces here as opposed to square brackets for
the price attribute above. In TVL, square brackets are used to
declare intervals and braces to declare lists.

In many cases, the value of an attribute will be calculated
based on the values of some other attributes. The value of the
price attribute of Accessories, for example, is the sum of the
prices of its children KeyboardAndMouse, PhilipsScreen and
SamsungScreen. Furthermore, the value of an attribute might
also depend on whether its containing feature is selected or
not. All this is written as follows in TVL:

Accessories {
int price is sum(selectedChildren.price);
group [0..2] {
KeyboardAndMouse {
int price is 19;
I
PhilipsScreen ({
int price is 99;
I

SamsungScreen {

int price, ifIn: is 149, ifOut: is 0;

}
}

The keyword is can be used to set a fixed value for an
attribute, e.g. price of KeyboardAndMouse. The keywords ifIn:

and ifOut: are guards that allow to specify the value of the
attribute in the case in which the containing feature is selected
(ifIn:) or not selected (ifOut:). We illustrate this with the price
attribute of the SamsungScreen whose value will be 149 if the
feature is selected and O if not.

While the price of the KeyboardAndMouse, PhilipsScreen
and SamsungScreen features is fixed, the price of the Ac-
cessories is calculated: it is the sum (using the aggregation
function sum) of the values of the price attribute of its
selected children (using the selectedChildren keyword). Other
operators are available and will be discussed in next section.
A common modelling pattern for attributes declared for all
features is to compute the value of the parent feature’s attribute
by aggregating the attribute values of its children, up to the
root. The price of a Computer, for example, will be calculated
by summing the prices of its selected sub-features, which in
turn depend on the prices of their sub-features, and so on until
leaf features with fixed price values are reached.

C. Expressions

In TVL, expressions are used to determine the value of an
attribute as well as to express constraints on the FM. The
language is strongly typed, each expression being either of
type bool, real or int.

A basic expression is either an integer, a real, a Boolean, or a
reference to a feature, an attribute or a constant. Those basic
expressions can then be combined using classical operators:
+, -, [, * abs, for numeric values; !, &&, ||, ->, <-> for
Boolean values as well as comparison operators >, >=, < or
<=. Classical FM cross-tree constraints excludes and requires
can also be used as Boolean expressions.

Furthermore, there are a number of aggregation functions
sum, mul (multiplication), min, max, avg (average), count,
and, or and xor. These aggregation functions can simply
be used on lists of expressions or they can become power-
ful shorthand notations when used in combination with the
children or the selectedChildren keywords. These allow to
aggregate the value of an attribute that is declared for each
child of a feature. The notation is fct(children.attribute),
or fct(selectedChildren.attribute) if the aggregate should be
calculated on selected children only.

D. Constraints

Constraints in TVL are attached to features. They are simply
Boolean expressions that can be added to the body of a
feature definition. As with attribute declarations, they are
terminated by a semicolon. The ifIn: and ifOut: guards we
have previously seen can be used on constraints, too. In
our example, the socket attribute of the Motherboard feature
depends on the choice of the actual motherboard. One way
to model this in TVL is to define a constraint in each child
feature which basically ‘sets’ the value of its parent’s attribute.

Motherboard {
enum socket in {LGA1156, ASBl};
group oneOf {
Asus {
ifIn: parent.socket == LGA11l56;

}!
Aopen {

ifIn: parent.socket == ASBI;
}

}

E. Modularisation mechanisms

TVL offers various mechanisms that can help users to
modularise large models. First of all, custom types can be
defined at the top of the file and then be used in the FM. This
allows to factor out recurring types. For instance, one might
want to define the different sockets upfront and then use it as
a type in an attribute declaration:

enum cpuSocket in {LGA1156, ASBl};

Mééherboard {
cpuSocket socket;
}

It is possible to define structured types to group attributes
that are logically linked. A dimension, for instance, is a couple
(height, width) and can be declared as such using a structured
type. This type can then be reused inside the Motherboard
feature:

struct dimension {
int height;
int width;

}

Mééherboard {
dimension size;
}
Users can also specify constants using the const keyword
followed by a type, a name and a value. These constants can
then be used inside expressions or cardinalities.

const int maxRamBlocks 4;

One can also use the include statement, which takes as
parameter the path of a file (relative to the file containing the
root feature). As expected, an include statement will include
the contents of the referenced file at this point. Includes are
in fact preprocessing directives and do not have any meaning
beyond the fact that they are replaced by the referenced file.

include (./some/other/file);

Another mechanism is that features can be defined at one
place and then extended further in the code. Basically, once
a feature has been defined in the group block of its parent
feature, its definition can be extended any number of times.
In order to extend a feature definition, one just adds a feature
block with the same name to the file. This block cannot be
inside another feature, it has to start its own hierarchy. Each
feature block may add constraints and attributes to the feature
body. The children (with the group keyword) can only be
defined in a single one of these blocks.

This mechanism allows modellers to organise the FM ac-
cording to their preferences and can be used to implement
separation of concerns [6]. For example, one could declare
part of the structure of the FM without detailing each feature’s
attributes and instead provide them later on:

root Computer {
group allOof
Motherboard,
CPU,
GraphicCard,
opt Accessories
}
}
Computer {
int price is sum(selectedChildren.price);

}

In this example, the decomposition of the root is defined at
the beginning while its attributes are declared further down.
The advantage of this is that the structure is easily understand-
able because it is not cluttered by attribute declarations.

III. RELATED WORK

By far the most widely used notation in the literature is
the graphical FM notation based on FODA [2]. Most of
the subsequent proposals such as FeatuRSEB [7], FORM [5]
or Generative Programming [8] only slightly modify this
graphical syntax (e.g. by adding boxes around feature names).

One exception is Batory [9] who proposed the GUIDSL
syntax, in which the FM is represented with a grammar. The
GUIDSL syntax is further used as a file format of the feature-
oriented programming tools AHEAD [9] and FeatureIDE [10].
The GUIDSL format is aimed at the engineer and is thus
easy to write, read and understand. However, it does not
support arbitrary decomposition cardinalities, attributes, or the
representation of the FM as a hierarchy.

Van Deursen and Klint [11] proposed the Feature De-
scription Language (FDL), a textual language to describe
features. FDL does not support attributes, cardinality-based
decompositions, DAGs or duplicate feature names.

The SPLOT [12] and 4WhatReason [13] tools use the
SXFM syntax and file format. While the format uses XML
for metadata and the overall file structure, its representation
of the FM is entirely text-based with the explicit goal to
make it suitable for the engineer. It differs from the GUIDSL
format in that it makes the tree structure of the FM explicit
through (Python-style) indentation. It supports decomposition
cardinalities but not attributes.

The feature modelling plugin [14] and the Fama frame-
work [15] both use XML based file formats in which the whole
FM is encoded in XML. These formats were not intended to be
written or read by the engineer and are thus hard to interpret,
mainly due to the overhead caused by XML tags and technical
information that is extraneous to the model.

IV. CONCLUSION

We argue that while graphical FM languages may be more
intuitive, they are not always adapted to large FMs involving
attributes and complex constraints. We propose TVL, a text-
based variability modelling language with a C-like syntax. The
goal of the language is to be scalable, by being concise and
by offering mechanisms for modularity. TVL is also meant
to be comprehensive so as to cover a wide range of FM
dialects proposed in the literature. We acknowledge that for

non IT stakeholders or for informal discussions around the
blackboard, graphical FMs might be more appropriate than
TVL. An advantage of text-based languages is that there
are many well-accepted applications (viz. text editors, source
control systems, diff tools, and so on) that support modelling
and evolution out of the box. Furthermore, choosing a C-
like syntax means lower learning curves for most software
engineers. We hope that this will lead to an easier adoption of
FMs in an industrial context.

At the moment, TVL is a language proposal, and we are re-
questing feedback from the variability modelling community.
We developed a reference implementation for TVL in Java
The library has two components; the syntactic component is a
parser that performs type checking, checks well-formedness,
and can normalize a model (eliminate syntactic sugar). Among
other things, it can be used to implement TVL support in
existing FM tools. The semantic component is able to translate
a TVL file to either a Boolean CNF formula (if it does not
contain numeric attributes), or to a CSP problem according to
the formal TVL semantics defined in [4].

ACKNOWLEDGEMENTS

This work was partially funded by the Walloon Region,
the Interuniversity Attraction Poles Programme, Belgian State,
Belgian Science Policy (MoVES project), the BNB, the FNRS.

REFERENCES

[1] K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[2] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” SEI, CMU, Tech.
Rep., 1990.

[3] D. Benavides, P. T. Martin-Arroyo, and A. R. Cortés, “Automated
reasoning on feature models,” in Proceedings of CAISE’05, 2005.

[4] A. Classen, Q. Boucher, P. Faber, and P. Heymans, “Syntax and
semantics of TVL, a text-based feature modelling language,” PReCISE
Research Centre, Univ. of Namur, Tech. Rep., 2010.

[5] K. C. Kang, S. Kim, J. Lee, K. Kim, G. J. Kim, and E. Shin,
“Form: A feature-oriented reuse method with domain-specific reference
architectures,” Ann. Softw. Eng., vol. 5, pp. 143-168, 1998.

[6] P. Tarr, H. Ossher, W. Harrison, and S. M. J. Sutton, “N degrees of
separation: multi-dimensional separation of concerns,” in ICSE’99, 1999.

[71 M. L. Griss, J. Favaro, and M. d. Alessandro, “Integrating feature
modeling with the rseb,” in Proceedings of ICSR’98, 1998.

[8] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[9] D. S. Batory, “Feature Models, Grammars, and Propositional Formulas.”

in Proceedings of SPLC’05, 2005.

C. Kistner, T. Thiim, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and

S. Apel, “FeatureIDE: A tool framework for feature-oriented software

development,” in Proceedings of ICSE’09, 2009.

A. Deursen and P. Klint, “Domain-specific language design requires fea-

ture descriptions,” Journal of Computing and Information Technology,

vol. 10, p. 2002, 2002.

M. Mendonca, M. Branco, and D. Cowan, “S.PL.O.T. - Software

Product Lines Online Tools,” in Proceedings of OOPSLA’09, 2009.

M. Mendonca, “Efficient reasoning techniques for large scale feature

models,” Ph.D. dissertation, University of Waterloo, 2009.

M. Antkiewicz and K. Czarnecki, “Featureplugin: Feature modeling

plug-in for eclipse,” in Proceedings of the OOPSLA’04 Eclipse Tech-

nology eXchange (ETX) Workshop, 2004.

D. Benavides, S. Segura, P. Trinidad, and A. R. Cortés, “Fama: Tooling a

framework for the automated analysis of feature models,” in Proceedings

of VaMoS’07, 2007.

[10]

(11]

[12]
[13]

[14]

[15]

2See the TVL website at http://www.info.fundp.ac.be/~acs/tvl,

http://www.info.fundp.ac.be/~acs/tvl

