
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

A framework for the rigorous design of highly adaptive timed systems

Cordy, Maxime; Legay, Axel; Schobbens, Pierre Yves; Traonouez, Louis Marie

Published in:
2013 1st FME Workshop on Formal Methods in Software Engineering, FormaliSE 2013 - Proceedings

DOI:
10.1109/FormaliSE.2013.6612279

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link to publication
Citation for pulished version (HARVARD):
Cordy, M, Legay, A, Schobbens, PY & Traonouez, LM 2013, A framework for the rigorous design of highly
adaptive timed systems. in 2013 1st FME Workshop on Formal Methods in Software Engineering, FormaliSE
2013 - Proceedings., 6612279, pp. 64-70, 2013 1st FME Workshop on Formal Methods in Software
Engineering, FormaliSE 2013, San Francisco, California, United States, 25/05/13.
https://doi.org/10.1109/FormaliSE.2013.6612279

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. May. 2025

https://doi.org/10.1109/FormaliSE.2013.6612279
https://researchportal.unamur.be/en/publications/229df26b-23c3-4ce7-bade-9800831a7523
https://doi.org/10.1109/FormaliSE.2013.6612279

A Framework for the Rigorous Design of Highly
Adaptive Timed Systems

Maxime Cordy∗, Axel Legay†, Pierre-Yves Schobbens∗, and Louis-Marie Traonouez†
∗PreCISE Research Center, University of Namur, Belgium, {mcr,pys}@info.fundp.ac.be

†INRIA Rennes, France, {axel.legay,louis-marie.traonouez}@inria.fr

Abstract—Adaptive systems can be regarded as a set of
static programs and transitions between these programs. These
transitions allow the system to adapt its behaviour in response
to unexpected changes in its environment. Modelling highly
dynamic systems is cumbersome, as these may go through a
large number of adaptations. Moreover, often they must also
satisfy real-time requirements whereas adaptations may not
complete instantaneously. In this paper, we propose to model
highly adaptive systems as dynamic real-time software product
lines, where software products are able to change their features at
runtime. Adaptive features allow one to design systems equipped
with runtime reconfiguration capabilities and to model changes
in their environment, such has failure modes. We define Featured
Timed Game Automata, a formalism that combines adaptive
features with discrete and real-time behaviour. We also propose
a novel logic to express real-time requirements on adaptive
systems, as well as algorithms to check a system against them. We
implemented our method as part of PyECDAR, a model checker
for timed systems.

Index Terms—Software Product Lines, Features, Real-time
systems, Model-checking, Timed Games

I. INTRODUCTION

Computers play a central role in modern life and their errors
can have dramatic consequences. Proving the correctness of
computer systems is therefore an extremely relevant problem
for which quality assurance techniques like model checking and
testing provide efficient solutions. Testing consists in applying
a finite series of test cases to the system. Although it can
detect errors, it cannot guarantee their absence. Another of its
limitations is that nowadays, systems are embedded and highly
configurable, which makes it hard to specify relevant test cases.
Model checking [1] is an automated technique for verifying
systems against functional requirements. The approach relies
on an exhaustive verification of a behavioral model of the
system against a property expressed in temporal logic. If the
system fails to satisfy the property, then the model checking
algorithm provides an example of violation. By nature, model
checking guarantees the absence of errors. Albeit it suffers
from the so-called state-space explosion, it has been widely
used and applied on both academic and industry case studies.
Model checking was initially intended for closed and static
Boolean systems, but has been extended to target increasingly
wider classes of systems, including real-time systems.

The recent advances in computer science pose new chal-
lenges to model checking. One of the major difficulties is
that today’s systems often run in open and potentially unsafe
environments, which requires them to adapt their behavior

in order to accomplish their tasks reliably. In case of highly
evolving environment, these adaptations must be performed
as quickly as possible, hence the need for self-adaptive
systems. We assume the environment is known a priori, but
its characteristic may evolve non deterministically at runtime.
These are harder to verify than static, closed systems of which
behaviors are known a priori. Applying model checking to such
systems requires to represent all its classes of behaviour as well
as its capability to transit between them. Moreover, adaptive
systems must satisfy multiple goals which may evolve over time
and according to changes in the system or its environment [2].

One way to model an adaptive system is to view it as a set
of static programs and transitions between these programs [3].
When the system has to adapt its behaviour, it triggers a
transition to one of its other programs. The drawback of this
approach is that all these programs must be modelled and
verified individually. This approach has huge costs and is
intractable. Another difficulty is the need to verify dynamic
properties of adaptive systems. Classical logics cannot express
them in a proper way. Alternatives to existing model checking
techniques of adaptive systems are thus needed.

The static programs composing an adaptive system likely
share commonality, as they also have proper parts. An alter-
native is to organize the variability between these programs
into features, a concept borrowed from software product line
engineering (SPLE) [4]. In the latter discipline, a feature is
an added functionality that meet a requirement of customers.
A product of the line is thus obtained by composing desired
features together. In the context of adaptive systems, features
model differences between the static programs composing the
system. Modifications in its behaviour are therefore triggered
by changing its features. We name this process reconfiguration.
Features constitute an appropriate modelling artifact to reason
on runtime variability. Moreover, transposing this concept to
adaptive systems permits to benefit from the formal verification
techniques currently developed in SPLE.

The behavior of adaptive systems often rely on real-time
requirements such as matching deadline or reacting in real-time
to fault. For example, a routing protocol must ensure that a
data packet must reach the recipient within a certain amount
of time (see more in Section II). Unexpected changes in the
environment may prevent the satisfaction of these requirements,
hence the need for the system to perform adaptations. The
reconfiguration process is not always instantaneous, though.
The system may require time to change its features, or can

978-1-4673-6292-4/13/$31.00 c© 2013 IEEE FormaliSE 2013, San Francisco, CA, USA64

have to delay the reconfiguration until it reaches a stable state.
Unfortunately, most of existing model checking techniques for
adaptive systems are not capable of handling such constraints.

Contributions. In this paper, we propose a formal frame-
work to model and verify adaptive systems that must satisfy
evolving real-time requirements. We introduce Featured Timed
Game Automata (FTGA), a formalism to represent adaptive
behaviour, dynamic environment, and real-time. Our model re-
sults from the combination of (1) Adaptive Featured Transition
Systems [4], a formalism to model dynamic reconfiguration,
and evolving environment, and (2) timed automata [5], an
established formalism for real-time systems. The semantics
of a FTGA is defined as a timed game, where the system
plays against the environment. Our formalism differs from
existing game-based approaches [6] in that it concisely models
reconfigurations of the systems and evolutions of the environ-
ment by exploiting the featured transition approach [7]. This
latter provides even more flexibility to our method, which
supports not only runtime configuration but also design-time
variability. FTGA thus constitute an unified formalism to model
the behaviour of real-time adaptive software product lines.

As a second contribution, we propose a new temporal logic
to express requirements on FTGA. In [4], we introduced
Adaptive Configuration Time Logic (AdaCTL), a variant of
the Computational Tree Logic (CTL) to reason on features
and reconfigurations. The main differences between AdaCTL
and CTL are that (1) the existential and universal quantifiers
have a game-based semantics similar to Alternating Tree Logic
(ATL) [8], and (2) the satisfaction relation returns a set of
configurations rather than a Boolean value. In this paper, we
go one step further and introduce Timed Adaptive Configuration
Time Logic (T-AdaCTL), a real-time extension of AdaCTL, the
semantics of which is inspired from Timed-ATL [9].

Finally, we design efficient model-checking algorithms to
verify an adaptive system modelled as an FTGA against
requirements expressed in T-AdaCTL. These algorithms extend
efficient timed-game algorithms [10]. As a proof-of-concept,
we implemented our method as part of PyECDAR, a model-
checker for timed systems [11]. An extended version of the
paper, with a more complete state of the art, and detailed
algorithms, is available in [12].

Structure of the paper. In Section II, we introduce our
running example. We define FTGA in Section III, whereas we
introduce T-AdaCTL and our model checking algorithms in
Section IV. We discuss our implementation in Section V.

II. INTRODUCTORY EXAMPLE

We present an example inspired by the TCP routing protocol
described in [3]. We consider a routing protocol that can work
in two different environments: a safe environment, where all
the nodes are fully trusted, and an unsafe environment, where
some nodes might be corrupted. In an unsafe environment, a
message must be encrypted before it is sent. Every operation
(routing, sending and encryption) requires time to complete.
The behavior of the protocol in the two types of environment
are modelled as timed automata in Fig. 1.

start

Ready Received
x ≤ 20

Routed
x ≤ 10

x := 0 x ≥ 10
x := 0

x ≥ 8

(a) Safe environment

start

Ready Received
x ≤ 20

Routed
x ≤ 5

Encrypted
x ≤ 10

x := 0 x ≥ 10
x := 0

x ≥ 3
x := 0

x ≥ 8

(b) Unsafe environment

Figure 1: Routing protocol in safe and unsafe environment.

The protocol must satisfy safety and liveness properties.
When the environment is unsafe, all the messages must be
encrypted before they are sent. When the environment is safe,
the messages must be sent at most 20 time units after being
received. In a changing environment, the protocol must switch
between the two configurations in order to adapt itself. This
reconfiguration is only possible in state received. We study two
different implementations: in the first one, the reconfiguration
can occur at most every 25 time units; in the second one, the
reconfiguration can always be done but its application requires
5 time units. We want to determine in which implementations
the system can satisfy its specifications.

III. FEATURED TIMED GAMES

This section introduces the mathematical model we propose
to represent real-time adaptive systems. It includes a representa-
tion of an open environment with which the system interacts in
real-time. This environment evolves over time, and the system
must adapt its behavior to cope with these variations. To make
our models concise and facilitate reasoning, we represent both
the different functional modes of the system and the state of
the environment with adaptive features, i.e., features that can
be enabled or disabled at runtime. In standard SPLE, features
usually model design-time variability and are thus not meant to
be modified at runtime. Our formalism considers these features
as a particular case of adaptive features. Therefore, it is flexible
enough to support product lines of real-time adaptive systems.

We first introduce the syntax of the model. Then we define
its semantics as a timed game. We shall see that timed games
are particularly suitable to reason on system’s reconfigurations
with regard to change in the environment. Beforehand, we
recall basic concepts to formally represent runtime variability
and real-time.

A. Encoding Variability and Real-Time Constraints

Variability. In SPLE, features usually designate units of
difference between software products. We extend this notion
to represent the possible adaptations of the system, as well
as dynamic characteristics of the environment. Therefore, we

65

distinguish between adaptive and static features, which may
or may not change at runtime, respectively. Dependencies
between features can be captured in a feature model. In this
paper, we define a feature model as tuple d = (Fs, Fa, Fe, JdK)
where Fs is the set of features of the system, Fa ⊆ Fs
contains its adaptive features, and Fe denotes the features of the
environment. We assume that Fs and Fe are disjoint and denote
their union by F . A configuration of d is any subset of Fs∪Fe.
Therefore it denotes a particular variant of the system equipped
with specific static and adaptive features, and deployed in a
certain type of environment. Finally, JdK ⊆ P(F), where P
denotes the powerset, is the set of the valid configurations that
satisfy the dependencies between the features.

To express that the possible behaviors of the system and
the environment may depend on their features, we extend the
notion of feature expressions borrowed from featured transition
system (FTS) [7]. FTS extends labelled transition systems,
such that a transition may only be triggered by a restricted
set of configurations. Each transition is labelled with a feature
expression, that is a Boolean function exp : P(F)→ {>,⊥}
such that exp(p) = > iff p can execute the transition. We
denote by JexpK ⊆ P(F) the set of configurations that satisfy
exp and by > the feature expression such that J>K = P(F).
Further in this section, we show how we generalize feature
expressions to handle reconfiguration and how we combine
them with time constraints.

Real-time. Timed Automata are an established formalism
to represent real-time behavior. They extend labelled transition
systems with real-time clocks of which value evolve as time
passes. The clocks evolution and the discrete behaviors of the
system are controlled by clock reset added to the transitions,
and clock constraints. These constraints are either transitions
guards that specifies when the system can execute a transition,
or location invariants that defines when the system may remain
in a given location. Examples of Timed Automata are shown
in Fig. 1 to describe the models of the routing protocol.

Let C be a finite set of clocks. A clock valuation over C
is a function u : C → R≥0, that is, u ∈ RC

≥0. Given two
valuations u and τ , we write u+τ for the valuation defined by
(u+τ)(x) = u(x)+τ(x). For λ ∈ P(C), we write u[λ] for a
valuation agreeing with u on clocks in C\λ, and setting to 0 the
clocks in λ. Let B(C) denote all clock constraints ϕ generated
by the grammar ϕ ::= x ≺ k | x−y ≺ k | ϕ∧ϕ, where k∈Q,
x, y∈C and ≺∈ {<,≤, >,≥}. By U(C) ⊂ B(C), we denote
the set of constraints restricted to upper bounds and without
clock differences. For ϕ∈B(C) and u∈RC

≥0, we write u |= ϕ

iff u satisfies ϕ. For Z ⊆RC
≥0, we write Z |= ϕ iff u |= ϕ

for all u ∈ Z. We write JϕK to denote the set of valuations
that satisfy ϕ. Then Z ⊆ RC

≥0 is a zone iff Z = JϕK for some
ϕ ∈ B(C).

To represent the behavior of system deployed in open
environments, a model must distinguish between actions of
the system from those of the environment. Timed Game
Automata [6] are Timed Automata where actions are either
controllable (actions of the system) or uncontrollable (actions
of the environment). In this formalism, the satisfaction of

properties is determined by solving a two-player timed game.

B. Featured Timed Game Automata

We are now ready to introduce Featured Timed Game
Automata (FTGA) as a formalism to model product lines of
real-time adaptive systems. FTGA result from the combination
of the encodings presented above. It provides the following
modelling facilities:
(1) Open environment. An FTGA distinguishes between

controllable and uncontrollable transitions.
(2) Real-time. Clock constraints in invariants and transition

guards model real-time constraints on the system and its
environment.

(3) Variability. Each transition is constrained by a feature
expression that defines in which configurations the system
or its environment can execute it. It allows one to differ-
entiate between the capabilities of every configuration.

(4) Adaptations. The transition relation also encodes which
reconfigurations are possible upon the execution of an
action by the system or its environment.

Formally, FTGA are defined as follows.

Definition 1 An FTGA is a tuple G = (Loc, l0,C,Act,
Inv,Trans, d, γ, AP,L) where Loc is a finite set of locations,
l0 ∈ Loc is the initial location, C is a finite set of clocks,
Act = Actc]Acte, is a finite set of actions partitioned between
controllable actions in Actc and uncontrollable actions in
Acte, Inv : Loc → U(C) associates an invariant to each
location, Trans ⊆ Loc × Act × B(C) × P(C) × Loc is a
set of transitions, d = (Fs, Fa, Fe, JdK) is a feature model,
γ : Trans → (P(F) × P(F) → {⊥,>}), specifies for each
transition which configurations can execute it, and how the
configuration of the system and the environment can evolve,
AP is a finite set of atomic propositions, L : Loc → 2AP

labels each location ith atomic propositions it satisfies.

The adaptation process is encoded as part of function γ. This
function is defined such that only adaptive features may only be
changed by controllable transitions, and environment features
may only be changed by uncontrollable transitions. Formally, let
α = (l, a, ϕ, λ, l′) ∈ Trans. For any configurations c, c′, e, e′, if
a ∈ Actc, γ(α)(c∪e, c′∪e′) =⇒ (c\c′)∪(c′\c) ⊆ Fa∧e′ = e
and if a ∈ Acte, γ(ei)(c ∪ e, c′ ∪ e′) =⇒ c′ = c. Moreover,
any reconfiguration of the system or the environment must
ensure that the new configuration is valid, that is, γ(α)(c ∪
e, c′ ∪ e′) =⇒ c′ ∪ e′ ∈ JdK. This function provides a flexible
encoding to restrict the reconfiguration process. In particular, it
is able to specify the minimum and maximum amount of time
needed to transit from a given configuration to another one.
To that aim, one may define a self-loop transition constrained
by a given clock, and annotated with an action that represents
the reconfiguration process.

C. Game Semantics

An FTGA specifies the behavior of a set of systems, that
is, one per valid configuration. The initial configuration of the

66

system will determine how its behavior may evolve over time.
Indeed, static features cannot be changed at runtime and thus
fix parts of the system capabilities. Similarly, reconfiguration
is not always doable; the initial value of adaptive features
may thus impede the system to perform actions early in the
execution, which may lead to unavoidable errors.

Accordingly, we define the semantics of an FTGA as a
function J.K : P(Fs)→ (Loc× RC

≥0 × P(Fs)× P(Fe))∗ that
associates an initial system configuration with its set of infinite
executions. A state of the execution is a tuple s = (l, u, c, e),
where l ∈ L is a location, u ∈ RC

≥0 is a clock valuation,
c ∈ P(Fs) is a system configuration and e ∈ P(Fe) is an
environment configuration such that c ∪ e ∈ JdK. An initial
state is (l0,0, c0, e0), where 0 is the valuation that initializes
all clocks to zero, and c0, e0 are the initial configuration of
the system and the environment, respectively. Whereas the
configuration of the system is an input of the semantics function,
the initial configuration of the environment is uncontrolled and
is thus chosen non-deterministically. Since we consider timed
systems, an execution includes two types of transitions:
• delay transitions: (l, u, c, e) τ−→(l, u + τ, c, e) if τ ∈ R≥0

and u+ τ |= Inv(l).
• discrete transitions: (l, u, c, e) a−→(l′, u′, c′, e′) if a ∈ Act

and ∃α = (l, a, ϕ, λ, l′) ∈ Trans, such that: u |= ϕ, u′ =
u[λ] and γ(α)(c ∪ e, c′ ∪ e′) = >.

Finally, a run (or execution) in an FTGA is a sequence of
states starting from an initial state and alternating delay and
discrete transitions:

ρ = s0
τ0−→s′0

a1−→s1
τ1−→s′1

a2−→s2 . . . sn
τn−→s′n

an+1−−−→sn+1 . . .

Given that an FTGA considers continuous time, it specifies an
infinite number of runs.

Among the transitions executed during a run, some are
controlled by the system and others are uncontrolled, i.e.
executed by the environment. Also, the system controls how it
reconfigure itself, but has no control on the configuration of
environment. The achievement of goals can thus be considered
as a two-player games where the system plays against the
environment. The strategy of one player prescribes a set of
moves to perform according to the states previously visited.
Each move consists of either delaying or executing an available
action. A player can reconfigure itself only after executing
an action. Formally, a strategy for the system is a function:
StrC : (Loc×RC

≥0×P(Fs)×P(Fe))k → (Actc×P(Fs))∪{τ}
with k ≥ 0. A strategy for the environment is defined
symmetrically, except that the environment also selects its
initial configuration. A strategy is valid iff (1) it complies with
the transition relation and function γ, and (2) it does not lead to
time-convergent or zeno runs [13]. From now on we consider
valid strategies only.

The game proceeds as a concurrent game. In a given
state, if one player chooses to delay while the other
chooses an action, then this action is performed and the
corresponding transition is triggered. If both players select
an action then the transition to execute is chosen non-

deterministically. Given a system strategy StrC and an en-
vironment strategy StrE , the possible outcomes of the game,
noted Outcome(StrC , StrE), are the set of infinite runs
ρ = s0

τ0−→s′0
a1−→s1

τ1−→s′1
a2−→s2 . . . sn

τn−→s′n
an+1−−−→sn+1 . . .

such that:

• if ai ∈ Actc then StrC(s0, . . . , si) = (ai, ci+1).
• if ai ∈ Acte then StrE(s0, . . . , si) = (ai, ei+1).
• if τi ∈ R≥0 then ∀τ ′i ∈ [0, τi[. si

τ−→(li, ui +
τ ′i , ci, ei) and StrC(s0, . . . , si, (li, ui + τ ′i , ci, ei)) =
StrE(s0, . . . , si, si + τ ′i) = {τ}.

where sk = (lk, uk, ck, ek) for any k ∈ N.
Example. Fig. 2 presents an FTGA modelling the routing

protocol. The system actions are the plain transitions: route,
reconfig, t-reconfig. The environment actions are the dashed
transitions: init, receive, encryption, sent. The adaptive feature
encrypt determines in which operation modes the system
currently is. Two static features p-reconf and t-reconf specifies
which of the two configuration methods the system can use (see
Section II. Finally, the environment is described with a feature
safe that specifies whether the current node in the network can
be trusted or not. The function γ is defined in two steps. First,
feature expressions are added in the graph to the guard of the
transitions, in order to specify which set of features enables the
transition. Second, we specify the possible reconfigurations:

• The system may only reconfigure the feature encrypt
during the transitions labelled “reconfig”.

• The environment may only reconfigure the feature safe
during the transitions labelled “sent” and “receive”.

In consequence, a possible strategy for the environment is
to start in a safe configuration, do the init action at y = 25,
then the receive action at y = 30, and disable the feature safe
during this transition. In reaction, the system strategy can be
to start with the system feature p-reconf while the adaptive
feature encrypt is disabled, then wait until the environment
reaches the location Received. At this point it can do a reconfig
action immediately, and enable the feature encrypt during the
transition. Finally, at x = 10 it performs the route action to
reach the location RoutedUnsafe. The outcome produced by
these two strategies is:

“
Init,

»
x = 0
y = 0

–
,

p-reconf

safe

ff ”
25,init−−−−→

“
Ready,

»
25
25

–
,

p-reconf

safe

ff ”
5,receive−−−−−→“

Received,
»

0
25

–
, {p-reconf}

”
0,reconfig−−−−−−→

“
Received,

»
0
0

–
,

p-reconf
encrypt

ff ”
10,routed−−−−−−→“

RoutedUnsafe,
»

0
10

–
,

p-reconf
encrypt

ff ”

IV. TIMED ADACTL MODEL-CHECKING

To express requirements on real-time adaptive systems,
we propose T-AdaCTL, a timed extension of the Adaptive
Configuration Time Logic (AdaCTL), a logic we recently
introduced to reason on reconfigurable systems. We first present
its syntax and semantics, and then provide algorithms to check
an FTGA against a T-AdaCTL formula.

67

Init
Ready Received

x ≤ 20

RoutedSafe
x ≤ 10

RoutedUnsafe
x ≤ 5

Encrypted
x ≤ 10

t-Reconfig
y ≤ 5

init
y ≥ 25

receive
x := 0

route
¬encrypt
x ≥ 10
x := 0

sent
x ≥ 8

route
encrypt
x ≥ 10
x := 0

encryption

x ≥ 3
x := 0

sent
x ≥ 8

reconfig
p-reconf
y ≥ 25
y := 0

t-reconfig

t-reconf
10 ≤ x ≤ 15
y := 0

reconfig
y ≥ 5
y := 0

Figure 2: FTGA of the routing protocol.

A. Timed AdaCTL

The formulae of T-AdaCTL are embedded into three levels.
The first level is the feature formula, which has the form Ψ ::=
[χ]Φ where χ is a feature expression and Φ is a state formula.
Intuitively, [χ]Φ defines that if the current configuration of the
system and the environment satisfies χ, then the current state
must satisfy Φ. Feature formulae can thus define requirements
on specific configurations, or even forbid some others. A state
formula has the form Φ ::= > | a | Ψ1 ∧ Ψ2 | ¬Ψ | Aϕ | Eϕ
where a ∈ AP , Ψ, Ψ1 and Ψ2 are feature formulae, and ϕ
is a path formula. Intuitively, a state satisfies Aϕ (resp. Eϕ)
if from this state, the system can come up with a strategy
of which the outcome will (resp. may) satisfy ϕ. The path
formulae have the form ϕ ::= Ψ1 UI Ψ2 | Ψ1 W Ψ2 where
Ψ, Ψ1 and Ψ2 are feature formulae, I is an interval of R≥0

with integral bounds, U is called the until operator and W is
called the weak until operator. T-AdaCTL extends AdaCTL
with a time constraint attached to the until operator, in the
same manner as TCTL [5] extends CTL. We omit the next
operator of AdaCTL as there is no notion of direct successor
in timed systems. Two path operators can be derived from U
and W: eventually (♦), such that ♦IΨ = >UIΨ , and forever
(�), such that �Ψ = ΨW⊥. When it comes to state and path
formulae, TATL [9] is a generalisation of T-AdaCTL, as it can
express more general time constraints and requirements on the
environment too. However, it does not include any notion of
features, which makes it inappropriate for expressing properties
on our feature-based formalism.

Example. Let us express the properties that the routing
protocol must satisfy in T-AdaCTL. The property “If the
environment is unsafe, all the messages must be encrypted
before they are sent.” can be expressed by the formula
A�([¬safe]¬RoutedSafe). This formula specifies that the
system can never reach the location RoutedSafe if the
environment is not safe. The property “If the environment
is safe, the messages must be sent at most 20 time units

after being received.” can be expressed by the formula
A�([safe]Received ⇒ A♦[0, 20]Ready). It specifies that
whenever location Received is reached in a safe environment,
the location Ready must be reached within 20 time units.

Definition 2 Let G be an FTGA and s = (l, u, c, e) one of its
states. Then the satisfiability of a T-AdaCTL feature or state
formula by G in state s is determined as follows:

G, s |= [χ]Φ ⇔ c ∪ e 6∈ JχK ∨ G, s |= Φ
G, s |= > ⇔ >
G, s |= a ⇔ a ∈ L(l)
G, s |= Φ1 ∧ Φ2 ⇔ G, s |= Φ1 ∧ G, s |= Φ2

G, s |= ¬Φ ⇔ G, s 6|= Φ
G, s |= Eϕ ⇔ ∃StrC · ∃StrE ·
∃ρ ∈ Outcome(s, StrC , StrE) · G, ρ |= ϕ
G, s |= Aϕ ⇔ ∃StrC · ∀StrE ·
∀ρ ∈ Outcome(s, StrC , StrE) · G, ρ |= ϕ

The semantics of path formulae is similar to that of TCTL path
formulae:

G, ρ |= Ψ1 UI Ψ2 ⇔ ∃r ∈ I · G, ρ[r] |= Ψ2 ∧
∀0 ≤ r′ < r · G, ρ[r′] |= Ψ1

G, ρ |= Ψ1 W Ψ2 ⇔ (∀r′ ≥ 0 · G, ρ[r′] |= Ψ1) ∨
(∃r ≥ 0 · G, ρ[r] |= Ψ2 ∧ ∀0 ≤ r′ < r · G, ρ[r′] |= Ψ1)

where ρ[r] the state reached in ρ at time r.

Note that we assume a continuous-time semantics for timed
path operators [14]. We now define the satisfaction of a T-
AdaCTL formula by an FTGA. Contrary to classical temporal
logics, this relation, noted |=F is not Boolean: it is defined
as the set of initial system configurations such that the FTGA
satisfies the formula from its initial state.

Definition 3 Let G be an FTGA and Ψ a T-AdaCTL formula.

(G |=F Ψ) = {c0 ∈ P(Fs) | ∃e0 ∈ P(Fe) · c0∪e0 ∈ JdK ∧
∀e0 ∈ P(Fe) · c0 ∪ e0 ∈ JdK ⇒ G, (l0,0, c0, e0) |= Ψ}

B. Model-Checking Algorithms

The semantics of T-AdaCTL is defined over execution paths,
of which FTGA contain an infinite number. This means that a
model checking procedure for T-AdaCTL must use a symbolic
representation to capture this infinite number of runs in a finite
data structure. To represent the time domain of symbolic states,
we extend the grammar of clock constraints with the negation.
Then for a clock constraint, ϕ, JϕK is a federation, i.e. a finite
union of zones. In combination with federations, we use feature
expressions to encode sets of configurations symbolically, as
opposed to representing each configuration individually in
separate states. Therefore, our algorithms manipulate symbolic
states, i.e. tuples of the form (l, b, ϕ), where l is a location,
b is a feature expression, ϕ is a clock constraint. A symbolic
state is an abstraction of all the concrete states (l, u, c, e) such
that u ∈ JϕK and (c ∪ e) ∈ JbK.

To model check a T-AdaCTL formula Ψ , we first decompose
it into its parse tree, where each node is a subformula. The

68

root is Ψ itself, whereas the leaves are atomic formulae. Then,
starting from the leaves, we associate each subformula by the
set of symbolic states that satisfy it. This method is similar to
the one used to check CTL formulae [15].

We present how to compute the set of symbolic states that
satisfy each form of T-AdaCTL formula. For feature and state
formulae, the satisfaction rules are the following:

Sat([χ]Φ) = Sat(Φ) ∪ {(l,¬χ,>) | l ∈ Loc}
Sat(>) = {(l,>,>) | l ∈ Loc}
Sat(a) = {(l,>,>) | a ∈ L(l)}

Sat(Ψ1 ∧ Ψ2) = {(l, b1 ∧ b2, ϕ1 ∧ ϕ2) |
(l, b1, ϕ1) ∈ Sat(Ψ1) ∧ (l, b2, ϕ2) ∈ Sat(Ψ2)}

Sat(¬Ψ) = Sat(Ψ)

where for any S ∈ L × P(F) × R≥0, the complement of
S is defined as S = {(l, b, ϕ)|@(l, b′, ϕ′) ∈ S • JbK ∩ Jb′K 6=
∅∧JϕK∩Jϕ′K = ∅}. Computing Sat(Eϕ) and Sat(Aϕ) comes
down to solving a two-player game where the system is the
verifier and the environment is the spoiler. To that aim, we
perform a backward fixed-point computation as it is performed
for solving timed games in [6]. The algorithms are based on
discrete predecessors and safe timed predecessors operators.
The definition of these operators in FTGA takes into account
both variability and real-time, which makes it different from
other game-based formalisms. It constitutes the cornerstone
and the real novelty of our verification algorithms.

Formally, let α = (l, a, ϕα, λα, l′) ∈ Trans and (l′, b′, ϕ′)
be a symbolic state. We define the discrete predecessors
Predα(l′, b′, ϕ′) = (l, b, ϕ) such that:
• b = {c ∪ e | ∃(c′ ∪ e′) ∈ b′ · γ(α)(c ∪ e, c′ ∪ e′) = >}
• ϕ = free

(
ϕ′∧{x = 0 | x ∈ λα}, λα

)
∧ϕα∧Inv(l), where

free(ϕ, λ) = {u | ∃v ∈ JϕK · ∀x 6∈ λ · u(x) = v(x)}.
Observe that the distributivity law applies to this operator:
Predα

(⋃
i si
)

=
⋃
i Predα(si). The discrete predecessors

operator can be used to compute the controllable (resp. uncon-
trollable) moves that allow the system (resp. the environment)
to reach (resp. to avoid) a winning state. However, these moves
may not be safe as the other player may perform concurrent
moves. Formally, given a location l and the sets of winning
states Win[l′] for each location l′, these controllable moves
are: Nextc(l,Win) =

⋃
α=(l,a∈Actc,ϕ,λ,l′) Predα(Win[l′]).

The uncontrollable moves of the environment are defined
symmetrically.

The winning moves are obtained through the safe timed
predecessors operator. Let s1 = (l, b1, ϕ1) and s2 = (l, b2, ϕ2)
be two symbolic states, the safe timed predecessors of s1
wrt. s2 are the states that can reach s1 while avoiding
any state from s2. They are given by Predt(s1, s2) =
{(l, b1 ∧¬b2,Predt(ϕ1,⊥)), (l, b1 ∧ b2,Predt(ϕ1, ϕ2))} where
Predt(ϕ1, ϕ2) is the safe timed predecessors operator for zones
as defined in [6]. This operator computes step by step the
strategy of one player to reach a winning state, whatever
strategy is played by the other player. It has the following
property: Predt

(⋃
i gi,

⋃
j bj
)

=
⋃
i

⋂
j Predt(gi, bj). In what

Algorithm 1: Sat(AΨ1 UI Ψ2)
Input: G, Ψ1, Ψ2, I
Output: Sat(AΨ1 UI Ψ2)
begin1

Wait← ∅;2
for s = (l, b, ϕ) ∈ Sat(Ψ2) do3

ϕ← ϕ ∧ clock ∈ I;4
Win[l]← s;5
Wait←Wait ∪ Pred(l);6

end7
while (Wait 6= ∅) do8

l← pop(Wait);9
Good←Win[l] ∪ (DLe(l) ∩ ¬DLc(l));10
Good← Good ∪Nextc(l,Win);11
Bad← Sat(¬Ψ1) ∩ ¬Win[l];12
Bad← Bad ∪Nexte(l,Win);13
NewWin← Predt(Good,Bad);14

if Win[l] (NewWin then15
Win[l]← NewWin;16
Wait←Wait ∪ Pred(l);17

end18
end19
for l ∈ Loc do20

for s = (l, b, ϕ) ∈Win[l] do21
ϕ← ϕ ∧ clock = 0;22
ϕ← free(ϕ, clock)23

end24
end25
return Win26

end27

follows, we also denote by Pred(l) the locations from which
there is a transition to l.

To enforce that the players’ strategies are valid, we compute
the deadlock states, which are the states beyond the locations
invariant that should not be reached if one player had an
urgent action to perform. We denote by DLc(l) (resp. DLe(l))
the deadlock states in location l for which the system (resp.
environment) is responsible.

Algorithm 1 computes Sat(AΨ1 UI Ψ2). The algorithm
starts with the winning symbolic states that satisfy Ψ2 (Lines
3–7), and next performs a backward exploration (Lines 8–19)
to discover predecessors of winning states that satisfy Ψ1 and
that the environment cannot impede the system to reach. To
check that the time spent to reach the goal in Ψ2 satisfies
the interval constraint I , an additional clock, named clock, is
added to the model; this is a standard way to handle timing
constraints of logical formula. This extra clock is initialized in
I (Line 4) and then decreases during the backward exploration.
Sat(AΨ1 UI Ψ2) is the set of winning states for which the
value of the extra clock is zero (Lines 20–25).

We use a similar procedure to compute Sat(AΨ1 W Ψ2),
that is presented in the extended version [12]. In this case, it
starts from the states that violate the formula, and performs
a backward exploration to compute the states from which the
system cannot guarantee to avoid losing states. Then, the set
of winning states is the complement of those states.

The algorithms used to compute Sat(EΨ1 UI Ψ2) and

69

Sat(EΨ1 W Ψ2) also use similar procedures. The main
differences are that the two players now cooperate in order to
reach the goal expressed by the path formula. As an example,
an algorithm for Sat(EΨ1 UI Ψ2) can be obtained by adding
Nexte(l,Win) to set of states Good in Line 11 of Algorithm 1,
and by removing Lined 12-13 (hence setting the set of bad
states to empty set in timed predecessors). Deadlock states
must be avoided. Indeed, the two players cooperate. In case
of a deadlock, they both lose.

V. IMPLEMENTATION

Our modelling formalism and the associated algorithms have
been implemented on top of PyECDAR [11], a tool for the
analysis of timed systems.

In PyECDAR, a model is written in an XML file that follows
the format of UPPAAL tool set [16]. This allows us to reuse the
intuitive user interface provided by UPPAAL. In our extension,
we use two variables for each adaptive features that defines
its value before and after the reconfiguration following the
transition. This encoding is sufficient to entirely represent the
function γ. Additional patterns can be used to facilitate the
design of the system. For example, feature expressions can be
used in the invariant of a location, which offer another way to
specify possible reconfigurations. Similarly, assignments can
be used to forbid the reconfiguration of an adaptive feature
during a transition.

The original game algorithms of PyECDAR were limited
to safety and reachability objectives specific to timed spec-
ifications. We have implemented the new game algorithms
presented in this paper and the recursive procedure that checks
a T-AdaCTL formula. To encode continuous time, we use
federations, which are finite unions of DBMs, implemented in
UPPAAL DBM Library. We encode feature expressions with
BDDs, implemented using PyCUDD library (python bindings
for CUDD library [17]). Using these two libraries we have
implemented a new encoding for symbolic states with both
features and time domains, as well as an encoding for finite
unions of symbolic states. Therefore, the different operators
(union, intersection, negation, discrete predecessors, timed
predecessors) are implemented in PyECDAR for unions of
symbolic states.

Example. We consider again the routing protocol modelled
in Fig. 2. We first use PyECDAR to check it against the
T-AdaCTL formula Ψ1 = A�([¬safe]¬RoutedSafe). PyEC-
DAR computes the satisfaction relation for the formula, which
is given by p-reconf ∨ t-reconf ∨ encrypt. It means that the for-
mula is satisfied iff any of the two reconfiguration features are
enabled, or feature encrypt is initially enabled. Then, we verify
the formula Ψ2 = A�([safe]Received ⇒ A♦[0, 20]Ready),
and we obtain the following result: p-reconf ∨ ¬encrypt.
Finally, we consider the formula

Ψ3 = A�
(
([¬safe]¬RoutedSafe) ∧

([safe]Received⇒ A♦[0, 20]Ready)
)

that combines the previous ones. The satisfaction relation is now
restrained to p-reconf, which proves that in order to satisfy both

properties at the same time the system requires the p-reconf
feature. Note that this result is not the same as the conjunction
of the two previous results. Indeed, solving the formula Ψ1∧Ψ2

comes down to finding configurations in which the system has
either strategies to satisfy Ψ1 or strategies to satisfy Ψ2, but
there may exist no strategy that satisfies both goals.

VI. CONCLUSION

This paper presents a new formal model for highly adaptive
real-time systems. Our approach relies on a combination of
adaptive feature transition systems with timed automata. The
semantics of our model is given as a timed game, which views
the system and the environments as concurrent entities. In
our setting, requirements are expressed in a new logic called
T-AdaCTL, for which we provide a model checking procedure.
We have implemented our approach as an extension of the
PyECDAR toolset. The new tool has been applied to academic
case studies. Our next objective is to evaluate our approach on
real-life case studies.

REFERENCES

[1] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching-time temporal logic,” in Logic of
Programs, ser. LNCS, vol. 131. Springer, 1981.

[2] B. H. C. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo,
S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai,
H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A.
Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle,
“Software engineering for Self-Adaptive systems: A research roadmap,”
in Software Engineering for Self-Adaptive Systems, ser. LNCS. Springer
Berlin / Heidelberg, 2009, ch. 1.

[3] J. Zhang, H. J. Goldsby, and B. H. Cheng, “Modular verification of
dynamically adaptive systems,” in Proceedings of AOSD ’09. New
York, NY, USA: ACM, 2009.

[4] M. Cordy, A. Classen, P. Heymans, A. Legay, and P.-Y. Schobbens,
“Model checking adaptive software with featured transition systems,” in
Assurances for Self-Adaptive Systems, ser. LNCS. Springer, 2013.

[5] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, 1994.

[6] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete
controllers for timed systems (an extended abstract),” in STACS, 1995.

[7] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model checking lots of systems: efficient verification of temporal
properties in software product lines,” in ICSE’10. ACM, 2010.

[8] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-time temporal
logic,” J. ACM, vol. 49, no. 5, 2002.

[9] T. A. Henzinger and V. S. Prabhu, “Timed alternating-time temporal
logic,” in FORMATS, ser. LNCS, vol. 4202. Springer, 2006.

[10] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime, “Efficient
on-the-fly algorithms for the analysis of timed games,” in CONCUR, ser.
LNCS, vol. 3653. Springer, 2005.

[11] A tool for timed games and timed specifications, “PyECDAR,” 2011,
https://project.inria.fr/pyecdar.

[12] M. Cordy, A. Legay, P.-Y. Schobbens, and L.-M. Traonouez, “A
framework for the rigorous design of highly adaptive timed systems,”
Tech. Rep., 2013, http://people.rennes.inria.fr/Louis-Marie.Traonouez/
publications/formalise13report.pdf.

[13] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga,
“The element of surprise in timed games,” in CONCUR, ser. LNCS, vol.
2761. Springer, 2003.

[14] P. Bouyer, “Model-checking timed temporal logics,” Electr. Notes Theor.
Comput. Sci., vol. 231, 2009.

[15] A. Pnueli, “The temporal logic of programs,” in FOCS’77, 1977.
[16] G. Behrmann, A. David, K. G. Larsen, P. Pettersson, and W. Yi,

“Developing uppaal over 15 years,” Softw., Pract. Exper., 2011.
[17] Colorado University Decision Diagram Package, “CUDD,” http://vlsi.

colorado.edu/~fabio/CUDD/.

70

