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Polarization effects in metallic films perforated with a bidimensional array of

subwavelength rectangular holes

Michaël Sarrazin and Jean-Pol Vigneron
Laboratoire de Physique du Solide

Facultés Universitaires Notre-Dame de la Paix

Rue de Bruxelles 61, B-5000 Namur, Belgium

For several years, periodical arrays of subwavelength cylindrical holes in thin metallic layers have

taken a crucial importance in the context of the results reported by Ebbesen et al, on particularly

attractive optical transmission experiments. It had been underlined that the zeroth order trans-

mission pattern does not depend on the polarization of the incident light at normal incidence. In

the present paper, we show that it is not the case for rectangular holes, by contrast to the case

of circular holes. In this context, we suggest a new kind of polarizer that present the advantages

brought by the original Ebbesen devices. Assuming the recent technological interest for these kinds

of metallic gratings, such a kind of polarizer could lead to new technological applications.

PACS numbers:

Introduction

For several years, the motivation for investigating sur-
face plasmon properties takes a crucial importance in the
context of plasmonics. In addition, the consideration of
metallic gratings have been renewed in the context of
the results report by Ebbesen et al [1]. They reported on
particularly attractive optical transmission experiments
on periodical arrays of subwavelength cylindrical holes in
a thin metallic layer deposited on glass, a dielectric sub-
strate. Two specific characteristics of their results are
the transmission which is higher than the simple sum of
individual holes contributions and the interesting pattern
of the zeroth order transmission versus wavelength [1].

During the last few years, these experimental results
have received considerable attention and they have im-
plied several theoretical and experimental works [1-17].
Many assumptions were suggested to explain the trans-
mission properties of these devices. For instance, it has
been suggested that these phenomena can be described
in terms of short range diffraction of evanescent waves
[11], or in terms of dynamical diffraction [13]. Another
explanation suggest the role of cavity resonance into the
holes to explain the transmission enhancement [12,15].

However, the main results tend to prove that surface
plasmons (SPs) play a key role in the features observed
in the transmission curves [1-7,9,10]. Nevertheless, it re-
mains many questions which must be answered to clar-
ify the processes involved in these experiments. For in-
stance, the exact role of SPs was not clearly assessed.
Indeed, the observed transmission presents a set of peaks
and minima. Many authors suggested that transmission
peaks correspond to SPs resonance [1-7,9,10] whereas
others suggested that SPs resonance were related to min-
ima [12,14].

In a recent work [14], we have presented many re-
sults which tend to qualify these two hypothesies. We
have shown that the concept of resonant Wood anomalies
[14,18,19] can be invoked to interpret the role of SPs in

the Ebbesen experiments. We have shown that the trans-
mission pattern is better described by Fano’s profiles [19]
correlated with interferences between non resonant pro-
cesses and the resonant response of SPs coupled with
nonhomogeneous diffraction orders [14]. We have shown
that each maximum of transmission (preceded by a min-
imum) corresponds to one maximum of a Fano’s profile
(preceded by the related minimum) [14,19]. Moreover,
whereas such Fano’s profile in transmission is related to
a resonant process, the location of its maximum (or min-
imum) does not necessarily correspond to the location of
the resonance [14,19].

In such devices made of subwavelength hole arrays, po-
larization properties start only to be underlined in some
experimental works [16,17]. In the original experiments,
for square gratings made of circular holes in chromium
films for instance [4], it has been underlined that the
zeroth order transmission pattern does not depend on
the polarization of the incident light at normal incidence
[4]. Obviously, for a square grating made of rectangular
holes for instance, one can expect a polarization depen-
dent transmission. Indeed, for a square grating with cir-
cular holes the main axies of the grating can be inverted
whereas for a square grating with rectangular holes these
axies cannot be inverted without break the grating sym-
metry.

In the present paper, we will show the polarization
dependency of the transmission for rectangular holes ar-
rays contrary to circular holes arrays. We will present a
simple analytical interpretation of our numerical results.
However, we will underline the limits of this simple in-
terpretation as one must not forgot the real complexity
of the problem which yet requires a numerical study. De-
spite a simple appearance, the present problem is not
trivial. Our results will lead us to suggest a new kind of
polarizer which presents the advantages brought by the
original Ebbesen devices [1,4].

http://arXiv.org/abs/physics/0311015v2
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Numerical approach and studied device

In the following, our simulations rest on a coupled
modes method associated with the use of the scatter-
ing matrix (S matrix) formalism. Taking into account
the periodicity of the device, the permittivity is first de-
scribed by a Fourier series. Then, the electromagnetic
field is described by Bloch’s waves which can also be de-
scribed by a Fourier series. In this context, Maxwell’s
equations take the form of a matricial first order differ-
ential equation along the z axis perpendicular to the x
and y axies where the permittivity is periodic [14,20,21].
The heart of the method is to solve this equation. One
approach deals with the propagation of the solution step
by step by using the S matrix formalism. More explicitly,
we numerically divide the grating along the z axis into
many thick layers for which we calculate the S matrix.
The whole S matrix of the system is obtained by using
a special combination law applied step by step to each S

matrices along the z axis. Indeed, it is well know that S

matrices and their combinations are much better condi-
tionned than transfert matrices [21]. In this way, we can
calculate the amplitudes of the reflected and transmitted
fields, for each diffracted order (which corresponds to a
vector g of the reciprocal lattice) according to their po-
larization (s or p) [14]. Note that our algorithm has been
accurately compared with other methods such as FDTD
or KKR [22]. In the present work the convergence is ob-
tained from two harmonics only, i.e. for 25 vectors of the
reciprocal lattice. Furthermore, there is no convergence
problem associated with discontinuities here, and we do
not need to use Li’s method [23,24].

As a continuation of our previous works, we turn our
attention to the case of chromium films [14]. The values
of chromium and glass permittivities are those obtained
from experiments [25]. For instance, glass permittivity is
approximately equal to 2.10 for wavelengths ranging from
1000 to 1500 nm. Here, the thickness of the metallic film
is taking equal to h = 100 nm. The film is perforated
with rectangular holes of sides a = 350 nm and b = 700
nm respectively. The shorter side is along the x axis and
the longer side is along the y axis. The holes shape a
square grating of parameter c = 1000 nm (fig.1a). Inci-
dent light is normal to the interface i.e. normal to the
Oxy plane. The incident light is linearly polarized and
the orientation of the incident electric field Einc is given
by the angle θ between Einc and the y axis (fig.1a) in
the Oxy plane. Because the transmitted zeroth order is
normal to the Oxy plane, its polarization is described in
the Oxy plane too. The transmitted zeroth order electric
field will be described by the complex electric field com-
ponents Ex and Ey along the x and y axies respectively.
The polarization of the transmitted zeroth order is then
described by the modulus of the amplitudes |Ex| and |Ey|
and the dephasing δ = arg {Ey/Ex} . The amplitude of
the incident light is equal to 1 V.m−1.

Results and analysis

First, we represent in fig.1b a schematic view of the
reciprocal lattice related to the square grating of para-
mater c in reduced coordinates. Each point corresponds
to a reciprocal lattice node, i.e. to one diffraction order
g = 2π

c
(i, j). Solid lines represent a contours representa-

tion of the modulus of the Fourier transform of the rect-
angular hole. For the most common diffraction orders
we give the values of the modulus of the Fourier trans-
form corresponding to the rectangular hole. Such values
are representative of the typical order of magnitude for
the relatives amplitudes of the diffraction orders. For in-
stance the orders (±1, 0) are associated with a relative
amplitude of 0.810 whereas it is of 0.318 for the orders
(0,±1), i.e. 2.5 times less. Obviously, for a circular hole,
the Fourier transform would be symmetric if we substi-
tute i by j and vice versa. Then, the relative amplitude
of the orders (±1, 0) and (0,±1) would be equal. This
difference between circular and rectangular holes is cru-
cial. Indeed, in our recent work [14] we have specified
the role of SPs in the Ebbesen experiment through the
concept of resonant Wood anomalies [14,18,19]. As ex-
plained above, the transmission pattern is described by
Fano’s profiles correlated with interferences between non
resonant processes and the resonant response of the sur-
face plasmons coupled with nonhomogeneous diffraction
orders. More precisely, the key process in those device
appears as follows. We suppose that the incident light is
polarized along the [1, 0] axis of the grating. The inci-
dent light then diffracts against the grating and generates
nonhomogeneous resonant diffraction orders e.g. (1, 0)
which is p polarized. Such a resonant order is coupled
with a surface plasmon (obviously (0, 1) is also generated
but it is s polarized and then it is not a resonant order,
i.e. it is not coupled with surface plasmons). It becomes
possible to excite this surface plasmon which leads to a
feedback reaction on the order (1, 0). Then this diffrac-
tion order can diffract too and generate a contribution
to the homogenous zeroth diffraction order (0, 0). In fact
s polarized diffraction orders give no contribution to the
enhancement of the transmission, contrary to p polarized
diffraction orders [14]. Obviously, the contribution of the
order (1, 0) depends on the relative amplitude related
to the Fourier transform of the hole. Now, if the inci-
dent light is polarized along the [0, 1] axis of the grating,
the order (0, 1) becomes the resonant p polarized order
whereas (1, 0) becomes the non-resonant s polarized or-
der. Then two cases occur. If the Fourier transform is
symmetric, the substitution of the p polarized order (1, 0)
by the p polarized order (0, 1) let invariant the transmis-
sion. If the Fourier transform is not symmetric, then the
contribution to zeroth order of both p polarized orders
will be not the same according to the incident polariza-
tion. In our case, if the incident light is polarized along
the [1, 0] axis of the grating, the p polarized order (1, 0)
(which is associated with a relative amplitude of 0.810 of
the Fourier transform) gives an important contribution
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to the zeroth order transmission. If the incident light
is polarized along to the [0, 1] axis of the grating, the p
polarized order (0, 1) (which is associated with a relative
amplitude of 0.318 of the Fourier transform) gives a weak
contribution to the zeroth order transmission. Then the
transmission tx for light polarized along the x axis will be
greater than the transmission ty for light polarized along
the y axis. This let to some issues. As explained above,
the electric field of the incident light can be written as

Einc = Einc

[

sin θ
cos θ

]

(1)

Assumming the fact that both components of the inci-
dent electric field are not transmitted in the same way,
the zeroth order transmitted field is written as

E =

[

Ex = txEinc sin θ
Ey = tyEinc cos θ

]

(2)

where tx and ty respectively are the transmission coeffi-
cients along the x and y axis respectively. The modulus
of the amplitudes are then

{

|Ex| = |txEinc| sin θ
|Ey | = |tyEinc| cos θ

(3)

As the zeroth order transmission can be written as

T =

√

εs

εv

1

|Einc|2
(

|Ex|2 + |Ey|2
)

(4)

it is easier to show that one can write T as

T = T90o + (T0o − T90o) cos2 θ (5)

where T0o =
√

εs

εv

|ty|2 and T90o =
√

εs

εv

|tx|2 (εs and εv

are the permittivities of the substrate and the vaccum
respectively). At last, note that the dephasing δ is such
that

δ = arg

{

ty
tx

}

(6)

One shows that eq.5 is similar to the well known Malus
Law for polarizer. To illustrate our assumptions, fig.2
shows the zeroth order transmission against wavelength
for different θ values. We clearly show the dependence
of the transmission pattern on the incident polarization.
For θ = 90o, i.e. the incident electric field is along
the x axis, the transmission is maximal and identical to
what one observes in the Ebbesen experiments [1,4]. It
is shown that the transmission increases with the wave-
length, and that it is characterized by sudden changes
in the transmission marked 1 to 2 on the figure. These
values are shifted toward larger wavelengths when the
grating size increases [14]. Moreover, for θ = 0o, i.e.
when the incident electric field is along the y axis, the
transmission is minimal. This result is, at least qualita-
tively, in agreement with our hypothesis. Note that wave-
lengths 1 and 2 are close to Rayleigh’s wavelengths. In

diffraction gratings such wavelengths are those for which
a diffracted order becomes tangent to the plane of the
grating. At normal incidence, and for a diffraction order
g = 2π

c
(i, j), Rayleigh’s wavelength is defined as

λu,i,j
R = c

√
εu(i2 + j2)−

1

2 (7)

where εu represents either the permittivity of the vac-
uum (εv), or of the dielectric substrate (εd). For the
diffraction orders such that (±1, 0) or (0,±1), the values
of Rayleigh’s wavelengths in the present case are 1000
nm for the vacuum/metal interface, and 1445.29 nm for
the substrate/metal interface.

Fig.3 shows two zoomed plots around wavelengths 1
(fig.3a) and 2 (fig.3b). In fig.3a, one shows that the
transmission minima are localized at the same wave-
length whatever θ. Surprisingly, in this narrow wave-
length domain, transmission for θ = 0o is greater than
for θ = 90o contrary to previously. The minimum which
corresponds to the wavelength 1, is located at 1001.44
nm just after the related Rayleigh’s wavelength. Fig.3b
shows that transmission minima are weakly shifted to-
ward large wavelengths as θ increases (minima locations
for each θ value, are marked by vertical black dashs). For
θ = 0o, the minimum is located at 1445.29 nm, i.e. the
wavelength 2 which corresponds to the related Rayleigh’s
wavelength. For θ greater than zero, minimum is shifted.
Moreover, one notes a sudden change in the transmission
at the Rayleigh’s wavelength whatever θ. The minima
observed here correspond to minima of Fano’s profiles
[14]. In fig.3a, the minima are not of the same kind of the
minima in Fig.3b. This is not true minima of the Fano’s
profile. All occur as if the minimum of the Fano’s pro-
file disappears behind the Rayleigh’s wavelength towards
low wavelength. In other words, the minima in Fig.3a
come from the cutoff and the discontinuity introduced in
Fano’s profiles at the Rayleigh’s wavelength. This had
been widely explained in ref. [14].

For more details, in fig.4, we have reported the wave-
lengths λm related to the transmission minima (related
to fig.3b) against θ (black dots). For comparison, and by
analogy with eq.5, the solid line is related to the following
equation

λm,θ = λm,90o + (λm,0o − λm,90o) cos2 θ (8)

Quantitatively, fig.5 shows the variation of the trans-
mission against the angle of polarization θ for both wave-
lengths 1300 nm and 1900 nm (fig.5a) and both wave-
lengths 1147.64 nm and 1001.44 nm (fig.5b) in the neigh-
borhood of the above mentionned minima. The numeri-
cal computations give results indicated by the dots on the
figure. Using the numerical values of the transmission for
θ = 90o and θ = 0o respectively, i.e. T90o and T0o , one
plots the transmission against θ for both wavelength by
using eq.5 (solid lines). One observes then a quantitative
agreement between the pattern from eq.5 and the results
obtained numerically. Note the weakly decreasing trans-
mission at 1001.44 nm as already mentionned, which is
also in full agreement with eq.5.
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In order to more detail our approach, we present on
fig.6a the amplitudes |Ex| and |Ey| of the zeroth trans-
mitted order against wavelength for two different values
of θ. One shows that the |Ey| amplitude does not ex-
hibit high convex regions in transmission contrary to the
|Ex| amplitude. As explained, the convex regions in the
zeroth order transmission (i.e. the high transmission do-
mains between minima 1 and 2, and just after minimum
2) are induced by the scattering of non-homogenous reso-
nant diffraction orders such as (±1, 0) or (0,±1). For the
|Ex| amplitude, the orders (±1, 0) are associated with a
relative amplitude of 0.810 of the Fourier transform of
the hole profile. This large contribution of these orders
enables an enhanced transmission via multi-scattering.
This effect appears as the reason of the existence of the
convex region of high transmission as shown in previ-
ous work [14]. On the contrary, for the |Ey | amplitude
the resonant orders (0,±1) are associated with a rela-
tive amplitude of 0.318 of the Fourier transform of the
hole profile. This contribution is not large enough to ob-
tain a significant enhanced transmission. For θ = 30o,
the |Ey| amplitude contribution to the whole transmis-
sion is greater than the |Ex| contribution. Although the
transmission along the x axis is greater than along the
y axis, as Einc components depend on θ (see eq.1) the
x axis component of the incident electric field is small
enough to lead |Ex| to be lower than |Ey| (see eq.2).
On the contrary for θ = 60o, the |Ex| amplitude con-
tribution to the whole transmission is greater than the
|Ey| contribution. Indeed, the transmission along the x
axis is obviously greater than along the y axis, but now
the x axis component of the incident electric field is also
greater than the one along the y axis. Then, the ampli-
tude |E| pattern for θ = 60o is essentially defined by the
pattern of the amplitude |Ex| whereas the amplitude |E|
pattern for θ = 30o is essentially defined by the pattern
of the amplitude |Ey|. In addition, the whole zeroth or-
der transmission would be greater for θ = 60o than for
θ = 30o. Again, these results are in qualitative agreement
with our assumptions. Quantitatively, fig.6b shows the
variation of the amplitudes |Ex| and |Ey| against the an-
gle of polarization θ for both wavelength 1300 nm and
1900 nm. The numerical computations give the results
indicated by the dots on the figure. Using the numerical
values of the amplitudes for θ = 90o and θ = 0o, one plot
the transmission against θ for both wavelength by using
eq.3 (solid lines). As previously, one observes a quanti-
tative agreement between the pattern from eq.3 and the
results obtained numerically.

In the possibility of later experimental results, we wish
to add some details for comparison. Fig.7a gives the de-
phasing δ against wavelength for both angle θ = 60o and
θ = 30o. One shows the peaks close to the minima of
transmission, i.e. close to the surface plasmon resonance
according to our previous work [14]. Despite the absence
of an explicit dependence against θ for δ according to
eq.6, one notes that such a dependence exist after all.
So, fig.7b shows the dephasing against θ for both wave-

length 1300 nm and 1900 nm. One shows for θ = 0 that
the dephasing is equal to zero, and the polarization of
the zeroth transmitted order is thus the same as the in-
cident field. Though the dephasing tends to be different
from zero when θ = 90o, as |Ey| tends to zero (see fig.6)
the polarization is the same as the incident field. By
contrast, the transmission polarization will be elliptical
for others values of θ. Such a dependence of δ against
θ and wavelength probably express a dependence of tx
and ty against θ. This maybe corresponds to a propa-
gating constant against z-axis that is different according
to the x-axis or y-axis. In addition, as shown in ref.[14],
tx and ty result from many contributions such as SPs
via multi-scattering. Because SPs exhibit a polarization
dependency, this could explain the tx and ty behaviour.
Nevertheless, as one shows, the dependence of δ against
θ and wavelength is not well understood and we hope to
clarify this point in a later work. Moreover, it will be nec-
essary to search for the effects induced by a parameters
change.

At last, it is striking that our numerical results coincide
with our simple and intuitive explanation which leads to
predict that a square grating with rectangular holes can
behave like a polarizer. Indeed, the whole multiscatter-
ing processes are complex and there are numerous con-
tributions to the zeroth order transmission as explained
above. It was then not necessarily obvious, that our intu-
itive model match up with our numerical results, all the
more that the results shown in fig.7 underline the limits
of our simple interpretation.

Conclusion

In the present paper, we have shown that contrary to
the original experiments (which used a grating made of
circular holes) [4], the zeroth order transmission pattern
depends on the polarization of the incident light when
using rectangular holes. The results presently obtained
match up with our previous work [14]. In this context, we
obtain a device with properties globally similar to those
of the original Ebbesen experiments, but which exibits in
addition, some properties of a polarizer. Assuming the
recent technological interest for this kind of metallic grat-
ings, we think that the kind of device introduced in the
present paper could lead to new technological applica-
tions. At last, note that, during the submission process,
Gordon et al [17] have published experimental results
concerning transmission through a bidimensional array
of elliptical holes in metallic film. Their results clearly
establish the polarization dependence of the transmis-
sion with asymmetric holes. These experimental results
corroborate the present theoretical approach and in this
way, the experimental and theoretical works supply many
complementary results.
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Captions

Figure 1 : (a) Diagrammatic view of the system unders
study, (b) Simplified view of the Fourier transform of the
holes grating.

Figure 2 : zeroth order transmission against wave-
length for various polarization, i.e. for various values
of θ.

Figure 3 : close view of zeroth order transmission
against wavelength for various polarization, i.e. for vari-
ous values of θ. (a) in the vicinity of wavelength (1). (b)
in the vicinity of wavelength (2).

Figure 4 : Wavelengths related to the transmission
minima against θ in the vicinity of wavelength (2) (see
fig.3b).

Figure 5 : (a), zeroth order transmission against θ for
both wavelength 1300 nm and 1900 nm. (b), zeroth order
transmission against θ for both wavelength 1001.44 nm
and 1447.64 nm.

Figure 6 : (a) |Ex| and |Ey| amplitudes against wave-
length for θ = 30◦ and θ = 60◦. (b) |Ex| and |Ey | ampli-
tudes against θ for both wavelength 1300 nm and 1900
nm.

Figure 7 : (a) dephasing δ against wavelength for θ =
30◦ and θ = 60◦. (b) dephasing δ against θ for both
wavelength 1300 nm and 1900 nm.
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