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ABSTRACT
Software Product-Line (SPL) model checking has reached
an adequate level of e�ciency and expressiveness to be ap-
plied on real-world cases. Yet a major challenge remains:
model checkers should consist of black-box tools that do not
require in-depth expertise to be used. In particular, it is es-
sential to provide engineers with easy-to-learn languages to
model both the behaviour of their SPL and the properties
to check. In this paper, we propose a framework to build
customized product-line verifiers modularly. Our extensi-
ble architecture allows one to plug new modelling languages
or verifications algorithms without modifying other parts of
it. It also provides means of representing and reasoning on
variability that can facilitate the development of other SPL
quality assurance techniques. We illustrate the benefits of
our approach by detailing how we created a new domain-
specific SPL modelling language and linked it to our tool.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking

General Terms
Theory, Verification
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1. INTRODUCTION
Software Product-Line (SPL) engineering is a software de-

velopment paradigm that aims at the e�cient development
of similar products. It considers these products as mem-
bers of a family (also called variants) built from a com-
mon set of assets. Systematically reusing common assets
allows economy of scale and a reduced time-to-market [19].
These benefits, however, come at the cost of an additional
source of complexity: the di↵erence between the products,
i.e. the variability, has to be managed throughout all the
development phases. In particular, traditional quality as-
surance techniques cannot cope with variability; they can
be performed on individual products only. This is clearly
ine�cient, if not unfeasible, in case of real-world SPLs that
consist of thousands of products or more.

Among the most popular quality assurance techniques,
one finds model checking [13, 6], an established method
for exhaustively verifying a behavioural model of a system
against a temporal property. Transposed to the context of
SPLs, the model checking problem requires identifying all
the products that violate the property [18]. Applying single-
system model checking on all variants separately would be
suboptimal, for these may exhibit identical behaviour. As
an alternative, variability-aware model-checking techniques
were proposed [18, 17, 3, 5]. Their strength lies in their
capability to represent and detect commonalities between
products, thereby avoiding the verification of the same be-
haviour more than once. Early experiments suggest that
SPL-specific heuristics provide substantial performance gains
over an enumerative application of their single-system coun-
terpart [15, 16, 4].

One of the most promising approach for SPL model check-
ing is based on Featured Transition Systems (FTS) [18, 17].
FTS are transition systems whose transitions are annotated
with constraints specifying the products that can execute
these transitions. We developed e�cient algorithms that
exploit this information to facilitate the verification of prop-
erties [16]. These techniques were extended in many direc-
tions, including the support for real-time [21] and stochas-
tic [22] SPL behaviour, as well as non-Boolean variabil-
ity [23]. We implemented them into several tools [17, 15,
24]. ProVeLines is the latest incarnation of the SPL model
checker we built [24]. It implements all the developments on
FTS-based SPL verification, and is actually designed as a
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product line itself. Thanks to the e�ciency of its algorithms
and the expressiveness of its formalisms, ProVeLines is now
ready to be confronted to real-world SPLs.

Given that “verification using model-based techniques is
only as good as the model of the system” [6], applying model
checking in industry requires providing engineers with easy-
to-learn languages to model both the system and the prop-
erties in a correct way. FTS and temporal logics like linear
temporal logic [38] are fundamental formalisms, which are
not meant to be used directly by engineers. Most of existing
SPL verifiers provide user-friendly specification languages
that hide the complexity of the underlying theory. In ProV-
eLines, these languages are dialects of Promela, the SPIN
model checker’s input language [32], which extend the origi-
nal language with constructs to express variable behaviour.
Although they constitute a first improvement in usability,
Promela’s extensions are not convenient for engineers not ac-
quainted to such specification languages. On the other hand,
several behaviour modelling languages commonly used in in-
dustry were extended to support variability [40, 28, 29] but
have not been linked to a verification formalism like FTS.
As alternatives, domain specific languages can be designed
to model SPL behaviour and tailored to engineers’ specific
needs and preferences.

When we attempted to equip ProVeLines with additional
input languages, we faced several obstacles. First, as most
model checkers do for e�ciency reasons, ProVeLines’ verifi-
cation algorithms are tightly coupled with its current input
language, viz. Promela. Because of that, the addition of a
completely di↵erent language requires to implement all the
verification algorithms anew. Moreover, its variability is im-
plemented using #ifdef statements into the code, a classic
way of managing variability in C or C++; we were rapidly
aware that the implementation of new features was becom-
ing increasingly complex. More generally, our experience
revealed that the growing number of variants (it currently
has 166) makes evolution and maintenance cumbersome. Fi-
nally, more extensibility is needed for the integration with
third-party applications to be feasible.

In order to overcome the aforementioned challenges and
limitations, we propose a redesigned, extensibility-focused
version of ProVeLines. Its modularized architecture facili-
tates the integration of new input languages, the customiza-
tion or replacement of model-checking algorithms, and the
reuse of variability-encoding modules. Our approach relies
on the use of the object-oriented paradigm, as well as a
loosely coupled architecture, made up of modules exposing
data types and operations through narrow interfaces. Not
only this new version is a stand-alone model checker whose
each part can be customized at will and modularly, but it
is also a software development kit for SPL verifiers. Over-
all, we claim that our tool has become a framework for the
construction of e�cient SPL verification tools.

The remainder of this paper is structured as follows. Sec-
tion 2 briefly introduces verification techniques of SPLs. In
Section 3, we describe the variability of ProVeLines and how
we implemented it. Section 4 presents our new modular and
extensible architecture. Section 5 explains the mechanisms
we used to compose all the modules together. Section 6 de-
tails the step-by-step process for extending ProVeLines with
a new input language. Finally, Section 7 reviews related
work.

running stopped

[�Alarm] danger

[Alarm] danger

safe

safe

danger

Figure 1: An example of FTS

2. BACKGROUND
Model checking is an automated technique for verifying

system behaviour. Basically, a model checker systemati-
cally explores the execution paths of a behavioural model
– typically a transition system – in search for violations of
a property expressed in temporal logic. If it actually finds
one, the model checker returns an example of execution path
that yields the violation. The variability in SPLs creates a
new dimension of complexity in the model-checking prob-
lem, as one has to identify which variants do not satisfy an
intended property. An immediate solution is to model each
product as a distinct transition system, and to verify each of
them with a single-system model checker. This enumerative
approach checks a given execution path as many times as
the number of products that can exhibit it. This is clearly
suboptimal since it is su�cient to check a given behaviour
only once.

In order to exploit the commonality between SPL prod-
ucts during verification, we proposed an alternative approach
based on Featured Transition Systems (FTS). FTS are an ex-
tension of transition systems where transitions are labelled
with feature expressions, i.e. propositional formulae over
the features. A feature expression encodes the set of prod-
ucts able to execute the associated transition. The tran-
sition system modelling a particular product is obtained
by removing the transitions that this product cannot exe-
cute. An FTS is thus a compact behavioural model of a
set of products. An excerpt of an FTS is shown in Fig-
ure 1. It depicts the behaviour of a motor. The motor is
initially in state running and remains therein as long as
there is no danger. When danger occurs, the motor should
stop. However, the system cannot detect danger without
feature Alarm. It thus can stop i↵ this feature is enabled
(see transition [Alarm]danger from running to stopped).
Otherwise, it remains in state running (see self-transition
[¬Alarm]danger on running).

Together with the above formalism, we designed e�cient
algorithms able to associate every execution path in an FTS
with the exact set of products able to produce it. As opposed
to the enumerative approach, our algorithms can avoid ex-
ploring an execution path as many times as there are prod-
ucts able to execute it. They also avoid verifying execution
paths that no variant can execute. This happens when the
feature expression of two successive transitions are not com-
patible. Two examples of such transitions are [¬Alarm]dan-

ger and [Alarm]danger. Incompatibility of two transitions
is detected by checking the satisfiability of the conjunction of
their feature expression. Previous evaluations tend to show
that our FTS-based algorithms outperform the enumerative
approaches [15, 16, 23].

ProVeLines [24] is a model checker we developed that im-
plements a range of FTS-based techniques. Its input and
output are shown in Figure 2. It takes as input a feature
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Behaviour model Feature model

ProVeLines

good products: ...
bad products: ...
+ counterexamples

FTS, FTA, ltl2ba, cudd, minisat,
 dbm, Z3, TVLLibrary, ...

active proctype toto() {
   int i = 0;
   ...

   gd :: f.A || f.B -> i++;
      :: else       -> skip;
      dg;

   ...
   assert(i == 1);
}

root Website group [0..2] {
   A,
   B
}

A B

Website

[0..2]

Figure 2: ProVeLines’ input and output

model defining the valid products of the SPL, a behavioual
model of these products, and a property to verify. Then, us-
ing its embedded formalisms and algorithms together with
external libraries, ProVeLines determines which valid prod-
ucts satisfy the property and which do not. For each of the
latter, it also returns a counterexample of execution that
shows a violation executable by this product. In addition to
the initial FTS model-checking algorithms [18], it is also able
to check real-time [21] and stochastic [22] variants of FTS.
It also supports non-Boolean variability [23] and alternative
verifications such as (bi)simulation [20]. All these methods
share many commonalities in source code, architecture, in-
put, and algorithms. This is the reason why ProVeLines was
engineered as a product line. The tool variants are built from
the same code base by pruning code and setting compilation
options. ProVeLines is the first SPL model checking toolset
to provide this many functionalities.

3. PROVELINES’ VARIABILITY
Being itself a product line, ProVeLines includes several

features that can be activated or deactivated. These fea-
tures, along with the hierarchies and dependencies that exist
between them, are specified in the feature model shown in
Figure 3. This feature model is similar to the one presented
in our previous work [24]; still, there exist notable di↵erences
that are definitely worth highlighting. In particular, the fea-
ture model has been reworked as to reflect the separation of
concerns we emphasize in Section 4. Also, ProVeLines can
now model and verify stochastic SPLs, which was not the
case previously [24].

The variability of ProVeLines originates from five main
factors, which uniquely correspond to the APIs described
previously: the type of system to verify; the input language
used to model its behaviour; the properties to check and the
associated algorithms; the representation and expressiveness
of feature models; the data structures to encode variability.

ProVeLines allows one to verify three types of SPL: dis-
crete (i.e. whose state evolves at discrete time steps and
is non-random), real-time, and stochastic. To compactly
represent the behaviour of the SPL products, one can ei-
ther use an FSTM or variability-aware variants of Promela.
FSTM stands for Featured State Machines. It is a domain-
specific language based on Harel’s statecharts [31] we devel-
oped specifically for one of our industrial partners. Promela
is the input language of the SPIN model checker [32]. Its
syntax is close to that of imperative programming languages
such as C. We extended it with additional constructs to
guard statements with feature expressions, which allows one
to restrict the set of products able to execute these state-
ments. Depending of the chosen variant, it also provides
specific statements to represent real time and probabilities.

SPL behaviour can also be modelled in a feature-aware ex-
tension of Stateflow [33], a language to specify the stateful
behaviour of reactive systems which is part of the Simulink
environment.

The specified system can be checked against di↵erent types
of properties. A first type is the properties whose verifica-
tion is based on reachability computation. An example of
such property is deadlock freedom. One can also check real-
time properties specified in a fragment of the timed com-
putational tree logic [2], whose computation comes down to
reachability. Similarly, stochastic properties are expressed in
a fragment of the probabilistic computation tree logic [30],
which, again, is limited to reachability. For discrete systems,
we allow one to verify LTL formulae. We also implemented
algorithms to check behavioural inclusion between two FTS
based on simulation relations, a prerequisite for reliable ab-
straction [20].

Another point of variability is the expressiveness needed to
represent an SPL’s variability, as well as the concrete syntax
that represents a feature model. In addition to standard,
Boolean features, ProVeLines supports two additional types
that are intensively used in practice [23] : multi-features (i.e.,
features that may appear several times in a given product)
and numeric features. The former entails changes only in
feature model semantics. The latter, however, also raises
the need for non-Boolean feature expressions.

Since our tool is meant to check variability-intensive sys-
tems, an important part of it is the way variability (viz.
feature expressions) are encoded. Feature expressions can
be internally represented and checked for satisfiability us-
ing Binary Decision Diagrams (BDDs), SAT solvers or SMT
solvers; the latter is needed in case of numeric features. The
current implementation of BDDs makes use of the CU De-
cision Diagram (CUDD) library. The back-end solvers we
use are Minisat for SAT, and Z3 for SMT. Since the former
does not provide data structures to represent boolean for-
mulas, the features expressions are in this case encoded in
an ad-hoc Abstract Syntax Tree (AST) that is subsequently
transformed in conjunctive normal form (CNF). On the con-
trary, Z3 provides an API giving access to its built-in AST.
When checking real-time models, an additional data struc-
ture is needed to encode real-time. Di↵erence bound matrix
(DBM) is an implementation of clock zones – an established
data structure for real-time – included in UPPAAL [9]. As
for stochastic systems, we use Algebraic Decision Diagrams
(ADDs) from the CUDD library as a combined representa-
tion of variability and probability function [22].

4. ARCHITECTURE
The architecture of ProVeLines is organized into modules,

i.e., layers of abstraction. Each module is almost indepen-
dent and makes use of other modules through narrow in-
terfaces providing only the required operations. The actual
implementation of di↵erent modules are thus loosely coupled
since only the signature of the public methods is exposed.
Leaning on the object-oriented programming paradigm, it
benefits from a clean separation of concerns, a reuse of com-
mon functionalities and data types, and it provides facilities
to e�ciently manage the variability and the extensibility of
the tool.

Figure 4 shows the top-level modules of ProVeLines, i.e.
the modules that constitute the application programming in-
terface (API) of the model checker. This architecture makes
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TVL

Stochastic StochasticFct

ADD

Figure 3: The feature model representing ProVeLines’ variability.

ProVeLines extensible with various implementations and ad-
ditional functionalities. The architecture consists of six top-
level modules, each containing smaller modules.

The module named core implements the FTS model-check-
ing capabilities. Its most critical part is the Checker abstract
data type (ADT), inside the checker module, which encap-
sulates the verification algorithms. As shown by the arrows
on the diagram, this module depends on the three others.
A module depends on another one when it uses at least one
of its exposed interfaces. Interfaces define the programming
contract of the ADTs they represent. This facilitates their
uses by other ADTs, and allows one to implement them in-
dependently from the other ADTs.

4.1 Input Language
An important requirement for our new architecture is that

existing input languages should be easily customizable, and
the addition of new languages should not require modifica-
tions in the other components. In particular, input lan-
guages and verification algorithms should be agnostic on
their mutual implementation. To achieve this, we designed
a generic application programming interface (API) named
FTS, which provides the minimal set of methods needed by
an algorithm to perform a verification. Incorporating a new
language then comes down to implementing these interfaces.
The API itself is actually an abstract, automata-based rep-
resentation of FTS, and includes methods to access the con-
structs required by the algorithms. The algorithm thus only
has to know the methods provided by the interface in order
to perform verifications.

A first abstract data type (ADT) of the input language
API is State, which represents individual states of the FTS.
The ADT Transition, represents a transition between two
states. As in FTS, transitions are decorated with a feature
expression. These are also encapsulated in an ADT (see
Section 4.3), which makes an input language independent
from the implementation of feature expressions. The last
interface is named FTS. It consists of a mutable ADT with
operations such as getting the current state, computing the
transitions available from this state, and executing one of
the returned previous states. The mutability of the ADT
allows for a more e�cient generation of FTS by avoiding the
creation and the destruction of many objects, which would
result in a lot of memory management work.

Defining the semantics of any input language in terms of

FTS allows the reuse of any algorithm designed to verify this
formalism. It is also possible to implement round-tripping,
e.g. to link a violation returned by the checker back to the
original model. This capability must be supported by the
implementation of the FTS interfaces. The di�culty of this
task, and more generally of the implementation of the in-
terface, depends on the complexity of the language itself.
In particular, the constructs and data structures o↵ered by
this language impact the size of the produced FTS. It may
also happen that knowing specific features of the language
can lead to optimizations in the verifications. For instance,
one can support parallelism by computing parallel composi-
tions in the implementation of the FTS interface. However,
heuristics like partial-order reduction requires to access in-
formation about the parallel constituents. In this case, one
has to make the FTS API evolve. Yet, it is essential to
maintain backward-compatibility so as to avoid modifying
the algorithms, which depend on this API.

4.2 Properties
The input language API alone provides the necessary meth-

ods to compute the set of reachable states in a given model.
General properties like deadlock freedom can thus be checked.
However, in order to specify more specific properties, it is
necessary to provide bridges to temporal logics able to ex-
press them. Accordingly, the input language API is ex-
tended to o↵er additional interfaces to represent formulae
of a given logic. For instance, we designed an API for Büchi
automata, the type of automaton into which Linear Tem-
poral Logic (LTL) formulae are typically transformed to
perform verification. The included interfaces are Proper-
tyState, PropertyTransition, and PropertyAutomaton. Prop-
ertyStates represents states of a Büchi automaton and de-
scribes whether this state is accepting or not. Property-
Transition and PropertyAutomaton are similar to their FTS
counterparts; they allow the verification algorithms to ma-
nipulate the automaton.

If properties are expressed in a logic that cannot be trans-
formed into a Büchi automaton, the existing API is not suf-
ficient anymore. In this case, one has to define additional
interfaces providing the minimal set of operations needed to
manipulate the new type of property. Then a new varia-
tion point has to be created in order to link the appropriate
interface according to the desired logic.
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Figure 4: ProVeLines API

4.3 Feature Expressions
As previously mentioned, several data structures can im-

plement feature expressions. We thus provide a top-level
interface for feature expressions, i.e., the FeatureExp inter-
face. The list of provided methods includes the computation
of conjunction, disjunction, and negation, as well as checking
satisfiability, validity, implication, and equivalence. Other
ADTs further refine this interface, i.e. BoolFeatureExp for
Boolean feature expressions, and ArithmeticFeatureExp for
numeric feature expressions [23]. This refinement is achieved
by using established object-oriented mechanisms such as in-
heritance and composition. This hierarchy is carefully stud-
ied as the verification algorithms only need to know about
feature expressions whereas the input language API may
have to know about Boolean feature expressions or arith-
metic feature expressions for instance.

4.4 Feature Models
In order to avoid unneeded computations, ProVeLines only

verifies the SPL products that are valid according to a given
feature model. Feature models have numerous concrete syn-
taxes, including graphical [34, 39] and textual (see, e.g., [7,
8, 10, 14]). In order to remain independent from the used
concrete syntax, we also defined a feature model API. It
consists of a single and thin interface with only one method
that returns a feature expression representing the underlying
feature model. By doing so, we allow any feature-modelling
language to be easily plugged in our tool. The correspond-
ing feature expression can then be used during verification
according to di↵erent strategies [16], which a↵ect the perfor-
mance of the algorithms and the readability of the results.

4.5 Model-Checking Algorithms
The verification algorithms are encapsulated in a Checker

ADT. The encapsulation and delegation of work ensure a
low coupling between the algorithms and the resources (the
formalism, properties, and feature model) they depend on.
Thanks to that, one can focus on the design and the opti-
misation of the algorithm regardless of the structure of its
input. This also facilitates the implementation of new ver-
ification methods outside the model-checking realm, which
may reuse any of the aforementioned APIs. Given that no
other module depends on this one, developers are completely
free regarding its concrete purpose and its implementation.
This means that one can implement any SPL verification
procedure, as long as it is based on FTS or one of its exten-
sion.

5. WIRING THE MODULES
The architecture described above is su�ciently generic to

be derived into a large range of verification tools. The di↵er-
ent variants of ProVeLines [24] implement all the aforemen-
tioned interfaces into concrete classes that are subsequently
combined to form a complete model checker. In this section,
we describe the mechanisms we use to link all the modules
together.

Given the plethora of existing and future alternative im-
plementations provided in ProVeLines, mechanisms are need-
ed to select the desired modules, that is, to derive a precise
variant of the model checker. The desired variant is cho-
sen by means of a configuration file read by ProVeLines at
start-up. Leaving this file unchanged makes the configu-
ration persistent across multiple executions of the model
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checker. The configuration file can be edited manually or
via the support of a dedicated tool. For flexibility purpose,
we ensured that both the format and the edition method are
independent from the rest of the tool. In particular, the way
modules are selected according to the chosen configuration
is not impacted by the configuration process.

The di↵erent modules are tied together by using inver-
sion of control strategies (also known as dependency injec-
tion [26]), service locator [1], as well as other design patterns
(e.g., factory and abstract factory [27]). Basically, the con-
text of the application is initialized using the specified con-
figuration. The context holds a given configuration of the
model checker, and is in charge of instantiating the di↵erent
APIs according to the selected features. Module dependen-
cies are injected using constructor injection, whereas the ap-
propriate instances of the ADTs are created using a lookup
mechanism, often from a factory that is itself injected during
construction. These mechanisms allow the variability to be
e�ciently managed, modular, extensible, and easily testable
at the implementation level. Like the previous design de-
cisions, it helps maintaining a clean separation of concerns
and a loosely coupled architecture.

Moreover, although the implementations of the di↵erent
modules are compiled together, it is possible to load a new
implementation dynamically without recompiling the whole
product line. This provides yet more flexibility in case of
extension.

6. PLUGGING A NEW LANGUAGE IN
PROVELINES: A GUIDED EXAMPLE

In order to illustrate the benefits of our extensible archi-
tecture, we describe step by step the process for building
a new language into ProVeLines, and thus for creating a
new model checker. For the purpose of this guided exam-
ple, we define a basic textual language based on a subset of
statecharts. It is equipped with constructs such as states,
transitions, and transition guards that consist of a feature
expression, conditions over variables, or both. We also de-
fine a language for specifying LTL formulae based on the
property specification patterns [25]. Figure 5 illustrates this
sample language through a small excerpt equivalent to the
FTS of Figure 1. This figure shows that, when the system
is in state running, as long as there is no danger it remains
therein. On event danger, the motor goes to state stopped

i↵ the feature Alarm is present. Otherwise it remains in state
running as indicated by the self-transition with the feature
expression !(Alarm).

The starting point is to choose between reusing a standard
modelling language and defining a domain specific language
that fits the needs and habits of the target users. Build-
ing a new language implies the definition of a meta-model
or a grammar. In any case, we have to develop or reuse a
parser to extract a model from the file encoding it. Then we
add this parser to ProVeLines as a separate and indepen-
dent module. ProVeLines also provides a stand-alone API
meant to facilitate the development of parsers for grammars
of small-to-medium complexity. Once a parser is developed,
we have to implement methods that create an abstract syn-
tax model out of a given file. Figure 6 shows the abstract
model of our sample language.

The next step consists in implementing the small set of
interfaces that made up the input language API (see Sec-

Figure 5: Example of a sample language

Figure 6: Abstract model of the sample language

tion 4.1). Formally, this means that we define the semantics
of the language in terms of FTS. Thereby, we create a bridge
between the aforementioned abstract syntax model and the
FTS formalism. Since the behavioural language is aware of
variability, the translation has to maintain a link between
the FTS transitions and the products able to execute them.
Regardless how variability is represented in the (abstract)
syntax, we must encode it as feature expression. As for the
actual implementation, we can either reuse those built in
ProVeLines or design new implementations. As far as our
sample language is concerned, feature expressions are re-
duced to Boolean formulae over the features. We can thus
reuse one of the existing solutions, e.g. the one based on
BDDs as implemented in the CUDD library. We can then
create an implementation of each of the interfaces of the FTS
API and make them encapsulate one or more data types of
the abstract model of the language.

For more complex languages, an intermediate representa-
tion may be needed. For instance, we might have an abstract
syntax tree (AST) built by the parser, and an implementa-
tion of the Input Language API which does not depend on
this AST. The AST must then be analyzed in order to in-
stantiate the data types of the input language API. This is
common programming and is usually quite straightforward
with a good design. There are three main ways of traversing
an AST: the interpreter pattern, the procedural approach, or
the visitor pattern [35]. All these approaches have di↵erent
characteristics, which we do not discuss here.

Finally the context of ProVeLines has to be updated in or-
der to recognize this new input language, which constitutes
a new feature. Here several strategies are available. A first
is to link the new implementation to a new feature that is
read from the provided configuration file at runtime. A sec-
ond solution, that can be combined with the first one, is to
extend ProVeLines’ configuration process to automatically
detect the language based on the input file extension. As a
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third alternative, ProVeLines supports dynamic loading of
external libraries. The advantage of that method is that the
code of the context is not changed and thus ProVeLines does
not have to be re-compiled. We can then compile the new
code in isolation, or with the needed modules if those have
not been compiled yet.

7. RELATED WORK
Several SPL verification tools have been developed in the

past years. In [17], we extend the NuSMV model checker [12]
with the capability to model check SPL whose behaviour
is specified in the fSMV language [37]. The resulting tool
uses the fully symbolic FTS algorithm presented in [17].
SNIP [15] is ProVeLines’ legitimate ancestor; it implements
semi-symbolic algorithms where the state space of the sys-
tem is represented explicitly, whereas variability is symbol-
ically encoded as feature expressions. Its input language
is the first variant of Promela we defined. However, it is
limited to the verification of LTL formulae on discrete FTS.
The previous version of ProVeLines [24] has almost the same
functionalities as the one presented in this paper; only a few
additional extensions are missing. Its extensibility is lim-
ited, though, especially when it comes to implementing new
input languages.

There also exist verification tools that are not based on
FTS. Ter Beek et al. designed a model checker based on
modal transition systems and an ad-hoc logic that has simi-
lar capabilities as SNIP [41]. SPLVerifier [3] is a verification
tool able to detect feature interactions in SPL coded in C
or Java. The problem it tackles is di↵erent from ours, as we
are interested in verifying temporal properties.

PAT3 [36] is a framework for building single-system model
checkers. Like us, they facilitate this kind of development
by providing an extensible architecture together with a set
of APIs. A solution alternative to ours would be to benefit
from the platform o↵ered in PAT3.

CPAChecker [11] is a software verification and analysis
platform for C programs. It is based on the concept of
configurable program analysis, which allows one to express
model-checking and program-analysis problems in a single
formalism. Like PAT3, CPAChecker o↵ers an extensible ar-
chitecture that facilitates new development.

Since variability is known to be an invasive concept, sup-
porting it in PAT3 or CPAChecker directly would require us
to reimplement all their modules and even extend the inter-
face of their APIs. We estimated that it is more beneficial
to rely on an SPL-specific tool, viz. ProVeLines, and to in-
crease its extensibility rather than incorporating variability
into a platform that is not intended for that purpose.

8. CONCLUSIONS
Product-line model checking has reached a su�cient ma-

turity level to be confronted to real-world cases. The next
challenge to face is to convince engineers that they can actu-
ally use SPL model checkers without having a deep knowl-
edge of the underlying theory. ProVeLines is now ready to be
put in use on industrial and real-world cases. Its architecture
facilitates the integration of existing modelling languages as
well as new languages specifically designed for a given com-
pany. The low coupling between input and algorithms per-
mits engineers to use, extend, and tailor ProVeLines even
if they do not hold any expertise in model checking. More

generally, the separation of concerns that drove ProVeLines
development yield numerous facilities that can be used inde-
pendently and in many contexts. Thereby, we hope that our
new toolset will reach many researchers and practitioners.
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