Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

Distributed collaborative model editing framework for domain specic modeling tools
Koshima, Amanuel; Englebert, Vincent; Thiran, Philippe

Published in:
Proceedings of the 2011 6th IEEE International Conference on Global Software Engineering

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication

Citation for pulished version (HARVARD):

Koshima, A, Englebert, V & Thiran, P 2011, Distributed collaborative model editing framework for domain specic
modeling tools. in Proceedings of the 2011 6th IEEE International Conference on Global Software Engineering.
IEEE Press.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. May. 2025

https://researchportal.unamur.be/en/publications/5f45963f-6614-4cd3-8f25-81c87398dad9

Distributed Collaborative Model Editing Framework
for Domain Specific Modeling Tools

Amanuel Koshima, Vincent Englebert, Philippe Thiran
PReCISE Research Center
University of Namur
Belgium
Email: {amanuel.koshima, vincent.englebert, philippe.thiran}@fundp.ac.be

Abstract—Domain Specific Modeling (DSM) tools have ma-
tured and became powerful over the past few years and are now
used more frequently to model complex systems. Consequently,
the demand for model management and collaboration among
DSM tools becomes more important. In collaborative modeling,
domain specific models are mostly edited and elaborated con-
currently by different semi-autonomous users. Hence, there is
a need for reconciliating these parallely evolved models so as
to seamlessly work together. CSCW community proposes tools
or techniques to ensure collaboration among general purpose
modeling languages, but they do not give functionalities to sup-
port reconciliation and merging for asynchronous modification.
In addition, management of communications among members of
collaborative group could also help to facilitate collaboration in
the group. In this paper, we propose a communication framework
to manage exchanges of concurrently edited DSM models among
users. Besides, we present a reconciliation framework to merge
concurrently evolved DSM models.

Keywords—global software development, coordination, collab-
oration, DSM

I. INTRODUCTION

Model Driven Engineering (MDE) is a Software Engineer-
ing technique that aims to raise the level of abstraction of
software development from code to model [1]. Specifically,
MDE uses Domain Specific Modeling Languages (DSML)
to specify the structure, behavior and requirements of ap-
plications within specific domains [2]. The main idea of
Domain Specific Modeling (DSM) is to describe a solution
directly using domain concepts rather than generic modeling
languages, the benefits of this approach have been described
in [3]. DSML uses model, meta-model and meta-meta-model
to describe concepts at different abstraction levels. A model is
an abstraction of a software system. A meta-model is a DSL
oriented towards the representation of software development
methodologies and endeavors [4]. Likewise, as models are
described by meta-models, meta-models are also described
by meta-meta-model (i.e. EMF/ECore [5]). Meta-meta-model
is a minimum set of concepts which define the languages
(including itself).

DSMs are tailored to a specific application domain so that
it has to evolve to meet the new requirements of stakeholders
[6], [7]. DSMs evolve by modifying their meta-model in
order to satisfy new requirements. Indeed, like other software
artifacts, meta-models could also evolve throughout software
development life cycles (i.e. analysis, design, testing, and

maintenance) as a result of a better understanding of the
problem domain or error correction [8], [9]. Because of meta-
model evolution, the existing models might no longer be
conformed to the new version of meta-model. Therefore, these
models need to be co-evolved in order to conform to the
adapted meta-model.

Most of the DSM tools developed in the past consider
the modeling process as a single user task [10], however,
this hypothesis is too restricting with regards to how projects
are managed. Modeling of software systems usually requires
collaboration among members of a group with different scope
and skills. Hence, there is a need for group members to
share modeling artifacts (i.e. model and meta-models) and
synchronize their activities. Shared modeling artifacts could be
edited and evolved concurrently throughout the development
life cycle of a software application by different users. As a
result, they might not seamlessly work together or the final
result may not be what users want. In other words, modeling
artifacts become inconsistent with each other.

Inconsistency is one of the main challenges that hinder
collaborative model editing, therefore, conflicts that cause
inconsistencies need to be identified and resolved. Industry
commonly uses a central repository with merge mechanisms
and locks in order to handle inconsistency problems and
ensure collaboration [11]. Unfortunately, locking technique is
inadequate for a large number of users who work in parallel
[12], [13]. Besides, in practice, this technique takes much
time for users to resolve conflicts [13], [14]. In addition, this
approach restricts users to be dependent on one repository.
Other modes of collaboration could also be possible, where
each member of a group has his/her own partial copy of the
global specification model and communicate his/her activities
by sending messages [11]. This type of collaboration gives
users control over their data and let them work in isolation.
It also addresses the problem of being dependent on a single
repository. But, it is challenging to keep all copies of modeling
artifacts consistent; because they could be modified parallely
by users.

We believe that answering the following questions ensures
collaboration among DSM tools: 1) how to manage com-
munication among members of a group? and 2) how to
detect conflicts and reconcile conflicting modifications? We
propose a collaborative framework called DiCoMEF to ensure

collaboration among members. In DiCoMEF, every member of
collaborative model editing group has his/her own local copy.
Members exchange messages to communicate their activities
with other members. Specifically, they exchange sequences of
elementary change operations (i.e. create, delete, update) that
are used to adapt models and meta-models. Modifications of
models and meta-models are controlled by human actors rather
than software agents. DICOMEF uses EMF/ECore [5] as its
meta-meta-model definition.

This paper is organized as follows: Section 2 describes
collaborative model editing. Section 3 describes DiCoMEF’s
architecture, communication and reconciliation. Section 4
mentions related works. Section 5 describes benefits and
finally Section 6 presents future work and conclusion.

A. Collaborative Modeling

As stated in [15], cooperative work is attributed to mutual
interdependence of tasks among multiple users to produce
specific products or services. Computer Supported Cooper-
ative Work (CSCW) is a type of cooperative work in which
computer systems are implemented to support these mutually
interdependent works. In fact, CSCW is a broad discipline
that deals with how people are working in groups and the
underlaying technological support. Groupware is a software
system that is designed to support cooperative work [15].
Collaborative model editingis a groupware in which computer
system are employed to ease users communication and recon-
ciliation work.

Since multiple users with different goals, strategies and
experience levels are involved in collaborative modeling, their
communication needs to be controlled so as to have effective
collaborations. In fact, members of a group communicate
one another by modifying common field of works such as
models and meta-models and use message exchanges [16]
to propagate local modifications. Hence, there is a need to
have a protocol or a guideline for controlling change propa-
gations. Uncontrolled change propagation lets every member
of a group to propagate his/her local modifications to other
members directly. This could cause a continues discussion
among members to solve conflicting proposals and it may
even hamper collaborative work. On the contrary, a controlled
change propagation manages modifications. Specifically, a
controller is assigned to supervise changes. Management of
changes could be more efficient and effective if a controller
has a knowledge of business domain and has a good modeling
experience. Besides, s/he has authority to accept or reject
modifications.

Reconciliation is a process of merging conflicting versions
of (meta)models into a new version. It constitutes activities
like detection of inconsistencies and meshing. Specifically,
differences between two versions of (meta)models need to be
identified, conflicts among two versions should be detected
and resolved so as to merge the two versions into a new
version. Differences between two versions of (meta)models are
derived using either State-based comparison or change-based
comparison [13], [12]. State-based comparison takes states of

Editor(Henry)

Group 2

Controller{Alice)

o

Editor(Bob) l Observer

g8

&0

Controller|
{Amanda)

Editor{Charles)

Editor(Tom) L
Group 1 Editor(David)
—p stands for a fwo way message exchange between a controller and an editor
— stands for a one way message exchange between a controller and an observer

Figure 1. DiCoMEF’s architecture

two versions of (meta)models with a same ancestor as an input
and derive their differences. This process is commonly referred
to as differencing and it is computationally expensive and
change post-mortem [17]. Change-based comparison keeps
track of changes whenever they occur, and then it stores them
into a repository. So that, there is no need to calculate deltas
later. Operation-based comparison is a special type of change-
based comparison where deltas are represented as a sequence
of change-operations [18]. Operation-based comparison cap-
tures the exact time sequences of changes that could help to
understand changes and detect conflicts [12]. Besides, it can
also express sets of operations that occurred in a common
context as composite operations. According to Koegel et. al.
[17], time sequences of changes and composite operations
help users to easily understand changes in operation-based
comparison than in state-based comparison.

II. DiCoOMEF
A. Architecture

DiCoMEF is a distributed collaborative model editing
framework, which lets each member of a group to have his/her
own local copy. As it is shown in Figure I, editors of
Group 1 (Bob and Tom) and editors of Group 2 (David,
Charles and Henry) modify their local copies and send their
modifications as a change request to a controller of Group
1 (Alice) and a controller of Group 2 (Amanda) respectively
so as to propagate their modifications to other members. In
fact, the collaboration scenario could becomes more complex
with a member of one group may be involved in many other
groups. For example, an observer of one group might be a
controller in another group. But, we consider the simplified
form of collaboration scenario (the one in a rectangle as shown
in Figure 1) in this work. We assume that (meta)models owned
by one controller is independent from (meta)models owned
by other controllers. DiCoOMEF allows a member to exchange
his/her local modification directly without supervision of a
controller, but this type of communication has a risk to become
out of synchrony with other members.

Metaitode!
Person

name : String
ernail : String

1

0.

RoleType Role Model
1 0.s 1 access 0.

o |

Contraller User

T

Ohserver Editor

Copyiedel | Masterkode!

1

copy master

Figure 2. DiCoMEF’s Meta-Model

Editor (Bob)

Main-line

Branch

Copy Model

Figure 3. Main-line and Branch

Basic concepts used in DiCoMEF are expressed in the
DiCoMEF meta-model (see Figure 2). These concepts are
person, role, role type, model, meta-model, copy model
and master model. A master (meta)model has one or more
copy (meta)models which are distributed among members.
DiCoMEF implements universal unique identifier (UUID)
to differentiate (meta)model elements uniquely. Each newly
created (meta)model elements has a unique identifier. That
means that, two (meta)model elements are considered as equal
(same) if and only if they have a same UUID. A person
involved in collaborative modeling has a role(s) with respect to
a (meta)model, which is typed as a controller, an editor or an
observer. In fact, there are two controller role types which
are implemented in DiCoMEF such as a model controller
or a meta-model controller. A meta-model controller (and a
model-controller) manages evolution of a master meta-model
(respectively a master model). A controller role type is flexible
meaning that it can be assigned to other members of a group.
A person can thus be both editor, controller, or observer for
distinct (meta)models. A person with an editor role type has
a write and read access to copy models s/he owns locally,
whereas an observer has only a read access.

DiCoMEF implements two additional main concepts such
as main-line and branches to store models and meta-models
locally. The main line stores different versions of a copy
(meta)model. Editors cannot modify copy (meta)models stored

Userlnterface Widget

Userlnterface Widget

i composedof 0.7

)

Userlnterface Widget

| composedof g x 07 tpe 1 WidgetTye

Figure 4. User Interface Model

on the main-line. Whenever they want to modify copy
(meta)models locally, they first create branches from the main
line and do modifications there. For example, in Figure 3, a
copy model evolves from version ¥V} to version '} on the main
line based on changes propagated from a controller. It also
shows a branch that is created by an editor, Bob, to modify
the copy model locally from version V, to version Vp;; a
branch was created before a copy model evolves from version
Vo to version V.

We used the following running example to demonstrate
our framework. Let Alice, Bob and Tom are involving in
collaborative model editing, where Alice is a controller and
Bob and Tom are editors. Alice firstly hands out the initial
version of a meta-model, V), to all members; a user interface
has a widget(s) (see Figure 4(a)). Later, Bob creates a branch
from his local copy meta-model and changes the association
link into a composition relationship and he renames the
association into “composedOf* as shown in Figure 4(b). And
he also incorporates his rationale of changes into multimedia
files as “a user interface is composed of widgets”. Afterwards,
the controller, Alice, and Bob modify the change requests
together as shown in Figure 4(c).

B. Communication

In DiCoMEF, members of a group communicate by mod-
ifying (meta)models locally and send their modifications to
others members through a controller. While an editor modifies
(meta)models, elementary change operations (create, delete
and updates) that adapt (meta)models are stored locally on
a branch (i.e repository). DiCOMEF uses a history meta-
model to define structures of these elementary operations,
but discussion about the history meta-model is out of scope
of this work. Editors could annotate change operations with
multimedia files (i.e. audio, text, video) to describe their
rationale behind modifications.

Editors send (annotated) sequences of change operations
(change request) to a controller. They could also send their
local modifications directly to other editors, but this type of
collaboration has a risk of having inconsistent (meta)models
with other members of a group. In this work, we assume
that a controller is a senior staff with good knowledge of
business domain and modeling experience. Besides, s/he has
given an authority to accept or reject modifications proposed

by editors. The controller applies a change request on a master
(meta)model in order to evolve it from version ¥V, to version
Vae1. In fact, s/he examines proposed changes and solves
conflicts by consulting multimedia files that describe rationale
of modifications. S/he could also contact an editor who has
proposed changes to better understand them and solve conflicts
together. Eventually, a controller propagates accepted changes
to all members of a group so as to automatically evolve copy
(meta)models (i.e. stored on main-lines) from version V), to
version V1. These modifications could cause a new version
of a copy (meta)model inconsistent with local modifications.
Hence, these conflicts should be identified and reconciled
locally by the editor.

For example, Bob sends sequences of annotated elementary
operations (i.e. create, delete and updates) that are used
to adapt the association link (i.e. renaming and change it
into composition relation) to Alice in order to propagate his
modifications to other member (Tom), see Figure 4(b). Alice
examines changes proposed by Bob and they solve conflicts
together. Afterwards, she propagates changes to all members
so as to evolve copy meta-models from version V), to version
Vai1, see Figure 4(c). She also sends models migration strategy
for a model controller to evolve models to be conformed
with new definitions of meta-model. The model migration
instructions could be generated automatically and(or) some of
them might also be incorporated manually by an editor or a
controller.

C. Reconciliation

To ensure collaboration, conflicting changes need to be
detected and resolved. Indeed, DiCOMEF adopts operation-
based comparison approach to derive differences between two
(meta)models. Since models and meta-model live at different
abstraction levels, we adopted two different conflict detection
strategies to detect conflicts between models and conflicts
between meta-models. Conflicts are detected by inspecting
sets of concurrent operations that change model and meta-
model elements, respectively [13], [12]. This type of conflict
detection approach could be regarded as operation-based con-
flict detection [19]. In cases of conflicts, DiICOMEF provides
facilities for editors and controller(s) to consult multimedia
files that describe rationale of modifications so as to solve
conflicts in interactive way. Editors could also contact (i.e via
video conferencing, email, chat) a controller or an editor who
proposed changes to solve conflicts together. As a general rule
of reconciliation, we propose that every editor is forced to
choose modifications proposed by a controller whenever con-
flicts occur. But s/he can propose her/his local modifications
(i.e. the one in conflict with propagated changes) as a change
request later.

DiCoMEF lets editors to decide when to synchronize their
local modifications with changes propagated from a controller.
Editors synchronize their local modifications with propagated
changes first and then continue with their work. The other
option is that, editors pend synchronization until they finish
their work and merge their local modifications with propagated

changes later. In both cases, a copy (meta)model firstly evolve
from version V, to version V.. Afterwards, operations that
adapt a copy (meta)model V), locally are re-played on a new
version, V,,;. Indeed, DiCoMEF presents sets of local mod-
ifications that are conflicting with propagated changes to an
editor. The editor selects those changes that s/he wants to keep
and sends as a change request later. This way DiCoMEF keeps
and re-apply local modifications after adapting (meta)models
using change propagations

Reconciliation process is done both by a controller and
(meta)model editors so as to merge their modifications with
proposed changes. For example, when Bob sends his modifi-
cations to Alice (see Figure 44(b)), she examines proposed
changes. But, she could also suggest to add a new class
called a WidgetType because a same widget type (i.e. Button,
TextField, Label) might be used by different user interfaces.
Afterwards, Alice and Bob work together to modify the pro-
posed changes by adding a class (WidgetType) and annotate
change operations with multimedia files to describe their
rationale (see Figure 4(c)). Then, Alice sends changes that
she and Bob agreed up on as a change propagation to other
members.

Reconciliation is done for pairs of changes that are in
conflict with each other. Some pairs of changes are not
conflicting, for instance, a pair of changes that modify a state
of a (meta)model element in a same way. For example, if
both Bob and Tom rename an association link from “has”
to “composedOf”, these two modifications are not conflicting
with each other. On the other hand, some changes may cause
conflicts, for example, if Tom deletes a class widget in his local
modifications. This modification is conflicting with changes
propagated from Alice (controller), hence, Tom firstly needs
to adopt changes propagated by Alice and sends his local
modifications as change request later.

As it was said above, DiCoMEF uses UUID to differ-
entiate (meta)model elements uniquely. Hence, newly cre-
ated (meta)model elements are considered as different. For
example, suppose Tom changes the first version of model
(Figure 4(a)) by modifying a multiplicity of an association
link and rename it to composedOf. He also adds a new class
called a WidgetType as it is shown in Figure 4(c) before
Alice propagates accepted changes to all members. In this
case, new classes created by Tom and change propagation
(WidgetType) are considered as different classes. Therefore,
Tom has to consult the rationales (i.e. annotations, multimedia
records, ...) which annotate changes so as to understand them
and merge redundant model elements. He can also contact
Alice and/or Bob for further explanation. As a general rule,
if a same model element is created locally and in a change
propagation, then a model element that is created locally
should be removed. It is also possible for a model element
to be created only either in Tom’s local modification or in
change propagation. If it is in the change propagation, a
new model element is added to Tom’s repository based on
the synchronization strategy he choses. Newly created model
elements by Tom, will be sent as a change proposal to Alice

later.

It is also worth mentioning that models needs to co-evolve
with an adapted meta-model so as to conform with new
specifications. Let us suppose that Alice (controller) was
editing a meta-model, then she should send model migration
instructions to a model controller(s) in order to evolve models
with new definitions of a meta-model. Since Alice (meta-
model controller) does not have access to instance models,
the migration strategies generated by her may not be complete
to migrate all instance models. As a result, there is a need
to incorporate migration strategies manually to migrate those
models that are still not valid with the new specifications of
meta-model. DiCoMEF provides facilities relaying on COPE
[20] to help model controller to incorporate migration strate-
gies manually in order to migrate those inconsistent models.

DiCoMEF does not ensure that models are consistent with
their meta-models after model integration/migration activities
are performed. This could help to facilitate the exchange
of “partial” models that do not fulfill constraints of their
respective meta-models among modelers.

III. ReLatED WORKS

Many research has been done in the past to address chal-
lenges of collaborative software development. In [21], Ignat et.
al. compared different approaches for collaboratively editing a
text or tree based documents. Dewan and Hedge [22] also
proposed a collaboration model that lets users to handle
conflicts and merge their intentions collaboratively. However,
most of previous works deal with collaborative merging of
software codes.

In the context of collaborative modeling, there are few
frameworks available that support collaboration among DSML
tools. These frameworks commonly adopt approaches like
using central repository with merge mechanisms and locks
[23] in order to ensure collaboration and handle inconsistency
problems. EMFStore is an operation-based collaborative model
editing framework for Eclipse Modeling Framework(EMF)
based models [24]. EMFStore uses a central repository with
copy-merge techniques to ensure collaboration. MetaEdit+
[25] implements Smart Mode Access Restricting Technology
(Smart Locks ©) to support concurrent access of shared
modeling artifacts that are stored centrally. Even though lock-
ing technique assumes strict consistency model, it becomes
inadequate when a number of users who edit (meta)models
in parallel reach a very low threshold [12]. These approaches
constrain all members to be dependent on a central repository.
D-Paxis[11] is an operation based peer-to-peer collaborative
framework for model editing. It avoids the problem of being
dependent on one central repository. But, it uses an automatic
conflict resolution approach that is based on the Lamport clock
and the delete semantics of Praxis. But, we argue that final
results of automatic reconciliation process could not reflect the
intention of users. So, we propose a distributed collaborative
framework called DiCoMEF which free users being dependent
on a central repository. Besides, modifications are controlled
by human agents (not automatic).

1V. BENEFITS

DiCoMEF allows a group of modelers to work in isolation
and exchange their local modifications with other members
later. It implements two main concepts such as main-line and
branch that help to manage communication among members
and ensure collaboration. Besides, changes are managed by a
controller (human agent). More importantly, a controller role
is flexible meaning that it could be easily assigned to another
member. This dynamic roles assignment could let people to
implement more elaborated strategies on top of DiCoMEF, i.e.
a user can delegate his/her role to another person. DiCoMEF
also provides facilities for editors to annotate their rationale
of changes with multimedia files.

V. Future WoORK AND CONCLUSION

To fully benefit from DSM tools, it is important to improve
cooperation among them. In this work, we have presented a
theoretical framework to ensure collaboration among DSM
tools. Specifically, managing communications among mem-
bers of a collaborative work and re conciliating concurrently
evolved DSMs. The proposed framework, DiCoMETF, is at the
early stage of implementation to validate theoretical concepts
presented in this paper.

REFERENCES

[1] J.-M. Favre, “Towards a basic theory to model model driven engineer-
ing,” in In Workshop on Software Model Engineering, WISME 2004,
Jjoint event with UML2004, 2004.

[2] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
IEEE Computer, vol. 39, no. 2, pp. 25-31, 2006.

[3] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling. Enabling fill
code generation. Wiley-IEEE Computer Society Pr, 2008.

[4] C. Gonzalez-Perez and B. Henderson-Sellers, Metamodelling for Soft-

ware Engineering. New York: John Wiley, 2008.

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse

Modeling Framework 2.0, 2nd ed. Addison-Wesley Professional, 2009.

[6] J. Zhang, “Metamodel-driven model interpreter evolution,” in

Companion to the 20th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications,

ser. OOPSLA ’05. New York, NY, USA: ACM, 2005, pp. 214-215.

[Online]. Available: http://doi.acm.org/10.1145/1094855.1094941

M. Herrmannsdoerfer, S. Benz, and E. Juergens, “Cope - automating

coupled evolution of metamodels and models,” in Proceedings

of the 23rd European Conference on ECOOP 2009 — Object-

Oriented Programming, ser. Genoa. Berlin, Heidelberg: Springer-

Verlag, 2009, pp. 52—76. [Online]. Available: http://dx.doi.org/10.1007/

978-3-642-03013-0_4

[8] B. Gruschko, D. S. Kolovos, and R. F. Paige, “Towards synchronizing

models with evolving metamodels,” in Workshop on Model-Driven

Software Evolution at CSMR 2007, 2007.

G. Wachsmuth, “Metamodel adaptation and model co-adaptation,” in

ECOOP, ser. Lecture Notes in Computer Science, E. Ernst, Ed., vol.

4609. Springer, 2007, pp. 600-624.

C. Constantin, V. Englebert, and P. Thiran, “A reconciliation framework

to support cooperative work with DSM,” in Proceedings of the First

International Workshop on Domain Engineering held in conjunction with

CAISE 09 Conference, collection CEUR-WS.org, vol. 457, 2009.

A. Mougenot, X. Blanc, and M.-P. Gervais, “D-praxis: A peer-

to-peer collaborative model editing framework,” in Proceedings of

the 9th IFIP WG 6.1 International Conference on Distributed

Applications and Interoperable Systems, ser. DAIS °09. Berlin,

Heidelberg: Springer-Verlag, 2009, pp. 16-29. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-02164-0_2

T. Mens, “A state-of-the-art survey on software merging,” IEEE Trans.

Softw. Eng., vol. 28, pp. 449—462, May 2002. [Online]. Available:

http://portal.acm.org/citation.cfm?id=567176.567178

[5

[k}

[7

—

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

K. Altmanninger, M. Seidl, and M. Wimmer, “A Survey on Model
Versioning Approaches,” Johannes Kepler University Linz, Tech.
Rep., 2009. [Online]. Available: http://smover.tk.uni-linz.ac.at/docs/
IJWIS09 _paper _ Altmanninger.pdf

C. Pilato, B. Collins-Sussman, and B. Fitzpatrick, Version Control with
Subversion, 2nd ed. O’Reilly Media, Inc., 2008.

K. Schmidt and L. Bannon, “Taking cscw seriously: Supporting articu-
lation work,” Computer Supported Cooperative Work, vol. 1, pp. 7-40,
1992.

Y. Saito and M. Shapiro, “Optimistic replication,” ACM Comput.
Surv., vol. 37, pp. 42-81, March 2005. [Online]. Available: http:
//doi.acm.org/10.1145/1057977.1057980

M. Koegel, M. Herrmannsdoerfer, J. Helming, and Y. Li, “State-
based vs. operation-based change tracking,” in proceedings of
MODELS’09 MoDSE-MCCM Workshop, Denver, USA, 2009, 2009.
[Online]. Available: http://wwwbruegge.in.tum.de/static/publications/
pdf/205/Paper3.pdf

R. Conradi and B. Westfechtel, “Version models for software
configuration management,” ACM Comput. Surv., vol. 30, pp. 232-282,
June 1998. [Online]. Available: http://doi.acm.org/10.1145/280277.
280280

M. Koegel, M. Herrmannsdoerfer, O. von Wesendonk, and J. Helming,
“Operation-based conflict detection,” in Proceedings of the Ist
International Workshop on Model Comparison in Practice, ser.
IWMCP °10. New York, NY, USA: ACM, 2010, pp. 21-30. [Online].
Available: http://doi.acm.org/10.1145/1826147.1826154

M. Herrmannsdoerfer, “Operation-based versioning of metamodels with
cope,” in Proceedings of the 2009 ICSE Workshop on Comparison and
Versioning of Software Models, ser. CVSM ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 49-54. [Online]. Available:
http://dx.doi.org/10.1109/CVSM.2009.5071722

C.-L. Ignat, G. Oster, P. Molli, M. Cart, J. Ferrie, A.-M.
Kermarrec, P. Sutra, M. Shapiro, L. Benmouffok, J.-M. Busca,
and R. Guerraoui, “A comparison of optimistic approaches to
collaborative editing of wiki pages,” in Proceedings of the 2007
International Conference on Collaborative Computing: Networking,
Applications and Worksharing. ~ Washington, DC, USA: IEEE
Computer Society, 2007, pp. 474-483. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1545009.1545344

P. Dewan and R. Hegde, “Semi-synchronous conflict detection and res-
olution in asynchronous software development,” in ECSCW, R. Harper
and C. Gutwin, Eds. Springer, 2007, pp. 159-178.

P. Sriplakich, X. Blanc, and M.-P. Gervais, “Supporting collaborative
development in an open mda environment,” in Proceedings of the 22nd
IEEE International Conference on Software Maintenance. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 244-253. [Online].
Available: http://portal.acm.org/citation.cfm?id=1172962.1173001

M. Koegel and J. Helming, “EMFStore: a model repository for emf
models,” in /CSE (2), J. Kramer, J. Bishop, P. T. Devanbu, and S. Uchitel,
Eds. ACM, 2010, pp. 307-308.

S. Kelly, “Case tool support for co-operative work in information system
design,” in Information Systems in the WWW Environment, ser. IFIP
Conference Proceedings, C. Rolland, Y. Chen, and M. Fang, Eds., vol.
115. Chapman & Hall, 1998, pp. 49-69.

