
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Support Tool for the Definition & Enactment of the UsiXML Methods

Boukhebouze, Mohamed; Pires Ferreira Neto, Waldemar; Koshima, Amanuel; Thiran,
Philippe; Englebert, Vincent
Published in:
Software Support for User Interface Description Language - UIDL'2011

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Boukhebouze, M, Pires Ferreira Neto, W, Koshima, A, Thiran, P & Englebert, V 2011, Support Tool for the
Definition & Enactment of the UsiXML Methods. in Software Support for User Interface Description Language -
UIDL'2011.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. May. 2025

https://researchportal.unamur.be/en/publications/174fd5bc-90db-4fd5-aa28-0ac602c288fe

Support Tool for the Definition & Enactment of the UsiXML
Methods

∗

Mohamed Boukhebouze Waldemar P. Ferreira Neto Amanuel Koshima

Philippe Thiran and Vincent Englebert
PReCISE Research Center, University of Namur, Namur 5000, Belgium

{mboukheb, waldemar.neto, amanuel. koshima, philippe.thiran, vincent.englebert}@fundp.ac.be

ABSTRACT
In this paper, we propose a supporting tool for UsiXML
methods based on a new meta-model called SPEM4UsiXML.
This meta-model relies on the OMG standard SPEM 2.0
meta-model, which uses a UML profile to define the elements
of a method. SPEM4UsiXML allows to express the core el-
ements of the UsiXML methods (like development path, de-
velopment step, and development sub-step). In addition, the
meta-model separates the operational aspect of a UsiXML
method (Method Content), from the temporal aspect of a
method (Process Structure). Like SPEM, there is a lack of
method enactments supporting in SPEM4UsiXML. To deal
with this limitation, the proposed tool allows the enactment
of the UsiXML methods by transforming a SPEM4UsiXML
model to a BPEL model so that the a BPEL engine can be
used to execute the transformed SPEM4UsiXML models.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-

sures, performance measures

General Terms
Theory

Keywords
UsiXML, SPEM, Method enactment, BPEL

1. INTRODUCTION
UsiXML (USer Interface eXtensible Markup Language) is a
User Interface Description Languages (UIDL) that describes
the user interface (UI) independently of any computing plat-
form [13]. This independency is achieved by relying on the
CAMELEON framework, which describes the UI at four
main levels of abstractions: task & domain, abstract UI,
concrete UI, and final UI. In UsiXML, the CAMELEON

∗Research supported by la Wallonie.

framework is realized by adopting a Model Driven Engineer-
ing (MDE) approach to specify a set of models representing
the UI at different levels of abstraction. Besides, UsiXML
uses a sets of transformations to derive a UI model from an-
other model. For example, a high-level model (e.g. task &
domain model) can be transformed into low-level analysis or
design model (e.g. concrete UI model) [8]. Another example
of a UsiXML transformation is the extraction of high-level
model from a set of low-level models or from code [8].

According to Limbourg et al. in [8], UsiXML transfor-
mations may be combined to form a UsiXML method. A
UsiXML method, which is also called development path [8],
is the process to follow for developing a user interface based
on UsiXML models. In a UsiXML method, transformations
are considered as development steps that can be decomposed
into nested development sub-steps. In turn, a development
sub-step realizes a basic goal assumed by a developer while
constructing a UI.

To reap all the benefits, a UsiXML method needs to be
designed and evaluated by describing formally its content
(its semantics) and its form (its abstract/concrete syntax).
For this reason, a UsiXML method needs to be compliant
with a well-defined meta-model so that the core elements
of UsiXML methods (e.g. development path, development
step and development sub-step) can be formally defined. In
addition, the enactment of UsiXML methods needs to be
supported by a tool. By enactment of a UsiXML method we
mean the ability of a tool to support the UsiXML models
transformation according to the method specification. In
order to achieve the UsiXML method enactment with a tool,
the UsiXML method meta-model needs to be expressiveness
to allow the execution of the UsiXML transformation.

In this paper, we propose a support tool method that al-
lows the definition and the enactment of UsiXML meth-
ods. The definition of a UsiXML method (in this tool) is
based on a SPEM meta-model [10]. SPEM is an OMG
standard that provides a great usability using UML pro-
files. In addition, it contains generalization classes that al-
low the refinement of the vocabularies used to describe the
concepts or the relationships between concepts. In order to
support the specific key elements of the UsiXML methods
(e.g. development path, development step and development
sub-step), our proposed tool uses a SPEM meta-model spe-
cific to UsiXML methods. This specific meta-model is called
SPEM4UsiXML.

Like SPEM, the SPEM4UsiXML meta-model allows the de-
scription of a method process structure without introducing
its own formalism to precisely describe the process behav-
ior models. [10] argues that the separation of SPEM method
structure from the behavior of the method opens up the pos-
sibility to reuse existing externally-defined behavior models.
A method described with the SPEM 2.0 meta-model can be
enacted by mapping it to a business flow or an execution
language such as BPEL [1] or XPDL [14] and then execut-
ing this representation of processes using enactment engine
such as a BPEL engine [10]. In order to provide a flexible
and independent transformation systems, this work imple-
ments UsiXML model transformation engine as Web ser-
vices. Each Web service enacts a specific development sub-
step by using associated transformation rules. In this way,
a UsiXML method can be seen as a Web services composi-
tion. Our method support tool allows the enactment of a
UsiXML method by transforming a SPEM4UsiXML model
to a BPEL based on a set of mapping rules and by executing
it using a BPEL engine.

The rest of the paper is organized as follows. Section 2 gives
an overview of UsiXML methods. Section 3 introduces the
SPEM4UsiXML meta-model. Section 4 presents the trans-
formation of a SPEM4UsiXML model to a BPEL. Section
5 demonstrates the prototype of the support tool for the
UsiXML methods. Finally, the paper end with a conclusion
and future works.

2. USIXML METHODS
In this section, the background definition for UsiXML meth-
ods is given. A UsiXML method is a process that transforms
progressively the UsiXML models in order to obtain specifi-
cations that are detailed and precise enough to be rendered
or transformed into code [8]. The UsiXML method is also
used to synthesize abstract models from detailed models.
To achieve the UsiXML transformations, different types of
transformation mechanisms can be used [8]:

• Reification is a transformation of a high-level model
into a low-level model.

• Abstraction is a transformation that extracts a high
level model from a set of low-level models.

• Translation is a same level models transformation based
on a context of use change. In this work, the context
of use is defined as a triple of the form (E, P,U) where
E is a possible or actual environments considered for
a software system, P is a target platform, U is a user
category.

• Code generation is a process of transforming a concrete
UI model into a source code.

• Code reverse engineering is the inverse process of code
generation.

These different UsiXML transformation types are instanti-
ated by development steps [8]. These development steps
may be combined to form a UsiXML method. The process
of combining development steps into a UsiXML method is
called a development path. Vanderdonckt et al. identifies
several types of development paths, for example: [8]:

Figure 1: Transformation path, step and sub-step
[8]

• Forward engineering is a composition of reification(s)
and code generation enabling a transformation of a
high-level viewpoint into a lower level viewpoint.

• Reverse engineering is a composition of abstraction(s)
and code reverse engineering, which enables a trans-
formation of a low-level viewpoint into a higher-level
viewpoint.

• Context of use adaptation is a composition of a transla-
tion with another type of transformation that enables
a viewpoint to be adapted in order to reflect a change
of context of use of a UI.

Figure 1 represents an overview of the UsiXML method
meta-model. This meta-model assumes that the develop-
ment steps are decomposed into nested development sub-
steps. A development sub-step may consist of activities to
select concrete interaction objects, navigation objects, etc.
This could be realized by a transformation mechanism (e.g.
graph transformation [11] and [3]) based on sets of trans-
formation rules [11]. Composite Step is a generalization
class that is used to express a development path in a tree-
structure. It represents a set of development sub-steps as
leafs and a development step as root of a tree.

Based on the meta-model shown in Figure 1, three major el-
ements of the UsiXML method are considered such as work,
product and producer.

• The work represents what must be done. It is defined
in terms of development step and development sub step

• The product represents the artifact that must be ma-
nipulated by a development step and a development
sub step (i.e. created, used or changed). It can con-
cern a UI model or a UI code. In turn, a model can be

Figure 2: Forward Transformational Development of UIs

a UsiXML model that is used/generated by a develop-
ment step or a sub-step model that is used/generated
by a development sub-step.

• The producer represents the agent that has the respon-
sibility to execute a work unit. It is defined in terms
of person, role, team, tool, service, etc.

Figure 2 shows an illustration of the forward engineering
method. This method is fully explained in [11]. The start-
ing point of the forward engineering is a task and a domain
model (products). These models are transformed into an
abstract UI based on the transformation rules specified in
works. Afterwards, the abstract UI model is transformed
into a concrete UI model (products). Finally, the code is
generated (products). In order to achieve these transforma-
tions, a sequence of development steps (sequence of reifica-
tion and code generation) needs to be performed. Each de-
velopment step may involve a set of development sub-steps.
For example, the first development step involves a develop-
ment sub-step like identification of Abstract UI structure.
This sub-step consists in the definition of groups of ab-
stract interaction objects (an element of the abstract user
interface). Each group of abstract interaction objects corre-
sponds to a group of tasks (in task model), which are tightly
coupled together. To achieve its work, the sub-step can use
a sequence of rules. For example, identification of Abstract
UI structure uses sequences of two rules; R1: for each leaf
task of a task tree, create an Abstract Individual Elements;
and R2: create an Abstract Container structure similar to
the task decomposition structure. Indeed, each development
step takes a UsiXML model(s) as input and transform it to
another UsiXML model(s) by involving a set of development
sub-steps, which in turn manipulates sub-steps models by
using a set of rules. Note that, each development step (and
development sub-step) has a producer responsible of their
execution. For example, the first development step can have
a human actor who verifies the transformation done in this
step. Whereas a transformation tool can execute the rules
sequence of the sub-step ”identification of abstract UI struc-

ture”.

In the next section, we present our proposed meta-model for
the UsiXML method, SPEM4UsiXML.

3. SPEM4USIXML
UsiXML User interface designers need to rely on robust and
well defined method meta-model in order to specify the el-
ements of a UsiXML method. In the literature, several
method standard meta-models have been introduced like
SPEM [10], OPEN [4] and ISO 24744 [12]. These standards
describe the core elements of a method in different ways.
Each standard is built on different main principles. SPEM
2.0 [OMG 2008] is an OMG standard that reuses the UML
diagrams to describe the elements of a method. Whereas
OPEN [OPF 2005] defines an industry-standard meta-model
that provides a significant detail to describe different ele-
ments of a method. However, both SPEM and OPEN stan-
dards do not support the method enactment. ISO 72444 [12]
uses a dual-layer modelling to allow the method engineer to
configure the enactment of the method from the meta-model
level by using the Clabject and the Powerptype concepts.
However, the object-oriented programming languages (like
JAVA) do not support the dual-layer ([5] and [7]).

Although these standard meta-models can be adopted to
describe the UsiXML methods, it is more suitable to define
a specific method meta-model in order to support the spe-
cific key elements of the UsiXML methods (e.g. development
path, development sub-path). For this reason, we propose in
this paper a new meta-model for the UsiXML methods. The
proposed meta-model is based on SPEM 2.0. This choice is
justified by the fact that SPEM 2.0 provides a great usabil-
ity since it is a UML profile. Moreover, SPEM 2.0 contains
generalization classes that allow the refinement of the vo-
cabularies used to describe the concepts or the relationships
between concepts. These abstract generalization classes al-
low creating a UsiXML method meta-models specific to a
certain domain (e.g. User Interface Development).

The goal of the proposed meta-model, SPEM4UsiXML (SPEM
for UsiXML), is to define the elements necessary for the
description of any UsiXML method. The SPEM4UsiXML
extends the SPEM 2.0 ([10]) by adding new classes. In

Figure 3: Structure of the SPEM4UsiXML meta-
model

addition, like SPEM, SPEM4UsiXML separates the opera-
tional aspect of a UsiXML method from the temporal aspect
of a UsiXML method. This means that SPEM4UsiXML
reuses the UML diagrams for the presentation of various
UsiXML method concepts. As depicted in Figure 3, the
SPEM4UsiXML meta-model uses seven main meta-model
packages inherited from SPEM: Method Content describes
the operations aspect of a UsiXML method; Process Struc-

ture and Process Behaviour describes the temporal aspect
of a UsiXML method, Process With Methods describes the
link between these two aspects; Core provides the common
classes that are used in the different packages; Method Plug-

in describes the configuration of a UsiXML method; Man-

aged Content describes the documentation of a UsiXML
method.

SPEM4UsiXML extends the classes of the Method Content

and the Process Structures. Indeed, SPEM4UsiXML adds
new classes for the SPEM method content meta-model pack-
age in order to specify several development steps, sub sub-
steps, products and producers. Moreover, SPEM4UsiXML
adds new classes in the SPEM process structure package in
order to specify the control flow of development steps, sub-
steps, products and producers that are used in the UsiXML
method process.

In this paper we focus only on the description and the en-
actment of the dynamic aspect of the method (i.e. method
process). For this reason, we present, the Process Structure

package of SPEM4UsiXML in the next section.

3.1 Process Structure Package
As shown in Figure 4, SPEM4UsiXML adds new classes to
the SPEM Process Structure package. The white classes rep-
resent the classes of SPEM that are not modified, whereas
the yellow classes represent the classes extended by SPEM4UsiXML.

• Development Path: defines the properties of a UsiXML
method.

• Breakdown Element : is a generalization class that de-
fines a set of properties used by the element of a UsiXML
method (Product, Development step and producer).

• Work Breakdown Element : provides specific properties
for Breakdown Elements that represent a Development

Step and a Development Sub-Step.

• Step Use: is a generalization class that defines a set
of properties used by the element of the Development
Step, the Composite Step and the Development Sub-
Step.

• Composite Step Use: is a generalization class that is
used to define a tree-structure with a set of develop-
ment sub-step as a leaf and a development step as the
root.

• Development Step Use: defines the transformation steps
of the UsiXML method that are performed by Roles
Use instances. A Development Step Use is associated
to an input and an output Work Products Use.

• Development Sub-Step Use: defines the sub-steps of a
Development Step Use. As sub-step can be achieved
using a autonomous component called service (Service
Use), so that the enactment of the development sub-
step is independent of any transformation system.

• Role Use: represents a performer of a àDevelopment
Step Use or a Development Sub-Step.

• Work Product Use: represents an input and/or output
type for a Development Step. It can concern a model
(Model Use) or a code (Code Use).

The SPEM4UsiXML Method process structure package con-
tains also some useful elements inherited from SPEM 2.0
like:

• Process Responsibility Assignment : links Role Uses to
Work Product Uses by indicating that the Role Use has
a responsibility relationship with the Work Product
Use.

• Process Performer : links Role Uses to Development
Step Use by indicating that these Role Use instances
participate in the work defined by the Development
Step Use.

• Work Sequence: represents a relationship between two
Work Breakdown Elements in which one Work Break-
down Elements depends on the start or finish of an-
other Work Breakdown Elements in order to begin or
end. Indeed, a Work Sequence has 4 kinds:

StartToStart expresses that a Work Breakdown Ele-
ment (B) cannot start until a Work Breakdown
Element (A) start;

StartToFinish expresses that a Breakdown Element
(B) cannot finish until a Work Breakdown Ele-
ment (A) starts;

Figure 4: SPEM4UsiXML Process Structure package

FinishToStart expresses that a Work Breakdown El-
ement (B) cannot start until a Work Breakdown
Element (A) finishes;

FinishToFinish expresses that a Work Breakdown El-
ement (B) cannot finish until a Work Breakdown
Element (A) finishes.

ConditionToStart expresses that a Work Breakdown
Element can be started only if the condition is
satisfied.

Figure 5 gives an example of a forward engineering method
expressed in SPEM4UsiXML. In this method, various de-
velopment steps are represented by dashed rectangles. Each
development step can be composed by a set of development
sub-steps. Development sub-steps are represented by pen-
tagon (e.g. identification of an abstract UI structure, etc.)
The development steps (and the development sub-steps) can
be assigned to a producer who has a responsibility to exe-
cute or control an execution of the different development
(sub)steps.

This UsiXML method needs to be enacted by a tool in or-
der to allow supporting the transformation of the UsiXML
models according to the method specification. However, the
SPEM4UsiXML method meta-model provides a high level

Figure 5: UsiXML Forward Engineering method ex-
pressed in SPEM4UsiXML

description, which is not precise enough to allow the exe-
cution of the UsiXML transformation. For this reason, the
SPEM4UsiXML process needs to be mapped to an execu-
tion language. In the next section, we detail the mapping of
SPEM4UsiXML process to a BPEL process.

4. USIXML METHOD ENACTMENT
SPEM4UsiXML process package allows the description of a
method process structure, but it does not introduce the for-
malism for enacting a method process. It rather proposes
to reuse an existing externally-defined an enactment model
such as BPEL. For this reason, in the next section, we de-
tail how we can map SPEM4UsiXML process to a BPEL
process. The separation of SPEM4UsiXML (like SPEM)
method process structure from the behavior of the method
process opens up the possibility to utilize enactment ma-
chines for many different kinds of behavior modeling ap-
proaches [10]. The motivation behind this separation is to
give a method designer options to choose process behavior
models that fits his/her needs. Although, the separation
provides a flexible way to represent the behavioral aspects
of SPEM processes, it does not define the mapping rules to
link the elements of SPEM process with the behavioral mod-
els. In the literature, several initiatives have been conducted
to define mapping rules that allow automatically generating
a specific executable model from a SPEM process ([15] and
[2]). For example, Feng et al. [15] propose a set of well-
defined mapping rules to transform a SPEM process to a
workflow expressed in XPDL [14]. Another example is the
work proposed by Bendraou et al. in [2], which introduces
transformation rules into BPEL.

Because SPEM4UsiXML extends SPEMwith additional classes
that specify elements of a UsiXML method (e.g. develop-
ment steps and sub sub-steps), a set of mapping rule should
be defined in order to link the elements of SPEM4UsiXML
process with the OASIS standard BPEL. Indeed, a UsiXML
process can be considered as a Web service composition or-
chestration where each Web service enacts a specific devel-
opment sub-step transformation so that the transformation
will be flexible and independent to any transformation sys-
tem. As a result, an enactment machine for BPEL mod-
els can be used to run a UsiXML method. In light of
this, we propose a set of mapping rules between a subset
of SPEM4UsiXML concepts and the BPEL language in Ta-

ble 1.

5. USIXML METHOD SUPPORT TOOL
This section describes the UsiXML support tool that is dedi-
cated to define and enact a UsiXML method. The tool is de-
veloped as an Eclipse plug-in that includes a SPEM4UsiXML
model editor as well as a SPEM4UsiXML-to-BEPEL trans-
former engine.

Figure 6 shows a screenshot of the SPEM4UsiXML model
editor that is build based on the Eclipse Graphical Modeling
Framework (GMF) [9]. This framework provides a genera-
tive component and a runtime infrastructure for developing
graphical editors based on a well-defined meta-model.

The UsiXML support tool is based on an ATL transforma-
tion language to specify the mapping between a SPEM4UsiXML
method and a BPEL process. The mapping rules are de-

Figure 6: Screenshot of the SPEM4UsiXML model editor

scribed and executed using the ATL toolkit. The ATL
toolkit [6] is a model transformation tool that allows to gen-
erate a target model from a source model based on mapping
rules. Figure 7 illustrates the generated BPEL process for
the UsiXML forward engineering method that was explained
above.

Figure 7: The BPEL Process of the UsiXML forward en-

gineering method.

6. CONCLUSION AND DISCUSSIONS
In this paper, we proposed a support tool for the definition
and the enactment of the UsiXML methods. The tool is
based on a new meta-model for UsiXML method descrip-
tion, called SPEM4UsiXML. This meta-model is based on
the OMG standard, SPEM 2.0, which uses a UML profile
to define elements of a method. The core element of the
SPEM4UsiXML is the development steps that are instances
of transformation types. Development steps are decomposed
into development sub-steps. A development sub-step can
be executed by using a Web service. SPEM4UsiXML sep-
arates the operational aspect of a method (Method Con-

tent), from the temporal aspect of a methodology (Process

Table 1: Mapping from SMEP4USiXML to BPEL
SPEM4USiXML BPEL Description

Concept

Development Path Process
A development process in SPEM4USiXML can be mapped
to process in BPEL.

Development Sub Scope Activity
Development step is a block which is composed of one
or more development sub-steps. It can be mapped to
Scope in BPEL.

Development Sub-steps Invoke Activity
A development sub-step is a concrete step where
a service(s) is invoked, hence, it can be mapped to
invoke acvtivity in BPEL.

Role Partner Links
A role is an actor who executes an action(s). A role
could be mapped to a parent link in BPEL.

Product Product
Products of SPEM4USiXML are models and source codes
which can be represented using variables in BPEL.

Relationship

Start to Start
Flow Activity with In order to start development step A, development
Links step B must start first. This relationship can be expressed

using flows.

Start to Finish
Flow Activity with Development step A needs to start before development
Links step B finishes its activity. This relation could also be

expressed using flow and links.

Finish to Start Sequence Activity
A sequence represents the sequences of execution
of development sub-steps. It can be mapped to
a sequence in BPEL..

Finish to Start
Flow Activity with This relationship can also be expressed using flow and
Links links to specify development step A needs to be

finished so as to B finish its activity.

Condition to Start If Activity
Only the subsequent activities that the condition is true are
started. This relationship can be expressed as an If
Activity where the condition is the <If Expression>.

Structure). This allows using any modeling language to de-
scribe the process behavior like BPEL. Unfortunately, the
SPEM4UsiXML meta-model cannot support the enactment
of a UsiXML method on a specific endeavor. To deal with
this limit, the proposed support tool (for UsiXML methods)
transforms a SPEM4UsiXML model to a BPEL process so
that a UsiXML method is considered as a Web service com-
position where each Web service enacts a specific develop-
ment sub-step of the method. Consequently, a BPEL engine
can be used to execute the SPEM4UsiXML models. How-
ever, BPEL language expresses a UsiXML method process
in a fully automated way meaning that a human producer
is not able to interact with the development sub-steps until
the end of the process execution. For example, a human
producer is not able to monitor the input to a development
sub-step at runtime, s/he cannot cancel the process execu-
tion or s/he is not able to execute a development sub-step.
For this reason, in the future work, we plan to address this
problem by extending BPEL with set of human interactions
points in order to allow a human producer to interact with
the method execution. This extension should allow the gen-
eration of a user interface for the UsiXML method in order
to help the human producer to interact with the method at
runtime. In addition, in the future, we also plan to develop a
monitoring tool that allows to control the enactment of the
SPEM4UsiXML methods based a historic model. This his-
toric model keeps trace of enactment operations whenever
they occur so that problems in a method can be identified
and corrected based on predefined patterns (e.g. a delay in
the execution of a step).

7. REFERENCES
[1] Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch,

B., Curbera, F., Ford, M., Goland, Y., Gúızar, A.,
Kartha, N., Liu, C.K., Khalaf, R., Koenig, D., Marin,
M., Mehta, V., Thatte, S., Rijn, D., Yendluri, P., Yiu,
A.: Web services business process execution language
version 2.0 (OASIS standard). WS-BPEL TC OASIS,
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.html
(2007)

[2] Bendraou, R., Combemale, B., Crégut, X., Gervais,
M.P.: Definition of an executable SPEM 2.0. IEEE
Computer Society (2007)

[3] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., Vanderdonckt, J.: A unifying reference
framework for multi-target user interfaces. Interacting
with Computers 15(3), 289–308 (2003),
http://dx.doi.org/10.1016/S0953-5438(03)00010-

9

[4] Consortium, O.: OEPN (2010),
http://www.open.org.au/

[5] Gutheil, M., Kennel, B., Atkinson, C.: A systematic
approach to connectors in a multi-level modeling
environment. In: Czarnecki, K., Ober, I., Bruel, J.M.,
Uhl, A., Völter, M. (eds.) MoDELS. Lecture Notes in
Computer Science, vol. 5301, pp. 843–857. Springer
(2008),
http://dx.doi.org/10.1007/978-3-540-87875-958

[6] Jouault, F., Kurtev, I.: Transforming models with atl.
In: Bruel, J.M. (ed.) Satellite Events at the MoDELS
2005 Conference, Lecture Notes in Computer Science,

vol.
3844, pp. 128–138. Springer Berlin / Heidelberg (2006),
http://dx.doi.org/10.1007/1166343014, 10.1007/1166343014

[7] Kuehne, T., Schreiber, D.: Can programming be
liberated from the two-level style: multi-level
programming with deepjava. In: OOPSLA ’07:
Proceedings of the 22nd annual ACM SIGPLAN
conference on Object-oriented programming systems
and applications. pp. 229–244. ACM, New York, NY,
USA (2007),
http://dx.doi.org/10.1145/1297027.1297044

[8] Limbourg, Q., Vanderdonckt, J.: Multipath
transformational development of user interfaces with
graph transformations. In: Seffah, A., Vanderdonckt,
J., Desmarais, M.C. (eds.) Human-Centered Software
Engineering, pp. 107–138. Human-Computer
Interaction Series, Springer London (2009),
http://dx.doi.org/10.1007/978-1-84800-907-

36, 10.1007/978− 1− 84800− 907− 36
[9] Moore, B., Organization, I.B.M.C.I.T.S., ebrary, I.:

Eclipse development using the graphical editing
framework and the eclipse modeling framework. IBM,
International Technical Support Organization (2004)

[10] OMG: Software Systems Process Engineering
Meta-Model Specification version 2.0 (2008), In OMG

Document Number: formal/08-04-02. Standard

document URL:

http://www.omg.org/spec/SPEM/2.0/PDF

[11] Stanciulescu, A.: A Methodology for Developing
Multimodal User Interfaces of Information System.
Ph.D. thesis, Université catholique de Louvain,
Louvain-la-Neuve, Belgium (June 2008)

[12] for Standardization / International
Electrotechnical Commission, I.O.: ISO/IEC 24744.
Software Engineering - Metamodel for Development
Methodologies (2007), JTC 1/SC 7, 2007

[13] UCL: Usixml v1.8 reference manual (February 2007),
iTEA2, UsiXML Full Project Proposal

[14] WFMC: Workflow management coalition workflow
standard: Workflow process definition interface –
XML process definition language (XPDL)
(WFMC-TC-1025). Tech. rep., Workflow Management
Coalition, Lighthouse Point, Florida, USA (2002)

[15] Yuan, F., Li, M., Wan, Z.: SEM2XPDL: Towards
SPEM model enactment. In: Arabnia, H.R., Reza, H.
(eds.) Software Engineering Research and Practice.
pp. 240–245. CSREA Press (2006)

