Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

XToF: A Tool for Tag-based Product Line Implementation

Gauthier, Christophe; Classen, Andreas; Boucher, Quentin; Heymans, Patrick; Storey,
Margaret-Anne; Mendonca, Marcilio

Published in:
Proceedings of the Fourth International Workshop on Variability Modelling of Software-intensive Systems
(VaMo0S'10), Linz, Austria, January 27-29

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication

Citation for pulished version (HARVARD):

Gauthier, C, Classen, A, Boucher, Q, Heymans, P, Storey, M-A & Mendonca, M 2010, XToF: A Tool for Tag-
based Product Line Implementation. in Proceedings of the Fourth International Workshop on Variability
Modelling of Software-intensive Systems (VaMo0S'10), Linz, Austria, January 27-29. pp. 163-166.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Dec. 2024

https://researchportal.unamur.be/en/publications/5fa85f9f-3ffb-4ca6-a854-e58eb0c70dfe

XToF — A Tool for Tag-based Product Line
Implementation

Christophe Gauthier, Andreas Classen,*
Quentin Boucher, Patrick Heymans
PReCISE Research Centre
Namur, Belgium
Email: chistophe.gauthier @student.fundp.ac.be
{acs,gbo,phe } @info.fundp.ac.be

Abstract—This tool demo paper describes a tool called XToF
which is being developed through a collaboration between the
University of Victoria, the University of Namur and the Univer-
sity of Waterloo. The purpose of the tool is to let programmers
define, maintain, visualise and exploit precise traceability links
between a feature diagram and the code base of a software
product line. The resulting tool supports automated configuration
of a Java or C code base and is minimally intrusive with respect
to development practices.

Index Terms—tool demo; software product line; feature dia-
gram; tagging; programming language; C; Java

I. INTRODUCTION

The tool described in this paper is being developed as part
of the Masters thesis of the first author. The tool extends
a toolchain that was previously assembled/developed by the
University of Namur and Spacebel, a Belgian company that
develops software for space missions.

The purpose of both tools (the old and the new one) is to
let programmers define, maintain, visualise and exploit precise
traceability links between a feature diagram (FD) and the code
base of a software product line. Both tools are meant to be
minimally intrusive with respect to development practices. The
new tool, called XTo}ﬂ, provides enhanced functionality by
leveraging on two new components: (1) TagSEA, an Eclipse
plug-in developed at University of Victoria, which purpose is
to support navigation and knowledge sharing in collaborative
program development, and (2) S.P.L.A.R. a Java library de-
veloped at University of Waterloo that automates various FD
analyses.

The remainder of the paper is structured as follows. It starts
in Section |l with a description of the requirements (Section
and implementation (Sections and [[I-C)) of the initial
toolchain, together with a list of its limitations (Section [[I-DJ.
Then, in Section we present the contribution of this paper:
XToF, the new prototype designed to overcome the aformen-
tioned limitations. We describe in turn its components and
principles (Section [[II-A), its functionalities (Section [[II-B))
and on-going as well as future development (Section [[II-C).

*FNRS Research Fellow.
IXToF stands for cross(X)-Tagging of Features

Margaret-Anne Storey

University of Victoria
Victoria, Canada
Email: mstorey @uvic.ca

Marcilio Mendonca

University of Waterloo
Waterloo, Canada
Email: marcilio@csg.uwaterloo.ca

II. THE INITIAL TOOLCHAIN

A. Context and requirements

The assembly/development of the initial toolchain took
place as a collaboration between the University of Namur
and Spacebel. The goal of this collaboration was to turn
the implementation of a flight grade satellite communication
software library into a software product line that would support
the following requirements:

o allow mass-customisation of the library: meaning to be
able to efficiently derive products that only contain the
features required for a specific space mission,

o be compliant with quality standards and regulations in
place for flight software,

o have a minimal impact on current development practices,

o automate the solution as much as possible.

The first and second requirements stem from the strict
constraints that are imposed on flight grade on-board soft-
ware. Components for space usage are developed to deal
with extreme environmental conditions such as cosmic rays,
temperature variation and vibration. This type of hardware is
usually very expensive and several evolutionary steps behind
the consumer hardware we more commonly know. There-
fore, CPU usage and memory footprint typically have to be
minimised. Also, developers often have no other choice than
programming in C and obey strict rules that prohibit usage
of ‘dangerous’ mechanisms, such as dynamic heap memory
allocation, or general-purpose third-party libraries [1]. Along
the same lines, dead code is also to be avoided. In our case,
since specific missions only require part of the protocol’s
functionality, it is important to only deploy those parts (or
features) of the protocol that are going to be used.

The rationale for the third and fourth requirements was
to facilitate adoption of the solution by the company. A
first version of the toolchain was then elaborated jointly by
the academic and industry partners. It is described in detail
elsewhere [2]. In the rest of this section, we just recall its
most important features and limitations to introduce our new
contribution, XToF, presented in Section

pure::variants Rhapsody

Domain engineeying
L ‘ - _ -
|, “Feature™ - =~ [=
. Modelling_ >l \De5|gn _ > rriplementatlo/n)
Application engineering L
\4 \
fio _ | Code pruning~

b ~
—-{ Configuration
N _

" |~and compilation

Parser & C Compiler

Fig. 1. Toolchain as deployed at Spacebel

B. Deployed toolchain

Guided by the above requirements, a first version of the
process and toolchain were developed and successfully de-
ployed in the company. The tool-supported process is depicted
in Figure (1] It is organised after the classical software product
line engineering process [3] which consists of two main
streams: domain engineering (the creation of reusable artefacts
or core assets) and application engineering (the usage and
adaption of the core assets to create final products). In our
case, the core assets are the Feature Diagram (FD), the system
architecture (in UML) and the C code base, made of 6224
lines of code, the two last assets being decorated with tags
pointing to the features of the FD. Application engineering
starts with a configuration step during which some features
are selected and some are discarded. This information is then
used to remove code related to discarded features before the
mission-specific product is compiled. A technical report [2]
describes each of these steps in greater detail. It also gives an
extensive definition of the syntax and semantics of our tagging
language, demonstrates its correctness, provides an illustration
and compares it with other annotative approaches to software
product line implementation such as CIDE [4] and #ifdef
pre-processing statements.

Figure |1| also shows how this process is supported by tools:

o design and implementation are supported by the tools
already in use at the company, namely the Rhapsody
UML CASE tool, and the C compiler;

o feature modelling and configuration are supported by
pure::variants, a commercial off-the-shelf FD-based tool;

« a parser that was developed specifically for this project.
The parser takes two inputs: (1) a valid list of features
provided by pure::variants after configuration, and (2)
an ANSI C source file annotated with tags written in our
tagging language. It returns an ANSI C source file with no
tags and no unnecessary code. The parser is encapsulated
in a make-file and run on every single file of the codebase.

C. The tagging languages

Basically, a feature tag is an annotation of a block of C
code with the names of the features that require the block to
be present. If none of the features listed in a tag is included
in a particular product, then the tagged code block will not
be part of the source code generated for this product. Tags
can be nested and a whole file can be tagged with a special
annotation. Untagged code is assumed to be needed for all
features.

Syntactically, a feature tag is a comment that follows a
predefined pattern. As such, it is displayed in the same colour
as comments in code editors. The syntax of feature tags is:

<fcomment> ::= "/xQfeature:" <flist> "@*/" [<filetag>]
<flist> ::= <featurename> (":" <flist>) =«
<filetag> ::= "/x@!file_feature!@x/"

where <featurename> identifies a feature of the FD. The
scope of a tag is the functional block, which we define as
a group of statements that belong together, and that can be
removed as a whole without violating the syntax or grammar
of the language. For instance, it would be impossible to remove
only the signature of a function without also removing its body.
Functional blocks thus correspond to elements of the abstract
syntax tree (AST), an idea previously found in [4]. With this
approach, we can guarantee that the pruned code will always
be syntactically correct. The functional block corresponding
to a code tag is determined by the instructions that follow the
tag. More details can be found in the technical report [2].

D. Limitations of the toolchain

The tool-supported process described in the previous sec-
tions turned out to be effective in meeting the requirements
set out by the company. A detailed evaluation [2] revealed that
there was still space for improvements (in order of priority):

o Tighter integration: communication between the tools
was performed only through file exchange. Although this
did not impede usage of the toolchain, it was recognised
that an integrated environment, where loosely coupled
tools play together, could be a significant enhancement.
An important improvement, for example, could be that the
feature editor/configurator could point directly to the code
fragments a feature corresponds to in the code editor, and
vice versa.

o Legibility: according to the company’s developers, the
legibility of the source code was not reduced by the
tags. Indeed, the tagging language was designed to be
concise and is rendered in a different colour in most code
editors. However, the developers found it sometimes hard
to determine the feature(s) corresponding to a specific
source fragment, especially in the presence of nested tags.
Tag-based filtering and visualisation techniques could
alleviate this problem.

o Portability: although pruning dead code is most usually
required in embedded systems where C dominates, C
is not the only language used in embedded systems.
Additionally, our “tag and prune” approach has a wider

applicability than embedded systems, hence the idea of
extending the approach to other languages.

e On-the-fly tag generation: the programmers who used
the toolchain estimated that the overhead due to the tags
during the domain implementation phase was 20 to 25%
with respect to tag-free implementation of a ‘maximal’
product (the return on this investment being delayed to the
application implementation phase). However, they also
recognised that the overhead could be decreased if the
tags were systematically captured at the time the feature
is programmed rather than after the fact.

III. THE NEW PROTOTYPE: XTOF

Functionally, XToF, the new prototype, is meant to support
the activities depicted in Figure [l| in a single integrated
environment, and overcome the limitations described in the
previous section.

A. Components and principles of XToF

The opportunity for re-implementing the original toolchain
came from the discovery of an open-source Eclipse plug-in
called TagSEA. TagSEA was developed by Storey et al. [3] to
support asynchronous and collaborative program development.
It enhances navigation and knowledge distribution in the code
based on tags placed by the programmers. The approach and
tool are originally unrelated to software product lines, but
turned out to be applicable in this context.

XToF uses the capabilities of TagSEA to manage tagging
and tags. TagSEA defines waypoints as “locations of software
model elements”[6]. The notion of waypoint as a point of
interest has been extended to a design area of interest in order
to capture blocks of code associated to feature tags. TagSEA
provides mechanisms to filter tags, list waypoints and navigate
to a waypoint. XToF then links TagSEA waypoints to features
and blocks of code.

One of the main enhancements to the first toolchain is that
the FD is now displayed directly in the programming envi-
ronment. The FD is used as an index to code fragments and
as the configuration interface. One can select a set of features
to obtain specific views of the program and to configure it.
XToF adopts the classical layout of Eclipse (see Figure [2)):
the FD is displayed as a directory tree (A), some buttons
(B) trigger actions like configuration or tag filtering, while
TagSEA constantly displays the list of waypoints (D) for each
tag (C).

To allow tighter integration of TagSEA with the FD-
related functionalities, we needed full access to their source
code. This was provided by SPLARE] a powerful Java library
that automates various FD analyses, by which we replaced
pure::variants.

B. Current functionalities

We now take a closer look at the tool’s currently supported
functionalities:

2See http://www.splot-research.org

4 Echojava B2

>

ags
rype filter text

v @aiTass 1

'C @ pus_rer @@ 1

4] CommandLine java 4] EchoMainjava = O & vFD viewer 53
impleEchaSPL; o | g

4] CommandLine java
package s o
Project - simpleEcho
> default [Unsaved)
¥ @ simpie_echo
¥ = aoditional_features
count_wards

T & display

disglay_number_of_use

Result
tln(display);

Al

564 £1 . E) Console| T €/ + Projects| & Error Log

type filter text

¥ |Location

ure : features.cfdp_library.gep.pus.pus_copy | features.cidp_li ctest.c LocalFeature line 16
fearures simple_echo additional_features.count_words | History java LocalFeature line 43
re : features. simple_echo.additional_features.count_words | Historyjava Local Feature line 8
ure : features. simple_echo.additional_features.count_words | History.java LocalF eature line &

@default &2

b #a
¥ @ features 538
» @ cfdo lil 882

D)

@8 reboot, §8 1
b @@ simple, #85
@R FILE_FEAT 337

Fig. 2. XToF’s main screen

o Loading the FD: To be displayed and configured in the

tool, the FD has to be loaded. XToF expects it as an
XML file in the SXFM formatP| The file can be created
in any text editor, but can be more easily produced by the
web-based visual FD editor SPLOT [7], the front-end to
SPLAR. Once the FD is loaded, XToF displays it and lets
the users add tags, navigate and configure. The loaded FD
is copied to the project folder and its path is saved as a
property of the project. The FD is thus made available to
all project contributors who can work in parallel.

o Tagging code fragments: To reduce the time needed to tag

blocks of source code, XToF uses auto-completion from
Eclipse. While typing a tag, feature names are displayed,
and when selected, directly added to the tag.

e Navigation and visualization: XToF feature tags behave

like regular TagSEA waypoints. The user can list the lo-
cation of feature tags, navigate to a tagged code fragment
and display it. Some visualisations have been developed
to answer simple questions such as “Which blocks are
associated to a set of tags?” and “Which set of tags is
associated to a line of source code?”. To answer the first
question, the user can select the set of tags in XToF and
the tagged block of source code is highlighted. Another
mechanism provides the opposite function, i.e. answers
the second question: the features corresponding to the
current line in the active editor window are highlighted in
the FD. Additionally, XToF filters packages and classes
that contain blocks tagged with selected features from
the FD. Finally, we reuse a ‘cloud’ visualization from
TagSEA that shows how tags are used.

o Configuring and pruning: Configuration and pruning are

now integrated. The configuration interface is based on
the FD. Clicking on a feature allows the user to toggle it
from deselected to selected and conversely (see Figure

3See http://gdansk.uwaterloo.ca:8088/SPLOT/sxfm.html

display_number_words.

3 %|Be@°°H

0

@import jova.util.NoSuchElementException;[]
i?i /*@fegture:simple_echo.additional_features.keep_history@*//*@1filel@*/
public class History {

private Vector<String> history;
t* f*&feature:simple_echo.additional_features.count_words@*/
[private int word_count;] 5

= public History(} {
history = new Vector<String=(};

} =

t* f*&feature:simple_echo.additional_features.count_wordsB*/
= public void computeWordsCount(String echo) {|

String[] words_msg = echo.split(™ "};]

word_count = words_msg. Length + word_count;|

H

= public void addEcho(String echo) {
t* [*&feature:simple_echo.additional_feotures. count_words8*/]
[computefiordsCountecho};]
history.add(echo);

}

= public String getlast() { Y

Fig. 3. Code highlighting in XToF

Project - example

¥ @ simple_scho
¥ @ additional_features

(@ count_words

@ keep_history
4= Set Selected
Set Unselected

& display_number_words

va

Fig. 4. Product configuration in XToF

M). Each decision made on the diagram is propagated
by SPLAR to ensure the validity of the configuration.
Once configuration is completed, the mission-specific
implementation can be generated. To do this, XToF will
clone the project to a new one with a name provided by
the user. It will then prune the source code and remove
code according to the valid list of features.

e Portability: XToF takes advantage of the plug-in platform
provided by Eclipse to support other languages than Java.
Two languages are currently supported: Java and C.

C. On-going and future work

Additional functionalities will be implemented in the future:

o Editing the FD: The current version of XToF does not
support editing of the FD. The objective would not only
be to create it from the same front-end as the rest of the
functionalities, but also maintain the consistency between
the FD and the feature tags. For example, if one modifies
the name of a feature, each tag that uses the feature will
be modified too, thereby supporting co-evolution of the
FD and the program.

o High level visualization: The current visualization is
limited. It is hard to determine which files and packages
are tagged with given features (although not impossible
if one reads the list of tagged blocks). XToF will provide
high level visualization to answer the questions: “Which
files and packages are associated to a set of features and

conversely?” and “Which packages or classes (in the case
of an OO project) have features in common?” XToF will
display links between the files (or classes), packages and
features, and provide mechanisms to restrict the view to
a set of features or files.

o Improve declaration tagging: When the partner company
used the first prototype, they reported that one of the
major sources of errors was incorrect tagging of vari-
able, function and type declarations [2]]. This can occur,
for example, when a variable tagged with feature A is
required by a feature B without the developer updating
the tag. The product generated with feature B selected but
feature A deselected will not compile. To prevent such
an error, the ‘using’ feature must declare the variable, or
the ‘declaring’ feature must always be present with the
‘using’ feature. XToF will help the user avoid such issues
by offering a pruning based on the set of features that
are always present with one selected feature [2]. Another
possibility that we will investigate is to take into account
dependencies in the code for automatic generation of tags,
in the spirit of change-oriented programming [S8]].

IV. CONCLUSION

In this paper, we introduced XToF, a tool prototype support-
ing tag-based product line implementation in Java and C. XToF
is an extension of a toolchain that was initially developed as
joint university-industry project and which has been deployed
in the company. XToF will supersede this toolchain by improv-
ing it in various ways: better tool integration, visualization,
portability to other programming languages and on-the-fly tag
generation. Once finished, XToF will provide an integrated
tool to create a feature diagram, develop a tagged ‘maximal’
product, navigate through the features and the tagged blocks
of code, classes and packages (in the case of OO programs),
support feature-based configuration and generate products
automatically by pruning the source code.

V. ACKNOWLEDGEMENTS

This work is sponsored by the Interuniversity Attraction
Poles Programme of the Belgian State, Belgian Science Policy
(MoVES project), FEDER, BNB and FNRS.

REFERENCES

[1] MISRA, MISRA-C: Guidelines for the use of the C language in critical
systems. Motor Industry Research Association, 2008.

[2] Q. Boucher, A. Classen, P. Heymans, A. Bourdoux, and L. Demonceau,
“Tag and prune: A pragmatic approach to software product line imple-
mentation,” PReCISE Research Centre, Univ. of Namur, Tech. Rep., 2009.

[3] K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[4] C. Kastner, S. Apel, and M. Kuhlemann, “Granularity in software product
lines,” in Proceedinfs of ICSE ’08, 2008.

[5] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby, “Shared waypoints
and social tagging to support collaboration in software development,” in
Proceedings of CSCW 06, 2006.

, “Waypointing and social tagging to support program navigation,”
in In proceedings of CHI ’06, 2006.

[7] M. Mendonca, M. Branco, and D. Cowan, “S.P.L.O.T.: Software product
lines online tools,” in Proceeding of OOPSLA’09, 2009.

[8] P. Ebraert, A. Classen, P. Heymans, and T. D’Hondt, “Feature diagrams
for change-oriented programming,” in Proceedings of ICFI’09, 2009.

(6]

