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• We use Featured Transition Systems (FTS) to model Software Product Lines (SPLs).
• We design symbolic algorithms for checking an FTS against temporal properties.
• We give a new compositional formal semantics to the fSMV language.
• We prove the expressiveness equivalence between fSMV and FTS.
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Formal techniques for specifying and verifying Software Product Lines (SPL) are actively
studied. While the foundations of this domain recently made significant progress with the
introduction of Featured Transition Systems (FTSs) and associated algorithms, SPL model
checking still faces the well-known state explosion problem. Moreover, there is a need
for high-level specification languages usable in industry. We address the state explosion
problem by applying the principles of symbolic model checking to FTS-based verification
of SPLs. In order to specify properties on specific products only, we extend the temporal
logic CTL with feature quantifiers. Next, we show how SPL behaviour can be specified with
fSMV, a variant of SMV, the specification language of the industry-strength model checker
NuSMV. fSMV is a feature-oriented extension of SMV originally introduced by Plath and
Ryan. We prove that fSMV and FTSs are expressively equivalent. Finally, we connect these
results to a NuSMV extension we developed for verifying SPLs against CTL properties.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Software Product Lines (SPLs) are a popular software engineering paradigm that seeks to maximise reuse by planning
upfront which features should be common, resp. variable, for several similar software systems [17]. The different systems
in an SPL (called “products”) are identified in advance and a model of their differences and commonalities is created. This
model is usually a feature diagram [29,39], features being atomic units of difference that appear natural to stakeholders and

✩ This article is an extended version of the paper A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, Symbolic model checking of software product lines, in:
Proceedings of ICSE ’11, ACM, 2011, pp. 321–330.
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Fig. 1. The feature diagram of a vending machine.

technicians alike [13]. A toy example of a feature diagram is given in Fig. 1. It models a vending machine SPL with five
features. Feature Beverages is mandatory, while FreeDrinks and CancelPurchase are optional. Soda and Tea are subfeatures of
Beverages, and any product must have at least one of them.

In the real world, SPL development is increasingly applied to embedded and critical systems [21]. Formal modelling
and verification of SPL behaviour are thus vital for quality assurance and are actively studied [24,31,32,15]. Model checking
is a well-known automatic technique for verifying both hardware and software. It allows to verify desired behavioural
properties on a model of a given system [4]. For example, an intended property for the vending machine is: “A customer
can always cancel a purchase before the beverage is served”. In the context of single systems, a model checker returns
true if a property is satisfied, or a counter-example (i.e. an execution trace) if it is violated. The model checking problem
in SPL is different from the one in single systems engineering: an algorithm has to check all products against a property
and pinpoint those products that violate it [16]. In our example, every vending machine without the Cancel feature would
not satisfy the aforementioned property. The model checking problem is also harder, as it has to deal with the fact that
there can be exponentially many, O(2#features), products to verify. In [15,9], we addressed the model checking problem for
SPLs by introducing Featured Transition Systems (FTSs), a formalism to express the behaviour of all products of the SPL in one
model. FTSs are transition systems [4] in which transitions are labelled with features (in addition to being labelled with
actions). This allows one to keep track of the different products. We also proposed new model checking algorithms [15] that
exploit the structure of the FTS and try to avoid an exponential number of verifications by exploring the FTS rather than
the transition system of each individual product. Those algorithms can be used to verify properties expressed in Linear Time
Logic (LTL). We call them FTS algorithms. The experimental results gathered so far show that this new approach is more
efficient than an enumerative method that verifies each product individually. More information can be found on our project
website http://www.info.fundp.ac.be/fts.

The main drawback of our previous FTS algorithms is that they rely on an explicit enumeration of the state space. Albeit
we already observed that FTSs drastically reduce the time needed to verify the products of an SPL, they may still suffer
from the state explosion problem. Overcoming this issue is a well-known challenge in explicit state space model checking.
Symbolic algorithms, which make use of symbolic representations of the state space, are a solution to this problem. They
have shown to be particularly efficient in the context of single-systems model checking and made possible the verification
of huge systems [34].

Moreover, FTSs is a foundational formalism, not meant to be used directly by engineers. It is thus important to relate
the FTS language to high-level languages that can be used in industrial settings. A suitable language for SPLs is fSMV,
which was introduced by Plath and Ryan [36]. fSMV extends SMV (i.e. the (Nu)SMV model checker’s input language) with
primitives that allow to account for the addition of new features. More precisely, in fSMV, an SPL is represented by a
base system described in the SMV language. Each additional feature is described independently, stating its assumptions and
modifications. A product is built from the base system by adding features in a certain order.

In [36], Plath and Ryan propose a procedure to verify properties of a product. The verification procedure exploits the
fact that a product can be expressed with SMV alone, and hence semantically as a transition system. This property allows
them to reuse the classical symbolic verification procedure implemented in the (Nu)SMV toolset, which provides an efficient
way to verify a single product. An fSMV model represents several products, each being the combination of the base system
and a set of features. However, with the approach described in [36], one check per product is needed, which decreases the
performance of the approach considerably. This is because transition systems do not allow to distinguish between features
and hence between products. There is thus a need for a translation from fSMV to a formal model that is more suited to
represent SPLs.

The contribution of the present paper is twofold. First, we propose symbolic algorithms for model checking an FTS
against temporal properties. Second, we study the relation between FTSs and fSMV and provide them with a bi-directional
translation. For this purpose, we provide the fSMV language with a definition different from the one given by Plath and
Ryan [36]. The formal definition of fSMV is different from the one of SMV as we now have to characterise features and
feature composition. Then, we show that FTSs and fSMV are equally expressive, that is, any FTS can be translated into an
equivalent (in terms of behaviour) fSMV model and vice versa. This proof provides evidence that fSMV is an appropriate
notation to model SPL behaviour. It is also a reference against which implementations can be proven correct, which is
necessary to obtain trustworthy verification tools. Finally, we exploit this result to extend the NuSMV model checker with

http://www.info.fundp.ac.be/fts
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FTS-based verification algorithms and we evaluate their efficiency empirically. We thus contribute to increasing the practical
applicability of the FTS approach by yielding the first complete chain from high-level specification to efficient verification of
SPL behaviour.

1.1. Structure of the paper

Section 2 introduces FTSs. Section 3 presents the feature Computation Tree Logic and discusses symbolic algorithms for
verifying an FTS against a property expressed in this logic. Section 4 proposes a formalisation of the fSMV language. In this
section, we also show that fSMV and FTSs are equally expressive. In Section 5, we describe how these results are exploited in
our implementation, i.e. an extension of the NuSMV model-checker. In Section 6 we use an elevator system specification to
illustrate and evaluate the benefits of the approach. Section 7 compares our work with other existing approaches. Section 8
wraps up the paper and discusses some perspectives for future research.

The paper is an extended version of [14]. In addition to added detail throughout, the main differences are in the vastly
expanded Sections 4 and 5. In Section 4, we provide a formal description of the semantics of fSMV, as well as theoretical
results relating fSMV and FTSs concluding in a proof that fSMV and FTSs are equivalent. In Section 5, we provide a detailed
description of the implementation, including usage scenarios and examples.

2. Background

This section recapitulates the basic concepts and definitions that will be used through the rest of the paper. We start
with a brief introduction to behavioural modelling of SPLs and FTSs in particular. We refer to [15,14,12] for additional
information about FTSs.

Features are commonly used as atomic units of difference between the products that constitute an SPL. Let F be the set
of features. A product p is specified by a set of features p ⊆ F . An SPL is a set of products, hence a set of sets of features
px ⊆P(F ). Observe that not necessarily all combinations of features are valid. Indeed, some features might be incompatible,
some features may depend on others, and so on. To represent the constraints on the set of products in a concise and
structured way, the SPL community commonly uses feature diagrams (FD) (see, e.g. [29,39]). However, for the purpose of this
paper, we do not need to restrict ourselves to feature diagrams and just assume a feature model defined as follows.

Definition 1. A feature model d is a tuple (N, px), where N ⊆ F is the set of features and px ⊆P(N) is the set of products.
We also write [[d]] to denote px.

Given that we model a product as a set of features, we can encode a product with a feature expression, i.e. a Boolean
function over the set of features. Any set of products can then be encoded as the feature expression resulting from the
disjunction of the feature expressions encoding its products. Using feature expressions, we are thus able to encode the valid
products of a feature model as a Boolean formula.

Usually, an SPL consists of millions of products that differ by a couple of features only. A major challenge, especially
when looking for a verification procedure, is thus to find a compact representation for behaviour, that takes advantage of
these repetitions. In [15], we have proposed FTSs, a concise formalism for representing SPL behaviours.

The behaviour of a single product can be represented by a Transition System (TS) [4]. A TS is a directed graph whose
transitions are labelled with actions, and whose states are labelled with atomic propositions.

Definition 2. A TS is a tuple ts = (S,Act, trans, I,AP, L), where

• S is a set of states and Act is a set of actions,
• trans ⊆ S × Act × S is a set of transitions, with (s j,α, sk) ∈ trans sometimes noted s j

α→ sk ,
• I ⊆ S is the set of initial states, AP is a set of atomic propositions, and L : S →P(AP) is a labelling function.

In this paper, we assume that a TS has no terminal state, i.e. a state without outgoing transition. The semantics of a TS is a
set of paths, i.e. sequences of states s0 = i, s1, s2, . . . such that i ∈ I and for each j � 1, there exists α ∈ Act • (s j−1,α, s j) ∈
trans.

Note that the semantics of a TS is defined regardless of actions. If we use actions on transitions in our examples, it is
just to make their meaning more apparent.

Let us now introduce FTSs [15]. An FTS is basically a TS with an additional function that labels transitions with Boolean
functions over the features, called feature expressions. Those functions are used to introduce variability.2 Formally:

2 The definition of FTSs we give here is a slight generalisation over [15], where feature expressions were encoded by feature labels and priorities. This
new definition has first been proposed in [14].
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Fig. 2. Example FTS of a server.

Definition 3. An FTS is a tuple fts = (S,Act, trans, I,AP, L,d, γ ), where

• S,Act, trans, I,AP, L are defined as in Definition 2,
• d = (N,px) is a feature model as defined in Definition 1,
• γ : trans → ({⊥,�}|N| → {⊥,�}) is a total function, labelling each transition with a feature expression. By [[γ (t)]], we

denote the set of products that satisfy γ (t), that is, those that contain transition t .

Note that � represents the Boolean constant true and ⊥ the constant false, which means that {⊥,�}|N| → {⊥,�} is the
set of all functions over N Boolean parameters, one for each feature. In this paper, such functions are generally represented
by feature expressions.

An FTS is a compact representation for a set of TS (that is, one TS for each product). For each transition, the feature
expression determines for which products it exists. The TS corresponding to a product can be obtained by removing each
transition whose feature expression is not satisfied by the product. This operation is called projection.

Definition 4 (Projection in FTSs). The projection of an FTS fts to a product p ∈ [[d]], noted f ts|p , is the TS t =
(S,Act, trans′, I,AP, L) where trans′ = {t ∈ trans | p ∈ [[γ (t)]]}.

In this paper, we assume that any FTS is such that the projection onto any valid product has no terminal state. As we
shall see later, the FTSs constructed in fSMV satisfy this assumption by construction.

A simple example of FTSs is given in Fig. 2. It depicts an SPL of controllers with two features. We consider that basic
(abbreviated b) is a mandatory feature and covers the normal behaviour, and sleep (abbreviated s) is an optional feature. The
feature model following Definition 1 would thus have the feature set {b, s} and the products {b} and {b, s}. The state space of
the FTS is {1,2,3}. Each state is labelled with atomic propositions, namely a subset of {idle,busy}. Each transition is labelled
with an action and a feature expression, separated by a “/”. For example, we have (1, sleep,3) ∈ trans and γ (1, sleep,3) = s.
The feature expression of this transition is s, which means that it is only there for products that contain the feature s (the
abbreviated name of the sleep feature). Since feature s was defined to be optional in the feature diagram, there is indeed a
product, {b}, which does not contain this transition. Note that the information conveyed by the feature expressions is also
represented by the use of a different colour for each feature.

Intuitively, the behaviour modelled in this example is the following. The controller starts in an idle state where it accepts
requests. Once a request is received, the controller moves to the busy state. After completing the request, it returns to the
idle state. In presence of the s feature, the controller can additionally enter state 3 where requests are ignored. This FTS
represents the TSs of two products: {b} and {b, s}.

The semantics of an FTS is given as a function that associates any valid product with its behaviour within the FTS [19]. It
is obtained by first projecting the FTS to each product, resulting in a set of TSs, and then associating every product with the
semantics of its corresponding TS. This implies that, as for TS, the semantics of an FTS does not consider actions. A more
detailed introduction to FTSs can be found in [15,14,12]. A collection of examples that illustrate the concept is presented
in [9].

3. Symbolic model checking of FTS

The algorithms presented in our previous paper [15] enumerate and visit system states one by one. Their aim is to
mitigate the additional complexity that is due to the use of features in FTSs. They still face the state explosion problem as
they do visit all states of the system one by one. An existing solution to this problem in single system model checking is
symbolic model checking, that is, the use of symbolic representations of the state space. In this section, we combine FTSs
and symbolic model checking to tackle both the aforementioned sources of complexity at once.

3.1. The feature Computation Tree Logic

Classical logics such as the Computation Tree Logic [7] can readily be used to express properties of products of an SPL.
In particular, CTL expresses properties about a tree of executions. This tree is obtained when the common prefixes of all
executions of a transition system are collapsed. It branches every time there is a choice between two transitions. In CTL,
temporal operators are preceded by a path quantifier. The two quantifiers are E , requiring at least one path to satisfy a
property; and A, requiring all paths to satisfy a property. In addition to the usual Boolean connectives, CTL has temporal



420 A. Classen et al. / Science of Computer Programming 80 (2014) 416–439
operators. Those are next, X φ, which requires that the next state satisfies φ; until, φ1Uφ2, which requires that φ2 is satisfied
in some future state and that φ1 holds until then; and always, G φ, which requires that any future state satisfies φ.

Definition 5. A CTL formula φ is an expression of the form

φ ::= � | a (∈ A P ) | φ1 ∧ φ2 | ¬φ | E X φ | E(φ1Uφ2) | EG φ.

This definition covers CTL properties in existential normal form. The A path quantifier can be obtained from E , and will
thus not be explicitly considered in our algorithms. Moreover, you can derive conjunction as usual, as well as the finally
operator, E F φ � E(�Uφ), which requires that φ is satisfied in some future state.

An SPL is a set of systems which are not fundamentally different from systems developed as single systems from the
outset. The properties that one would like individual products to satisfy (deadlock freedom, respect of a critical section,
request/answer patterns, and so on) are the same as those that have been subject to model checking in single systems. We
view model checking as orthogonal to other activities in SPLE. If model checking an SPL against a property corresponds to
model checking all its products against this property, it would seem quite natural that the properties of interest to us are
those that are used for single systems. And just as in single systems, we expect properties to be expressed with temporal
logic formulae like CTL.

However, as a property might not be relevant to all products, a means to express the products for which a property
holds should be added to temporal logics. This quantifier does not affect the semantics of the temporal property, but rather
limits the range of products over which it holds. As an example, consider the property for the vending machine example:
“After the customer selects tea, the machine will eventually serve tea.” The property is independent of all but the Tea feature, as
products without this feature do not allow customers to select tea. That is, the property is irrelevant for products without
the Tea feature; it has to hold only for those with the feature.

To specify the quantifier, we chose to use feature expressions. They are already prevalent in all of FTSs and fully expres-
sive w.r.t. the set of products. This leads us to define feature CTL (fCTL) as follows.

Definition 6. An fCTL formula φ is an expression φ := [χ ]φ′ | ψ1 ∧ψ2 where φ′ is a CTL formula, χ is a feature expression,
ψ1 and ψ2 are fCTL formulae.

In fCTL, the example formula can be expressed as follows:

[¬FreeDrinks] AG (selected ⇒ A F open).

Since we want to identify all the valid products that do not satisfy a given property, we are led to a new definition of
the satisfiability relation, which is not Boolean anymore [18].

Definition 7. The F-satisfiability of the fCTL formula [χ ]Φ by an FTS with feature model d, noted fts |�F [χ ]Φ , is defined as
the set

(
fts |�F [χ ]Φ) = {

p ∈ [[d]]FD : p ∈ [[χ ]] ⇒ fts|p |� Φ
}

that is, the set of products that yield a transition system satisfying the CTL formula Φ .

A CTL formula (without quantifier) is interpreted over an FTS as the fCTL formula quantified over all the products.

Definition 8. For a CTL formula φ, fts |� φ � fts |� [�]φ.

Note that quantifiers in this logic can occur only at top-level. In this regard, our definition of fCTL differs from the one
we gave in [14] where nesting of quantifiers was allowed. However, in actual examples, we found no need for the nesting of
such quantifiers, which is why we decided to limit our logics to top-level quantifiers. This change does not affect or simplify
the model checking algorithms, as we shall see later.

3.2. Symbolic model checking of fCTL properties

Symbolic model checking algorithms are based on fixed-point computations, making them rather different from the
explicit search approach of our previous paper [15]. In the symbolic setting, sets of states and the transition relation are
encoded directly with their characteristic functions. As we already said, characteristic functions can be represented by Binary
Decision Diagrams (BDDs). We proceed in two steps. First, we describe a symbolic encoding for FTSs, before we proceed to
the algorithms.
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3.2.1. Encoding FTSs symbolically
We assume the existence of a binary encoding of states, that is, a function enc : S → {⊥,�}k , where k is chosen large

enough to encode all states. Given a product p, we also use the notation enc(p) to denote the encoded product. With this
encoding, {⊥,�}k implicitly denotes the sets of all (encoded) states and {⊥,�}n , where n is the number of features, the
set of all (encoded) products. When defining characteristic functions, we use the subscript notation, i.e., ‘X ∪ Y ’ in χX∪Y ,
to denote the set for which this is the characteristic function. In parentheses follow the variables on which the function
is defined. By convention, s (resp. p) denotes a vector of Boolean variables encoding a state (resp. product). The cofactor
χT [s←enc(x)] of a Boolean function χT (s, p, . . .) is the Boolean function over the variables p, . . . obtained by replacing the
variables s by the value they take in enc(x).

With the notation in place, we now show how an FTS can be encoded symbolically. The set of states is represented by
a Boolean function χS and the set of initial states by χI . As usual, the labelling of states with atomic propositions L is
represented by recording for each atomic proposition a ∈ AP the set of states χa that are labelled by the proposition:

χa(s) : {⊥,�}k → {⊥,�} • χa
(
enc(s)

) = � ⇐⇒ a ∈ L(s).

The transition relation is represented by a function that takes two encoded states (start and end) and an encoded product,

and returns � iff some transition s
α→ s′ exists in the product. Since the action labels of transitions are not used by the

model checking procedure, they are not encoded. The feature expression of a transition is implicitly embedded in the
encoding.3 Formally,

χtrans
(
s, s′, p

) : {⊥,�}k × {⊥,�}k × {⊥,�}n → {⊥,�},
such that χtrans(enc(s), enc(s′), enc(p)) = � iff some s

α→ s′ in fts|p . The feature expression on the transition is the cofactor
for the encoding of both states:

χ∨
α γ (s

α→s′)(p) : {⊥,�}n → {⊥,�} � χtrans[s←enc(s),s′←enc(s′)](p).

Transitions with the same start and end states are implicitly merged (with a disjunction of their Boolean function labels).
This yields a symbolic encoding for FTSs covering all of Definition 3, except for actions and action labels.

3.2.2. Symbolic algorithms
Having the fundamentals covered, we can proceed to the model checking algorithms. For now, we consider only CTL

formulae. Further in this section, we show how we can adapt our algorithms to extend them to full fCTL. The model
checking algorithm for CTL is based on the recursive computation of satisfaction sets along the parse tree of the formula.
A satisfaction set is a set of states that satisfy a particular sub-formula. A full algorithm for CTL model checking of FTSs is
given by the parse-tree computation and a recursive definition of the satisfaction sets.

Satisfaction sets are also encoded by their characteristic function,

χSat(φ)(s, p) : {⊥,�}k × {⊥,�}n → {⊥,�},
so that χSat(φ)(enc(s), enc(p)) = � iff fts|p, s |� φ.

The satisfaction sets for state formulae are rather straightforward:

Definition 9. CTL state formulae satisfaction sets:

χSat(true)(s, p) = �
χSat(a)(s, p) = χa(s)

χSat(φ1∧φ2)(s, p) = χSat(φ1)(s, p) ∧ χSat(φ2)(s, p)

χSat(¬φ)(s, p) = ¬χSat(φ1)(s, p).

Note that at this point we do not distinguish between valid and invalid products. We do this as part of the last step of
the algorithm.

To define the satisfaction sets for CTL path formulae, we need to be able to calculate the predecessors of the states
satisfying a formula. This is the heart of our fixed point algorithms. All the information it needs is contained in the transition
relation, and calculating the predecessors of a single state in a single product amounts to instantiating two arguments of
the characteristic function of the transition relation:

χPre(s,p)(x) : {⊥,�}k → {⊥,�} � χtrans[s′←enc(s),p←enc(p)](x),

i.e., the cofactor of the transition relation χtrans for the product p and state s.

3 Which is natural as both the transitions and the feature expression are Boolean functions.
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Of course, this calculation has to be very efficient since it is executed at each step of the algorithm. Therefore, the
computation cannot rely on single state/product predecessor computations to accomplish this. We rather need to compute
it on a set of such couples, generally a satisfaction set of some property φ. This leads us to define the operator SetPre as
follows.

Definition 10.

χSetPre(Sat(φ))(s, p) : {⊥,�}k × {⊥,�}n → {⊥,�} � ∃s′ • χSat(φ)

(
s′, p

) ∧ χtrans
(
s, s′, p

)
.

Intuitively, SetPre(Sat(φ)) is the set of couples (s, p) such that there exists a state s′ that satisfies φ in product p and to
which s has a transition in product p. Since the operation is computed on the symbolic encoding of the sets, it does not
consider states or products individually.

Given Definition 10, it is straightforward to obtain Sat(E X φ). It is sufficient to calculate the predecessors of Sat(φ), that
is, to apply the SetPre operator to Sat(φ).

Definition 11. χSat(E X φ)(s, p) � SetPre(Sat(φ))(s, p).

The algorithm for Sat(Eφ1Uφ2) proceeds in the same way as the classical CTL algorithm [7]. It starts with the states and
products satisfying φ2 and works backwards, searching for predecessors which satisfy φ1.

Definition 12. χSat(E(φ1Uφ2)) = χTi • χTi = χTi+1 , where

χT0(s, p) = χSat(φ2)(s, p)

χTi+1(s, p) = χTi (s, p) ∨ (
χSat(φ1)(s, p) ∧ χSetPre(Ti)(s, p) ∧ ¬χTi (s, p)

)
.

In each iteration, we add the states (s, p) that satisfy φ1, i.e. χSat(φ1)(s, p), and are predecessors of a state in Ti , i.e.
χSetPre(Ti)(s, p). An optimisation known in current CTL algorithms, and crucial here, is to only add states that were not
already in Ti , i.e. ¬χTi (s, p). Otherwise, previously visited states would be re-visited, which would be inefficient due to the
added feature variables.

The algorithm for EG φ starts off with all states and products satisfying φ and progressively shrinks this set by removing
states and products whose successors do not satisfy φ.

Definition 13. χSat(EG φ) = χTi • χTi = χTi+1 , where

χT0(s, p) = χSat(φ)(s, p)

χTi+1(s, p) = χTi (s, p) ∧ χSetPre(Ti)(s, p).

The final step of the model checking algorithm is to check whether all initial states satisfy φ, and for which products
they do. Given χSat(φ)(s, p), the set of products that violate φ is obtained by intersecting the complement of Sat(φ) with the
set of initial states, and then projecting on the state variables. This leaves a Boolean function over the feature variables char-
acterising the set of violating products. This set has to be intersected with the set of valid products, unless the calculation
was seeded with the valid products.

Definition 14. The set of products χpxbad violating a CTL property φ is

χpxbad(p) = ∃s • χI (s) ∧ ¬χSat(φ)(s, p) ∧B(d)(p)

where B(d) denotes the Boolean function equivalent to the set of products [[d]] of a feature model d (cf. Definition 1).

If χpxbad =⊥, the property is satisfied by all products.
The algorithms for calculating satisfaction sets combined with the parse tree computation lead to a complete model

checking algorithm for CTL, and hence fCTL, over FTSs.

Algorithm 15. Compute Sat(φ) recursively along the parse tree of φ following Definitions 9, 11, 12 and 13. Calculate χpxbad

following Definition 14. If χpxbad =⊥, return �. Otherwise, return ⊥ and χpxbad .
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3.2.3. Reducing fCTL model checking to classical model checking
A closer look at the algorithms for calculating satisfaction sets in the previous section reveals that they do not treat

feature and state variables differently. This means that it might be relatively easy to reduce fCTL model checking to classical
symbolic model checking. However, in classical symbolic model checking, satisfaction sets only refer to states, not to fea-
tures. A way to achieve this is to change our symbolic encoding of FTSs slightly, by moving the features from the transitions
to the states:

χS(s, p) : {⊥,�}k × {⊥,�}n → {⊥,�} • χS
(
enc(s), enc(p)

) = � ⇐⇒ s ∈ S.

That is, the features are parameters of the characteristic function of the set of states, but their value does not matter. The
initial states and the sets of states that capture the action labelling are defined similarly:

χI (s, p) : {⊥,�}k × {⊥,�}n → {⊥,�} • χS
(
enc(s), enc(p)

) = � ⇐⇒ s ∈ I,

χa(s, p) : {⊥,�}k → {⊥,�} • χa
(
enc(s)

) = � ⇐⇒ a ∈ L(s).

As features are now part of the states, and the symbolic transition relation is a function over two copies of the states, it
now has two copies of the features instead of just one:

χtrans
(
s, p, s′, p′) : {⊥,�}k × {⊥,�}n × {⊥,�}k × {⊥,�}n → {⊥,�},

such that χtrans(enc(s), enc(p), enc(s′), enc(p′)) = � iff some s
α→ s′ in fts|p and p = p′ . This version of the symbolic transition

relation is only equivalent to the one of Section 3.2.1 if the feature variables are left unchanged by the transition relation.
This is ensured by the last condition, p = p′ .

Given that features are now part of the states, the characteristic function of the satisfaction sets keeps the same signature
as before and the predecessor calculation becomes:

Definition 16. χSetPre(Sat(φ))(s, p) � ∃s′ • χSat(φ)(s′, p) ∧ χtrans(s, p, s′, p).

This definition coincides with the definition of the predecessors in standard symbolic CTL model checking algorithms,
under the condition that the feature variables in a transition do not change. Furthermore, satisfaction sets in our algorithm
now coincide with those in standard symbolic CTL model checking algorithms, and even their calculation is the same. By
combining these observations we can, at least for the calculation of Sat(φ), reduce symbolic FTS model checking to symbolic
model checking of specially crafted transition systems.

It is in the final step of the algorithm, i.e., checking whether all initial states satisfy the property, where feature variables
are treated differently from the states. This step needs to be adapted as described in Definition 14, by quantifying away the
state variables in order to obtain the set of violating products. If this is not done, the algorithm will just yield ⊥ if there
are violating products, without indicating which products are to blame.

The modified encoding has another advantage: it allows to express fCTL properties in CTL. This is due to the fact that
feature variables are state variables that can be referenced in a property. A set of products χpx can thus be expressed in the
specification language, which means that the fCTL formula [χpx]φ can be translated to the CTL formula (χpx) �⇒ φ.

3.2.4. Time complexity
For reference, single-system CTL model checking of transition systems has a computational complexity of O(|S|.|φ|).

For FTSs and fCTL, an enumerative algorithm that iterates through the set of products (O(2n)), calculates their projec-
tion (O(|expr|)) and model checks the resulting transition systems (O(|φ||fts|)) would yield a total time complexity of
O(2n|φ||fts|).

The algorithmic complexity of Algorithm 15 for FTS CTL model checking is O(|fts|.|φ|.2n). Basically, a satisfaction set is
calculated for each node in the formula giving the factor |φ|. This calculation is linear in the size of the state space for
Sat(�), Sat(a), Sat(¬φ), Sat(φ1 ∧ φ2) and Sat(E X φ). The fixed points of Sat(E(φ1Uφ2)) and Sat(EG φ) both take O (|S|.2n)

since, in the worst case, they proceed monotonically through 2n products for each state.
With regards to computational complexity, an enumerative algorithm that would check the TS of each product individ-

ually is thus equal to ours. This is consistent with the fact that FTS CTL model checking can be reduced to the classical
symbolic CTL model checking algorithm, used by the naïve algorithm. The difference between both is that the naïve algo-
rithm performs O(2n) model checks of models of size O(|fts|), whereas our algorithm performs a single model check, of a
model of size O(2n|fts|). Our hope is that the similarities between the O(2n) models will cause the BDDs of the single model
to be smaller than the sum of the size of the smaller BDDs in the naïve algorithm. Furthermore, as variable orderings play a
crucial role in the efficiency of BDD operations, our algorithm has the advantage of requiring only a single ordering (which
can then be tuned).

Note that the additional exponential factor of our algorithm cannot be avoided unless model checking is restricted to
models less powerful than FTSs, as done in [33]. Also note that our algorithm remains linear in the size of the state space
and is more efficient than the one presented in [32]. More precisely, the latter is O(|φ|.|S|!) = O(|φ|.|S||S|), and the models
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it treats can be transformed to FTSs in time linear with the size of the models. The algorithm of [32] is thus in EXPTIME
whereas ours is in E , i.e. DTIME(2O (x)), a class that “captures a more benign aspect of exponential time” [35]. Furthermore, it is
important to note that in practice, the size of the state space is much larger than the number of features. Indeed, the state
space is defined by a set of variables, which means that its size is exponential in the number of variables. Since the number
of variables is likely to be larger than the number of features, the size of the state space is likely to be much larger than
2n , which would mean that O(|S|) = O(2n|S|). In practice, the CTL model checking problem for FTSs is thus not inherently
harder than the one for transition systems.

4. The fSMV language

As we have shown, the fully symbolic model checking algorithm for FTSs can largely be reduced to the classical algorithm
for transition systems. To implement it, we decided to extend the state-of-the-art symbolic model checker NuSMV [6].4

Thereby, we can take advantage of its existing infrastructure. We refer to the extended NuSMV as ‘fNuSMV’.
The input language of NuSMV can be used as-is to create models that correspond to the symbolic encoding required

for FTS model checking. However, to make modelling more intuitive, we reuse a language by Plath and Ryan [36], which
is specifically designed for specifying features. The language, which we call ‘fSMV’, is a feature-oriented extension of the
input language of NuSMV.5 It is based on the compositional feature-oriented software development paradigm: features are
specified independently, and a product is created by composition.

4.1. Syntax

Essentially, a NuSMV model consists of a set of variable declarations and a set of assignments. The variable declarations
define the state space and the assignments define the transition relation. In each assignment, the value of a variable in
the next state is defined in function of the variable values in the present state. For each variable, there can also be an
assignment that defines its initial value. Alternatively, the value of a variable can be defined directly in function of the other
variables. Modules can be used to encapsulate and factor out recurring elements. Henceforth, we will refer to this language
as ‘SMV’.

The typical example of an SMV model (taken from [5]) is the following.

MODULE main
VAR
request: boolean;
state: {idle, busy};

ASSIGN
init(state) := idle;
next(state) := case state = idle & request: busy;

true: {idle, busy};
esac;

The above model describes a controller that is either idle or busy treating a request. The VAR section defines variables,
and the ASSIGN section defines their values (and thereby the transition relation). Requests are modelled by the variable
request. The absence of any assignments for this variable means that its value is chosen non-deterministically in each
state, which models the fact that requests are controlled by the environment. The state variable represents the state
of the controller. It is of an enumerated type. The init assignment defines its initial value (initially, the system is idle).
The next assignment, defines the transition relation: when the controller is idle and there is a request, it will treat the
request and be busy (line 7), otherwise, it may continue to be busy for a while and return to idle once the request is
treated (line 8). A case statement is a conditional expression where each line is of the form condition: value;. The
conditions are evaluated in the order in which they are specified, and the value of the first true condition is taken. The 1
at line 8 means true, i.e., it acts like an ‘else’ in programming languages such as C or Java. The {idle, busy}; at line 8
is the non-deterministic choice between those values.

The semantics of such a model is a transition system. Its state space is the product of the domains of the variables.
The state space can be narrowed with the keyword INVAR, which is used to define a constraint which has to hold in
all states. The initial states of the transition system are those whose variable values satisfy the init statements. Sim-
ilarly, there is a transition between a pair of states when their variable values satisfy the next statements. SMV has
other ways to define the transition relation. In this work, we restrict ourselves to the ASSIGN syntax. In addition to the
transition system, an SMV model also contains CTL properties. These are called ‘specifications’ and follow the SPEC key-
word.

Of course, NuSMV never constructs this transition system explicitly. Instead, it constructs a symbolic transition relation,
i.e., a Boolean function with two copies of each variable, one for the start state and one for the end state. This Boolean

4 http://nusmv.irst.itc.it.
5 More precisely, fSMV extends the input language of the earlier SMV model checker. The input language of NuSMV is almost identical.

http://nusmv.irst.itc.it
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function can be derived almost immediately from the assignment statements: when var refers to a variable in the start
state, next(var) refers to the variable in the end state. The Boolean function is thus the conjunction of all assignment
statements.

An fSMV model consists of a base system, such as the one shown above, a list of features and an FD in TVL [10] syntax.6

A base system is specified in SMV, whereas features are specified in a dialect of SMV. The whole language is called ‘fSMV’.
Features in fSMV are based on superimposition [26]: a feature describes the changes to be made to the base system. A feature
declaration consists of three parts [36]:

(1) REQUIRE defines variables that the feature needs. These have to be defined in the base system, or by other features.
The REQUIRE clauses define constraints on the order in which features can be composed.

(2) INTRODUCE defines new variables or specifications that the feature adds to the system.
(3) CHANGE defines changes made to existing variables. Types of change are:

(3.1) IMPOSE a new definition of an existing variable. This means that the feature replaces the init or next state
definition of the variable. An IMPOSE clause can be guarded with an IF clause, meaning that it only has an effect
if a certain condition holds.

(3.2) TREAT existing variables differently. When the value of the variable is read inside the definition of some other
variable, the read value is modified. TREAT clauses can also be guarded, but this is syntactic sugar [36].

As an example, consider a feature Sleep which adds a switch to the system that causes it to discard any further request.
The switch is modelled with a new non-deterministic variable sleep (using INTRODUCE). The system is changed in such
a way that if the system is sleeping and finished treating requests, then it will stay idle, not accepting any new requests
(using IMPOSE).

FEATURE sleep

REQUIRE
MODULE main
VAR state: {idle, busy};

INTRODUCE
MODULE main
VAR sleep: boolean;

CHANGE
MODULE main
IF sleep & state = idle THEN

IMPOSE next(state) := idle;

Given a base system and a feature whose REQUIRE constraints are satisfied by the base system, the feature composition
operation creates a new base system. Feature composition is syntactic, and consists in replacing existing assign or init
statements, and adding new variables. It is performed in three steps: first, TREAT assignments are applied, then IMPOSE
and then INTRODUCE assignments.

The composition of the base system and the preceding Sleep feature yields the following system.

MODULE main
VAR
request: boolean;
state: {idle, busy};
sleep: boolean;

ASSIGN
init(state) := ready;
next(state) :=
case sleep & state = idle: idle;

true: case state = idle & request: busy;
true: {idle, busy};

esac;
esac;

To make it possible to structure large models and to reuse model fragments, SMV and fSMV have the MODULE syntax.
A module encapsulates variables and assignments and can be used as a type inside other modules. The main module
defines the behaviour of the system. Any other module must be used in the main module (or in a module used in the main

6 Note, however, that FDs are not part of the original definition in [36] and are currently not implemented by our toolset.
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module). Modules can be parameterised. A parameter is a reference to a variable to which the module would otherwise not
have access. Modules can be considered syntactical sugar and can easily be eliminated by a syntactic procedure. When we
give formal definitions, we thus abstract away from modules.

4.2. Semantics

As described above, the semantics of a normal SMV model (or an fSMV base system) is a transition system. Furthermore,
as the composition of a base system and a feature yields another base system, the semantics of a product (i.e., a base
system composed with several features) is a transition system as well. This is consistent with FTSs, where the behaviour of
a product is also a transition system. However, if fSMV is to serve as a high-level language for FTSs, we need to express
its semantics in terms of FTSs. We do this by giving a translation from fSMV to symbolic FTSs as defined in the previous
section. To be able to do this in a precise manner, we need to formalise the description of fSMV.

Let us start by defining an fSMV base system.

Definition 17. Let V be a set of variables, D a set of (finite) domains or types, and E(V ) the set of all SMV expressions
over V . Let A(V 1, V 2) be the set of assignments where variables in V 1 can be on the left-hand side and expressions over
variables in V 2 can be on the right-hand side. Formally, A(V 1, V 2) ⊆ {−,init,next} × V 1 × E(V 2), that is, a set of triples
(s,d, e) where s distinguishes between v (the -), init(v) or next(v) for v ∈ V 1, and e ∈ E(V 2) is an expression.7 A base
system m is a tuple m = (v, τ ,a, p), where

• v ⊆ V is a set of variables,
• τ : V → D is a function assigning a domain to each variable,
• a ⊆ A(v, v) is a set of assignments, and
• p ⊆ P(v) × P(v) is a (possibly empty) set of processes. A process is a couple (v p, w p) where v p denotes the set

of variables read by the process and w p ⊆ v p denotes the set of variables written by the process. Furthermore, SMV
requires that the sets of variables written by different processes do not overlap.

For a model without parallel composition, the set p is empty. The semantics of a base system is a transition system [34].

As said before, for the purpose of this discussion, we abstract away from modules without loss of generality. Using these
notions the base system shown earlier corresponds to the tuple (c, τ ,a, p) with v = {request, state}, τ = {(request, {⊥,�}),
(state, {idle,busy})}, p = ∅, and

a = {
(init, state, idle), (next, state,case...esac;)}.

An fSMV model is defined as follows.

Definition 18. An fSMV model is a triple (b,d, G), where b is a base model as defined in Definition 17, d is an FD as defined
in Definition 1 and G an ordered list of implemented features. Let N be the set of features in the FD, we assume there to
be a bijective function impl : N → G with codomain G , that associates features from the FD and their implementations in
the model. When it is clear from the context, we write f instead of impl( f ) or impl−1( f ). Each feature f ∈ G is a tuple
consisting of

• v f ⊆ V , a set of new variables;
• τ f : v f → D , a type function;
• p f : p → P(v f ) ×P(v f ), a function that tells for each process whether the new variables belong to it (read and write

respectively); sets of written variables cannot overlap;
• a f ⊆ A(v f , v ∪ v f ), a set of INTRODUCE assignments;
• m f ⊆ E(v ∪ v f ) × A(v, v ∪ v f ), a set of guarded IMPOSE assignments. The first element is the guard, the second is an

assignment where the left-hand side is the variable that is affected, and the right-hand side the value it takes if the
guard is true;

• t f ⊆ A(v, v ∪ v f ), a set of TREAT assignments. The left-hand side is the variable that is affected, and the right-hand
side the value substituted by the feature.

This definition does not formalise the REQUIRES constraint which has no effect on the behaviour of the products.
Accordingly, the sleep feature given earlier is formally represented by the tuple

({sleep},{(sleep, {⊥,�}),∅,∅,
{(
sleep= true&state= idle, (next,state,idle)

)}
,∅})

.

7 An expression alone is not an assignment, it just defines a value.
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Since feature composition is a syntactical operation, composing features in a different order might lead to a different
result, i.e., two features do not necessarily commute. Intuitively, features composed later can override changes made by
earlier features. Strictly speaking, this means that a product in fSMV is a list of features, not a set. This is incompatible with
the way products are defined in FTSs and FDs. A way around this mismatch would be to assume that condition IV of [36]
is met: that the order of features is irrelevant, i.e., all features commute: (b ⊗ f i) ⊗ f j = (b ⊗ f j)⊗ f i for any base system b,
features f i and f j , where ⊗ is the composition operator defined below. This assumption would allow us to consider a
product as a set of features. However, it would also exclude any model in which two features change the same variable. We
thus opted for a different solution, which is to assume that a total ordering of the features is given as part of the model.
With this assumption, a product can also be given by a set of features. Note that this drastically reduces the number of
products, from O(

∑n
i=0

n!
(n−i)! ) to O(2n).

Feature composition can be formally defined as follows.

Definition 19. Composition of a base system b = (v, τ ,a, p) and a feature f = (v f , τ f , p f ,a f ,m f , t f ) is noted b ⊗ f and
produces a new base system b′ = (v ′, τ ′,a′, p′), where

• v ′ = v ∪ v f and τ ′ = τ ∪ τ f .
• a′ is obtained by first applying t f to a, then m f , and finally adding a f , formally:

a′ = am ∪ a f

am = {(
s,d, e′) ∣∣ (s,d, e) ∈ at ∧

if ∃(
g,

(
s′,d′, e′′)) ∈ m f • s = s′ ∧ d = d′

then e′ = case g : e′′; true : e esac;
else e′ = e

}

at = {(
s,d, e′) ∣∣ (s,d, e) ∈ a ∧ e′ = treat(e, t f )

}

where treat(e, t f ) transforms e so that for all (s,d, e′′) ∈ t f , the occurrences of s(d) are replaced by e′′ .
• p′ = {(v ∪ v f , w ∪ w f ) | (v, w) ∈ p ∧ p f (v, w) = (v f , w f )}.

The definition of a′ , the set of assignments of the composed system, is somewhat cryptic. It is defined with three
intermediate results. The first is at , i.e., after the TREAT assignments were applied. A TREAT assignment changes the
right-hand side of all assignments by replacing the occurrences of a variable by an expression. The second intermediate
result is am , i.e., after TREAT and IMPOSE were applied. An IMPOSE assignment replaces the right-hand side of a single
assignment (the variable it concerns) by a case statement: if the guard is true, the replacement expression is used, otherwise,
the previous expression.

Note that the definition of at may lead to errors when there exists a TREAT assignment (−−,d, e) such that e is
non-deterministic, that is, e is evaluated to a set of values instead of a single value. To avoid these errors, e must first be
transformed into the union of deterministic expressions, that is, one per value of e (see [36] for details).

We intentionally keep these definitions at a high level of abstraction. They are sufficiently detailed to make the following
discussion precise and abstract enough to make it intuitive. In particular, we do not detail the syntax or semantics of
expressions and types. There are a number of rules on what constitutes a valid model (w.r.t. types, variable names, etc.)
which we also omit. The interested reader is referred to [34,5,37] for a detailed formal definition of SMV, NuSMV and fSMV.

4.3. From fSMV to FTSs and back

As said before, given a base system b and a list of features, b ⊗ f1 ⊗ · · · ⊗ fn denotes a symbolic transition system. To
produce a symbolic FTS, we can use the lifting technique of [38]. The idea is to introduce a new Boolean variable for each
feature. Furthermore, all changes made by a feature are guarded by its feature variable. This leads us to define lifted feature
composition as follows (the changes w.r.t. Definition 19 are shown in colour).

Definition 20. Lifted composition of a base system b = (v, τ ,a, p) and a feature f = (v f , τ f , p f ,a f ,m f , t f ) is noted b � f
and produces a new base system b′ = (v ′, τ ′,a′, p′), where

• v ′ = v ∪ v f ∪ {var( f )} and τ ′ = τ ∪ τ f ∪ {var( f ), {⊥,�}}, where var( f ) denotes the feature variable associated to f .
• a′ is obtained by first applying t f to a, then m f , adding a f , and finally an assignment that requires the feature variable

to remain constant formally:

a′ = am ∪ a f ∪ {(
next,var( f ),var( f )

)}
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am = {(
s,d, e′) ∣∣ (s,d, e) ∈ at ∧

if ∃(
g,

(
s′,d′, e′′)) ∈ m f • s = s′ ∧ d = d′

then e′ = case var( f ) & g : e′′; true : e esac;
else e′ = e

}

at = {(
s,d, e′) ∣∣ (s,d, e) ∈ a ∧ e′ = treat(e, t f )

}

where treat(e, t f ) transforms e so that for all (s,d, e′) ∈ t f , the occurrences of s(d) are replaced by case var( f ) :
e′; true : e esac;.

• p′ = {(v ∪ v f , w ∪ w f ) | (v, w) ∈ p ∧ p f (v, w) = (v f , w f )}.

Guarding a change made by a feature with the corresponding feature variable means that the behaviour with (resp.
without) the feature can be obtained by setting the feature variable to � (resp. ⊥). For example, the lifted composition of
the controller base system and the Sleep feature yields the following.

MODULE main
VAR
sleepFeature: boolean; -- added feature variable
request: boolean;
state: {idle, busy};
sleep: boolean;

ASSIGN
next(sleepFeature) := boolean;
init(state) := idle;
next(state) :=
case sleepFeature & sleep & state = idle: idle;

true: case state = idle & request: busy;
true: {idle, busy};

esac;
esac;

The lifted composition of a base system and a list of features, b � f1 � · · · � fn denotes a symbolic FTS. It corresponds
to the symbolic encoding given in Section 3.2.3: the features are part of the states because each has a Boolean feature
variable, the feature variables are initialised non-deterministically, and they do not change their value as part of a transition.
Since this lifted composition is also a valid SMV model, and given that symbolic FTS model checking can be reduced to
model checking of symbolic transition systems, we can feed it as-is into NuSMV and reuse the result of the satisfaction set
computation.

Recall that an fSMV model is a base system and a list of features. The lifted composition of the base system and all
features in the given order is thus always well-defined. To simplify the notation, we therefore write fts(m)� b� f1 �· · ·� fn ,
for an fSMV model m = (b,d, ( f1, . . . , fn)), to denote the corresponding symbolic FTS. A symbolic FTS can be projected to a
product by fixing the values of the feature variables according to the product:

Definition 21. Given an fSMV model m with features G , the projection of fts(m) = (v, τ ,a, p) to a product p ∈ [[d]]FD is the
model fts(m)|p � (v, τ ,a′, p) where a′ = a ∪ {(init, var( f ), f ∈ p) | f ∈ G}.

We have shown that lifted feature composition indeed yields a symbolic FTS. What is left to be shown is that it preserves
the semantics of the normal feature composition as it was defined by [36]. This is indeed the case. The following theorem
establishes that projecting the fSMV obtained by lifted composition (Definition 20) to a product leads to an SMV model
that is syntactically equivalent to the one obtained by normal feature composition (Definition 19), with one small exception.
The projection of a lifted composition can have more variables than the normal composition: those added by non-selected
features. Since these are not removed by projection, they remain in the projected system. However, they do not influence the
other variables, which means that the projected system and the one obtained by normal feature composition are bisimilar [4]
when only considering common variables, thus preserving any CTL properties over these variables.

Theorem 22. For any fSMV model m = (b,d, { f1, . . . , fn}) and product p = { f i, . . . , f j}, where the indexing from i to j corresponds
to the feature order given in m,

b ⊗ f i ⊗ · · · ⊗ f j ∼ (b � f1 � · · · � fn)|p
where ∼ denotes bisimilarity w.r.t. shared variables.

Proof. First, observe that lifted feature composition does not remove any of the code in the base system; rather, it wraps
changed code inside case statements. In a projection, the values of the features are all fixed. This means that refer-
ences to features can be replaced everywhere by their value. Any changes by non-selected features will be of the kind
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case false & . . . : exp1; true : exp2 esac;, where exp2 is the expression that was there before the feature was added.
Such case statements can be simplified to exp2 ;. For selected features, the simplification is similar, except that the change
made by the feature is preserved. Intuitively, these semantics-preserving transformations correspond to unwrapping of case
statements introduced by lifted composition. The result is syntactically equivalent to b ⊗ f i ⊗ · · · ⊗ f j , with the exception
of added variables (and their assignments), which do not influence the common variables. Hence, there is a bisimulation
relation between two SMV models, when only considering common variables. These are the only variables over which
properties to be preserved have to hold. �

We define the semantics of fSMV in terms of SMV, i.e., as a symbolic FTS. In this case, the parallel composition is defined
as it is for SMV. An alternative would be to define the semantics in terms of explicit FTSs (Definition 3). This would make
it possible to define the semantics of fSMV compositionally, where each process translates to an FTS. We have done this
in [8].

The above results establish that any fSMV can be translated to an FTS, i.e., that the fSMV language is a subset of the
FTS language. The following theorem establishes that the converse also holds, i.e., that both languages are expressively
equivalent.

Theorem 23. Any FTS can be translated into fSMV.

Proof. Given an FTS (S,Act, trans, I,AP, L,d, γ ), construct an fSMV model (b,d, F ) with b = (v, τ ,a,∅), where

(1) one variable of the fSMV, state, is used to encode all the states of the FTS: τ (state) = S . For every feature f ∈ N , the
fSMV will have a variable f with τ ( f ) = {⊥,�}. Hence, v = {state} ∪ N;

(2) in the base system, the feature variables are always ⊥. The assignments related to the feature variables are thus aF =
{(−, f ,⊥) | f ∈ N}. The initial value of the state variable is the non-deterministic choice between the initial states of
the FTS, and its next value is derived from the transition relation of the FTS. The assignments for the state variable are

as = {
(init, state, I), (next, state,case case1 . . . casek esac;)}

where the casei are given by {state = s & γ (s
α→ s′): s′; | s

α→ s′ ∈ trans}. The set of assignments is then a = aF ∪ as;
(3) each feature imposes that its associated variable (which is part of the base system) takes the value �, i.e.,

F = {
(∅,∅,∅,∅,

{(�, (−, f ,�)
)}

,∅)
∣∣ f ∈ N

}
.

In consequence, the composition of a base system with a set of features yields a transition system of which all transitions

whose γ (s
α→ s′) evaluates to ⊥ for the feature variables have been removed. This corresponds exactly to projection as

defined in Definition 4. �
5. Implementation in NuSMV

We now give an overview of our model checking toolset. First, we present it from the user perspective. We then discuss
more technical details of the implementation.

5.1. User interface and illustration

Like NuSMV, our toolset is command-line based. This is rather natural, especially since the composition scripts lend
themselves well to pipe-based chaining of commands.

The input to the tool is a model expressed in fSMV. Concretely, this means at least one file containing the base system
and one file for each feature. The feature order is not explicitly part of the syntax, it is specified when using the composition
script. The composition script, compose.php, is indeed the first tool to be used in a normal use case. Let us illustrate this
with the fSMV model presented in the previous sections. Assume that there are two files base.smv corresponding to the
base system and sleep.feat corresponding to the sleep feature. The feature composition (following Definition 19) of the
base system and the Sleep feature is given by:

$ php compose.php sleep.feat < base.smv > ts.smv

The composition script is written in PHP, which is why the command starts with php. The result, ts.smv, is the
behaviour of the product consisting of the base system and the sleep feature. It can be analysed using NuSMV. To produce
the lifted feature composition (Definition 20) instead of the normal feature composition, the command-line parameter -l
has to be set, i.e.:

$ php compose.php -l sleep.feat < base.smv > fts.smv
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The script thus has one parameter, the file name of the feature to be composed, and reads the base system from stdin
(hence the input redirection < in the previous two examples). This means that when there are several features to compose,
the calls can be chained with pipes, e.g.:

$ php compose.php -l sleep.feat < base.smv
| php compose.php -l other.feat > fts.smv

When chaining multiple calls, the -l parameter has to be set for all of them or for none of them.
The heart of our toolset is fNuSMV, which is a modified version of NuSMV. It is distributed as a patch (created using the

standard Unix diff tool) which has to be applied to the NuSMV codebase before NuSMV is compiled. When this is done,
a new command-line parameter -fbdd is available in NuSMV.

Let us illustrate the use of fNuSMV with the controller example. A property for such a system would be that “every
request eventually results in the controller being busy”. In CTL, this becomes ∀G (request ⇒ ∀F state = busy), or in NuSMV syntax
SPEC AG (request -> AF state=busy). In NuSMV, the temporal operators are written with letters: X becomes X,
G becomes G and F becomes F (the U for until remains). Checking this property using fNuSMV would look as follows.

$ ./NuSMV -fbdd fts.smv

*** This is NuSMV 2.5.0 [...]
-- Computing fbdd init.. done.
-- specification AG (request -> AF state = busy) is false

5 -- (fbdd) specification is false for products satisfying:
f.fSleep

-- (fbdd) specification is true for products satisfying:
!f.fSleep

-- as demonstrated by the following execution sequence
10 Trace Description: CTL Counterexample

Trace Type: Counterexample
-> State: 1.1 <-
f.fSleep = TRUE
request = FALSE

15 state = idle
sleep = FALSE

-- Loop starts here
-> State: 1.2 <-
request = TRUE

20 sleep = TRUE
-> State: 1.3 <-

The global result, printed at line 4, is that the property is violated. At line 6, fNuSMV prints a feature expression character-
ising the products that violate the property, in this case all those containing the Sleep feature. At line 8, the negation of this
feature expression is shown (this helps in the case of larger expressions). This is followed by a counterexample at lines 10
to 21. This counterexample only applies to a single one of the violating products (identified by the value assignments to
feature variables in the first state). This is a small drawback compared to our LTL model checking algorithm, which com-
putes a counterexample that holds for all violating products. Development of such a technique for CTL counterexamples is
part of our future work.

As a comparison, if we use NuSMV without the -fbdd parameter, the result will be the following.

$ ./NuSMV fts.smv

*** This is NuSMV 2.5.0 [...]
-- specification AG (request -> AF state = busy) is false
-- as demonstrated by the following execution sequence

5 Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
f.fSleep = TRUE
request = FALSE

10 state = idle
sleep = FALSE

-- Loop starts here
-> State: 1.2 <-
request = TRUE

15 sleep = TRUE
-> State: 1.3 <-

This procedure identifies only a single violating product, given by the initial values of the feature variables in the coun-
terexample (line 8). The question whether other products violate or satisfy the property is left open by this check.

In addition to compose.php and fNuSMV, our toolset comprises a quantification script, quantify.php. This script
allows to create parameterised models. In the case of the controller, for example, one could imagine that the controller is
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capable of treating several requests in parallel. The parameter of the model would be the number of requests. For the value
two, the model would be the following:

MODULE main
VAR
request1: boolean;
request2: boolean;
state: {idle, busy};

ASSIGN
init(state) := idle;
next(state) :=
case state = idle & request1 & request2: busy;

true: {idle, busy};
esac;

In the SMV (and thus fSMV) syntax, it is not possible to specify the model for a number of requests n. This capability
is added with the quantification script which acts as a preprocessor. Inside a preprocessed model file, the syntax [forall
p=i..j]body[/forall] can be used:

i, j are integers that define a range. Instead of an integer, the letter n can be used, which will be substituted by a
user-defined value when running the script. The bounds can also be given with expressions, e.g. p=n-1..n.

body is the piece of text to be repeated.
p is the name of the index. It can be referenced inside body by writing %p% (the index enclosed by percent signs).

Simple expressions such as %p-1% are also supported.

In the case of the controller example, this would be used as follows.

MODULE main
VAR
[forall i=1..n]
request%i%: boolean

[/forall]
state: {idle, busy};

ASSIGN
init(state) := idle;
next(state) :=
case state = idle [forall i=1..n] & request%i%

[/forall]: busy;
true: {idle, busy};

esac;

To produce the example with two requests, the quantification script is used to process the above file.

$ php quantify.php 2 base.smv > base-2requests.smv

Quantifiers have to be instantiated before a file can be used in the composition script. This can make the use of the tools
rather cumbersome. In practice, it is helpful to encapsulate all quantification and composition commands in a shell script.
Moreover, most models do not require quantifiers.

5.2. Implementing composition

The composition script implements feature composition and lifted feature composition as specified in Definitions 19
and 20. It is slightly more involved than the definitions suggest, mainly because it has to deal with modules. In both cases,
the composition script has to respect the scope of the module to which a change is applied. Moreover, for lifted feature
composition, the composition script has to add feature variables so that they can be referenced in all modules uniformly.
NuSMV does not allow access to variables in parent modules. This is only possible by parameterising modules. To make the
feature variables available in all modules, the composition script therefore creates a new module with all feature variables,
instantiates it in the main module, and adds it as a parameter to all other modules.

The module containing the features is called features, which means that ‘features’ cannot be used as an identifier in
the fSMV files. To each feature corresponds one variable in this module, the variable name being the feature name (with
the first letter in uppercase) prefixed by the letter f. The feature module is declared in the main module as a variable
named f. Therefore, f is also a reserved keyword which should not be used inside fSMV models. The parameter added to
all other modules is also called f, so that the features can be referenced the same way inside the whole model.

For the controller example, the lifted feature composition would result in the following SMV model.
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MODULE features
VAR
fSleep: boolean;

ASSIGN
init(fSleep) := {false,true};
next(fSleep) := fSleep;

MODULE main
VAR
f: features;
request: boolean;
state: {idle, busy};
sleep: boolean;

ASSIGN
next(state) :=
case f.fSleep & sleep & state = idle: idle;

true: case state = idle & request: busy;
true: {idle, busy};

esac;
esac;

Note that the feature variables are initialised non-deterministically and that their value is defined to be constant.
Naming conventions allow us to easily distinguish feature variables from other Boolean variables. All feature variables

have the prefix f.f: the first f identifies the variable of the main module that holds the feature module and the second
f is the one prefixed to every feature variable. We need to be able to distinguish feature variables from the other variables
when calculating the products for which a certain property holds. An alternative to the naming convention would have been
to extend the SMV language. We chose a naming convention as this necessitates far less changes to the NuSMV codebase.

Furthermore, the naming convention means that fCTL properties can be written and attached to any module in the same
way. E.g., in the case of the controller, the property that every request will eventually result in a busy controller might
not be relevant for controllers with the Sleep feature. In fCTL, this can be written [!sleep]AG request ⇒ A F state = busy. In
SMV, this becomes SPEC !f.fSleep -> AG (request -> AF state=busy). As expected, the property is satisfied
by all products:

$ ./NuSMV -fbdd fts.smv

*** This is NuSMV 2.5.0 [...]
-- Computing fbdd init.. done.
-- specification (!f.fSleep -> AG (request -> AF state = busy))

5 is true

5.3. Implementing FTS model checking

The output of the composition tool is a normal SMV model and can be model checked directly by NuSMV. However,
as shown before, standard NuSMV model checking does not fully exploit the feature encoding. Since NuSMV executes the
standard CTL model checking algorithm, it will report false if it finds a counterexample. More precisely, it will return false if
just one of the products violates the property.

Basically, given a property φ, the algorithm will compute a Boolean function χSat(φ)(s, p), where s (resp. p) is the Boolean
encoding of some state (resp. some product). χSat(φ) is true for all states and products that satisfy the property. The normal
model checking algorithm will just check whether there exists some initial state for which χSat(φ)(s, p) is false. Unable
to distinguish between feature variables (belonging to p) and normal variables (belonging to s), the test will existentially
quantify over the feature variables which corresponds to considering a single product only.

As discussed in Section 3.2.3, there is sufficient information to determine exactly which products violate and which
satisfy the property. The idea is to only quantify χSat(φ) existentially over the state variables (i.e., those that do not represent
features). The result is a Boolean function over the feature variables that represents exactly the products for which the
property holds. Implementing this calculation is the only significant change we made to the NuSMV code (the other being
the addition of the command-line parameter). Still, it accounts for just about 44 lines of additional code. One fragment of
code is executed once for all properties in the model, it consists in creating the BDDs of the feature variables which are used
in the quantification. The second fragment is executed for each property, after the model checking algorithm is finished. It
calculates the quantifications and prints the information about satisfying and violating products on stdout.

Currently, FDs are not implemented as part of the toolset. However, this would be quite straightforward. Following
Definition 14, it would be sufficient to test whether the conjunction of the returned function and B(d), the Boolean function
equivalent of the FD d, is satisfiable. An alternative would be to limit the check to the set of valid products of the FD from
the outset. This can be done by adding constraint IVAR B(d) to the model before it is analysed. NuSMV considers it as an
invariant, which will effectively prevent it from considering invalid products.
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Table 1
Benchmarked properties.

ID Property

01 AG (landingBut2.pressed ⇒ A F (lift.floor = 2 ∧ lift.door = open))

01′ ¬AG (landingBut2.pressed
⇒ A F (lift.floor = 2 ∧ lift.door = open ∧ lift.direction = down))

02 AG (liftBut3.pressed ⇒ A F (floor = 3 ∧ door = open))

03a AG (floor = 2 ∧ liftBut6.pressed ∧ direction = up ⇒ A[direction = upU floor = 6])
03b AG (floor = 6 ∧ liftBut1.pressed ∧ direction = down

⇒ A[direction = downU floor = 1])
04 ¬AG (door = closed ⇒ A F door = open)

05a EF(floor = 1 ∧ idle ∧ door = closed ∧ A X(door = closed))

05b AG (floor = 1 ∧ idle ∧ door = closed ∧ A X (door = closed)

⇒ EG(floor = 1 ∧ door = closed))

05-part EF(A X (door = closed))

05c EF( f loor = 3 ∧ idle ∧ door = closed ∧ A X (door = closed))

05d AG (floor = 3 ∧ idle ∧ door = closed ∧ A X (door = closed)

⇒ EG(floor = 3 ∧ door = closed))

05e EF(EG(door = closed))

05′ ¬AG (floor = 4 ∧ idle ⇒ E[idleU floor = 1])
06 ¬AG ((floor = 3 ∧ ¬liftBut3.pressed ∧ direction = up) ⇒ door = closed)

07 ¬AG ((floor = 3 ∧ ¬liftBut3.pressed ∧ direction = down) ⇒ door = closed)

6. Evaluation

In [36], the authors propose the fSMV language along with a verification technique for CTL that is based on the enu-
merative algorithm, i.e., an exhaustive enumeration of the set of products (although they limit themselves to couples of
features). Such a product-enumerative approach is exactly what we intend to avoid. While both approaches produce equiv-
alent results, we argue that model checking a single model with variability (i.e., the model of the whole SPL) is in general
more efficient. Experiments with the Haskell FTS library also suggest that [15]. Here, we test this hypothesis in the symbolic
context through benchmarks that compare the runtime of the enumerative algorithm and the FTS algorithm.

6.1. Elevator system

For these experiments we used the elevator system from [36]. We extended the SMV models provided with the original
paper in two ways. First, we made the number of floors (fixed at five in [36]) variable. Secondly, we added four more
features to the system, giving a total of nine features. All features are independent, which means that there are 29 products.
The elevator system is comprised of a number of platform buttons and a number of cabin buttons. There is a single button
on each platform, which calls the elevator. The button press is modelled non-deterministically, and a pressed button remains
pressed until the elevator has served the floor and its doors are opened. The elevator will always serve all requests in its
current direction before it stops and changes direction. When serving a floor, the lift doors open and close again. There are
nine features that modify the behaviour of the lift. Those marked with an asterisk were added by us.

Anti-prank.* Normally, a lift button will remain pushed until the corresponding floor is served. With this feature, the lift
buttons have to be held pushed by a person.

Empty. If the lift is empty, then all requests made in the cabin will be cancelled.
Executive floor. One floor of the building has priority over the other floors and will be served first, both for cabin and

platform requests.
Open when idle.* When idle, the lift opens its doors.
Overload. The lift will refuse to close its doors when it is overloaded.
Park. When idle, the lift returns to the first floor.
Quick close.* The lift door cannot be kept open by holding the platform button pushed.
Shuttle.* The lift will only change direction at the first and last floor.
Two-thirds full. When the lift is two-thirds full, it will serve cabin calls before platform calls.

To test the correctness of our approach we first reduced the example to the five features from [36] and managed to
reproduce the feature interactions reported in the original paper. Subsequently, we made some minor modifications to the
model to accommodate the additional features. The models contains over 300 lines of code; the actual number depends on
the number of floors. The models are distributed with the toolset on the FTS website http://www.info.fundp.ac.be/fts.

The properties used for our benchmarks are those of the base system shown in Table 1 (mostly combined safety and
liveness properties). The property numbers reported in the statistics refer to the numbers in Table 1, and can also be used
to identify the properties in the NuSMV code. For instance, Property 01 specifies that “each time the button at floor 2 is
pressed, the elevator must eventually be at floor 2 with its door opened”.

http://www.info.fundp.ac.be/fts
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Table 2
Benchmark results for the elevator system with four floors.

Property Value Enumerative Single Speedup

01 false 17.84 s 0.14 s 127.43
01′ true 15.37 s 0.05 s 307.40
04 false 18.19 s 1.06 s 17.16
02 false 19.23 s 0.22 s 87.41
03a false 20.48 s 1.84 s 11.13
03b false 21.23 s 1.76 s 12.06
05a false 20.09 s 3.23 s 6.22
05b true 14.36 s 0.03 s 478.67
05-part true 16.47 s 0.06 s 274.50
05c false 19.94 s 1.86 s 10.72
05d true 14.68 s 0.03 s 489.33
05e false 18.3 s 1.06 s 17.26
05′ false 19.89 s 1.62 s 12.28
06 true 18.89 s 1.2 s 15.74
07 true 19.27 s 2.57 s 7.50

6.2. Experimental setup

The goal of our experiments is to evaluate the performance of our algorithms. To this end, we compare the FTS algorithm
with the enumerative algorithm.

The experiments consist in using both algorithms to check the fifteen properties of the base system given in Table 1
against an elevator model with the number of floors ranging from 4 to 8. Each property was benchmarked in a separate run
of the model checker. The benchmarks were run on an Ubuntu machine with an Intel Core2 Duo at 2.80 GHz with 4 Gb of
RAM.

The reported benchmarks compare (for each property)

• the total runtime of 29 model checks that enumerate all products explicitly (‘Enumerative’);
• the runtime of a single NuSMV model check following our method (‘Single’).

The size of the NuSMV model of the product with all features ranges from 217 states for four floors, to 227 states for
eight floors. These are the upper bounds for the size of the models analysed in the enumerative benchmarks. As explained
earlier, our algorithm only needs one check, but requires an additional variable for each feature. Its models are thus much
larger, from 226 states to 236.

An important factor in BDD based model checking is the variable ordering. In order to avoid computing static variable
orderings and still be efficient, NuSMV has the parameter -dynamic, which causes the BDD package to reorder the variables
during verification in case the BDD size grows beyond a certain threshold. When using this method for the single model
check, it works well on small to medium models (up to six floors). However, its limitations become more and more apparent
as the size of the models grows. In the case of the single model check for eight floors (i.e., a model of size 236), NuSMV
would spend more time reordering variables than actually verifying the property.

In consequence, we used dynamic reordering to extract efficient variable orderings for all models, and next used these
as static orderings in all subsequent benchmarks. The model checks of the single approach were run with parameters -df
-i orderfile. Option -i allows us to specify a static variable ordering to be used by the model checker. Those of the
enumerative approach were run with -df -dynamic. It is important to note that the variable orderings computed for the
single approach cannot be reused for the enumerative case. This is due to the fact that the enumerative approach produces 29

models with different sets of variables, which would require 29 variable orderings. However, due to the absence of the nine
feature variables, the individual models of the enumerative cases are much smaller than the single model in the single case.
Therefore, the dynamic variable ordering, while being the only option, should still be rather efficient for the enumerative
case.

Note that we were not able to detect any patterns regarding the placement of feature variables in the variable orderings.
Moreover, when comparing the variable orderings for the models with different numbers of floors, the positions of feature
variables appear to change randomly.

6.3. Results

The results of the benchmarks for the model with four floors are given in Table 2. The results for the other models can be
found in Appendix A. They show that our approach achieves order-of-magnitude speedups over the enumerative approach.
These observations are reported for each property in Fig. 3, where we show how speedup evolves when the number of
floors grows. Three clusters appear: four high outliers, with speedups greater than 250 and up to 1000; five low outliers
with speedups below two or three and sometimes negative; and six stable properties with speedups around ten. A trend
that we observed is that with an increasing number of floors, the outliers tend to become more extreme (the high speedups
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Fig. 3. Evolution of speedup with the number of floors (logarithmic scale).

grow, the low speedups descend). This is most likely due to the importance of the static variable ordering for larger models,
although we cannot exclude other factors.

We conducted a second experiment in which we used the dynamic variable ordering for both algorithms. In this case,
when the number of floors was larger than six, the smaller models of the enumerative algorithm caused it to be more
efficient than the FTS algorithm on more than half of the properties. This means that the improvement in speedup seen
above can be attributed to a large extent to the use of an optimised static variable ordering. The crucial advantage of our
algorithm is therefore that it just needs one variable ordering. Note that both algorithms could be combined. First, our
algorithm would be used to find a good variable ordering. Since this variable ordering comprises all the variables that are
used in the enumerative checks, a variable ordering for each enumerative check can be obtained from this ordering by
removing irrelevant variables. The enumerative algorithm could then be used with static orderings (obtained with the FTS
algorithm). This procedure has not been tested nor subjected to benchmarks.

6.4. Threats to validity

In order to limit bias, we went to great lengths to ensure that the enumerative benchmarks were as efficient as possible.
For instance, the computation of the 29 feature compositions (to create the files that were model checked) for each property
was not included in the runtime. Furthermore, the large volume of log files from these runs was cleaned after each run since
it would slow down the tool after several runs (because of huge inode lists in the parent folder).

NuSMV has an extensive set of optimisations and parameters of which we only used the most basic ones, -dynamic
and -df (preventing the computation of reachable states, which was found to be slowing down both algorithms). The enu-
merative algorithm might benefit more from some of these optimisations, since even a small improvement can accumulate
over the O(2n) runs of the tool. On the other hand, since the set of variables is different for most products, some optimisa-
tions cannot be used in the enumerative algorithm. For example, NuSMV allows hard caching of BDDs, so that they can be
reused between checks. This caching cannot be used between products, because most products have different variables and
thus different BDDs. Using the basic algorithm allowed us to make sure that the only difference in runtime was due to the
use of the FTS algorithm and a static variable ordering.

7. Related work

7.1. FTSs

We first compare this paper with our previous work on FTSs. In [15], we introduced FTSs as a foundational formalism
for behavioural specification and verification of SPLs. We focused exclusively on linear time logic properties as well as
on explicit-state algorithms that exploit the compact structure of FTSs for efficient model checking. The paper [12] is an
extension of [15] where the definition of FTSs is generalized and more information are covered. In particular, we studied
the concept of parallel composition and provide details about the model checking algorithms. Yet these algorithms are based
on an explicit visit of each state, whereas the present paper focuses on symbolic model checking. In [11] we exhaustively
introduced SNIP, a tool that implements the theory presented in [12]. Again, the algorithms in SNIP are not symbolic, hence
the motivation of the toolset proposed in this paper.



436 A. Classen et al. / Science of Computer Programming 80 (2014) 416–439
In [14], we lay the theoretical foundations for fully symbolic model checking of SPLs using NuSMV. The present paper
extends the latter by studying a high-level modelling language, viz. fSMV, and its relation with FTSs. The expressiveness
equivalence between the fSMV and FTSs is an important result that is missing in [14]. Additional contributions of the
present paper are a thorough description of our toolset, and new empirical results. Overall, this paper substantially adds to
the set of arguments in favour of the appropriateness (through the proof of equivalence), correctness (idem), computational
efficiency (through the empirical evaluation) and scalability (through symbolic algorithms) of the set of tools and languages
we propose for product line modelling and model checking.

In recent work, we define abstractions for FTSs through the definition of behavioural preorder between FTSs [19]. Based
on that result, we lay the foundations for incremental verification of SPLs [18].

7.2. Behavioural models for SPLs

Apart from FTSs, there exist other formalisms to model SPLs behaviour. Larsen et al. [31] use I/O automata to model
SPLs whose products are opened systems. They also define simulation/refinement relations between SPLs. However, they
are not concerned with model-checking. Several authors propose modal transition systems [24,22,23,3] to model and verify
the behaviour of SPLs. However, those models do not allow to keep track of the features (hence of the products) during a
verification. Asirelli et al. [2] compare this approach with our work and highlight commonalities and differences between
them.

7.3. High-level languages for SPLs specification

Several authors propose high-level languages for modelling SPL behaviour [41,20]. However, they do not consider model-
checking. On the contrary, fSMV is the only high-level language for behavioural modelling of SPLs combined with efficient
model checking algorithms. The main difference between the original work by Plath and Ryan [36] and ours is that we
focus on modelling and verifying multiple products at once, while they are interested in feature interaction detection. More
precisely, the approach in [36] consisted in checking feature combinations exhaustively, but limited to pairs of features. Our
approach consists in using a reduction to FTSs in order to verify all the products with a single application of the model
checking algorithm. Finally, in [37], Plath and Ryan already proposed a formal model for fSMV. However, we argue that the
translation we proposed in Section 4 is compositional and easier to understand.

7.4. SPLs model-checking

Lauenroth et al. [32] introduce a CTL model-checking algorithm for verifying automata labelled with features. This al-
gorithm is not symbolic and the formalism they use do not allow to label transitions with arbitrary boolean expressions.
Gruler et al. [27] propose an extension of CCS with a variability operator that allows to model alternative choices. Their
model-checking algorithm is, to the best of our knowledge, only sketched and not implemented. The approach of Apel et
al. [1] allows to detect interactions between features, which are specified modularly. Like ours, their algorithms avoid redun-
dant verifications. A comparable approach, which has been largely discussed in the previous section, is the compositional
method developed by Fisler and Krishnamurthi [25,30], further extended by Li et al. [33]. Modular feature verification was
not in the scope of our work until now, but comparing and combining our approach with modular verification is an exciting
line of research for the future. Treating features in a specific way depending on their level of “cross-cuttingness” seems both
a promising and challenging endeavour.

Other tools similar to our NuSMV extension exist. SNIP is our other SPL model checker [11]. It implements the semi-
symbolic algorithms we presented in [15,12]. VMC [40] is a model checker that implements the MTS-based approach of
Asirelli et al. [2].

8. Conclusion

In this paper, we tackled the state explosion problem in SPL model checking by introducing symbolic (as opposed to
explicit) algorithms. Our experiments show that these algorithms achieve order-of-magnitude reduction in the verification
time with regard to an enumerative verification of all the products. We also studied the relationship between FTSs, a formal
model for SPL behaviour [15], and fSMV, a feature-oriented extension of the SMV language proposed in [36]. The main
drawback of FTSs is that it is a foundational formalism, which is impractical for direct usage by engineers. The results of
this paper establish that the fSMV language can be used as a high-level representation of FTSs. This work thus constitutes
a significant progress towards developing specification and verification techniques that are suitable for SPL engineers in
industrial settings. To summarize, the contributions of the paper are:
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1. We defined the fCTL logic, which allows us to verify temporal properties on a specific set of products, and we designed
symbolic algorithms for checking an FTS against an fCTL formula.

2. We gave a new compositional formal semantics to the fSMV language that is suited for SPL model checking.
3. We proved the expressiveness equivalence between fSMV and FTSs. The constructive proof is the basis for trustworthy

translation algorithms.
4. We illustrated and evaluated some practical implications of the above results through our toolset and case study.

These contributions are part of a long term research project whose objective is to propose new languages and meth-
ods for the design and the efficient quality assessment of SPLs. As part of the project, we are also investigating linear
temporal logic and explicit-state model checking through a feature-oriented extension of the Promela language (used in
SPIN [28]).

In the future, we plan to apply compositional reasoning to the verification of SPL. Our goal is to identify special classes
of features that can be verified in isolation, to propose algorithms that analyze the specification of such features and subse-
quently determine whether feature is responsible for the violation of a given property.

Appendix A. Detailed benchmark results

In this appendix, we provide details (see Tables A.3–A.6) about the results of the experiments discussed in Section 6.
Basically, for each variant of the elevator model, we present a table comparing the performance of our symbolic algorithm
with regard to an individual verification of each product of the SPL.

Table A.3
Benchmark results for the elevator system with five floors.

Property Value Enumerative Single Speedup

01 false 29.38 s 0.44 s 66.77
01′ true 24.76 s 0.09 s 275.11
04 false 34.02 s 4.62 s 7.36
02 false 33.16 s 0.82 s 40.44
03a false 37.98 s 6.3 s 6.03
03b false 39.43 s 6.32 s 6.24
05a false 39.77 s 13.99 s 2.84
05b true 22.7 s 0.03 s 756.67
05-part true 29.25 s 0.16 s 182.81
05c false 35.52 s 8.66 s 4.10
05d true 23.44 s 0.04 s 586.00
05e false 34.09 s 4.63 s 7.36
05′ false 40.21 s 8.14 s 4.94
06 true 34.55 s 4.56 s 7.58
07 true 35.9 s 7.57 s 4.74

Table A.4
Benchmark results for the elevator system with six floors.

Property Value Enumerative Single Speedup

01 false 44 s 1.05 s 41.90
01′ true 34.02 s 0.13 s 261.69
04 false 67.76 s 18.44 s 3.67
02 false 52.36 s 1.87 s 28.00
03a false 76.67 s 22.42 s 3.42
03b false 77.98 s 27.21 s 2.87
05a false 105.07 s 322.53s 0.33
05b true 30.67 s 0.04 s 766.75
05-part true 54.63 s 0.32s 170.72
05c false 88.63 s 78.36 s 1.13
05d true 30.93 s 0.05 s 618.60
05e false 67.45 s 18.39 s 3.67
05′ false 131.78 s 63.61s 2.07
06 true 68.36 s 20.42 s 3.35
07 true 73.06 s 36.89 s 1.98
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Table A.5
Benchmark results for the elevator system with seven floors.

Property Value Enumerative Single Speedup

01 false 66.89 s 3.45 s 19.39
01′ true 44.34 s 0.17 s 260.82
04 false 214.75 s 109.67 s 1.96
02 false 86.98 s 5.58 s 15.59
03a false 160.43 s 51.35 s 3.12
03b false 169.91 s 66.45 s 2.56
05a false 487.98 s 571.69 s 0.85
05b true 38.39 s 0.04 s 959.75
05-part true 114.38 s 0.55 s 207.96
05c false 269.19 s 257.98 s 1.04
05d true 38.62 s 0.06 s 643.67
05e false 214.13 s 112.79 s 1.90
05′ false 568.56 s 241.53 s 2.35
06 true 142.42 s 48.37 s 2.94
07 true 160.3 s 128.84 s 1.24

Table A.6
Benchmark results for the elevator system with eight floors.

Property Value Enumerative Single Speedup

01 false 99.14 s 4.96 s 19.99
01′ true 62.71 s 0.15 s 418.07
04 false 337.47 s 414.32 s 0.81
02 false 139.58 s 6.06 s 23.03
03a false 312.05 s 57.65 s 5.41
03b false 332.49 s 81.35 s 4.09
05a false 2180.58 s 2232.39s 0.98
05b true 51.26 s 0.04 s 1281.50
05-part true 211.63 s 0.48 s 440.90
05c false 851.58 s 899.2 s 0.95
05d true 52.27 s 0.07 s 746.71
05e false 337.81 s 407.84 s 0.83
05′ false 2441.67 s 887.8 s 2.75
06 true 263.68 s 102.39 s 2.58
07 true 325.31 s 439.25 s 0.74
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