
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Comparative Analysis of Collaborative Approaches for UsiXML Meta-Models Evolution

Boukhebouze, Mohamed; Koshima, Amanuel; Englebert, Vincent; Thiran, Philippe

Published in:
Proceedings of the UsiXML-EICS workshop

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Boukhebouze, M, Koshima, A, Englebert, V & Thiran, P 2010, Comparative Analysis of Collaborative
Approaches for UsiXML Meta-Models Evolution. in Proceedings of the UsiXML-EICS workshop.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Apr. 2024

https://researchportal.unamur.be/en/publications/050d1da4-97af-4e5a-a466-43dc27f9c3eb

Comparative Analysis of Collaborative Approaches for
UsiXML Meta-Models Evolution

ABSTRACT
The UsiXML project is dedicated to define a user interface
description language called UsiXML. This language
specifies the different abstract levels of a user interface by
using set of model according to Model-driven engineering
(MDE). In the UsiXML project, several industrial and
academic members work in collaborative manner to evolve
meta-models of UsiXML models. Several collaborative
approaches can be applicable. For instance, the control of
meta-models modifications can be centralized or not. In the
paper, we aim at proposing the most appropriate approach
for the UsiXML meta-models evolution. To achieve this,
we present a comparative study of the different
collaborative design approaches.
Keywords
UsiXML, Meta-Model evolution, Collaborative design,
Centralized approach, Decentralized approach, control of
modification.

INTRODUCTION
UsiXML (USer Interface eXtensible Markup Language)
offers a common way to specify a User Interface (UI)
independently of any target programming language that is
intended to implement it [1]. This language allows
describing an UI in four main levels of abstraction: task &
domain, abstract UI, concrete UI, and final UI. On the basis
of these four levels, UsiXML proposes a set of models. For
each model, UsiXML defines their meta-model by using
the UML Class diagram notation. Each meta-model can
then be expressed in XML (XSD [2], XMI [3]), or in OWL
[4]). All these notations are required by standardization
organizations like OMG or W3C.
The evolution of the UsiXML meta-models is carried out
by an ITEA project involving industrial and academic
members [5]. Evolving UsiXML meta-models requires a
collaborative system that supports interactive work between
members of the ITEA project. This collaborative system is
intended to manage the UsiXML meta-models evolution
by:
- Offering a repository of the UsiXML meta-models,
- Managing the members and their roles,
- Supporting the evolution of UsiXML meta-models in

collaborative way; which involves managing
concurrent modifications.

Such a system can be designed in different ways. First, the
meta-models can be stored in a centralized repository (a
unique repository for all the members) or in decentralized
repositories (a local repository per member). Secondly, the
modifications can be either controlled by a central authority
(called the owner) or delegated to every member. In the
first case, the modifications issued by the members are sent
to the owner of a meta-model who can commit or reject
them. In the second case, each member has the control of
his own version and can integrate the modifications of the
peer-designers in his version. The convergence of these
meta-models to a unique consolidated version is the result
of a workgroup communication. In both cases, a
reconciliation process is always required since syntactic or
semantic discrepancies have to be resolved [6].
Each of these approaches has its strengths and its
weaknesses. Let us mention the most relevant ones. On one
hand, the centralized approach allows controlling the
reconciliation process by an owner but this exclusive role
can lead to slow down the modifications frequency. On the
other hand, the decentralized approach can support a higher
rate of modifications but it requires a more complex
reconciliation process.
In this paper, we propose a comparative study of the
different collaborative design approaches. The study is
aimed at proposing the most appropriate approach for the
UsiXML meta-models evolution.
The rest of this paper is organized as follows. In Section 2,
we describe the different approaches for the collaborative
design of meta-models. In Section 3, we conduct a
comparative study on these approaches based on a different
comparison criterion. In Section 4, we apply our
comparative study on the collaborative design of UsiXML
meta-models. We conclude this paper by discussing the
most appropriate approach for UsiXML.

COLLABORATIVE META-MODEL EVOLUTION
APPROACHES
According to Schmidt et al. [6], collaborative work is
characterized by a mutual interdependence of work among
multiple actors to produce a specific product or service.
Interdependence work means that actors share the same
field of work (i.e. document, codes of a program). Mutual
work means that the work of one actor relies on the quality
and timeliness of other actors.

Mohamed Boukhebouze, Amanuel Koshima, Philippe Thiran, Vincent Englebert
PReCISE research center, University of Namur, Belgium,

 {mohamed.boukhebouze, amanuel. koshima, philippe.thiran, vincent.englebert}@fundp.ac.be

By analogy with the Schmidt’s definition, collaborative
meta-model evolution within a project is characterized by a
mutual interdependence of meta-model evolution among
multiple project members. All members share a common
meta-model by using a central repository or a local one and
they interact each other by modifying the version of their
meta-model.
For this reason, four approaches can be considered:
! Centralized approach with modification control;
! Centralized approach without modification control;
! Decentralized approach with modification control;
! Decentralized approach without modification control.
Note that these approaches define how to design, store, and
evolve the meta-model. In the following sections, we detail
these approaches.
Centralized approach with modification control
In this approach, we consider that there is one central meta-
model repository. The meta-model has its owner who is the
only member that can modify it. The other members can
participate in the design of a meta-model by issuing a
modification request to its owner. It is under the
responsibility of the owner to commit or not the
modification requests. As such, the owner controls the
modification of the meta-model repository (Figure 1).

Centralized approach with modification control implements
an administrative hierarchy, like any classical design,
project by using a central authority, which is called owner.
This owner can be the leader of project or the expert
designer. However, when the design project is large, the
dynamism of modifications can become slow. This is due
to the fact that a large project implies a high number of
members. Each member can request a modification. This
can imply a considerable time to handle all the request
modifications by the owner. Finally, note that this approach
can be implemented on the top on CVS system as proposed
in [7]. In CVS system, the changes are committed to a
master repository (a owner in our case) before they are
propagated to other users (members in our case).

Centralized approach without modification control
This approach considers that there is one central meta-
model repository that can be modified by any project
member at any time. This assumes that a modification can
overwrite another modification without any control (Figure
2). This means that any member can freely modify meta-
model elements without informing the other members.
Moreover, the repository stores only the recent
modifications as they always overwrite the previous
modifications on a same element.

The absence of modification control lets designers modify
meta-models faster in comparison with the above approach.
However, they are continuously being modified so that it is
difficult to get a stable version. Indeed, obtaining a stable
version is problematic even if there exists a methodological
agreement between members on how to cooperate. A way
to circumvent this problem is to partition the meta-model
into distinct areas of interest. As such, only one member
can modify one area. Consequently, conflicts are avoided
during concurrent accesses of views. However, partitioning
of meta-model into different distinct areas of interest is a
challenging issue.
Finally, note that this approach is quite suitable for the
collaborative text editing where user can create and edit
documents while collaborating in real-time with other users
(e.g., Google document1).

Decentralized approach with modification control
In this approach, we consider that all the members have
their own local repository. Each member is free to access or
modify his local repository. As such, a member can create,
read, update or delete (CRUD) an element of local meta-
model. In the decentralized approach, we suppose that all
the CRUD actions on a local repository are logged and
stored in a local journal. This journal keeps traces of the
local meta-model modifications [8]. The local journals are

1 http://googledocs.blogspot.com/

Figure 1: Architecture of centralized approach with modification control

Figure 2: Architecture of centralized approach without modification control

exchanged between members via a coordinator (see Figure
3). The coordinator has the responsibility to control the
interactions among members based on different policies
such as:
- Centralized consolidation: the coordinator aggregates

and consolidates the modifications sent by the
members. The consolidated modifications are then sent
to all the members so that they can modify their local
copies. As such, their local meta-model repository can
be consistent each other.

- Decentralized consolidation: the coordinator
propagates each modification (one by one) to members
(without aggregation and consolidation). This means
that modifications are propagated in FIFO order to
members. It is under the responsibility of each member
to consolidate his meta-model wrt the propagated
modifications. Local members cannot reconsider them.
Hence, their current modifications can be overwritten
and invalidated by the propagated modifications.

This approach gives a freedom to members in terms of time
(work at any time) and space (work in a local repository).
In the second policy, a member who firstly sends
modifications could be determined how the meta-model is
evolving. As result, there might be competition among
members to become the first one to send modification. As
such, this could hamper the collaborative work.
Decentralized approach without modification control
In this approach, we consider that all the members can
freely modify the meta-model repository. As the previous
approach, the CRUD actions are stored in a local journal.
Since there is no coordinator to control meta-model
modifications, a member sends his local journal
(modifications) to all the other members (see Figure 4).
Afterwards, each member votes yes/no for the proposed
change; if the majority of members accept the modification,

it is implemented in all local repository of each member. If
not, the modification is rejected.
Like the third approach, this approach ensures freedom in
time and space for members. However, the reconciliation
process is more difficult than all the above approaches.
This is due to the fact that it is not easy to get consensus
about the suggested changes among all the members.
Finally, note that this approach can be implemented by
using a peer-to-peer architecture as it is proposed by
Mougenot et al. [9]. However, unlike the decentralized
approach without modification control, Mougenot et al.
propose a reconciliation strategy based on an order
computed by Lamport clocks.

COMPARATIVE ANALYSES OF COLLABORATIVE
META-MODEL EVOLUTION APPROACHES
In the previous section, we presented several approaches
for supporting the collaborative editing of meta-models.
Each of them addresses specific needs that we now
compare according to three categories.

Project
Modification dynamism: a project may accept a slow rate of
modifications (in terms of days), or may require a faster
rate (in terms of minutes).
Project size: a project can involve a small working group
(e.g. open space or department of an enterprise) or a
medium working group (e.g. enterprise or organization) or
a large working group (e.g. multi-enterprise collaboration).

Figure 3: Architecture of decentralized approach with modification control

Figure 4: Architecture of decentralized approach without
modification control

Meta-model
Expression of meta-model: a meta-model can be expressed
formally by using a formal language (e.g. XMI, XSD) or
informally by using a bitmap image or the natural language.

Links between meta-models: the meta-models can be linked
each other by sharing some elements or by defining binding
between meta-models. In this paper, we suppose that the
meta-models are not related together. This hypothesis is
restrictive, as it is not confirmed in the UsiXML realm.
Nevertheless, as the links between the meta-models have
not been so far formally elicited, we can consider that
problem as out of scope of this paper.

Implementation criterion
Request for modification: requests for modifications can be
expressed in a formal or informal way. This depends on the
language used to define the meta-models. A formal request
could be expressed as “patch file”, OCL statements, etc.
Informal requests are just textual descriptions. The first
form enables an automation of the reconciliation process
while the second one cannot be automated.
Role of member: some implementations require assigning
roles (owner or not) to members to let the cooperative scenario
go off.
Reconciliation: the reconciliation process can be applied a
priori to avoid divergent versions. It can also occur a
posteriori to solve the problem once it is observed. These
approaches are also called resp. pessimistic and optimistic
[10]. Note that it is also possible to have no reconciliation
if it is not required to have a common stable version. In this
case, we assume that each member maintains his own
version of the meta-model in a consistent way. The member
is free to integrate or not the modifications of the other
members [11].

Table 1 depicts a summary of this criterion. This table can
be used as a decision table based on the nature of the
project. As explain above, collaborative approaches with
control cannot support a fast dynamism of modifications.
This is due to the fact that these approaches require a
central point that handles the reconciliation process. On the
contrary, the collaborative approaches without control
support a fast dynamism of modifications. However, they
cannot be applicable to a large project because it is difficult
to achieve a consensus among members about
modification.
The collaborative approaches with control can support a
large project. Indeed, these approaches implement a central
authority that can be the leader of project or the expert
designer who manages modifications. Hence, large projects
could be easily managed.
According to Table 1, the decentralized approaches require
a formalized meta-model since these approaches use it to
exchange journals of modifications among members.
Moreover, formal expression of meta-models could avoid
conflicts and confusions. On the top of that, the
formalization of meta-model helps to automatically
generate the CRUD journal when a meta-model is
modified. Whereas centralized approaches could express
meta-model into formally or informally.
Finally, the aforementioned controlled approaches
implement a priori reconciliation to ensure that the
modification is consistent with the central point. On the
other hand, the above approaches without control use
posteriori reconciliation. This is due to the fact that there is
no central point that evaluates the proposed modifications.

Table1: Comparative analyses of collaborative meta-model evolution approaches

USIXML PROJECT
In this section, we apply our comparative study on
UsiXML project. UsiXML is a User Interface Description
Languages (UIDL) that uses a Model-Driven Engineering
(MDE) for specifying a UI at an implementation-
independent level [12]. The UI specifications are usually
specified in different models: each one denotes a facet of
the interface characteristics. The complete set of UsiXML
models comprises [13]: (1) Task model: it describes the
interactive tasks as viewed by the end user interacting with
the system; (2) Domain model: it is a description of the
classes of objects manipulated by a user while interacting
with a system; (3) Abstract User Interface (AUI) model: it
is a model that represents a canonical expression of the
renderings and manipulations of the domain concepts and
functions in a way that is independent of any interaction
modality and computing platform; (4) Concrete User
Interface (CUI) model: it is a model that allows the
specification of the presentation and behavior of a UI with
elements that can be perceived by the users; (5) Mapping
model: it contains a series of related mappings between
models or elements of models; (6) Transformation model: it
contains a set of rules enabling the transformation of one
specification (at a certain level of abstraction) into another
or to adapt a specification for a new context of use.
For each model, UsiXML defines their meta-model. These
meta-models are upgraded in a collaborative way by all
members. In the next section, we will detail the
characteristic of the UsiXML project and UsiXML meta-
model.

UsiXML project characteristic
UsiXML project is a large project (Section 2.1), because it
involves more then twenty-eight industrial partners (e.g.,
DefiMedia2, Thales Research & Technology3, Telefonica4)
and academic partners (e.g. University of Namur5,
University of Louvain6, University of Grenoble7,
University of Valencia8) [5].
One of the goals of the UsiXML project is to propose the
first stable versions of all the UsiXML meta-models. This
requires the all the UsiXML meta-models must be
reviewed, updated, and improved by the members. As such,
the project requires supporting a medium/fast rate of
modifications.

2 http://www.defimedia.be/
3 http://www.thalesgroup.com/
4 http://www.telefonica.com/
5 http://www.software-engineering.be/
6 http://www.uclouvain.be/
7 http://www.ujf-grenoble.fr
8 http://www.uv.es/

UsiXML Meta-models
UsiXML meta-models are expressed with the UML class
diagram notation [14] by using CASE tools that can export
these models in a formal standard exchange format (XMI).
The Figure 5 shows an example of the meta-model of task
expressed in UML.
Besides the UML class diagram notation, each UsiXML
meta-model comes with free textual annotations aimed at
eliciting the element semantics (for instance, the semantic
definition of the task class is: “task is the basic structure
that composes the task model. Tasks are activities that have
to be performed to reach a goal” [13]).

DISCUSSION
According to Table 1, the collaborative UsiXML meta-
model evolution can be designed using a centralized
approach with modification control. This is motivated by
the fact that this approach supports a large project. In
addition, the UsiXML project requires that a scientific
leader is nominated for the control of the meta-model
definition. In a centralized approach with modification
control, an administrative hierarchy can be implemented by
considering the leaders as owners. So that, the divergent
versions is avoided by ensuring the reconciliation process is
done a priori way. However, such an approach can lead to a
high rate of modifications. Moreover, the large size of the
UsiXML implies many frequent requests of modifications.
This could lead up the owner to be overloaded.
The second approach that can be applied to UsiXML is the
decentralized approach with modification control. Indeed,
this approach is compliant with projects of large size. In
addition, it offers a fast rate of change especially if we
consider that the coordinator can be automated [15]. This
automated coordinator helps to exchange the journal of
modifications between members project. However, the
reconciliation process can be complex in comparison with
the centralized approach with modification control. This is
due to the fact that each member can modify his own local
meta-model. This requires a reconciliation process in which

Figure 5: Meta-model of task

a coordinator controls the different interactions between
members. This process can be complex when the number of
members is high.
Finally, note that the two approaches without modification
control cannot be applicable to UsiXML project because
these approaches cannot support a large project.

REFERENCES
1. UsiXML, User Interface eXtensible Markup Language,

Available online: http://www.usixml.org, 2010.
2. W3C, XML Schema Part 0: Primer Second Edition, in

REC-xmlschema-0-20041028, 2004.
3. OMG, XMI Mapping Specification, v2.1.1, formal/07-

12-0, 2007.
4. W3C, OWL Web Ontology Language 2.0, in REC-owl-

features-20040210/2004.
5. ITEA2, UsiXML Full Project Proposal, Decembre 23,

2009.
6. Schmidt, K., Simone, C. Coordination Mechanisms:

Towards a Conceptual Foundation of CSCW System
Design. Computer Supported Cooperative Work. In the
Journal of Collaborative Computing 5: pp. 155-200,
1996.

7. Altmanninger,K.,Seidl,M.,Wimmer,M.:Asurveyonmodel
versioningapproaches. In IJWIS 5(3) (2009) 271–304

8. Constantin, G., Englebert, V., Thiran, P., A
Reconciliation Framework to Support Cooperative Work
with DSML, in Proceedings of the First International
Workshop on Domain Engineering held in conjunction
with CAiSE'09 Conference, collection CEUR-WS.org ,
volume 457.

9. Mougenot, A., Blanc, X., Gervais, M.P.:D-Praxis : A
Peer-to-Peer Collaborative Model Editing Framework. In
Distributed Applications and Interoperable Systems 2009,
Volume 5523/2009, 16-29 P.

10. Uwe, M., Johann, S. Computer-Supported Cooperative
Work, In Book isbn 9783540669845, Oxford University
Press, 2000.

11. Grebici, K., Yee, M., Goh, S., Zhao, B., McMahon,
C. Information Maturity Approach for the Handling of
Uncertainty within a Collaborative Design Team. In
IEEE CSCWD 2007.

12. Stanciulescu, A. A Methodology for Developing
Multimodal User Interfaces of Information System,
Ph.D. thesis, Université catholique de Louvain,
Louvain-la-Neuve, Belgium, 25 June 2008.

13. UCL, UsiXML V1.8 Reference Manual, February 2007.
14. Object Management Group, Unified Modeling

Language 2.0. In formal/2007-02-03, 2007.
15. Saeki, M., Oda, T. A Conceptual Model of Version

Control in Method Engineering Environment. CAiSE
Short Paper Proceedings 2005.

