
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Engineering Configuration Graphical User Interfaces from Variability Models

Boucher, Quentin

Award date:
2014

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 18. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/4b6688a1-69f1-4cb2-8f23-55d25cf3b319

precise research center

faculty of computer science

university of namur

belgium

E N G I N E E R I N G C O N F I G U R AT I O N G R A P H I C A L U S E R
I N T E R FA C E S F R O M VA R I A B I L I T Y M O D E L S

quentin boucher

thèse présentée en vue de l’obtention

du grade de docteur en sciences

september 2014

Graphisme de couverture : c© Presses universitaires de Namur

c© Quentin Boucher

c© Presses universitaires de Namur
Rempart de la Vierge, 13

B - 5000 Namur (Belgique)

Toute reproduction d’un extrait quelconque de ce livre, hors des lim-
ites restrictives prévues par la loi, par quelque procédé que ce soit, et
notamment par photocopie ou scanner, est strictement interdite pour tous
pays.

Imprimé en Belgique
ISBN : 978-2-87037-873-1
Dépôt légal: D/2014/1881/65

Jury

dr . goetz botterweck , lero, university of limerick , ireland

prof . vincent englebert, university of namur , belgium (chair)
prof . patrick heymans , university of namur , belgium (advisor)
dr . gilles perrouin, university of namur , belgium

prof . jean vanderdonckt, catholic university of louvain, belgium

A B S T R A C T

In the past, companies produced large amounts of products through mass
production lines. Advantages of such an approach are reduced production
costs and time-to-market. While it is (still) appropriate for some goods like
food or household items, customer preferences evolve to customised prod-
ucts. In a more and more competitive environment, product customisation is
taken to the extreme by companies in order to gain market share. Companies
provide customisation tools, more commonly called product configurators,
to assist their staff and customers in deciding upon the characteristics of the
product to be delivered.

Our experience reveals that some existing configurators are implemented
in an ad-hoc fashion. This is especially cumbersome when numerous and
non-trivial constraints have to be dealt with. For instance, we have observed
in two industrial cases that relationships between configuration options are
hard-coded and mixed with GUI code. As constraints are scattered in the
source code, severe maintenance issues occur.

In this thesis, we propose a pragmatic and model-driven way to generate
configuration GUIs. We rely on feature models to represent and reason about
the configuration options and their complex relationships. Once feature mod-
els have been elaborated, there is still a need to produce a GUI, including the
integration with underlying reasoning mechanisms to control and update the
GUI elements. We present a model-view-presenter architecture to design con-
figurators, which separates concerns between a feature model (configuration
option modelling), its associated solver (automated reasoning support) and
the presentation of the GUI. To fill the gap between feature models and con-
figuration GUIs, the various constructs of the feature model formalism are
rendered as GUI elements through model transformations. Those transfor-
mations can be parametrised through beautification and view languages to
derive specific configuration GUIs. A prototype generating HTML code is
proposed.

R É S U M É

Par le passé, les entreprises produisaient de grandes quantités de biens grâce
à la production de masse, une telle approche permettant de réduire les coûts
et temps de production. Bien que cette stratégie soit toujours adaptée dans
certains cas (alimentation, produits ménagers), les utilisateurs ont maintenant
une préférence pour les produits personnalisés. Dans un marché de plus
en plus compétitif, cette personnalisation est poussée à l’extrême par les en-
treprises afin de gagner des parts de marché. Ces entreprises mettent des
outils appelés “configurateurs” à disposition des clients et de leur personnel
afin de les guider dans le choix des options du produit final.

L’expérience nous a montré que les configurateurs existants sont implé-
mentés de manière ponctuelle. Ceux-ci sont d’autant plus compliqués à met-
tre en place et maintenir qu’il y a des contraintes non-triviales à gérer. Par
exemple, nous avons observé dans deux études de cas industrielles que les
dépendances entre deux options de configuration se trouvaient dans le code
de l’interface graphique (et dans de de nombreux autres éléments logiciels
tels que des fichiers de configuration, scripts, etc.). Cette dispersion des con-
traintes dans le code de l’interface graphique diminue sa maintenabilité.

Dans cette thèse, nous proposons une approche de génération d’interfaces
graphiques dirigée par les modèles. Nous nous reposons sur les feature mod-
els pour représenter et raisonner sur les options de configuration et leurs
liens complexes. Une fois le feature model élaboré, l’interface graphique doit
également être définie. Cela inclut notamment l’intégration avec les mécan-
ismes de raisonnement sous-jacents aux feature models pour le contrôle et la
mise à jour des éléments graphiques. Nous présentons une architecture de
type modèle–vue–présentateur pour les configurateurs dans laquelle nous
distinguons le feature model (modélisation des options de configuration), le
solveur associé (raisonnement automatisé) et la présentation dans l’interface
graphique. Afin de combler l’écart entre le feature model et l’interface de con-
figuration, les différentes constructions du premier sont traduites en objets
graphiques grâce à des transformations de modèles. Ces dernières peuvent
être paramétrées grâce à des langages de vue et de rendu graphique. Un
prototype générant des configurateurs en HTML est également proposé.

Feeling gratitude and not expressing it
is like wrapping a present and not giving it.

— William Arthur Ward

A C K N O W L E D G M E N T S

Being a PhD student is often considered a lonely task. However, experience
showed me that it is not the case. The research results presented in this
manuscript would never have seen the light of day without the different per-
sons who supported me during the last four years.

Among these persons, I would first of all like to express my gratitude and
appreciation to my supervisor, Prof. Patrick Heymans, who notably gave me
the opportunity to embrace the challenge of pursuing a PhD. Patrick taught
me to become more autonomous and proactive in my research through the
confidence and the latitude he granted me during these years. He always had
an open ear, and provided good advices on my research.

Next, I would like to thank my colleague, Gilles Perrouin, for his valuable
advices and the interesting discussions about my PhD topic as well as on our
common research project. He also spent a lot of time to read, improve and
challenge this manuscript. I am very grateful to him for all that.

Other colleagues also played a non-negligible role. Andreas Classen, Ar-
naud Hubaux and Raimundas Matulevičius welcomed me in their research
lab, and learned me to conduct research and write bullet-proof scientific pa-
pers. Many other members (and students) of Patrick’s team contributed to
the ideas presented here: Ebrahim Khalil Abbasi, Mathieu Acher, Axel Bo-
dart, Maxime Cordy, Raphaël Michel, Germain Saval and Marco Willemart.
Furthermore, nothing could have been achieved without the valuable contri-
butions of several partner companies like OSL and Rexel, to name a few.

Special thanks also go to two other colleagues, Nicolas Genon and Fabian
Gilson. We spent countless time discussing professional as well as general
topics during our (numerous) coffee and lunch breaks. Nico probably hated
me by the time he had to manually improve parts of the configurators I had
generated but I hope he does not hold it against me anymore. Do not worry,
Nico, you are next on the list of PhD graduates.

I also thank my parents who made all of this possible as well as my sister,
my family, and my friends for their company and encouragement. Finally, I
sincerely thank my fiancée, Lowra, for her constant support and love. Con-
ducting doctoral research comes with its fair share of upsides and downsides
and she kept finding (original) ways to give me confidence that my work was
worthwhile. She has always been by my side despite the distance.

In loving memory of my grandparents...

C O N T E N T S

List of Figures xvii
List of Tables xix
List of Listings xxi
1 context 1

1.1 What’s a Configurator? . 1

1.2 Building Correct Configuration Interfaces 3

1.3 Contributions . 4

1.4 Reader’s Guide . 6

1.5 Bibliographical Notes . 7

i background 9

2 state of the art 11

2.1 Feature Modelling . 11

2.2 User Interface Modelling and Generation 14

2.2.1 User Interface Description Languages 14

2.2.2 Feature Models and GUIs 18

2.3 Model Transformations . 20

2.3.1 Model-to-Model . 21

2.3.2 Model-to-Text . 23

ii contributions 25

3 solution overview 27

3.1 Architectural Pattern for Configurators 27

3.2 Generating Views from Feature Models 31

3.2.1 Widget Selection . 31

3.2.2 Breaking Out the Feature Model Hierarchy 37

3.2.3 Beautifying Generated Configurators 38

3.2.4 Putting It All Together . 40

3.3 Handling of Events by the Presenter 41

3.3.1 From the View . 41

3.3.2 Back to the View . 42

4 language support 45

4.1 Textual Variability Language (TVL) 45

4.1.1 Feature Declaration and Hierarchy 47

4.1.2 Attributes . 51

4.1.3 Constraints . 52

4.1.4 Structuring . 52

xiv Contents

4.1.5 TVL2 . 53

4.2 Textual View Definition Language (TVDL) 54

4.2.1 Sub-tree Selection . 57

4.2.2 Partial Sub-tree Selection 58

4.2.3 Feature Selection . 60

4.2.4 Attribute Selection . 61

4.2.5 Grouping Views . 61

4.3 Featured Cascading Style Sheets (FCSS) 62

4.3.1 Global Properties . 65

4.3.2 View-specific Properties 67

4.3.3 Feature-specific Properties 69

4.3.4 Attribute-specific Properties 70

5 language editors 71

5.1 Xtext . 72

5.2 TVL Editor . 73

5.2.1 Grammar . 73

5.2.2 Default Infrastructure . 78

5.2.3 Custom Developments . 80

5.3 TVDL Editor . 89

5.3.1 Grammar . 89

5.3.2 Default Infrastructure . 91

5.3.3 Custom Developments . 93

5.4 FCSS Editor . 98

5.4.1 Grammar . 98

5.4.2 Default Infrastructure . 100

5.4.3 Custom Developments . 100

6 automation 107

6.1 HTML Interface Generation . 107

6.1.1 Architectural Overview 108

6.1.2 Queries . 110

6.1.3 Templates . 119

6.1.4 Handling Feature Instances 127

6.2 Presenter . 129

6.2.1 Initialisation . 129

6.2.2 Configuration . 130

6.2.3 Finalisation . 133

6.3 Summary . 133

iii evaluation & conclusions 135

7 evaluation 137

7.1 Evaluation of TVL . 137

7.1.1 Evaluation Criteria . 137

Contents xv

7.1.2 Cases . 138

7.1.3 Research Protocol . 142

7.1.4 Analysis of TVL . 143

7.1.5 Threats to Validity . 147

7.2 Evaluation of Languages and Tools 148

7.2.1 Models . 148

7.2.2 Generated Configurator 155

7.2.3 Feedback from Rexel . 158

7.2.4 Lessons Learned . 161

7.2.5 Threats to validity . 164

7.3 Further Evaluations . 164

8 conclusions 167

8.1 Summary of Contributions . 167

8.2 Limitations . 169

8.3 Perspectives . 170

8.3.1 Reverse-engineering . 170

8.3.2 Multiple Targets . 172

8.3.3 Ordering Views . 172

8.3.4 Workflow Configuration 174

iv appendixes 179

a language grammars 181

a.1 TVL Grammar . 181

a.2 TVDL Grammar . 187

a.3 FCSS Grammar . 189

b prototype generator 191

b.1 Parser Java Class . 191

v bibliography 199

L I S T O F F I G U R E S

Figure 1.1 Audi car configurator . 2

Figure 1.2 Audi car configurator for A1 3

Figure 2.1 FM of an eVoting component 12

Figure 2.2 Tree-view of pure::variant 19

Figure 2.3 Model-to-model transformation 22

Figure 2.4 Model-to-text transformation 23

Figure 3.1 Model-view-controller architecture 28

Figure 3.2 Model-view-presenter architecture 29

Figure 3.3 An MVP architecture for configurators 30

Figure 3.4 Widget types in all the configurators 34

Figure 3.5 Interface generation process 40

Figure 4.1 Package model for the TVL meta-model 47

Figure 4.2 TVL meta-model (Core) 48

Figure 4.3 TVL meta-model (Type) 49

Figure 4.4 Deep hierarchies can be split up in TVL 50

Figure 4.5 Different ways of declaring an attribute in TVL 51

Figure 4.6 TVDL meta-model . 55

Figure 4.7 Stop lists for sub-tree expressions 57

Figure 4.8 Sub-tree views refined by lists 59

Figure 4.9 FCSS meta-model . 63

Figure 5.1 TVL editor generated by Xtext 79

Figure 5.2 TVL editor with semantic highlighting 86

Figure 5.3 TVL editor outline view 87

Figure 5.4 Quick fix in the TVL editor 88

Figure 5.5 TVDL editor generated by Xtext 92

Figure 5.6 TVDL syntax colouring preferences 96

Figure 5.7 TVDL editor with custom highlighting 97

Figure 5.8 TVDL editor outline view 98

Figure 5.9 FCSS editor generated by Xtext 101

Figure 5.10 FCSS syntax colouring preferences 103

Figure 5.11 FCSS editor with custom highlighting 104

Figure 5.12 FCSS editor outline view 105

xviii List of Figures

Figure 6.1 Generation process with Acceleo 108

Figure 6.2 Abstract architecture of our Acceleo solution 109

Figure 6.3 Simplified workflow of the JavaScript presenter 132

Figure 7.1 Interview protocol . 142

Figure 7.2 Accueil tab of the HTML configurator for Rexel 155

Figure 7.3 Logement tab of the HTML configurator for Rexel 157

Figure 7.4 Circuits tab of the HTML configurator for Rexel 158

Figure 7.5 Elements tab of the HTML configurator for Rexel 159

Figure 7.6 Tableau tab of the HTML configurator for Rexel 159

Figure 7.7 Finer-grained handling of feature instances in the Lo-
gement tab . 160

Figure 7.8 Shared feature in the Circuits tab 161

Figure 8.1 Reverse-engineering process for Web configurators . . 171

Figure 8.2 Re-engineering process for configurators 172

Figure 8.3 Illustrative YAWL workflow for a configuration GUI . 173

Figure 8.4 Project planning workflow 176

Figure 8.5 Questionnaire for the project planning workflow 177

L I S T O F TA B L E S

Table 2.1 Existing textual variability modelling languages 13

Table 2.2 Existing user interface description languages 18

Table 2.3 M2M transformation types and their main uses 22

Table 3.1 Graphical widgets mappings 35

Table 3.2 Graphical widgets for views 39

Table 7.1 Profiles of the five participants 139

Table 7.2 Results of the evaluation of TVL 143

L I S T O F L I S T I N G S

Listing 4.1 Partial printer software TVL model 49

Listing 4.2 Printer software TVDL model 56

Listing 4.3 Printer software grouping views 62

Listing 4.4 Printer software FCSS model 64

Listing 5.1 Header of the TVL Xtext grammar 73

Listing 5.2 Starting elements of the TVL Xtext grammar 74

Listing 5.3 Types excerpt of the TVL Xtext grammar 74

Listing 5.4 Features excerpt of the TVL Xtext grammar 75

Listing 5.5 Feature contents excerpt of the TVL Xtext grammar . . 76

Listing 5.6 Attribute declaration excerpt of the TVL Xtext grammar 76

Listing 5.7 Constraints excerpt of the TVL Xtext grammar 77

Listing 5.8 Validation of attribute names in the TVL editor 80

Listing 5.9 Registration of the scope providers for the TVL editor . 84

Listing 5.10 Declaration of an highlighting style for the TVL editor . 85

Listing 5.11 Header of the TVDL Xtext grammar 89

Listing 5.12 Starting elements of the TVDL Xtext grammar 89

Listing 5.13 View definition excerpt of the TVDL Xtext grammar . . 90

Listing 5.14 View expressions excerpt of the TVDL Xtext grammar . 90

Listing 5.15 Illustrative cycle example in a TVDL model 93

Listing 5.16 Cycle verification algorithm of the TVDL editor 93

Listing 5.17 Header of the FCSS Xtext grammar 98

Listing 5.18 High level rules of the FCSS Xtext grammar 99

Listing 6.1 Query retrieving the three models 111

Listing 6.2 Query retrieving an opt feature from a group 112

Listing 6.3 Main template . 120

Listing 6.4 Event listener for TVL groups represented as list boxes 130

Listing 7.1 TVL model (excl. constraints) for the Rexel case 149

Listing 7.2 TVDL model for the Rexel case 153

Listing 7.3 FCSS model for the Rexel case 154

Listing 8.1 TVL model for the project planning workflow question-
naire . 175

1
C O N T E X T

1.1 what’s a configurator?

In the past, companies produced large amounts of products through mass
production lines. Advantages of such an approach are reduced production
costs and time-to-market. While it is (still) appropriate for some goods like
food or household items, customer preferences evolve to customised prod-
ucts. Even car production which was a major example of mass production
has moved to the customisation category. Henry Ford played a pioneering
role in the mass production of cars. Fordism aimed to achieve higher pro-
ductivity by standardizing the output, breaking the work into small well
specified tasks, and using conveyor assembly lines. However, Ford’s quote
“Any customer can have a car painted any colour that he wants so long as it
is black” already illustrates the limitations of mass production, back in 1923.

In a more and more competitive environment, product customisation is
taken to the extreme by companies in order to gain market share. Compa-
nies provide customisation tools, more commonly called product configura-
tors, to assist their staff and customers in deciding upon the characteristics
of the product to be delivered. This trend is further strengthened by the
ever-growing presence of such configurators on the Internet. In August 2013,
Cyledge’s configurator database [Cyledge, 2013] listed more than 900 entries
categorized in 16 different industries, ranging from automotive to food in-
cluding apparel. The Audi car configurator displayed in Figure 1.1 is an
example. Nowadays, most (if not all) other car manufacturers provide such
tools to their customers.

The key idea behind configurators is to provide end-users with an easy-to-
use Graphical User Interface (GUI) where they can select the desired options
and customise their product. The result of the configuration is then used by
the manufacturer in order to produce the final product with the required op-
tions. Generally, the user is guided by the GUI in her process. That guidance
manifests itself in different ways.

Configuration can be broken down into steps. Typically, a step represents
a set of logically linked configuration options. That set depends on different
parameters such as user requirements, application domain, etc. The different

2 1. context

Figure 1.1.: Audi car configurator1(February 2014)

steps of our Audi example are visible in the bottom part of Figure 1.1. There
are six: 1.Model, 2.Engine, 3.Exterior, 4.Interior, 5.Equipment, and
6.Your Audi. In this case, a step corresponds to a “part” of the car. The
numbering indicates the chronological configuration order, e.g., the model
has to be selected before the engine. A step is enabled as soon as the previous
one is completely configured. Such an order is not always required and, in
some configurators, the user is free to switch from one step to another.

Constraint verification is another guidance mechanism. Selecting an op-
tion might, for example, require the inclusion or exclusion of another one.
In our Audi example, selecting the Audi A1 model line will reduce the set
of available values in Body style and Model columns as depicted in Fig-
ure 1.2. Available values can be compared with those in Figure 1.1. Many
more constraints examples are available around us. Configurators should

1 See http://configurator.audi.co.uk/controller?next=carline-page&mandant=accx-uk

http://configurator.audi.co.uk/controller?next=carline-page&mandant=accx-uk

1.2. Building Correct Configuration Interfaces 3

preclude inconsistent activation or deactivation of configuration options to
avoid frustration on the user side and technically unrealistic products on the
manufacturer side. Furthermore, constraints are of different natures. Some
are of technical nature while others originate from business rules. Both may
change over time.

Figure 1.2.: Audi car configurator for A1

1.2 building correct configuration interfaces

Our experience reveals that some existing configurators are implemented in
an ad-hoc fashion. This is especially cumbersome when numerous and non-
trivial constraints have to be dealt with. For instance, we have observed in
two industrial cases [Hubaux et al., 2010a] that relationships between config-
uration options are hard-coded and mixed with GUI code. In other words,
the configuration logic is not separated from the rest of the application code.
As constraints are scattered in the source code, severe maintenance issues
occur. For example, engineers are likely to introduce errors when updating
or adding new constraints between options in the configurator. Moreover,
as recognized by our industrial partners developing such configurators, the
correctness and the efficiency of the reasoning operations are not guaranteed.
Testing such software might also prove difficult [Jin et al., 2014]. More reli-
able and maintainable solutions are thus needed, especially for safety-critical
systems.

In this thesis, we propose a pragmatic and model-driven way to generate
configuration GUIs. We rely on Feature Models (FMs) to represent and reason
about the configuration options and their complex relationships. FMs have
been extensively studied in academia during the last two decades, primar-

4 1. context

ily in the software product line community [Kang et al., 1990]. FMs are now
equipped with formal semantics [Schobbens et al., 2006], automated reason-
ing operations and benchmarks [Acher et al., 2012, Benavides et al., 2010b],
tools [Antkiewicz and Czarnecki, 2004, Beuche, 2008, Kästner et al., 2009]
and languages [Batory, 2005, Classen et al., 2011]. In essence, an FM aims
at defining legal combinations of features authorised or supported by a
system. In our case, configuration options are modelled as features and
each configuration (specification of a product) authorised by the configura-
tor corresponds to a valid combination of features in an FM. A strength
of FMs is that state-of-the-art reasoning techniques, based on solvers (e.g.,
SAT, SMT, CSP), can be reused to implement decision verification, propa-
gation, and auto-completion in a rigorous and efficient way [Batory, 2005,
Benavides et al., 2010b, Hubaux et al., 2011]. Therefore FMs are a very good
candidate to pilot the configuration process during which customers decide
which features are included in a product.

Once FMs have been elaborated, there is still need to produce a GUI,
including the integration of underlying reasoning mechanisms to control
and update the GUI elements. On the one hand, some FM-based configu-
ration GUIs rely on solvers [Antkiewicz and Czarnecki, 2004, Beuche, 2008,
Kästner et al., 2009]. But such GUIs do not consider presentation con-
cerns and their generation process is rigid, avoiding the derivation of cus-
tomised GUIs [Grechanik et al., 2004]. Furthermore existing graphical repre-
sentations of FMs (e.g., FODA-like notation or tree-views) are not adapted
to user-friendly configuration [Pleuss et al., 2011]. On the other hand,
model-based approaches for generating GUIs simply produce the visual
aspects of a GUI [Blouin et al., 2011, Blumendorf et al., 2010, Coutaz, 2010,
Gomaa et al., 2005]. This is not sufficient for configurators since constraint
verification is paramount for their usability and performance.

Our approach is to combine the best of both worlds, i.e., correct config-
urations together with user-friendly generated GUIs. We present a model-
view-presenter (MVP) architecture to design configurators, which sepa-
rates concerns between an FM (configuration option modelling), its asso-
ciated solver (automated reasoning support) and the presentation of the
GUI. To fill the gap between FMs and configuration GUIs, the different
constructs of the FM formalism are rendered as GUI elements through
model transformations. The transformations are based on a meta-model for
TVL [Boucher et al., 2010, Classen et al., 2011], a textual language for feature
modelling. Transformations can be parametrised through beautification and
view languages to derive specific configuration GUIs.

1.3. Contributions 5

1.3 contributions

The contributions of this thesis are:

C1 A model-view-presenter architecture for configurators. Our experience
shows that a lot of configurators do not separate presentation from constraint
aspects. The result is that configuration options and constraints are hard
to change and update since they are scattered through the GUI code. To
solve those problems we propose to use a model-view-presenter architecture
for configurators where the “model” part is an FM together with its solver
which communicates with the GUI (i.e., the view) through a presenter. The
strengths of FMs are their expressiveness and their state-of-the-art reasoning
techniques based on solvers. The GUI is also derived from that FM.

C2 A generative approach for configuration GUIs. In our model-view-
presenter architecture, the configuration GUI is derived from an FM. How-
ever, such models do not contain sufficient data to be properly rendered
graphically. We thus allow to split them using views on FMs and add beau-
tification information. The FM, its views and beautification information are
used as input for GUI generation through model transformations.

C3 A textual variability language and its editor. While graphical FM languages
may be more intuitive, they are not always adapted to large FMs involving
attributes and complex constraints [Hubaux et al., 2010b]. To overcome these
shortcomings, we propose TVL, a textual variability modelling language with
a C-like syntax. The goal of the language is to be scalable, by being concise
and by offering mechanisms for modularity. TVL is also meant to be compre-
hensive so as to cover a wide range of FM dialects proposed in the literature.
An Eclipse editor for TVL is also proposed.

C4 A textual view definition language and its editor. In our approach views are
used to break the hierarchy of the TVL model and make the configuration GUI
independent from the FM structure. In [Hubaux, 2012], Hubaux et al. made
use of XPath [W3C, 2010b] expressions for that purpose. However, they do
not support the TVL language and do not provide access to all FM constructs.
We thus propose TVDL, a textual view definition language with an XPath-like
syntax. TVDL relies on TVL models and grants access to all their constructs
in a more concise way than the language from which it was inspired. As for
TVL, TVDL comes with an Eclipse editor developed with Xtext [Xtext, 2013].

C5 A beautification language and its editor. TVL and TVDL models do not
contain the required information to be properly rendered in a GUI. They
miss properties such as a label, a help text, etc. In order to preserve
the separation of concerns [Tarr et al., 1999], we propose the FCSS language
which allows specifying such beautification information. It is inspired by the
CSS [W3C, 2008] language (Cascading Style Sheets) for HTML pages. FCSS

6 1. context

stands for Featured Cascading Style Sheets. An editor is also available for that
language.

C6 An end-to-end application of the GUI generation approach. A prototype GUI
generator has been developed that renders HTML configurators. The presen-
ter is implemented in JavaScript and the solver (i.e., the model) is proposed
as a Web service. That prototype has been evaluated on an industrial case
study in the electrical domain.

1.4 reader’s guide

The rest of the thesis is organized as follows.

Chapter 2 presents the background. It is composed of two types of infor-
mation, background and state of the art. There, we give some background
information about feature models and GUIs. The existing work linking fea-
ture models and GUIs is addressed. Finally, model transformations (used in
the proposed approach) are introduced.

Chapter 3 gives an overview of the proposed approach. It can be decom-
posed into two steps. In the first one, the configuration GUI is generated
based on three input models: the feature model, the view model and the
beautification model. The second part is the runtime environment of the
generated GUI. It is based on the model-view-presenter pattern, a variant
of model-view-controller. In this pattern, the FM plays the role of “model”
while the “view” role is assigned to the GUI.

Chapter 4 introduces the three input languages we developed for the GUI
generator. The feature modelling language is called Textual Variability Lan-
guage (TVL). Views are defined on TVL models using the Textual View Defini-
tion Language (TVDL). And the Featured Cascading Style Sheets (FCSS) contain
beautification information, i.e., feature- and view-related information for the
GUI. For each of them, we describe its syntax based on the same example.
An intuition of the semantics is also given.

Chapter 5 presents the editors for the three languages introduced in Chap-
ter 4. All three are based on Xtext, a framework for developing programming
and domain specific languages [Xtext, 2013]. We present the editors gener-
ated by Xtext as well as the additional custom developments.

Chapter 6 describes a prototype implementation of the proposed approach.
The generator produces HTML GUIs and is implemented with Acceleo, a
model-to-text transformation tool [Obeo, 2014]. The TVL, TVDL and FCSS mod-
els are used as inputs to the tool. In the second part of the chapter, we give
the general principles of the controller developed in JavaScript.

Chapter 7 validates the proposed languages and the approach based on
the prototype implementation. It is decomposed into three distinct parts.

1.5. Bibliographical Notes 7

In the first one, we evaluate the proposed languages. The second part, the
“industrial” one, relates our experience on an industrial application of our
approach. In the last part, we explain how to properly evaluate the approach.

Chapter 8 concludes the thesis and highlights the future work.

1.5 bibliographical notes

The research presented in this thesis is based upon, reuses and extends
publications of the author. We list below the most relevant peer-reviewed
papers published during the PhD:

Journals

• A. Classen, Q. Boucher, and P. Heymans. A Text-based Approach to
Feature Modelling: Syntax and Semantics of TVL. Science Computer Pro-
gramming, volume 76, pages 1130–1143, 2011. (Chapter 4)

• P. Heymans, Q. Boucher, A. Classen, A. Bourdoux, and L. Demonceau.
A Code Tagging Approach to Software Product Line Development: An
Application to Satellite Communication Libraries. International Journal
on Software Tools for Technology Transfer, volume 14, number 5, pages
553–566, 2012.

Conferences

• T. Tun, Q. Boucher, A. Classen, A. Hubaux, and P. Heymans. Relating
Requirements and Feature Configurations: A Systematic Approach. In
Proceedings of the International Software Product Line Conference (SPLC’09),
pages 201–210, San Francisco, USA, 2009. ACM. (Chapter 3)

• Q. Boucher, A. Classen, P. Heymans, A. Bourdoux, L. Demonceau. Tag
and Prune: A Pragmatic Approach to Software Product Line Implemen-
tation. In Proceedings of the International Conference on Automated Software
Engineering (ASE’10), pages 333–336, Antwerp, Belgium, 2010. ACM.

• A. Hubaux, Q. Boucher, H. Hartmann, R. Michel, and P. Heymans. Eval-
uating a Textual Feature Modelling Language: Four Industrial Case
Studies. In Proceedings of the International Conference on Software language
engineering (SLE’10), pages 337–356, Eindhoven, The Netherlands, 2010.
Springer. (Chapter 7)

• Q. Boucher, G. Perrouin, J-C. Deprez, P. Heymans. Towards Config-
urable ISO/IEC 29110-Compliant Software Development Processes for
Very Small Entities. In Proceedings of the European System, Software &
Service Process Improvement & Innovation Conference (EuroSPI2’12), pages
169–180, Vienna, Austria, 2012. Springer.(Chapter 8)

8 1. context

• E. Abbasi, A. Hubaux, M. Acher, Q. Boucher, and P. Heymans. The
Anatomy of a Sales Configurator: An Empirical Study of 111 Cases. In
Proceedings of the International Conference on Advanced Information Systems
Engineering (CAiSE’13), pages 162–177, Valencia, Spain, 2013. Springer.
(Chapter 3)

Workshops

• Q. Boucher, A. Classen, P. Faber, and P. Heymans. Introducing TVL,
a Text-based Feature Modelling Language. In Proceedings of the Inter-
national Workshop on Variability Modelling of Software-intensive Systems
(VaMoS’10), pages 159–162, Linz, Austria, 2010. Universität Duisburg-
Essen. (Chapter 4)

• C. Gauthier, A. Classen, Q. Boucher, P.Heymans, M-A. Storey, M.
Mendonca. XToF - A Tool for Tag-based Product Line Implementa-
tion. In Proceedings of the International Workshop on Variability Modelling
of Software-intensive Systems (VaMoS’10), pages 163–166, Linz, Austria,
2010. Universität Duisburg-Essen.

• R. Michel, A. Classen, A. Hubaux, and Q. Boucher. A Formal Seman-
tics for Feature Cardinalities in Feature Diagrams. Proceedings of the In-
ternational Workshop on Variability Modelling of Software-intensive Systems
(VaMoS’11), pages 82–89, Namur, Belgium, 2011. ACM. (Chapter 4)

• Q. Boucher, G. Perrouin, and P. Heymans. Deriving Configuration In-
terfaces from Feature Models: A Vision Paper. In Proceedings of the In-
ternational Workshop on Variability Modelling of Software-intensive Systems
(VaMoS’12), pages 37–44, Leipzig, Germany, 2012. ACM. (Chapters 3
and 7)

• Q. Boucher, E. Abbasi, A. Hubaux, G. Perrouin, M. Acher, and P. Hey-
mans. Towards More Reliable Configurators: A Re-engineering Per-
spective. In Proceedings of the International Workshop on Product LinE
Approaches in Software Engineering (PLEASE’12), co-located with ICSE’12,
pages 29–32, Zurich, Switzerland, 2012. IEEE. (Chapter 3)

Part I

B A C K G R O U N D

2
S TAT E O F T H E A RT

Here, we introduce the background required to understand the contents of
this thesis as well as existing approaches that we compare to ours. Feature
models being the starting point endeavour, we introduce them in Section 2.1.
Then, in Section 2.2, we introduce UI-related concepts and generation. Fi-
nally, model transformations used to generate configurators are introduced
in Section 2.3.

2.1 feature modelling

Software Product Line Engineering (SPLE) is an increasingly popular soft-
ware engineering paradigm which advocates systematic reuse across the
software lifecycle. Central to the SPLE paradigm is the modelling and
management of variability, i.e., “the commonalities and differences in the ap-
plications in terms of requirements, architecture, components, and test arte-
facts” [Pohl et al., 2005]. Variability is typically expressed in terms of features,
i.e., first-class abstractions that shape the reasoning of the engineers and other
stakeholders [Classen et al., 2008].

Feature models were introduced as part of the FODA (Feature Ori-
ented Domain Analysis) method 24 years ago [Kang et al., 1990]. They
are a graphical notation whose purpose is to document variability. Since
their introduction, FMs have been extended and formalised in various
ways [Czarnecki et al., 2005, Schobbens et al., 2006] and tool support has
been progressively developed [pure-systems GmbH, 2006]. The majority of
these extensions are variants of FODA’s original tree-based graphical nota-
tion. Figure 2.1 shows an example of graphical tree-shaped FM that describes
the variability of an eVoting component. The and-decomposition of the root
feature (Voting) implies that all its sub-features have to be selected in all valid
products. Similarly, the or-decomposition of the Encoder feature means that
at least one of its child features has to be selected, and the xor-decomposition
of the Default VoteValue feature means that one and only one child has to
be selected. Cardinality-based decompositions can also be defined, like for
VoteValues in the example. In this case, the decomposition type implies that

12 2. state of the art

at least two, and at most five sub-features of VoteValues have to be selected.
Finally, two <requires> constraints impose that the feature corresponding to
the default vote value (Yes or No) is part of the available vote values.

Voting

Encoder VoteValues

NotYetEncoded YesNoAbstain NotVoteManager Voter

[2..5]

Legend

[i..j]

and-decomposition

xor-decomposition group cardinality [i..j]

Default
VoteValue

Yes No

<requires>

<requires>

or-decomposition

Figure 2.1.: FM of an eVoting component

Graphical FM notations based on FODA [Kang et al., 1990] are by far
the most widely used. Most of the subsequent proposals such as Fea-
tuRSEB [Griss et al., 1998], FORM [Kang et al., 1998] or Generative Program-
ming [Czarnecki and Eisenecker, 2000] are only slightly different from the
original graphical syntax (e.g., by adding boxes around feature names).

A number of textual FM languages were also proposed in the literature.
Table 2.1 compares them against the following criteria: (i) human readabil-
ity, i.e., whether the language is meant to be read and written by humans;
(ii) support for attributes; (iii) decomposition (group) cardinalities; (iv) basic
constraints, i.e., requires, excludes and other Boolean constraints on the pres-
ence of features; (v) complex constraints, i.e., Boolean constraints involving
values of attributes; (vi) mechanisms for structuring and organising the infor-
mation contained in an FM (other than the FM hierarchy); (vii) formal and
tool-independent semantics, and (vii) tool support.

To our knowledge, the first textual language was
FDL [van Deursen and Klint, 2002]. It is the only language for which a
formal semantics exists. It does not support attributes, cardinality-based
decomposition nor other advanced constructs.

XML-based file formats to encode FMs are used by the Feature
Modelling Plugin [Antkiewicz and Czarnecki, 2004], the FAMA frame-
work [Benavides et al., 2007] and pure::variants [Beuche, 2008]. XML-based

2.1. Feature Modelling 13

Table 2.1.: Existing textual variability modelling languages

Language H
um

an
re

ad
ab

le

A
tt

ri
bu

te
s

C
ar

di
na

li
ti

es

B
as

ic
C

on
st

.

C
om

pl
ex

C
on

st
.

St
ru

ct
ur

in
g

Fo
rm

al
se

m
an

ti
cs

To
ol

su
pp

or
t

FDL [van Deursen and Klint, 2002] X X X

FMP [Antkiewicz and Czarnecki, 2004] X X X X X

GUIDSL [Batory, 2005] X X X

FAMA [Benavides et al., 2007] X X X X X

pure::variants [Beuche, 2008] X X X X X

SXFM [Mendonca, 2009] X X X

VSL [Reiser, 2009] X X X X X

KConfig1 X X X X X

languages are not intended for human analysis, and both FAMA and
pure::variants offer APIs and editors to create, manipulate or reason about
models. Nevertheless, their semantics is directly implemented in the respec-
tive tools, which limits the understanding of language features and capabil-
ities to outsiders. While our TVL editor ultimately adopts an XML represen-
tation (XMI) to store models in Eclipse, we provide language grammar and
semantics in an XML-independent way [Classen et al., 2011].

Batory [Batory, 2005] proposed the GUIDSL syntax, in which the FM is
represented by a grammar. The GUIDSL syntax is used as a file format
of the feature-oriented programming tools AHEAD [Batory, 2005] and Fea-
tureIDE [Kästner et al., 2009]. The GUIDSL format is aimed at the engineer
and is thus easy to write, read and understand. However, it does not support
arbitrary decomposition cardinalities, attributes, or the representation of the
FM as a hierarchy.

The SPLOT [Mendonca et al., 2009] and 4WhatReason [Mendonca, 2009]
tools use the SXFM syntax and file format. While the format uses XML for
metadata and the overall file structure, its representation of the FM is entirely
text-based with the explicit goal of being human-readable. It differs from the
GUIDSL format in that it makes the tree structure of the FM explicit through

1 See http://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

http://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

14 2. state of the art

(Python-style) indentation. It supports decomposition cardinalities but not
attributes.

The CVM framework [Reiser, 2009, Abele et al., 2010] supports text-based
variability modelling with VSL which has support for many constructs. At-
tributes, however, can only be used as feature parameters and not in con-
straints.

KConfig is the configuration language of the Linux kernel. It is a config-
uration interface description language and a KConfig file can be interpreted
as an FM. KConfig supports structuring with file includes. It only supports
basic constraints which define presence of features. KConfig is also hard to
reuse in other domains due to its specialization. For example, it provides a
three-valued logic for features (yes, no, module) which is not suitable in all
cases.

Bak et al. [Bak et al., 2010] proposed the class, feature, reference (Clafer)
language. Even if Clafer can be used to encode feature models augmented
with complex constraints, it also supports class and meta-models. This might
make it too complex for people seeking to define a feature model only.

We should note that all these languages are remotely related to con-
straint programming, and several implementations use constraint solvers
internally. Moreover, as pointed out by Batory [Batory, 2005], FMs can be
seen as simplified grammars where products correspond to sentences. Sim-
ilarly, FMs with attributes can be seen as a form of attribute grammar, al-
beit without the distinction of synthesised or inherited attribute [Knuth, 1971,
Batory and Geraci, 1996]. What distinguishes FMs from constraint program-
ming and attribute grammars is their domain-specific nature and indepen-
dence from any of these technologies.

2.2 user interface modelling and generation

This section is decomposed into two sub-sections. In the first one, we give a
short description of major user interface description languages which could
be used as target languages for our generator. In the second, existing work
combining variability models (more exactly FMs) and GUIs is presented.

2.2.1 User Interface Description Languages

In the Human-Computer Interaction (HCI) research domain, automation of
UI development is an important topic. A whole spectrum of approaches
ranging from purely manual design to completely automated approaches
have been proposed. Manual design is of no interest to us as we seek to
automate the generation of interfaces. On the other hand, fully automated

2.2. User Interface Modelling and Generation 15

approaches generate moderately usable GUIs, except for domain specific ap-
plications [Myers et al., 2000].

Most approaches propose a partially automated process which uses ex-
tra information about the UI stored in models. They are all grouped un-
der the Model-based User Interface Development (MBUID) denomination, gen-
erally supported by an MBUID environment (MBUIDE). It can be defined
as “a suite of software tools that support designing and developing UIs by cre-
ating interface models” [Gomaa et al., 2005]. Each MBUIDE defines its own
set of models to describe the interface. The different MBUIDEs and the
associated models have been surveyed by Gomaa et al. [Gomaa et al., 2005]
and the W3C [W3C, 2010a]. Here, we give a summary of User Interface
Description Languages (UIDLs) used in MBUID. XML-based UIDLs have
also been surveyed by several authors [Souchon and Vanderdonckt, 2003,
García et al., 2009]. Such languages can be used to represent the generated
GUIs at a more “abstract” level. They are grouped in four categories.

The first category groups all languages based on the Cameleon Reference
Framework (CRF) [Calvary et al., 2003]. There, the UI development is decom-
posed into four abstraction levels: Task and Concepts (T&C), Abstract User
Interface (AUI), Concrete User Interface (CUI) and Final User Interface (FUI),
the last being the most concrete one. A short description of each level follows:

• Task and concepts – Describes the UI based on user tasks and the con-
cepts of the application domain they involve.

• Abstract user interface – Describes the rendering of the domain con-
cepts and functions independently of available interactors on the target
platform(s). The AUI is independent of the target platform(s) and the
interaction mode.

• Concrete user interface – Describes the rendering of the domain con-
cepts and functions with interactors from the target platform(s). Even
though it uses elements of a target platform, the CUI is still a mock-up
that runs only in development environments.

• Final user interface – Contains source code derived from the CUI for
specific target languages. That code can then be compiled or interpreted
in a run-time environment.

In other words, T&C is computing independent, AUI is modality indepen-
dent and CUI is platform independent. Each abstraction level contains one
model or more. For example, an AUI can be composed of a presentation
model describing the interactors, their location in the UI, etc., and a dialogue
model describing the behaviour.

The default development process starts with the definition of the task and
concepts models. Those user-defined models are then successively refined

16 2. state of the art

into AUI, CUI, and FUI. However, the user is allowed to start her develop-
ment at any of the four levels. For example, she could ignore the task and
concepts level and directly start with the AUI.

This framework is globally well accepted by the UI community as
shown by the numerous MBUID approaches which, directly or indi-
rectly, rely on it to define their models and development processes.
Among them, we can mention the Software Engineering for Embed-
ded Systems using a Component-Oriented Approach [Eisenstein et al., 2001,
Puerta and Eisenstein, 2003], Model-based lAnguage foR Interactive Applications
XML (MARIA XML) [Paterno’ et al., 2009], or USer Interface eXtensible Markup
Language (UsiXML) [Limbourg et al., 2005]. Among all those approaches/lan-
guages, the last one is probably the most mature. It is currently being evalu-
ated for standardization2 while most others seem abandoned. UsiXML pro-
poses a language for each model of the Cameleon framework. Some editors
have been developed: GraphiXML, VisiXML, SketchiXML, IdealXML, Know-
iXML, ReversiXML, and TransformiXML. Rendering also has its tool support
with RenderXML and InterpiXML. However, we were not able to get access
to all those tools and test them in order to get a UI directly usable by the
final user. Another disadvantage of UsiXML is that it supports all interaction
modes (graphical, voice, etc.) while we focus on the graphical one. Con-
sequently, the different languages proposed by UsiXML contain irrelevant
information in our case which might become cumbersome.

The User Interface Markup Language (UIML) [Ali et al., 2002,
Helms et al., 2009] and its derivative, the Dialog and Interface Specifica-
tion Language (DISL) [Mueller et al., 2004] make part of the second category.
UIML has been defined by the OASIS consortium3 which seeks to develop
standards for e-business and Web services. The language must be com-
bined with other techniques such as user task modelling or transformation
algorithms in order to be able to generate a full-fledged UI. In UIML,
look-and-feel, interaction and connexion of the UI with application logic can
be defined. Three code generators are available. UIML.net seems abandoned,
JUIML has not been updated since 2009 and PyUIML (Python UIML XML
Parser) has yet to mature. The Transformation-based Integrated Development
Environment (TIDE) supports UIML code writing and Java/HTML code
generation. It has been developed to help developers write UIML models
and see how it final UIs are rendered. However, we were not able to find
that IDE. DISL extends UIML and supports several interaction modes. It has
no tool support.

The third category contains Web-application languages. Initially,
XForms [W3C, 2009] was defined for HTML-XHTML documents by the W3C.

2 See http://usixml.eu/sites/default/files/Issue_6_Winter_2012.V2.pdf
3 See https://www.oasis-open.org/

http://usixml.eu/sites/default/files/Issue_6_Winter_2012.V2.pdf
https://www.oasis-open.org/

2.2. User Interface Modelling and Generation 17

Its purpose is to separate presentation from data in Web forms in order to im-
prove re-use. Now, XForms can be used with any markup language. XHTML
forms are decomposed into three models: the XForms model which defines
the form and model elements, the instance data which allow to send col-
lected data in the XML format, and the user interface which defines concepts
such as output, input, submit, etc. XForms is not an UIDL per se but allows
to define GUIs at an abstract level. Second, XICL [de Sousa and Leite, 2003]
is meant to develop user interface components for browsers. New compo-
nents are created by combining HTML and XICL elements. They are then
translated into Dynamic HTML (DHTML). An XICL document is composed
of a description of the UI using HTML and XICL constructs as well as in-
formation such as properties, events, etc. Lastly, the eXstensible user-Interface
Markup Language (XIML) [Puerta and Eisenstein, 2002] represents interaction
data for Web pages and applications at abstract and concrete levels. We dis-
tinguish three different constructions in the language: components, relations
and attributes. Components are categories of interface elements. User tasks,
domain objects, user types, presentation elements, or dialogue elements are
examples of such categories. Relations define links between elements within
the same component or across several. Attributes are properties of elements
which can be assigned a value. The drawback of all those approaches is that
they focus on Web GUIs while our goal is to cover more runtime environ-
ments.

Finally, we can also mention the following languages which do not fit into
any of the above categories. The Generalized Interface Markup Language (GIML)
is an UIDL used in the Generalized Interface Tool Kit (GITK) project [Kost, 2006].
There, dialogue functions are represented by GIML while the presentation
is derived from XSL documents. XSLT is used to combine both information
and derive a description of the corresponding final user interface. The project
seems abandoned since 2004

4. The Multiple Device Markup Language (MDML)
supports four target environments [Johnson and Parekh, 2003]: desktop, mo-
bile, Web and voice. The language allows to define navigation, structure and
components concepts of an AUI. That information is used by an XML-based
rule engine in order to tailor the FUI for a given target environment. We
were not able to find the tools associated to MDML. Similarly, the Simple Uni-
fied Natural Markup Language (SunML) [Picard et al., 2003] supports several
target environments such as PCs, PDAs or voice. It is an XML-based lan-
guage to describe UI elements in an intuitive way. The Adaptable & Mergeable
User INterface (AMUSINg) IDE provides tool support to edit SunML mod-
els and generate Swing software [Picard et al., 2003]. As for MDML, we
were not able to find the IDE. Finally, in TADEUS-XML [Müller et al., 2001],
a UI description is made of two parts: a presentation component and a

4 See http://gitk.sourceforge.net/

http://gitk.sourceforge.net/

18 2. state of the art

model component (or abstract interaction model). The XML-based interac-
tion model is composed of User Interface Objects (UIOs) whose behaviour
is defined by their attributes. Then, an XML-based Device Definition can
transform the UIO model into a device-dependent model, e.g., by mapping
abstract UIOs to concrete ones. Finally, an XSL-based model description can
be derived from the second model, based on the running environment. As
in [Souchon and Vanderdonckt, 2003], we were not able to find tool support.

None of the approaches proposed with these languages addresses the spe-
cific issues that arise when generating configurators like the integration of un-
derlying reasoning mechanisms for controlling and propagating user choices
in the GUI. Modelling techniques have been developed to support adapta-
tions of interfaces at runtime [Blouin et al., 2011, Blumendorf et al., 2010]. In
the same way, configurators should be adapted to reflect the user interac-
tions (i.e., selections/deselections). In our context, the kind of modifications
applied to the configurator interfaces are typically lightweight (e.g., some val-
ues are greyed) and can be predicted. Moreover, we can take advantage of
planned variability to make use of efficient solvers to manage the configura-
tion process.

Table 2.2.: Existing user interface description languages

Language G
U

Is

O
th

er
U

Is

M
ai

nt
ai

ne
d

To
ol

s
de

ve
lo

pe
d

To
ol

s
av

ai
la

bl
e

UsiXML [Limbourg et al., 2005] X X X X

UIML [Ali et al., 2002, Helms et al., 2009] X X

XForms [W3C, 2009] X X X X

GIML [Kost, 2006] X X

MDML [Johnson and Parekh, 2003] X X X

SunML [Picard et al., 2003] X X X

TADEUS-XML [Müller et al., 2001] X X

As summarised in Table 2.2, a lot of languages have been proposed but
none of them meets all our needs. Most of them are either deprecated, or
under development, or not available anymore. An alternative is necessary
for our prototype generator. In this thesis, though recognizing the potential
of a UIDL for multi-platform generation, we will focus on HTML Web con-

2.2. User Interface Modelling and Generation 19

figurators in our implementation. The underlying approach is nevertheless
applicable to any rendering technology.

2.2.2 Feature Models and GUIs

In most variability-related tools, FMs are represented and configured using
tree-views. We can, for example, mention pure::variants [Beuche, 2008],
FeatureIDE [Kästner et al., 2009] or Feature Modeling Plug-
in [Antkiewicz and Czarnecki, 2004]. Those tools have a graphical interface
in which users can select/deselect features in a directory-tree like interface
where constraints are automatically propagated. See Figure 2.2 for an exam-
ple in pure::variants. Several visualization techniques have been proposed to
represent FMs [Pleuss et al., 2011], but they are not dedicated to end users
which are more accustomed to standard interfaces such as widgets, screens,
etc. Generating such user-friendly and intuitive interfaces is the main goal of
our work.

Figure 2.2.: Tree-view of pure::variant

An exception is the AHEAD tool suite of Grechanik et
al. [Grechanik et al., 2004]. Simple Java configuration interfaces includ-
ing check boxes, radio buttons, etc. are generated using beautifying
annotations supported by the GUIDSL syntax used in the tool suite. Exam-

20 2. state of the art

ples of annotations are disp which corresponds to the displayed name of a
feature, help which stores help information for a feature, tab which defines a
new tab rooted by the associated feature in the UI, hidden which allows to
hide a feature, etc.

Pleuss et al. combine SPLs and the concepts from the MBUID do-
main to integrate automated product derivation and individual UI de-
sign [Pleuss et al., 2010]. An AUI is defined in the domain engineering phase
and the product-specific AUI is calculated during the application engineer-
ing. The final UI is derived using semi-automatic approaches from MBUID.
Some elements like the links between UI elements and application can be
fully automatically generated while others like the visual appearance are also
generated automatically, but can be influenced by the user. While we share
similar views regarding MBUID, our overall goals differ. Pleuss et al. aims
at generating the UI of products derived from the feature model while our
interest is on generating the interface of a configurator allowing end users to
derive product according to their needs. We are therefore not concerned with
product derivation but rather with the link between feature model configura-
tion and UIs.

Schlee and Vanderdonckt [Schlee and Vanderdonckt, 2004] also combined
FMs with GUI generation. Relying on the generative programming paradigm,
the authors represent the UI options with an FM which will be used to gener-
ate the corresponding interface. Their work illustrates a few transformations
between FM and GUI constructs which can be seen as patterns. Yet, they do
not consider sequencing aspects which we believe to be a critical concern for
complex UIs. Gabillon et al. extended that work by supporting multi-platform
UIs built from FMs representing UI options [Gabillon et al., 2013]. However,
they do not tackle UIs which allow the configuration of an FM.

Quinton et al. proposed a model-driven framework called AppliDE
that bridges the gap between an application FM and its mobile ver-
sion [Quinton et al., 2011]. Their main purpose is to reduce the time-to-
market between the design of the application and its availability on multiple
platforms. Based on the meta-model of the configured product and the one
representing the capabilities of smartphones, they can deduce which device
is able to run the application. Similarly to us, they use model transforma-
tions to finally generate GUIs. However, their approach does not focus on
configurators and is limited to mobile phone software.

Botterweck et al. developed a feature configuration tool called S2T2

Con f igurator [Botterweck et al., 2009]. It includes a visual interactive rep-
resentation of the FM and a formal reasoning engine that calculates conse-
quences of the user’s actions and provides formal explanation. This feedback
mechanism is of importance to end users. Yet, S2T2 also presents a tree-like

2.3. Model Transformations 21

view on the configuration that we believe is not suited to all kinds of end
users.

2.3 model transformations

In software engineering, models are traditionally used for information
and communication purposes. In Model-Driven Engineering (MDE), they
are further used in the development process and support code genera-
tion [Kent, 2002]. Models have to be formally defined and comply with
the definition of their meta-model in order to be automatically handled by
a transformation engine. Meta-models and model transformations are two
core concepts of MDE. Here, we focus on the second one. We refer the inter-
ested reader to [Kleppe et al., 2003] for meta-models.

Several model transformation approaches and languages are available,
each having their own characteristics. Choosing one of them depends on
several parameters such as input models, required outputs, functionalities,
etc.

General-purpose languages such as Java or C++ could be used to transform
models. However, dedicated languages provide more powerful facilities. The
complexity of model transformation is hidden by a dedicated language. Gen-
erally speaking, such languages are more efficient and accurate as they are
tailored to specific needs [Greenfield and Short, 2004].

Model transformations can be classified into three categories:

1. M2M (Model-to-Model): transforming input model(s) into output
model(s). The OMG’s QVT standard establishes a normative framework
for such transformations [OMG, 2011]. QVT defines a set of languages
covering a set of transformation paradigms. ATL [Jouault et al., 2008],
QVTd [QVT Declarative, 2014], and QVTo [QVT Operational, 2014] are
examples of M2M languages.

2. M2T (Model-to-Text): transforming input model(s) into output text,
e.g., source code or documentation. MOFM2T is the standard
defined by the OMG for such transformations [OMG, 2008]. Ac-
celeo [Obeo, 2014] and Jet [Jet, 2007] both implement that standard.

3. T2M (Text-to-Model): transforming input text (e.g., source code or doc-
umentation) into output model(s). This category is probably the least
common one. It is principally used in reverse-engineering tasks in or-
der to extract models from existing artefacts. In this thesis, we focus on
the “forward-engineering” part. Consequently, the T2M approach will
not be further developed hereunder.

22 2. state of the art

2.3.1 Model-to-Model

Figure 2.3, based on [Czarnecki and Helsen, 2006], gives an insight of M2M
transformations with single input and output models. The Transformation
engine executes Transformation definitions which refer to source and tar-
get meta-models. A model conforming to its meta-model is given as input to
the transformation tool which translates it into a target model, also conform-
ing to its own meta-model. In some cases, Transformation definitions
also conform to their own meta-model. In that case, transformation defini-
tions could also be used as source or target models, so allowing higher-order
transformations, i.e., transformations of transformations.

Source Model

Source
Meta-Model

Conforms to

Target Model

Target
Meta-Model

Conforms to

Trasformation
Definition

Transformation
Engine

Refers to Refers to

Executes

Reads Writes

Figure 2.3.: Model-to-model transformation [Czarnecki and Helsen, 2006]

M2M transformations can be classified according to different crite-
ria [Czarnecki and Helsen, 2006, Mens and Gorp, 2006]. One of them relates
to the source and target meta-models. In endogenous transformations, source
and target models conform to the same meta-model. Such transformations
are used, e.g., to update or refine existing models in order to keep track of
the changes in software. Oppositely, exogenous transformations use different
meta-models for source and target models. One can also distinguish vertical
from horizontal transformations. In the former ones, source models defined in
an abstract formalism are transformed into models conforming to a less ab-
stract formalism. That kind is used, e.g., to transform platform independent
models (PIM) into platform specific models (PSM) in the context of the MDA
initiative5. In horizontal transformations, source and target models have the
same abstraction level. Table 2.3 summarises the main uses of M2M transfor-
mation types.

5 See http://www.omg.org/mda/

http://www.omg.org/mda/

2.3. Model Transformations 23

Table 2.3.: M2M transformation types and their main uses

Horizontal Vertical

Restructuring
Endogenous Normalisation Refinement

Patterns integration

Exogenous Software migration Generation
Models merging Reverse-engineering

Furthermore, several paradigms exist for model transformation lan-
guages [Czarnecki and Helsen, 2003]. We can mention the declarative one.
It is based on patterns. A pattern describes which elements of the source
meta-model (left-hand side, LHS) are translated into elements in the tar-
get meta-model (right-hand side, RHS). Execution of the transformation is
non-deterministic in general and matches the LHS with model elements con-
forming to it. These elements are then replaced by newly created model ele-
ments conforming to the RHS. QVTd [QVT Declarative, 2014] is an example
of declarative transformation language. Imperative transformations are close
to imperative programming languages. Models are processed in a procedural
way: one codes explicitly how model elements are transformed within trans-
formation operations. QVTo [QVT Operational, 2014] fits into this category.
Both declarative and imperative approaches have pros and cons. Patterns are
generally small and easy to write: they can even be shown graphically as
for graph transformation approaches. Yet, non-determinism can cause prob-
lems (pattern ordering) and can be slow due to the NP-completeness of the
matching problem. Imperative approaches are faster but can be difficult to
write and to maintain (as for long monolithic source code) in some cases. It
has been acknowledged that a universal transformation language should mix
both. Such languages are called hybrid, such as ATL [Jouault et al., 2008].

2.3.2 Model-to-Text

Figure 2.4 presents M2T transformations with a single input model. Com-
pared to Figure 2.3, the right side is different. The generated text (e.g., source
code or documentation) does not necessarily conform to a meta-model but
rather to a programming language grammar or a natural language one.

The explanation for Figure 2.4 is the same as for Figure 2.3 except that
the first generates text, not models conforming to a meta-model. It is also
theoretically possible to define higher-order transformations. In that case,
the source and target models are model transformations.

24 2. state of the art

Source Model

Source
Meta-Model

Conforms to

Target Code

Trasformation
Definition

Transformation
Engine

Executes

Refers to

Reads Writes

Figure 2.4.: Model-to-text transformation [Czarnecki and Helsen, 2006]

There are two kinds of M2T transformations approaches: visitor-based and
template-based [Czarnecki and Helsen, 2003].

The visitor-based approach is very basic. It provides “some visitor mech-
anism to traverse the internal representation of a model and write code to a
text stream” [Czarnecki and Helsen, 2003]. Jamda is an example of this ap-
proach [Jamda Project, 2014]. It is an object oriented framework which pro-
vides classes to represent UML models, an API to manipulate models and
CodeWriters, a visitor mechanism.

Template-based approaches make up the majority of the model-to-text
transformations. A template can be defined as a transformation rule. Gen-
erally, it is composed of meta-code providing access to the contents of source
model(s) elements which will be replaced in the generated text, and target
text. The first component has to be evaluated and depends on the contents
of the input model(s) while the second is independent of the inputs.

Accessing the contents of source models is handled in different ways, de-
pending on the transformation language. Some use Java combined with the
API provided with the source model, others use declarative queries such as
XPath [W3C, 2010b] or OCL [Object Management Group, 2012].

The advantage of template-based approaches is that templates are closer to
the code to generate. As a consequence, they are probably easier to learn. On
the negative side, they could contain “incorrect” code. By this, we mean that
the generated source code could be syntactically or semantically incorrect
given that the text generated by a template is not validated. In the context of
documentation generation, this flexibility is an advantage.

Part II

C O N T R I B U T I O N S

3

S O L U T I O N O V E RV I E W

As we have seen in the previous chapter, existing work does not apply on
configuration GUIs. On the one hand, some FM-based configuration GUIs,
typically proposed as part of feature modelling tools, implement some of the
reasoning mechanisms included in configurators. But such GUIs do not con-
sider presentation concerns and their generation process is rigid, preventing
the derivation of customised GUIs. Furthermore, existing graphical repre-
sentations (e.g., FODA-like notations or tree-views) are not adapted to user-
friendly configuration, as encountered in real-world configurators. On the
other hand, model-based approaches for generating GUIs simply produce
the visual aspects of a GUI. This is not sufficient for configurators since con-
straint verification is paramount for their usability and performance.

In this thesis, we address the open challenge of generating a comprehen-
sive configurator. Our approach is to combine the best of both worlds, i.e.,
correct management of the configuration process together with user-friendly
generated GUIs. We propose a model-view-presenter architecture to design
configurators (Section 3.1). One of the advantages of this architecture is the
clear separation between the logical and visual concerns of a configurator.
To map FMs to configuration GUIs, we propose that the different syntactical
constructs of an FM are rendered as GUI elements (Section 3.2). User event
management in the GUI are presented in Section 3.3.

3.1 architectural pattern for configurators

Several architectural models have been introduced to structure modules such
as the GUI in an interactive application: PAC, MVC, Oberon. The last one
has become a reference model for this purpose: Slinky Arch Metamodel.
Among them, the model-view-controller (MVC) has wide acceptance in the
development of GUIs. One reason is that it is one of the first serious at-
tempts to structure UIs, dating back to the late 1970’s. In December 1979

at the Xerox Palo Alto Research Laboratory (PARC), Trygve Reenskaug first

28 3. solution overview

described the MVC pattern [Reenskaug, 1979a] inspired by his thing–model–
view–editor [Reenskaug, 1979b] published earlier that year.

In this paradigm, Models represent knowledge. They could be a single
object or a structure of objects. Views are (visual) representations of their
corresponding model. They basically highlight some attributes and suppress
others, acting as a “presentation filter”. Finally, Controllers act as the link
between a user and the system. The idea behind this pattern is to make a
clear distinction between domain objects which model real world elements,
and GUI elements depicted on the screen.

The MVC architecture defined by Reenskaug is depicted in Figure 3.1.
There, the Model manages the data and behaviour of the application domain.
It responds to requests about its current state (usually from the View) or re-
quests instructions to change its state (usually from the Controller). The
View simply manages the layout of the information contained in the Model.
This might require to query the state of the Model. Finally, the Controller
interprets inputs from the user (keyboard, mouse, etc.) and informs the
Model/View.

View Controller

Model

User
Sees Uses

ManipulatesUpdates

Notifies

Figure 3.1.: Model-view-controller architecture

In [Burbeck, 1992], Burbeck presents two variants of the MVC pattern ap-
plied to Smalltalk-80 where the role of the model varies: active or passive. In
the passive version, the model is exclusively modified by the controller (i.e.,
it cannot be modified by any other source). As soon as the controller detects
a user action, it modifies the model and informs the view that the model has
changed and should be refreshed (Notifies dotted line in Figure 3.1). In this
scenario, the model is unaware of the existence of the view and the controller.
In the active version, the state of the model can be changed by an external

3.1. Architectural Pattern for Configurators 29

component (i.e., not the controller). Since only the model can detect that it
has been changed, it needs to notify the view that it must be refreshed. The
observer pattern [Gamma et al., 1995] is generally used to keep the model
independent from the other components. Views subscribe to be informed
of the changes in the model. When such event happens, the model iterates
through the list of registered observers (i.e., views) and notifies them.

We rely on an MVC variant – model-view-presenter [Potel, 1996] – to pro-
pose a generic architecture for configuration interfaces. It separates the re-
sponsibilities for the visual display and the event-handling behaviour into
two different components named View and Presenter, respectively. The View
detects changes in the GUI and forwards the corresponding events to the
Presenter. That component contains the logic to handle those events, i.e., it
in turn updates the states of the Model and the View. Centralizing the be-
haviour inside a single component (i.e., the Presenter) makes it easier to test,
and its code can be shared between different views that have the same be-
haviour. As for the MVC architectural pattern, MVP comes in two versions:
passive view and supervising controller. They are depicted in Figure 3.2. In
the passive version, interactions between the View and the Model are handled
exclusively by the Presenter. In the other one, the View can directly interact
with the Model for simple events, more complex ones still being handled by
the Presenter. In Figure 3.2, dashed lines correspond to interactions specific
to the supervising controller version.

Updates

View Presenter

Model
User

Sees Uses ModifiesSends
changes

Updates

Notifies

Notifies

Figure 3.2.: Model-view-presenter architecture

The key idea of our approach is to separate variability reasoning at the FM
level, event handling (user actions) and the actual representation of the GUI.
Thus, our architecture is inspired by the passive view version of the MVP
pattern and is decomposed into three tiers (see Figure 3.3).

In this thesis, we focus on the MVP-related models (shown in green in
Figure 3.3) while the supporting components (in blue) are considered as third-
party software. The roles involved in our adaptation of the pattern are as
follows:

30 3. solution overview

• Model: In our case, the model is an FM. The feature model is used to
effectively engineer a configuration GUI. It is connected to a reasoning
engine (e.g. SAT or SMT solvers), which is responsible of interactive
configuration exposed through a generic API.

• View: The view contains a description of the GUI to be displayed to the
user. This description is generated from the FM using transformation
rules. Ideally, rather than generating the interface in its implementation
language (e.g., HTML, Swing, etc.) a model should be generated for it.
This has two advantages; i) GUI models are more concise and thus
easier to generate and ii) we can target several platforms from the same
GUI model, extending the applicability of the generation. This point
will be further discussed in Section 3.2.

• Presenter: Finally, the presenter is the central point of our architecture.
It listens to user actions, updates the FM (selected features, attribute
values, etc.) and interacts with the reasoning engine to determine the
list of changes to be propagated to the GUI. Once this list is populated,
it updates the GUI model by adding, removing, hiding, making visible
or updating elements affected by the changes.

User action Update FM

NotifyUpdate GUI
Forward
updateChanges

Configuration
API

SAT/SMT
Solver

Reasoning layerControl layerPresentation layer

PresenterView model

Feature model

Translate

1 2

34

56

Figure 3.3.: An MVP architecture for configurators

From a dynamic perspective, interaction between components works ac-
cording to the numbered arrows. The preliminary step is to translate the FM
in a format compatible with the SAT/SMT solver (e.g., as a CNF problem).
This translation is made once and allows efficient reasoning by exploiting this
robust technology. Once an instance of the FM is encoded within the solver,
the configurator can be used interactively. For example, ticking a check box

3.2. Generating Views from Feature Models 31

in the GUI will trigger an event through the view model and will be prop-
agated to the presenter (1 User action). Depending on the nature of this
action, the presenter will generate an update request (2 Update FM) for the
configuration API. This API will in turn update the FM instance (e.g., by
setting a Boolean variable corresponding to the feature associated with the
check box to true via 3 Forward update). The solver will compute the new
list of features to be (de)selected as a result (4 Changes). This result will be
transferred to the presenter (5 Notify) that will make decisions regarding
changes in the GUI. The GUI is then updated (6 Update GUI) accordingly.

Our architecture does not use the supervising presenter version of the orig-
inal MVP pattern in the sense that there is no direct link between the FM
and the view model. The main reason is that interactive configuration can in-
duce complex GUI updates for which a specific behaviour has to be provided.
Since most of this behaviour can be made generic, presenters can be reused
amongst different GUIs. In the following, we will focus on the generation of
the static view.

3.2 generating views from feature models

In Section 2.2.1, we have seen that some UIDLs allow to generate non-
graphical user interfaces like, e.g., vocal ones. Despite the inherent useful-
ness of those interfaces, we focus only on graphical ones in this thesis. One
of the primary reasons for this choice is that most configurators are graphical,
other interfaces being more domain-specific. However, we realize that other
kinds of UIs might become more widespread in the future. Consequently,
the proposed solution should be easily adjustable to fit new interface repre-
sentations.

This section is divided into 4 parts. First, we propose a mapping between
FM constructs and GUI widgets. Then we show how to break the FM struc-
ture in the GUI. We also elaborate on the beautification of generated GUIs
before wrapping up the different parts.

3.2.1 Widget Selection

When speaking of GUI generation, the first task that comes to mind is to
translate the different FM constructs into graphical widgets. In other words,
how should the different variability concerns be rendered in a configura-
tor. For this purpose, we have analysed some existing software configu-
rators [Abbasi et al., 2013]. More specifically, 111 Web-based configurators
were investigated since they represent a significant share of existing GUIs
today. They all come from Cyledge’s configurator database [Cyledge, 2013]
which listed more than 900 entries categorized in 16 different industries in

32 3. solution overview

August 2013. The listed configurators vary significantly, each with its own
characteristics, spanning visual aspects (i.e., GUI elements) to constraint man-
agement. Although Web-based configurators do not represent the full range
of software configurators, they provide valuable insights into current soft-
ware configurators. The (less formal) analysis of configuration GUIs imple-
mented in other technologies has confirmed most findings.

“How are configuration options visually represented and what are their seman-
tics?” is the research question which helped us to identify the types of
widgets, their frequency of use, and their semantics (i.e., the correspond-
ing FM constructs). In decreasing order, the most popular widgets in Web-
configurators are: combo box item, image, radio button, check button and text
box. Some of them are also combined with images, namely check button, radio
button and combo box item. In that case, option selection is performed either
choosing the image or using the widget. Other less frequent widgets are
slider, label, file picker, date picker, colour picker, etc.

In this thesis we follow the terminology provided
in [UsiXML Consortium, 2012] for CUI widgets for graphical modality,
currently under standardisation at the W3C:

Combo box item Item of a combo box list

Combo box Combination of a text label and a list box:
[...] a button on the right allows showing the
entire list for selection

List box Entry allowing to select one or more items
from a list

Radio button Item representing an option in a radio box

Radio box Entry allowing to make single selection from
a number of options

Check button Item representing an option of a check box

Check box Entity allowing the user to make multiple se-
lections from a number of options

Text box Component allowing to insert text

Slider Bar with a cursor that the user can move in
order to specify a value

3.2. Generating Views from Feature Models 33

Spin box Entry allowing to select a value from a set of
related but mutually exclusive choices. It has
an increment arrow and a decrement arrow

Label Simple component allowing to display text

File picker Component allowing the user to upload a file

Date picker Component allowing the user to select a date

Colour picker Component allowing the user to select a
colour

The most significant outcome of this empirical study is that the range
of graphical widgets is not very large. Actually, according to our analy-
sis [Abbasi et al., 2013], 5 of them seem sufficient to represent most variability
constructs. Figure 3.4 represents the most common widgets we found. We
could thus confine ourselves to those widgets, but this would too drastically
limit our approach which aims to be generic. It is therefore necessary to
propose a more flexible mapping in order to meet user requirements. Nev-
ertheless, we should also impose some restrictions to ensure the generation
of “coherent” GUIs. By coherent, we mean that a widget representing a
given variability construct should reflect its semantics. For example, check
boxes should be avoided to represent xor-decompositions to avoid confusion.
Note that this could be mitigated by adding a label warning the user that the
choices are mutually exclusive.

We thus proposed a mapping between FM constructs and GUI widgets.
Customization of the interface is made possible by offering several widgets
for most variability constructs. All those mappings are summarized in Ta-
ble 3.1. It is divided into 3 main categories: Groups, Attribute types,
and Features & Attributes which will be discussed in the following para-
graphs. The second column represents the different constructs of each cat-
egory. The name of the different widgets associated to each construct are
displayed in the third column and illustrated in the HTML format in the last
column.

The Groups category contains the different decompositions allowed in an
FM. The first one, and, is a special case. Indeed, features contained in such
groups have to be displayed in the configuration GUI in only two cases since
mandatory options should always be selected (i.e., do not require any ac-
tion on the part of a user). The first case is mentioned in Table 3.1, namely
optional features defined in an and-decomposition. Even if they are de-
clared inside an and-decomposition, the user still has the choice to not in-
clude them in her configuration. Optional features in an and-decomposition

34 3. solution overview

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

!"
#$%
&'
#%

()
*"%
+,
-.'
%&)
/'
0%

()
*"%
.1
,2
"%

()
*"%
3'
1&
'%&
'#
%.$"
14
%

()
*"%
35
"6
7%&
'#
%

8$
5"
*4%

91
,2
":+
,-
.'%
&)
/'
0%

91
,2
":9
$"1

%

91
,2
":3
'1
&'
%&'
#%

91
,2
":3
5"
67%
&'
#%

3'
1&
'%&
'#
%

Figure 3.4.: Widget types in all the configurators [Abbasi et al., 2013]

can either be represented by a Check button, or a List box with two values
(True and False) or a Radio box composed of two radio buttons, one for
each value. Obviously, a checked Check button means that the correspond-
ing optional feature should be selected. Displaying non-optional features
contained in an and-decomposition is also required on a single condition,
namely that at least one of its descendants has to be configured. By config-
urable descendant, we mean that the user is allowed to select or not a feature,
set a value to an attribute, etc. In this way, the full hierarchy is displayed to
facilitate user’s understanding. Other representations like greyed, pruned, or
collapsed [Hubaux et al., 2013] could also be of interest but are not addressed
in the context of this thesis. As they heavily depend on the capabilities of the
rendering language, they are not considered here. Our generic architecture
can accommodate such additions easily.

The second kind of groups, or-decompositions, can be represented either
by a List box or a Check box. There are two kinds of List boxes, single and
multiple. As the names imply, they differ in the number of items which can
be selected in the list. While single lists are used for optional features in and-
decompositions introduced in the previous paragraph, multiple ones must be
used for or-decompositions. This allows to comply with the semantics of
such groups which, as a reminder, require to select at least one sub-feature.
The other widget, Check box, does not enforce the selection of at least one
sub-feature. This constraint will be verified by the solver itself via the con-

3.2. Generating Views from Feature Models 35

Table 3.1.: Graphical widgets mappings

Category Construct Widget HTML Example

Groups and Check button
(optional features) List box

Radio box

or List box

Check box
xor List box

Radio box

cardinality Check box

Attribute integer Text box
types Slider

real Text box
Slider

Boolean Check button
List box
Radio box

enumeration List box

Radio box

Features & feature/attribute Label

Attributes Image

36 3. solution overview

figuration API. Xor-decompositions are represented either by a List box or
a Radio box. In this case, the Radio box has to be a single one given that ex-
actly one sub-feature has to be selected in a xor-decomposition. This widget
thus enforces the group constraint on its own. The same advantage applies
to the other widget, namely Radio box, as it only entitles to select a single
Radio button in the box. Cardinality-decomposition can only be represented
by Check boxes given their semantics. Here, the group semantics will also
have to be enforced by the solver itself as the selected widget can not ensure
the group cardinality on its own.

The different attribute types also have to be rendered in configuration GUIs.
In this thesis we discuss only 4 of them, namely integer, real, Boolean and enu-
meration. Those 4 types cover a fifth one, structures which can be defined as
a set of different base attribute types. Integer and real both being of number
type are rendered with the same two widgets, namely Text box and Slider.
The first is not a simple text box but a typed one which accepts only integer
or real values, depending on the represented attribute type. This could be fur-
ther improved by adding increment and decrement arrows to the Text box,
similarly to spin boxes. Sliders represent a viable alternative. In both cases,
the increment will depend on the attribute type. It should be an integer value
for integer attributes and a real value for attributes of the same type. Number
attributes whose domain is an enumeration are not covered by the mappings
in Table 3.1. Indeed, the proposed widgets are probably not suitable in that
case. Instead, we propose to use a List box or a Radio box, depending on
the number of values in the enumeration. Logically, the same principle ap-
plies to enumeration attributes. The cut-off number of values to either select
a List box or a Radio box is deliberately vague as it will depend on many
factors. The last type of attribute covered in this thesis, Boolean, is handled in
exactly the same way as optional features contained in an and-decomposition.

Generating a feature group or an attribute type is not sufficient per se, fea-
tures contained in a group, and attributes, independently of their type also
have to be displayed in the configurator. In the previous paragraphs, we have
tackled the translation of group cardinalities into widgets but not the gener-
ation of the feature contained in such groups. The same observation can
be made for attributes. There we presented the mappings between attribute
types and their corresponding widgets. To put it in simple (and naïve) terms,
in previous paragraphs we have tackled group cardinalities and attribute
types, and in this one we target features and attributes on their own. Our
analysis of existing Web configurators has shown that configuration options,
regardless of whether they correspond to features or attributes, are almost
always depicted either by a simple Label or an Image. Therefore, we propose
to use those two widgets to represent features as well as attributes.

3.2. Generating Views from Feature Models 37

3.2.2 Breaking Out the Feature Model Hierarchy

In the previous section, we presented mappings between FM constructs and
GUI widgets. That might be adequate for simple FMs but the limits of such
a simple transformation are rapidly reached. First, it does not take the differ-
ent concerns that might be included in an FM [Tarr et al., 1999] into account.
Here, we do not tackle the abstraction level of the FM which we have already
discussed in [Tun et al., 2009] but the constructs which might be logically
linked from the user perspective even if they are not depicted as such by the
FM hierarchy. Those logical groups of constructs vary from person to person
and should be taken into account while generating configuration GUIs. Fur-
thermore, the structure of the generated GUI will be strongly related to the
FM hierarchy. Indeed, during the generation process, the FM will, in most
cases, be traversed using a depth-first approach in order to generate a fea-
ture together with its contents, thus resulting in “nested" and “staired” GUIs.
Nested since the widgets corresponding to the contents (attributes or group)
of a feature will be displayed inside (or under) the widget corresponding to
the feature itself. Staired as the width of the generated GUI will depend on
the depth of the FM assuming that an horizontal offset between a feature and
its contents exists in the GUI. This offset will be used in most cases in order
to depict the relationship between a feature and its contents. The deeper the
FM, the wider the generated GUI. While those staired GUIs may be valuable
in some cases, they quickly become cumbersome.

To break out of the FM hierarchy, we propose to use views on them. Views
are “a simplified version of an FM that has been tailored for a specific stakeholder,
role, task, or, to generalize, a particular combination of these elements, which we
call a concern. Views facilitate configuration in that they only focus on those parts
of the FM that are relevant for a given concern. Using multiple views is thus a
way to achieve separation of concerns in FMs” [Hubaux et al., 2013]. They were
defined by Hubaux et al. to make FM-related tasks less complex in the context
of Feature Configuration Workflows (FCWs). An FCW is a combination of
views on an FM, each view being stakeholder-specific, and a workflow used
to drive the configuration of the views. Each view allows stakeholders to
concentrate on the parts of the FM that are relevant to them. Here, we go one
step further and focus on the task of a given stakeholder. An FM covering
stakeholder’s specific concerns only is a pre-requisite for GUI generation.
Views are defined on that user-specific FM to split it into sets of logically
linked information.

One of the benefits of views is that they allow to break the hierarchy de-
fined in the FM. However, in some cases this hierarchy is still valuable in the
configuration GUI. Consequently, the view definition language should allow
to split the FM hierarchy while providing mechanisms to keep the tree struc-

38 3. solution overview

ture inherent to such models, at least for sub-parts of it. In the following,
some desirable characteristics of such a language are pointed out:

• Full sub-tree – It should be possible to select a sub-tree of the FM. This
selection would preserve the structure of the original model. A sub-tree
is composed of its root (which can be the FM root or any other feature)
and optionally a list of features to exclude (incl. their sub-features and
attributes) from the selection. The full FM is a specific case where the
root of the sub-tree is the FM root and the feature stop list is empty.

• Partial sub-tree – Similarly, it should be possible to select elements in
a given sub-tree. This sub-tree would also be defined by a root feature
and optionally a stop list. Then, it would be possible to include or
exclude some elements like a feature and its contents, an attribute, all
groups, all attributes, etc. Here, the structure of the FM is not preserved
since the purpose is to select some elements inside a sub-part of it.

• Feature – It should be possible to select a feature and its contents. Mech-
anisms to select only parts of feature’s contents should also be provided.

• Attribute – Selection of an attribute, and its sub-attributes for struc-
tured ones, should also be possible.

As for FM constructs, we propose a mapping between views and GUI wid-
gets. It is summarized in Table 3.2. Each view can be depicted either as a Tab
or as a Window. Tabs could be nested in other Tabs or Windows, but not vice
versa.

3.2.3 Beautifying Generated Configurators

In the previous sections, our focus was on the direct translation of FM con-
structs into GUI elements. Even if this translation is technically feasible, the
result would be rough as it is relies only on information contained in FMs
which is rather technical. For example, using feature and attribute names as
label for the input fields might not be expressive enough to understand their
meaning. To tackle this problem we propose to add a so-called Property Sheet.
This document is meant to store display information to beautify the GUI, by
attaching a display name, help text, etc. to features, attributes and views. The
property sheet links GUI properties to constructs of the FM.

Here, we propose different properties which would help to beautify the
generated GUI. Those properties can be grouped into five categories, one
for each kind of FM construct (attribute, group and feature), one for views
on FMs, and one for properties common to the 4 other categories. The first

3.2. Generating Views from Feature Models 39

Table 3.2.: Graphical widgets for views

Construct Widget Example

View Tab

Window

category, attributes, is actually empty since all its properties are covered by
the common category. A similar comment applies to the view category.

We propose two properties for groups. The first one is Boolean and called
container. It allows to define a physical container (e.g., a border) for the
group and its contents (i.e., sub-features). This allows to group together
elements logically linked in the GUI. The second property is default and
helps to define the default value(s) of the group. Available values are sub-
features of the group only. The number of selected values for this property
will depend on the cardinality of the group.

A single property is proposed for features, the others falling within the
common category. It is the optionality property of a feature. As previously
explained, this value makes sense only for optional features contained in
an and-decomposition. For the sake of conciseness, we will not discuss this
point here and we refer the reader to the first part of this chapter. In line with
what has been proposed in Table 3.1, the available values for the optionality
property are Check button, List box and Radio box.

As we have seen in previous sections, most FM constructs and views can be
translated into several widgets. A widget property is thus required to chose
a specific widget. Available widget values will depend on the correspond-
ing element (attribute type, group cardinality, feature, view). For example,
List box and Check box will be the only available values associated to the
widget property of an or-decomposition, as mentioned in Table 3.1. A label
property is also available for all constructs in order to replace its (usually)

40 3. solution overview

unreadable name. Help texts allow to define additional information about
the construct if its name is not self-explanatory, for example. Finally, an
unavailable property may define the behaviour in cases where a construct
is not available, generally due to FM constraints. Available values will be
discussed in Section 3.3. Generate might also be a useful Boolean property.
A false value indicates that the corresponding construct does not have to be
rendered in the generated configuration GUI.

3.2.4 Putting It All Together

After having made the role of each element of our architecture ex-
plicit, we explain here how they fit together. Our vision is based
on the decoupling of the FM and the configuration GUI by com-
bining separation of concerns [Tarr et al., 1999] and generative tech-
niques [Schlee and Vanderdonckt, 2004]. The base process is sketched in Fig-
ure 3.5 and relies on the notion of AUI [Calvary et al., 2003]. According to
the W3C [W3C, 2014b], an AUI is “an expression of a UI in terms of interaction
units without making any reference to implementation neither in terms of interaction
modalities nor in terms of technological space (e.g., computing platform, program-
ming or markup language)”. In other words, an AUI is a language- and target
platform-independent description of the UI, which allows considering map-
pings from the feature model in a unique and reusable manner. This AUI can
be directly generated from the FM with the possibility to use Views to tweak
configuration interface decomposition. The layout of the elements composing
the UI can be guided by a Property sheet containing beautification information.
Once created, the AUI can be then transformed in a CUI. Depending on the
required sophistication level of the interface, different combinations of views
and property sheets can be envisioned.

Feature
Model

Concrete
User

Interface
Abstract User

Interface

Views

Property Sheet

Figure 3.5.: Interface generation process

3.3. Handling of Events by the Presenter 41

Based on the FM and the associated Property sheet, an AUI can be defined
for the configurator. AUI languages describe UIs in terms of Abstract Interac-
tion Objects (AIOs). Those AIOs present the advantage of being independent
of any platform and any modality of interaction (graphical, vocal, virtual re-
ality and so on). In this way, we keep our approach as generic as possible.
This AUI will finally be translated into a CUI which is the implementation of
the UI in a given language for a specific platform. Views can also intervene
in this generation process. Once they have been defined, views-related beau-
tifying information similar to FM-related one can be defined in the Property
sheet. It is meant to beautify the UI with views-related information like their
display name, help text, colours and styles.

3.3 handling of events by the presenter

As mentioned in Section 3.1, the Presenter will be the same for all config-
urators implemented in the same CUI language. Its role is to handle the
behaviour of View events as well as the answers from the Model. We now
discuss those two flows of interactions in turn.

3.3.1 From the View

In our MVP architecture, a change event is sent to the Presenter as soon as it
is detected by the View. The detection mechanism will depend on the chosen
CUI and is not further discussed here. The event detection mechanism is
a pre-requisite for target CUI languages of generated configurators. This
seems not too stringent since, as far as we know, most GUI languages offer
such mechanisms. For example, in HTML, such events are onchange, onselect,
onsubmit, etc.

The Presenter then takes the change event over. It has to identify the FM
construct which has been changed, e.g., by its ID. Consequently, the View has
to keep track of it, either by also using this ID as its own elements’ IDs, or by
applying a naming convention allowing the Presenter to retrieve the ID of the
construct in the FM. For example, the FM construct ID could be used as value
for the id tag of its corresponding HTML widget for Web-based configurators.
The way in which the mapping between GUI widgets and FM constructs is
made will depend on many different factors. The target CUI language is one
of them, but it might also depend on the widget type, even within the same
language.

The second task of the Presenter is to identify the new value(s) of the
changed widget. Again, this will depend on the CUI language and the spe-
cific widget. Basically, possible values are Booleans (for features and Boolean

42 3. solution overview

attributes), numbers (for integer and real attributes), and strings (for enumer-
ation attributes).

Once the Presenter has collected the ID of the FM construct together with
its new value(s), it sends them to the solver associated to the chosen feature
modelling language through its API. That API will not be addressed here as
it has been, and always is, covered by many scientific works. The first part of
Presenter’s task is thus simple.

One final important note is when the constraints are sent to the Model.
We propose two approaches. In the first, the Presenter directly transfers the
changes from the View to the Model. This is called interactive setting. In the
second, the Presenter can store the changes in the View and send them when
the user mentions that she has finished configuring her product, e.g., via a
confirm button. We call this batch mode. Both techniques are not mutually
exclusive and could be used in the same configuration GUI, depending on
the type of constraint, the views, etc.

3.3.2 Back to the View

Once the FM construct and the associated value passed by the Presenter have
been handled by the Model (more exactly, the FM API), the list of FM con-
structs impacted by this change is sent back by the configuration API. This
list contains pairs composed of the ID of an FM construct and its value(s)
propagated by the solver. Its non-trivial task is to update the View to reflect
those changes.

The first decision is to propagate or not the list of propagated values in
the View. Indeed, in some cases, the validation of those changes by the user
might be desirable. The user should be given the opportunity to either con-
firm her change knowing its consequences or discard it. In the latter case,
the Presenter will have to reset the View in its previous state, i.e., before the
user’s intervention. This means that it will have to keep track of old values
for each widget. We call it controlled propagation. The Presenter could also
apply a guided propagation. By this, we mean that, if the solver is unable to
select a value on itself, it will require the user’s intervention. For example, if
option A requires to select option B or C, the reasoning engine cannot decide
whether B or C should be selected knowing A. Consequently, the Presenter
requires a decision from the user. Finally, the Presenter can also automatically
propagate the required changes to all impacted options. Those three propa-
gation strategies are not mutually exclusive and could be applied on different
widgets in the same configuration GUI, for example.

Once the impacted values have been propagated in the View, the next ques-
tion is to decide how to handle those values in cases where the user would
like to modify them. The first solution is to prevent such a situation by dis-

3.3. Handling of Events by the Presenter 43

abling values corresponding to solver decisions in the configuration inter-
face. This could be done by greying out the corresponding widget, for ex-
ample. An alternative is to hide elements which are not available and show those
that are available. This is possible only in cases where an element becomes
(un)available. Finally, changes to propagated values could be displayed in the same
way as user-defined ones. Then, if a user wishes to change it, the Presenter
should either display an error message explaining the current value and pre-
vent its change or allow to change it while clearly stating the user’s decisions
which will be modified. However, this last solution is not always feasible,
especially when FM constraints are complex or the user has already made a
lot of choices and changing them will completely modify her product. In all
cases, an explanation mechanism should be provided by the Model to help the
user understanding why a value has been set to a given value. This would
further reduce her frustration.

The propagation “problem” could be further refined. Indeed, the handling
of propagated values might depend on its origin. We identified three types
of constraints in an FM:

1. Hierarchical constraints state that a child construct is available if and
only if its parent has been selected. Oppositely, if a construct is selected,
all its ancestor features must be selected.

2. Group constraints determine the number of features which can be se-
lected in a group.

3. Cross-tree constraints cover all other constraints, generally expressed
using Boolean formulae.

Hierarchical constraints might be handled in two modes: descending or as-
cending. In the first one, the contents of a feature are displayed if it is selected.
In the other one, the user can select any FM construct at any time. Each strat-
egy has particular benefits and drawbacks. The choice is left to the user
wishing to develop a configurator for her product. In the ascending mode,
the Model will automatically select the ancestors of a changed value. In some
cases, this could prove problematic. For example, if a “disable” strategy has
been chosen for solver-propagated values, the user will not be able to dese-
lect parents. Whilst this might be acceptable for some cases, it means that a
user changing her mind about a higher level option will have to unset one by
one all its descendant options. Again, both strategies should be supported
by the Presenter and left to the configurator engineer’s discretion.

The question of group constraints has already been discussed in Section 3.2.1.
The semantics of some groups is enforced by the nature of their correspond-
ing widget in the GUI. This is, for example, the case of Radio boxes depicting
xor-decompositions. Such widgets allow the user to select a single option, so

44 3. solution overview

complying with the group cardinality. However, in other cases the chosen
widget does not enforce the group cardinality and calls have to be made to
the Model. In that case, one of the strategies discussed above will have to be
applied. The same remark applies to the last category of constraints, cross-tree
ones, which are not enforced by GUI widgets. In our approach, the origin of
a constraint propagation is thus required from the FM API.

4

L A N G U A G E S U P P O RT

As introduced in Chapter 3, our configuration GUI generation approach re-
quires three input languages. The first one represents the variability of the
product to be configured. The two other languages depend on it as they allow
to define view and beautification information on the variability model. In this
chapter, we present the different languages we have defined for our approach.
Although several feature modelling languages exist, they do not cover all con-
structs such as feature attributes, for example. Furthermore, while we have
seen in Section 2.1 that FMs are the de-facto standard for representing the
variability in the scientific community, several sources suggest that in the in-
dustrial world, in contrast, FMs appear to be used rarely. We tried to find
the causes of this little industrial use and tackle them in a new variability
modelling language called TVL. View definition and beautification languages
are defined on top of TVL. They are called TVDL and FCSS, respectively.

In this chapter, we first introduce the TVL language on a simple example be-
fore presenting TVDL and FCSS, in turn using that same example. Grammars
are deliberately left out here as they will be presented in the next chapter
dedicated to tool support. Formal semantics is not considered here but dis-
cussed in Raphaël Michel’s PhD thesis (being written concurrently). Instead,
we will give an introduction to its semantics.

4.1 textual variability language (tvl)

While FMs are the de-facto standard for representing the variability in the sci-
entific community, our industry partners, discussions at the 2010 variability
modelling (VaMoS) workshop [Benavides et al., 2010a] as well as literature re-
views [Chen et al., 2009, Hubaux et al., 2010b] suggest that in the industrial
world, in contrast, FMs appear to be used rarely.

One reason for this, we believe, is their lack of conciseness and naturalness
when it comes to modelling realistic SPLs. Various industrial experiences
have shown us that one of the most efficient tools for making FMs intuitive
and concise are feature attributes [Benavides et al., 2005], that is, typed pa-

46 4. language support

rameters attached to features similar to attributes attached to classes in UML
class diagrams. Discussions with engineers also showed that the resulting di-
agrams are more natural and easier to understand [Hubaux et al., 2010a]. For
instance, without attributes, we are forced to model alternative choices that
are not further decomposed as a xor-decomposition. A more concise solution
would be to use an enumerated attribute. The semantics is exactly the same,
but the notation is much more concise. In spite of all that, the semantics of
FMs with attributes is not well understood and most existing notations and
tools do not support them at all [Michel et al., 2011].

Another likely reason for the difficulty of using FMs in practice is the
graphical nature of their syntax. Almost all existing FM languages are based
on the FODA notation [Kang et al., 1990] which uses graphs with (sometimes
boxed) nodes and edges in a 2D space. Feature attributes, to begin with, are
intrinsically textual in nature and do not easily fit into this representation.
Furthermore, constraints on the FM are often expressed as textual annotations
using Boolean operators. If they were given a graphical syntax, attributes and
constraints would only clutter an FM. When working with engineers, we also
observed that a graphical syntax is a psychological barrier (having to draw
models is deemed tedious and cumbersome by engineers) and poses a tooling
problem. Existing tools for graphical FMs are generally research prototypes
and are inferior in many regards to tool support for text-based formats (e.g.,
text editors, source control systems, diff tools, no opaque file formats and so
on).

To overcome these shortcomings, we designed TVL (Textual Variabil-
ity Language), a text-based FM language. The idea of using text
to represent variability in SPLE is not new [Batory and Geraci, 1996,
van Deursen and Klint, 2002] but seems to be recently gaining popular-
ity [Abele et al., 2010, Czarnecki, 2010]. In terms of expressiveness, TVL sub-
sumes most existing dialects. The main goal of designing TVL was to provide
engineers with a human-readable language with a rich syntax to make mod-
elling easy and models natural. Further goals for TVL were to be lightweight
(in contrast to the verbosity of XML for instance) and to be scalable by offering
mechanisms for structuring the FM in various ways.

An overview of the three most important high level parts of the TVL meta-
model is given in Figure 4.1. Indeed, our language being quite complex, we
had to start with such an overview. The main package is the one contain-
ing the Core concepts of TVL. It imports classes declared in the two other
packages, namely Types and Expressions. Details about the core concepts
meta-model are provided in Figure 4.2. Basically, a TVL model is composed
of Record Types, Custom Attribute Types, Constants and Features. Each
Record Type is composed of a set of Record Fields which have a name and
a type (described by the meta-model in Figure 4.3). Custom Attribute Types

4.1. Textual Variability Language (TVL) 47

Core

Types Expressions

<imports> <imports>

Figure 4.1.: Package model for the TVL meta-model

and Constants also have those two properties. The last one also has a value
of type Expression declared in its own package (not detailed here due to its
complexity). Record Types, Custom Attribute Types and Constants can
be used in features. The last meta-class of a TVL model is Feature and is the
most complex one. A feature can be the parent of several children features
via a decomposition Operator like All of, Some of, One of or Cardinality.
Features can also be optional (Opt) or have several parents if they are declared
as Shared. A feature can also contain Several Attributes, each of them hav-
ing a name, a type and optionally a value. Constraints are also attached to
features. They can have a guard and are defined by Expressions. Finally,
Data (key/value pairs) can also be declared inside features.

Those meta-models give an overview of the language. More detailed in-
formation about TVL (e.g., its syntax) will be provided in the following sub-
sections using the TVL model contained in Listing 4.1. It is an excerpt of a
larger FM representing the variability of a tool to prepare jobs for profes-
sional printers. The following sub-sections introduce the major parts of the
language: features, attributes, constraints and structuring mechanisms.

4.1.1 Feature Declaration and Hierarchy

We will ignore the first two declarations in Listing 4.1 for the time being. The
FM itself starts at line 10, with the declaration of the root feature. The feature
hierarchy follows on lines 13 through 22.

The root feature, Document, is decomposed into two sub-features by an
and-decomposition: Spine Caption and Sheet. In TVL, each decomposi-
tion is introduced by the group keyword (line 12), which is followed by
the decomposition type. The and, or, and xor decomposition types were

48 4. language support

nam
e: String

Feature

O
perator

O
pt

All of
Som

e of
O

ne of

m
in : int

m
ax: int

Cardinality

operator
0..1

attribute*

TVL Feature M
odel

nam
e : String

type : Type

Custom
 Attribute Type

guard : String [0..1]
expression: Expression

Constraint

data

*

type: Type
nam

e: String
value: Expression

Constant

nam
e : String

Record Type

features
1..*

constants*

user-defined types*

record types*

key: String
value: String

Data

constraint

*

nam
e: String

type: Type
value: Expression [0..1]

Attribute

children
*

parents
*

Shared

nam
e: String

type: Type

Record Field
fields

1..*

Figure
4.

2.:TVL
m

eta-m
odel(C

ore)

4.1. Textual Variability Language (TVL) 49

Integer Real Boolean Enum String

Primitive Type

Type

<from Core>
Record Type

<from Core>
Custom Attribute Type

Figure 4.3.: TVL meta-model (Type)

renamed to allOf, someOf and oneOf in TVL. These names are inspired
by [van Deursen and Klint, 2002] and make the language more accessible to
people not familiar with the Boolean interpretation of decomposition. The de-
composition type can also be given by a cardinality, as is done for the Sheet
feature on line 13. Cardinalities can use constants, natural numbers, or the
asterisk character (which denotes the number of children in the group). In
our example, group [*..*] on line 13 is thus equivalent to group [6..6] or
group allOf.

Listing 4.1: Partial printer software TVL model
1 // Declar ing a custom type :
2 enum o r i e n t a t i o n in { h o r i z o n t a l L e f t , hor izonta lRight , v e r t i c a l } ;
3 // Declar ing a s t r u c t u r e d type :
4 s t r u c t coord {
5 i n t x ;
6 i n t y ;
7 }
8

9 // The f e a t u r e model :
10 root Document {
11 // And−decomposition of the root f e a t u r e :
12 group allOf {
13 Sheet group [∗ . . ∗] {
14 opt Tab , // an opt iona l f e a t u r e
15 Page ,
16 opt Hole ,
17 Media ,
18 Staple ,
19 NumberingMethod
20 } ,
21 opt SpineCaption
22 }
23

24 // A t t r i b u t e d e c l a r a t i o n s of the root f e a t u r e :

50 4. language support

25 enum type in { normal , booklet , per fec tB inding } ;
26 enum stackMethod in { none , o f f s e t , mixed } ;
27

28 // A c o n s t r a i n t :
29 Document . type = = booklet −> ! Sheet . Hole ;
30 }
31

32 // The f e a t u r e s SpineCaption and Hole are extended :
33 SpineCaption {
34 o r i e n t a t i o n o r i e n t ;
35 i f I n : Document . type in { booklet , per fec tB inding } ;
36 }
37

38 Hole {
39 coord p o s i t i o n { x i s 3 ; }
40 }

The decomposition type is followed by a comma-separated list of features,
enclosed in braces. If a feature is optional, its name is preceded by the opt
keyword (see, e.g., line 14). Each feature of the list can declare its own chil-
dren, such as Sheet on line 13. If each feature lists its children this way, the
tree structure of the FM will be reproduced in TVL with nested braces and
indentation, as shown in Figure 4.4a. This can become a scalability problem
for deep models, something we experienced in industrial cases. To this end,
TVL allows one to declare a feature in the decomposition of its parent by just
providing a name. A declared feature can then be extended later on in the
code, as in Figure 4.4b.

root R group allOf {
Level1 group allOf {

Level2 group allOf {
Level3 group allOf {

...
}

}
}

}

(a) Reproduced in text

root R group allOf {
Level1 group allOf {

Level2
}

}
Level2 group allOf {

Level3 group allOf {
...

}
}

(b) Split up

Figure 4.4.: Deep hierarchies can be split up in TVL

Besides the group block, a feature can contain constraint and attribute dec-
larations, all enclosed by a pair of braces. If there is only a group block,
braces can be omitted. This reduces the number of braces in a pure decom-
position hierarchy. To model a Directed Acyclic Graph (DAG) structure (as
in FORM [Kang et al., 1998]), a feature name can be preceded by the shared

4.1. Textual Variability Language (TVL) 51

keyword, meaning that it is just a reference to a feature already declared
elsewhere. (This is not illustrated in the example.)

4.1.2 Attributes

In our example, the Document feature has two attributes, indicating the types
of document (line 25) and the stacking method (line 26) supported by the
printer. Both attributes are of type enum, meaning that their value is one
in a fixed set of values. This set of values is specified with the in keyword.
The other attribute types supported by TVL are integer (int), real (real) and
Boolean (bool). While Boolean and enumerated attributes could be encoded
with features, this often results in unnecessary clutter of the diagram.

Attributes are declared like variables in C, in order to be intuitive for en-
gineers. TVL further provides syntactic sugar to define the domain and the
value of an attribute as illustrated in Figure 4.5. If the value of an attribute de-
pends on whether its parent feature is selected or not, the declaration shown
in Figure 4.5d can be used. Note that declarations in Figures 4.5b, 4.5c and
4.5d could be equally expressed by the declaration in Figure 4.5a followed
by a constraint. However, syntactic sugar such as this allows the engineer to
make models concise and to express her intentions clearly and intuitively.

Feature {
int x;

}

(a) Basic

Feature {
int x in [0..10];

}

(b) Domain restriction

Feature {
int x is 10;

}

(c) Fixed value

Feature {
int x, ifIn : is 10,

ifOut: is 0;
}

(d) Conditional value

Figure 4.5.: Different ways of declaring an attribute in TVL

Furthermore, to concisely specify cases in which the value of an attribute
is an aggregate of another attribute that is declared for each child, an ag-
gregation function can be used in combination with the children and select-
edChildren keywords (followed by an ID denoting the attribute). This is not
used in the example, but a classical example is an attribute price declared
for each feature. The attribute has a fixed value in the leaf features: real
price is 12.34; and is calculated for all other features: real price is

52 4. language support

sum(selectedChildren.price);. Intuitively, this corresponds to a synthe-
sised attribute in an attribute grammar.

4.1.3 Constraints

A constraint in the printing tool is that sheets of a booklet may not be
punched. This constraint is expressed at line 29 of the model. As expected,
the == denotes equality and -> implication.

Constraints in TVL are Boolean expressions inside the body of a feature.
There is also syntactic sugar for guarded constraints. For instance, if a docu-
ment has a spine caption, it has to be a booklet or a perfect binding (otherwise
it is impossible to write on the spine of the document). This means that the
domain of the enumerated type attribute is restricted if there is a spine cap-
tion. In TVL, this can be expressed with the guarded constraint at line 35.
The ifIn: guard works just as for attributes: the constraint only applies if
the parent feature, SpineCaption, is selected. While ifIn:.. is equivalent to
SpineCaption -> .., it is more concise and requires less “decoding” from
the reader.

To facilitate specifying constraints and attribute values, TVL comes with a
rich expression syntax. The syntax is meant to be as complete as possible in
terms of operators, to encourage writing of intuitive constraints. For instance,
to restrict the allowed values of an enum, the set-style in operator can be used.
For enum e in {a, b, c, d, ..}, the constraint e in {b, c} is syntactic
sugar for e != a && e != d && .., which is much less readable.

4.1.4 Structuring

TVL offers various mechanisms that can help engineers structure large mod-
els. For instance, custom types can be defined at the top of the file and then
be used throughout the FM. This allows to factor out recurring types and can
thus reduce consistency errors. In our example FM, the type orientation is
defined on top (at line 2) as it appears in several places in the model (e.g.,
at line 34). Defining a custom type in this case increases the maintainability
of the model as changes will be required only in the type declaration. It is
also possible to define structured types to group attributes that are logically
linked. In the example, the type coord (at line 10) represents a pair of coor-
dinates. It is used as a type for the position attribute of the Hole feature (at
line 39) which represents the position of the hole.

There are two mechanisms for structuring. The first is the include state-
ment, which takes as parameter a file path.

include (./ some/other/file);

4.1. Textual Variability Language (TVL) 53

As expected, an include statement will include the contents of the referenced
file at this point. Includes are in fact preprocessing directives and do not
have any meaning beyond the fact that they are replaced by the referenced
file. Modellers can thus structure the FM according to their preferences. This
mechanism was not used in our example as it is relatively small.

The second structuring mechanism, hinted at before, is that features can be
defined in one place and be extended later in the code. Basically, a feature
block may be repeated which adds constraints and attributes to the feature.
In our example, the features Hole and SpineCaption are declared on lines 16

and 21, respectively. Their attributes and constraints are defined at lines 38-
40 and 33-36, respectively. These could have been defined at lines 16 and 21,
too, but this would have just cluttered the model.

These mechanisms allow modellers to organise the FM according to
their preferences and can be used to implement separation of con-
cerns [Tarr et al., 1999]. This way the engineer can specify the structure of
the FM upfront, without detailing the features. Feature attributes and con-
straints can be specified in the second part of the file (as in our example), or
in other files using the include statement. The only restriction is that the hi-
erarchy of a feature can only be defined at one place (i.e., the group keyword
can only be used once for each feature).

Finally, features can have the same name provided they are not siblings.
Qualified (or fully qualified) feature names must be used to reference features
whose name is not unique. Relative names root, this and parent are also
available to modellers.

4.1.5 TVL2

In the previous sections, we introduced TVL as we initially defined
it [Boucher et al., 2010, Classen et al., 2011]. In the meantime, the language
has been extended by other researchers in our laboratory. The purpose of
those extensions is to support all constructs found in industrial cases (see
Chapter 7.1). Basically, two main constructs were added, string attributes
and feature cardinalities.

A string attribute is defined using the string keyword. Similarly to other
attribute types, an ID is then given to the attribute. The naming convention
is the same, the attribute ID has to start with a lower case letter. For example,
“string myString” is a valid attribute declaration. It is also possible to define
string constants in TVL2.

In the original TVL syntax, each feature can be configured (at most) once.
Like most existing languages, ours lacks a construct that allows to duplicate
a sub-tree of the FM to configure a product. In our illustrative TVL exam-
ple, each Document (at line 10) contains a single Sheet (at line 13) which is

54 4. language support

quite restrictive. In fact, a document is composed of several sheets, each
of them being configured independently. Some constraints might also exist
between sheets. TVL2 now supports so-called feature cardinalities. Their se-
mantics is defined elsewhere [Michel et al., 2011] and will not be addressed
here. Syntactically, feature cardinalities are represented in a similar way to
group cardinalities, with bounds between brackets. The cardinality directly
follows the name of a feature. If it is not defined, the [1..1] cardinality is
assumed. Furthermore, the root feature cannot have a cardinality, i.e., it still
has to be unique. Bounds can be an integer value or constant, or the asterisk
character. Here, the asterisk character means that the number of feature in-
stances is unlimited. To stick to reality, line 13 of our TVL model should thus
be rewritten as follows: Sheet [1..*] group [*..*] {.

4.2 textual view definition language (tvdl)

The role of a view depends on its purpose. In our approach it is used to
break the hierarchy of the FM and make the configuration GUI independent
from its structure. For FCWs [Hubaux, 2012], they offer a way to split the FM
between the different stakeholders. In other contexts of use, they will have a
different role.

Independently of their role, views on an FM can be defined in two
ways [Hubaux, 2012]. The first option is to enumerate all FM constructs,
typically features and attributes, belonging to each view. This is called an
extensional definition. Whilst this may be convenient for small FMs, it quickly
becomes very time-consuming and error-prone for larger ones. Intentional
definitions are an alternative. Such definitions take advantage of the FM’s
tree structure to select sub-parts of it. While a subset of XPath was sufficient
in the context of FCWs, it is not adapted to our configuration GUI generative
approach. First, XPath [W3C, 2010b] does not allow to work with TVL models
as it does not allow to select all its constructs, e.g., attributes. Second, it does
not meet all the requirements for the view definition language presented in
Section 3.2.2.

To tackle the problems of XPath, we propose TVDL (Textual View Definition
Language), a text-based view definition language for TVL. However, it could
easily be applied to any other variability modelling language. As for TVL, the
goal of TVDL is to supply engineers with a human-readable and lightweight
language. We chose an XPath-like language and avoided the verbosity of
XML-based languages. The advantage of TVDL is to propose intentional as
well as extensional view definitions. The language even allows to combine
them into the same view declaration.

The meta-model of TVDL is depicted in Figure 4.6. A view model has to
import a TVL Feature Model and is composed of a collection of Views which

4.2. Textual View Definition Language (TVDL) 55

TVDL View Model <from TVL>
TVL Feature Model

tvl model
1

name: String

View
views 1..*

Grouping View

sub-views
1..*

View Declaration

*

View Query
expression 1..*

<from TVL>
Feature

<from TVL>
Attribute

attribute
0..1

feature 0..1

Sub-tree Expression

refinement 0..1

Refinement

Attribute Expression List ExpressionGroup Expression

Inclusion
List

Exclusion
List

list element

root
1

Stop Liststop element
1..*

stop list0..1
0..*

View Queries must
reference either a

Feature or an Attribute

list element0..*List Expressions must
contain at least one

Feature or one Attribute

Figure 4.6.: TVDL meta-model

56 4. language support

all have a name. A View is either a Grouping View or View Declaration. In
the first case, it is composed of a set of sub-views previously declared. In
the other case, a View Declaration is composed of View Queries which de-
termine its coverage. Each View Query either refers to a TVL Attribute or a
Feature and can be refined1. A Refinement is either a Group Expression
(selects groups only), an Attribute Expression (attributes only), a non-
empty List Expression containing TVL attributes and/or features to include
(Inclusion List) or exclude (Exclusion List), or a Sub-tree Expression.
The last one has a Feature as root and can have a Stop List which is itself
composed of TVL Features.

As for TVL, the TVDL meta-model depicted in Figure 4.6 gives an overview
of the language structure. The detailed syntax of our view definition lan-
guage will be introduced in the following sub-sections using the TVDL model
contained in Listing 4.2. It is an example of a view definition model for the
printing tool FM presented in Listing 4.1.

Listing 4.2: Printer software TVDL model
1 //Referencing the corresponding TVL model :
2 import " P r i n t e r . t v l "
3

4 // F u l l sub−t r e e s e l e c t i o n
5 pageSubtree { Page : ∗ }
6

7 // P a r t i a l sub−t r e e s e l e c t i o n
8 partialDocument { Document :∗/ SpineCaption | ! [p o s i t i o n] }
9

10 //Feature s e l e c t i o n
11 DocumentAttributes { Document : a t t r i b u t e s }
12

13 // A t t r i b u t e S e l e c t i o n
14 AttributesView { o r i e n t && p o s i t i o n }

The first line of the TVDL model always contains the import declaration of
the TVL model it refers to. The name of the file (including the .tvl extension)
is enclosed in quotation marks and preceded by the import keyword. In our
example, the TVL FM introduced in the previous section (and subjectively
named Printer.tvl) is referenced at line 3. In the following subsections, we
discuss the other parts of the view model that actually contain views on the
FM.

Basically, a view is given a name and has contents. Its name is a char-
acter string starting either with an upper-case or lower-case character. This
name must be unique and can thus be used as ID for the view. Our illus-
trative TVDL model contains four views, each of them having a unique name:

1 Actually, View Expressions referencing TVL attributes cannot be refined. This point will be
discussed in the following sub-sections.

4.2. Textual View Definition Language (TVDL) 57

pageSubtree, partialDocument, DocumentAttributes, and AttributesView.
The contents are then enclosed in braces. Similarly to TVL feature extensions,
there is no separator (e.g., semicolon) between the different TVDL views.

The contents of a view are discussed in the following sub-sections. Each
sub-section presents a category of queries on the TVL model. The first four
sub-sections correspond to the queries introduced in Section 3.2.2 while the
fifth contains information related to the definition of what we call grouping
views.

4.2.1 Sub-tree Selection

As a reminder, the goal of this kind of view is to select a sub-tree of the
FM. An example is depicted at line 5 of Listing 4.2. There, we define a
view named pageSubtree which is composed of a single sub-tree expression.
Such an expression is defined using the asterisk character. It is possible to
combine different expressions inside the same view. They are separated by
the && symbol. See line 14 for an example. The pageSubtree view covers a
single sub-tree of our example FM. The Page feature is the root of this sub-
tree which includes all its children, grand-children, etc. elements (features
and attributes). In this snippet of the complete FM, it includes Page only as
it does not have any child. However, in the complete model, this feature is
further decomposed and contains a group as well as attributes.

A so-called stop list can be defined to determine the branches of the FM
which are not covered by the view expression. Figure 4.7 contains an ex-
ample of a sub-tree view from which one branch has been pruned, namely
B. Figure 4.7a contains the TVL FM and Figure 4.7b, the associated view. B
and all its sub-features (H and I) are not covered by the view. The branch is
thus pruned before the stop list element, i.e., it is not included. Conversely,
features R, A, C, D, E, F and G are all covered by this view expression. A
stop element is a TVL feature name or its (fully) qualified name preceded by
the slash character. “/R.B” is equivalent to the stop element defined in our
example. A stop list is composed of at least one stop element.

With this kind of query, it is possible to select the full FM. This can be
done via a sub-tree expression which has the FM root feature as root and
has an empty stop list. For example, “Document:*” covers the full FM of our
running example.

By selecting a full sub-tree in the context of configuration GUI generation,
the user expresses her agreement with the structure defined in the FM. This
hierarchy will be directly rendered in the GUI. However, semantics might
depend on what purpose TVDL is used for.

58 4. language support

root R group allOf {
A group oneOf {

D group allOf {F,G},
E

},
B group someOf {H, I},
C

}

(a) TVL FM

import "exampleFM.tvl"

stopListView {R:∗/B }

(b) Sub-tree view with stop list

Figure 4.7.: Stop lists for sub-tree expressions

4.2.2 Partial Sub-tree Selection

In this view category, a partial FM is used as search space. Its purpose is
to select attributes only, to exclude some features or attributes, to exclude all
attributes or groups, etc. contained in a given sub-tree. In this kind of view,
the hierarchy is not preserved since one can exclude some elements, so break-
ing the hierarchy and creating confusion about the semantics of the partial
FM. The partialDocument view declaration at line 8 of the TVDL model intro-
duced earlier is an example of partial sub-tree selection. There, the search
space is defined by the sub-tree with Document as root and excludes the
SpineCaption branch. It covers all constructs of our TVL model example
with the exception of SpineCaption and its attribute, namely orient. The
difference with full sub-tree views is the filter added to the partial sub-tree
selection. This filter starts with the pipe character and is followed by a refine-
ment expression. In our example, it is an exclusion list which contains a sin-
gle element, the position attribute. The list is delimited by square brackets
and the exclamation mark indicates that all its elements will be excluded. The
partialDocument view thus covers Document, Sheet, Tab, Page, Hole, Media,
Staple and NumberingMethod features as well as type and stackMethod at-
tributes, not position as it is included in the exclusion list.

Three different sub-tree refinements exist. They all start with the pipe
character.

The first one, lists, has already been introduced in our example. A list can
either be an inclusion or an exclusion (preceded by the exclamation mark)
one. The coverage of an inclusion list is the union of elements covered by
each of the list elements. Conversely, the coverage of a sub-tree expression
refined by an exclusion list is the difference between the set of elements cov-
ered by the sub-tree expression and the set of elements covered by the list
elements. List elements can be, regardless of the list type, IDs of TVL features
or attributes, attributes or groups keywords. Those elements can be mixed in-

4.2. Textual View Definition Language (TVDL) 59

side the same list and TVL IDs must refer to constructs covered by the sub-tree
expression. If a feature ID is included in an exclusion list, this feature as well
as all its contents (attributes and group) will be excluded from the view. Con-
versely, in an inclusion list, the feature and its contents only will be included
in the view coverage. Attribute IDs included in an exclusion (resp. inclusion)
list will be excluded (resp. included) in the view coverage, as well as sub-
attributes for structured attributes. The groups keyword in an exclusion (resp.
inclusion) list will exclude (resp. include) all groups from the view coverage.
The same principle applies to the attributes keyword. Figure 4.8b introduces
some examples of sub-tree views refined by a list. There, the first and third
sub-tree views are refined by an exclusion list while View2 is refined by an
inclusion list. The coverage of View1 is the set of all features contained in the
TVL FM (and their groups) given that all attributes have been excluded. In
other words it covers features R, A, B, C, D, E, F and G, and the three groups
but not attributes a, b and r. View2 covers all groups (three in total) as well
as feature D and its contents, i.e., the a integer attribute. Finally, the last view
covers features R, B, C, D, E, F and G, attributes a and r, and two groups (R and
B). Excluding a feature, like A in View3, will exclude its group and attributes,
but not its sub-features (D and E). Sub-tree stop lists introduced earlier should
be used for this purpose.

root R group allOf {
A group oneOf {

D,
E

},
B group someOf {F, G},
C

}
B { bool b;}
D { int a ;}
G { real r ;}

(a) TVL FM

import "exampleFM.tvl"

View1 {R:∗ | ![attributes]}

View2 {R:∗ | [groups, D]}

View3 {R:∗ | ![A,b]}

(b) Views with refinement lists

Figure 4.8.: Sub-tree views refined by lists

Attributes are the second kind of refinement for sub-tree expressions. The
attributes keyword is used for this purpose. It means that the view covers all
attributes contained in the sub-tree expression. “Document:* | attributes”
thus covers all attributes (and sub-attributes) of our running example, namely
type, stackMethod, orient and position. It is also possible to further refine
the view with a refinement list which can either be an inclusion or exclusion
one but, in this case can contain only IDs of TVL attributes covered by the
sub-tree expression. This refinement list is also preceded by the pipe char-

60 4. language support

acter. “Document:* | attributes | ![orient,position]” is a valid view
definition which covers all attributes of our running example with the excep-
tion of orient and position. Note that “Document:* | [orient,position]”
is equivalent (i.e., has the same coverage) to “Document:* | attributes |
[orient,position]”, so making the refinement of the attributes keyword by
an inclusion list less relevant.

Finally, it is also possible to select all feature groups contained in a sub-
tree of an FM with the groups keyword. In this case, the view coverage
is a set of feature groups. For example, “Document:* | groups” covers
all groups (i.e., two) of our running example. Again, it is possible to re-
fine this groups expression with an inclusion/exclusion list (preceded by the
pipe character). But, in this case, the list contains TVL feature IDs only. We
chose to allow features since it is the only way to identify feature groups
in TVL. If a feature is covered by an inclusion (resp. exclusion) list, its
group will (resp. will not) be covered by the groups expression. For ex-
ample, “Document:*/Sheet|groups|![Document]” has an empty coverage.
The group of Sheet is not covered by the sub-tree expression as it is in its
stop list, and the other group (contained in Document) is in the exclusion list.
Contrarily to attribute expressions, the refinement of group expressions with
inclusion lists is not redundant with simple list refinements. For example, it
is harder to define a view equivalent to “Document:* |groups|[Document]”
with a list refinement. “Document:*/Sheet |[groups]” may be an option
but is more complicated to find in complex FMs.

4.2.3 Feature Selection

In TVDL, it is also possible to select a single feature in a view. For example,
“DocumentView {Document}” defines a view named DocumentView which cov-
ers a single feature, namely Document, and all its contents (i.e., its group and
attributes). In this specific case, the view covers feature Document, its group
as well as type and stackMethod attributes. Similarly to partial sub-trees, it is
possible to refine those feature selections. The only difference is that the group
keyword has to be used instead of groups in the case of partial sub-trees given
that each feature contains (maximum) one group in TVL. The coverage of a
view defined as “Document:group” just contains Document’s group, not the
Document feature itself. As illustrated at line 11 of Listing 4.2, it is also possi-
ble to select all attributes of a feature with the attributes keyword preceded by
the colon character. In our running example, the DocumentAttributes view
covers the type and stackMethod attributes. Again, the Document feature it-
self is not covered. Finally, refinement lists can also be defined on features. As
for partial sub-trees, it can either be an inclusion or exclusion list. This list can
contain the TVL ID of the feature’s attributes, and/or the group or attributes

4.2. Textual View Definition Language (TVDL) 61

keywords. For inclusion lists, the view will cover the feature itself plus the
elements mentioned in the list. For example, “Document:[attributes]” cov-
ers the Document feature as well as stackMethod and type attributes. Con-
trarily to the example at line 11 of Listing 4.2, this view expression covers the
Document feature itself. Feature view expressions refined by an exclusion list
will also include the feature itself plus its contents which are not covered by
the elements contained in the list. For example, “Document:![attributes]”
covers the Document feature and its group, not its two attributes. We can
note that “Document: [attributes]” is equivalent (i.e., covers the same
elements) as “Document:![group]”. This statement is not specific to our ex-
ample and can be generalised to any feature of any TVL FM given that, in
our variability modelling language, a feature contains only attributes and a
group.

4.2.4 Attribute Selection

The last kind of query, namely attributes, is the simplest one. Indeed, we
have chosen to disallow their refinement. The only way to refine attributes
would be to select only some sub-attributes of a TVL structure attribute. But,
given our experience in variability modelling, it makes no sense to split such
attributes. Indeed, if they had to be split, they would have been represented
as a feature with attributes. As illustrated at line 14 of Listing 4.2, an attribute
query just refers to the TVL ID of an attribute in the imported FM. There, we
also illustrate another construct supported by the TVDL language, the ability
to combine queries in a single view. The AttributeView is composed of
two attribute queries separated by the && symbol. This operator allows to
combine queries. In our example, combined queries are of the same type
(attributes) but can also be used to compose different kinds. The coverage set
of AttributeView is composed of two attributes, orient and position.

4.2.5 Grouping Views

In the previous paragraphs, we have introduced the available queries. Those
queries can even be combined to declare more complex views using the &&
operator. Even if all those constructs should be expressive enough, we intro-
duced another kind of view, so-called grouping views. As the name implies,
they allow to group different views together. These may be view declarations
or grouping views, so allowing to define a kind of view hierarchy. In order to
facilitate the distinction between the two kinds of views, the IDs of grouping
ones start with the dollar sign. The code excerpt of Listing 4.3 introducing
the GroupingView grouping view at line 2 could be appended to the TVDL
model introduced earlier.

62 4. language support

In this example, GroupingView combines two view declarations using
the && operator, namely DocumentAttributes and AttributesView. Its
coverage is the union of the coverage sets of the contained views, type,
stackMethod, orient and position attributes in this case.

Listing 4.3: Printer software grouping views
1 //Grouping view
2 $GroupingView { DocumentAttributes && AttributesView }
3

4 //View d e c l a r a t i o n equiva lent to the grouping view
5 EquivalentView { Document : a t t r i b u t e s && o r i e n t && p o s i t i o n }

A view covering the same set of TVL constructs has been defined at line 5.
Basically, EquivalentView is defined as the combination of all queries defined
in the view declarations grouped by GroupingView. This example helps to
illustrate the fact that grouping views are syntactical sugar. Everything ex-
pressed with grouping views could be done with view declarations, but in
a more complex way. Their purpose is to help the designer to structure her
model and facilitate its writing. She might want to define views of elements
which are, in her opinion, logically linked. Then, she would combine those
“simple” views together. The latter could in turn be combined, and so on.
The emerging hierarchy should help her easily find her way through the
TVDL model which can otherwise quickly become complex.

4.3 featured cascading style sheets (fcss)

Information contained inside the variability (TVL) and views (TVDL) models
could be used directly to generate configuration GUIs. However, the result
would be rather rough. All group decompositions of a given type (and-, or-,
xor-, or card-decompositions in TVL) would be represented by the same pre-
defined widget. Similarly, all attributes of a given type (int, real, bool, enum, or
struct in TVL) would be depicted by the same widget. More importantly, the
ID of each TVL construct would be used as label in the GUI. Similar problems
could arise with TVDL models, especially with view labels and widgets, but
with a reduced impact. The root cause of all those problems is that TVL and
TVDL models do not contain all the necessary information. A solution had to
be found to address this expressiveness problem.

A first solution is to extend existing languages. Missing information would
be directly added in TVL and TVDL. At the first glance, this solution seems to
be the best one in the context of configuration GUI generation. All informa-
tion would be located in the same place. While this might help to design
configuration GUIs, variability and view models would be cluttered with
GUI-related information. This information is completely irrelevant in other
contexts and might disturb variability modellers. We want to keep TVL and

4.3. Featured Cascading Style Sheets (FCSS) 63

FCSS Beautification Model <from TVL>
TVL Feature Model

tvl model
1

<from TVDL>
TVDL Variability Model

tvdl model
0..1FCSS Part

Feature PartGlobal Part View Part Attribute Part

key: String
value: String

View Property

Common Property

Global Property View-specific
Property

key: String
value: String

Attribute Property

Attribute-specific
Property

key: String
value: String

Feature Property

Feature-specific
Property

Group
Property

Basic
Property

properties1..* properties 1..* properties 1..*

properties 1..*

parts 1..*

<from TVL>
Attribute

attribute1
<from TVL>
Feature

feature1
<from TVDL>

View

view1

Figure 4.9.: FCSS meta-model

TVDL languages independent of the GUI generation process in order to pre-
serve the separation of concerns [Tarr et al., 1999]. For all those reasons, we
chose to propose a new language dedicated to GUI-specific information.

This language plays the same role as CSS (Cascading Style
Sheets) [W3C, 2008] for HTML pages, i.e., it contains beautification in-
formation. For this reason, we called our language FCSS, standing for
Featured Cascading Style Sheets. As in usual CSS, properties include layout in-
formation but also feature-specific visualisation strategies. Other properties
are related to the rendering of TVL attributes and groups, and TVDL views.
The availability of certain options may also depend on the target language.

Figure 4.9 gives an overview of the FCSS language using its meta-model.
An FCSS Beautification Model refers to a TVL model and optionally to a
TVDL one. Then, it is composed of four different kinds of parts, namely

64 4. language support

Global Part, View Part, Feature Part and Attribute Part. The Global
Part gives beautification information (in Global Property) which should
be applied by default. That information can then be refined by the three
other kinds of parts. A View Part refers to a TVDL View and contains several
properties, all represented by a key-value pair. View Properties are either
View-specific ones, the same as the Global Properties or properties com-
mon to View, Feature and Attribute parts. Feature Parts (resp. Attribute
Parts) define beautification information for a specific TVL feature (resp. at-
tribute). Feature-specific and Attribute-specific properties both cover
Common ones. They also declare their own properties. Feature-specific
Properties can be further refined as they are composed of properties for the
feature itself (Basic Property) and properties dedicated to its group (Group
Property).

In what follows, we illustrate some of those concepts of TVDL based on our
printing software running example. Similarly to TVL and TVDL, the formal
syntax is deliberately left out (see Chapter 5). The FCSS model visible in
Listing 4.4 could be applied to the TVL and TVDL models introduced in the
previous sections.

Listing 4.4: Printer software FCSS model
1 //Referencing the corresponding TVL model :
2 import " P r i n t e r . t v l "
3 //Referencing the corresponding TVDL model (opt iona l) :
4 import " P r i n t e r . tvdl "
5

6 //Global p r o p e r t i e s d e f i n i t i o n s e c t i o n
7 . {
8 optFeature : checkbox ;
9 view : tab ;

10 }
11

12 //View−s p e c i f i c p r o p e r t i e s s e c t i o n f o r " DocumentAttributes "
13 $DocumentAttributes {
14 label : " P r o p e r t i e s of the document " ;
15 help : " This tab conta ins a l l p r o p e r t i e s of the document " ;
16 generate : t rue ;
17 unavailable : greyed ;
18 }
19

20 //View−s p e c i f i c p r o p e r t i e s s e c t i o n f o r " GroupingView "
21 $GroupingView {
22 view : window ;
23 }
24

25 //Feature−s p e c i f i c p r o p e r t i e s s e c t i o n f o r " Sheet "
26 Sheet {
27 help : " P r o p e r t i e s of a sheet " ;

4.3. Featured Cascading Style Sheets (FCSS) 65

28 unavailable : hidden ;
29 //Group p r o p e r t i e s
30 group {
31 label : " Components of the sheet " ;
32 container : t rue ;
33 }
34 }
35

36 //Feature−s p e c i f i c p r o p e r t i e s s e c t i o n f o r " Hole "
37 Hole {
38 opt : l i s t b o x ;
39 }
40

41 //Attr ibute−s p e c i f i c p r o p e r t i e s s e c t i o n f o r " o r i e n t "
42 # o r i e n t {
43 label : " Or ien ta t ion " ;
44 help : " Or ien ta t ion of the spine capt ion " ;
45 widget : radiogroup ;
46 }

Similarly to TVDL, the first line of an FCSS model imports the TVL model
it refers to (see line 2). Then, a TVDL model can be imported. Contrarily to
the first import, the second one is not mandatory. Indeed, in our approach,
a TVDL model is not required. Its absence means that the user agrees with
the hierarchy defined in the TVL model. This hierarchy will be rendered
in the configuration GUI. In our example, a TVDL model randomly named
“Printer.tvdl” is imported at line 4. As for TVDL, imported models are enclosed
in quotation marks (including their .tvl or .tvdl extension).

The different FCSS entries are then defined throughout the model. We have
identified four categories of properties, namely global, view-specific, feature-
specific and attribute-specific. The global category covers all constructs while
feature- and attribute-specific ones cover a single construct. They will be dis-
cussed in turn in the following sections.

4.3.1 Global Properties

Global properties definition sections start with the dot character and are, like
the three other categories, delimited by curly braces. See lines 7-10 of List-
ing 4.4 for an example. Several global sections can exist. However each global
property can only be defined once in the whole model, i.e., it can neither be
defined several times in the same global part nor in different global parts.

A property has a name (e.g., optFeature at line 8 of our example), and a
value (checkbox) separated by a colon. It is closed by a semicolon. Fourteen
global properties exist, five are related to feature groups, four to features,
another four to attributes, and a single one for views.

66 4. language support

A global group property exists for each kind of TVL decomposition. For and-
decompositions, it is named andGroup and can take a single value, namely
textbox, at the moment. Setting this property might thus be useless. Our
intent is to extend the language in the light of experience with Web config-
urators, requests from customers, etc. It can be seen as a variation point
whose variants still have to be defined. orGroup is a second global group
property which can take either listbox or checkbox as value. The latter have
been defined in Chapter 3 and will not be discussed here for the sake of con-
ciseness. xorGroup is the third property and its available values are listbox and
radiogroup. The last kind of groups, card-decompositions, is represented by
the cardGroup property and can, at the moment, take a single value, namely
checkbox. Finally, the Boolean groupContainer property is used to determine
whether groups and their sub-features have to be visually grouped together
in the rendered configuration GUI. This is typically done with a bordered
box.

The first property dedicated to features is simply called feature and deter-
mines how they are rendered in the GUI. Available values are text and image.
Those values speak for themselves. The optFeature property determines how
optional features have to be rendered. Three values exist, checkbox, listbox,
and radiogroup. With a check box, the optional feature is selected if (and only
if) it is checked. The list-box contains two values, true and false. Similarly the
radio group contains two radio buttons labelled with the same Boolean val-
ues. Note that, optional features are generally used with and-decompositions.
That may help explain why the andGroup property has a single value. un-
availableContent is the third feature property. It can take three values, hidden,
greyed, or none. This value determines the strategy to apply with the contents
of a feature when the latter is not selected. It can either not be visible to the
user (hidden), or visible but not editable (greyed), or visible and editable (none).
With this last option, the user can select any option at any time. Given the
structure of an FM, setting the value of a construct (attribute or feature) will
automatically select all its ancestors in the configuration GUI. Finally, a se-
lectFeature property exists and can take the same values as optFeature, namely
checkbox, listbox, or radioGroup. It comes from some choices we made in TVDL
and, consequently, has not been introduced in Chapter 3. In TVDL, we allow
to not cover a group if all its sub-features are covered. As a consequence,
the group is not rendered in the configuration GUI. Given that all its sub-
features are depicted, we propose to use a selection widget in front of all of
them, similarly to optional features. In this way, the user is still able to select
group’s sub-features and the group cardinality will be verified by the solver
(the presenter in our architecture). The group is scattered all over the configu-
ration GUI but it is still possible to select its sub-features while sticking to its
cardinality.

4.3. Featured Cascading Style Sheets (FCSS) 67

The four attribute properties correspond to the four attribute types avail-
able in TVL. Their purpose is to determine the graphical widget of the corre-
sponding type. The intAttribute and realAttribute properties represent integer
and real attributes. They have the same set of values, namely textbox (a box
containing the value) or slider. The rendering of Boolean attributes is influ-
enced by the boolAttribute property. It can take three values, namely checkbox,
listbox, or radioGroup. Note that this set of values is the same as optional
features given the Boolean type of both constructs. The last attribute type
available in TVL is enumeration. Its corresponding global property is named
enumAttribute and can take listbox or radiogroup as values.

Finally, it is also possible to influence the rendering of views defined in
the TVDL model with the view property. As introduced in Chapter 3, avail-
able values are tab and window. The tab value means that all views will be
represented by tabs in the same window. With the other value, window, each
view will be rendered in its own window. In the latter case, navigation links
between windows should be made available in each window.

Properties defined inside this global part can be seen as “default” values
which can be overridden by other ones defined at a lower (i.e., more specific)
level. As a case in point, properties defined at the view level have priority
over global ones. Conversely, if a global property is not refined for a given
construct, it will be used as default behaviour to generate the corresponding
widget in the configuration GUI. For example, at line 8 of our FCSS example
in Listing 4.4, we state that optional features will be depicted by check boxes
in the configuration GUI. Two optional features exist in our TVL model, Tab
and Hole. On the one hand, the Hole feature is refined at lines 37-39 (see fol-
lowing sections for feature properties). There, the opt property indicates that
the optional characteristic of the feature has to be rendered using a Boolean-
valued list box. This property overwrites optFeature defined at line 8. On
the other hand, the Tab feature is not refined. As a consequence, the value of
the global attribute will be used to generate a check box for that feature.

4.3.2 View-specific Properties

View-specific definition sections start with the dollar sign followed by the
TVDL ID of the corresponding view. The different properties can then be
defined inside the block delimited by curly braces. As for global properties,
view-specific ones end with a semicolon. In our example, we have defined
two of them. One for DocumentAttributes from line 13 through line 18 of
Listing 4.4, and one for GroupingView (lines 21-23). We can classify view-
specific properties into two categories: those which apply to the view itself
and those which apply to elements covered by the view.

68 4. language support

We propose four properties which directly relate to the view referenced in
the view-specific definition section (i.e., the TVDL view ID directly following
the dollar sign). Using the Boolean generate property, one can define whether
or not a view has to be rendered in the configuration GUI. This might, for
example, be useful if the user has defined a view which is relevant in some
contexts (technical, commercial, etc.) but should not be displayed in the GUI.
It means that the TVDL model can contain views which are irrelevant for
GUI generation. We also propose to define labels and help texts for views.
Those properties are named label and help, respectively. They both take a
double quoted string as value. The label property makes it possible to not
use the view ID which might be too technical for the end-user. The help text
might help the user understand the meaning or the purpose of a view. It
is designer’s responsibility to choose the right words to help configuration
GUI users in their task. Finally, we propose the unavailable property which
determines what to do with the view contents when the view is not available.
Values for this property are hidden, greyed and none, and their meaning is
the same as for the unavailableContent global property. An example of view-
specific definition section dedicated to the DocumentAttributes is visible at
lines 13-18 of Listing 4.4. There, label, help, generate, and unavailable
properties are set. The generated tab (inherited from the global attribute
view at line 9) will thus be labelled “Properties of the document” and its help
text will be “This tab contains all properties of the document”. If, for any
reason, the view is not available, its contents will be greyed out. Note that if
the generate property is set to false, other properties make no sense anymore
given that the view will not be rendered in the configuration GUI.

The other category of view-specific properties is similar to the global prop-
erties. Indeed, properties falling in this category will influence the rendering
of constructs covered by the view. For this reason, the proposed properties
are exactly the same as global ones presented in the previous section. The
fourteen properties will not be recalled here for the sake of conciseness. How-
ever, we would like to draw the attention to one of them, view. As a reminder,
this property allows to define the widget corresponding to views. Setting
this property will have an influence on the views contained in the view corre-
sponding to the view-specific definition section, not on that view itself. The
view properties thus only make sense for grouping views. For example, defin-
ing a view property inside the DocumentAttributes view block (lines 13-18 of
Listing 4.4) is useless given that it contains no sub-view. Yet, it makes sense to
define it for GroupingView (lines 21-23) as it contains two sub-views, namely
DocumentAttributes and AttributesView. Both views will be generated in
separate windows (so overriding the global view property defined at line 9).
In our opinion, all views declared at the same level should be depicted by the

4.3. Featured Cascading Style Sheets (FCSS) 69

same widget. This explains why we did not propose a widget property in the
first category. However, if needed, this property could be easily added.

4.3.3 Feature-specific Properties

The goal of this third category is to set properties for a given feature. Con-
trarily to the two previous categories, this one covers a single element which
is a TVL feature. A feature-specific definition section starts with the ID of
a feature in the referenced TVL model. It is the single category which has
no starting symbol (like the dot character for global parts, or the dollar sign
for views). Its contents are then delimited by curly braces. Seven different
feature-specific properties are available. See the FCSS entry referencing the
Sheet feature of our printing tool TVL model example (lines 26-34 of List-
ing 4.4).

Among the seven feature-specific properties, three are shared with view-
specific ones, namely label, help, and unavailable. Available values and seman-
tics are similar. For this reason, they will not be detailed here. In our FCSS
example, we have defined the help text (see line 27) and set the unavailable
property to hidden (line 28). Given that a label property has not been defined,
the TVL feature ID should be used in the generated configuration GUI. Here,
we considered that the feature ID (i.e., Sheet) was speaking for itself.

Four properties really specific to TVL features are available. widget is the
first one and allows to set the widget for the feature in the rendered config-
uration GUI. It is the feature-specific counter-part of the feature global and
view-specific properties. The same two values are available at the moment,
text and images. Similarly, the opt feature-specific property has the same role
as optFeature discussed earlier. As a reminder, available values are checkbox,
listbox, and radiogroup. The role of this property is to determine the widget
depicting the optionality of the feature in the GUI. This property only makes
sense for optional features. In our FCSS example, it has not been defined for
Sheet which is not optional (lines 26-34), but for Hole (line 38). The select
property is equivalent to featureSelect and takes the same three values, check-
box, listbox, and radiogroup. Its role is to set the selection widget for features
whose group is not covered by TVDL views. It should thus only be defined
for features falling in this category.

The last feature-specific property, group, is a little more complex and has a
different syntax. It can contain other properties. In this sense, a parallel can
be drawn with TVL struct attributes. Its contents, replacing its value, are de-
limited by curly braces. There, six properties can be defined. Three of them
are the common ones, label, help, and unavailable. Our experience with exist-
ing Web configurators and discussions with industrial partners showed that,
in some cases, it should also be possible to define this information for groups.

70 4. language support

The widget property defines the widget for the group. Available values are
textbox, listbox, checkbox, and radiogroup. They will depend on the decompo-
sition type, textbox only for and-decompositions, listbox and checkbox for or-
decompositions, listbox and radiogroup for xor-decompositions, and checkbox
for card-decompositions. The Boolean container property has the same role as
the groupContainer global property, that is determine whether the group and
its sub-features have to be graphically enclosed together, for example using
a box. Finally, the default property defines which group’s sub-feature will be
selected in the configuration GUI. Available values will be the group’s sub-
features. Ideally, default values should be defined in another language which
is out of the scope of this thesis. For this reason, it is temporarily included in
FCSS. An example of group properties is visible from line 30 through line 33

of our FCSS example in Listing 4.4. There, we define a label (line 31) for our
group which will be enclosed inside a container (container set to true at
line 32). In this case, setting the widget property is useless as the group is
an and-decomposition (single value available). Similarly, defining a default
sub-feature makes no sense given that all features have to be selected.

4.3.4 Attribute-specific Properties

The last category of properties, attribute-specific ones, is the simplest one.
This is due to the nature of attributes which are the simplest TVL constructs.
An attribute-specific definition section starts with the # symbol directly fol-
lowed by the TVL ID of an attribute. The properties are then declared inside
a block delimited, like other categories, by curly braces. The orient example
is visible from line 42 through line 46 of Listing 4.4.

The label, help, and unavailable properties are the same as the ones previ-
ously discussed. A single property really specific to TVL attributes exists. It
is called widget and can take textbox, listbox, checkbox, radiogroup, and slider as
value. As for group widgets, values will depend on the attribute type. textbox
and slider for int and real TVL attributes, checkbox, radiogroup, and listbox for
bool attributes, and listbox and radiogroup for enumerations. In our illustrative
FCSS model, we have defined a label (line 43), a help text (line 44) and set the
widget property to radiogroup (line 45).

5

L A N G U A G E E D I T O R S

The three languages presented in Chapter 4 are so-called Domain Specific Lan-
guages (DSLs). Such languages support the user with a language designed for
specific tasks. While several language-agnostic tools like text editors, source
control systems, diff tools, etc. exist, language-specific tool support is essen-
tial to make other people adopt those languages [Fowler, 2005]. Language-
specific tooling facilitates reading, writing, browsing, navigating, searching,
editing and code comparison for developers.

Originally, we developed TVL syntax highlighting plug-ins for some text
editors: Notepad++ for Microsoft Windows, Smultron/Fraise and Textmate
for Apple Mac OS, and gedit for Linux. All of them are available on the
TVL Web page1. While this provides tool support to users, it is still ba-
sic. More advanced tool support should be made available like Textual Lan-
guage Workbenches as suggested by Martin Fowler [Fowler, 2005]. Follow-
ing his opinion that “for a wide adoption of DSL in day to day developments,
IDEs for DSL should be easy to create (for language designers) and easy to use
(for end-users)” [Merkle, 2010], several workbenches have been developed.
Among them, we can mention the Textual Editing Framework (TEF) [TEF, 2013],
Xtext [Xtext, 2013], Textual Concrete Syntax (TCS) [Jouault et al., 2006], or EMF-
Text [Devboost, 2013]. Although Merkle was not able to declare a win-
ner in his language workbenches comparison [Merkle, 2010], we have se-
lected Xtext. Our decision was motivated, amongst others, by the tool
stability, its active community, its ease of learning, and its integration in
Eclipse. The latter allows the interoperability with model transformation
and analysis tools (see Chapter 6) and offers extension facilities. Efftinge
and Zarnekow demonstrated that it has several advantages over XML-based
solutions [Efftinge and Zarnekow, 2010]. Furthermore, the tool is quite exten-
sively used in academic as well as industrial contexts, as evidenced by the
2010 Eclipse Community Award for the most innovative Eclipse project2.

1 See https://info.unamur.be/tvl/
2 See http://www.eclipse.org/org/press-release/20100322_awardswinners.php

https://info.unamur.be/tvl/
http://www.eclipse.org/org/press-release/20100322_awardswinners.php

72 5. language editors

5.1 xtext

On the Eclipse Web page, Xtext is defined as “a framework for development
of programming languages and domain specific languages” [Xtext, 2013]. Further-
more, it covers a broad range of language infrastructure, including parsers,
linker, compiler as well as Eclipse IDE integration.

At first, Xtext was part of the openArchitectureWare (oAW) project devel-
oped by itemis AG which provides tools to develop model driven software
development infrastructures. In this context, Xtext was developed to support
the creation of textual DSLs. Since June 2009, it is part of the Eclipse Modeling
Project and developed by the global Eclipse community. More specifically, it
is part of the Textual Modeling Framework (TMF) that “provides tools and frame-
works for developing textual syntaxes and corresponding editors based on EMF”.
EMF stands for Eclipse Modeling Framework, a “modelling framework and code
generation facility for building tools and other applications based on a structured
data model”. More detailed information about the Eclipse Modeling Project is
available online [Eclipse, 2013]. In the literature, the (old) openArchitecture-
Ware version is referenced as oAW Xtext while the newest (and current) one
is named TMF Xtext.

In Xtext, the user starts by defining her grammar in a .xtext file. The lan-
guage has to be defined using a variant of the context-free Extended Backus-
Naur Form (EBNF) notation [ISO/IEC, 1996]. The latter does not support
left-recursive grammars. Production rules and terminal symbols are mixed
into the same .xtext file. Common terminal rules such as, e.g., IDs (ID ter-
minal in Xtext), integers (INT), strings (STRING), and comments (ML_Comment
for multiple lines and SL_CCOMMENT for single line) are available by default
in Xtext. The grammar definition editor itself is supported by syntax high-
lighting, keyword completion and outline view just like it will be the case for
the defined language. Grammar examples will be discussed in the following
sections.

The whole language infrastructure is simply derived from the language
grammar via a Modeling Workflow Engine (.mwe) file. This file describes the
necessary building steps (i.e., loading the model, running the checkers and
code generators, etc.) for the language. This file is the core of Xtext’s code
generation approach.

The Abstract Syntax Tree (AST) is rendered as an Ecore model, the EMF
implementation of meta-models. Thereby, integration with tools from the
Eclipse Modeling Project is facilitated, including M2M and M2T transforma-
tions. Every grammar rule corresponds to a meta-type in the Ecore model.
The corresponding Java API to access the EMF classes is also made available.
The generated artefacts include an ANTLR parser [ANTLR, 2013] that can
read the textual syntax and returns the corresponding AST.

5.2. TVL Editor 73

In our case, the most interesting component generated by Xtext is the editor.
It is an Eclipse plug-in built on top of components previously introduced. The
generated editor offers most (if not all) functionalities that one would expect
from language editors “out of the box” (i.e., with .mwe file default values).
It comes with syntax highlighting which allows faster reading of the code and
content assist which speeds up code writing by suggesting keywords, names
of elements, etc. Instantaneous code validation is also available through syn-
tax and linking checkers. Syntax errors occur if the produced code cannot be
parsed correctly. Linking errors appear when a reference to another element
cannot be found in the document (or the scope available for this reference).
An outline view of the document is also part of the language editor. It comes
with many other features not detailed here. Interested readers can refer to
the Xtext documentation for more information [Xtext, 2013].

For most users, the default editor generated by Xtext shall be sufficient.
For others, Xtext can be configured and editors can be customized through
an easy-to-use API. For example, the outline view can be completely re-
written, the scope for references extended or refined, qualified names cus-
tomized, quick fixes implemented, syntax colouring modified, etc. In short,
almost everything can be tailored according to the language designers’
preferences. Xtext relies on the Google Guice dependency injection frame-
work [Vanbrabant, 2008] to assemble all its components. An external module
is used to bind a component whenever it is required. If such a component
is refined, Google Guice will fetch it (almost) transparently. This point will be
illustrated on TVL, TVDL and FCSS editors generated by Xtext in the following
sections.

The remainder of this chapter is devoted to the editors of the three lan-
guages presented in Chapter 4. We keep the same presentation order for
the languages, i.e., we start with TVL, continue with TVDL and end with FCSS.
The grammar, the generated editors, and the customization developments are
presented for each language, TVL being the most complex one.

5.2 tvl editor

We start by presenting the TVL grammar as it is central to the Xtext frame-
work. Then, we discuss the different custom implementations on top of the
generated editor in the following sections.

5.2.1 Grammar

Some properties of the language can be found in the header of the EBNF
grammar file. The header of TVL is described in Listing 5.1.

74 5. language editors

Listing 5.1: Header of the TVL Xtext grammar
1 grammar be.unamur.TVL with org.eclipse.xtext.common.Terminals
2

3 generate tvl "http://www.unamur.be/TVL"

The name of the language is defined at line 1 using Java-like qualifiers.
Existing grammars can be reused and are declared using the with keyword
followed by the name of the grammar. For TVL, we reused the common ter-
minals mentioned in Section 5.1 (see line 1). Ecore models are another corner
stone of the Xtext framework. As a reminder, they are used to represent the
AST of a document. It can be derived directly from the grammar. The gen-
erate declaration performs such services. The example at line 3 means that
the EPackage (the Ecore model plus some utilities) named tvl will be gen-
erated with the nsURI http://www.unamur.be/TVL. Conversely, it is possible
to import an existing EPackage but this option was not used here.

Next comes the TVL grammar itself. Here, we present only excerpts of
it. The complete grammar is available in Appendix A.1. The Xtext EBNF
grammar is structured into rules, identified by their name (followed by a
colon). The starting elements of the TVL grammar are visible in Listing 5.2.

Listing 5.2: Starting elements of the TVL Xtext grammar
1 Model: model+=ModelElement∗;
2

3 ModelElement:
4 Type
5 | Constant
6 | Root_Feature
7 | Feature_Extension;

The Model rule is the grammar entry point (see line 1 of Listing 5.2). A
model is composed of zero or more ModelElements, as indicated by the
asterisk character. All model elements are assigned to the model list (de-
picted by the += operator). This information will be used in the Ecore model
to get access to ModelElements of the Model. A ModelElement (see line 3

through line 7) can either be a Type, a Constant, the Root_Feature, or a
Feature_Extension. Those rules are discussed hereunder.

We start with types which are defined in Listing 5.3.

Listing 5.3: Types excerpt of the TVL Xtext grammar
1 Type:
2 SimpleType
3 | Record;
4

5 SimpleType:
6 type=’int’ name=ID (’in’ domain=Set_Expression)? ’;’
7 | type=’real’ name=ID (’in’ domain=Set_Expression)? ’;’

5.2. TVL Editor 75

8 | type=’enum’ name=ID ’in’ enumDomain=Enum_Expression ’;’
9 | type=’bool’ name=ID ’;’

10 | type=’string’ name=ID ’;’;
11

12 Record: type=’struct’ name=ID ’{’ fields+=Record_Field+ ’}’;
13

14

15 Record_Field:
16 type=’int’ name=ID (’in’ domain=Set_Expression)? ’;’
17 | type=’real’ name=ID (’in’ domain=Set_Expression)? ’;’
18 | type=’enum’ name=ID ’in’ enumDomain=Enum_Expression ’;’
19 | type=’string’ name=ID ’;’
20 | type=’bool’ name=ID ’;’
21 | typeref=[SimpleType|ID] name=ID ’;’;

In TVL, types can either be simple ones (lines 5-10 of Listing 5.3) or records
(line 12). As mentioned in Chapter 4.1, a SimpleType has a type, a name,
and optionally a domain for some of them. The Set_Expression rule will
be discussed later. The Record rule states that a record is composed of
one or more fields. (plus sign). Each field can be a simple type or a
reference to a user-defined type (line 21). The reference is depicted by the
[SimpleType|ID] construct, meaning that typeref refers to a SimpleType by
its ID. Even with type references, records cannot be contained inside other
records. The Record_Field rule is quite similar to the SimpleType one. We
had to duplicate the first one due to grammar ambiguities. Constants being
similar to types, their grammar will not be discussed here.

Next come the rules dedicated to all features, i.e., root, hierarchical, ex-
tension, and shared ones. They are declared by the EBNF grammar snippet
visible in Listing 5.4.

Listing 5.4: Features excerpt of the TVL Xtext grammar
1 Root_Feature: ’root’ name=ID body=Feature_Content;
2

3 Hierarchical_Feature:
4 optional?=(’opt’)? name=ID cardinality=BasicCardinality? body=Feature_Content?;
5

6 Feature_Extension: ref=Long_ID body=Feature_Content;
7

8 Shared_Feature: ’shared’ ref=Long_ID;

The first two, namely Root_Feature at line 1 of Listing 5.4 and
Hierarchical_Feature at line 3, are feature declarations. The two others re-
fer to existing feature declarations using their Long_ID. This rule, not visible
here, defines (fully) qualified names using a Java-like notation as discussed in
Section 4.1. It is possible to define a cardinality (BasicCardinality at line 3)
or the optionality (opt keyword) for Hierarchical_Features only. Root fea-
tures cannot be optional and there can only be one instance of it. The car-
dinality of feature extensions is defined by the feature declaration they refer

76 5. language editors

to. Shared_Features, unlike others, have no contents. They have to be de-
fined in the original feature declaration. The others have a Feature_Content
(optional for Hierarchical_Features) which is defined in Listing 5.5.

Listing 5.5: Feature contents excerpt of the TVL Xtext grammar
1 Feature_Content:
2 ’{’ bodyItems+=Feature_Body_Item+ ’}’
3 | group=Feature_Group;
4

5 Feature_Body_Item:
6 Data
7 | Constraint
8 | Attribute
9 | Feature_Group;

10

11 Feature_Group:
12 ’group’ cardinality=Cardinality ’{’ sub_features+=Sub_Feature (’,’ sub_features+=

Sub_Feature)∗ ’}’;
13

14 Sub_Feature:
15 Hierarchical_Feature
16 | Shared_Feature;

A Feature_Content is either a set of (at least one) Feature_Body_Items
delimited by curly braces or just a Feature_Group. A feature body item
can either be a data block (Data rule not defined here), a constraint (defined
hereunder), an attribute (defined hereunder) or a group. The definition of a
Feature_Group is given at lines 11-12 of Listing 5.5. It has a Cardinality (as
defined in Chapter 4) and a comma-separated list of sub-features. A group
contains at least one sub-feature which can be a hierarchical or shared one
(line 14 through line 16).

Attributes are another type of Feature_Body_Item. Their grammar is visi-
ble in Listing 5.6.

Listing 5.6: Attribute declaration excerpt of the TVL Xtext grammar
1 Attribute:
2 Base_Attribute
3 | {Structure_Attribute} type=[Record] name=ID cardinality=BasicCardinality? ’{’

sub_attributes+=Sub_Attribute+ ’}’;
4

5 Base_Attribute:;
6 type=’int’ name=ID cardinality=BasicCardinality? attr_body=Attribute_Body? ’;’
7 | type=’real’ name=ID cardinality=BasicCardinality? attr_body=Attribute_Body? ’;’
8 | type=’bool’ name=ID cardinality=BasicCardinality? attr_body=Attribute_Body? ’;’
9 | type=’string’ name=ID cardinality=BasicCardinality? attr_body=Attribute_Body? ’;’

10 | type=’enum’ name=ID cardinality=BasicCardinality? ’in’ domain=Enum_Expression (’is’
attr_value=Expression |’,’ attr_condition=Attribute_Conditionnal)?’;’

11 | predefined_type=[SimpleType|ID] name=ID cardinality=BasicCardinality? attr_body=
Attribute_Body? ’;’ ;

5.2. TVL Editor 77

12

13 Sub_Attribute: sub_id=[Record_Field] attr_body=Attribute_Body ’;’;

As for types, TVL attributes can be split into two cate-
gories: Base_Attributes and Structure_Attributes. Here, the
Structure_Attribute rule is defined directly inside the Attribute one
at line 3. Its type must be a user-defined record ([Record] reference). Simi-
larly, its Sub_Attributes (line 13) refer to the user-defined Record_Fields
of the record. Base_Attributes for their part have a type, an ID, and
optionally a cardinality and/or a body (from line 5 to line 11). The type can
either be one of the five basic ones or a reference to a user-defined one as
defined by the [SimpleType|ID] reference at line 11. The definition of the
Attribute_Body is deliberately left out here but is available in Appendix A.1.

Finally, comes the Constraint rule, the last kind of Feature_Body_Item
(see Listing 5.7).

Listing 5.7: Constraints excerpt of the TVL Xtext grammar
1 Constraint:
2 condition=(’ ifin :’|’ ifIn :’) expression=Expression12’;’
3 | condition=(’ifout :’|’ ifOut :’) expression=Expression12’;’
4 | expression=Expression12’;’;
5

6 Expression12 returns ComplexExpression: ;
7 Expression11 =>({If. left =current} ’?’ right+=Expression12’:’ right+=Expression11)∗;
8

9 Expression11 returns ComplexExpression:
10 Expression10 =>({LeftImplication.left=current}’<−’ right=Expression10)∗;
11

12 Expression10 returns ComplexExpression:
13 Expression9 =>({RightImplication.left=current}’−>’ right=Expression9)∗;
14

15 ...
16

17 Expression2 returns ComplexExpression:
18 Expression =>(({Excludes.left=current}’excludes’ | {Requires. left =current}’requires ’)

right=Expression)∗;;
19

20 Expression:
21 value=’true’
22 | value=’false ’
23 | value=Integer
24 | value=Real
25 | ref=Long_ID
26 | op=’!’ expression=Expression
27 | op=’−’ expression=Expression
28 | op=’(’ expression=Expression12 ’)’
29 | op=’abs’ ’(’ expression=Expression12’)’
30
31 | op=’xor’ ’(’ (expression_list=Expression_List | child=Children_ID | values=Values_Set)

’)’;

78 5. language editors

A Constraint optionally has a condition (ifIn or ifOut), and the constraint
itself expressed by the Expression12 rule. We had to define different rules
for the expressions in order to force the operator precedence, which explains
the numbered Expression rules from line 6 through line 31. For the sake
of conciseness, we mentioned some of them only in the above grammar
excerpt. New Xtext grammar language facilities are used here. First, the
returns statement for all ExpressionX stipulates that they will all be of type
ComplexExpressions in the Ecore model. Then, the => instruction of those
same rules guides the parser generator. It forces to check the second (op-
tional) part of the complex expression before going to the lower level ex-
pression. This prevents wrong TVL model parsing, like, e.g., confusion be-
tween the “-” symbol of the minus unary operator (line 27 of Listing 5.7)
and the right implication -> (line 13). {RightImplication.left=current} at
line 13 is an example of the last Xtext facility newly used. It means that left
Expression9 of Expression10 will be rendered as the left child of the right
implication in the AST. In this way, Expression9 is marked as such if and
only if it is really the case, so avoiding to have left parts without right ones.

5.2.2 Default Infrastructure

As stated in the above section dedicated to Xtext, the framework generates
some default infrastructure components like the parser or the Ecore model
based on MWE2. That is a DSL to configure the generator.

We will not get into the details of the MWE2 syntax as, for TVL, we basi-
cally used the default behaviours. In short, variables are first declared. They
include, amongst others, the grammar URI or the file extension of the gener-
ated language (.tvl). Variable declarations are shown in the following code
excerpt. The grammarURI variable, for example, will then be referenced as
${GrammarURI} in the MWE2 workflow.

1 var grammarURI = "classpath:/be/unamur/TVL.xtext"
2 var file .extensions = " tvl "

Then follows the root element of the MWE2 file, the workflow itself. It
is composed of beans and components. Beans “do nothing but provide a
means to apply global side-effects” [Xtext, 2013]. For TVL, we defined two beans,
StandeloneSetup and be.unamur.TVLSupport. The first one initializes a
bunch of elements in order to allow to use the language infrastructure in-
dependently of the editor plug-in while the second allows, among others, to
reference language constructs from any Xtext language. The latter is useful
for TVDL and FCSS languages.

Workflow component elements directly follow bean declarations. In
TVL, we used two kinds of components. The first one cleans the direc-
tories of the previously generated infrastructure (DirectoryCleaner com-

5.2. TVL Editor 79

ponent). The second generates the whole infrastructure and is conse-
quently named Generator. Furthermore, it is composed of generator frag-
ments. Standard fragments handle the generated code for EMF models
(EcoreGeneratorFragment), Model validation (JavaValidatorFragment), etc.

The result of running the MWE2 workflow is a whole infrastructure for
TVL. The tip of the iceberg visible to the TVL designer is the editor depicted
in Figure 5.1. It contains the printer software example introduced in Sec-
tion 4.1. Given that the generated editor offers, by default, syntax checking,
it shows that our TVL model is syntactically correct. Furthermore, default
syntax colouring helps to read the model. Code folding is also generated
by Xtext (- in the left column). Other facilities like (basic) auto-completion,
syntax checking, etc. are also available by default but not visible in Figure 5.1.

Figure 5.1.: TVL editor generated by Xtext

80 5. language editors

5.2.3 Custom Developments

Although the TVL editor generated by default is an excellent starting point,
it has its limits such as incomplete validation, permissive scoping or over-
whelmed outline tree. To tackle them, we took advantage of the extension
and customization facilities offered by Xtext. The custom developments can
be split into two categories: TVL model validation and TVL editor.

Model Validation

TVL model validation is required at two levels: syntax and semantics.
Xtext could handle all syntactical checks. But, due to one of our grammar

choices, namely construct IDs, some custom developments had to be made.
In the grammar presented earlier, features, attributes, types and constants all
use the ID terminal, although some differences exist. Feature names should
start with an upper-case letter while the three other constructs should have a
leading lower-case letter. We could have defined different IDs but, in such a
case, TVL qualified names would have been far more difficult to handle. Our
choice has less of an impact as it is sufficient to implement five additional
checks, namely for attribute, constant, user-defined type, record field, and
feature names.

In Xtext, such checks are defined in Java inside the validation package
of the language (be.unamur.tvl in our case) and extends default valida-
tion methods generated by the framework which allows subclasses to spec-
ify invariants in a declarative manner using the @Check annotation. The
code excerpt presented in Listing 5.8 contains an example of validation for
attribute names. Returned errors contain a message (“Attribute names
should start with a lower case” in our example), the incriminated TVL
construct (TvlPackage.Literals.SHORT_ID__NAME representing the attribute
ID), and the cause defined as a string constant (INVALID_LOWER_CASE).
The latter can be used in other contexts as discussed in the following sec-
tions.

Listing 5.8: Validation of attribute names in the TVL editor
1 package be.unamur.validation;
2

3 public class TVLJavaValidator extends AbstractTVLJavaValidator {
4

5 public static final String INVALID_LOWER_CASE = "be.unamur.tvl.
InvalidLowerCaseName";

6

7 @Check
8 public void checkAttributeStartsWithLowerCase(Attribute attribute){
9 if (attribute .getName()!=null && !Character.isLowerCase(attribute.getName().charAt(0)))

5.2. TVL Editor 81

10 error("Attribute names should start with a lower case", TvlPackage.Literals.
SHORT_ID__NAME, INVALID_LOWER_CASE);

11 }
12 }

Semantic validation is more difficult to handle. The root cause is the struc-
turing mechanism offered by TVL to declare a feature at one place and extend
it later in the code (at several places). This facility is not supported by default
in Xtext. The framework generates an API to get access to the different con-
structs (attributes, root feature, hierarchical features, feature extensions, etc.)
of the model but do not provide means to get access to the whole contents of
a feature. It is the union of the contents from the feature declaration and its
potential extensions. Getting access to this information is essential to check
the semantics of TVL models. We developed our own accessors and custom
navigation mechanisms relying on some methods to resolve Long_IDs used to
reference TVL constructs. They are located in the be.unamur.utils.TVLUtils
class and developed in Java.

Methods for resolving TVL qualified names are the following:

1. resolveLong_ID(Long_ID id): Returns the TVL construct referenced by
a qualified name (Long_ID in the grammar). It can be a feature dec-
laration, an attribute (or a sub-attribute), a constant, or a value of an
enumerated attribute. This method depends on the others presented in
this list which handle root, this and parent keywords.

2. getRoot(EObject tvlConstruct): Returns the model root feature given
any construct. In TVL, it must be unique.

3. getThis(EObject tvlConstruct): Returns the feature declaration which
contains tvlConstruct if it is not a feature declaration, itself otherwise.

4. getParent(EObject tvlConstruct): Returns the parent feature declara-
tion of the feature declaration where tvlConstruct is declared.

Based on those accessors related to qualified names, all feature content
queries can be defined. In the following list, Common_Feature represents ei-
ther a feature declaration (root or hierarchical) or an extension.

1. getAllInstancesFeature(Common_Feature feature): Returns all in-
stances of a feature (the declaration plus its extensions, if any).

2. getCommonFeature_Group(Common_Feature feature): Get, given a
common feature, its group. All feature instances corresponding to
feature will be explored to find a group, if any.

3. getFeatureBodyItems(Feature_Declaration feature): Get the list of
items included in the bodies of a feature and its extensions. Such items
include data, constraints, attributes and groups.

82 5. language editors

4. getAllAttributes(Feature_Declaration feature): Get the list of at-
tributes declared in the bodies of feature and its extensions.

5. getAllConstraints(Feature_Declaration feature): Get the list of con-
straints declared in the bodies of feature and its extensions.

All semantic validation methods are defined in the same class as the syn-
tactical ones, be.unamur.utils.validation.TVLJavaValidator. Here we
give, an intuition of the different checks performed. For the Java implemen-
tation, interested readers might refer to the TVL editor source code. The
first validation, uniqueness of the root feature, is quite direct: the count
of Root_Features should be equal to one (see checkSingleRootFeature
method). A similar approach applies to the number of groups (maximum
one) in each hierarchical feature. We have to explore the hierarchical feature
and its extensions to count the number of groups. An error is raised when it
is greater than one. See checkSingleGroupDeclaration method for the Java
source code.

The names of the different constructs also have to be checked to guarantee
their uniqueness. As a reminder, features can have the same name provided
they are not siblings. Consequently, it is sufficient to check that a feature has
a unique name in its group. The root feature is unique and does not have to
be checked. Uniqueness of feature names is checked directly in group dec-
larations. For each sub-feature (hierarchical or shared one), we compare its
name to its siblings in checkHierarchical_FeatureHasUniqueName method.
The same principle applies to attributes, their name has to be unique inside
their parent feature. The first step is thus to collect all attributes declared
by the parent via the getAllAttributes method and compare them (see
checkAttributeHasUniqueName). The uniqueness of the constant names is
performed in a similar way in the checkConstantHasUniqueName method. Fi-
nally, we also check that an attribute does not have the same name as a
constant as there is no way to distinguish them. For each attribute (resp. con-
stant), we get the list of constants (resp. attributes) declared in the model and
compare their names (see checkCollidingAttributeConstant methods).

Given that shared features cannot be extended (the referenced one should
be extended instead), we check that no feature extension references a shared
feature using the resolveLong_ID method introduced earlier. A similar ap-
proach checks that a shared feature does not refer to a shared feature. It
should refer to its original declaration instead.

Finally, we also check elements referenced by qualified names. First, we
count the number of elements it refers to. If it is greater than one, it means
that the qualified name is ambiguous (see checkLong_ID method). One way
to solve this problem is to use the fully qualified name which is, by con-
struction, unique. Second, we check that qualified names used to reference a

5.2. TVL Editor 83

feature declaration in a feature extension actually refer to a feature declara-
tion (root or hierarchical one) in checkFeatureExtensionRef. The first step
verifies that this and parent keywords are not used as they make no sense
at that place. Then, we check that the qualified name actually refers to a
feature declaration. Finally, we check that a Children_ID (used to reference
attributes in expressions) actually refers to an attribute in a similar manner
(see checkChildren_ID method).

Another important point is the scoping, i.e., TVL constructs accessible given
a context. It is decomposed into two levels: global and construct-specific.

One limitation of the current implementation of the TVL editor is that it
does not support the include mechanism. In this first version, visible ele-
ments are those defined inside the same .tvl file. This is defined in the
TVLGlobalScopeProvider class of the be.unamur.scoping package. There,
we created a filter which excludes all elements that are not defined in the
same file as the current context object. Otherwise, Eclipse would grant access
to all constructs from all TVL models inside a given project.

The construct-specific scoping is limited to two of them in our case, record
fields and qualified names. They are defined in the TVLScopeProvider class.

The qualified names scoping method follows the following naming conven-
tion:

IScope scope_<DeclaringEClass>_<Reference>(<Context> ctx, EReference ref)

It is used when evaluating the scope of a specific cross-reference named
Reference declared in DeclaringEClass. In the signature, they are separated
by the underscore character and always preceded by “scope_”. The ctx pa-
rameter represents the context in which the scope should be applied and the
ref one, the cross-reference object itself. For example, “scope_Long_IDTail_-
head(Long_IDTail context, EReference ref)” defines the scope of the
head part of a Long_IDTail when the user is editing a Long_IDTail (ctx
parameter). Please, refer to the grammar introduced at the beginning of this
section for more detailed information about those TVL rules.

As for validation, we just give an intuition of the scoping method. The
first step is to determine whether the current element (ctx) is the second
element or located later in the qualified name. In the first case only the
preceding element can be a keyword. In that case, it has to be resolved and
the scope corresponds to the set of TVL constructs it contains. For example,
if it is a feature, return all its sub-features, attributes, etc. using the utilities
previously introduced. In all other cases, the scope will depend on the type
of the preceding element in the qualified name. It can either be an attribute, a
sub-attribute, an enumerated attribute element, a constant, a shared feature,
or a feature declaration. The scope for an attribute (excluding struct ones), a
sub-attribute, an enumerated attribute element, or a constant is empty given

84 5. language editors

that they have no relevant contents. The scope of a structure is the set of
its sub-attributes. For shared features, it corresponds to the scope of the
feature it references. For feature declarations, we use the utilities previously
defined to get all their sub-features and attributes which might be scattered
over several feature extensions.

The scoping of struct attributes follows a different pattern:
IScope scope_<TypeToReturn>(<Context> ctx, EReference ref))

In our case, the scope of a struct attribute is the set of its sub-attributes,
regardless of the attribute. The signature of our method is the following:

IScope scope_Record_Field(Structure_Attribute struct, EReference ref)

The scope is composed of Record_Fields given an attribute (struct pa-
rameter) and a cross-reference (ref). Its implementation is quite direct: re-
trieve the record corresponding to the type of struct and return all its record
fields.

Finally, TVLGlobalScopeProvider and TVLScopeProvider have to be de-
clared in the TVLRuntimeModule in order to override the default behaviour
(see Listing 5.9).

Listing 5.9: Registration of the scope providers for the TVL editor
1 public class TVLRuntimeModule extends be.unamur.AbstractTVLRuntimeModule {
2 ...
3 @Override
4 public Class<? extends IScopeProvider> bindIScopeProvider() {
5 return TVLScopeProvider.class;
6 }
7

8 @Override
9 public Class<? extends IGlobalScopeProvider> bindIGlobalScopeProvider() {

10 return TVLGlobalScopeProvider.class;
11 }
12 }

Editor

Customization is also available at the graphical interface level. Three custom
developments were made: improvement of the syntax highlighting, rewriting
of the outline tree and development of two basic quick fixes.

Syntax highlighting can be done at two levels: lexical and semantic. The
lexical level was not modified as the default behaviour (depicted in Figure 5.1)
fits our needs. Custom developments were made at the semantic level only
in order to highlight more TVL model constructs, so improving its readability.

The first step, regardless of the highlighting level, is the definition of the
available styles. This information is located inside the TVLHighlighting-
Configuration class of the be.unamur.ui.highlighting package. The code

5.2. TVL Editor 85

excerpt contained in Listing 5.10 declares a style name (line 2), registers it
(line 4) and defines its visual aspect (line 6 through line 10):

Listing 5.10: Declaration of an highlighting style for the TVL editor
1 public class TVLRuntimeModule extends be.unamur.AbstractTVLRuntimeModule {
2 public static final String FEATURE_ID = "feature";
3 public void configure(IHighlightingConfigurationAcceptor acceptor) {
4 acceptor.acceptDefaultHighlighting(FEATURE_ID, "Feature",featureTextStyle())

;
5 }
6 public TextStyle featureTextStyle () {
7 TextStyle textStyle = new TextStyle();
8 textStyle .setColor(new RGB(65,105,225));
9 return textStyle ;

10 }
11 }

Next comes the semantic highlighting calculation. The framework will pass
the current XtextResource (the TVL model) and an IHighlightedPositionAc-
ceptor to the calculator. Given the provided resources, we have to iterate
through the elements contained in the TVL model and determine their type.
Upon completion of this first step, the positions to be highlighted are calcu-
lated. Determining the TVL constructs to highlight is made available in the
provideHighlightingFor method of the TVLSemanticHighlightingCalcula-
tor class. There, we also find five methods which compute the characters to
highlight in the GUI, one for each relevant TVL construct (feature, constant,
type, attribute and reference). A given construct can be covered by several
highlighting configurations. In such a case, they will be combined. For exam-
ple, the qualified name of a feature extension will be highlighted as a feature
as well as a reference. Figure 5.2 shows the improved semantic highlighting
and should be compared to Figure 5.1 to assess the added value.

The Xtext framework generates a default outline view for the editor. It is
based on the different classes of the Ecore model representing the AST. It is
depicted in Figure 5.3a. A noticeable characteristic of this Eclipse view is that
it contains a lot of intertwined levels, a lot of them presenting the <unnamed>
label. The number of levels in the tree is determined by the grammar rules,
each level corresponding to a rule. However, in TVL we had to define some
intermediary constructs to group similar elements together. And those rules
should not be rendered in the outline tree. Xtext uses the text in grammar
rules to set outline tree labels. Given that all rules do not contain a terminal
rule (i.e., text), it is impossible for the framework to get a label. This explains
the unnamed elements in Figure 5.3a. This default outline was customized
and the result is visible in Figure 5.3b.

The first noticeable difference is that the file (Printer) is not covered any-
more. Our goal is to reduce the depth of the tree by removing this useless in-

86 5. language editors

Figure 5.2.: TVL editor with semantic highlighting

formation. Model designers know that the outline corresponds to the file they
are currently editing. Additionally, outline levels are now labelled with the
type of the TVL construct they represent between square brackets. Available
values are Type, Constant, Feature root, Feature, Group, Attribute, and Constraint.
Most of them are displayed in Figure 5.3b. Their purpose is to give readers
a quick preview of the TVL model, more specifically its structure. For this
reason, details have been omitted. The outline view could be seen as an inter-
mediary representation somewhere between the TVL syntax and the FODA
notation. All unnecessary levels have been removed and a label defined for
each of the remaining ones.

As for other custom developments, we just provide a high level description
for the customization of the TVL editor outline view. Java implementation is

5.2. TVL Editor 87

(a) Generated version (b) Customized version

Figure 5.3.: TVL editor outline view

available in TVLOutlineTreeProvider class of be.unamur.ui.outline class.
There, four categories of methods exist and are automatically called by the
Xtext framework (using naming conventions):

1. Node creation: all methods named _createNode(IOutlineNode
parentNode, <TVLConstruct> construct) define how a TVL construct
is rendered in the outline tree. Basically, it creates a node. The
parentNode parameter is used to attach the created node to its ancestor.

2. Children creation: navigation in the descendant TVL constructs is han-
dled by methods named _createChildren(IOutlineNode parentNode,
<TVLConstruct> construct). The role of parentNode is the same here.

88 5. language editors

In our case, those methods were used mainly to discard irrelevant nodes
in the hierarchy, so reducing the depth of the outline hierarchy.

3. Label definition: Methods named _text(<TVLConstruct> construct)
are used to set the label of a given TVL construct. They are called directly
from _createNode methods. If such a custom method has not been
defined for the given TVL construct, the label method will be called by
default by the Xtext framework.

4. Leaf definition: The last category is the simplest one, it defines whether
a TVL construct has children to explore. The naming convention is
the following: _isLeaf(<TVLConstruct> construct). Such methods
return a Boolean value and are mainly used to decide whether the de-
scendants of construct have to be explored or not. It thus also has a
role in the shrinking of the outline tree. Similarly to Text methods, isLeaf
ones are called from node creation ones.

Finally, two basic quick fixes were implemented: 1) for feature name
not starting with an upper-case letter and 2) for attributes, constant and
types not beginning with a lower-case letter. Both fixes are defined in the
TVLQuickfixProvider class of the be.unamur.ui.quickfix package. They
all start with the @Fix keyword followed by an error constant defined in
the TVLJavaValidator class introduced earlier. For example, @Fix(TVLJava-
Validator.INVALID_LOWER_CASE) is the header of the fix method for at-
tributes, constant, and types not starting with a lower-case letter. Then comes
the Java code of the fix itself. It includes, among other things, a short descrip-
tion of the proposed solution. The result is visible in Figure 5.4.

Figure 5.4.: Quick fix in the TVL editor

As for language-related custom developments, some editor-related ones
have to be registered. It is the case for syntax highlighting and quick fixes.
They are declared in the TVLUiModule class of the be.unamur.ui package.
The syntax is the same as for language-custom developments and will not be
recalled here.

The editor has been packaged and is available on the following Eclipse
update site: https://staff.info.unamur.be/qbo/Tools/.

https://staff.info.unamur.be/qbo/Tools/

5.3. TVDL Editor 89

5.3 tvdl editor

As for TVL, we first introduce the TVDL grammar before discussing the lan-
guage infrastructure generated by Xtext and the improvements.

5.3.1 Grammar

The TVDL grammar header is similar to the TVL one. Only the name of the lan-
guage has been changed (see Listing 5.11). As views rely on TVL constructs,
the language has to be imported. It is done at line 3 of the code excerpt. The
nsURI http://www.unamur.be/TVL declared for TVL in its own grammar is
used to identify the language. In the TVDL grammar, TVL constructs will be
referred to using the [tvl::TVLConstruct] syntax where TVLConstruct is,
for example, Attribute, Feature_Declaration, etc.

Listing 5.11: Header of the TVDL Xtext grammar
1 grammar be.unamur.TVDL with org.eclipse.xtext.common.Terminals
2

3 import "http://www.unamur.be/TVL" as tvl
4

5 generate tvdl "http://www.unamur.be/TVDL"

Next comes the TVDL grammar itself. Contrarily to TVL, here we show the
full grammar given that it is far less complex.

The first statement of any TVDL model is the import of the corresponding
TVL model (see line 2 of Listing 5.12). This is achieved by declaring the name
of the TVL file (including the .tvl file extension) between double quotes pre-
ceded by the import keyword. Only one import must be defined, as stated at
line 5. Then come the views (line 3). As stated in Section 4.2, they are either
grouping or declaration ones.

Listing 5.12: Starting elements of the TVDL Xtext grammar
1 TVDLModel:
2 tvl=Import
3 views+=View∗;
4

5 Import: ’import’ importURI=STRING;
6

7 View: View_Grouping | View_Declaration;

Listing 5.13 covers the grammar of both view types. They both have a
name which matches the Xtext ID common terminal. The dollar sign is used
to differentiate grouping views. The latter are composed of views declared
between brackets and separated by the “&&” operator (line 1). As for TVL,
[View] is a reference to an existing view. It can either be a view declaration

90 5. language editors

or a grouping one. View declarations, on their side, are composed of an
&&-separated list of ViewExpressions also delimited by curly braces (line 3).

Listing 5.13: View definition excerpt of the TVDL Xtext grammar
1 View_Grouping: ’$’ name=ID ’{’subViews+=[View] (’&&’ subViews+=[View])∗’}’;
2

3 View_Declaration: name=ID ’{’ expressions+=ViewExpression (’&&’ expressions+=
ViewExpression)∗ ’}’;

Central to the TVDL grammar is the ViewExpression defined in Listing 5.14.
A ViewExpression refers to a TVL feature or attribute using its qualified name,
represented by the TVL_ID grammar rule (see line 26 through line 30). We had
to redefine the TVL Long_ID construct as it covers more elements (e.g., types,
constants, etc.) and keywords (this, root, and parent) make no sense for views.
An optional refinement can be defined (ViewExpressionRefinement) on the
referenced TVL construct.

Listing 5.14: View expressions excerpt of the TVDL Xtext grammar
1 ViewExpression: id=TVL_ID (refinement=ViewExpressionRefinement)?;
2

3 ViewExpressionRefinement:
4 " : " (subtree=SubtreeExpression| attributes=AttributeExpression | group=GROUP | list=

Common_List);
5

6 SubtreeExpression: keyword=SUBTREE (stopList=Stop_List)? (refinement=
SubtreeExpressionRefinement)?;

7

8 SubtreeExpressionRefinement: "|" (attributes=AttributeExpression | groups=GroupExpression
| list=Common_List);

9

10 AttributeExpression: keyword=ATTRIBUTES ("|" list=Common_List)?;
11

12 GroupExpression: keyword=GROUPS ("|" list=Common_List)?;
13

14 Stop_List: ("/" stopElements+=List_Element)+;
15

16 Common_List: Exclusion_List | Inclusion_List;
17

18 Exclusion_List: " ! " "[" elements+=List_Element (’,’ (elements+=List_Element))∗ "]";
19

20 Inclusion_List : "[" elements+=List_Element (’,’ (elements+=List_Element))∗ "]";
21

22 List_Element:
23 id=TVL_ID
24 | keyword=(ATTRIBUTES|GROUP|GROUPS);
25

26 TVL_ID:
27 head=[tvl::Feature_Declaration] tail =TVL_IDTail
28 | head=[tvl::Attribute];
29

5.3. TVDL Editor 91

30 TVL_IDTail: ’.’ head=[tvl::FQN] (tail=TVL_IDTail)?;
31

32 terminal GROUP: "group";
33 terminal GROUPS: "groups";
34 terminal SUBTREE: "∗";
35 terminal ATTRIBUTES: "attributes";

As mentioned at lines 3-4 of Listing 5.13, a ViewExpressionRefinement is
either a SubtreeExpression, an AttributeExpression, the group keyword,
or a Common_List.

A SubtreeExpression starts with the asterisk character option-
ally followed by a Stop_List. It can be further refined by
a SubtreeExpressionRefinement, that is an AttributeExpression, a
GroupExpression, or a Common_List (line 8).
AttributeExpression (line 10) and GroupExpression (line 12) are similar.

The first one starts with the attributes keyword, while the second begins with
the groups one. They can then both be refined by a Common_List.

A Common_List is either an Exclusion_List or an Inclusion_List (see
line 16). The only difference is that the exclusion list starts with an exclama-
tion mark. They are both comma-separated lists of (previously introduced)
List_Elements delimited by square brackets.

The full TVDL grammar is available in Appendix A.2.

5.3.2 Default Infrastructure

As for TVL, we first describe the infrastructure generated by Xtext and, in the
next section, we explain how it was customized for our specific needs.

The MWE2 file is quite similar to TVL. Here, we discuss major changes
only. In other words, we do not discuss the values of grammarURI and
file.extensions variables, for example, which have been changed to match
the TVDL language.

The two major changes relate the registration of the TVL language and the
handling of import statements.

In the TVDL grammar, we imported the TVL language via its nsURI. How-
ever, those languages might not be registered in the current context, i.e.,
the nsURI might not be visible. To avoid such problems, the TVL language
has to be registered in the MWE2 file of TVDL, more specifically inside the
StandaloneSetup bean:

1 bean = StandaloneSetup {
2 ...
3 registerGeneratedEPackage = "be.unamur.tvl.TvlPackage"
4 registerGenModelFile = "platform:/resource/be.unamur.tvl/src−gen/be/unamur/TVL.

genmodel"
5 }

92 5. language editors

There, the TVL EPackage generated by Xtext is registered via its classpath.
The Genmodel is also registered. In this case, its platform-relative file path
is required. The Genmodel is an Ecore meta-model that contains additional
information for code generation.

By importing a TVL file at the beginning of a TVDL model, one expects to
get access to its constructs only, not those from other variability models even
if they are located in the same folder. Fortunately, this aspect is handled by
Xtext. We just had to set the following line inside the language part of the
Generator component:

1 fragment = scoping.ImportURIScopingFragment {}

Basically, it states that global scopes will be based on import URIs. It
will bind an ImportUriGlobalScopeProvider class that handles the construct
named importURI in the Import rule of the TVDL grammar. In our case, the
whole import infrastructure generated by Xtext was sufficient but it can be
customized for more complex situations.

As for TVL, the most visible result, namely the editor, is depicted in Fig-
ure 5.5. It contains the TVDL model of our printer software example intro-
duced in Section 4.2. Given that no error is displayed, we can assume that
the model is syntactically correct. Contrarily to the TVL editor, the TVDL one
does not support code folding (as it makes no sense in TVDL) and syntax
highlighting is limited to comments, the import keyword, and the name of
the imported TVL model. Here too, custom developments were required.

Figure 5.5.: TVDL editor generated by Xtext

5.3. TVDL Editor 93

5.3.3 Custom Developments

Developments were made at two different levels, TVDL model validation and
TVDL editor.

Model Validation

For TVDL, we rely on Xtext for syntactical checks. However, we still had to
define semantic ones. They are all located inside the TVDLJavaValidator
class of the be.unamur.validation package.

For the sake of readability, we present the validation developments in a
descending order, from views down to list elements. The first obvious check
is the uniqueness of view IDs. It is simply done by comparing a given ID
with all other ones in check_Unique_View_Name(View view).

In grouping views, cycles might be defined by the user. The illustrative
TVDL model of Listing 5.15 contains an example of such a problem.

Listing 5.15: Illustrative cycle example in a TVDL model
1 $GroupA { GroupB }
2

3 $GroupB { GroupC }
4

5 $GroupC {GroupA}

To discover them, we explore the descendant views in a recursive way
as described the pseudo-code algorithm of Listing 5.16 implemented by the
check_Cyclic_View_Grouping(View_Grouping view) method.

Listing 5.16: Cycle verification algorithm of the TVDL editor

1 CheckCycle(view)
2 for each sub−view of view
3 if the sub−view==view
4 A cycle exists
5 else
6 if the sub−view is a declaration one,
7 No cycle can exist
8 else the sub−view is a grouping one
9 Explore the sub−views of the sub−view itself and compare them to

view

Next comes the verification of TVL constructs referenced in views by their
qualified name. The syntax of TVL_IDs ensures that they actually refer to
a feature or an attribute. However, it does not guarantee that the qual-
ified name refers to a single feature/attribute. This task is done by the
check_Unique_ViewExpression_ID(ViewExpression expression) method.

94 5. language editors

It is sufficient to check that the first component of the qualified name is
unique in the TVL model. Indeed, if it is unique, all following elements will
be as well given that sibling TVL constructs cannot have the same name.

A view can be refined, unless it refers to an attribute. The check_No-
Refinement_Attributes(ViewExpression expression) checks that such
views do not have a ViewExpressionRefinement. For views referenc-
ing features and refined by the group keyword, a warning is shown to
the user if the feature does not contain a group (check_hasGroup_View-
ExpressionRefinement(ViewExpressionRefinement refinement)).

All other validation methods refer to TVDL List_Elements, i.e., elements
included either in a list (inclusion or exclusion) or the stop list of a sub-
tree refinement. First, we check that the TVL construct referenced by the
element is not ambiguous. This task has to be performed only if the el-
ement is not contained into the refinement list of a feature. In the latter
case, list elements are feature attributes only. They cannot be ambiguous
given that sibling attributes cannot have the same name in TVL. For other
cases, the check_Unique_List_Element_ID(List_Element element) counts
the TVL constructs referenced by the element. It must be equal to one. All
other checks are trivial and can be summarised as follows:

1. check_Type_Attribute_List(List_Element element): Raises an error
if an element contained in a list refining an AttributeRefinement-
Expression is not an attribute.

2. check_Context_List_Element_Keyword(List_Element element): A list
element can also be a keyword. This method checks that 1) such a
keyword is not in a sub-tree expression stop list, or 2) is not in an
attribute or group expression, 3) the group keyword is not used in sub-
tree refinements (groups keyword should be used instead), and similarly,
4) the groups keyword is not used in a view refinement expression.

3. check_RootFeature_Not_Covered_Exclusion_List(List_Element ele-
ment): Checks that a sub-tree exclusion list does not cover the root
feature.

4. check_Unique_Common_List_Element(List_Element element):
Shows a warning if a list contains a duplicated element.

5. check_Unique_Stop_List_Element(List_Element element): Plays the
same role as the previous one for stop lists of sub-tree expressions.

6. checkTVDLCoverage_stopList(List_Element element): Shows a warn-
ing if an element in a sub-tree stop list is not in the scope of the sub-tree
(e.g., already excluded by other elements) or an error if it is the root of
the sub-tree.

5.3. TVDL Editor 95

7. check_Covered_Subtree_Exclusion_List(List_Element element):
Warns the user if an element contained in a sub-tree exclusion list is
not in the scope of the sub-tree.

8. check_Conflicts_Exclusion_List(List_Element element): Displays a
warning if an element in an exclusion list is already covered by another
element in that list.

9. check_hasGroup_GroupExpression_Exclusion_List(List_Element ele-
ment): Warns the user if a feature contained into an exclusion list does
not contain any group.

10. check_Keyword_ViewExpressionRefinement_List(List_Element ele-
ment): Plays the same role as the two previous methods for keywords,
i.e., warns the user if the attributes keyword is contained in a refinement
list of a view expression which does not contain any attribute.

Finally, a coverage analysis algorithm has also been made available. In
his thesis, Hubaux provided sufficient and necessary coverage conditions for
views on FMs [Hubaux, 2012]. For TVDL, we implemented the necessary one
which states that all the features appear in at least one view. Given that TVL
also supports attributes, we had to extend the definition by stating that all
attributes should also be covered by at least one view. Furthermore, we also
made one implementation choice related to our GUI generation approach. In
the TVDL editor, a feature is considered covered if all its contents (attributes
and group) and its parent group are covered. For the root feature it is suffi-
cient to check that its contents are covered given that it has no parent group.
Our coverage can thus be considered as an intermediary between Hubaux’s
sufficient and necessary conditions. The latter states that “the value of features
that do not appear in any view can be inferred from the values on the features that
are part of views”. This implementation is GUI generation-specific and can eas-
ily be adapted in the checkTVDLCoverage(TVDLModel model) method. It re-
lies on the coverage methods defined in the be.unamur.utils.TVDLCoverage
package.

Apart from the validation itself, we defined TVDL scoping. As a re-
minder, it defines which values are available depending on the con-
text. We will not go into details here, the principle is the same
as in TVL. We developed four scoping methods. They are all lo-
cated in the be.unamur.scoping.TVDLScopeProvider class. The first one,
scope_TVL_IDTail_head(TVL_IDTail id, EReference ref) is similar to
the method which defines the scope of TVL qualified names. As a re-
minder, we had to redefine them as some elements (e.g., keywords) made no
sense in views. In scope_View_Grouping_subViews(View_Grouping view,
EReference ref), we define the scope for a grouping view’s sub-views as

96 5. language editors

Figure 5.6.: TVDL syntax colouring preferences

the set of all views available in the TVDL model. For the elements of a stop
list in a sub-tree expression, only sub-features of the tree should be made
available. However, it was not possible to define such a set. The scope
returned by scope_TVL_ID_head(Stop_List list, EReference ref) is the
set of all feature declarations from the TVL model. The parentage is ensured
by the validation methods previously introduced. Finally, the scoping of
TVL IDs contained in a list is relatively similar to the one for TVL IDs in
views presented at the beginning of this paragraph. For the sake of con-
ciseness, it will not be discussed here. Interested readers may refer to the
scope_TVL_ID_head(Common_List list, EReference ref) method.

As for TVL, the TVDLScopeProvider has to be registered into the
be.unamur.TVDLRuntimeModule class.

Editor

Two custom developments were made for the TVDL editor: improvement of
the syntax highlighting and modification of the outline tree. No quick fix is
provided for our view language editor.

5.3. TVDL Editor 97

With regard to highlighting configuration, we defined six configura-
tions: one for tokens, one for keywords (group, groups and attributes),
one for TVL_IDs referencing TVL features, one for the same constructs
referencing attributes, and two different ones for grouping and decla-
ration views. The styles defined in the be.unamur.ui.highlighting.-
TVDLHighlightingConfiguration class are default ones and can be modified
by the user in Eclipse preferences as depicted in Figure 5.6.

For TVDL, we defined a token highlighting, as opposed to TVL. The
principle is the same as for semantic highlighting: if a given element is
found (a keyword in our case), an highlighting configuration is attached
to it (the keyword one). It is implemented in the TVDLTokenHighlighting-
Configuration class and allows to differentiate the three keywords from
language tokens. Regarding semantic highlighting, we identified four dif-
ferent elements, the ID of views (declaration and grouping), TVL quali-
fied names for features and for attributes. They are implemented in the
TVDLSemanticHighlightingCalculator class. The sixth configuration ap-
plies to TVDL comments and is handled by default by Xtext, as depicted in
Figure 5.5.

All syntax highlighting parts are registered inside the TVDLUiModule. The
result is visible in Figure 5.7. One can, contrarily to Figure 5.5, clearly differ-
entiate grouping from declaration views, keywords, and TVL qualified names
referencing features from ones pointing to attributes.

Figure 5.7.: TVDL editor with custom highlighting

The TVDL editor outline tree was also customized. The motivation behind
this is the same as for TVL, improve the readability and the navigability of the

98 5. language editors

model. Original and customized outline trees can be compared in Figure 5.8.
Source code is available in the TVDLOutlineTreeProvider class.

(a) Generated version (b) Customized version

Figure 5.8.: TVDL editor outline view

The editor has been packaged and is available as an Eclipse plug-in at the
following URL: https://staff.info.unamur.be/qbo/Tools/.

5.4 fcss editor

Finally, the FCSS editor is the simplest one. The main reason is that a beautifi-
cation model is essentially a collection of key/value pairs. As a consequence
its grammar is not complex (see first sub-section). The advantage of a sim-
ple grammar is that Xtext handles a large part of the language infrastructure.
The number custom developments is thus rather small.

5.4.1 Grammar

Here we show excerpts of the grammar. The complete version is available in
Appendix A.3.

The FCSS grammar header is similar to the two other languages except that
it imports them both (see Listing 5.17).

https://staff.info.unamur.be/qbo/Tools/

5.4. FCSS Editor 99

Listing 5.17: Header of the FCSS Xtext grammar
1 grammar be.unamur.FCSS with org.eclipse.xtext.common.Terminals
2

3 import "http://www.unamur.be/TVL" as tvl
4 import "http://www.unamur.be/TVDL" as tvdl
5

6 generate fcss "http://www.unamur.be/FCSS"

The key/value pairs of the grammar are not complex and will not be pre-
sented. In Listing 5.18, we focus on higher-level grammar rules which are
ancestors of those pairs.

Listing 5.18: High level rules of the FCSS Xtext grammar
1 FCSSModel: tvlImp=Import (tvdlImp=Import)? parts+=Part+;
2

3 Import: ’import’ importURI=STRING;
4

5 Part:
6 FCSS_Feature
7 | FCSS_Attribute
8 | FCSS_Global
9 | FCSS_View;

10

11 FCSS_Feature: feature=Feature_ID ’{’ attributes+=FeatureAttribute+ ’}’;
12

13 FCSS_Attribute: ’#’ attribute =Attribute_ID ’{’ attributes +=AttributeAttribute+ ’}’;
14

15 FCSS_View: ’$’ view=[tvdl::View] ’{’ attributes +=ViewAttribute+’}’;
16

17 FCSS_Global: ’.’ ’{’ attributes +=GlobalAttribute+ ’}’;
18

19 Feature_ID: head=[tvl::Feature_Declaration] (tail =Feature_IDTail)?;
20

21 Feature_IDTail: ’.’ head=[tvl::Hierarchical_Feature] (tail =Feature_IDTail)?;
22

23 Attribute_ID: head=[tvl::Feature_Declaration] tail =Attribute_IDTail
24 | head=[tvl::Attribute];
25 Attribute_IDTail: ’.’ head=[tvl::Feature_Scope] (tail=Attribute_IDTail)?;

An FCSS model is composed of an import statement for the TVL model, an
optional import of a TVDL model corresponding to the TVL one, and at least
one part (line 1). The TVDL import is not mandatory given that views are not
always defined on the variability model. Please notice that, similarly to im-
ports in the TVDL grammar, the name (STRING value) of the files is associated
to the importURI parameter at line 3. In this way, scoping in the imported
files is automatically handled by Xtext.

The parts of the FCSS model correspond to the different constructs which
can be referenced in the TVL and TVDL models, namely features, attributes and
views plus the global ones (see line 5 through line 9). They all have a similar

100 5. language editors

syntax: a starting symbol (except for features) followed by the construct they
refer to, i.e., the qualified name of a TVL construct or the ID of a view. A
global part does not have such a reference as it applies to several constructs.
The key/value pairs are then declared between curly braces.

5.4.2 Default Infrastructure

The FCSS MWE2 file is really similar to the TVDL one. As a reminder, the
importURIScopingFragment has to be set in order to get the default file scop-
ing provided by Xtext. The single difference is that, for FCSS, the TVL and
TVDL languages have to be declared into the MWE2 file:

1 bean = StandaloneSetup {
2 ...
3 registerGeneratedEPackage = "be.unamur.tvl.TvlPackage"
4 registerGenModelFile = "platform:/resource/be.unamur.tvl/src−gen/be/unamur/TVL.

genmodel"
5 registerGeneratedEPackage = "be.unamur.tvdl.TvdlPackage"
6 registerGenModelFile = "platform:/resource/be.unamur.tvdl/src−gen/be/unamur/TVDL.

genmodel"
7 }

The FCSS editor visible in Figure 5.9 is one of the (visible) results of running
the MWE2 workflow.

5.4.3 Custom Developments

As for the TVDL grammar, FCSS custom developments were less complex than
for TVL.

Model Validation

Some validation methods were implemented in the FCSSJavaValidator class
in order to ensure the correctness of the FCSS model. As for TVDL, we will
explain them in a descending order, going from higher to lower level rules.

The first thing checked by the checkImports(Import imp) method is that:
1) the first imported file is a TVL model, and 2) the second one (if any) is a
TVDL file.

Then come the checks related to the different part types of an FCSS
model. For each FCSS model part, we check that it is unique, i.e.,
no two parts refer to the same TVL or TVDL construct. For features,
this task is handled by the checkUniqueFeature(FCSS_Feature feature)
method, checkUniqueAttribute(FCSS_Attribute att) for attributes, and
checkUniqueView(FCSS_View view) for views. The implementation of the
different methods is similar: for a given construct A, get all FCSS parts ref-

5.4. FCSS Editor 101

Figure 5.9.: FCSS editor generated by Xtext

102 5. language editors

erencing that type of construct (feature, attribute, or view) and check that it
does not refer to A.

As for TVDL, we make sure that the TVL construct referenced by a qualified
name is unique. The checkUniqueFeatureID(FCSS_Feature feature) and
checkUniqueAttributeID(FCSS_Attribute att) methods are thus quite
similar to those defined for view validation.

A similar check is also available for key/value pairs: we ensure that the
same key is not set twice for the same TVL or TVDL construct.

Finally, two very specific validations have been implemented. The first
one is related to the select property. As a reminder, it will be used to de-
termine the selection widget of a feature in the GUI if the feature’s parent
group is not rendered. The checkSelectFeatureRoot(FeatureAttribute
attribute) method warns the user if this property has been set for the
root feature. Indeed, it does not make sense to use the select property as
root features do not have a parent group. The second one refers to the
view property which determines how views will be rendered (tab or win-
dow) into the GUI. Setting this property in a grouping view will guide the
generation of widgets for its sub-views but for view declarations, this prop-
erty is useless. The checkViewWidgetInView(GlobalAttribute attribute)
method thus checks that the view property has not been set for a view decla-
ration.

Next comes the scoping. As for TVDL, we implemented TVL quali-
fied names scoping in scope_Feature_IDTail_head(Feature_IDTail id,
EReference ref) and scope_Attribute_IDTail_head(Attribute_IDTail
id, EReference ref) methods of the FCSSScopeProvider class. For the de-
fault property of TVL groups we defined the scope as the set of group’s sub-
features (see scope_GroupAttribute_defaultSubFeature(GroupAttribute
att, EReference ref)). As a reminder, this property determines which sub-
features will be selected by default in the GUI. This is a temporary solution
until a configuration-specific language is designed.

Editor

Contrarily to the two other editors, for FCSS we had to remove some default
syntax highlighting rules. As depicted in Figure 5.9, most values of key/-
value pairs are visually similar to keys. For example, the optFeature global
property and its value, checkbox, have the same font. This hinders model
understanding. In the FCSSTokenHighlightingConfiguration class, we fil-
tered out the values and associated them to a distinct category which can be
configured independently as depicted in Figure 5.10 (Property value token).

Besides token highlighting, we defined semantic ones for views, features
and attributes in the FCSSSemanticHighlightingCalculator class. The
views category is split into two: grouping and declaration ones. In order

5.4. FCSS Editor 103

Figure 5.10.: FCSS syntax colouring preferences

to preserve visual coherence with the two other editors, default highlight-
ing configurations have the same values (font weight, color, etc.). Users may
change those values according to their preferences in the highlighting config-
uration window (see Figure 5.10). The result of our customizations is visible
in Figure 5.11.

For the outline view, we applied the same principles as for TVL and TVDL
in the FCSSOutlineTreeProvider class. The original and modified versions
are visible in Figure 5.12. There, it can be seen that the default version misses
a lot of elements. In FCSS, the hierarchy is not deep, contrarily to TVL. The
main reason is that, according to the FCSS grammar, a beautification model
is relatively flat.

The editor has been packaged and is available as an Eclipse plug-in at the
following URL: https://staff.info.unamur.be/qbo/Tools/.

https://staff.info.unamur.be/qbo/Tools/

104 5. language editors

Figure 5.11.: FCSS editor with custom highlighting

5.4. FCSS Editor 105

(a) Generated version (b) Customized version

Figure 5.12.: FCSS editor outline view

6
A U T O M AT I O N

Our original intent was to generate configuration GUIs encoded in a given
UIDL. They could then be transformed into multiple target implementations
(e.g., HTML, GWT, etc.). As mentioned in Chapter 2, UIDL support is still
immature or proprietary. As a reminder, we can mention that existing UIDLs
either do not fit our requirements or tool support for transforming models
into final GUIs are not available to us. This last point is really important to
evaluate the quality of the generated configurators. Indeed, it is easier to
show a final GUI than a model describing it to an end-user.

We thus had to skip the UIDL model in our MDE transformation chain to
prefer a direct generation approach. For this proof of concept, we chose
the HTML5 language [W3C, 2014a], the latest version of the HTML stan-
dard. This version of the HTML language is completely defined since
December 17, 2012 but has not yet been standardized by the W3C. This
should be done in the last quarter of 2014. As previously mentioned, a lot
of configuration interfaces are Web-based, as illustrated by Cyledge’s con-
figurators database [Cyledge, 2013]. By choosing HTML, we thus cover a
lot of configurators. For other target languages, we depend on the avail-
ability of UIDLs, especially UsiXML which is in the standardization pro-
cess [UsiXML Consortium, 2012]. In addition to the HTML target language
for the static part of configuration GUIs, the presenter (see Chapter 3) is de-
veloped in JavaScript, its natural complement. In the following, we detail
the HTML generator as well as how we implemented a generic JavaScript
presenter relating the GUI with the reasoning components.

6.1 html interface generation

As mentioned in Chapter 5, the various language editors developed in Xtext
come with an EMF meta-model. Provided we have an EMF model as input
and text (HTML code) as output, an M2T approach was a natural solution
(see Chapter 2). More specifically, we used Acceleo, an implementation of
the MOFM2T standard [Obeo, 2014]. Hereafter, we give an overview of the

108 6. automation

Acceleo generator architecture. It can be decomposed into two distinct parts,
queries and templates, which will be discussed in separate sections. Finally,
the handling of feature instances by the GUI generator will be introduced in
the last section.

6.1.1 Architectural Overview

As depicted in Figure 6.1, our implementation of model transformations takes
the three models (TVL, TVDL, and FCSS) as input. Actually, Acceleo requires
EMF model instances as input given that it supports model-to-text transfor-
mations. Fortunately, Xtext, which uses that kind of model to represent the
AST, comes with some facilities to retrieve it based on file paths. The trans-
formations are performed using Acceleo queries and templates whose archi-
tecture is depicted in Figure 6.2.

Configuration
GUI

TVL Model

FCSS Model

TVDL Model

Figure 6.1.: Generation process with Acceleo

Two component types can be distinguished, namely queries and templates.
Queries are depicted with dotted lines while templates are represented with
plain ones. The different queries and templates will be discussed in the fol-
lowing sections.

As their name implies, queries are called by the templates to query the
different models, i.e., TVL, TVDL and FCSS. For this reason, most of them are
located in the utils package (bottom of Figure 6.2). Models Importer (top
of Figure 6.2) is the exception as it is located in the main package. By default,
Acceleo can import a single model. The Models Importer query provides
a workaround to this limitation whose implementation will be detailed in
the following section. In the utils package, queries are defined for each of
the three different models, FCSS queries for the beautification model, TVDL
queries for views, and TVL feature queries and TVL attribute queries
for TVL. We chose to split TVL queries into two files in order to separate

6.1. HTML Interface Generation 109

viewmain

GUI Generator

Models Importer

uses

utils

FCSS Queries

TVDL Queries

Common
Queries

TVL Feature
Queries

TVL Attribute
Queries

Views
Generator

delegates

uses uses

feature

Features
Generator

Widgets builder

delegates

uses

attribute

Attributes
Generator

Widgets builder

delegates

delegates delegates

delegates

uses

Figure 6.2.: Abstract architecture of our Acceleo solution

110 6. automation

these two distinct concerns. Finally, the Common queries provide information
which depends on several models (two or three of them). The other queries
will be discussed in the following section.

On the other hand, templates are used to navigate through the TVL model
and generate the target code, HTML5 in our case. The main package is the
entry point of our Acceleo generator. There, the Generate Configurator file dele-
gates the code generation to the view package. The latter will in turn, depend-
ing on the view type (see Chapter 4), delegate the generation of the different
TVL components covered by the view (i.e., feature or attribute) to the ap-
propriate packages. In feature and attribute packages, the Features/Attributes
Generator files retrieve the information about the construct to generate into
the different models before delegating the generation of the corresponding
HTML5 code to the Widgets builder files. Widget builders simply create the
widgets and do not require access to utilities given that all the information is
provided by the caller (i.e., Features/Attributes Generator).

While templates are specific to the HTML5 language, queries could be
reused for any target language of model-to-text transformations. They
could even be reused for other kinds of transformations, e.g., model-to-
model ones provided that they use a similar language (i.e., OCL-like lan-
guages [Object Management Group, 2012]). This means that once a UIDL
will have been selected, only templates will have to be rewritten. Further-
more, queries are far more complicated to implement than templates. In tem-
plates, we simply navigate through the TVL model in a depth-first algorithm
and write HTML5 code while in queries we have to search for information at
several places. Rewriting templates for another target language is easy since
it is sufficient to replace HTML5 code excerpts.

In the following, we discuss the different components of this architecture.
We start with queries, continue with templates and finish with the handling
of feature instances.

6.1.2 Queries

In the main package, we have a single query file, javaServices.mtl, contain-
ing two queries. As discussed earlier, Acceleo can, by default, import a single
model. However, in our generative approach, we have three input models,
namely TVL, TVDL and FCSS. The queries thus provide a two-step workaround
to get access to all models.

Given the model imported by Acceleo (preferably the TVL one but our ap-
proach works with all of them), the first query retrieves its fully qualified file
path. In the second query, all models are retrieved based on that file path. We
assume that the TVDL and FCSS files are located at the same place and have
the same name (except for the file extension) as the file given as parameter.

6.1. HTML Interface Generation 111

This constraint might seem strong but our (prototype) solution can be easily
adapted. Furthermore, we noticed that this naming convention is a consistent
pattern in our industrial case studies. Listing 6.1 contains the second query.

Listing 6.1: Query retrieving the three models
[query public getAllModels(genericFilePath:String): OrderedSet(EObject) = invoke(’

TVLtoHTML5.main.ModelsGetter’, ’getAllModels(java.lang.String)’, Sequence{
genericFilePath})

/]

In Acceleo, queries as well as templates are enclosed between square brack-
ets ([/]). Queries start with the query keyword and have a visibility (private,
protected or public). They also have a name (getAllModels in our exam-
ple), parameters between parentheses (genericFilePath:String) and a re-
turn type preceded by a colon (OrderedSet(EObject)). Based on a file path
(genericFilePath), our getAllModels query thus returns a list (OrderedSet)
of EObjects. This list contains 3 elements, a Model (for TVL), a TVDLModel, and
an FCSSModel. They are always returned in that order and all have EObject
as super type. Then comes the implementation of the query itself, starting
with the equals symbol. Two variants exist. A query can either call a Java
method or be implemented in an OCL-like language. Here, the getAllModels
query invokes (invoke keyword) a Java service. The other category will be
introduced later in this section. An invoke query takes three parameters, the
first two being strings. The first one is the fully qualified name of the class
(TVLtoHTML5.main.ModelsGetter) containing the method to call. The latter is
the second parameter (getAllModels(java.lang.String)). Notice that the
fully qualified name of parameters types have to be provided. Finally, the pa-
rameters of the Java method are provided in the third parameter of the invoke
construct. They are contained in a list, and must respect the order of the pa-
rameters of the Java method. In our example, the sequence contains a single
element, namely genericFilePath, given that the getAllModels method of
the TVLtoHTML5.main.ModelsGetter class requires a single parameter. The
return type of the Java method has to be the same (or at least compatible) as
the one of the query. Our Java method returns a LinkedHashSet of EObjects
which is compatible with the OrderedSet of the query. They are then used
by the templates to generate the HTML code, as discussed in the following
section.

All other queries are located in the utils package, and split into five different
.mtl files corresponding to the categories introduced in Figure 6.2. Each of
those files is an Acceleo module.
TVL being the cornerstone of our approach, we start with queries related

to that language. They are located in two different files, namely tvlFeature-
Queries.mtl and tvlAttributeQueries.mtl.

112 6. automation

Twenty-five feature-related queries exist but we will not go into implemen-
tation detail. Here, we just explain the role of the different queries and give
an intuition of their implementation, if required.

• getBodyItems This query returns the list of feature body items rele-
vant for GUI generation, i.e., attributes and groups. It invokes the
getFeatureBodyItems Java method of the editor described in Chap-
ter 5.2. The result is filtered to reject TVL data and constraints which
are not relevant in the static part of the GUI.

• getContainingFeature Two versions of this query exist, with different
parameters. The first one takes a hierarchical feature as parameter while
the second one requires a group. They both invoke Java methods (i.e.,
getContainingFeature) of the TVL editor and return the feature con-
taining the parameter feature/group. The result cannot be null as hier-
archical features and groups are always declared inside another feature.
Only the root feature has no parent feature but is not a valid parameter
for this method.

• getContainingGroup Given a feature declaration, this method returns
the group where it is declared or null if it is the root. As for previous
queries, this one invokes a Java method, namely getContainingGroup.

• getGroup This query returns the group declared inside the feature dec-
laration given as parameter. If it contains no group, null is returned.
This query relies on the getBodyItems one.

• getOptFeature The query returns an optional feature of the group given
as parameter. If the group contains several optional features, one of
them is chosen randomly. Conversely, if no such feature exists, null is
returned. It is implemented in Listing 6.2.

Listing 6.2: Query retrieving an opt feature from a group
[query public getOptFeature(group:tvl::Feature_Group): Sub_Feature=

if (group.sub_features−>exists(sub:Sub_Feature | sub.resolve().isOpt()))
then group.sub_features−>any(sub:Sub_Feature | sub.resolve().isOpt())

else null
endif

/]

The declaration is the same as for invoke queries, only the implemen-
tation varies. Here, in the if condition, we check that, in the set of
group’s sub-features, at least one is optional. If it is the case, one of
them is returned using the any query. Otherwise, null is returned.

6.1. HTML Interface Generation 113

• isOpt This query checks whether a feature declaration is optional or not.
It returns false for the root feature. For hierarchical features, it returns
true if and only if it is declared optional or has a [0..1] cardinality.

• isClonable Checks if several instances of a feature can exist. The result
is false for the root feature as it is not clonable. For other features, we
check the maximum number of instances. If it is greater than one, true
is returned.

• isEmpty Checks if a feature declaration contains a group and/or at-
tributes. Its implementation is based on the getBodyItems query.

• isJustGroup This query returns true if a feature declaration contains a
single element which is a group. It is also based on the getBodyItems
query. We check that the latter contains a single element of type group.

• getFeatureCardinality Returns the minimum and maximum number of
instances for the hierarchical feature given as parameter. If no cardinal-
ity is defined in the TVL model, minimum and maximum values both
equal to one.

• getBasicCardinalityBounds Transforms a given cardinality into a se-
quence of two integers, the first element being the minimum.

• resolve Sub-features of a group can either be hierarchical or shared ones.
For the latter, this query returns the hierarchical feature they refer to. If
the sub-feature is a hierarchical one, it is directly returned by the query.

• getBounds Returns a sequence of two integer values corresponding to
the cardinality of a group. Syntactical sugars (i.e., allOf, someOf, oneOf)
are also transformed into integer values.

• getType Retrieves the type of a feature group as a string value. Avail-
able values are and, or, xor, and card. Its implementation is based on
the previous query and checks the minimum and maximum values to
determine the type of the group given as parameter.

• getLongID Builds the dot-separated fully qualified name of a feature
declaration. It is built recursively by appending the parameter feature
name to the one computed for its parent.

• getShortID Returns the name of the feature declaration given as param-
eter.

• isChild Checks if a feature declaration is declared inside a group, both
given as parameters. For this purpose, we check that the set of group’s
sub-features contains the feature.

114 6. automation

• isDescendant This query plays a similar role to the previous one but it
explores all group’s sub-features recursively. Consequently, it returns
true if and only if the parameter group is an ancestor of the parameter
feature declaration.

• containsGroup This query takes two parameters, a feature declaration
and a list of groups. It returns true if at least one of the groups con-
tained in the list is declared by the feature declaration or one of its
descendants. If the feature declaration has no group, false is returned
and no descendant has to be explored.

• containsFeature Returns true if a feature declaration (second parameter)
is a direct or indirect child of another one given as first parameter.

• isInTheList Two variants of this query exist, both with two parameters,
the second one being a list of EObjects (i.e., TVL constructs). The first
version searches for a feature declaration in that list while the second
looks for a group. The feature declaration/group is the first parameter
of the query. It returns a Boolean value.

• getRootFeature Returns the root feature of the TVL model given a fea-
ture declaration.

• getAllSubFeatures Returns a sequence (list) of hierarchical features, the
sub-features of the feature declaration given as parameter. If the latter
has no group, the empty list is returned.

Queries have also been defined for TVL attributes. They are located in the
tvlAttributeQueries.mtl file. Their role is to provide accessors and navigators
for attribute-related information in the TVL model. The twenty queries are
mentioned hereunder.

• getBaseAttributeType Returns the type of the TVL attribute given as
parameter. As a reminder, attributes can have a predefined (int, real,
etc.) or user-defined type. If the type is a predefined one, it is returned.
If it is a user-defined one, the query retrieves its definition and resolves
its type. The type is returned as a string value

• getRecordFieldType Plays the same role as the previous query for at-
tributes of type record. The returned value is also a string.

• getAttributeCardinality Returns the number of instances of an at-
tribute as a sequence of two integers corresponding to minimum and
maximum bounds, respectively, the empty sequence if the attribute can-
not be instantiated.

6.1. HTML Interface Generation 115

• isOpt Checks if an attribute is optional, i.e., has a [0..1] cardinality. The
returned value is a Boolean.

• getBaseAttributeDefaultValue Returns a string containing the default
value of an attribute if it is defined, the empty string otherwise. A
default value is defined for an attribute if an is expression exists for
that attribute.

• getRecordFieldDefaultValue The role and behaviour of this query is
the same as for the previous one except that it applies to record fields.

• getBaseAttributeDomain Retrieves the domain of the integer, real or
Boolean attribute given as parameter. This domain is generally defined
with an in expression. The result is a sequence containing the domain
values if they are defined, null otherwise.

• getEnumAttributeDomain Plays the same role as the previous query
for enumerated attributes.

• getRecordFieldDomain Similar to getBaseAttributeDomain for inte-
ger, real, or Boolean record fields.

• getEnumRecordFieldDomain Plays the same role as getEnum-
AttributeDomain for enumerated record fields.

• getAttributeLongID Returns a string containing the dot-separated fully
qualified name of the attribute given as parameter. As for feature long
IDs, it is built recursively.

• getRecordFieldLongID Requires two parameters, a record field and its
containing structure attribute to generate the fully qualified name of
the first one. Indeed, in TVL, structure attributes must refer to user-
defined types which contain record fields. As a consequence, if sev-
eral attributes refer to the user-defined type, the query has to know
to which structure attribute it is attached. The result of this query is
a string containing the fully qualified name of the field including its
parent structure attribute’s name.

• getAttributeShortID Returns a string containing the name of the at-
tribute given as parameter.

• getRecordFieldShortID Returns a string containing the name of a
record field. It is composed of two parts separated by a dot. The
first one is the name of the structure attribute (second parameter of
the query) containing the record field (first parameter) whose name is
located in the second part.

116 6. automation

• isChildAttribute Returns a Boolean value indicating whether an at-
tribute is declared inside a feature, both given as parameters. The
getBodyItems feature query is used to retrieve all feature’s body items
and check if it contains the attribute.

• isDescendant Plays the same role as the previous query except that
it explores the feature’s descendants. While isChildAttribute checks
the direct children, this one explores all descendants and stops as soon
as the attribute has been found.

• getContainingFeature Searches for the feature declaration where the
attribute given as parameter is declared. For this purpose, the query
uses the getContainingFeature Java method of the TVL editor.

• isClonable Returns a Boolean value indicating whether or not an at-
tribute can be instantiated several times. For this purpose, it uses the
getAttributeCardinality query defined earlier.

Next come queries related to the TVDL model. The idea is the same, facil-
itate the access to the information contained in the view model. However,
they will be presented in a different manner given that they can be grouped
into categories of similar queries.

1. Coverage queries. Three different queries returning coverage have
been defined. getModelCoverage returns the coverage of the whole
model given as parameter. The next one, getViewCoverage, requires
a view as parameter and returns its coverage. Finally, getView-
ExpressionCoverage returns the coverage of a view expression. The
three queries return a sequence of EObjects, the latter being feature
declarations, feature groups, attributes and sub-attributes. They are all
implemented by invoking Java methods.

2. Refinement queries. As explained in Section 4.2, view expressions
can be refined in TVDL. The isRefined query checks if it is the case
for the expression given as parameter. Then, if the answer is positive,
one might be interested in knowing the type of refinement. Four of
them exist, namely sub-tree, attributes, groups, and lists. A query
exists for each of them. All of them call the isRefined query to
ensure that the view expression is refined. The isSubtree query
checks if the refinement corresponds to a sub-tree. The result is a
Boolean value. If the answer is positive, the sub-tree type can be found
with isSubtreeStructure, isSubtreeAttributes, or isSubtreeGroups
queries corresponding to the different sub-tree refinement types defined
in Section 4.2. It is also possible to get the stop list of a sub-tree expres-
sion thanks to the getStopList query. It returns a sequence of list

6.1. HTML Interface Generation 117

elements (see Section 4.2) and uses the getStopList Java method of the
TVDL editor. The isAttributes, isGroup, and isList queries play the
same role (and are implemented in a similar way) as isSubtree for the
other refinement categories.

3. Utils. Here, we present queries returning information common to most
(if not all) views or view expressions. The first one, contains, requires
two parameters, a sequence of list elements corresponding to a sub-tree
stop list, and a feature declaration. It returns the true Boolean value if
the list contains the feature. For this purpose, it invokes the covers Java
method. Then, the resolveID query resolves the TVL construct given
as parameter, i.e., it resolves qualified names. The returned element
is either a feature declaration or an attribute. getID returns the dot-
separated fully qualified name of a view. The latter can be contained by
grouping views. For this reason, a list of its ancestors is also required
to generate the qualified name. The empty list is used if the view is
not contained by any other view. A second implementation, similar to
the first one, exists for view expressions. In this case, the ancestors’ list
contains at least one element, the view where the expression is declared.
Then comes the isContained query which checks whether a view is
contained in any other view. It returns a Boolean value.

Queries have also been defined for the last language, FCSS. As for TVDL, we
will introduce them using categories. We identified two of them. The first
one contains properties which can be located at different places while the
second one covers properties which are defined at a single pre-defined place.
They are all located in the fcssQueries.mtl file.

1. Search at different levels. In Section 4.3, we have seen that some prop-
erties can be defined at different levels. For example, this is the case for
the widget of a feature which can be defined at three different levels,
namely feature-specific ones, in its containing view(s), or at a global
level. As a reminder, more specific properties have priority over oth-
ers. For such properties, queries have all been implemented using the
same pattern. A single public query exists, getFeatureWidget. It first
calls a private query which checks if a specific property has been de-
fined. In our example, it is getFeatureSpecificWidget which checks
if 1) a specific entry exists for the given feature, and, if it is the case, 2)
searches for the widget property. If it exists, then its associated (string)
value is returned. If not, the empty string is returned. In the first
case, the public query returns the value, in the second case it calls a
query which checks if the property has been defined at the view level.
It is called getFeatureViewWidget for our example. Again, it checks
if a view-specific entry exists for the view containing the feature. If

118 6. automation

it is the case, it searches for the feature property and returns its value
if it is found, the empty string otherwise. If the property is neither
found at the feature- nor view-level, the public query will finally call
a global level one which will check if the given property has been de-
fined at the global level. The behaviour of the latter is the same as
other ones (check if a global part exists, and, if it is the case, search
for the property), and returns a string value if a value is found or
the empty string if it is not the case. As a consequence, the public
query will return an empty string if nothing is found. This value has
to be handled by templates discussed in the next section. In our ex-
ample, the last query is called getFeatureGlobalWidget. This pattern
was used to determine optional feature widgets (getOptFeatureWid-
get), select feature widgets (getFeatureSelectWidget), group widgets
(getGroupWidget), base attribute widgets (getBaseAttributeWidget),
whether a container widget has to be displayed for a group
(isGroupContainer), and a display strategy for unavailable con-
tents, views, groups or attributes (getFeatureUnavailableStrategy,
getViewUnavailableStrategy, getGroupUnavailableStrategy, and
getAttributeUnavailableStrategy).

2. Search at a single place. Oppositely, some properties are defined at a
single level. For them, it is sufficient to search for the given property
and return its value if it exists. If it is not found, the empty string is
returned in order to be consistent with the previous category of queries.
The queries in this group allow to get the following information: get
views widgets (getGlobalViewWidget and getGroupingViewWidget),
to check whether or not a view has to be generated (isGenerateView),
to retrieve view, feature, group, and attribute labels (getViewLabel,
getFeatureLabel, getGroupLabel, and getAttributeLabel), to get the
help text for those same constructs (getViewHelp, getFeatureHelp, get-
GroupHelp, and getAttributeHelp), and to get the default feature of a
group (getGroupDefaultValue and isGroupDefault).

Even if all models have been covered by queries, a fifth module contained
in the commonQueries.mtl file exists. As its name suggests, the file contains a
few queries which require information from several (if not all) models.

1. Check if an element has to be generated. Several queries, effectively
five, exist to determine whether or not a construct has to be rendered
in the configuration GUI. They are all named toGenerate, only param-
eters change. We describe them in descending order. Views come first.
A view has to be generated if its toGenerate property is set to true or
it has contents which have to be generated. Generally, that contents

6.1. HTML Interface Generation 119

are a (set of) view expression(s). View expressions represent the sec-
ond level. A view expression has to be generated if its coverage is not
empty. For sub-tree structures, we also have to check that the sub-tree
has to be generated. Determining whether or not a feature has to be
rendered given a sub-tree is a bit more complex. If it is not covered by
the sub-tree, then the answer is negative. Otherwise, if the feature is in
the sub-tree stop list, then it does not have to be generated. If a feature
passes both tests, we have to check if it has contents to generate. It is the
case if it contains attributes and/or a group which has to be generated.
The last toGenerate query takes care of groups. A group does not have
to be generated in the context of a sub-tree expression if it is not in its
coverage list.

2. Determine whether an element is available. In our configura-
tion GUIs, we can set a flag indicating whether or not an ele-
ment is available (generally displayed) when the Web page is ini-
tialised. Basically a feature is available if all its ancestors are. This
is checked by the isIndependentFeatureOnlyAvailable. Furthermore,
the contents of a feature are available if the feature itself is avail-
able and it is selected (see isIndependentFeatureAvailable). The
availability of attributes and groups is the same as their containing
feature, as implemented in isIndependentAttributeAvailable and
isIndependentGroupAvailable.

A few other common queries are also defined in commonQueries.mtl but,
given that they are very specific utils, we will not explain them here.

6.1.3 Templates

As described in the introduction of this chapter, templates are used to nav-
igate through the three different models. Here, we discuss in turn the tem-
plates defined in the four packages of Figure 6.2.

1. Main package

This is the entry point of the generation approach. It contains a sin-
gle template named generateConfigurator. Its source code is visible in
Listing 6.3. We will use this example to describe the different com-
ponents of an Acceleo template. First, as for queries, a template must
be declared. The declaration begins with the template keyword and
is followed by its visibility, name and parameters between parenthe-
ses. For example, at line 1 of our example, a public template called
generateConfigurator is declared. It requires a single parameter
named theFeatureModel of type Model in the TVL language. It ends

120 6. automation

at line 44. In the body of a template, one can distinguish constructs
from two languages. The first is Acceleo while the second is the target
language, HTML5. On the one hand, Acceleo expressions are written
between square brackets, meaning that they have to be evaluated. On
the other hand, HTML5 will be written as-is in the output file.

In our example, the output is a file named Configurator.html encoded
in UTF-8 as declared at line 3. There, the second parameter (false)
means that the result of the generation does not have to be appended
to the contents of the file (if any). The file is closed at line 43, i.e.,
all HTML5 code generated between line 3 and line 43 will be saved in
Configurator.html.

Then come the let constructs which declare Acceleo variables for the
current template (see lines 4-9). Even if it is not illustrated in our ex-
ample, variables can be declared anywhere in the template. All let
declarations have to be closed (lines 37-42). The first end expression
closes the last variable declared. For example, rootFeature is declared
at line 9 and closed at line 37. Variables can be assigned constant val-
ues or the result of a query. For example, at line 5, the result of the
getAllModels query defined in Listing 6.1 is assigned to the models
variable.

The HTML5 code is generated from line 10 to line 36. There, most lines
of code simply print HTML code like the head and body of the Web
page. Lines 22, 27, 28 and 31 are exceptions. The three firsts are query
calls while the last one is a template call. Two call mechanisms are
available for queries. A query is either called as it has been declared
(i.e., its name followed by all parameters between parentheses) or in a
Java-like manner for methods of an object by calling the query on its
first parameter. For example, at line 22, the getFeatureLabel query
requires two parameters (see previous section). Here we chose to call
it on its first parameter, namely fcssModel. Line 31 is an example of
template call. It takes care of the generation of the configuration form
and will be discussed in next sub-sections. A template can call public
templates contained in any module imported by its own module (i.e.,
its container). A module contains several templates and is contained
in a .mtl file with the same name. Oppositely, queries can call other
queries but not templates.

Listing 6.3: Main template
1 [template public generateConfigurator(theFeatureModel:tvl::Model)]
2 [comment @main/]
3 [file (’ Configurator.html’,false ,’ UTF−8’)]

6.1. HTML Interface Generation 121

4 [let genericfilepath :String = theFeatureModel.eResource().getFilepath()]
5 [let models:OrderedSet(EObject) = getAllModels(genericfilepath)]
6 [let featureModel:tvl ::Model=models−>at(1)]
7 [let tvdlModel:tvdl::TVDLModel=models−>at(2)]
8 [let fcssModel:fcss :: FCSSModel=models−>at(3)]
9 [let rootFeature:tvl :: Root_Feature=featureModel.model−>selectByType(Root_Feature).

oclAsSet()−>asSequence()−>first()]
10 <!DOCTYPE html>
11 <html>
12 <head>
13 <meta charset="utf−8" />
14 <link rel="stylesheet" href="style . css" />
15 <script type="text/javascript" src="jquery. js "></script>
16 <script type="text/javascript" src=" tristate . js "></script>
17 <script type="text/javascript" src="controller . js "></script>
18 <script type="text/javascript" src="fancySliding. js"></script>
19 <script type="text/javascript" src="clonesHandling.js"></script>
20 < title >
21 [comment: The title of the web page is the name of the root feature/]
22 Configurator [fcssModel.getFeatureLabel(rootFeature)/]
23 </title>
24 </head>
25 <body>
26 [comment: The title of the web page is the name of the root feature/]
27 <h1 title ="[fcssModel.getFeatureHelp(rootFeature)/]">
28 [fcssModel.getFeatureLabel(rootFeature)/]
29 </h1>
30 <form id="configuratorForm">
31 [generateTVDLModel(tvdlModel,fcssModel)/]
32 </form>
33 [comment: A div reserved for displaying messages/]
34 <div id="messages" class="messages"></div>
35 </body>
36 </html>
37 [/let]
38 [/let]
39 [/let]
40 [/let]
41 [/let]
42 [/let]
43 [/ file]
44 [/template]

2. View package

This package contains a single module named generateViews which itself
contains six templates, one public and five privates.

The public template is the single entry point of the module and is
named generateTVDLModel. Based on a TVDL and an FCSS model, it dis-
patches the generation of view widgets to the corresponding template.
However, at the moment it is useless as a single widget has been im-

122 6. automation

plemented for views, namely tabs. In the future, we intend to propose
other widgets like, e.g., windows.

Building the tabs is handled by the buildTabs template. It takes four
parameters. The first one is the list of views to generate. The second is
a Boolean value indicating whether the views are direct children of the
TVDL model or not (contained in grouping views). This value is used
by queries to check if a view has to be generated. The third parameter
is a sequence of views, ancestors of the first parameter. If the second
parameter is set to true, this sequence will obviously be empty as first
level views do not have ancestors. Finally, as for most (if not all) tem-
plates, the FCSS model is given as parameter. The template generates
two HTML divs. The second one contains code to navigate through the
different tabs while the first one contains the code corresponding to all
views given as first parameter of the template. For this purpose, we
iterate through the list and, if a view has to be generated, generate the
code for its contents by calling the buildView template. Notice that for
views represented as windows, we will have to call that same template
as the contents of a view should be generated independently of the
representation of the view itself.

Given a TVDL view, the list of its ancestor views and the indispensable
FCSS model, the buildView template generates the HTML code related
to a view. Each view is contained in its own div whose ID is the dot-
separated name of the view and its ancestors, and help text is provided
by the FCSS model. A label is then defined for the view based on the
getViewLabel query. Then, we distinguish between view declarations
and grouping views. In the first case, we iterate through the view ex-
pressions. For each of them, we create an HTML div if the toGenerate
query returns a positive answer. Its ID is the ID of the containing view’s
div to which a view part number has been appended. The generation
of the view expression contents are then delegated to the generateView-
Expression template.

The generateViewExpression template dispatches the generation of the
view expression given as parameter to the corresponding template. For
this purpose, it also requires the list of ancestor views of the view ex-
pression and the FCSS model. In this case, the list contains at least one
view as a view expression must be declared inside a view. There are
two possible cases: either the expression refers to a TVL feature or to an
attribute. In the second case, we call the generateIndependentAttributes
template contained in the attribute package. In the other case (i.e., the
view expression refers to a TVL feature), we dispatch the generation de-
pending on the type of the view expression. Four different cases exist.
The first one covers features which are not refined or refined by a list

6.1. HTML Interface Generation 123

(inclusion or exclusion). In that case, the coverage is a list whose first
element is the feature followed by (some of) its body items and the
generateIndependentList template is called (feature package). The view
expression can also be a sub-tree one. Given that several refinements
exist for sub-tree expressions, they are handled in an independent tem-
plate named generateSubtreeExpression and discussed in the following
paragraph. Third, the expression can also be an attribute one. In that
case, the coverage is a list of attributes (and possibly sub-attributes)
whose handling is delegated to generateIndependentAttributes template
(attribute package). Finally, it can also be a group expression. In that
case, the list of groups is handled by the generateIndependentGroups from
the generateFeature module.

The generateSubtreeExpression template takes four parameters: a TVL fea-
ture (the root of the sub-tree), a TVDL sub-tree expression, the list of
ancestor views for the sub-tree expression, and the FCSS model. Sub-
tree expressions preserving the structure of the FM are directly han-
dled by the generateIndependentSubtree template from the generateFeature
module. For other ones, we distinguish three cases similarly to what
has been done in generateViewExpression. A sub-tree expression refined
by an attribute one is handled by the generateIndependentAttributes as
it covers attributes only. If it is a group refinement, the coverage list
contains groups only which will be handled by the generateIndependent-
Groups template from the feature package. Finally, sub-tree expressions
refined by a list have a coverage list with the following pattern: a TVL
feature followed by some of its body items. The list contains at least
one instance of this pattern. This case is handled by the generateIndepen-
dentList template. The latter was also used for non-refined expressions
in generateViewExpression which have the same list pattern.

Finally, dispatchViewGrouping is similar to generateTVDLModel except
that it handles grouping views. Its role is to dispatch the gener-
ation of the correct widget for the grouping view. At the moment
it refers only to the buildTabs template for the reasons mentioned earlier.

3. Feature package

In the first version of our generator, TVDL and the view package did not
exist. In that version, the hierarchy of the FM was directly rendered in
the configuration GUI. Different traversal strategies exist for trees like
depth-first or breadth-first. Among them, we chose the depth-first one
as it allows to visually group a feature together with its contents (i.e.,
sub-features and attributes). Representing the whole FM on a single
Web page is acceptable for small examples. For larger and most real

124 6. automation

ones, limits are quickly reached: long Web pages, tree structure visible
in the GUI, lost spaces due to the page setup, etc. For all these reasons,
in the second version of the generator, views were added. One of the
impacts is the view package previously introduced. But major changes
were located in the feature package. Indeed, the whole tree had to be
explored in the first version while views contain parts of it. In order to
avoid confusion, we present only the second version, the first one being
a specific case of it.

This package contains two modules, namely generateFeature and build-
FeatureWidget. In the second, templates simply print HTML code based
on the information provided by their callers. We followed the buildXXX
naming convention for all of them. They will not be discussed here.
In the generateFeature module, templates can be categorized along sev-
eral dimensions. The first one we chose is their visibility (i.e., public
vs. private). The private category being larger, we defined two sub-
categories, namely dispatchers and generators. The different roles will
be explained in their specific paragraphs.

Three public templates were implemented. As depicted by the single
delegates arrow between view and feature packages in Figure 6.2, they are
all called from view templates and have already been mentioned in the
corresponding section. Here, we use the order in which they have been
previously introduced. The generateIndependentList template generates
the contents of lists of features and their respective (partial) contents.
For this purpose, it requires 1) a feature, 2) a coverage list, 3) the view
expression with that coverage list, 4) the list of ancestor views, 5) the
short ID of the feature (first parameter), and 6) the FCSS model. The
first parameter is either a feature contained in the coverage list or an
ancestor of one of those features. In the first case, we simply iterate
through the coverage list to find a feature and its contents and delegate
their HTML rendering to the generateIndependentList private template
discussed later. The second case is used to keep track of the FM hier-
archy everywhere in the configuration GUI. As previously mentioned,
we use HTML divs to represent views, features, etc. The role of this
alternative behaviour is to build the hierarchies of features, ancestors of
features contained in the coverage list. Keeping track of this hierarchy
is required, amongst other things, to know if ancestor features are se-
lected. This point will be further discussed in Section 6.2. Second, the
generateIndependentGroups template handles the generation of a group
view expression. Its parameters are 1) a TVL feature, 2) a coverage list
exclusively composed of feature groups, 3) the view expression with
that coverage list, 4) the list of ancestor views of the third parameter, 5)
the short ID of the first parameter, and 6) the FCSS model. The role of

6.1. HTML Interface Generation 125

the first parameter is the same: keep track of the hierarchy. It means
that, in the generateViews module, the template will always be called
with the root feature as first parameter as it is the starting point of the
TVL model hierarchy. Oppositely, for recursive calls, the feature will
be the ancestor of at least one of the covered groups (second parame-
ter). The template’s behaviour is the same; it first builds the ancestors’
hierarchy before delegating its widget generation to the private dispatch-
Group template. Finally, the generateIndependentSubtree template applies
a similar mechanism to generate all widgets corresponding to a sub-
tree view expression. The feature hierarchy is built from the FM root
feature down to the sub-tree root feature before delegating the sub-tree
generation to the generateSubtree template.

In private templates, dispatchers retrieve information from the TVL and
FCSS models in order to dispatch widget generation to the correct gen-
erator template. The dispatchOpt template checks, for a given feature,
which widget has to be used to represent its optionality and delegates
its generation to the corresponding template in the buildFeatureWidget
module. The behaviour of dispatchSelect is similar and is not discussed
here. At the moment, the dispatchFeature template always delegates fea-
ture widget generation to the buildFeatureLabel. In the future, our gener-
ator should support image widgets for features. Dispatchers also exist
for groups. dispatchGroup retrieves the type of a group and delegates
it to the corresponding dispatcher. Three group-type dispatchers exist:
dispatchOr, dispatchXor, dispatchCard. They all retrieve information from
the FCSS model in order to dispatch the group to its corresponding gen-
erator template. No dispatch template exists for and-decompositions
given that there is only one widget for them.

All other templates are generators. Their role is to generate HTML code
and go through coverage lists and the TVL model. Most of them have
three parameters in common: the FCSS model, a view expression, and
the list of ancestor views of that view expression. We start with the gen-
erateSubtree template which builds an HTML div for the sub-tree root
containing a label created by the buildLabel template and the sub-tree
contents delegated to the generateContent template. The latter creates a
content-specific div which contains all feature body items. We iterate
through the items and delegate their generation either to generateAt-
tribute or to dispatchGroup, depending on their type.

Most other templates contained in the generateFeature module are group-
related. And-decompositions are handled by generateAnd. There, a div
is created for the group. It optionally contains a div for the group label
if it has been defined in the FCSS model. The group sub-features are
then handled by the generateAndSubFeatures template. The latter creates

126 6. automation

an enclosing div for the group. It also iterates through the sub-features,
creates a label for each of them and delegates their contents generation
to generateContent if required. Contents have to be generated if and
only if the view expression given as parameter is a sub-tree one which
covers the feature’s contents. Other view expressions are handled in
other templates like, e.g., generateListElement for refinement lists. In gen-
erateListbox, the generation is decomposed into two steps. First, a select
box containing an option for each of the group’s sub-features is created
in the label div. Second, in the contents div, a div is created for each
feature. They all contain a label div whose contents are generated by
dispatchFeature and a contents div delegated to generateContent. generat-
eCheckbox and generateRadio are similar. Similarly to generateAnd, they
create a div for the group optionally containing a label. Then, in the
contents div, a widget (check box or radio button) is created for each
sub-feature. Furthermore, the contents generation is delegated to gen-
erateContent if required. Generation conditions are the same as for and
sub-features.

Finally, the two remaining templates handle coverage lists composed
of a feature and its contents. generateListElement generates a feature
declaration and its contents contained in such a list. The label is
built by the buildLabel template and the contents are handled by
generateListFeatureContent. In that template, we iterate through the list
and delegate attribute and group generation to generateAttribute and
dispatchGroup, respectively. Then, if group’s sub-features have to be
rendered, widget generation is delegated to the generateIndependentList
template discussed earlier.

4. Attribute package

The attribute-related package is composed of two modules, namely gen-
erateAttribute and buildAttributeWidget. As for features, the second one
will not be addressed here since it simply prints HTML code based on
the information provided by calling templates. Here, we focus on the
generateAttribute module. Templates contained in that module are far
less complex than the previous one. Indeed, most attributes are leaves
of the FM and do not need to be explored. The only exception to this
are structure attributes.

Two different public templates exist for attributes. generateIndependen-
tAttributes generates the GUI corresponding to a list of attributes. As
for features, we keep track of the entire FM hierarchy by creating a div
for each ancestor feature of each attribute contained in the list. Once
this hierarchy has been created, the generation of the attribute widget

6.1. HTML Interface Generation 127

is delegated to the generateAttribute template. In the first version of our
generator, the latter was the single entry point (i.e., public template)
of its module. Depending on the attribute given as parameter (base or
structure), it simply delegates generation to the corresponding template
(generateBase or generateStruct).

The generateBase template creates a div for the attribute containing its
label (built by generateLabel) and its contents (built by generateAttribute-
Content). The latter template simply checks the type of the attribute
given as parameter and dispatches its generation to the correspond-
ing template. generateIntAttribute takes care of integer attributes. It re-
trieves information from the FCSS model and builds the correct widget
by calling either dispatchDefaultNumberWidget or buildNumberSlider. The
behaviour of generateRealAttribute is similar except that the step for text
input is a real value. In generateBoolAttribute, the task is delegated to
buildBoolCheckbox, buildBoolCombobox, or buildBoolRadio templates. gen-
erateEnumAttribute delegates enumerated attributes generation either to
buildEnumCombobox or to buildEnumRadioGroup. If no information has
been defined in the FCSS model, the generateEnumDefaultWidget tem-
plate is called. There, we generate a radio group for enumeration with
three values or less, and a combo box for other ones. In generateStringAt-
tribute, a text box is built by buildStringTextbox.

The handling of structure attributes by generateStruct is similar to the
one of base attributes. A div is created for each attribute. It contains
a div for its label and its contents generation is delegated to generat-
eStructAttributeContent. In that template, we iterate through all sub-
attributes of the structure. Given that it is, at the moment, not possible
to customize sub-attributes in the FCSS model, they are directly handled
by generateNotClonableStructAttributeContent except for labels which are
handled by generateLabel. As a consequence, number (i.e., integer and
real), Boolean, enumeration, and string attributes will always be ren-
dered by the same widgets, regardless of their containing structure at-
tribute.

6.1.4 Handling Feature Instances

In Section 4.1, we introduced TVL2 which adds, inter alia, feature instances.
Feature instances are not supported by the generator introduced in the previ-
ous sections. But our industrial partners have demonstrated a keen interest
in that kind of variability construct meeting a real need in their day-to-day
work. A third version of the generator has been developed to take them into
account.

128 6. automation

At first, our intent was to extend the existing generator. That solution
quickly showed its limitations. Indeed, Web pages generated by the second
version of the generator are static. That means that rendered HTML pages
contain all widgets for all TVDL views generally covering the whole TVL model.
While this solution is acceptable for a simple FM, it is not adapted to models
containing feature instances. For such features, the Web page would contain
as many duplicated blocks of HTML code as its upper bound in order to be
sure to be able to display the required number of clones. There are three
main problems with that approach. First, the number of instances can be
unlimited (using the asterisk character as upper bound). Rendering an infi-
nite number of blocks of HTML code is impossible. The only solution would
therefore be to set an arbitrarily high upper bound. Though this is possible
in some contexts, it is not the case for all of them. Then, even if a high upper
bound is set, the size of the HTML page would be huge. In our Rexel case
(discussed in Chapter 7), we set the unlimited upper bounds to three in order
to check the size of the generated file. Even if that number is very small for
the unlimited bound, the generated file had a size larger than 20MB. This
is definitely not acceptable for a Web page. Finally, the Acceleo implemen-
tation also has its own limits. In the same Rexel example, the tool was not
able to generate more than three instances of the same feature, mainly due to
the nesting of such features which is not supported by the heap underlying
Acceleo implementation.

The chosen alternative is to handle dynamic Web pages. A feature instance
is added (removed) from the HTML configurator according to user inputs
through a Web service. The details about it will not be discussed here. All
we can say about it is that it stores a parametrizable instance of each clonable
feature and injects it on request at the right place in the HTML file. Here, we
just discuss how the generator handles such features by giving a hint of their
Acceleo’s implementation.

generateFeature is the only module impacted by feature instance support.
Some templates like generateContent or generateListFeatureContent had to be
duplicated in order to distinguish instanciable (e.g., generateClonableContent)
from non-instanciable (e.g., generateNotClonableContent). The major change in
such templates is the addition of a list box to select a feature instance. Such
widgets also had to be added in templates were the FM hierarchy (actually a
hierarchy of HTML divs) of a given TVL construct had to be built. If a feature
on the path between the root feature and that construct is instanciable, a
selector is created in its div. This allows to select the correct instance of
the construct’s ancestor. In the future, we intend to offer several selection
mechanisms for feature instances in the FCSS model.

In this third version of the generator, we generate as many instances of the
corresponding block of HTML code as the lower bound. If that bound is equal

6.2. Presenter 129

to zero, a single instance is generated. Once the generation is completed, the
Parser Java class parses the Web page to extract, parametrize, and store those
blocks of HTML code on the Web server. Finding such blocks is made possible
by adding recognizable tags at generation time. The latter are removed by
the Parser Java class as well as block of HTML code representing instanciable
features with a lower bound equal to zero. We do not give details about the
Java class here. Interested readers can refer to Appendix B.1 for the source
code.

6.2 presenter

In this section, we discuss the behaviour of the configuration GUI imple-
mented using JavaScript. Contrarily to the HTML, this one is not generated.
Instead, it has been made as generic as possible. For this purpose, we use spe-
cific and recognizable classes for HTML representing TVL constructs. Those
classes are added by the generator presented in the previous section but will
be explained here in order to avoid confusion. The JavaScript is thus inde-
pendent from the FM and has to be coded once for every variability model
imaginable.

This section is sub-divided into three subsections corresponding to the dif-
ferent steps of the Web page’s life cycle. Those are the initialisation, followed
by the configuration of the product itself, and finalisation tasks.

6.2.1 Initialisation

The first step in the life cycle of the Web configurator is its initialisation. Our
first intent was to get the values of the HTML widgets as soon as the page
is loaded in order to set the corresponding values in the TVL solver. Our
purpose was to synchronize the GUI and the solver. A first prototype was
built. Unfortunately TVL does not provide the mechanisms to handle such
default values. And the default property for TVL groups in the FCSS model
cannot substitute them. Indeed, we quickly realised that those default values
could lead to invalid configurations. For example, default sub-features of two
different groups might be mutually exclusive. In such cases, initialisation of
the configuration GUI was made impossible. Default TVL values being out of
the scope of this thesis, we do not initialise the solver as the HTML page is
loaded. Instead, checks are delegated to the solver as soon as the user inputs
a choice. This point should be addressed in the future.

130 6. automation

6.2.2 Configuration

It is the user’s responsibility to set her choices using HTML widgets in the
Web page. Our first task in the configuration step is thus to detect such
inputs. For this purpose, we could either use HTML event attributes1 (e.g.,
oninput, onchange, etc.) or JQuery event handler functions2, JQuery being a
feature-rich JavaScript library [JQuery, 2014]. In order to reduce the impact
on the Acceleo generator, we chose the second solution which does not require
to modify the HTML file as soon as the signature of a JavaScript function is
changed. In our presenter, we thus have listeners for each type of widget
representing a TVL construct. For example, Listing 6.4 contains the listener
of list boxes representing feature groups. There, as soon as a change event is
detected in the document (i.e., the HTML page) on list box widgets (select)
which have the group class, the handleSelectGroup function is called. Its
second parameter is a Boolean value indicating the origin of the change (false
for the user and true for the solver) given that the handling will slightly differ.
In the Acceleo generator, a class name corresponding to the TVL construct
it represents is added to each HTML widget. Available values are group,
opt, independent, clones, attribute, number, boolean, enumeration, and string. All
listeners are implemented similarly to the one presented in Listing 6.4 and
call an handleXXX function.

Listing 6.4: Event listener for TVL groups represented as list boxes
1 $(document).on("change", "select.group", function (){
2 handleSelectGroup($(this),false);
3 });

Change handling functions depend on two parameters: the impacted wid-
get and the origin of the change (user vs. solver). Here, we do not give
detailed information for each of those functions. Instead we explain the gen-
eral principle which is common to most widgets, notwithstanding the TVL
construct they represent. The first task is to determine the change in the wid-
get. While it is simple for some HTML constructs like check boxes, others
require to keep track of previously selected values (e.g., list boxes or radio
groups). For this second case, we made use of the data storage facility offered
by JQuery. We store the previously selected value(s) in a key/value construct
where the key is the widget and the value, the previously selected value(s).
From this information, we extract two variables: the removed values and the
added ones. The data pair is updated at the end of the handling function in
order to reflect more accurately the current state of the Web page.

1 See http://www.w3schools.com/tags/ref_eventattributes.asp
2 See http://api.jquery.com/category/events/

http://www.w3schools.com/tags/ref_eventattributes.asp
http://api.jquery.com/category/events/

6.2. Presenter 131

From here a distinction has to be made between solver and user choices.
In the first case one can be sure that changes are valid ones and can be au-
tomatically propagated. For features which are not selected anymore (resp.
newly selected), their contents have to be marked as unavailable (resp. avail-
able). In our approach, the availability of an HTML element is based on the
unavailable/available classes. The tricky part is that using TVDL the contents
of a feature can be split across different views (i.e., parts of the HTML file),
duplicated, etc. We do not provide details about the implementation of our
search algorithm as it is really technical. Basically, we rely on HTML IDs and
classes to determine if a construct represents the contents of a feature. For
example, the naming convention for the ID of a div representing the contents
of a feature X ends with X_content. Those contents can be scattered through
the Web page. Given that a TVL construct can be depicted in several views,
all its instances have to be updated in the HTML file. For this purpose we
also use the ID-classes mechanism. If the change handled by the function has
been made by the user, we cannot be sure that it is valid. In that case we
have to contact the Web server which hosts the TVL solver. Its answers can
be classified into two categories with different impacts. Either it is an invalid
change and the JavaScript warns the user before resetting the Web page to its
previous (valid) state. Or the change is valid and the solver returns a list of
impacted features/attributes together with their values. The Web page is up-
dated according to that list (see next paragraph) and the handling function
can perform the same tasks as the one described earlier in this paragraph
(availability of the contents, consistency of HTML constructs representing the
given TVL element, etc.). The behaviour of the handleInputCloneNumber func-
tion is different. There, if the number of clones is increased, the Web service
containing parametrizable clones instances is called and returns the HTML
code to inject in the HTML page. Oppositely, the HTML code for clones in-
stances is removed if their number is decreased.

Communication with the server is done through Ajax POST requests with
data in JSON format. The returned result is an array containing propagated
values if the requested change is a valid one, null otherwise. We built a
wrapping function on top of it. It takes all removed values and new ones as
parameters and iteratively unsets and sets the corresponding TVL constructs
in the solver on the Web server. At the end, the result of the propagation is
returned and forwarded to functions which update the configuration GUI ac-
cordingly. Such a wrapping function avoids duplicating code in the different
handlers.

Propagating the solver results is done by iterating on its result list. For each
TVL construct whose value has been propagated, we search for an HTML wid-
get representing it. Some constructs are not represented in the HTML configu-
rator as they do not require to be configured (e.g., empty mandatory features

132 6. automation

contained in an and-decomposition) and do not have to be visually updated.
In other cases, the TVL construct is represented by at least one HTML widget.
We search for one of those widgets, update its value, and call the correspond-
ing listener (as described in the first paragraph of this Configuration section)
with the Boolean parameter set to true. If other widgets represent the TVL
construct, their value will be updated by the handler function as mentioned
in the third paragraph of this section. The unassign value is a special one for a
TVL construct. Basically, it means that it was previously set by the solver and
is no longer propagated due to the last choice. In that case, we chose to manu-
ally reassign the value (i.e., like if it was a user choice) previously propagated
in the GUI. Our intent is to avoid GUIs were widget values appear and disap-
pear all the time. In this way, we reduce the number of visual changes for the
user. At the implementation level, if the unassign value is found, the value
of the corresponding HTML widget is left unchanged and added to a queue
of TVL constructs which have to be reassigned in the solver. They are sent to
the Web server as soon as all elements of the currently handled propagation
list have been rendered in the GUI. We opted for such a strategy in order to
avoid intertwining (and sometimes conflicting) propagation lists.

Figure 6.3 provides a simplified view of that JavaScript workflow.

User
change

Find corresp.
widget handler

Widget handler

Detect changes OR Mark contents as
avail./unavail.

Solver change

Contact solver

User change

OR

Warn user &
reset previous

state

Invalid
changes

Retrieve solver
propagations

Valid
change AND

Find widget and
set value

For changed element

For each propagated
value

Figure 6.3.: Simplified workflow of the JavaScript presenter

6.3. Summary 133

6.2.3 Finalisation

Finalisation of the configuration process really depends on the user’s require-
ments. In some cases she will wish to have a button to save her configuration
locally or, for on-line stores, to send it to the seller. In other cases, the con-
figuration will be sent to an e-mail address. Due to this large number of use
cases and their specificity, we did not implement any JavaScript finalisation
function. As a consequence, the configuration is lost as soon as the Web page
is closed. Instead, we prefer to build user-specific finalisation functions on
demand.

Generally speaking, the overall behaviour of such functions is the same. On
user request (button clicked, etc.), a finalisation function is called. The latter
will take a picture of the current configuration state, get it in a given format
(human readable, XML, etc.) and display or send it to the required location.
The picture of the current state can be extracted either by going through
the HTML, finding widgets representing TVL constructs, and retrieving their
value, or by contacting the solver to get its current state and formatting the
answer in the required format.

6.3 summary

In this chapter, we gave technical details about our prototype solution. As a
summary, our architecture is based on the model-view-presenter pattern. The
view is generated using a model-to-text approach with Acceleo. The source
code can be decomposed into two parts: queries and templates. The queries
allow to navigate through the different models (i.e., TVL, TVDL and FCSS) and
are used by the templates. The latter iterate through views of the TVDL model
to generate HTML source code. The generated code contains the widgets
corresponding to all views except for feature instances which are dynamically
added and removed. The presenter has been implemented in JavaScript and
is the central point between the GUI and the solver. It is generic and can be
re-used for any configurator. Linking the presenter and the HTML Web page
is done through feature qualified names and HTML classes.

Part III

E VA L U AT I O N & C O N C L U S I O N S

7

E VA L U AT I O N

We performed two evaluations. The first is the evaluation of the TVL lan-
guage based on small controlled experiments with five professionals from
four different companies (Section 7.1). In the second evaluation, we apply
our languages (TVL, TVDL and FCSS) and tools to the prototyping of a config-
urator for an industrial partner (Section 7.2). An extended version of the first
evaluation is available in [Hubaux et al., 2010a].

7.1 evaluation of tvl

7.1.1 Evaluation Criteria

The criteria that we used to measure the quality of TVL are inspired and
adapted from [Holtz and Rasdorf, 1988, Pratt, 1984]. Originally, these crite-
ria were established to evaluate the quality of programming languages. We
have selected programming language criteria because prevailing frameworks
meant to evaluate modelling languages like [Green, 1989, Moody, 2009] are
essentially dedicated to graphical rather than textual notations. Additionally,
TVL can be seen as a declarative constraint language whose constructs are
tailored to variability modelling. Finally, TVL is integrated in development
environments like Eclipse or advanced text editors like Emacs or vim. TVL is
thus likely to be assimilated to a programming language by developers. We
outline the quality criteria relevant to our study below.

Clarity of notation The meaning of constructs should be
unambiguous and easy to read for non-
experts.

Simplicity of notation The number of different concepts
should be minimum. The rules for
their combinations should be as simple
and regular as possible.

Conciseness of notation The constructs should not be unneces-
sarily verbose.

138 7. evaluation

Modularisation The language should support the de-
composition of the model into several
modules.

Expressiveness The concepts covered by the language
should be sufficient to express the prob-
lems it addresses. Proper syntactic
sugar should also be provided to avoid
convoluted expressions.

Ease and cost of model portability The language should be platform inde-
pendent.

Ease and cost of model creation The elaboration of a solution should
not be overly human resource-
expensive.

Ease and cost of model translation The language should be reasonably
easy to translate into other languages.

Learning experience The learning curve of the language
should be reasonable.

7.1.2 Cases

The evaluation of TVL has been carried out with five participants coming
from four distinct companies. This subsection describes the areas of exper-
tise of these companies and the motivations of the participants to evaluate
TVL. Table 7.1 summarises the profiles of the five participants involved in the
evaluation along with the company they work for and a short description
of the project chosen to evaluate TVL. For each participant, we collected his
position, years of experience in software engineering, his fields of expertise,
the modelling and programming languages he used for the last 5 years, his
experience with SPLE and FMs, and the number of years he actively worked
on the selected project. Note that for the experience with languages, SPLE
and FMs, the results are punctuated with the frequency of use, i.e., inten-
sive/regular/occasional/evaluation.

Hereunder we give a brief description of the four different cases and the
participants:

1. PloneMeeting

PloneGov [PloneGov, 2010] is an international Open Source (OS) initia-
tive coordinating the development of secure, collaborative and evolutive
eGovernment Web applications. PloneGov gathers hundreds of public
organizations worldwide. This context yields a significant diversity in,
for example, languages, regulations, third-party systems or cultures,
which, in turn, is the source of ubiquitous variability in the applica-

7.1. Evaluation of TVL 139

Ta
bl

e
7

.1
.:

Pr
ofi

le
s

of
th

e
fiv

e
pa

rt
ic

ip
an

ts
C

ri
te

ri
a

Pl
on

eM
ee

ti
ng

PR
IS

M
A

pr
ep

ar
e

C
PU

ca
lc

ul
at

io
n

O
SG

en
er

ic
C

om
pa

ny
G

ee
zT

ee
m

O
SL

N
am

ur
S.

A
.

N
X

P
Se

m
ic

on
du

ct
or

s
V

ir
ag

e
Lo

gi
c

#E
m

pl
oy

ee
s

1
70

28
00

0
(w

or
ld

w
id

e)
70

0
(w

or
ld

w
id

e)
Lo

ca
ti

on
Be

lg
iu

m
Be

lg
iu

m
T

he
N

et
he

rl
an

ds
T

he
N

et
he

rl
an

ds
Ty

pe
of

so
ft

w
ar

e
O

pe
n

so
ur

ce
Pr

op
ri

et
ar

y
Pr

op
ri

et
ar

y
Pr

op
ri

et
ar

y
Pr

oj
ec

t
ki

ck
of

f
da

te
Ja

nu
ar

y
2
0
0
7

M
ay

2
0
0
8

Ju
ne

2
0
0
9

2
0
0
4

Pr
oj

ec
t

m
at

ur
it

y
le

ve
l

Pr
od

uc
ti

on
Pr

od
uc

ti
on

D
ev

el
op

m
en

t
Pr

od
uc

ti
on

M
od

el
ve

rs
io

n
1.

7
bu

ild
56

4
4.

2.
1

Ju
ly

6
,2

0
0
9

Se
pt

em
be

r
3
0

,2
0
0
9

Po
si

ti
on

Fr
ee

la
nc

e
Pr

od
uc

t
Li

ne
M

an
ag

er
Se

ni
or

Sc
ie

nt
is

t
Se

ni
or

So
ft

w
ar

e
A

r-
ch

it
ec

t
D

ev
el

op
m

en
t

M
an

-
ag

er
Ye

ar
s

of
ex

pe
ri

en
ce

in
SE

1
2

+
ye

ar
s

3
1

+
ye

ar
s

2
0

+
ye

ar
s

1
5
+

ye
ar

s
2
0
+

ye
ar

s
Fi

el
ds

of
ex

pe
rt

is
e

W
A

,C
M

S
PM

PM
,S

PI
,S

R
M

cS
,R

PC
,R

T
ES

,R
T

M
od

el
lin

g
la

ng
ua

ge
s

U
M

L
(r

eg
ul

ar
)

N
on

e
U

M
L

(o
cc

as
io

na
l)

,
D

SC
T

(e
va

lu
at

io
n)

U
M

L
(o

cc
as

io
na

l)
U

M
L

(r
eg

ul
ar

)

Pr
og

ra
m

m
in

g
la

ng
ua

ge
s

Py
th

on
(i

nt
en

si
ve

),
Ja

va
-

sc
ri

pt
(r

eg
ul

ar
)

C
++

(o
cc

as
io

na
l)

C
(o

cc
as

io
na

l)
,

Pr
ol

og
(r

eg
ul

ar
),

Ja
va

(e
va

lu
a-

ti
on

)

C
(i

nt
en

si
ve

)
C

(o
cc

as
io

na
l)

,
C

++
(o

cc
as

io
na

l)
,

V
is

ua
l

Ba
si

c
(o

cc
as

io
na

l)
,

Py
th

on
(o

cc
as

io
na

l)
Ex

pe
ri

en
ce

w
it

h
SP

LE
2

ye
ar

s
(e

va
lu

at
io

n)
1

ye
ar

(o
cc

as
io

na
l)

3
ye

ar
s

(i
nt

en
si

ve
)

4
ye

ar
s

(r
eg

ul
ar

)
4

ye
ar

s
(i

nt
en

si
ve

)
Ex

pe
ri

en
ce

w
it

h
FD

s
2

ye
ar

s
(e

va
lu

at
io

n)
1

ye
ar

(o
cc

as
io

na
l)

3
ye

ar
s

(i
nt

en
si

ve
)

4
ye

ar
s

(o
cc

as
io

na
l)

4
ye

ar
s

(i
nt

en
si

ve
)

Pr
oj

ec
t

pa
rt

ic
ip

at
io

n
3

ye
ar

s
2

ye
ar

s
1

ye
ar

6
ye

ar
s

2
ye

ar
s

Le
ge

nd
C

M
S

-
C

on
te

nt
M

an
ag

em
en

t
Sy

st
em

,E
S

-
Em

be
dd

ed
Sy

st
em

,M
cS

-
M

ul
ti

-c
or

e
Sy

st
em

,P
M

-
Pr

oj
ec

t
M

an
ag

em
en

t,
R

PC
-

R
em

ot
e

Pr
oc

ed
ur

e
C

al
l,

R
T

-
R

ea
lT

im
e,

SE
-

So
ft

w
ar

e
En

gi
ne

er
in

g,
SP

I
-

So
ft

w
ar

e
Pr

oc
es

s
Im

pr
ov

em
en

t,
SR

-
So

ft
w

ar
e

R
el

ia
bi

lit
y,

W
A

-
W

eb
A

pp
lic

at
io

ns

140 7. evaluation

tions. We focus here on PloneMeeting, PloneGov’s meeting manage-
ment project written in Python.

PloneMeeting was re-engineered with appy.gen. In a nutshell, appy.gen
enables the automated generation of full-blown Plone applications. A
major challenge was to extend appy.gen to explicitly capture variation
points and provide systematic variability management. We collaborated
with the developers to design a FM representing the configuration op-
tions of PloneMeeting.

We interacted with several developers during the collaboration, but
only the main developer provided the quantitative and qualitative feed-
back as part of the evaluation. The initial motivation of the devel-
oper to engage in the evaluation was to assess the opportunity of us-
ing FMs for code generation. He has not used FMs to that end so
far because, in his words, graphical editing functionalities (typically
point-and-click) offered by feature modelling tools are cumbersome and
counter-productive. The textual representation of FMs is therefore more
in line with his development practice than its graphical counterpart.

2. PRISMAprepare

Océ Software Laboratories S.A. (OSL) [Océ Software Laboratories, 2010],
is specialized in document management for professional printers. One
of their main product lines is Océ PRISMA, a family of products
covering job creation, submission and delivery via preparation and
accounting. A job can be basically defined as a document to print.
Our collaboration focuses on one sub-line called PRISMAprepare,
an all-in-one tool that guides document preparation including the
customisation of printing options and the preview of documents.

In PRISMAprepare, mismatches between the preview and the actual out-
put could occur, and, in rare cases, documents may not even be print-
able on the selected printer. The reason was that incompatibilities be-
tween the document’s specificities and the selected printer were not
always completely detected. For example, a prepared document could
require to staple all sheets together while the target printer could not
staple more than 20 pages together, or does not support stapling at all.
The root cause was that only some constraints imposed by the printers
were implemented in the source code, mostly for time and complexity
reasons. Consequently, OSL decided to rely on FMs to formally repre-
sent the variability of their tool.

Feedback was provided by the product line manager of PRISMAprepare.
OSL was evaluating different modelling alternatives to express the vari-
ability of its new SPL and generate the configuration GUI. The problem

7.1. Evaluation of TVL 141

of most tools is that they impose their own configuration interface—
commonly a tree exposed in a file explorer style. Their motivation for
evaluating TVL was that it is independent from any front-end, which a
priori makes it easier to generate domain specific interfaces.

3. CPU calculation

NXP Semiconductors [NXP Semiconductors, 2010] is an international
provider of Integrated Circuit (IC). ICs are used in a wide range of ap-
plications like automotive, infotainment or navigation systems. ICs typ-
ically embed several components like CPU, memory, input and output
ports. Due to constraints imposed by hardware, a valid configuration is
determined by the combination of hardware and the features that can
run on it.

In this paper, we focus on the FM that models the variability of the
video processing part of their product line and the impact it has on
the CPU load and other physical constraints. The FM is meant to sup-
port the customer during the selection of features while ensuring that
no hardware constraint can be violated, e.g., excessive clock speed re-
quired by the features. Besides ensuring the verification of constraints,
the FM also allows the user to strike an optimal price/performance bal-
ance, where the price/performance ratio is computed from attributes
attached to features.

The evaluation was performed by the developer that created the FM.
The variability used in this example was previously modelled using
pure::variants [Beuche, 2008]. Regarding calculations, the Prolog lan-
guage was used for defining the constraints. The major problem was
that the time needed to implement the calculation over attributes was
excessive compared to the time needed to design the whole FM. The
interest in considering an alternative language lied in the expressive
power that textual languages could have over existing graphical solu-
tions in capturing the constraints based on calculation of feature at-
tributes.

4. OSGeneric

Virage Logic [Virage Logic, 2010] is a supplier of configurable hardware
and software to a broad variety of customer such as the Dolby Labora-
tories, Microsoft or AMD. The hardware and software intellectual prop-
erty (IP) delivered by Virage Logic offers a high degree of variability
that allows its customers to create a specific variant for the manufac-
turing of highly tailored systems on chip (SoC). OSGeneric (Operating
System Generic) is a product line of operating systems used on SoCs.
The produced operating systems can include both proprietary and free

142 7. evaluation

software. Every SoC can embed a great variety of hardware and contain
several processors from different manufacturers.

The evaluation was performed by two participants: the lead software
architect of OSGeneric and the software development manager. Their
product line was previously modelled with pure::variants. The partic-
ipants were considering other techniques in modelling the variability.
Their motivation for evaluating TVL lied in using a language that (1) is
more suited for engineers with a C/C++ background, (2) has a lower
learning curve than pure::variants and (3) makes use of standard edi-
tors.

7.1.3 Research Protocol

In this experiment, TVL was evaluated through interviews with the five par-
ticipants of the four companies. Interviews were conducted independently
from each other, except for Virage Logic where the two participants were
interviewed together. Two researchers were in charge of the interviews, the
synthesis of the results and their analysis. For each interview, we followed
the protocol presented in Figure 7.1.

Document Action

Experimental
material

TVL model
proposal

Quality
criteria

Introduction
to TVL

Quality
evaluation

Presentation
of TVL model

Quality
criteria

evaluation

Process flow Data flow

Figure 7.1.: Interview protocol

The protocol starts with a short introduction to TVL (circa 20 minutes) that
aims at giving the participants an overview of the language. At this stage,
the participants are not exposed to details of the language. The goal of the
second step is to provide the participants with a real TVL model. To keep the
effort of the participants moderate, the appointed researchers designed, for
each company and prior to the interviews, TVL models that respectively cor-

7.1. Evaluation of TVL 143

respond to the configuration menus of PloneMeeting and PRIMSAprepare,
and the FMs of the CPU calculation and OSGeneric. The presentation of the
TVL model was limited to 30 minutes to keep the participants focused on the
understanding of the model and avoid untimely discussions about the qual-
ity of the language. During that step, the participants are exposed to more
details of the language and discover how their product line can be modelled
using TVL. Alternative design decisions are also discussed to demonstrate the
expressiveness of TVL.

During the third step, the participants fill out the evaluation form pre-
sented in Table 7.2. The evaluation scale proposed to the participants is: +
the participant is strongly satisfied; + the participant is rather satisfied;
the participant is neither satisfied nor dissatisfied; - the participant is rather
dissatisfied; - the participant is completely dissatisfied; N/A the participant
is not able to evaluate the criterion.

The results of the evaluation are then discussed during the fourth step. The
qualitative information collected during this last phase is obtained by asking,
for each criteria, the rationale that lead the participant to give his mark. On
average, these two last steps lasted two hours in total.

7.1.4 Analysis of TVL

Table 7.2 synthesises the evaluation of TVL performed by the participants of
GeezTeem, OSL, NXP and Virage Logic. Note that we kept the evaluations of
the two Virage Logic participants separate, has indicated by the two columns
under OSGeneric.

To facilitate the explanation, we group the criterion into five categories:
notation, modularisation, expressiveness, ease and cost, and learning experience.
Note that the collaborations with OSL, NXP and VirageLogic are protected
by non-disclosure agreements. Therefore, specific details of the models are
not disclosed.

notation [c1-c3] . The participants unanimously appreciated the nota-
tion and the advantages of text in facilitating editing (creating, modifying
and copy/pasting model elements). The NXP and VirageLogic participants
liked the compactness of attributes and constraints and the fact that attributes
were explicitly part of the language rather than an add-on to a graphical no-
tation.

The GeezTeem participant appreciated the ability of the language to ex-
press constraints very concisely. He reported that appy.gen, his Web site gen-
erator, offered two major ways of specifying constraints. First, guards could
be used to make the value of an attribute depend on the value of another

144 7. evaluation

Table 7.2.: Results of the evaluation of TVL

Criterion Pl
on

eM
ee

ti
ng

PR
IS

M
A

pr
ep

ar
e

C
PU

ca
lc

ul
at

io
n

O
SG

en
er

ic

C1 Clarity of notation + + + +

C2 Simplicity of notation + + + + +

C3 Conciseness of notation + + + + +

C4 Modularisation + + + +

C5 Expressiveness - + + +

C6 Ease and cost of model portability + + + + +

C7 Ease and cost of model creation + + +

C8 Ease and cost of model translation + + + +

C9 Learning experience + + + + +

attribute. Secondly, Python methods could be used to express arbitrary con-
straints. These mechanisms could rapidly lead to convoluted constraints that
are hard to maintain and understand. Additionally, developers struggled to
maintain these constraints across Web pages. The participant reported that
at least 90% of the constraints (both within and across pages) implemented
in classical appy.gen applications could be more efficiently expressed in TVL.

The OSL participant was particularly satisfied to see that TVL is not based
on XML. He reported that their previous attempts to create XML-based lan-
guages were not very satisfactory because of the difficulty to write, read and
maintain them. He also reported that the model represented in the language
is much more compact than anything he could have produced with existing
graphical representations.

The NXP participant was concerned about the scalability of the nested
structure, i.e., the tree-shaped model, offered by TVL. He also reported that
people used to graphical notations who already knew FMs might prefer clas-
sical decomposition operators (and, or, xor) rather than their TVL counterparts
(allOf, someOf, oneOf). Finally, the participants from NXP and Virage Logic
were confused by the fact that the -> symbol can always replace requires
but not the other way around. In their opinion, a language should not offer
more than one means to express the same thing.

One of the Virage Logic participants reported that attributes might be hard
to discern in large models. He suggested to declare them in an Interface

7.1. Evaluation of TVL 145

Description Language (IDL) style by prefixing the attribute declaration with
the attribute keyword.

modularisation [c4] . The ability to define a feature at one place and
extend it further in the code was seen as an undeniable advantage as it allows
to distribute the FM among developers. The Virage Logic participants both
discussed the difference between the TVL include mechanism and an import
mechanism that would allow to specify exactly what parts of an external TVL
model can be imported but also what parts of a model can be exported. In
their opinion, it would improve FM modularisation and module reuse since
developers are already used to import mechanisms.

Apart from the include mechanism, TVL does not support model special-
isation and abstraction (as opposed to constructs, e.g., class and specialisa-
tion). In contrast, the developer of appy.gen considered them as fundamen-
tal. Their absence is one of the reasons that lead them to drop UML tools.
Along the same lines, the OSL participant argued that the include should
be augmented to allow macro definitions. By macro, the participant meant
parametrized models similar to parametrized types, e.g., Java generics. A
typical use case of that mechanism would be to handle common variability
modelling patterns.

expressiveness [c5] . The GeezTeem participant expressed that TVL is
sufficiently expressive to model variability in most cases. However, he identi-
fied several constructs missed by TVL that would be needed to model Plone-
Meeting. First, TVL does not offer validators. In his terms, a validator is a
general-purpose constraint mechanism that can constrain the formatting of
a field. For instance, validators are used to specify the elements that popu-
late a select list, to check that an email address is properly formatted or that
a string is not typed in where the system expects an integer. Secondly, he
made intensive use of the specialisation and abstraction mechanisms avail-
able in Python, which have no TVL equivalents. These mechanisms are typ-
ically used to refine already existing variation points (e.g., add an attribute
to a meeting item) or to specify abstract variation points that have to be in-
stantiated and extended when generating the configuration menu. Thirdly,
multiplicities are used to specify the number of instances, i.e., clones, of a
given element. Cloning was a fundamental aspect of appy.gen as many ele-
ments can be cloned and configured differently in Plone applications. Those
have been added in TVL2. Besides offering more attributes types, appy.gen also
allows developers to add parameters to attributes, e.g., to specify whether a
field can be edited or requires specific read/write permissions. Type parame-
ters are mandatory in appy.gen to support complete code generation. Finally,
in order to be able to display Web pages in different languages, i18n labels

146 7. evaluation

are attached to elements. i18n stands for internationalisation and is part of
Plone’s built-in translation management service. Translations are stored in
key/value pairs. A key is a label in the code identifying a translatable string;
the value is its translation. For instance, the meeting_item_i18n element will
be mapped to Meeting Item (English) and Point de discussion (French). In most
cases, several labels are attached to an element (e.g., a human-readable name
and a description). That information is now included in FCSS models.

The OSL participant also pointed out some missing constructs in TVL. First,
default values which are useful in their projects for things like page orienta-
tion or paper dimensions. Secondly, feature cloning was missing. In PRISMA-
prepare, a document is normally composed of multiple sheets, where sheets
can be configured differently and independently from one another. Thirdly,
optionality of attributes should be available. For instance, in TVL, the binding
margin of a page was specified as an attribute determining its size. If the
document does not have to be bound, the binding margin attribute should not
be available for selection. As for feature instances, attribute ones are now
supported in TVL2.

The NXP and VirageLogic participants also recognized that feature cloning
and default features were missing in the language. Additionally, they missed
the specification of error, warning and information messages directly within
the TVL model. These messages are not simple comments attached to features
but rather have to be considered as guidance provided to the user that is
based on the current state of the configuration. For instance, in the NXP
case, if the selected video codec consumes most of the CPU resources, the
configurator should issue a warning advising the user to select another CPU
or select a codec that is less resource-demanding. Since they are a needed
input for a configurator, they argued that a corresponding construct should
exist in TVL.

ease and cost [c6-c8] . The OSL participant reported that improvements
in terms of model creation were, in his words, very impressive compared to the
graphical notation that was used initially [Czarnecki et al., 2005]. And since
TVL is formally defined, he did not foresee major obstacles to its translation
into other formalisms.

The NXP and VirageLogic participants reported that, no matter how good
the language is, the process of model creation is intrinsically very complex.
This means that the cost of model creation is always high for real models.
Nevertheless, they observed that the mechanisms offered by TVL facilitate
the transition from variability elicitation to a formal specification, hence the
neutral score.

7.1. Evaluation of TVL 147

learning experience [c9] . All the participants agreed that the learn-
ing curve for software engineers with a good knowledge of programming
languages was rather gentle. Software engineers who use only graphical
models might need a little more time to feel comfortable with the syntax.
In fact, the NXP and VirageLogic participants believed that people in their
teams well versed in programming languages would give a + whereas those
used to modelling languages would give a , hence their average + score.

More detailed findings on the questionnaire can be found
in [Hubaux et al., 2010a].

7.1.5 Threats to Validity

The evaluation was performed with four product lines and five participants,
providing a diversity of domains and profiles. Yet, their diversity did not
have a significant influence on the results since we observed a substantial
overlap between their comments. Therefore, we believe that the results are
valid for wide a range of organizations and products [Yin, 2002].

The TVL models were prepared in advance by the two researchers and later
checked by the participants. Consequently, the expertise of the researchers
might have influenced the models and the evaluation of the participants. In
order to assess this potential bias more precisely, we will have to compare
models designed by participants to models designed by the two researchers.
However, TVL is arguably simpler than most programming languages and the
modelling task was felt to be rather straightforward. As as consequence, we
do not expect this to be a problem for our evaluation. Furthermore, when
the participants questioned the design decisions, alternative solutions were
discussed based on the constructs available in the language—even those not
disclosed during the presentation.

The limited hands-on experience with TVL might have negatively influ-
enced the evaluation of the expressiveness, notation and modularisation of
the language, and positively impacted the evaluation of the ease and cost
and learning experience. That situation resembles the setting of an out-of-
box experience [Sangwan and Hian, 2004]. This gives valuable insight as to
how software engineers perceive TVL after a one-hour training and how fast
they can reach a good understanding of the fundamental concepts.

A more specific problem was the unavailability of proper documentation
and the limited access granted to the codebase in the case of OSL, NXP and
Virage Logic. This made the modelling of those cases more difficult.

In the case of OSL, the development team is still in the SPL adoption phase.
This could be a threat as the participant has only been exposed to FMs for
reviewing. Therefore, he might have focused on comparing the textual and
graphical approaches rather than evaluating the language itself. Along the

148 7. evaluation

same lines, the PloneMeeting participant was already reluctant to use graphi-
cal FMs and might have evaluated the textual approach rather than TVL itself.
In any case, we believe that the feedback received was more shaped by the
expectations and requirements of the participants than by the preference for
a textual representation over a graphical one.

7.2 evaluation of languages and tools

Rexel [Rexel, 2014] is a French-based worldwide distributor of products and
services in the energy area, mainly focused on the electrical supplies. Its cus-
tomers are professionals in the residential, commercial as well as industrial
sectors. On its Web site, the company states that it operates in 37 countries
across most continents. Their role is to supply their customers with necessary
resources to build electrical systems. For example, they sell wires, plugs, etc.
but also have an expertise in various domains such as heating, ventilation
and cooling systems.

In a competitive sector like that of electrical supplies, Rexel differentiates
itself by offering customer services with an added value for the customer.
By this, we mean that they offer, for example, consultancy for large projects
or software tools for electricians. The required service depends on a lot of
parameters such as the size of the project, its complexity, available resources,
etc. The goal of Rexel is to facilitate its customers’ work by avoiding waste of
time, order errors, etc.

Our collaboration with Rexel focuses on software tools they offer to their
customers in order to place orders, especially for electrical panels. Such tools
allow customers to describe the domain (e.g., the building, its dimensions,
its specificities), the requirements (e.g., number of plugs or lights) and the
constraints (e.g., local regulations). Based on that information, the feasibility
of the project is assessed, errors reported, and optimisations proposed. Rexel
wishes to increase the evolvability of its tools. Indeed, a lot of variability
exists in the domain. The main example is the regulations which vary over
time as well as depending on the location. In current versions of the tools,
managing this variability requires a lot of work and is error-prone since one
has to modify constraints across the whole source code. Problems faced by
Rexel can thus be considered as similar to the ones of OSL mentioned in the
previous section. We evaluated our approach on the electrical panels case
together with people at Rexel.

7.2.1 Models

In our approach, the first task is to represent the variability of the config-
urable product. In this case, we had several sources to undertake that task.

7.2. Evaluation of Languages and Tools 149

First, we used the existing tool developed by Rexel. They helped us to extract
the variation points, i.e., features and attributes in the TVL model. Scenar-
ios were also defined in order to extract constraints between those variation
points. However, such an approach does not ensure the elicitation of all
cross-tree constraints. The result depends on the quality and accuracy of
the scenarios. Ideally, this task should be automated in order to automati-
cally explore all use cases. Reverse engineering existing tools is not covered
here but is discussed in another PhD thesis [Abbasi, 2014] and introduced
in [Boucher et al., 2012a]. Regulation documents supplied by Rexel also pro-
vided a reliable source of information. There, all legal and regulatory con-
straints could be found and added to the TVL model. For technical ones, we
got input from skilled persons at Rexel who have developed a certain knowl-
edge of the field, either due to their contribution in the development of the
existing tool, or their technical background in the electrical field. Note that,
during the workshops at Rexel, recommendation was mentioned but is not
introduced here as it is not part of our approach.

The TVL model built with those three sources is visible in Listing 7.1.
There, constraints have been removed in order to keep the code as compact
as possible. Most feature and attribute names are in French but this should
not be an obstacle to the validation of the approach. The reason is that
Rexel wishes, as a first step, to evaluate the approach on a well mastered
and controlled local product. The FM has 42 features and a maximum
depth of 7 levels. The number of attributes is 56, broken down as follows:
3 Boolean, 10 strings, 15 enumerations and 28 integers. All enumerations
have been declared using user-defined attribute types at the beginning
of the TVL model (lines 1-10). The root feature is decomposed into four
sub-features. Three of them, namely Projet (lines 14-17), Client (lines 18-24)
and Techniques (lines 25-27) contain general context information about the
project while Abstract (lines 28-160) contains all relevant information for
the configuration itself. That feature has a single sub-feature, Logement
(lines 30-158) which describes an accommodation. The Abstract feature had
to be introduced for the TVDL model. Rexel wished to separately display
the information of the project from the one related to the electrical-related
concepts but it was initially not possible with our view definition language.
An accommodation is composed of several Pieces (i.e., rooms at lines 32-61)
and Circuits (lines 62-107) as well as a Tableau (i.e., electrical panel at
lines 108-156). Each room has a type (line 33), a surface (line 34) and contains
several Equipements (i.e., equipments from line 36 to line 59). The contents
of Piece’s siblings contain technical information related to the electrical field
which will not be addressed here for simplicity.

Listing 7.1: TVL model (excl. constraints) for the Rexel case

150 7. evaluation

1 enum p i e c e s in { Sejour , Cuisine , Chambre , Couloir , WC, Exter ieur ,
Sal leDeBain } ;

2 enum marques in { Legrand , Hager , Schneider } ;
3 enum i n t e r r u p t e u r s D i f f e r e n t i e l s in {AC, A, Asi } ;
4 enum d i s j o n c t e u r s in {AC, A, ASi } ;
5 enum d i s j o n c t e u r s D i f f e r e n t i e l s in {AC, Asi } ;
6 enum f u s i b l e s in {A, Asi } ;
7 enum poles in { B i P o l a i r e , QuadriPolaire } ;
8 enum t e c h n o l o g i e s in { Automatique , AVis } ;
9 enum sect ionType in { F1_5 , F2_5 , F6 , F10 , F16 } ;

10 enum departements in { Ain , Aisne , A l l i e r , AlpesDeHauteProvence ,
HautesAlpes , AlpesMaritimes , Ardeche , Ardennes , Ariege , Aube , Aude
, Aveyron , BouchesDuRhone , Calvados , Cantal , Charente ,
CharenteMaritime , Cher , Correze , CorseDuSud , HauteCorse , CoteDOr ,
CotesDArmor , Creuse , Dordogne , Doubs , Drome , Eure , EureEtLoir ,
F i n i s t e r e , Gard , HauteGaronne , Gers , Gironde , Herault ,
I l e E t V i l a i n e , Indre , IndreEtLoire , I s e r e , Jura , Landes , LoirEtCher
, Loire , HauteLoire , LoireAt lant ique , Loire t , Lot , LotEtGaronne ,
Lozere , MaineEtLoire , Manche , Marne , HauteMarne , Mayenne ,
MeurtheEtMoselle , Meuse , Morbihan , Moselle , Nievre , Nord , Oise ,
Orne , PasDeCalais , PuyDeDome, PyreneesAtlantiques , HautesPyrenees ,

PyreneesOrienta les , BasRhin , HautRhin , Rhone , HauteSaone ,
SaoneEtLoire , Sarthe , Savoie , HauteSavoie , Par is , SeineMaritime ,
SeineEtMarne , Yvelines , DeuxSevres , Somme, Tarn , TarnEtGaronne ,
Var , Vaucluse , Vendee , Vienne , HauteVienne , Vosges , Yonne ,
T e r r i t o i r e D e B e l f o r t , Essonne , HautsDeSeine , SeineSaintDenis ,
ValDeMarne , ValDOise , Guadeloupe , Martinique , Guyane , LaReunion ,
Mayotte } ;

11

12 root Pro je tTur ing {
13 group allOf {
14 P r o j e t {
15 s t r i n g nomProjet ;
16 s t r i n g d a t e P r o j e t ;
17 } ,
18 C l i e n t {
19 s t r i n g numeroClient ;
20 s t r i n g nomClient ;
21 s t r i n g a d r e s s e C l i e n t ;
22 s t r i n g v i l l e C l i e n t ;
23 departements departementClient ;
24 } ,
25 Techniques {
26 i n t surfaceLogement ;
27 } ,
28 Abstrac t {
29 group a l l o f {
30 Logement {
31 group a l l o f {
32 Piece [1 . . ∗] {
33 p i e c e s typePiece ;
34 i n t s u r f a c e P i e c e ;
35 group a l l o f {

7.2. Evaluation of Languages and Tools 151

36 Equipement [1 . . ∗] {
37 group oneof {
38 PC16A ,
39 PC32A ,
40 Ecla iragePlafond ,
41 EclairageApplique ,
42 PlaqueDeCuisson ,
43 LaveLinge ,
44 LaveVaisse l le ,
45 SecheLinge ,
46 Congelateur ,
47 Four ,
48 ChauffeEau {
49 i n t puissanceChauffeEau ;
50 } ,
51 VoletRoulant ,
52 VMC,
53 Chauffage {
54 bool f i l P i l o t e ;
55 i n t puissanceChauffage ;
56 } ,
57 Autre
58 }
59 }
60 }
61 } ,
62 C i r c u i t [1 . . ∗] {
63 s t r i n g name ;
64 sect ionType s e c t i o n ;
65 i n t i n t e n s i t e ;
66 group someOf {
67 P r o t e c t i o n C i r c u i t {
68 i n t l a r g e u r P r o t e c t i o n C i r c u i t in [0 . . 2 4] ;
69 marques marqueProtec t ionCircui t ;
70 s t r i n g gammeProtectionCircuit ;
71 group oneof {
72 Dis j onc te ur {
73 i n t c a l i b r e D i s j o n c t e u r in { 2 , 6 , 10 , 16 , 20 , 25 , 3 2 } ;
74 d i s j o n c t e u r s typeDis jonc teur ;
75 } ,
76 D i s j o n c t e u r D i f f e r e n t i e l {
77 i n t c a l i b r e D i s j o n c t e u r D i f f e r e n t i e l in { 1 0 , 16 , 20 , 25 , 3 2 } ;
78 d i s j o n c t e u r s D i f f e r e n t i e l s t y p e D i s j o n c t e u r D i f f e r e n t i e l ;
79 } ,
80 Fu s i b le {
81 i n t c a l i b r e F u s i b l e in { 1 0 , 16 , 20 , 2 5 } ;
82 f u s i b l e s typeFus ib le ;
83 }
84 }
85 } ,
86 opt Commande {
87 i n t nombreContactsCommande in { 1 , 2 } ;
88 marques marqueCommande ;

152 7. evaluation

89 i n t intensiteCommande ;
90 i n t largeurCommande in [0 . . 2 4] ;
91 group [1 . . 2] {
92 Telerupteur {
93 i n t nbrModuleTel in [0 . . 2 4] ;
94 } ,
95 Contacteur {
96 i n t nbrModuleConta in [0 . . 2 4] ;
97 } ,
98 Minuterie {
99 i n t nbrModuleMinuterie in [0 . . 2 4] ;

100 } ,
101 In ter rupteurHora i re {
102 i n t nbrInterrupteurHoraire in [0 . . 2 4] ;
103 }
104 }
105 }
106 }
107 } ,
108 Tableau {
109 group someof {
110 C o f f r e t {
111 marques marqueCoffret ;
112 s t r i n g gammeCoffret ;
113 i n t hauteurCof f re t ;
114 i n t l a r g e u r C o f f r e t ;
115 group a l l o f {
116 opt R e p a r t i t i o n V e r t i c a l e {
117 i n t hauteurPeigne in { 1 , 2 , 3 , 4 , 5 , 6 } ;
118 marques marqueRepar t i t ionVer t i ca le ;
119 } ,
120 Rangee [1 . . 6] {
121 group a l l o f {
122 R e p a r t i t i o n H o r i z o n t a l e [1 . . 3] {
123 i n t largeurPeigne in { 5 , 8 , 13 , 18 , 2 4 } ;
124 marques marqueRepart i t ionHorizontale ;
125 bool avecConnecteurs ;
126 group someof {
127 Parafoudre {
128 i n t iMax in { 1 0 , 15 , 20 , 4 0 } ;
129 i n t largeurParafoudre in [0 . . 2 4] ;
130 } ,
131 I n t e r r u p t e u r D i f f e r e n t i e l {
132 i n t l a r g e u r I n t e r r u p t e u r D i f f e r e n t i e l in [0 . . 2 4] ;
133 marques m a r q u e I n t e r r u p t e u r D i f f e r e n t i e l ;
134 s t r i n g gammeInterrupteurDif ferent ie l ;
135 i n t c a l i b r e I n t e r r u p t e u r D i f f e r e n t i e l in { 2 5 , 40 , 6 3 } ;
136 i n t e r r u p t e u r s D i f f e r e n t i e l s t y p e I n t e r r u p t e u r D i f f e r e n t i e l ;
137 poles nombrePolesID ;
138 t e c h n o l o g i e s technologieID ;
139 }
140 }
141 }

7.2. Evaluation of Languages and Tools 153

142 }
143 }
144 }
145 } ,
146 Rehausse {
147 i n t hauteurRehausse ;
148 i n t largeurRehausse ;
149 } ,
150 Porte {
151 i n t hauteurPorte ;
152 i n t l a rg eu rP or te ;
153 bool porteOpaque ;
154 }
155 }
156 }
157 }
158 }
159 }
160 }
161 }
162 }

The views were iteratively defined together with our contact persons in
the company. The result TVDL model is visible in Listing 7.2. At line 1,
the TVL model previously introduced is imported before defining the five
different views. The first one, WelcomeTab (line 3) contains all information
related to the project currently configured. It covers data such as the name
of the project, the contact information of the client and the surface of the
accommodation. In the second view, LogementTab (line 5), Rexel wishes to
select all information related to rooms, namely their attributes as well as the
contained equipments. The third view at line 7 (CircuitTab) contains all TVL
constructs in the sub-tree with Circuit as root, i.e., all information related
to electrical circuits. The fourth view, ElementTab (line 9), covers Coffret’s
sub-features, namely RepartitionVerticale and Rangee. However, the
Circuit sub-tree is excluded given that it is already covered in the third
view. Finally, TableauTab (line 11) covers all the attributes of Tableau’s
sub-features, i.e., it contains all information for Rehausse and Porte, and
technical information about the Coffret.

Listing 7.2: TVDL model for the Rexel case
1 import " rexel_demo . t v l "
2

3 WelcomeTab { P r o j e t && C l i e n t && Techniques }
4

5 LogementTab { Piece : [a t t r i b u t e s] && Equipement :∗ }
6

7 Circui tTab { C i r c u i t :∗ }
8

154 7. evaluation

9 ElementTab { R e p a r t i t i o n V e r t i c a l e && Rangee :∗/ C i r c u i t }
10

11 TableauTab { C o f f r e t : [a t t r i b u t e s] && Rehausse : [a t t r i b u t e s] && Porte : [
a t t r i b u t e s] }

Finally, the FCSS model contains only labels for features, attributes and
views with the exception of a global part where default widgets are defined
for xor- and or-decompositions. Due to space constraints, only the beginning
of the FCSS model is visible in Listing 7.3. All other entries are similar to
those depicted in the code excerpt. In the global part (from line 4 to line 7),
the default widget for xor-decompositions (resp. or-decompositions) is set
to listbox (resp. checkbox). Labels are then defined for views (e.g., line 8),
features (e.g., line 26) and attributes (e.g., line 29).

Listing 7.3: FCSS model for the Rexel case
1 import " rexel_demo . t v l "
2 import " rexel_demo . tvdl "
3

4 . {
5 xorGroup : l i s t b o x ;
6 orGroup : checkbox ;
7 }
8 $WelcomeTab {
9 label : " Accuei l " ;

10 }
11 $LogementTab {
12 label : " Logement " ;
13 }
14 $Circui tTab {
15 label : " C i r c u i t s " ;
16 }
17 $ElementTab {
18 label : " Elements " ;
19 }
20 $TableauTab {
21 label : " Tableau " ;
22 }
23 $ProduitTab {
24 label : " Produits " ;
25 }
26 P r o j e t {
27 label : " Donnees du p r o j e t " ;
28 }
29 # P r o j e t . nomProjet {
30 label : "Nom du p r o j e t " ;
31 }
32 # P r o j e t . d a t e P r o j e t {
33 label : " Date " ;
34 }
35 C l i e n t {

7.2. Evaluation of Languages and Tools 155

36 label : " Donnees du c l i e n t " ;
37 }
38 # C l i e n t . numeroClient {
39 label : "Numero c l i e n t " ;
40 }
41 # C l i e n t . nomClient {
42 label : "Nom du c l i e n t " ;
43 }
44 # C l i e n t . a d r e s s e C l i e n t {
45 label : " Adresse " ;
46 }
47 # C l i e n t . v i l l e C l i e n t {
48 label : " V i l l e " ;
49 }
50 # C l i e n t . departementClient {
51 label : " Departement " ;
52 }
53 . . .

7.2.2 Generated Configurator

The HTML page generated by our Acceleo tool is depicted in Figures 7.2 to
7.6. Each figure represents the same HTML file with a different tab selected.
For that configurator we just developed a custom CSS layout, the content of
the page being automatically rendered by our generator.

Figure 7.2 represents the WelcomeTab view of the TVDL model available in
Listing 7.2. Each tab can be decomposed into two parts. The first one covers
the contents of the TVDL view. It is contained in the green box labelled 1

in Figure 7.2. The second part, labelled 2 , contains the links to navigate
through the different views represented by tabs. There, the labels correspond
to the ones defined at lines 8-25 of the FCSS model (see Listing 7.3). Clicking
on the Circuits tab will bring us to Figure 7.4. That information is also
used in the head title of 1 . The content of that same part of the GUI is
itself decomposed into three boxes, A, B and C. Each of those boxes represent
a view part defined at line 5 of the TVDL model (Listing 7.2). A represents
the Projet part which is composed of the Projet feature and its attributes,
namely nomProjet and dateProjet of type string. The label of the feature is
defined at line 26. Lines 29-34 contain the same information for attributes. B
and C are similar to A except that the first one contains an enum attribute (i.e.,
departementClient at line 23 of Listing 7.1) represented by a list box.

The Logement tab (Figure 7.3) is decomposed into two parts, Piece and
Equipement, both representing duplicable features. The number inputs at
the far right of the part labels represent the number of instances of the cor-
responding feature, 3 for Piece and 4 for Equipement. As a reminder, the
HTML code corresponding to each instance is dynamically added to the Web

156 7. evaluation

1

2

A

B

C

View label

Feature label

String attribute

Enum attribute

Figure 7.2.: Accueil tab of the HTML configurator for Rexel

page. In the first part, each line corresponds to an instance of the Piece
feature which contains two attributes, an enum (the type of the room) and
an integer (its surface). The first room is a Chambre (i.e., bedroom) with a
surface of 11 square meters. Displaying all instances at once is not the de-
fault behaviour of our generator. For this purpose, customisation has been
added in CSS file. Equipement being a sub-feature of Piece, the user must be
able to select the Piece in which a given Equipement has to be added. The
list box above the Equipement box is used for that purpose. In Figure 7.3,
the first room of type Chambre is selected and it contains four equipments.
Two other values are available in the clone list box, namely “[WC] Piece 2”
and “[Exterieur] Piece 3”. Selecting one of those options will change the
contents of the Equipement box accordingly.

The Circuits tab (Figure 7.4) contains a single part, the sub-tree with
Circuit feature as root. That feature being duplicable, an input for the num-
ber of instances as well as an instance selector have been made available
similarly to what has been done for Piece in Figure 7.3. Each circuit con-
tains three attributes. What is new in this screen compared to the previous
one is the presence of a feature group. That TVL construct is contained in a
different coloured box. An and-decomposition is depicted for Circuit in Fig-
ure 7.4. The Protection circuit sub-feature is mandatory and its contents
are displayed on the right, in their own box. It in turn contains attributes

7.2. Evaluation of Languages and Tools 157

Number of instances

Number of instances

Integer attributeEnum attribute

Instance selector

Figure 7.3.: Logement tab of the HTML configurator for Rexel

and a group. In that case, it is a xor-decomposition represented by a list box.
Changing its value will modify the content of the underneath box. In Fig-
ure 7.4, Calibre and Intensite represent the attributes of the Disjoncteur
feature. Notice that the Type attribute is an enumeration one represented by
radio buttons contrarily to previous ones which are represented by list boxes.
This is due to the limited number of values (3) for that attribute. Finally, the
Commande feature is an optional one and has been excluded as depicted by the
X symbol in its check box. Selecting that feature would display its contents
in a similar way than Protection circuit.

In the Elements tab (Figure 7.5), the three states of check boxes represent-
ing features are visible, X for rejected, V for selected and nothing for unde-
cided. In the last case, the user has not chosen a value for the feature. As a
consequence its contents are not displayed like, e.g., Repartition verticale.
In Repartition horizontale, two new types of attributes are displayed. The
first one, an integer, is represented by a list box given that it is limited to
a few values (see Largeur). The second one is a Boolean attribute and is
rendered by a check box, just like optional features. The box labelled A
contains an or-decomposition in which Parafoudre has been selected and
Interrupteur Differentiel rejected. Given that in such a feature group
at least one sub-feature has to be selected, trying to change the value of
Parafoudre is forbidden as shown by the error message in box B . The error

158 7. evaluation

Integer attribute
Enum attribute

String attribute

Feature
group

Xor-decomposition

Enum attribute
Feature
content

Rejected optional feature

Figure 7.4.: Circuits tab of the HTML configurator for Rexel

states that Parafoudre cannot be rejected. This message is displayed by the
presenter thanks to the result it gets from the solver.

Finally, Figure 7.6 contains all information related to an electric panel. It is
decomposed into three components, corresponding to the different parts of
the TableauTab view (line 11 of Listing 7.2). All its constructs have already
been discussed and do not need further explanations.

7.2.3 Feedback from Rexel

Globally, Rexel was pleased with the generated HTML interface even if they
did not use the full power of the FCSS model. We could thus conclude that the
default behaviour of our generator matches the expectations of our partners
in this industrial case study. The ease and speed with which interfaces could
be generated allowed us to easily interact with people without variability
modelling background. The TVL and TVDL models changed a lot over time
and all required changes were supported by the proposed languages. The
developers even challenged us and were not able to find weak points for
TVDL.

However, Rexel missed three things in the generated configuration Web
page. First, they would like an additional tab summarizing the products to
order. This point has already been addressed in Section 6.2.3. Finalisation

7.2. Evaluation of Languages and Tools 159

Undecided optional feature

Selected feature

Rejected feature

Integer attribute

Boolean attribute

A

B

Figure 7.5.: Elements tab of the HTML configurator for Rexel

Figure 7.6.: Tableau tab of the HTML configurator for Rexel

160 7. evaluation

being case-specific, we decided to not handle it in our generator. Instead, it
should be developed based on Rexel requirements. A possible implementa-
tion would be a Web service which, for a given configuration, returns a list
of products to order with all required details.

Rexel also wished a much finer-grained handling for feature instances. In
the generated interfaces, the number of clones is handled by a number input.
Decreasing (resp. increasing) the number of feature instances will delete
(resp. add) the HTML code corresponding to those instances, starting from
the last. It is thus not possible to delete a given instance. This functionality
can easily be added to our generator. But so far, we have decided to write
the corresponding code directly in the HTML file in order to get validation
from Rexel. Figure 7.7 contains the proposed solution, a delete button for each
feature instance, whether it is a Piece or an Equipement. Ideally, a button to
create a new instance should also be added after the current last one.

Figure 7.7.: Finer-grained handling of feature instances in the Logement tab

Rexel also required to be able to assign Equipements defined into the
Logement tab to Circuits defined in the view of the same name. Theoret-
ically, this request is supported by TVL through the shared feature construct.
As a reminder, such features can have several parents. In this case, each
Equipement would have a Piece and a Circuit as parents. Those constructs
are also supported by our Acceleo generator. However, we did not use them
given that the current version of the solver does not support such features.
This case study allowed us to get accurate requirements for shared constructs.

7.2. Evaluation of Languages and Tools 161

The generator should be modified accordingly. In the meantime, a solu-
tion has been manually developed. It is visible in Figure 7.8. There, the
Equipements sur le circuit list box contains all Equipements defined in
all Pieces of the Logement tab.

Figure 7.8.: Shared feature in the Circuits tab

7.2.4 Lessons Learned

Here, we report our findings about the approach, including the solver, the
TVL, TVDL and FCSS languages, the presenter or the generated configurator.

completeness of tvl . This Rexel case study confirmed some outcomes
of our previous evaluation of the TVL language (see Section 7.1). Among
them, we can mention feature instances. Such constructs were added in TVL2
based on the previous evaluation and have proved helpful in this case too. In
the Rexel TVL model, we count four duplicable features. The same comment
applies to string attributes added in TVL2 and used ten times in our case
study, that is 17,9% of the attributes. Generally speaking, TVL offered the
required expressiveness. Shared features also proved relevant, even if they
are currently not supported by the underlying solver.

completeness of tvdl . As previously mentioned, the view definition
language has been challenged. It turned out that it supports all views re-

162 7. evaluation

quired by Rexel with one exception. To deal with this weakness, an abstract
feature was added right under the root feature (see line 28 of Listing 7.1). In
the future, TVDL should be extended in order to avoid such collateral effects
on other models.

completeness of fcss . We did not use a lot of FCSS properties and
focused mainly on labels. On the one hand, it does not allow us to thor-
oughly evaluate the language. On the other hand, it implies that the default
behaviour corresponds to actual user needs. Even though there are grounds
for criticism. First, according to Rexel, it should be possible to define the
position of a label, before or after the TVL construct with which it is asso-
ciated, as illustrated by the m2 label for each Piece in Figure 7.7. Second,
several FCSS properties should be made available for more fine grained TVL
constructs. For example, it is not possible to define a label for the values
of an enum attribute. The same comment applies to sub-attributes of struc-
tures. For such attributes, it is even not possible to change the widget, which
is somewhat restricting. Defining the step for number attributes, the break
point between radio groups and list boxes, etc. worth exploring according to
Rexel. Finally, colours could also be defined for elements to be rendered in
the GUI. Our partner company also mentioned that it should be possible to
generate the same interface in several languages with different FCSS models.
For this purpose, they suggest to use the include mechanism of TVL in FCSS.

communication with the solver . The JavaScript presenter fulfils its
role of interface between the HTML page and the solver perfectly and be-
haves as expected. Behind the scene, this component is probably the most
complex one and should be simplified. At the moment, it handles some be-
haviours which should be on solver side. Migrating them would make the
JavaScript much simpler and respect the separation of concerns. For example,
the presenter currently handles transactions. Changing the value of a select
box representing a xor-decomposition is an example of such a transaction. It
can be decomposed into two tasks: 1) unassign the previously selected value
and 2) assign the new one to true. After the first step, the solver randomly
selects an option to comply with the group cardinality and returns it to the
presenter. That value is ignored by the presenter as it knows that, in the sec-
ond step, another value will be sent to the solver. In the future, the solver
should handle requests containing multiple changes. The solver might be
in an invalid state while the transaction is processed. At the end of it, the
solver should be in a valid state. Otherwise, it means that the transaction is
an invalid one.

7.2. Evaluation of Languages and Tools 163

role of generated guis . In our iterative work with Rexel, the gener-
ated interfaces provided valuable input to initiate discussion. Changing the
variability in the TVL model seemed abstract for most of our interlocutors.
HTML interfaces generated in less than one minute made the process more
interactive. TVDL views were even tailored according to the audience. In-
deed, high level managers do not have the same concerns as electricians. As
expected, Rexel does not envision to reuse the generated configuration GUI
as-is in its commercial products. There are several reasons for this, including
the graphical charter of the company, legacy tools, etc. As mentioned at the
beginning of this dissertation, generating ready-to-use configuration GUIs is
not our goal, mainly because it is hardly possible.

propagation strategies . In the electrical panel example, there are two
possible outcomes to user changes. Either it is not valid and the previous
state is reset, or it is acceptable and propagations are automatically applied
in the GUI. While, in the first case, the implemented behaviour seems the sin-
gle viable one, several strategies should be made available for valid changes.
At the moment, the user is not informed of the consequences of her choices
which are automatically propagated in the interface. Providing an explana-
tion mechanism could minimize user’s lack of comprehension concerning
a propagated value. Such information requires modifications at the solver
level. Alternatively, the set of propagations could be displayed to the user be-
fore applying them in the configuration GUI. If she confirms her choice, the
configuration is updated according to the values in the set. Otherwise, the
previous GUI state is reset, i.e., like for invalid changes. The two behaviours
can co-exist.

source of propagations . Initially, the presenter was able to handle
values propagated by the solver in a specific way. In the prototype version,
they were greyed out in order to prevent user changes. But this approach
was rather restrictive with respect to the results sent back by the solver. For
example, if a feature is selected, the propagation set contains its parent which
will be greyed out in the configuration GUI. While this behaviour respects the
semantics of FMs, it is not adapted to GUIs. In such a case, the user would
have to deselect all sub-features to unblock the parent one. Instead, it should
be possible to set the parent to false with the unassignment of child features
as side effect. Thanks to the Rexel case, we identified three categories of
propagation sources: cross-tree, hierarchy, and siblings constraints. The first
category should trigger the disabling mechanism (e.g., grey out). The second
one has been illustrated by the example earlier in this paragraph. Finally, sib-
lings constraints should be handled differently by the presenter depending
on the widget representing the group. For example, xor-decompositions ren-

164 7. evaluation

dered as a list box or a radio group are automatically handled by the widget,
contrarily to those depicted by a set of check boxes. In the future, the solver
should return three propagation sets, differently handled by the presenter.

display strategies . A top-down strategy was applied in our industrial
case study. By this, we mean that the contents of a feature are displayed in the
configuration GUI as soon as it is selected. The Web page is thus populated
as the user makes choices. This approach is adapted to this specific case
study. Rexel has drawn our attention that it might not be the case for other
configurators. Theoretically, our approach can support other strategies with
mechanisms such as the unavailable property in the FCSS model. We will
require other case studies to evaluate the alternative behaviours.

7.2.5 Threats to validity

The approach was applied on a single case study. It is therefore difficult to
make general statements about the quality of our work. Yet, it shows that it
fits a randomly chosen tool, partially proving its generic nature. Furthermore,
the approach was proposed to users with different profiles and they were also
satisfied by the configuration GUIs tailored to their needs.

At the beginning, the approach was introduced with a basic version of the
solver. This could be a threat as the participants might have evaluated the er-
gonomics of the HTML Web page rather than the whole approach. We believe
that our iterative approach with Rexel where a full-fledged solver has been
added in a latter stage tackles that threat. Introducing the two major aspects
of the approach at different different times avoids information overload and
confusion. In latter stages, both components were jointly assessed.

The TVL, TVDL and FCSS models were written by the author of this thesis
who also designed the generator. Our interlocutors thus have a limited hands-
on experience of the three languages, their editors and the generator. Yet, the
models were presented to them and edited during workshops and meetings.
It did not prevent them to assess our languages by requesting changes and
improvements in the proposed models.

The approach was evaluated on an HTML generator. Consequently, we
cannot draw general conclusions for other target languages. However, it gives
us a glimpse of the industrial interest about such an approach. Only time will
tell which target languages are relevant for industrials.

As for some case studies in Section 7.1, we did not get access to the code
base of the existing tool for electrical panels. This made the modelling of the
TVL model more difficult. Furthermore, the electrical domain was partially
unknown to us.

7.3. Further Evaluations 165

7.3 further evaluations

The two evaluations that we already performed allowed us to validate and
identify improvements for our languages and tools. However, ideally, fur-
ther evaluations should be performed to pursue the work beyond this thesis.
In particular, an evaluation of the overall approach we propose would be a
interesting complement to what we have already achieved.

The reviews for two vision papers related to our ap-
proach [Boucher et al., 2012a, Boucher et al., 2012d] were positive. Among
them, we can mention “an interesting [...] approach to improve reliability in
existing configurators”, “it is a real and very common problem”, or “this is an
important topic that still has not been addressed satisfactorily in industry, despite
several research initiatives in this field”. Furthermore, several master students
from the University of Namur worked on it. This sharing of ideas during
internships or lectures such as “Advanced topics in software engineering
and information systems” (INFOM4351) provide an even stronger base for
our approach. Such informal comments cannot, however, substitute for a
formal evaluation. In the following paragraphs, we sketch of a possible way
in which such an evaluation should be performed.

The first task would be to define a scenario for the experiment, ideally
based on a business case. That scenario would be composed of at least two
steps. In the first one, a comprehensive description of the problem would
be given, either in a document or by organising meetings and workshops
together with the client, or ourselves if the provided scenario is an illustrative
one. In other steps, the requirements of the initial problems should evolve.
Such changes might impact the variability of the represented product, its
constraints, etc. The purpose of such changes would be to assess the effort
required to change the configuration GUI.

The second activity would be to select a group of experimenters. In most
cases, researchers enrol master students from their university. Alternatives ex-
ist. Possible solutions are to get in touch with Web designers schools or with
professional Web developers. In our case, the first one seems more appropri-
ate as hiring professionals would be expensive. But finding a representative
number of student Web developers can be tricky too as the evaluation might
require a lot of time. For this purpose, long term co-operation with such
schools might be envisioned.

In the third step, available developers would randomly be split into two
groups. They would both get the same information about the Web configu-
rator to develop, the requirements, etc. based on the information defined in
the first step. Each developer of the first group would build her Web config-
urator from scratch. On the other hand, each member of the second group

1 http://directory.unamur.be/teaching/courses/INFOM435

http://directory.unamur.be/teaching/courses/INFOM435

166 7. evaluation

would use the approach proposed in this thesis as a starting point, based
on a preliminary introduction to it and the supporting tools. The generated
configurator would then probably have to be customized. At the end of the
first step, they would be asked to answer evaluation questions about their de-
velopment process, the experienced difficulties. Examples of such questions
are provided in the following paragraph. The second group would probably
get additional questions specific to our approach. Then, all developers would
have to iterate through the different scenarios defined in the first step. The
purpose of requirements changes would be to compare the evolvability of
generated interfaces with coded ones. At the end of each iteration, questions
related to the changes would be asked to developers.

The questions are not yet set. But we could group them into two categories:
the quality of the generated Web page and the development process. For the
first category, we can rely on external and existing resources such as the
client, scenarios with predefined outputs, and standards such as [W3C, 2013].
Examples of development-related questions are provided hereunder:

1. What was the percentage of custom developments?
2. How long did it take to develop a) the Web page, b) the controller?
3. How long did it take to modify the Web configurator according to requirement

changes?
4. How hard was it to locate the changes required by the modified requirements?
5. What was the major difficulty?
6. For the second group, which constructs/information are missing in the TVL,

TVDL, and FCSS models?
7. For the second group, what is the learning curve for the different languages

and groups?
8. . . .

This list of questions will have to be extended in order to have a compre-
hensive comparison between our approach and a more traditional one.

8
C O N C L U S I O N S

8.1 summary of contributions

The explosion of e-commerce applications and the need for customized prod-
ucts tailoring user needs make the development of configurators a concern in
a variety of domains. Configurator engineering is a difficult activity: config-
urators both need to be consistent while handling user’s decisions and their
graphical user interfaces should meet usability and aesthetics requirements of
consumers. This difficulty is often amplified in ad-hoc configurators in which
the variability model, graphical user interface concerns and reasoning engine
are all implicit and/or entangled. The software product line community has
developed conceptual models and concrete tools to perform configuration
through (simple) feature models. However, the engineering of configuration
graphical interfaces has been much less addressed.

In this thesis, we propose a model-based perspective. We rely on (ad-
vanced) feature models to formally specify configuration options and auto-
mate reasoning. We developed a model-based solution to generate graphical
user interfaces from feature models while relying on SAT/SMT solvers to
perform reasoning to react to user selections/deselections. We propose a
model-view-presenter architecture to separate variability, reasoning and pre-
sentation. In our approach, the model is a feature model and its solver, and
the view is a graphical user interface. The presenter will depend on the target
graphical user interface technology. Its main role is to enable communication
between the model and the view.

As existing feature modelling languages are not providing the expressive-
ness required to cover our needs, we developed a new language: it is a tex-
tual language named TVL and supports constructs such as feature attributes
or group cardinalities which are not supported by most existing variability
modelling languages. Furthermore, the language provides two mechanisms
for structuring large models: an include statement to split the model into
several files and the possibility to define a feature in one place and extend it
later in the code. These mechanisms allow modellers to organise the feature

168 8. conclusions

model according to their preferences and can be used to implement separa-
tion of concerns. The language has been evaluated on four industrial case
studies. That evaluation has led to the definition of TVL2 which now sup-
ports, inter alia, feature instances and string attributes. Xtext has been used
to develop a TVL editor which provides syntax highlighting, auto-completion,
scoping, etc. and comes with a meta-model of the language which can be
used to generate graphical configurators.

In order to split the hierarchy of feature models, we propose a view defi-
nition language called TVDL. It is inspired by the XPath language previously
used by Hubaux et al. in the context of feature configuration workflows.
The advantage of TVDL is that is not XML-based and allows to select any
(combination of) TVL model construct(s). Four kinds of views are supported:
grouping, sub-tree, feature and attribute. Grouping views are syntactic sugar
to group the three other kinds of views. Sub-tree views allow to select TVL
constructs in a sub-tree of a TVL model, feature views allow to select a feature
and its contents (or a part of them), and attribute views cover TVL attributes
(and their sub-attributes for structured ones). As for TVL, an editor has been
developed for TVDL. That editor comes with a meta-model of the language.

As TVL and TVDL models do not focus on styling information, we propose
FCSS. FCSS is a beautification language which contains information related
to the graphical user interface such as labels or help texts, for example. The
language has been named after CSS which plays a similar role for HTML Web
pages. FCSS models can be decomposed into three levels. The highest one,
called global, defines properties which should be applied to all constructs of
imported TVL and TVDL models. They can be seen as default values. The
second level defines the default properties for all constructs contained in a
view. Finally, the last level allows to define properties for a specific feature or
attribute. As for feature and view modelling languages, an editor has been
developed for FCSS.

Configuration interfaces are generated through model transformations, of
which TVL, TVDL and FCSS models are the inputs. Our initial intent was
to use a user interface description language as target, more specifically an
abstract user interface model. In that case, model-to-model transformations
would have been used. However, we did not find such a language meeting
all our criteria. Consequently, our prototype generator produces HTML code
through model-to-text transformations. The workload to move from a model-
to-text to a model-to-model transformation should not be too high given that
the most intricate part, model queries, can be massively reused.

The tools and languages were evaluated together within a multinational
company on one of their existing products. That company, namely Rexel, is
currently re-engineering its electrical panel configuration tool. Our approach
and the generator were used iteratively to demonstrate and evaluate the ca-

8.2. Limitations 169

pabilities of the tool to (re)design and (re)generate a configurator on-the-fly.
This could be done at such speed that the tools can be used during workshops
in order to dynamically adapt the configurator based on the participants’ in-
put. Our experience with Rexel demonstrated the utility of the approach and
allowed to identify various improvement opportunities.

8.2 limitations

In this section, we present the limitations of the proposed approach, lan-
guages, the prototype generator and the future work that can solve or mini-
mize them.

single platform generation. Our transformations only support
HTML generation. This limitation is partly due to immaturity, unavailability
and complexity of existing UIDLs. Future work will explore the possibility
of domain-specific UIDLs (see below).

However, we think that HTML is a good candidate given that most Web
configurators are developed in that language. Alternatives are, for exam-
ple, Flash Web sites. Furthermore, as previously mentioned, moving from
a model-to-text transformation to a model-to-model transformation should
not be complicated given that the most complex part of the HTML generator
could be re-used.

lack of dynamic aspects . Generated HTML configurators are static
ones. By this we mean that configuration widgets corresponding to all fea-
ture model constructs are stored in the Web page at loading time, even those
which are not available. Some of them might never become available, mak-
ing the file size unnecessarily large. Instead, unavailable contents should be
dynamically added to the Web page as soon as it becomes available. It has al-
ready been done for feature instances. A next version of the prototype could
be built using a similar technique.

We think that this threat is rather limited in our case given that the gener-
ated HTML files are used as a springboard for discussion. We do not intend,
at the moment, to make them available out of the box to final users or cus-
tomers on the Internet.

evaluation. Ideally, the proposed approach should have been evaluated
in a more systematic way. In this thesis, the main evaluation is based on an
industrial case study. Although the results for the Rexel case are encouraging,
we cannot claim that the approach will be suitable in all circumstances. That
case allowed us to find some limitations of the languages and the prototype

170 8. conclusions

generator. Other case studies could lead us to discover needs of improve-
ment.

To tackle that limitation, we propose to evaluate the approach and the
associated languages on several industrial cases. If possible, that assessment
should be conducted in a more guided way in order to be able to compare
the outputs from the different cases in a more systematic way.

quality of the generated configurators . As raised by Rexel, gen-
erated configurators cannot always be directly put in the user’s hand. They
are graphical user interfaces which require some customization efforts. While
the FCSS language alleviates this problem, our primary goal was to generate
functionally correct configurators, being aware that the ultimate layout and
beautification operations will be left to designers.

Nichols and Faurling already mentioned that automatically generating
fully-functional user interfaces has been successfully applied in limited do-
mains [Nichols and Faulring, 2005]. Among them, we can cite remote con-
trols [Nichols et al., 2002] and dialogue box design [Kim and Foley, 1993].
Whether configuration engineering can reach that level of maturity is still
an open question.

8.3 perspectives

8.3.1 Reverse-engineering

In this thesis, we focus on the development of new configurators. We be-
lieve that our approach could be used together with reverse-engineering
techniques in order to migrate and update existing ad-hoc configurators.
That point has already been addressed elsewhere for Web configura-
tors [Abbasi et al., 2014]. There, Abbasi et al. propose the supervised and
semi-automatic reverse-engineering process depicted in Figure 8.1. The user
starts with defining variability data extraction patterns (vde patterns) for a given
Web page in an HTML-like language (1). For a given Web page and a given
vde pattern, the Web Wrapper extracts data which correspond to the pattern
and save it in an XML format (2). Some user configurations are also sim-
ulated in order to extract dynamic contents like, e.g., cross-tree constraints
(3). The contents extracted in the second and third steps can then be edited
(4) and are transformed into a TVL feature model in step 5 . Actually, sev-
eral FMs can exist, e.g., one for each configuration step. They are merged by
FAMILIAR (6) a tool-supported language to merge incomplete FMs into a
single FM [Acher et al., 2013].

8.3. Perspectives 171

Sp
ec

ify
vd
e

pa
tte

rn
s

(I)

U
se

r

W
eb

 p
ag

e

vd
e

pa
tte

rn
s

Ex
tr

ac
t

va
ria

bi
lit

y
da

ta
(A

)

C
ra

w
l P

ag
e

(A
/I)

Va
ria

bi
lit

y
da

ta

(X
M

L)

Pa
ge

 is
 c

ra
w

la
bl

e
[n

ew
 s

ta
te

]

Pr
oc

es
s

da
ta

(A

/I)

G
en

er
at

e
TV

L
m

od
el

(A

)

[n
ew

 p
ag

e]

TV
L

m
od

el
s

FA
M

IL
IA

R
C

om
pl

et
e

TV
L

m
od

el

1

2 3
4 5

6

Fi
gu

re
8
.1

.:
R

ev
er

se
-e

ng
in

ee
ri

ng
pr

oc
es

s
fo

r
W

eb
co

nfi
gu

ra
to

rs
(t

ak
en

fr
om

[A
bb

as
ie

t
al

.,
2

0
1

4
])

172 8. conclusions

Forward Engineering

Original ad hoc
configurator

source code

Configuration
GUI

Extract
variability data

Generate
Configuration

GUI
Validate

variability model

Re-engineered
Configurator

Reverse Engineering

Configuration
 solver instance

source code

Configuration
 GUI

Options

Descriptive
information

Constraints

Documentation

Web objects

Variability model

Figure 8.2.: Re-engineering process for configurators

Figure 8.2 presents the full re-engineering process, the contribution
of this thesis being on the right side. Interested readers might refer
to [Boucher et al., 2012a] for more detailed information.

8.3.2 Multiple Targets

We envision two solutions to target multiple output languages. The critical
point is to have a UIDL suited to our configuration needs. The first solution
consists in selecting a relevant subset of an UIDL like UsiXML to meet our
requirements while still taking advantage of existing code generators. The
second approach is to define our own UIDL dedicated to configuration GUIs.
In that case, UI concepts would be strongly connected to FM concepts. That
work is in its exploratory phase in our research laboratory. We do not discuss
the content of our custom UIDL here as the current version, based on our
work, is still under development. At the moment, a prototype generator
produces simple Swing configurators.

8.3.3 Ordering Views

In the GUI generation approach, the different views are rendered in the GUI
in the same order as in the TVDL model. These views are all accessible to
the user at any time. As we have seen with the Audi example in Chapter 1

(see Figure 1.1), such a behaviour is not suited to all situations. In the future,
generated configurators should support explicit view ordering and activa-
tion/deactivation.

8.3. Perspectives 173

To describe those behaviours, feature configuration work-
flows [Hubaux et al., 2009] or multi-step SPL configura-
tion [White et al., 2014] could be used. There, the workflow defines the
configuration process and each view on the FM is assigned to a task in the
workflow. A view is configured when the corresponding workflow task is
executed. A feature configuration workflow is thus a combination of views
on the FM, workflow and the mapping between them. Up to now, feature
configuration workflows focused on distributed configuration among several
stakeholders but one might easily adapt them to other purposes like the
dynamic behaviour of a GUI in our case.

T1

T21 T22

T4

T32

T31

T33

C1

Legend

Start
 condition

End
 condition

Condition XOR split XOR join

No

Yes

T5T34

Figure 8.3.: Illustrative YAWL workflow for a configuration GUI

Figure 8.3 is an example of such workflow expressed in the YAWL formal-
ism [ter Hofstede et al., 2010]. There, T* labels correspond to tasks and the C1
label refers to a condition. Our complex GUI is composed of a home screen
(T1) where the user has three options (T21, T31, T4). Once she has chosen
one, she enters a sub-workflow which can be composed of a single task (T4),
a sequence of tasks (T21-T22) or more complex patterns (T31, T32, T33, T34).
Once the tasks of the selected path are complete, task T5 is reached. It cor-
responds to a dummy join task. Then comes condition C1 which is used to
determine if the configuration is finished. If the condition is not satisfied, the
workflow goes back to task T1, so creating a loop. On the other side, a pos-
itive answer would mean that the configuration is finished. This condition
could either be automatic (the workflow loops until there is no more variabil-

174 8. conclusions

ity to be configured) or manual (the user clicks on a button to indicate that
she has completed her configuration task).

After having defined views, the workflow representing the dynamic aspect
of the GUI thus has to be modelled and its tasks attached to the different
views to create a so-called FCW. FCW-related beautification information can
also be stored in the FCSS along with information related to the FM and
views.

8.3.4 Workflow Configuration

In [Boucher et al., 2012b], we also proposed to combine workflows with our
approach for the workflows of the ISO/IEC 29110 standard [ISO/IEC, 2010].
The solution is an extension of another one devoted to configurable work-
flows [Gottschalk et al., 2008] and the Synergia tool suite [La Rosa et al., 2007].
That first solution was introduced in [Boucher et al., 2012c].

Our research took place within the NAPLES project1 which aimed at pro-
viding an affordable approach to software lifecycle management. In that
context, our focus was on the operationalization of the workflows from the
ISO/IEC 29110 standard with the Bonita [Bonita, 2014] workflow engine.

Such workflows being configurable, we proposed to use variability models
to configure them. The workflow configuration approach can be decomposed
into four steps:

1. Variability identification. The user has to extract the variability from
the workflows’ definition. Bonita does not support configurable (i.e.,
optional) tasks. As a consequence, we proposed to tag workflow tran-
sitions with conditions on variable values. A transition should thus be
made available for each variable value.

2. Questionnaire creation. For each variation point identified in the first
step, a question has to be created in the workflow configuration ques-
tionnaire. Bonita comes with a questionnaire editor. However, it is a
simple drag-and-drop tool where it is not possible to define constraints
between the different questions/answers. As a consequence, we pro-
posed to use our GUI generation approach based on TVL.

3. Workflow & FM connection. A link has to be defined between the
workflow variables and the features from the FM. We proposed to use
a database which, for each answer given by the user (i.e., feature se-
lected), will store the corresponding variable value (for the workflow).
At runtime, Bonita will access that database to check conditions on tran-
sitions.

1 See http://www.cetic.be/NAPLES,1162

http://www.cetic.be/NAPLES,1162

8.3. Perspectives 175

4. Configuration and workflow running. Finally, the user has to answer
questions from the questionnaire and the workflow will be run accord-
ingly using the conditions on transitions and database values.

Figure 8.4 depicts the project planning workflow taken from the ISO/IEC
29110 standard [ISO/IEC, 2010]. It contains eight variables. Four of
them are related to the workflow configuration through the questionnaire,
namely two to the GetStatementWorkReview task and the two others to
GetProjectPlanReview. The value of the other variables is determined by
tasks of the workflow, namely getparallelworkflow and Plan Review by
Customer.

The TVL FM for the questionnaire is visible in Listing 8.1. There, only SWR
feature and its sub-features, i.e., SWR_Immediate and SWR_Meeting, are useful
for the workflow depicted in Figure 8.4. Other features correspond to other
workflows not presented here.

Listing 8.1: TVL model for the project planning workflow questionnaire
1 root Tune {
2 PPR_Meeting −> IMRT ;
3 SWR_Meeting −> IMRT ;
4 RSMC_No −> RATC_Yes ;
5 group a l l o f {
6 SWR group oneof { SWR_Immediate , SWR_Meeting } ,
7 PPR group oneof { PPR_Immediate , PPR_Meeting } ,
8 opt IMRT group oneof { S p e c i f i c , Standard } ,
9 RAT group oneof {QC, Redmine } ,

10 opt RAW group oneof {OSL} ,
11 RSMC group oneof {RSMC_No, RSMC_Yes } ,
12 RATC group oneof {RATC_No, RATC_Yes } ,
13 PW group oneof {PW_No, PW_Yes}
14 }
15 }

Finally, the questionnaire depicted in Figure 8.5 is generated by our ap-
proach with additional data contained in an FCSS model not presented here.
In that case, the controller had to be extended to store the user answers in a
database in order to be able to run the Bonita workflow.

That prototype was developed for workflows from ISO/IEC standards but
it could easily be applied to configure e-commerce Web sites, for example.

176 8. conclusions

Figure
8.

4.:Project
planning

w
orkflow

8.3. Perspectives 177

Figure 8.5.: Questionnaire for the project planning workflow

Part IV

A P P E N D I X E S

A
L A N G U A G E G R A M M A R S

a.1 tvl grammar

1 grammar be.unamur.TVL with org.eclipse.xtext.common.Terminals
2

3 generate tvl "http://www.unamur.be/TVL"
4

5 Model:
6 model+=ModelElement∗;
7

8 ModelElement:
9 Type

10 | Constant
11 | Root_Feature
12 | Feature_Extension;
13

14 /∗ TYPE SECTION ∗/
15 Type:
16 SimpleType
17 | Record;
18

19 SimpleType:
20 type=’int’ name=ID (’in’ domain=Set_Expression)? ’;’
21 | type=’real’ name=ID (’in’ domain=Set_Expression)? ’;’
22 | type=’enum’ name=ID ’in’ enumDomain=Enum_Expression ’;’
23 | type=’bool’ name=ID ’;’
24 | type=’string’ ’<’ size=INT ’>’ name=ID ’;’;
25

26 Record:
27 type=’struct ’ name=ID ’{’ fields+=Record_Field+ ’}’;
28

29

30 Record_Field:
31 type=’int’ name=ID (’in’ domain=Set_Expression)? ’;’
32 | type=’real’ name=ID (’in’ domain=Set_Expression)? ’;’
33 | type=’enum’ name=ID ’in’ enumDomain=Enum_Expression ’;’
34 | type=’string’ name=ID ’;’
35 | type=’bool’ name=ID ’;’
36 | typeref=[SimpleType|ID] name=ID ’;’;
37

182 A. language grammars

38 /∗ CONSTANT SECTION ∗/
39 Constant:
40 ’const’ type=’int’ name=ID value=Integer ’;’
41 | ’const’ type=’real’ name=ID value=Real ’;’
42 | ’const’ type=’bool’ name=ID (value=’true’ | value=’false’) ’;’
43 | ’const’ type=’string’ name=ID value=STRING ’;’
44 ;
45

46 /∗ ID SECTION ∗/
47 Common_Feature: Feature_Declaration | Feature_Extension;
48

49 Feature_Declaration: Root_Feature | Hierarchical_Feature;
50

51 Short_ID:
52 Feature_Declaration
53 | Attribute
54 | Constant
55 | Enum_Element
56 ;
57

58 Short_IDTail:
59 Feature_Declaration
60 | Attribute
61 | Shared_Feature
62 | Sub_Attribute
63 ;
64

65 Common_Short_ID: Short_ID | Short_IDTail;
66

67 Long_ID:
68 keyword=Shortcut tail =Long_IDTail
69 | head=[Short_ID] (tail=(Long_IDTail))?;
70

71 Long_IDTail:
72 ’.’ head=[Short_IDTail] (tail=Long_IDTail)?;
73

74

75 Shortcut:
76 ’parent’
77 | ’ this ’
78 | ’root ’;
79

80

81 /∗ FEATURE SECTION ∗/
82

83 Root_Feature: ’root’ name=ID body=Feature_Content;
84

85 Feature_Extension: ref=Long_ID body=Feature_Content;
86

87 Feature_Content:
88 ’{’ bodyItems+=Feature_Body_Item+ ’}’
89 | group=Feature_Group;
90

A.1. TVL Grammar 183

91 Feature_Body_Item:
92 Data
93 | Constraint
94 | Attribute
95 | Feature_Group;
96

97 Feature_Group:
98 ’group’ cardinality=Cardinality ’{’ sub_features+=Sub_Feature (’,’ sub_features+=

Sub_Feature)∗ ’}’;
99

100 Hierarchical_Feature:
101 optional?=(’opt’)? name=ID cardinality=BasicCardinality? body=Feature_Content?;
102

103 Shared_Feature:
104 ’shared’ ref=Long_ID;
105

106 Sub_Feature:
107 Hierarchical_Feature
108 | Shared_Feature;
109

110 Cardinality:
111 value=(’oneof’|’oneOf’)
112 | value=(’someof’|’someOf’)
113 | value=(’ allof ’|’allOf ’)
114 | ’[’ min=Bound ’..’ max=Bound ’]’;
115

116 BasicCardinality:
117 ’[’ min=Bound ’..’ max=Bound ’]’ ;
118

119 Bound:
120 boundRef=[Constant]
121 | boundInt=INT
122 | boundAst=’∗’;
123

124 Feature_Scope: Attribute | Hierarchical_Feature;
125

126 FQN: Feature_Declaration | Attribute;
127

128 /∗ ATTRIBUTE SECTION ∗/
129 Attribute:
130 Base_Attribute
131 | {Structure_Attribute} type=[Record] name=ID cardinality=BasicCardinality? ’{’

sub_attributes+=Sub_Attribute+ ’}’;
132

133 Base_Attribute:
134 type=’int’ name=ID cardinality=BasicCardinality? attr_body=Attribute_Body? ’;’
135 | type=’real’ name=ID cardinality=BasicCardinality? attr_body=Attribute_Body? ’;’
136 | type=’bool’ name=ID cardinality=BasicCardinality? attr_body=Attribute_Body? ’;’
137 | type=’string’ name=ID cardinality=BasicCardinality? attr_body=Attribute_Body? ’;’
138 | type=’enum’ name=ID cardinality=BasicCardinality? ’in’ domain=Enum_Expression (’is’

attr_value=Expression |’,’ attr_condition=Attribute_Conditionnal)?’;’
139 | predefined_type=[SimpleType|ID] name=ID cardinality=BasicCardinality? attr_body=

Attribute_Body? ’;’

184 A. language grammars

140 ;
141

142 Attribute_Body:
143 ’ is ’ attr_value=Expression
144 | ’in’ attr_value_set=Set_Expression(’,’ attr_condition=Attribute_Conditionnal)?
145 | ’,’ attr_condition=Attribute_Conditionnal;
146

147 Attribute_Conditionnal:
148 (’ ifin :’|’ ifIn :’) (’ is ’ ifin_condition=Expression12| ’in’ ifin_condition_set=

Set_Expression) (’,’ (’ ifout :’|’ ifOut :’) (’ is ’ ifout_condition=Expression12| ’in’
ifout_condition_set=Set_Expression))?

149 | (’ ifout :’|’ ifOut :’) (’ is ’ ifout_condition=Expression12| ’in’ ifout_condition_set=
Set_Expression);

150

151 Sub_Attribute:
152 sub_id=[Record_Field] attr_body=Attribute_Body ’;’;
153

154 Enum_Expression: ’{’ list=Enum_List ’}’;
155

156 Enum_List: enums+=Enum_Element (’,’ enums+=Enum_Element)∗;
157

158 Enum_Element: name=ID;
159

160 /∗ Expression SECTION ∗/
161

162

163 Expression12 returns ComplexExpression:
164 Expression11 =>({If. left =current} ’?’ right+=Expression12’:’ right+=Expression11)∗;
165

166 Expression11 returns ComplexExpression:
167 Expression10 =>({LeftImplication.left=current}’<−’ right=Expression10)∗;
168

169 Expression10 returns ComplexExpression:
170 Expression9 =>({RightImplication.left=current}’−>’ right=Expression9)∗;
171

172 Expression9 returns ComplexExpression:
173 Expression8 =>({BiImplication.left=current}’<−>’ right=Expression8)∗;
174

175 Expression8 returns ComplexExpression:
176 Expression7 =>({Or.left=current}’||’ right=Expression7)∗;
177

178 Expression7 returns ComplexExpression:
179 Expression6 =>({And.left=current}’&&’ right=Expression6)∗;
180

181 Expression6 returns ComplexExpression:
182 Expression5 =>(((({Equality. left =current}’==’ | {Inequality. left =current }’!=’) right=

Expression5)∗ | ({In. left =current}’in ’) right=(Set_Expression)))?;
183

184 Expression5 returns ComplexExpression:
185 Expression4 =>(({Less. left=current} ’<’=>({Lessequal. left=current} ’=’) ?|{Greater. left =

current} ’>’=>({Greaterequal. left=current} ’=’) ?) right=Expression4)∗;
186

187 Expression4 returns ComplexExpression:

A.1. TVL Grammar 185

188 Expression3 =>(({Plus. left=current}’+’| {Minus.left=current}’−’) right=Expression3)∗;
189

190 Expression3 returns ComplexExpression:
191 Expression2 =>(({Multiplication. left =current}’∗’| {Division. left =current}’/’) right=

Expression2)∗;
192

193 Expression2 returns ComplexExpression:
194 Expression =>(({Excludes.left=current}’excludes’ | {Requires. left =current}’requires ’)

right=Expression)∗;
195

196

197

198 Expression:
199 value=’true’
200 | value=’false ’
201 | value=Integer
202 | value=Real
203 | ref=Long_ID
204 | op=’!’ expression=Expression
205 | op=’−’ expression=Expression
206 | op=’(’ expression=Expression12 ’)’
207 | op=’abs’ ’(’ expression=Expression12’)’
208 | op=’sum’ ’(’ (expression_list=Expression_List | child=Children_ID | values=Values_Set)

’)’
209 | op=’mul’ ’(’ (expression_list=Expression_List | child=Children_ID) ’)’
210 | op=’min’ ’(’ (expression_list=Expression_List | child=Children_ID | values=Values_Set)

’)’
211 | op=’max’ ’(’ (expression_list=Expression_List | child=Children_ID | values=Values_Set)

’)’
212 | op=’count’ ’(’ (children=’children’ | children=’selectedchildren’ | instances=

Filtered_Instances_Set) ’) ’
213 | op=’avg’ ’(’ (expression_list=Expression_List | child=Children_ID | values=Values_Set)

’)’
214 | op=’and’ ’(’ (expression_list=Expression_List | child=Children_ID | values=Values_Set)

’)’
215 | op=’or’ ’(’ (expression_list=Expression_List | child=Children_ID | values=Values_Set)

’)’
216 | op=’xor’ ’(’ (expression_list=Expression_List | child=Children_ID | values=Values_Set)

’)’;
217

218 Expression_List:
219 expressions+=Expression12 (’,’ expressions+=Expression12)∗;
220

221 Set_Expression:
222 ’{’ list =Expression_List ’}’
223 | ’[’ min=Set_Expression_Bound ’..’ max=Set_Expression_Bound ’]’;
224

225 Set_Expression_Bound:
226 Integer
227 | Real
228 | ’∗’;
229

230

186 A. language grammars

231

232 Values_Set:
233 values=Mapped_Values (’.filter’ ’(’ expression=Expression12 ’)’)?
234 ;
235 Mapped_Values:
236 instances_set=Filtered_Instances_Set ’. map’ ’(’expression=Expression12 ’)’
237 ;
238

239 Filtered_Instances_Set :
240 instances_set=Terminal_Instances_Set (’. filter ’ ’(’ expression=Expression12 ’)’)?
241 ;
242

243 Terminal_Instances_Set:
244 instances=[Feature_Declaration] ;
245

246

247 Temporary_Variable:
248 ’var ’ name=ID
249 ;
250

251 Children_ID:
252 child=’selectedchildren .’ ref=Long_ID
253 | child=’children .’ ref=Long_ID;
254

255 /∗ CONSTRAINTS SECTION ∗/
256 Constraint:
257 condition=(’ ifin :’|’ ifIn :’) expression=Expression12’;’
258 | condition=(’ifout :’|’ ifOut :’) expression=Expression12’;’
259 | expression=Expression12’;’;
260

261 /∗ DATA SECTION ∗/
262 Data:
263 ’data’ ’{’ pairs+=Data_Pair+ ’}’;
264

265 Data_Pair:
266 key=STRING value=STRING;
267

268 Integer:
269 (’−’)? INT;
270 Real:
271 Integer ’.’ INT+;
272

273 terminal STRING :
274 ’ " ’ .∗ ’" ’;

A.2. TVDL Grammar 187

a.2 tvdl grammar

1 grammar be.unamur.TVDL with org.eclipse.xtext.common.Terminals
2

3 import "http://www.unamur.be/TVL" as tvl
4

5 generate tvdl "http://www.unamur.be/TVDL"
6

7 TVDLModel:
8 tvl=Import
9 views+=View∗;

10

11 Import: ’import’ importURI=STRING;
12

13 View: View_Grouping | View_Declaration;
14

15 View_Grouping: ’$’ name=ID ’{’subViews+=[View] (’&&’ subViews+=[View])∗’}’;
16

17 View_Declaration: name=ID ’{’ expressions+=ViewExpression (’&&’ expressions+=
ViewExpression)∗ ’}’;∗

18

19 ViewExpression: id=TVL_ID (refinement=ViewExpressionRefinement)?;
20

21 ViewExpressionRefinement:
22 " : " (subtree=SubtreeExpression| attributes=AttributeExpression | group=GROUP | list=

Common_List);
23

24 SubtreeExpression: keyword=SUBTREE (stopList=Stop_List)? (refinement=
SubtreeExpressionRefinement)?;

25

26 SubtreeExpressionRefinement: "|" (attributes=AttributeExpression | groups=GroupExpression
| list=Common_List);

27

28 AttributeExpression: keyword=ATTRIBUTES ("|" list=Common_List)?;
29

30 GroupExpression: keyword=GROUPS ("|" list=Common_List)?;
31

32 Stop_List: ("/" stopElements+=List_Element)+;
33

34 Common_List: Exclusion_List | Inclusion_List;
35

36 Exclusion_List: " ! " "[" elements+=List_Element (’,’ (elements+=List_Element))∗ "]";
37

38 Inclusion_List : "[" elements+=List_Element (’,’ (elements+=List_Element))∗ "]";
39

40 List_Element:
41 id=TVL_ID
42 | keyword=(ATTRIBUTES|GROUP|GROUPS);
43

44 TVL_ID:
45 head=[tvl::Feature_Declaration] tail =TVL_IDTail
46 | head=[tvl::Attribute];

188 A. language grammars

47

48 TVL_IDTail: ’.’ head=[tvl::FQN] (tail=TVL_IDTail)?;
49

50 terminal GROUP: "group";
51 terminal GROUPS: "groups";
52 terminal SUBTREE: "∗";
53 terminal ATTRIBUTES: "attributes";

A.3. FCSS Grammar 189

a.3 fcss grammar

1 grammar be.unamur.FCSS with org.eclipse.xtext.common.Terminals
2

3 import "http://www.unamur.be/TVL" as tvl
4 import "http://www.unamur.be/TVDL" as tvdl
5

6 generate fcss "http://www.unamur.be/FCSS"
7

8 FCSSModel:
9 tvlImp=Import (tvdlImp=Import)? parts+=Part+;

10

11 Import: ’import’ importURI=STRING;
12

13

14 Part:
15 FCSS_Feature
16 | FCSS_Attribute
17 | FCSS_Global
18 | FCSS_View;
19

20 FCSS_Feature: feature=Feature_ID ’{’ attributes+=FeatureAttribute+ ’}’;
21

22 FCSS_Attribute: ’#’ attribute =Attribute_ID ’{’ attributes +=AttributeAttribute+ ’}’;
23

24 FCSS_View: ’$’ view=[tvdl::View] ’{’ attributes +=ViewAttribute+’}’;
25

26 FCSS_Global: ’.’ ’{’ attributes +=GlobalAttribute+ ’}’;
27

28 Feature_ID: head=[tvl::Feature_Declaration] (tail =Feature_IDTail)?;
29

30 Feature_IDTail: ’.’ head=[tvl::Hierarchical_Feature] (tail =Feature_IDTail)?;
31

32 Attribute_ID: head=[tvl::Feature_Declaration] tail =Attribute_IDTail
33 | head=[tvl::Attribute];
34 Attribute_IDTail: ’.’ head=[tvl::Feature_Scope] (tail=Attribute_IDTail)?;
35

36 GlobalAttribute:
37 globalType=’andGroup’ ’:’ globalValue=(’textbox’) ’;’
38 | globalType=’orGroup’ ’:’ globalValue=(’listbox’ | ’checkbox’) ’;’
39 | globalType=’xorGroup’ ’:’ globalValue=(’listbox’ | ’radiogroup’) ’;’
40 | globalType=’cardGroup’ ’:’ globalValue=(’checkbox’) ’;’
41 | globalType=’feature’ ’:’ globalValue=(’text’ | ’image’) ’;’
42 | globalType=’optFeature’ ’:’ globalValue=(’checkbox’ | ’listbox’ | ’radiogroup’) ’;’
43 | globalType=’selectFeature’ ’:’ globalValue=(’checkbox’ | ’listbox’ | ’radiogroup’) ’;’
44 | globalType=’intAttribute’ ’:’ globalValue=(’textbox’) ’;’
45 | globalType=’realAttribute’ ’:’ globalValue=(’textbox’) ’;’
46 | globalType=’boolAttribute’ ’:’ globalValue=(’checkbox’ | ’listbox ’) ’;’
47 | globalType=’enumAttribute’ ’:’ globalValue=(’listbox’ | ’radiogroup’) ’;’
48 | globalType=’groupContainer’ ’:’ globalValue=(’true’ | ’ false ’) ’;’
49 | globalType=’unavailableContent’ ’:’ globalValue=(’hidden’ | ’greyed’ | ’none’)
50 | globalType=’view’ ’:’ globalValue=(’tab’) ’;’ ;

190 A. language grammars

51

52 FeatureAttribute:
53 featureType=’widget’ ’:’ featureValue=(’text ’ | ’image’) ’;’
54 | featureType=’opt’ ’:’ featureValue=(’checkbox’ | ’listbox ’ | ’radiogroup’) ’;’
55 | featureType=’select’ ’:’ featureValue=(’checkbox’ | ’listbox ’ | ’radiogroup’) ’;’
56 | featureType=’group’ ’{’ groupAttributes+=GroupAttribute+ ’}’ ’;’
57 | CommonAttribute;
58

59 AttributeAttribute:
60 attributeType=’widget’ ’:’ attributeValue=(’textbox’ | ’checkbox’| ’listbox’ | ’

radiogroup’) ’;’
61 | CommonAttribute;
62

63 ViewAttribute:
64 viewType=’widget’ ’:’ viewValue=(’tab’) ’;’
65 | viewType=’generate’ ’:’ viewValue=(’true’ | ’ false ’) ’;’
66 | CommonAttribute
67 | GlobalAttribute;
68

69 CommonAttribute:
70 commonType=’label’ ’:’ commonValue=STRING ’;’
71 | commonType=’help’ ’:’ commonValue=STRING ’;’
72 | commonType=’unavailable’ ’:’ commonValue=(’hidden’ | ’greyed’ | ’none’);
73

74 GroupAttribute:
75 groupType=’widget’ ’:’ groupValue=(’textbox’ | ’listbox’ | ’checkbox’ | ’radiogroup’)

’;’
76 | groupType=’container’ ’:’ groupValue=(’true’ | ’false ’) ’;’
77 | groupType=’default’ ’:’ defaultSubFeature=[tvl::Hierarchical_Feature] ’;’
78 | CommonAttribute;
79

80 terminal STRING :
81 ’ " ’ .∗ ’" ’;

B
P R O T O T Y P E G E N E R AT O R

b.1 parser java class

1 package parserHtmlToJS;
2

3 import java.io . File ;
4 import java.io . FileWriter ;
5 import java.io .IOException;
6 import java.io .InputStream;
7 import java.io .UnsupportedEncodingException;
8 import java. util . List ;
9 import java. util .Properties;

10

11 import org.apache.http.HttpResponse;
12 import org.apache.http.client .HttpClient;
13 import org.apache.http.client .methods.HttpPost;
14 import org.apache.http.entity.StringEntity ;
15 import org.apache.http.impl.client.DefaultHttpClient;
16 import org.apache.http.message.BasicHeader;
17 import org.apache.http.protocol.HTTP;
18 import org.json.simple.JSONArray;
19 import org.json.simple.JSONObject;
20 import org.jsoup.Jsoup;
21 import org.jsoup.nodes.Attribute;
22 import org.jsoup.nodes.Document;
23 import org.jsoup.nodes.Element;
24 import org.jsoup.nodes.Node;
25 import org.jsoup.nodes.TextNode;
26

27

28 public class Parser {
29

30 private static String htmlFilePath; // The absolute path to the HTML file
31

32 private static String targetHtmlFilePath; //The target path for the HTML file
33

34 private static String serverAddress; //Address of the server where you upload the json
file

35

36 /∗∗

192 B. prototype generator

37 ∗ Remove unnecessary clones from the initial html configurator (when the minimum
cardinality is zero)

38 ∗ and create a copy of each clone in the json format on the server
39 ∗/
40 public static void main (String[] args){
41

42 // Load the parser properties file
43 Properties props = new Properties();
44 InputStream stream = Parser.class.getClassLoader().getResourceAsStream("config.

properties");
45 try {
46 props.load(stream);
47 } catch (IOException e) {
48 e.printStackTrace() ;
49 }
50

51 htmlFilePath = props.getProperty("htmlFilePath"); // Retrieve the absolute path to
the HTML file

52 targetHtmlFilePath = props.getProperty("targetHtmlFilePath"); // Retrieve the target
path for the HTML file

53 serverAddress = props.getProperty("serverAddress"); //Retrieve the address of the
server where you upload the json file

54

55 Document domObject = getTheHtmlDomObjectFromHtmlFile();
56

57 JSONObject obj = transformTheHtmlDomObjectToJsonFormat(domObject);
58

59 modifyTheHtmlFileWithTheNewHtmlDomObject(domObject);
60

61 sendTheJSonObjectToTheServer(obj);
62

63 System.out.println("Parsing: done");
64

65 }
66

67 /∗∗
68 ∗ Send the Json Object to the server that contains the clones
69 ∗ @param obj The JSONOject that represents all the clones of the configurator

html file
70 ∗/
71 private static void sendTheJSonObjectToTheServer(JSONObject obj) {
72 // Create the post request
73 HttpClient httpclient = new DefaultHttpClient();
74 HttpResponse response = null;
75 HttpPost httppost = new HttpPost(serverAddress);
76

77 // Initialize the request body with the json object
78 StringEntity se = null;
79 try {
80 se = new StringEntity(obj.toString ()) ;
81 } catch (UnsupportedEncodingException e) {
82 e.printStackTrace() ;
83 }

B.1. Parser Java Class 193

84 se.setContentEncoding(new BasicHeader(HTTP.CONTENT_TYPE, "application/json"))
;

85 httppost.setEntity (se) ;
86

87 // Execute the post request
88 try {
89 response = httpclient .execute(httppost);
90 } catch (IOException e) {
91 e.printStackTrace() ;
92 }
93 // Retrieve the status of the response from the server
94 int statusCode = response.getStatusLine().getStatusCode();
95 }
96

97 /∗∗
98 ∗ Modify the html file with the html dom object without unnecessary clones
99 ∗ @param domObject The Document dom object that represents the new html page

of the configurator
100 ∗/
101 private static void modifyTheHtmlFileWithTheNewHtmlDomObject(Document

domObject) {
102 try {
103 // Create the new html file at the location of the old file
104 FileWriter file = new FileWriter(targetHtmlFilePath);
105 file .write(domObject.toString());
106 file .flush () ;
107 file . close () ;
108

109 } catch (IOException e) {
110 e.printStackTrace() ;
111 }
112 }
113

114 /∗∗
115 ∗ Remove unnecessary clones of the object when the minimum cardinality is zero
116 ∗ and create a json object for each clones encountered in the Document which represents

the initial html
117 ∗ @param domObject The Document dom object that represents the initial html

page of the configurator
118 ∗ @return JSONObject A json object that contains a copy of all the clones found in

the initial html
119 ∗/
120 private static JSONObject transformTheHtmlDomObjectToJsonFormat(Document

domObject) {
121 // Warning: absolutely use Node object to preserve the structure of the html document
122 // Retrieve the first relevant nodes in the hierarchy to start the parsing
123 List<Node> racines = domObject.childNode(1).childNode(2).childNode(3).childNode

(1).childNodes();
124 // Create a json array that will contain all the json clones
125 JSONArray list = new JSONArray();
126 // Apply the parsing to each child node
127 for (int i = 0 ; i < racines . size () ; i++) {
128 parsing(racines .get(i) , list , true) ;

194 B. prototype generator

129 }
130 JSONObject obj = new JSONObject();
131 // Put the array of json clones in the result object
132 obj .put("clones" , list) ;
133 return obj ;
134 }
135

136 /∗∗
137 ∗ Get the html file and transform it into Document object
138 ∗ @return Document The Document dom object that represents the initial html

page of the configurator
139 ∗/
140 private static Document getTheHtmlDomObjectFromHtmlFile() {
141 Document racine = null;
142 try {
143 // Get the html file at the ’ htmlFilePath ’ location
144 File input = new File(htmlFilePath);
145 // Transform the file into a Document object
146 racine = Jsoup.parse(input, "UTF−8");
147 } catch (IOException e) {
148 e.printStackTrace() ;;
149 }
150 return racine;
151 }
152

153 /∗∗
154 ∗ Handle a node of the dom hierarchy by applying parsing to its child nodes in accordance

with the different cases
155 ∗ @param node The Node to parse
156 ∗ @param list The json array containing all the clones already registered

from the dom hierarchy
157 ∗ @param firstClone A boolean indicating if it is necessary or not to record the

next clone met
158 ∗/
159 private static void parsing(Node node, JSONArray list, boolean firstClone) {
160 int i = 0;
161 // If the node has a class attribute
162 if (node.hasAttr("class")) {
163 // If the node contains clonable content
164 if (((Element)node).hasClass("clonable") && node.childNodes().size()>=5) {
165 // This is the first time we encounter this clone , we must create a json object
166 if (firstClone) {
167 // Parse the first clone and create a json object that represents it into

the json array
168 list .add(parsingClone(node.childNode(3), list, true, 0, true)) ;
169 firstClone = false ;
170 // If this is not the first time that the clone is encountered and the

minimum cardinality is > 0
171 } else if (!node.childNode(3).hasAttr("delete")) {
172 // Just parse the clone
173 parsing(node.childNode(3), list , firstClone) ;
174 }
175 // Remove the unnecessary ’ label ’ attribute

B.1. Parser Java Class 195

176 node.childNode(3).removeAttr("label");
177 // If the minimum cardinality = 0
178 if (node.childNode(3).hasAttr("delete")) {
179 // Remove the first clone
180 node.childNode(2).remove();
181 node.childNode(2).remove();
182 i = 2;
183 } else {
184 i = 4;
185 }
186 }
187 }
188 // Retrieve the children of the node
189 List<Node> nodes = node.childNodes();
190

191 // Apply the parsing to each child node not yet visited
192 for (int j = i ; j < nodes.size() ; j++) {
193 parsing(nodes.get(j) , list , firstClone) ;
194 }
195 }
196

197 /∗∗
198 ∗ Handle a node of the dom hierarchy by applying parsing to its child nodes in accordance

with the different cases
199 ∗ and create an object in json format which represents the node
200 ∗ @param node The Node to parse
201 ∗ @param list The json array containing all the clones already registered

from the dom hierarchy
202 ∗ @param newClone A boolean indicating if it begins to generate a new clone or

not
203 ∗ @param indice An integer indicating the number of parameters in the first id

of the clonable content
204 ∗ @param firstClone A boolean indicating if it is necessary or not to record the

next clone met
205 ∗ @return JSONObject A json object that contains a copy clonable content found in

the initial html
206 ∗/
207 private static JSONObject parsingClone(Node node, JSONArray list, boolean newClone,

int indice, boolean firstClone) {
208 JSONObject obj = new JSONObject();
209 // If the node isn ’ t a TextNode
210 if (!node.nodeName().equals("#text")) {
211 // Put the tag name of the html node to the current json object
212 obj .put("kind", node.nodeName());
213

214 // Put all the attributes of the html node to the current json object
215 indice = convertAndAddAttributes(obj, node.attributes().asList() , newClone,

indice);
216

217 int i = 0;
218 // If the node has a class attribute
219 if (node.hasAttr("class")) {
220 // If the node contains clonable content

196 B. prototype generator

221 if (((Element)node).hasClass("clonable") && node.childNodes().size()>=5) {
222 // This is the first time we encounter this clone , we must create a json

object
223 if (firstClone) {
224 // Parse the first clone and create a json object that represents

it into the json array
225 list .add(parsingClone(node.childNode(3), list, true, 0, true)) ;
226 firstClone = false ;
227 }
228 // Remove the unnecessary ’ label ’ attribute
229 node.childNode(3).removeAttr("label");
230 // If the minimum cardinality = 0
231 if (node.childNode(3).hasAttr("delete")) {
232 // Remove the first clone
233 node.childNode(2).remove();
234 node.childNode(2).remove();
235 i = 3;
236 }
237 }
238 }
239 // Retrieve the children of the node
240 List<Node> nodes = node.childNodes();
241 // Create and add the children nodes to the current json object
242 JSONArray content = null;
243 if (nodes.size() > 0) {
244 content = new JSONArray();
245 }
246 // Apply the parsing to each child node not yet visited
247 for (int j = 0 ; j < nodes.size() ; j++) {
248 if (j != i || i != 3) {
249 content.add(parsingClone(nodes.get(j), list , false , indice,

firstClone)) ;
250 }
251 }
252 obj .put("content", content);
253

254 // If the node is a TextNode
255 } else {
256 // Create a json object representing a TextNode
257 obj .put("kind", " text ") ;
258 obj .put("champ", ((TextNode)node).text());
259 }
260 return obj ;
261

262 }
263

264 /∗∗
265 ∗ Convert the attributes contained in the html node in json format
266 ∗ and add them to the current object json
267 ∗ @param obj A JSONObject representing the current json object to which we

add the attributes
268 ∗ @param attrs A List of Attribute that must be handled

B.1. Parser Java Class 197

269 ∗ @param newClone A boolean indicating if it begins to generate a new clone or
not

270 ∗ @param indice An integer indicating the number of parameters in the first id
of the clonable content

271 ∗ @return int An integer indicating the number of parameters in the first
id of the clonable content

272 ∗/
273 private static int convertAndAddAttributes(JSONObject obj, List<Attribute> attrs,

boolean newClone, int indice) {
274 // For each attribute
275 for (int i = 0; i < attrs . size () ; i++) {
276 // If the attribute is the ID
277 if (attrs .get(i) .getKey().equals("id")) {
278 // If we begin to generate a new clone
279 if (newClone) {
280 // Split the id
281 String str [] = attrs .get(i) .getValue(). split ("−");
282 String shortId = str [0];
283 // Removes all numbers with the following pattern (shortId : name(−name)∗

)
284 for(int j = 1; j < str . length−1; j++){
285 if (j % 2 == 0) {
286 shortId = shortId +"−"+ str[j];
287 }
288 }
289 obj .put("id" , shortId) ;
290 // initialize the number of parameters
291 indice = str . length/2;
292 } else {
293 // If it ’ s not a new clone , retrieve the extension of the first id because

all id have the following pattern : firtID +extension
294 String strTemp[] = attrs .get(i) .getValue(). split ("−[0−9]+", indice+1);
295 String smallId = strTemp[indice];
296

297 obj .put("id" , smallId) ;
298 }
299 }
300 // For all other attributes except ’ delete ’ attribute
301 else if (! attrs .get(i) .getKey().equals("delete")) {
302 // Parameterize and add the attribute to the current object json
303 obj .put(attrs .get(i) .getKey(), addaptAttribute(attrs .get(i) .getValue(),

indice)) ;
304 }
305 }
306 return indice;
307

308 }
309

310 /∗∗
311 ∗ Adapt an attribute by replacing the numbers with parameters
312 ∗ @param value A String representing an attribute before the adaptation
313 ∗ @param indice An integer indicating the number of parameters in the first id

of the clonable content

198 B. prototype generator

314 ∗ @return String A String representing an attribute after the adaptation with
parameters

315 ∗/
316 private static String addaptAttribute(String value, int indice) {
317

318 String strCase [];
319 // Split the initial attribute
320 String strTemp[] = value. split ("−[0−9]+−", indice);
321 String newVal = strTemp[0];
322 // Reconstruct the attribute with parameters in place of numbers
323 for (int i = 1; i < strTemp.length; i++) {
324 if (i < strTemp.length−1) {
325 newVal = newVal + "−#−" + strTemp[i];
326 } else {
327 strCase = strTemp[i]. split ("−[0−9]+", 2);
328 newVal = newVal + "−#−" + strCase[0]+"−#"+ strCase[1];
329 }
330 }
331 return newVal;
332

333 }
334 }

Part V

B I B L I O G R A P H Y

B I B L I O G R A P H Y

[Jet, 2007] (2007). Jet. Last consulted: February 2014.

[TEF, 2013] (2013). Textual Editing Framework (TEF). Last consulted: Octo-
ber 2013.

[Abbasi, 2014] Abbasi, E. K. (2014). Reverse Engineering Web Configurators.
PhD thesis, University of Namur, PReCISE Research Centre.

[Abbasi et al., 2014] Abbasi, E. K., Acher, M., Heymans, P., and Cleve, A.
(2014). Reverse engineering web configurators. In Proceedings of the 17th
European Conference on Software Maintenance and Reengineering (CSMR’14),
Antwerp, Belgique. IEEE.

[Abbasi et al., 2013] Abbasi, E. K., Hubaux, A., Acher, M., Boucher, Q., and
Heymans, P. (2013). The anatomy of a sales configurator: An empirical
study of 111 cases. In Salinesi, C., Norrie, M. C., and Pastor, O., editors,
Proceedings of the 25th International Conference on Advanced Information Sys-
tems Engineering (CAiSE’13), volume 7908, pages 162–177. Springer.

[Abele et al., 2010] Abele, A., Papadopoulos, Y., Servat, D., Törngren, M.,
and Weber, M. (2010). The CVM framework – a prototype tool for composi-
tional variability management. In [Benavides et al., 2010b], pages 101–106.

[Acher et al., 2012] Acher, M., Collet, P., Lahire, P., and France, R. (2012). Sep-
aration of concerns in feature modeling: Support and applications. In Pro-
ceedings of the 11th Annual International Conference on Aspect-oriented Software
Development (AOSD’12). ACM. to appear.

[Acher et al., 2013] Acher, M., Collet, P., Lahire, P., and France, R. B. (2013).
FAMILIAR: A domain-specific language for large scale management of
feature models. Science of Computer Programming, 78(6):657–681.

[Ali et al., 2002] Ali, M., Pérez-Quiñones, M. A., Abrams, M., and Shell, E.
(2002). Building multi-platform user interfaces with UIML. In Kolski, C.
and Vanderdonckt, J., editors, Computer-Aided Design of User Interfaces III,
pages 255–266. Springer Netherlands.

[Antkiewicz and Czarnecki, 2004] Antkiewicz, M. and Czarnecki, K. (2004).
FeaturePlugin: Feature modeling plug-in for eclipse. In Proceedings of the
2004 OOPSLA Workshop on Eclipse Technology eXchange.

202 Bibliography

[ANTLR, 2013] ANTLR (2013). ANTLR. Last consulted: October 2013.

[Bak et al., 2010] Bak, K., Czarnecki, K., and Wasowski, A. (2010). Feature
and meta-models in Clafer: Mixed, specialized, and coupled. In Proceedings
of the 3rd International Conference on Software Language Engineering (SLE’10),
pages 102–122.

[Batory and Geraci, 1996] Batory, D. and Geraci, B. J. (1996). Validating com-
ponent compositions in software system generators. In Proceedings 4th In-
ternational Conference on Software Reuse (ICSR’96), pages 72–81.

[Batory, 2005] Batory, D. S. (2005). Feature models, grammars, and proposi-
tional formulas. In Proceedings of the 9th International Conference on Software
Product Lines (SPLC’05), pages 7–20.

[Benavides et al., 2010a] Benavides, D., Batory, D. S., and Grünbacher, P., ed-
itors (2010a). Proceedings of the 4th International Workshop on Variability Mod-
elling of Software-Intensive Systems, Linz, Austria, volume 37 of ICB-Research
Report. Universität Duisburg-Essen.

[Benavides et al., 2005] Benavides, D., Martín-Arroyo, P. T., and Cortés, A. R.
(2005). Automated reasoning on feature models. In Proceedings of the
17th International Conference on Advanced Information Systems Engineering
(CAiSE’05), pages 491–503.

[Benavides et al., 2010b] Benavides, D., Segura, S., and Ruiz-Cortés, A.
(2010b). Automated analysis of feature models 20 years later: A literature
review. Information Systems, 35(6):615–636.

[Benavides et al., 2007] Benavides, D., Segura, S., Trinidad, P., and Cortés,
A. R. (2007). FAMA: Tooling a framework for the automated analysis of
feature models. In Proceedings of the 1st International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’07), pages 129–134.

[Beuche, 2008] Beuche, D. (2008). Modeling and building software product
lines with pure: :variants. In Proceedings of the 12th International Software
Product Line Conference (SPLC’08), page 358, Washington, DC, USA. IEEE
Computer Society.

[Blouin et al., 2011] Blouin, A., Morin, B., Nain, G., Beaudoux, O., Albers,
P., and Jézéquel, J.-M. (2011). Combining aspect-oriented modeling with
property-based reasoning to improve user interface adaptation. In Proceed-
ings of the 3rd ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS’11), pages 85–94. ACM.

Bibliography 203

[Blumendorf et al., 2010] Blumendorf, M., Lehmann, G., and Albayrak, S.
(2010). Bridging models and systems at runtime to build adaptive user
interfaces. In Proceedings of the 2nd ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS’10), pages 9–18. ACM.

[Bonita, 2014] Bonita (2014). http://www.bonitasoft.com.

[Botterweck et al., 2009] Botterweck, G., Janota, M., and Schneeweiss, D.
(2009). A design of a configurable feature model configurator. In Pro-
ceedings of the 3rd International Workshop on Variability Modelling of Software-
intensive Systems (VaMoS’09), pages 165–168.

[Boucher et al., 2012a] Boucher, Q., Abbasi, E. K., Hubaux, A., Perrouin, G.,
Acher, M., and Heymans, P. (2012a). Towards more reliable configura-
tors: A re-engineering perspective. In Proceedings of the 3rd Product LinE
Approaches in Software Engineering (PLEASE’12), pages 29–32.

[Boucher et al., 2010] Boucher, Q., Classen, A., Faber, P., and Heymans, P.
(2010). Introducing TVL, a text-based feature modelling language. In Pro-
ceedings of the 4th International Workshop on Variability Modelling of Software-
intensive Systems (VaMoS’10), pages 159–162. Universität Duisburg-Essen.

[Boucher et al., 2012b] Boucher, Q., Flamand, J., Thunissen, M., and Deprez,
J.-C. (2012b). Vers des workflows configurables et standardisés : Premières
expériences. Actes de la Journée Lignes de Produits (JLDP’12).

[Boucher et al., 2012c] Boucher, Q., Perrouin, G., Deprez, J.-C., and Heymans,
P. (2012c). Towards configurable ISO 29110–compliant software develop-
ment processes for very small entities. In Proceedings of the 19th European
System, Software & Service Process Improvement & Innovation Conference (EU-
ROSPI’12), pages 169–180. Springer.

[Boucher et al., 2012d] Boucher, Q., Perrouin, G., and Heymans, P. (2012d).
Deriving configuration interfaces from feature models: A vision paper.
In Proceedings of the 6th International Workshop on Variability Modeling of
Software-Intensive Systems (VaMoS’12), pages 37–44. ACM.

[Burbeck, 1992] Burbeck, S. (1992). Applications programming in
smalltalk-80: How to use model-view-controller (MVC). http://st-
www.cs.illinois.edu/users/smarch/st-docs/mvc.html.

[Calvary et al., 2003] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J. (2003). A unifying reference framework
for multi-target user interfaces. Interacting with Computers, 15:289–308.

204 Bibliography

[Chen et al., 2009] Chen, L., Babar, M. A., and Ali, N. (2009). Variability
management in software product lines: A systematic review. In Proceedings
of the 13th International Software Product Line Conference (SPLC’09), pages 81–
90.

[Classen et al., 2011] Classen, A., Boucher, Q., and Heymans, P. (2011). A
text-based approach to feature modelling: Syntax and semantics of TVL.
Science of Computer Programming, 76:1130–1143.

[Classen et al., 2008] Classen, A., Heymans, P., and Schobbens, P.-Y. (2008).
What’s in a feature: A requirements engineering perspective. In Proceed-
ings of the 11th International Conference on Fundamental Approaches to Software
Engineering (FASE’08), pages 16–30.

[Coutaz, 2010] Coutaz, J. (2010). User interface plasticity: Model driven en-
gineering to the limit! In Proceedings of the 2nd ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS’10), pages 1–8. ACM.

[Cyledge, 2013] Cyledge (2013). Cyledge Configurator Database. Last con-
sulted: August 2013.

[Czarnecki, 2010] Czarnecki, K. (2010). Variability modeling: State of the art
and future directions (keynote). In [Benavides et al., 2010b], page 11.

[Czarnecki and Eisenecker, 2000] Czarnecki, K. and Eisenecker, U. W. (2000).
Generative Programming: Methods, Tools, and Applications. Addison-Wesley.

[Czarnecki and Helsen, 2003] Czarnecki, K. and Helsen, S. (2003). Classifica-
tion of model transformation approaches. In Proceedings of the 2nd OOP-
SLA’03 Workshop on Generative Techniques in the Context of Model-Driven Ar-
chitecture.

[Czarnecki and Helsen, 2006] Czarnecki, K. and Helsen, S. (2006). Feature-
based survey of model transformation approaches. IBM Systems Journal,
45(3):621–645.

[Czarnecki et al., 2005] Czarnecki, K., Helsen, S., and Eisenecker, U. W.
(2005). Formalizing cardinality-based feature models and their specializa-
tion. Software Process: Improvement and Practice, 10(1):7–29.

[de Sousa and Leite, 2003] de Sousa, L. G. and Leite, J. C. (2003). XICL: A
language for the user’s interfaces development and its components. In
Proceedings of the Latin American Conference on Human-computer Interaction
(CLIHC’03), CLIHC ’03, pages 191–200, New York, NY, USA. ACM.

[Devboost, 2013] Devboost (2013). EMFText. Last consulted: October 2013.

Bibliography 205

[Eclipse, 2013] Eclipse (2013). Eclipse Modeling Project. Last consulted: Oc-
tober 2013.

[Efftinge and Zarnekow, 2010] Efftinge, S. and Zarnekow, S. (2010). Good-
bye XML - befreiungsakt mit Xtext. http://jaxenter.de/artikel/
Goodbye-XML-Befreiungsakt-mit-Xtext-0.

[Eisenstein et al., 2001] Eisenstein, J., Vanderdonckt, J., and Puerta, A. (2001).
Applying model-based techniques to the development of UIs for mobile
computers. In Proceedings of the 6th International Conference on Intelligent
User Interfaces (IUI’01), IUI ’01, pages 69–76, New York, NY, USA. ACM.

[Fowler, 2005] Fowler, M. (2005). Language workbenches: The killer-app for
domain specific languages?

[Gabillon et al., 2013] Gabillon, Y., Biri, N., and Otjacques, B. (2013). Method-
ology to integrate multi-context UI variations into a feature model. In Pro-
ceedings of the 17th International Software Product Line Conference Co-located
Workshops (SPLC’13), pages 74–81. ACM.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides,
J. (1995). Design Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, Boston, MA, USA.

[García et al., 2009] García, J. G., González-Calleros, J. M., Vanderdonckt, J.,
and Arteaga, J. M. (2009). A theoretical survey of user interface description
languages: Preliminary results. In Proceedings of the 2009 Latin American
Web Congress (La-web 2009), pages 36–43.

[Gomaa et al., 2005] Gomaa, M., Salah, A., and Rahman, S. (2005). Towards
a better model based user interface development environment : A compre-
hensive survey. In Proceedings of the 38th Midwest Instruction and Computing
Symposium (MICS’05).

[Gottschalk et al., 2008] Gottschalk, F., Aalst, W. V. D., Jansen-Vullers, M. H.,
and Rosa, M. L. (2008). Configurable workflow models. International Jour-
nal of Cooperative Information Systems, 17(2):177–221.

[Grechanik et al., 2004] Grechanik, M., Batory, D. S., and Perry, D. E. (2004).
Design of large-scale polylingual systems. In Proceedings of the 26th Interna-
tional Conference on Software Engineering (ICSE’04), pages 357–366.

[Green, 1989] Green, T. (1989). Cognitive dimensions of notations. In Sut-
cliffe, A. and Macaulay, L., editors, People and Computers V, pages 443–460.
Cambridge University Press.

http://jaxenter.de/artikel/Goodbye-XML-Befreiungsakt-mit-Xtext-0
http://jaxenter.de/artikel/Goodbye-XML-Befreiungsakt-mit-Xtext-0

206 Bibliography

[Greenfield and Short, 2004] Greenfield, J. and Short, K. (2004). Software Fac-
tories: Assembling Applications with Patterns, Models, Frameworks, and Tools.
Wiley, Indianapolis, IN.

[Griss et al., 1998] Griss, M. L., Favaro, J., and Alessandro, M. d. (1998). In-
tegrating feature modeling with the RSEB. In Proceedings of the 5th Interna-
tional Conference on Software Reuse (ICSR’98), pages 76–85.

[Helms et al., 2009] Helms, J., Schaefer, R., Luyten, K., Vermeulen, J.,
Abrams, M., Coyette, A., and Vanderdonckt, J. (2009). Human-centered en-
gineering of interactive systems with the user interface markup language.
In Human-Centered Software Engineering, pages 139–171. Springer.

[Heymans et al., 2012] Heymans, P., Boucher, Q., Classen, A., Bourdoux, A.,
and Demonceau, L. (2012). A code tagging approach to software prod-
uct line development: An application to satellite communication libraries.
International Journal on Software Tools for Technology Transfer.

[Holtz and Rasdorf, 1988] Holtz, N. and Rasdorf, W. (1988). An evaluation
of programming languages and language features for engineering software
development. Engineering with Computers, 3:183–199.

[Hubaux, 2012] Hubaux, A. (2012). Feature-based Configuration: Collaborative,
Dependable, and Controlled. PhD thesis, University of Namur, PReCISE Re-
search Centre.

[Hubaux et al., 2010a] Hubaux, A., Boucher, Q., Hartmann, H., Michel, R.,
and Heymans, P. (2010a). Evaluating a textual feature modelling language:
Four industrial case studies. In Proceedings of the 3rd International Conference
on Software Language Engineering (SLE’10), pages 337–356.

[Hubaux et al., 2009] Hubaux, A., Classen, A., and Heymans, P. (2009). For-
mal modelling of feature configuration workflows. In Proceedings of the 13th
International Software Product Line Conference (SPLC’09), pages 221–230.

[Hubaux et al., 2010b] Hubaux, A., Classen, A., Mendonca, M., and Hey-
mans, P. (2010b). A preliminary review on the application of feature di-
agrams in practice. In [Benavides et al., 2010b], pages 53–59.

[Hubaux et al., 2011] Hubaux, A., Heymans, P., Schobbens, P.-Y., Deridder,
D., and Abbasi, E. K. (2011). Supporting multiple perspectives in feature-
based configuration. Software and Systems Modeling, pages 1–23.

[Hubaux et al., 2013] Hubaux, A., Heymans, P., Schobbens, P.-Y., Deridder,
D., and Abbasi, E. K. (2013). Supporting multiple perspectives in feature-
based configuration. Software and System Modeling, 12(3):641–663.

Bibliography 207

[ISO/IEC, 1996] ISO/IEC (1996). ISO/IEC 14977:1996 Information Technol-
ogy - Syntactic Metalanguage - Extended BNF.

[ISO/IEC, 2010] ISO/IEC (2010). ISO/IEC 29110 – Lifecycle Profiles for Very
Small Entities (VSEs).

[Jamda Project, 2014] Jamda Project (2014). Jamda. Last consulted: February
2014.

[Jin et al., 2014] Jin, D., Qu, X., Cohen, M. B., and Robinson, B. (2014). Con-
figurations everywhere: Implications for testing and debugging in practice.
In Companion Proceedings of the 36th International Conference on Software En-
gineering (ICSE’14), ICSE Companion 2014, pages 215–224, New York, NY,
USA. ACM.

[Johnson and Parekh, 2003] Johnson, P. D. and Parekh, J. (2003). Multiple
device markup language: A rule approach. Technical report, DePaul Uni-
versity.

[Jouault et al., 2008] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008).
ATL: A model transformation tool. Science of Computer Programming, 72(1-
2):31–39.

[Jouault et al., 2006] Jouault, F., Bézivin, J., and Kurtev, I. (2006). TCS: a DSL
for the specification of textual concrete syntaxes in model engineering. In
Proceedings of the 5th international conference on Generative Programming and
Component Engineering (GPCE’06), GPCE ’06, pages 249–254, New York,
NY, USA. ACM.

[JQuery, 2014] JQuery (2014). http://jquery.com/. Last consulted: January
2014.

[Kang et al., 1990] Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, S.
(1990). Feature-oriented domain analysis (FODA) feasibility study. Techni-
cal report, SEI, CMU.

[Kang et al., 1998] Kang, K. C., Kim, S., Lee, J., Kim, K., Kim, G. J., and Shin,
E. (1998). FORM: A feature-oriented reuse method with domain-specific
reference architectures. Annals of Software Engineering, 5:143–168.

[Kästner et al., 2009] Kästner, C., Thüm, T., Saake, G., Feigenspan, J., Leich,
T., Wielgorz, F., and Apel, S. (2009). FeatureIDE: A tool framework for
feature-oriented software development. In Proceedings of the 31th Interna-
tional Conference on Software Engineering (ICSE’09), pages 311–320.

[Kent, 2002] Kent, S. (2002). Model driven engineering. In Butler, M., Petre,
L., and Sere, K., editors, Integrated Formal Methods, volume 2335 of Lecture
Notes in Computer Science, pages 286–298. Springer.

http://jquery.com/

208 Bibliography

[Kim and Foley, 1993] Kim, W. C. and Foley, J. D. (1993). Providing high-level
control and expert assistance in the user interface presentation design. In
Proceedings of the INTERCHI ’93 Conference on Human Factors in Computing
Systems, CHI ’93, pages 430–437, New York, NY, USA. ACM.

[Kleppe et al., 2003] Kleppe, A. G., Warmer, J., and Bast, W. (2003). MDA
Explained: The Model Driven Architecture: Practice and Promise. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Knuth, 1971] Knuth, D. E. (1971). Semantics of context-free languages. Math-
ematical Systems Theory, 5(1):95–96.

[Kost, 2006] Kost, S. (2006). Dynamically generated multi-modal application
interfaces. PhD thesis, Dresden University of Technology. http://d-
nb.info/980375045.

[La Rosa et al., 2007] La Rosa, M., Lux, J., Seidel, S., Dumas, M., and ter Hof-
stede, A. (2007). Questionnaire-driven configuration of reference process
models. In Proceedings of the 19th International Conference on Advanced Infor-
mation Systems Engineering (CAiSE’07), pages 424–438. Springer.

[Limbourg et al., 2005] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouil-
lon, L., and López-Jaquero, V. (2005). UsiXML: A language supporting
multi-path development of user interfaces. In Bastide, R., Palanque, P.,
and Roth, J., editors, Engineering Human Computer Interaction and Interactive
Systems, volume 3425 of Lecture Notes in Computer Science, pages 200–220.
Springer Berlin Heidelberg.

[Mendonca, 2009] Mendonca, M. (2009). Efficient Reasoning Techniques for
Large Scale Feature Models. PhD thesis, University of Waterloo.

[Mendonca et al., 2009] Mendonca, M., Branco, M., and Cowan, D. (2009).
S.P.L.O.T.: Software product lines online tools. In Proceedings of the ACM
International Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion (OOPSLA’09).

[Mens and Gorp, 2006] Mens, T. and Gorp, P. V. (2006). A taxonomy of
model transformation. Electronic Notes in Theoretical Computer Science,
152:125–142.

[Merkle, 2010] Merkle, B. (2010). Textual modeling tools: overview and com-
parison of language workbenches. In Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems Languages and
Applications Companion (OOPSLA’10), pages 139–148. ACM.

Bibliography 209

[Michel et al., 2011] Michel, R., Classen, A., Hubaux, A., and Boucher, Q.
(2011). A formal semantics for feature cardinalities in feature diagrams. In
Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive
Systems (VaMoS’11), pages 82–89.

[Moody, 2009] Moody, D. L. (2009). The "physics" of notations: Toward a
scientific basis for constructing visual notations in software engineering.
IEEE Transactions on Software Engineering, 35:756–779.

[Mueller et al., 2004] Mueller, W., Schaefer, R., and Bleul, S. (2004). Interac-
tive multimodal user interfaces for mobile devices. In Proceedings of the 37th
Annual Hawaii International Conference on System Sciences (HICSS’04), HICSS
’04, pages 90286.1–, Washington, DC, USA. IEEE Computer Society.

[Müller et al., 2001] Müller, A., Forbrig, P., and Cap, C. H. (2001). Model-
based user interface design using markup concepts. In Proceedings of the
8th International Workshop on Interactive Systems: Design, Specification, and
Verification-Revised Papers (DSV-IS’01), DSV-IS ’01, pages 16–27, London,
UK, UK. Springer-Verlag.

[Myers et al., 2000] Myers, B. A., Hudson, S. E., and Pausch, R. F. (2000). Past,
present, and future of user interface software tools. ACM Transactions on
Computer-Human Interaction, 7:3–28.

[Nichols and Faulring, 2005] Nichols, J. and Faulring, A. (2005). Automatic
interface generation and future user interface tools. In Proceedings of the
ACM CHI 2005 Workshop: The Future of User Interface Design Tools.

[Nichols et al., 2002] Nichols, J., Myers, B. A., Higgins, M., Hughes, J., Harris,
T. K., Rosenfeld, R., and Pignol, M. (2002). Generating remote control
interfaces for complex appliances. In Proceedings of the 15th Annual ACM
Symposium on User Interface Software and Technology (UIST’02), pages 161–
170.

[NXP Semiconductors, 2010] NXP Semiconductors (2010).
http://www.nxp.com/.

[Obeo, 2014] Obeo (2014). Acceleo. http://www.eclipse.org/acceleo/.
Last consulted: February 2014.

[Object Management Group, 2012] Object Management Group (2012). OCL
2.3.1 Specification.

[Océ Software Laboratories, 2010] Océ Software Laboratories (2010).
http://www.osl.be/.

http://www.eclipse.org/acceleo/

210 Bibliography

[OMG, 2008] OMG (2008). MOF Model to Text Transformation Language
(MOFM2T), 1.0.

[OMG, 2011] OMG (2011). Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification, Version 1.1.

[Paterno’ et al., 2009] Paterno’, F., Santoro, C., and Spano, L. D. (2009).
MARIA: A universal, declarative, multiple abstraction-level language for
service-oriented applications in ubiquitous environments. ACM Transac-
tions on Computer-Human Interaction, 16(4):19:1–19:30.

[Picard et al., 2003] Picard, E., Fierstone, J., Pinna-Déry, A.-M., and Riveill,
M. (2003). Atelier de composition d’IHM et évaluation du modèle de com-
posants. Technical Report Livrable 3, Réseau National des Technologies
Logicielles.

[Pleuss et al., 2010] Pleuss, A., Botterweck, G., and Dhungana, D. (2010). In-
tegrating automated product derivation and individual user interface de-
sign. In Proceedings of the 4th International Workshop on Variability Modelling
of Software-intensive Systems (VaMoS’10), pages 69–76.

[Pleuss et al., 2011] Pleuss, A., Rabiser, R., and Botterweck, G. (2011). Visual-
ization techniques for application in interactive product configuration. In
Proceedings of the 15th International Software Product Line Conference, Volume
2 (SPLC’11), page 22.

[PloneGov, 2010] PloneGov (2010). http://www.plonegov.org/.

[Pohl et al., 2005] Pohl, K., Böckle, G., and van der Linden, F. J. (2005).
Software Product Line Engineering: Foundations, Principles and Techniques.
Springer.

[Potel, 1996] Potel, M. (1996). MVP: Model-View-Presenter the taligent pro-
gramming model for c++ and java. Taligent Inc.

[Pratt, 1984] Pratt, T. W. (1984). Programming Languages : Design and Imple-
mentation. Prentice Hall, second edition edition. 604 pages.

[Puerta and Eisenstein, 2002] Puerta, A. and Eisenstein, J. (2002). XIML: A
common representation for interaction data. In Proceedings of the 7th In-
ternational Conference on Intelligent User Interfaces (IUI’02), IUI ’02, pages
214–215, New York, NY, USA. ACM.

[Puerta and Eisenstein, 2003] Puerta, A. and Eisenstein, J. (2003). Developing
a multiple user interface representation framework for industry. In Mul-
tiple User Interfaces: Engineering and Application Framework, pages 119–148.
John Wiley and Sons.

Bibliography 211

[pure-systems GmbH, 2006] pure-systems GmbH (2006). Vari-
ant management with pure::variants. http://www.pure-
systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf. Technical
White Paper.

[Quinton et al., 2011] Quinton, C., Parra, C. A., Mosser, S., and Duchien, L.
(2011). Using multiple feature models to design applications for mobile
phones. In Proceedings of the 15th International Software Product Line Confer-
ence, Volume 2 (SPLC’11), page 23.

[QVT Declarative, 2014] QVT Declarative (2014). http://projects.eclipse.
org/projects/modeling.mmt.qvtd. Last consulted: February 2014.

[QVT Operational, 2014] QVT Operational (2014). http://projects.
eclipse.org/projects/modeling.mmt.qvt-oml. Last consulted February
2014.

[Reenskaug, 1979a] Reenskaug, T. (1979a). Models-Views-Controllers.
http://heim.ifi.uio.no/t̃rygver/1979/mvc-2/1979-12-MVC.pdf.

[Reenskaug, 1979b] Reenskaug, T. (1979b). Thing-Model-
View-Editor: An example from a planningsystem.
http://folk.uio.no/trygver/2007/MVC_Originals.pdf.

[Reiser, 2009] Reiser, M.-O. (2009). Core concepts of the compositional vari-
ability management framework (cvm). Technical report, Technische Uni-
versität Berlin.

[Rexel, 2014] Rexel (2014). http://www.rexel.com.

[Sangwan and Hian, 2004] Sangwan, S. and Hian, C. K. (2004). User-centered
design: marketing implications from initial experience in technology sup-
ported products. In Press, I. C. S., editor, Proceedings of the ASEM Engineer-
ing Management Conference, volume 3, pages 1042– 046.

[Schlee and Vanderdonckt, 2004] Schlee, M. and Vanderdonckt, J. (2004).
Generative programming of guis. In Proceedings of the 7th International
Working Conference on Advanced Visual Interfaces (AVI’04), pages 403–406.
ACM.

[Schobbens et al., 2006] Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., and
Bontemps, Y. (2006). Generic semantics of feature diagrams. Computer
Networks, 51(2):456–479.

[Souchon and Vanderdonckt, 2003] Souchon, N. and Vanderdonckt, J. (2003).
A review of XML-compliant user interface description languages. In Jorge,

http://projects.eclipse.org/projects/modeling.mmt.qvtd
http://projects.eclipse.org/projects/modeling.mmt.qvtd
http://projects.eclipse.org/projects/modeling.mmt.qvt-oml
http://projects.eclipse.org/projects/modeling.mmt.qvt-oml

212 Bibliography

J., Jardim Nunes, N., and Falcão e Cunha, J., editors, Interactive Systems. De-
sign, Specification, and Verification, volume 2844 of Lecture Notes in Computer
Science, pages 377–391. Springer Berlin Heidelberg.

[Tarr et al., 1999] Tarr, P., Ossher, H., Harrison, W., and Sutton, S. M. J. (1999).
N degrees of separation: Multi-dimensional separation of concerns. In Pro-
ceedings of the 21st International Conference on Software Engineering (ICSE’99),
pages 107–119.

[ter Hofstede et al., 2010] ter Hofstede, A. H. M., van der Aalst, W. M. P.,
Adams, M., and Russell, N. (2010). Modern Business Process Automation -
YAWL and its Support Environment. Springer.

[Tun et al., 2009] Tun, T. T., Boucher, Q., Classen, A., Hubaux, A., and Hey-
mans, P. (2009). Relating requirements and feature configurations: A sys-
tematic approach. In Proceedings of the 13th International Software Product
Line Conference (SPLC’09), pages 201–210.

[UsiXML Consortium, 2012] UsiXML Consortium (2012). USer Interface eX-
tensible Markup Language (UsiXML). Submitted to the W3C Model-Based
UI Working Group.

[van Deursen and Klint, 2002] van Deursen, A. and Klint, P. (2002). Domain-
specific language design requires feature descriptions. Journal of Computing
and Information Technology, 10(1):1–18.

[Vanbrabant, 2008] Vanbrabant, R. (2008). Google Guice: Agile Lightweight De-
pendency Injection Framework (Firstpress). APress.

[Virage Logic, 2010] Virage Logic (2010). http://www.viragelogic.com/.

[W3C, 2008] W3C (2008). Cascading Style Sheets.
http://www.w3.org/TR/REC-CSS1/. Last consulted: October 2013.

[W3C, 2009] W3C (2009). XForms 1.1.

[W3C, 2010a] W3C (2010a). Model-based UI XG final report.
http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-
20100504/.

[W3C, 2010b] W3C (2010b). XML Path Language (XPath) 2.0.

[W3C, 2013] W3C (2013). Accessibility evaluation resources. http://www.w3.
org/WAI/eval/. Last consultaed: January 2014.

[W3C, 2014a] W3C (2014a). HTML5. http://www.w3.org/TR/html5/. Last
consulted: December 2013.

http://www.w3.org/WAI/eval/
http://www.w3.org/WAI/eval/
http://www.w3.org/TR/html5/

Bibliography 213

[W3C, 2014b] W3C (2014b). MBUI - abstract user interface models.
http://www.w3.org/TR/abstract-ui/.

[White et al., 2014] White, J., Galindo, J. A., Saxena, T., Dougherty, B., Bena-
vides, D., and Schmidt, D. C. (2014). Evolving feature model configurations
in software product lines. Journal of Systems and Software, 87(0):119 – 136.

[Xtext, 2013] Xtext (2013). http://www.eclipse.org/Xtext/. Last consulted:
October 2013.

[Yin, 2002] Yin, R. K. (2002). Case Study Research: Design and Methods, vol-
ume 5 of Applied Social Research Methods. Sage Publications, Inc, 3rd edi-
tion.

http://www.eclipse.org/Xtext/

	Acknowledgments
	List of Figures
	List of Tables
	List of Listings
	Context
	What's a Configurator?
	Building Correct Configuration Interfaces
	Contributions
	Reader's Guide
	Bibliographical Notes

	Background
	State of the Art
	Feature Modelling
	User Interface Modelling and Generation
	User Interface Description Languages
	Feature Models and GUIs

	Model Transformations
	Model-to-Model
	Model-to-Text

	Contributions
	Solution Overview
	Architectural Pattern for Configurators
	Generating Views from Feature Models
	Widget Selection
	Breaking Out the Feature Model Hierarchy
	Beautifying Generated Configurators
	Putting It All Together

	Handling of Events by the Presenter
	From the View
	Back to the View

	Language Support
	Textual Variability Language (TVL)
	Feature Declaration and Hierarchy
	Attributes
	Constraints
	Structuring
	TVL2

	Textual View Definition Language (TVDL)
	Sub-tree Selection
	Partial Sub-tree Selection
	Feature Selection
	Attribute Selection
	Grouping Views

	Featured Cascading Style Sheets (FCSS)
	Global Properties
	View-specific Properties
	Feature-specific Properties
	Attribute-specific Properties

	Language Editors
	Xtext
	TVL Editor
	Grammar
	Default Infrastructure
	Custom Developments

	TVDL Editor
	Grammar
	Default Infrastructure
	Custom Developments

	FCSS Editor
	Grammar
	Default Infrastructure
	Custom Developments

	Automation
	HTML Interface Generation
	Architectural Overview
	Queries
	Templates
	Handling Feature Instances

	Presenter
	Initialisation
	Configuration
	Finalisation

	Summary

	 Evaluation & Conclusions
	Evaluation
	Evaluation of TVL
	Evaluation Criteria
	Cases
	Research Protocol
	Analysis of TVL
	Threats to Validity

	Evaluation of Languages and Tools
	Models
	Generated Configurator
	Feedback from Rexel
	Lessons Learned
	Threats to validity

	Further Evaluations

	Conclusions
	Summary of Contributions
	Limitations
	Perspectives
	Reverse-engineering
	Multiple Targets
	Ordering Views
	Workflow Configuration

	Appendixes
	Language Grammars
	TVL Grammar
	TVDL Grammar
	FCSS Grammar

	Prototype Generator
	Parser Java Class

	Bibliography

