Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

Collaborative editing of EMF/Ecore meta-models and models conflict detection,
reconciliation, and merging in DiCoMEF

Koshima, Amanuel; Englebert, Vincent

Published in:
MODELSWARD 2014 - Proceedings of the 2nd International Conference on Model-Driven Engineering and
Software Development

Publication date:
2014

Document Version _
Early version, also known as pre-print

Link to publication

Citation for pulished version (HARVARD):

Koshima, A & Englebert, V 2014, Collaborative editing of EMF/Ecore meta-models and models conflict
detection, reconciliation, and merging in DICOMEF. in MODELSWARD 2014 - Proceedings of the 2nd
International Conference on Model-Driven Engineering and Software Development. SciTePress, pp. 55-66, 2nd
International Conference on Model-Driven Engineering and Software Development, MODELSWARD 2014,
Lisbon, Portugal, 7/01/14.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. May. 2025

https://researchportal.unamur.be/en/publications/2d77f6dc-e308-45de-80eb-1d11a778f1fa

Collaborative Editing of EMF/Ecore Meta-models and Models Conflict
Detection, Reconciliation, and Merging in DICOMEF

Amanuel Koshima, Vincent Englebert

PReCISE Research Center

University of Namur, Belgium
{amanuel.koshima,vincent.engleBe@unamur.be

Keywords: EMF, DSML, Collaborative modeling, Conflict detection, Marg

Abstract: Despite the fact that Domain Specific Modeling tools becomg wowerful and more frequently used, the
support for their cooperation has not reached its full gfierand demand for model management is growing.
In cooperative work, the decision agents are semi-autonerand therefore a solution for reconciliating DSM
after a concurrent evolution is needed. Conflict detectimh rconciliation are important steps for merging
of concurrently evolved (meta)models in order to ensuréabotation. In this work, we present a conflict
detection, reconciliation and merging framework for canently evolved meta-models and models. Besides,
we formally specify the EMF Ecore meta-model into set cardt that help to analyze the (meta)model and
operations performed on it.

1 INTRODUCTION glebert and Heymans, 2007), or MetaEdit+ (Kelly,
1998). These tools give an ad-hoc environment that
enables method engineers to edit and manage models
and/or meta-models. However, most of these meta-
CASE tools consider the modeling process as a single
user task even though modeling of software systems
usually requires collaboration among members of a
group with different scopes and skills (i.e. middle-
ware engineers, human interface designers, database
experts, business analysts) (Koshima et al.,, 2011;
Koshima et al., 2013). Therefore, there is a need for
metaCASE tools to support sharing of modeling arti-
facts (i.e., model and meta-models) and managing and
synchronization of activities of the group members.

In collaborative modeling, different members of a
group could concurrently edit shared modeling arti-
facts throughout the development life cycle of a soft-
ware application. As a result, the shared modeling
artifacts might not seamlessly work together or the
final result may not be what users want. In other
words, these modeling artifacts become inconsistent

meta-meta-model specifies all the concepts and con-With each other. The main challenge of collaborative
modeling is to detect inconsistencies and conflicts and

straints that are used and respected, respecitively, byto resolve them. These conflicts couldtbgtual, syn-

the meta-model (a meta-model conforms to a meta- . :
meta-model). Besides, a meta-meta-model describestacuc’ or semanti¢Mens, 2092)' AIthc_)ugh there are
itself. some approaches for detecting conflict in text or tree

Since 90's several metaCASE tools have been de-?oarsﬁ]%g;g%?;ng ;hgser:prr]) rgs:ggi:trerg?;\ﬁm;iﬁle
veloped such as Atom3 (de Lara and Vangheluwe, Ve a grap u

2002), GME (Ledeczi et al., 2001), MetaDone (En- ninger et al., 2009; Mougenot et al., 2009). These

Domain Specific Modeling languages (DSML)
have matured and used as an efficient alternative to
General Purpose Modeling languages (e.g., UML,
Petri Nets) for modeling complex systems (Kelly,
1998). DSML defines the structure, behavior and re-
quirements of software applications in specific do-
main by using domain concepts rather than generic
modeling languages (Schmidt, 2006). The benefits
of using DSML have been described in (Kelly and
Tolvanen, 2008). DSML describes concepts at differ-
ent levels of abstraction using models, meta-models
and meta-meta-models. A model is an abstraction
of a software system and a meta-model is a DSL
oriented towards the representation of software de-
velopment methodologies and endeavors (Gonzalez-
Perez and Henderson-Sellers, 2008). A meta-meta-
model is a minimum set of concepts which de-
fines languages (i.e. MOF (Object Management
Group (OMG), 2002), Metal (Englebert and Hey-
mans, 2007), EMF/Ecore (Steinberg et al., 2009)). A

approaches might neglect the syntax and semantics of This paper extends our previous work (Koshima
models. Our work focuses on syntactic (structural) et al., 2011; Koshima et al., 2013) by giving the
conflicts. Semantics conflicts are difficult to solve and formal specification of (meta)models using set con-
are considered in our approach as an extra layer on topstructs. It also provides a detailed description of con-
of the proposed framework. flict detection and reconciliation processes. The pa-
The commonly adopted approach to ensure col- per is organized as follows: Section 2 describes Di-
laboration is a central repository with merge mech- CoMEF framework. Section 3 gives a formalization
anisms and locking techniques (Mougenot et al., of EMF/Ecore (meta)model. In Section 4, the history
2009). However, the locking technique is not scal- meta-model of DiCOMEF is described in section 4.1.
able for a large number of users who work in parallel Section 4.3 presents the conflict detection strategy and
(Altmanninger et al., 2009; Mens, 2002) and it takes section 4.2 specifies the reconciliation framework.
much time to resolve conflicts in practice (Altman- Finally, section 5 describes the future work and con-
ninger et al., 2009; Pilato et al., 2008). This approach clusion.
also restricts users to be dependent on one repository,
and it may introduce unnecessary access right bureau*2 DICOMEF

cracies that lead to dissatisfaction among members DiCoMEE (Koshima et al., 2011; Koshima et al.,
of a group. For instance, MetaEdit+ (Kelly, 1998) 2013) is a distributed collaborative model editing
Implement§mart Mode Access ReStrlctlng Technol- framework for EMF (meta)mode|s where each mem-
ogy (Smart Locks(©) to support concurrent access per of a group has his/her own local copy of a
of shared modeling artifacts that are stored centrally. (meta)model. The main concepts used in DICOMEF
EMFStore (Koegel and Helming, 2010) uses a cen- greperson, role, role type, model, meta-model, copy
tral repository with copy-merge techniques to ensure model and master modelA master (meta)model is
collaboration. _ the main (meta)model which has one or more copy
~There is another mode of collaboration that con- (meta)models that are distributed among editors and
sists of a group of people concerned by a cooperativeghservers. DICOMEF uses a universal unique iden-
task that is large, transient, not stable or even non de-tifier (UUID) to differentiate (meta)model elements
terministic (Schmidt and Bannon, 1992). The inter- (j.e. classes, attributes, references) uniquely. Two
action among members of a group could be dynamic (meta)model elements are considered as identical if
and users are semi-autonomous in their partial work. and only if they have the same UUID. Besides, a
Each member has his/her own copy of a shared mod-person involved in collaborative modeling has a role,
eling artifact and carries on his/her activity in isola- \yhich is typed as @ontroller, editoror observer In
tion with other users or a central authority. Users fact, there are two controller role types which are im-
communicate their work by sending messages to otherplemented in DICOMEF such as a model controller or
members (Mougenot et al., 2009). This mode of col- 53 meta-model controller.
laboration gives users a better control over their data podel (resp. meta-model) controllers are software
and it mitigates being dependent on single repository configuration managers who manage evolutions of a
(modeling artifacts are distributed among members of master (resp. meta-) model. A controller role type
a group). But, it is challenging to keep all copies of s flexible meaning that it can be assigned (delegated)
modeling artifacts consistent; because they could betg other members of a group as long as there is one
modified concurrently by users. _ unique coordinator per group. A person who has
D-Praxis (Mougenot et al., 2009) is a peer-to- an editor role can write and read his/her local copy
peer collaborative model editing framework that re- (meta)models, whereas an observer role only gives a
lies on Lamport clock and delete semantics to au- yread access to a local copy (meta)models.
tomatically solve conflicts. This framework has a DiCoMEF relies on two concepts such in-
“lost-update” problem and we argue that final re- |ine andbranchesn order to store models and meta-
sults of automatic reconciliation process could not re- models. Besides, it uses these two concepts to facili-
flect the intention of users. In this paper, we present tate communications among members of a group (see
a distributed collaborative model editing framework Fig. 1)}, The main-line stores different versions of
called DIiCOMEF that ensures CO”abOI’a‘Elon among g copy (meta)mode| |Oca||y at each editors site. An
DSM tools (Koshima et al., 2011; Koshima et al., editor does not have a write access to modify a copy
2013). DiCoMEF lets each member of a group to (meta)model stored on the main-line. Rather s/he fist

have his/her own local copy of shared modeling ar- creates a branch from the main-line and modifies the
tifacts. In DIiCOMEF, modifications are controlled by

human agents (not automatic). LAlthough these terms are also used by SCM programs,
our framework does not rely on a central SCM.

(meta)model there. In order to communicate local =
modifications with other members, s/he sends her/his % Editor (Edward)

local modifications to a controller as a change request. .

The controller propagates accepted changes to all _—> | } Main-line

members of the group and changes propagated from VeCopyMeaely _ ___ __ _° V1Copy Model

the controller are applied on the main-line. Forexam- .. . L __

ple, Fig. 1 shows an evolution of a copy (meta)model

from versionVg to versionV; on the main-line based I:I I |:] } Branch
V; Copy Model Vp.1Copy Model

on changes propagated from a controller. Besides, it e e R T

indicates a local modification performed by an editor . o

on the branch that evolves a copy (meta)model from Figure 1: Main-line and Branch.

versionVp to versionVo 1; a branch was created be- from a controller. It also shows a branch that is cre-

fore a copy (meta)model evolves from versinto ated by an editor to modify a copy (meta)model lo-

versionVvs. cally from versionVy to versionVp1; a branch was
The communication framework of DiCOMEF is or- created before a copy (meta)mode| evolves from ver-

ganized around the controller that acts as a central hubsjon\, to versionv;.

wrt. his/her (meta)model he/she is responsible. This we have implemented DICOMEF as an Eclipse
could be a limitation of DICOMEF, but at the same p|ug-in that captures the history of (meta)mode|
time it might be considered as its strength as well. adaptation when the user edits tree views or uses
Indeed, DiICOMEF provides a technical framework the GMF editor (Graphical Modeling Framework
over which different communication strategies can be (GMF), 2013). The communication framework of Di-
employed using method engineering techniques (e.g.,CoMEF is implemented using Java Messaging Ser-
delegation mechanisms, pooling). For example, a to- yice (Monson-Haefel and Chappell, 2000): users can
ken can be used and whoever has a token is a conexchange modifications via email. DICOMEF has
troller who can modify a (meta)model and propagates a MessageListnerimp that implements an IMessage-
changes. Listner interface and checks whether there is a new
In DiICOMEF, when members of a group modify email message or not. If it receives a new email mes-

(meta)models locally, elementary change operationssage, it downloads the file and updates the DICOMEF
(create, delete and updafeare stored locally inalo- repository automatically.

cal repository. These elementary operations consti-

tute a history that is used to propagate local modifica- 3 FORMALIZATION OF MODELS
tions to the controller and secondarily to other mem-
bers. Histories are defined by a history meta-model.
The history meta-model, conflict detection, and rec-
onciliation are discussed later. A detailed descrip-
tion of DiICOMEF is found in (Koshima et al., 2011,
Koshima et al., 2013).

A change requess a set of local modifications that
are performed by an editor and sent to a controller in
order to share local modifications with other members
(commit changes). A change request could be either
accepted, rejected, or modified by a controller before
bging committed to the main-line (and then shared 3 1 Notation
with other members). A controller works by consult-
ing a rationale of modification or an editor who pro- In this paper, we will use several ad-hoc notations
posed the change request in case of conflicts. After-that are defined in this preliminary section. In a bi-
wards, if the change request is accepted, the controllernary cartesian products, the identifying component
sends achange propagatioto all members so as to IS underlined. IfR C Ax B thenVa € A,Vby,b; €
evolve (meta)models. (Meta)models on the main- B: (a&,b1),(a,b2) € R = by = by andR(a) =b =
lines evolve automatically, whereas (meta)models on (&,b) € R. The presence of partial orders can be in-
branch evolve when a user updates a branch basedlicated with the< superscript:R C A x B= means
on the Change propagation_ For examp|e, in F|g 1, that tuples with a common element in first pOSitiOl"l
a copy (meta)model evolves from versigmto ver- are ordereda,b1) < (a,bz) < (a,bs) wrt a and this

sionV; on the main-line based on changes propagatedinformation can be abbreviated R&a) = [by, by, bs].
The position (index) of an element in the list is repre-

Some research work has been done in the past to
formally specify an EMF meta-model using graph
theory (Taentzer et al., 2012). In (Monperrus et al.,
2009), the authors used a set theory to define an ab-
straction level of MOF (Object Management Group
(OMG), 2002). This work used a set theory to for-
malize an EMF Ecore model (Steinberg et al., 2009)
because we believe that most people are familiar with
the set theory as a result it is easy for people to under-
stand and reason about models.

sented withposfunction as followspogb,, R(a)) =1 3.2.1 Semantics
andley,....e] —i2[el,...,6 1,6.1,...,6). If Ris

a binary relationC A x B, then we noteR~ the in- The semantics of the Ecore meta-meta-model is for-
verse relatiorC B x A: (a,b) e R< (b,a) e R~ and mally defined by a systematic mapping of its struc-
we noteR* its transitive closure, i.e{(a,b) T (a,b) € tural elements onto mathematical constructs.

Rv3c: (a,c) € RA(c,b) € R}. 25 denotes the pow- We define a sek that encompasses a set of con-
erset of a seBandA — B a mapping function from straints expressed in some language that is not rele-
setAto setB. vant here. For each clagsin Ecore, we define a set

Ec. For each associationbetween classe& andB

in Ecore, we define a spt C Ea x Eg. Let’s observe
that in all the Ecore meta-meta-model diagrams pub-
Eclipse Modeling Framework(EMF) is widely used lished so far, the relations denote accessor methods
to build tools and applications. It generates codes and not sets of tuples as specified in the UML stan-
(i.e. classes for the meta-model and adapter classeslard (UML 2.0 superstructure, 2011). For this rea-
for viewing and editing models) based on the struc- son, multiplicities in our mapping may not match the
tured data model (Steinberg et al., 2009). A model can cardinality of the accessor links in the diagrams pub-
be expressed using annotated Java interfaces, XMLlished so far. The product denoting this association is
Schema, or UML modeling tools. EMF provides a fa- annotated with the.. and = symbols depending on
cility to generate one form of representation from the its semantics in Ecoras the association ordered? is
other (using the EMF framework). EMF uses Ecore as it one-to-many, or many-to-manyFor each attribute

a meta-meta-model to define different DSL languages @ Of type T in classC, a setoa C Ec x T is defined

and itself. Figure 2 shows the UML class diagram of WhereT € Ep.

the Ecore meta-model. The association depicted with Inheritance between classes is mapped to inclusion
blue color are derived associations where as the blackconstraints between the corresponding sets, hence, if
lines are non-derived associations. AisaB, then the constraira C Eg is added toz.

The root element of an Ecore meta-meta-model When the superclass is abstract, the inclusion is re-
is an EPackage. An EPackage contains zero orplaced with the equality operator. We bootstrap first
more sub-packages and EClassifiers (i.e. EClass,the process by defining some sets:

EDataType, EEnum). A model class is represented

by using an EClass, which is identified by a name and Ep = {EString EInteger...}

has zero or more attributes and references. A class EString={",'a’,'ad,'ab’,...}

can have zero or more super types. It can have ZerOE |nteger—
or more operations. Properties (attributes) of a class

are modelled using an EAttribute, which has a name
Ep elements are data types. In EMF, a data type de-

and a type. Associations are modelled by ERefer- i) .
ence(s). An EReference models an end of an asso-note simple data types in Java, classes, interfaces, and
: rrays that are not modeled using wih elements

ciation between two classes; it has a name and a typea) X .
(the EClass at the opposite end of the association). A (Steinberg etal., 2009). We defifal as the union of
bi-directional navigable association is modelled us- all data type valuesral = Ureg, T

ing two references that are related to each other by EC0re classkes in tlhe meta—mketa—model are mapped
an eOpposite link. Besides, a composition associa- © S€tS: Ec (aka EClass)Ep (aka EDataType)Ep

tion is represented by setting a containment boolean (?ka EPackagefr (aka EReferencela (aka_ EAL
property of an EReference to ue. The cardinality tribute), E (aka EEnum),EL (aka EEnumLiteral),

of a reference is modeled by setting lowerBound and E© (aka EOperation)Epa (aka EParametenEan
upperBound values. Like references, an attribute’s (2ka EAnnotation)En (aka ENamedElementsime
cardinality could be specified using lowerBound and (aka EModelElementk. (aka EClassifier)Ee (aka
upperBound features. The Ecore meta-meta-model isETypedEIeme_nt)Esf (aka EStructuraIl_:eature) and
attached in the appendix and we also invite interested E08 (aka EODject). Lower case subscripts denote ab-

readers to refer to (Steinberg et al., 2009) stract classes. For the sake of simplicity, EFactory
h ' and EStringToStringMapEntry are not considered in

3.2 The Ecore Meta-meta-model

{Elntegemin,...,—1,0,1,... Elntegemax}

this work.
The inheritance relationship between non-abstract
2http: // downl oad. ecl i pse. or g/ model i ng/ class and its subtypes are modeled using set inclusion
enf/enf/javadoc/ 2. 6.0/ or g/ ecl i pse/ enf/ ecor e/ constraints and the quality if the supertype is abstract.

doc-fil es/ EcoreRel ati ons. gi f The base class of all Ecore model elements is an EOb-

EldocelElerent

+ehlodelElement

®getEAnnotation(source | String) | EAnnatation
0.7 | +eAnnotations $
: |

EAnnotation

@eource © String
gdetails . EStringToStringMapEntry

+eFactorylnstance

1
EMamedElement EFactary i

gnarme ; String

ereate(eClass : EClass) | EObject
% ®createFromString(eDataType | EDataType, literalvalue : String) : ElavaObject

®convertToString(eDataType : EDataType, instance¥alue : EJavaObject) : String

| +ePackage

1
ElTypedElement ECiassifier EPackage

ordered : boolean = true instanceClassMame : String enslURI; String
unique : boolean = true +eType | @instanceClass | EJavaClass énsPrefix : String
GlowerBound : int pdefaultvialue : EdavaObject
upperBound : int =1 0.1 X i ®getEClassifieriname : String) | EClassifier
gmany : boolean ®isInstance(object : ElavaObject) : hoolean 0
greguired : boolean ®gatClassifierlD() : int + ! +eSubpackages | O-

o

* i +ePackage +eSuperPack
Z> +eExceptions [0.* Zﬁ 0 \% I eSuperPackage
| |
e —

I |
t +e0peration 0= EElass EDatallype
o o abstract | boolean gsetializable : boolean = true
+eFarameters interface : boolean
+e0perations +eContainingClass ®isSuperTypeOffsomeClass - EClass) : hoolean
~gEIEStruzturaIFEaltl_lre(featl_lre\D int) : EStructuralFeature (i 1 -
+aAllCOperations ‘gEIEStruEturalFEature(featureName String) : EStructuralFeature EEnhumLiteral
o galue | int
< +eRef T ginstance : EEnumerator
+eAllStructuralFeatures |0 - +eContainingClass 1| +eReferenceType +eSuperTypes
- +eLiterals | 0.
EStructu.rafFeatfre +eStructuralFeatures oAl Containments +aAlSupeTypes eliterals
changeable : boolean = true 0 x
galatile : boolean EReference +eAtributeType
gtransient : hoolean gcontainment : boolean 0
pdefaultvialueliteral © String container : boolean AR +2Enurm
pdefaultvalue : EavaObject gresolveProxies : boolean = true R elerences EEnum
gunsettable | boolean 1
CHIBEG] - W e +eOppasite 0.1 +eReferences SgetEEnumLiteral(name : String) : EEnumLiteral
SyetFeaturell) : int 0. +edllAttributes ®getEEnumLiteral(value : int) : EEnumLiteral
FyetCortainerClass)) | ElavaClass EAttribute 0. +eltributes
¢iD : boalean 01 +elDAttribute
Figure 2: Ecore Meta-modél
Ject. PeExceptions<< Eo % E¢
Eme= EoB EaNnUEne = Eme . <
PeLiterals © Eg X EL
Ete UECUELUEp =Ene EoUEpaUEst = Ee . <
PeAnnotationsC Eme X Ean
Ec UEp = E¢ EprUER = Est CE Ev<
Pdetails & EAN X EMm
Ee CEp

L ' N
In this formalization, we don’t consider associations 7For sake of simplicity, we definewner(sf) =

N .
that denote derived associations or facilities to accessPesr(Sf) @nd type(te) = perypdte) as respectively

objects neither opposite associations. Each relevantthe owner of a structural feature and its type.is

association is translated as a relation between its endscompleted W'th“a" the integrity constraints defined fo”r
o < Ecore such as “EPackage must have unique names” or
PeclassifiersC Ep x Ec

“the values of the lowerbound attribute must less or

< .
PeSubPackages- Ep X Ep equal than the value of the upperbound attribute for a
PesuperType& Ec x Ec™ same class”, _ _
< An Ecore meta-modé¥M is thus defined as a tu-
PeSF g EC X Esf (eSFis a shortcut foeStructuralFeatures .
ple of sets:
PelDAttribute S Ec x Ea (Ec,En, ..., PeClassifiers PeSubPackages - - » dname - - -, 2)

PeTypeC Ete X Ec

PeoppositeC Er X Er Example: A simple Petri net meta-model (Fig. 3

- depicts its class diagram) could be defined as:
PekeysC Er X Ep Ec ={PI,Tr,Nt,Ne}

PeoperationsC Ec x Eo™ Ea ={NenamePIl.tokeng
Peparameter<_ Eo x [Epa]© Er ={Pl.to,PI.from, Tr.from, Tr.to,

Nt.placesNt.transitions
Ep ={PN}

pese(Ne) =[Nenamé

pese(Pl) =[Pl.tokensPl.to, PI. from|

Pese(Tr) =[Tr.nameTr.to, Tr.from|

pese(Nt) =[Nt.placesNt.transitiong

Oeclassname=1 (PI,‘Place), (Tr, Transitor),

(Nt,"Net), (Ne ‘NamedElemeny,
(Nename‘namé), (Pl.tokens'tokens),
(Pl.to,‘to’), (PI.from,* from'),
(Trto,'to’), (Tr.from,* from'),
(Nt.places’ places),
(Nt.transitions ‘transitions)}

3.3 Instantiation

If MM is a meta-model, a model compliant
with MM (noted M/MM) is defined as a tuple
([, [-1a,[-]r, Zm) where each component is defined
hereafter Eog denotes an infinite set of objects):

e []Jc: Ec +— 2508 A class is modeled as a set of
objects.

e [Ja: Ea— (Eos x T<) whereT is the type of
the attribute T € Ep). An attribute associates an
object with values of typd.

e [.]r : Er —~ (Eos x Eog<) Same for references,
but with objects.

We definet (o) : Eog — Ec the function that maps
an objecto to its classc € Ec such thato € [[c]¢ A

—3d € Ec: peSuperTypEféjaC) Ao e [d]e.

Example: A petri net instance model (depicted as
an object diagram in Fig. 4) can be formalized as:
[Nt]c = {net}
[Pl]c = {idle,busydead
[Tr]c = {startkill }
[Pl.namd, = {(idle,‘idle"), (busy‘busy),
(dead‘deadlock)}
[Tr.namd, = {(start,‘start’), (kill ,‘kill ")}
[Pl.tokeng, = {(idle,1), (busy0)}
[Pl.to](idle) = [start, kill]
[PI.from], = {(deadKkill), (busystart)}
[Trto], = {(start,busy), (kill,dead}
[Tr.from], = {(start,idle), (kill ,idle)}
[Nt.placg); (net) = [idle,busydead
[Nt.transition], (Nt.transition) = [start, kill]

H nzmedtizment
o name : EString

S E—

D—

I:'. . *
H Transition

from

0.% o
H Place
= tokens : Elnt

0. 0..*
plates

L
frangitions

from

H Met

Figure 3: Petri net meta-model.

kill dead

Figure 4: Petri net instance model.

idle

As explained in Section 3.1, we used the notation
R(a) = [b1, b2, bs] to resumda,by) < (a,b2) < (a,bs)
for the[]; construct.

3.4 Reflexivity

Since the base class of all Ecore model elements is
EObject, this implies that the Ecore meta-meta-model
may specify itself (reflexive definition): the Ecore
meta-meta-model can then be modeled as an Ecore
meta-model (e.g. MMr9. We could expect to
observe the same property in our semantics frame-
work of Ecore. Because of space constraints, we only
present an partial definition of MMore
EC = {En97 EPu E07 ER7 s }
Ea = {Ene.nameEp.nsURL Ep.nsPre fix
E..instanceClassNamE.instanceTypeNanje
Er = {Ep.eSubPackageEp.eClassifiers
E..eStructuralFeatures
Ep = {Ecore}
PesF = {(Ene (Ene.nameg),
(Ep, (Ep.nsURL Ep.nsPrefix
Ep.eClassifiersEp.eSubPackages
(Ee, (Ec'instanceClassName

Er.containmentE..eStructuralFeatureg }

Onename= { (Ene,'ENamedElement, design, business domain, ...).
(Ep,EPackag®), (E,'EClassifiet), In case of conflict with his/her local change, Di-
(Enename’name), (Ep.nsURL nsURI) _CqMEF supports a semi-automatic conflict reconcn—
ne: &) A ’ iation strategy. Later, a user can send his/her lo-
(Ep.nsPrefix‘nsPrefix), cal modifications merged with the last release of the
(Ec.instanceClassNam@nstanceClassNamg model as a change request to the model controller. Di-
(Ec.instance TypeNaménstance TypeNarhg CoMEF provides users a facility to compose changes
so as to put them in a same context (i.e., refactor-
ing changes). This could later help user to under-

PeTypd Ene.namg = EString stand changes during reconciliation process. It also

PeTypd Ec.instanceClassName= E String lets users to annotate rationale of changes with mul-
PeTypd Ec.instanceTypeName= E String timedia files (i.e., audio, video, image, or text). Dur-
PeTypd Ec.eStructural Features= Es; ing the reconciliation process, users can consult them
P Petypd Ep.NsPrefiy = EString to be_tter understand rationale of changes and resolve

. conflicts.
PeTypd Ep.NSURI) = EString
PeTypd Ep.NSURI) = E String 4.1 Definition of History Meta-model
PeTypd Ep.eSubPackagés= Ep Change operations are used to exchange
Petypd Ep.€Classifiers = E; (meta)models modifications between users (Blanc

et al., 2009). Besides, they are also used to detect
PesuperTypddc) = Ene conflicts and help the reconciliation process. Hence,
PesuperTypddr) = Ene it is important to specify the change operations
PecClassifierd Ep) = Ec unambiguously and formally.
This process could be continued with the other con- A history meta-model has been defined to cap-
structs of the Ecore meta-model and it shows that we ture the information denoted by the change operations
can seamlessly define an Ecore meta-model by using(create, delete and updatof models: a model el-
itself meaning that our formalization support the re- ement can be created (or deleted), a value of a single
flexive nature of Ecore. Moreover, the constructs are valued attribute or reference might be set. Besides,
used to define the semantics of a meta-madiel at a new value can be added (or removed) to a multi-
the meta-model level or at the model level when it is valued attribute or reference. Once this information
reified and consistent. This last point is not discussed is captured locally by this meta-model, an history can

in this paper due to lack of space. later be exchanged with other members.
Some works in the past have already used history
4 THE COLLABORATIVE meta-models. Hismo (Demeyer et al., 2001; Girba
MODEL et al., 2005), a history meta-model based on a FAMIX

))) , . meta-model, is an artificial modification history. In-
In collaborative modeling as it was mentioned in yoeqd it transforms a snapshot model like UML or
Section 1, (meta)models are concurrently edited by papmiX into a history rather than recording modi-

different members of a group. Later, these con- fications whenever they occur. It lacks preserving
currently edited (meta)models need to be integrated iheir exact time sequences. EDAPT (Herrmannsdo-
(merged), but most of the time they might not seam- gter 2009), previously called COPE, is a tool based
lessly work together as a result of inconsistent modifi- ,, EMF/Ecore meta-model that captures edit opera-
cations (conflict). These conflicts should be identified {jons of meta-model adaptations whenever they occur.
and resolved. EMFStore (Koegel and Helming, 2010) uses a history
DiCoMEF uses a human controller to manage the eta-model to capture adaptation of instance models
evolution of (meta)models. S/He is assumed to be ap ;¢ goes not work well with meta-model adaptations.
business domain expert and who has a good model- gjnce the Ecore meta-model is reflexive, constructs
ing experience. Besides, s/he has a right to acceptseq to define the Ecore meta-model can be reused
or reject change requests received from users. ONC& gefine an Ecore model and its instances. The same
a new release is available, changes are propagated @,story meta-model can thus capture both meta-model
all users who must take them into consideration be- 5nq4 model adaptations seamlessly. By the time this

fore their own operations. In DICOMEF, the con- tegearch was conducted, the history meta-model of
troller role can be assigned or delegated to other mem-

bers. This could help to facilitate collaboration among 3Let's note that read operations are not taken into con-
users with different expertise (database, user interfacesideration.

EMFStore was tightly coupled with other components | [Ri[R2[R3I[RA[R5S[R6 [R7T[RS[RO|J

of the EMFStore implementation. As a result, EMFS- | EDAPT v v v
tore cannot be used/installed as an autonomous comy EMFStore || v | v | V v N
ponent for capturing history of meta-model adapta- LPCOMEF || v | V [V [V [V IV [V [V [V

tion 4. Hence, we have extended EDAPT to capture Table 1: Comparison of EMFStore, EDAPT, DiCOMEF.
both the adaptations of model and meta-model as part
of the DiCoOMEF implementation.

The history meta-model should fulfil the follow-
ing requirements in order to be efficiently used in

distributed collaborative (meta)model editing frame-
work. (R9) Who performs changes and When:it has to

provide facilities to identify an actor who per-
forms changes and when the changes are made.

from undo operation that store operations in the
stack. Roll back could be applied when an editor
is closed and re-opened again.

(R1) Self contained: it must not have links (refer-
ences) to model elements (surrogate technique
should be used to reference model elements). ~ Based on these requirements, we compare EMFStore,

(R2) Universal Unique Identifier (UUI): it should ~ CoAF 1> @nd DICOMEF in Table 1. Indeed, EDAPT

. : o . : _ provides a facility to create a composite change from
gfi‘gﬁsu(nc'?g;e'desgi'f'géfeigat Idingfgs?gssn%tesoh%eurl da set of primitive changes, but it does not support
also have UUls for identifying (meta)model ele- creating a composite change from other composite

t quel change(s).
ments uniquety. For the rest, we define an operation traoeas

(R3) Composition: it has allow users to create com- the complete documentation of a transformation step
posite of changes from other changes or compos-M’/MM = M/MM > w where M/MM is the new
ite changes. model obtained after application of operation trace
— M denotes a model or a meta-model, that doesn’t
matter anymore. And a history could then be defined
as a sequence M/IMNB w1 >> 0 > 3 > w_. A
(R5) Model adaptation: it has to capture model trace provides both the information about the precon-
adaptation operations. dition and the postcondition of operations.

(R6) Understandability: users intention must be Figure 5 shows the history meta-model of Di-
easy to understand. For example, EDAPT repre- COMEF. We did not show a user model element in
sents a changing of a parent element of a model Figure 5 for the sake of simplicity. THereateopera-
element with a Move operation, which is eas- tion creates a model element in the context of a con-
ier to understand than EMFStore, which models tainer element.Deleteoperation deletes an existing
the same modification with a composite operation model element from its parent elemeMoveopera-

that is composed of remove and add operations. tion changes the container of an elemekddopera-
tion adds a model element (data values) to a list of el-

ements.Removeoperation removes a model element
from the collectionMovelndeoperation changes the
index of an element in a collectio®etoperation up-
(R8) Cascade operations:a delete operation should dates a value of a single-valued attribute or reference.
capture cascade operations that are caused byEach operation step has been formally defined as a
it For example, when an EClass is deleted transition between a state before and a state after (de-
from an EPackage, all the references that point noted by the superscript). Definitions dEreateand
to the deleted EClass should be set to null. The Deleteoperations are provided below, the other op-
delete operation should contain reference opera-erations could also be defined seamlessly using the
tions (copy of them) that set null value (or re- formalization defined in section 3.
move the deleted EClass from a collection). This Create Operation: Create operation creates objects
could help only to roll back conflicting operations in the context of a container.
during merging process (to reconstruct references M /MM > creatée, r,e,,i) > M’ /MM
that are set to null or deleted due to the dele-
tion of a model element). Roll back is different

(R4)Meta-model adaptation: it has to capture
meta-model adaptation operations.

(R7) Multimedia Annotation: it has to give a user
with a facility to annotate his rationale with mul-
timedia files.

r e ERAey € Eog

R — A[type(r)]e = [type(r)]cU {e2}
Recently, EMFStore has had refactoring to reduce a _ *
coupling between parts of the implementation that captures A (t(er) = owner(r) v (t(er), owner(r)) € PesuperTypés)

history with rest of implementation. AT =Trlru{(e1,e2)}

rationales H Rrationale

EEET changes B o 0.+ | = uri 1 EString
; ; 0.* T changelD : EString | 0..* o rationaleType : RationaleType
T modelFile : EStrin 2
1 q o date ; EDate changes
version
history | 1 1 8L <enurmeration > =|
E £ RationalzType
H CompositeChar = G P
Wersion ; arge E
Versions f B R B Aramitvath: = VIDED
— = clientDate : EDate = pogition ; Elnt |reversaChanges — TEXT
0F o] . ;
7 versionlD : EString T — IMAGE
\ FAY

H EObiject T
[1
e L
eChject N

H Carentch: B Vaieoh: cascadeChanges
o referenceMame : ESiring o featureMame @ ESiring *
o datavalue @ EString

A T isReference : EBoolean |

JA JAN

'E\ H Move [B valueChangewvithindex] H Set ‘ B Delete

-] | —= = srcPosition : Elnt = oldDatavalue : EString &% elementlDS © ESiring

JA FANNVAY ‘

[H add] [Hremave | H maovelndex
[] |] 2 oldPosition : EInt ‘

0.1 [target ‘

H ModelEle mentiD|
T id 1ESring |source ‘

s
0.1 oldreferencetalue ‘
refenencet'alue |
Figure 5: History Meta-model.
Aposey,[r]r) =iA[r] —i=[r] 4.2 Merging
.o A [Er.containmerila(r) = true Merging is a process of fusion of thé andw® histo-
since Er € Ec (see 3.4) andtyper) = riesin such away that conflicts are avoided. Some or-
Er and Eg.containement € Ea and der of execution of operations could be imposed to fa-
owner(Er.containment = Eg, expression cilitate merging. For instance, 6 must be executed
[Er.containmenily(r) denotes if the reference peforew', then this would forced- to be rolled-back,

must be considered as a containment or not. EMF nextw® would be applied and finallgo- could be re-
attaches importance to the organization of the in- applied. But this process is time consuming (e.g., roll-
formation in a strict containment relationship and back a one day work for a propagated Change that re-
many operations provided by the Ecore APl depend names an Eobject). Another option could presesve
on this hierarchy. For sake of simplicity, we define and next apply® while there is no conflict. When a
K(r) = [Er.containmerffa(r). conflict is detectedy* is rolled-back and the scenario
Example:cr eat e(net, Nt.place start, 1) is reversed. A user can keep or drop some changes
Delete Operation : Delete operation deletes an ex- from w- when it is re-applied. But this ordering is
isting model element along with its contents (Chlld el- also a time Consuming process . The optima| option

ements) from its parent element. is to consider M/MMs> w- > «°. In this strategy, if a

M/MM > deletée,,r,e;) > M'/MM conflict occurs while applying®, changes ino" that

r € ErA e & Ebg AK(T) = true caused the conflict are rqlled back.. Thi; last strat-
, egy has been chosen in DiCOMEF and relies on an in-

A ltype(r)Jc = [type(r)]c\{€2} depth analysis conflicts and of the causal relationship

A (t(er) = owner(r) V (t(e1),owner(r)) € pPesupertypds) between the rolled back operations and other traces in

AL =[]\ { (er, &)} the histories. This is discussed in the next section.

Example: del et e(net, Nt.place start) 43 Conflict Detection

Conflict detection techniques can be classified as
either state-based or operation-based (Altmanninger

der of serialization of these operations affects the fi-
local nal state of the (meta)model (e.g., teetoperations

that rename an EObject differently) (Koegel et al.,
] 2009). Besides, the execution of one of the opera-
setstart.name to “begin :-— propagated tion could invalidate a precondition of another one.
- The > operator shows that one operation is succeeded
(directly or indirectly) by another operation. For
instance, creates,ri,es,i) = deletdes,rp,e;) and
deletdes, rp,e1) - creatéer,ri,ep,i) gives different
result. In the first case, both operations execute and

delete start model element]___
set busy.name to “active ” |

delete start model element
set busy.name to “active
create start model element

— local after merge

add start.to to busy the model elemergy along with its child are deleted
add idle.to to start from the model. But, in the second case, the create
setstart.name to “begin” operation cannot execute because the delete operation

deletes the target model elementand makes the
Figure 6: Change propagation and local operations. precondition of the create operation invalid. There-
fore,creatdes,r1,€p,i) anddeletées,ro,) are con-
et al., 2009; Lippe and van Oosterom, 1992; Mens, flicting operations. A composite operatio, is in
2002). State-based techniques do not capture the timeconflict with another operatios if at least one of its
sequence of operations that could be relevant to rec-member operation is conflicting withy. The seman-
oncile conflicts and are thus not acceptable for our tics of conflicts for other operations could easily be
objectives. Contrariwise, operation-based approachexpressed as well.
records changes whenever they occur and can capture Conflict relationcalculates a set of conflicting op-
refactoring changes (Mens, 2002). erations. The level of severity of conflicts could vary
A user might not be able to execute all operations pased on the type of conflicts meaning that some con-
propagated from a controller on his local copy. For flicts need user interactions whereas other conflicts
instance, this could be the case when a user deletes &ould be solved automatically (Koegel et al., 2009).
model element and a controller propagates a changeHard conflictsrequire a user interactiooft conflicts
which modifies the same model element (i.e., a deletecan be resolved automatica”y by emp|oying some
operation and a set operation). Hence, the deleted el-conflict reconciliation strategies. Tables 2 and 3 show
ement needs to be re-created (with the same UUI). the conflicting relation —h (resps) denotes a hard
DiCoMEF only rolls back the delete operation (re- (resp soft) conflict.
create) and the dependent operations (a copy of these anp operationgj, requires another operatics,, if

operations is stored in the delete operation). For in- gnd only ifwy must be executed befoeg so that the
stance, let an editor and a controller work on the same precondition ofwj is entailed by the post-condition

model instance described in section 4. The Editor of . The require binary relation is transitive, but

deletes thestart model element (instance of &an- it is not symmetric. For instance, a create operation
sition class) and sets the name of thesymodel ele- requires another create operation that creates a target
ment (instance of &laceclass) to“active” . A con- model element (container).

troller sends a change propagation to renanséas creatées, rp, €y, j) > creatéey, ri,e,i)

model element tdbegin”. In order to apply the Hence, the require relation is extended with that pat-
change propagation, a deleted elemestarf) must tern: (creatéey, r1,e,i),creatées, ro,e1, j)). The re-
be re-created. During rolling back, DICOMEF firstly |ation is resumed in Table 4. There is a relation be-
creates thetart model element and afterwards it re- tween therequireandconflictrelationships: if opera-

establishes the relationships between $tert and tion wy requiresw, andwy, conflicts withws, thenw,

the busy and theidle and thestart model elements g|so conflicts withuws.

(see Figure 6). Rolling back only the delete opera- Meta-model adaptation could also lead to a precon-

tion is important, specially, if there are many changes dition violation, for instance, a reference feature of a

performed by a user after deleting a model element. meta-model element could be deleted in a new version

Rolling back all changes to re-create a deleted model of meta-model that results in violation of precondition

element could be time consuming. Finally, it renames for Create, Set, Add, . operations. In this case, both

startto “begin”. the instance model and its respective history model
We employ theConflict (Table 2 and 3) an®Re- needs to co-evolve with meta-model. But model co-

quire (Table 4) relations to detect conflicts between eyolution and history migration are not in the scope
HC andH' (Koegel et al., 2009). An operatian® this paper.

is conflicting with another operation)'j- if the or-

Table 2: Conflicting relation (ordered-multivalued). Table 4: Requires relation.

| ||Create*DeIetq Move| Movelnde>4 Add| Remove*Set| ||Creat4 Deletq Move| Movelndeﬂ Add| Remove*Set|
Create s h s s s s Create Vv
Delete h h h h h Delete Vv
Move s h h h s s Move V4
Movelndex s h h s s s Movelndex V4
Add s h s s s s Add V4
Remove s s s s Remove Vv Vv
Set h s Set Vv

Table 3: Conflicting relation (unordered-multivalued).

| [[Create | Delete | Move | Add | Remove | Set | ments history based strategies must fulfil.
Croate h Although the result of this work is fully opera-
Delete h h h h tional, the reconciliation process could take place in
Move h h the concrete syntax editors and meta-model seman-
Add h s tics (i.e. OCL rules for instance) should be tackled
Remove s in a future work. More advanced collaborative work-
Set h s flows should be also investigated and be defined on
top of DIiCOMEF.

DiCoMEF is implemented as an Eclipse plugin
When hard conflicts occur, the DICOMEF frame- (54K LOC). The framework will be tested with
work shows the conflicting operations to the user with master students during the academic year 2013-
all the required information and the rationale about 2014. Screenshots and other publications of Di-
them. Once the user has solved the conflict, the merg-CoMEF are found it t ps: // si t es. googl e. cont

ing process can continue. site/ di conef.
5 CONCLUSION AND FUTURE REFERENCES

WORK Altmanninger, K., Seidl, M., and Wimmer, M. (2009). A

) o Survey on Model Versioning Approaches. Technical
To fU”y benefit from DSM tools, it is Important to report, Johannes Kepler University Linz.

ensure cooperation among DSML tools. DICOMEF gjanc, X., Mougenot, A., Mounier, ., and Mens, T. (2009).
is a distributed model editing framework where users Incremental detection of model inconsistencies based
(i.e., coordinators, editors, and observers) own their on model operations. In Eck, P., Gordijn, J., and
own local copies and can work asynchronously by ex- Wieringa, R., editorsAdvanced Information Systems
changing operation traces. Specifying EMF models Engineering volume 5565 of.ecture Notes in Com-

and the semantics of operations performed on models ggﬁgr Sciencepages 32-46. Springer Berlin Heidel-

isa necessary process to assure an unambiguous Comd_e Lara, J. and Vangheluwe, H. (2002). Using atom as a

munication between actors. This approach allows ac- meta-case tool. IrCEIS’bz bages 642—649.

tor_s to better understand the ratlongle behind the eVO'Demeyer, S., Tichelaar, S., and Ducasse, S. (2001). FAMIX

lution of models and to detect conflicts. 2.1- the FAMOOS information exchange model.
Modifications management is important to have a Englebert, V. and Heymans, P. (2007). Towards more exten-

converging model after concurrent operations. In Di- sible metaCASE tools. In Krogstie, J., Opdhal, A., and
CoMEF, modifications are managed by a controller Sindre, G., editorsinternational Conference on Ad-
(human agent). More importantly, a controller role is vanced Information Systems Engineering (CAISE’'07)
flexible meaning that it could be easily assigned to an- number 4495 in LNCS, pages 454—-468.

other member. This dynamic roles assignment could Girba, T., Favre, J.-M., and Ducasse, S. (2005). Using
lead people to implement more elaborated strate- meta-model transformation to model software evolu-

gies on top of DICOMEF, i.e., a user can delegate tion. Electron. Notes Theor. Comput. $di37:57-64.
his/her role to another person. Although using a con- Gonzalgtza'r':]i:je;iinC'fo?”goft"\:f;geésnori‘;zgL'iirsvoh'i' VS/?OOS)'
troller to manage collaborative modeling may limit 9 9 9

e . . . ley, New York.
the scalability, it could be possible to implement dif- Graphical Modeling Framework (GMF) (visited:

ferent method engineering techniques (e.g., delega- 2013). Graphical Modeling Framework.
tion mechanisms, pooling) and strategles_on top of Di- http://wiki.eclipse.org/Graphicallodeling Framework.
CoMEF to address the problem. This article has pre- jerrmannsdoerfer, M. (2009). Operation-based version-
sented a formalization of the conflicts that can occur ing of metamodels with cope. IRroceedings of the

in concurrent histories as well as important require- 2009 ICSE Workshop on Comparison and Versioning

of Software ModelsCVSM '09, pages 49-54, Wash-
ington, DC, USA. IEEE Computer Society.

Kelly, S. (1998). Case tool support for co-operative work
in information system design. In Rolland, C., Chen,
Y., and Fang, M., editordnformation Systems in the
WWW Environmentvolume 115 ofilFIP Conference
Proceedingspages 49-69. Chapman & Hall.

Kelly, S. and Tolvanen, J.-P. (2008)omain-Specific Mod-
eling. Enabling full code generation Wiley-IEEE
Computer Society Pr.

Koegel, M. and Helming, J. (2010). EMFStore: a model
repository for emf models. In Kramer, J., Bishop,
J., Devanbu, P. T., and Uchitel, S., editdGSE (2)
pages 307-308. ACM.

Koegel, M., Helming, J., and Seyboth, S. (2009).
Operation-based conflict detection and resolution. In
Proceedings of the 2009 ICSE Workshop on Compar-
ison and Versioning of Software ModeBVSM '09,
pages 43-48, Washington, DC, USA. IEEE Computer
Society.

Koshima, A., Englebert, V., and Thiran, P. (2011). Dis-
tributed collaborative model editing framework for
domain specific modeling tools. IKCGSE pages
113-118. IEEE.

Koshima, A. A., Englebert, V., and Thiran, P. (2013). A
reconciliation framework to support cooperative work
with dsm. In Reinhartz-Berger, I., Sturm, A., Clark,
T., Cohen, S., and Bettin, J., edito3pmain Engi-
neering pages 239-259. Springer Berlin Heidelberg.

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J.,
Thomason, C., Nordstrom, G., Sprinkle, J., and Vol-
gyesi, P. (2001). The generic modeling environment.
In Workshop on Intelligent Signal Processing

Lippe, E. and van Oosterom, N. (1992). Operation-based
merging. InProceedings of the Fifth ACM SIGSOFT
Symposium on Software Development Environments
SDE 5, pages 78-87, New York, NY, USA. ACM.

Mens, T. (2002). A state-of-the-art survey on software
merging.|EEE Trans. Softw. Eng28:449-462.

Monperrus, M., Beugnard, A., and Champeau, J. (2009).
A definition of “abstraction level” for metamodels.
In Engineering of Computer Based Systems, 2009.
ECBS 2009. 16th Annual IEEE International Confer-
ence and Workshop on thgages 315-320.

Monson-Haefel, R. and Chappell, D. (2000va Message
Service O'Reilly & Associates, Inc., Sebastopol, CA,
USA.

Mougenot, A., Blanc, X., and Gervais, M.-P. (2009). D-
praxis: A peer-to-peer collaborative model editing
framework. InProceedings of the 9th IFIP WG 6.1
International Conference on Distributed Applications
and Interoperable SystemBAIS '09, pages 16-29,
Berlin, Heidelberg. Springer-Verlag.

Object Management Group (OMG) (2002).
Meta Object Facility(MOF) Specification.
http://www.omg.org/spec/MOF/1.4/PDF.

Pilato, C., Collins-Sussman, B., and Fitzpatrick, B. (2008
Version Control with Subversion O'Reilly Media,
Inc., 2 edition.

Schmidt, D. C. (2006). Guest editor’s introduction: Model-
driven engineeringlEEE Computer39(2):25-31.
Schmidt, K. and Bannon, L. (1992). Taking cscw seriously:
Supporting articulation work. Computer Supported

Cooperative Work1:7-40.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF: Eclipse Modeling Framework 2.0
Addison-Wesley Professional, 2nd edition.

Taentzer, G., Ermel, C., Langer, P., and Wimmer, M.
(2012). A fundamental approach to model version-
ing based on graph modifications: from theory to im-
plementation.Software and Systems Modelinmpges
1-34.

UML 2.0 superstructure (2011).OMG Unified Model-
ing Language (OMG UML), SuperstructureOMG.
formal/2011-08-06.

