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Introduction

Let F be a monotone multivalued operator defined on a real Hilbert space
H, and let ϕ : H → IR ∪ {+∞} be a lower semi-continuous proper convex
function whose effective domain is included in the domain of F . The problem
considered is the following:

(GV IP )

 find x∗ ∈ H and r(x∗) ∈ F (x∗) such that, for all x ∈ H,

〈r(x∗), x − x∗〉 + ϕ(x) − ϕ(x∗) ≥ 0.

This problem is known as a generalized variational inequality (see [48]). It
appears in many fields of applied mathematics such as convex programming,
partial differential equations, game theory, equilibrium models in economics
and transportation sciences, mechanics, physics, optimal control,... We re-
fer to [10], [44], [56], [68], [71], [86], [97], [102], [132] as references sources
for the numerous applications of problem (GV IP ). Note that problems like
(GV IP ) with a multivalued mapping F and a function ϕ which is not neces-
sarily the indicator function of a closed convex subset of H, are encountered
in many applications. In particular, it is the case in mechanical problems as
for example, in [98], and in equilibrium problems as, for example, in [32], [92].

By using the definition of the subdifferential of the function ϕ, problem
(GV IP ) can be equivalently written under the following inclusion form:

find x∗ ∈ H : 0 ∈ F (x∗) + ∂ϕ(x∗).

So, problem (GV IP ) is a special case of the problem that consists in finding
a zero of the sum of two operators. This last problem is considered, for
example, in [18], [43], [57], [77], [93], [127].

A large variety of problems can be seen as special instances of prob-
lem (GV IP ). In the particular case where ϕ is the indicator function of a
nonempty closed convex subset C of H, problem (GV IP ) reduces to the
classical variational inequality problem:

(V IP )

 find x∗ ∈ C and r(x∗) ∈ F (x∗) such that, for all x ∈ C,

〈r(x∗), x − x∗〉 ≥ 0.
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This problem has been extensively studied in the literature. See, for exam-
ple, [56], [102] for the singlevalued case, and [48], [61] for the multivalued
case.

If C is a closed convex cone of H with 0 ∈ C, then the problem reduces
to

(GCP )

 find x∗ ∈ C and r(x∗) ∈ F (x∗) such that,

r(x∗) ∈ C∗ and 〈r(x∗), x∗〉 = 0,

where C∗ denotes the polar cone of C, defined by

C∗ = {c ∈ H : 〈c, u〉 ≥ 0,∀u ∈ C}.

This special case of problem (GV IP ) is known as a generalized complemen-
tarity problem. It was introduced by Karamardian (see [67]) and it is largely
studied in the literature (see, for example, [62], [110]).

Finally, when F is the subdifferential mapping of a finite-valued convex
continuous function f defined on H, problem (GV IP ) is just the nondiffer-
entiable convex optimization problem:

(OP ) min
x∈H

{f(x) + ϕ(x)},

and problem (V IP ) reduces to the following constrained optimization prob-
lem:

(COP ) min
x∈C

f(x).

Algorithms that can be applied to solve problem (GV IP ) or one of its
variants are too numerous to be enumerated here. Let us just mention some
well-known and extensively studied classes of methods:

• proximal point algorithms (see [21], [24], [42], [43], [84], [109], [124]);

• splitting methods (see [29], [43], [51], [52], [57], [77], [101], [126], [127],
[133]);

• auxiliary problem methods and cost approximation algorithms (see
[33], [34], [40], [47], [99], [102], [105], [123], [126], [136]);

• interior point methods (see [94], [116], [129], [130], [131]);
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• perturbation methods (see [45], [58], [82], [89], [125]).

The auxiliary problem principle was originally introduced by Cohen (see
[30], [31]) and by Cohen and Zhu (see [34]) to solve problems such as the
optimization problem (OP ). The general framework generated by this prin-
ciple covers optimization algorithms ranging from gradient or subgradient
methods to decomposition/coordination ones. In [33] and [85], this approach
is applied to solve general variational inequalities such as problem (GV IP ).
And more recently, this principle has been extended to nonsymmetric aux-
iliary operators by Renaud and Cohen (see [105]). The idea is to introduce
a sequence of auxiliary operators {Ωk}k∈IN supposed to be strongly mono-
tone and Lipschitz continuous but not necessarily symmetric, and positive
numbers {λk}k∈IN so that F be approximated at iteration k by λ−1

k Ωk. If xk

denotes the current iterate at iteration k, the error made in approximating
F is taken into account by adding the error term r(xk)− λ−1

k Ωk(xk), where
r(xk) denotes an element of F (xk). More precisely, the problem considered
at iteration k can be expressed as:

(AP k)



choose r(xk) ∈ F (xk) and

find xk+1 ∈ H such that, for all x ∈ H,

〈r(xk) + λ−1
k (Ωk(xk+1) − Ωk(xk)), x − xk+1〉

+ϕ(x) − ϕ(xk+1) ≥ 0.

Note that r(xk) can be given by a black box called at xk.

In the first versions of the auxiliary problem method, each auxiliary
operator Ωk was chosen as the gradient of some continuously differentiable
and strongly convex function Kk. In that case, subproblem (AP k) reduces
to the following minimization problem:

(SAP k)


choose r(xk) ∈ F (xk) and

find xk+1 the solution of

minx∈H{λ−1
k Kk(x) + ϕ(x) + 〈r(xk) − λ−1

k ∇Kk(xk), x − xk〉 }.
The variety of areas in which the auxiliary problem principle has brought

about its contribution is very large. Let us just mention some of them, such
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as optimization (see [30], [31], [34]), saddle point problems (see [30], [31]),
optimal control and dynamical systems (see [30]), stochastic optimization
(see [39]), Nash equilibria (see [32]) and variational inequalities (see [33],
[46], [47], [66], [85], [105]).

Many well–known algorithms for solving problem (GV IP ) can be de-
rived from the auxiliary problem scheme by choosing the auxiliary opera-
tors {Ωk}k∈IN (or {Kk}k∈IN ) in different ways. For example, we can recover
linear approximation methods such as projection or Newton–like methods,
or also proximal point methods, forward-backward methods,...

The convergence of some instances of the auxiliary problem scheme has
already been studied in the literature. The case where F is singlevalued
is treated separately from the case where it is multivalued. When F is
singlevalued, the sequence of stepsizes {λk}k∈IN is supposed to be bounded
away from zero and the convergence results are of two types. On the one
hand, if the auxiliary operators are chosen symmetric, then F is required to
be strongly monotone (see, for example, [33], [46]) or to have the (pseudo)
Dunn property (see, for example, [46], [85], [136]). On the other hand, if
the auxiliary operators are not necessarily symmetric, then the operator F
and the sequence {Ωk}k∈IN have to be linked by a contraction condition (see
[40], [99]) or by a kind of Dunn condition (see [105], [126], [136]). Now, when
F is multivalued, the sequence of stepsizes {λk}k∈IN converges to zero and
the auxiliary operators are generally considered to be symmetric. In [33],
Cohen proves the strong convergence of the scheme when F is assumed to be
strongly monotone. More recently, in [134], Zhu has obtained convergence
results under weaker monotonicity assumptions. First, if F is paramono-
tone and satisfies a continuity property, he shows that at least one weak
limit point of the sequence generated by the algorithm is a solution of the
original problem. Secondly, he proves weak convergence under a condition
satisfied for example if the operator is paramonotone and compact-valued,
or if it is the subdifferential of a lower semi-continuous proper convex func-
tion, or if it is strongly monotone.

In the case where the subproblems remain difficult to solve, several au-
thors propose to approximate the function ϕ by a sequence of more tractable

6



functions. More precisely, at each iteration k, the original function ϕ is re-
placed in the auxiliary subproblem (AP k) by an approximate function ϕk.
Then the perturbed auxiliary subproblem can be expressed as:

(PAP k)



choose r(xk) ∈ F (xk) and

find xk+1 ∈ H such that, for all x ∈ H,

〈r(xk) + λ−1
k (Ωk(xk+1) − Ωk(xk)), x − xk+1〉

+ϕk(x) − ϕk(xk+1) ≥ 0.

Approximations such as barrier functions, penalty functions, Tykhonov reg-
ularizations,... are encountered. The well-known variational convergence of
Mosco (see [87]) encompasses various possibilities of data perturbations. In
finite dimension, this notion coincides with that of epiconvergence (see, for
example, [5], [7]). This kind of variational convergence notion is combined
in the literature with various iterative methods such as proximal point algo-
rithms (see [2], [13], [45], [64], [88], [89], [90], [91], [125]), splitting schemes
(see [45], [57]) or Tykhonov algorithms (see [88], [125]).

For the auxiliary problem method, the convergence study of the per-
turbed scheme characterized by subproblems (PAP k) has already been ini-
tiated for some particular instances (see [73], [82], [120]). The most general
result obtained for problem (GV IP ) (see [82]) is restricted to the case where
F is singlevalued and the auxiliary operators are symmetric. It ensures
strong convergence provided that the sequence {ϕk}k∈IN converges to ϕ in
the sense of Mosco and the operator F is strongly monotone and Lipschitz
continuous. These conditions on F are very restrictive and strongly limit
the class of problems that can be considered. For example, problems with
multiple solutions can’t be treated. Nor can this result be applied to the case
where F = 0. However, when ϕ is not perturbed, convergence results with
weaker conditions on F as the Dunn property are available. Another failure
of this result is to consider only symmetric auxiliary operators, what limits
the application field. For example, the asymmetric projection method or
the Newton method can’t be analysed within the framework. On the other
hand, to our knowledge, the influence of a variational perturbation of ϕ on
the convergence of the auxiliary problem scheme has not been studied in the
literature when F is multivalued.
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Motivated by these shortcomings, our purpose in this work has been
to obtain convergence results for the perturbed auxiliary problem scheme
with iteration-dependent and nonsymmetric auxiliary operators, requiring
conditions on F as weak as possible such that we recover the same condi-
tions on F as in all the results mentioned above when ϕ is not perturbed,
as well in the singlevalued case as in the multivalued one. To achieve this,
we have to work on the convergence properties of the sequence of approx-
imate functions {ϕk}k∈IN . Firstly, we assume that the sequence {ϕk}k∈IN

approaches ϕ in the sense of Mosco. Moreover, we focus our attention on
interior approximations of the function ϕ, that is, on approximate functions
ϕk whose effective domains are contained in the domain of ϕ. In fact, we
require that ϕ ≤ ϕk for all k. This allows us to consider, for example,
barrier functions, interior approximations of the feasible set, Tykhonov ap-
proximations,... Secondly, in order to obtain the convergence of the scheme
under weaker assumptions on F than strong monotonicity, we have to re-
quire that the sequence {ϕk}k∈IN converges sufficiently fast to ϕ by adding
a condition on the speed of convergence of this sequence. For example,
for the sequence of barrier functions, this condition amounts to a rate of
convergence imposed on the barrier parameters. Note that this additional
condition is needed both in the singlevalued case and in the multivalued one.

So, when F is singlevalued, not only we prove the convergence for the
general perturbed setting under weaker conditions on F than strong mono-
tonicity, but also we obtain conditions on F that improve or reduce to the
weakest ones existing in the nonperturbed case.

For the multivalued case, we also obtain convergence results under the
same conditions on F as in the best results when there is no perturbation.
Moreover, we present a relaxation of this procedure by allowing an inex-
act computation of an element of F (xk). This is made by taking r(xk)
in an enlargement of F at xk. This idea has already been used to relax
other iterative methods in [25], [26], [118]. The ε-enlargement notion used
in these papers not being well suited for our purpose, we have introduced a
new enlargement. So, we have been able to extend our convergence results
to the inexact procedure. When F is the subdifferential of a finite–valued
convex continuous function f , the ε–subdifferential can be chosen as the
enlargement of F = ∂f and our scheme reduces to the projected inexact
subgradient procedure studied in [4].
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Finally, we consider problem (GVIP) with ϕ the sum of a lower semi-
continuous proper convex function p and the indicator function of a nonempty
closed convex subset C of H such that C ⊆ dom p ⊆ dom F . When F = 0
and C = H, this problem reduces to minimize p on H. In order to solve this
optimization problem, some authors proposed the use of a bundle strategy
(see, for example, [35]). Our aim has been to transpose this to our more
general setting for solving approximately the auxiliary subproblems. How-
ever, to build a suitable piecewise linear convex approximation pk of p as in
the classical bundle strategy, the iterates need to remain in the interior of
C. This is made possible by introducing a barrier function in the subprob-
lems. So, we apply the arguments used in our previous results to prove the
convergence of the resulting bundle scheme.

The thesis is organized as follows. The first chapter provides some ba-
sic definitions and results from the theory of convex analysis and nonlinear
mappings related to our work. Some sufficient conditions for the existence
of a solution of problem (GV IP ) are also recalled.

In the second chapter, we first illustrate the scope of the auxiliary prob-
lem procedure designed to solve problems like (GV IP ) by examining some
well-known methods included in that framework. Then, we review the most
representative convergence results for that class of methods that can be
found in the literature in the case where F is singlevalued as well as in the
multivalued case. Finally, we somewhat discuss the particular case of pro-
jection methods to solve affine variational inequalities.

The third chapter introduces the variational convergence notion of Mosco
and combines it with the auxiliary problem principle. Then, we recall the
convergence conditions existing for the resulting perturbed scheme before
our own contribution and we comment them. Finally, we introduce and
illustrate the rate of convergence condition that we impose on the pertur-
bations to obtain better convergence results.

Chapter 4 presents global and local convergence results for the family
of perturbed methods in the case where F is singlevalued. We also discuss
how our results extend or improve the previous ones.
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Chapter 5 studies the multivalued case. First, we present convergence
results generalizing those obtained when there is no perturbations. Then,
we relax the scheme by means of a notion of enlargement of an operator and
we provide convergence conditions for this inexact scheme.

In Chapter 6, we build a bundle algorithm to solve problem (GV IP )
and we study its convergence.

Most results presented in this work have been published in international
journals. The particular case of projection methods for affine variational
inequalities is the subject of [55]. The results contained in Chapter 4 are
a generalization in the infinite dimensional case of those appeared in [112].
Most results of Chapter 5 are the subject of [111] and [113]. The results of
Chapter 6 are presented in [114].
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Chapter 1

Background Notes

In this chapter, we recall some definitions and fundamental results related to
the theory of convex analysis and of nonlinear mappings in a Hilbert space.
We also recall some existence results for problem (GV IP ). We focus mainly
on the background material needed to approach our work. The interested
reader can find more comprehensive informations in these fields, for exam-
ple, in [10], [38], [44], [68], [96], [100], [106], [128], [132].

Throughout this work, H denotes a real Hilbert space equipped with the
scalar product 〈·, ·〉 and the associated norm ‖ · ‖. If x ∈ H and {xk}k∈IN

is a sequence of elements in H, xk ⇀ x (resp. xk → x) expresses that the
sequence {xk}k∈IN weakly (resp. strongly) converges to x.
If D is a symmetric positive definite matrix of IRn × IRn, then the D–norm
of a vector x ∈ IRn is given by

‖x‖D =
√

xT Dx,

and λmin(D), λmax(D) denote respectively, the minimum and maximum
eigenvalues of D. For any square matrix D, Ker(D) and Rank(D) denote
respectively its kernel and its rank, and sym(D) denotes its symmetric part,
i.e.

sym(D) = (D + DT )/2.

If C is a subset of H, int(C), cl(C) and co(C) denote respectively the interior,
the closure and the convex hull of C.
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1.1 Elements of Convex Analysis

Let f : H → IR ∪ {+∞} be a function. The effective domain of f is the set

dom f = {x ∈ H : f(x) < +∞}.
The function f is said to be proper if its effective domain is nonempty. We
say that f is convex if, for any x, y ∈ H and λ ∈]0, 1[,

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).

If this inequality is strict whenever x, y are different, the function f is strictly
convex. Moreover, f is said to be strongly convex on H if there exits a
constant ᾱ > 0 such that, for any x, y ∈ H and λ ∈]0, 1[,

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) − ᾱλ(1 − λ)‖x − y‖2/2.

The function f is lower semi-continuous on H if, for each x ∈ H,

xk → x ⇒ limk→+∞f(xk) ≥ f(x).

When we consider the weak topology in H, the corresponding notion is the
weak lower semi-continuity. Obviously, any weakly lower semi-continuous
function is lower semi-continuous. The converse is not true in general but
we have the following valuable property:

Proposition 1.1 (See [44], Chapter I, Corollary 2.2) Any convex function
f : H → IR∪{+∞} is weakly lower semi-continuous if and only if it is lower
semi-continuous.

We denote by Γ0(H) the set of proper, convex, lower semi-continuous func-
tions from H into IR ∪ {+∞}.

We now introduce the notion of Gâteaux–differentiability.

Definition 1.1 Let f : H → IR∪ {+∞}. The directional derivative of f at
x in the direction d that we denote by f ′(x ; d), is the limit as λ → 0+, if it
exists, of

f(x + λd) − f(x)
λ

. (1.1)

If there exists s ∈ H such that f ′(x ; d) = 〈d, s〉 for all d ∈ H, then we
say that f is Gâteaux-(or G-)differentiable at x, we call s the Gâteaux-(or
G-)derivative of f at x and we denote it by ∇f(x).
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The uniqueness of the G-derivative follows directly. It is characterized by

lim
λ→0+

f(x + λd) − f(x)
λ

= 〈d,∇f(x)〉, ∀d ∈ H.

If f is convex, the expression (1.1) is an increasing function of λ such that
the limit always exists (but can be −∞).

We next introduce the notion of subgradient of a (convex) function and
we show how subdifferentiability constitutes a generalization of Gâteaux-
differentiability.

Definition 1.2 Let f : H → IR ∪ {+∞}. An element s ∈ H is called a
subgradient of f at x ∈ H if f(x) ∈ IR and

f(z) ≥ f(x) + 〈s, z − x〉, ∀z ∈ H.

The set of all subgradients of f at x is called the subdifferential of f at x
and is denoted by ∂f(x). If no subgradient exists at x, we say that f is not
subdifferentiable at x and we set ∂f(x) = ∅.
As an example, let us consider the indicator function of a nonempty closed
convex subset C of H, denoted by ΨC and defined by

ΨC(x) =

{
0 if x ∈ C,
+∞ otherwise.

By definition, s ∈ ∂ΨC(x) if and only if x ∈ C and

ΨC(z) ≥ ΨC(x) + 〈s, z − x〉, ∀z ∈ H.

This means that x ∈ C and 0 ≥ 〈s, z − x〉 for all z ∈ C i.e., s is normal to
C at x. Thus, ∂ΨC(x) is the normal cone to C at x:

∂ΨC(x) =


{s ∈ H : 〈s, z − x〉 ≤ 0, ∀z ∈ C} if x ∈ C\int(C),
{0} if x ∈ int(C),
∅ if x �∈ C.

The following proposition gives basic properties of the subdifferential of a
lower semi–continuous and convex function.

Proposition 1.2 (See [10], Chapter 4, Section 3, Theorem 17) Let f ∈
Γ0(H). Then f is subdifferentiable on int(dom f) and, for any x ∈ int(dom
f), ∂f(x) is bounded, closed and convex.
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The following proposition shows that the subdifferential generalizes the G–
derivative.

Proposition 1.3 (See [44], Chapter I, Proposition 5.3) Let f : H → IR ∪
{+∞} be a convex function. If f is G–differentiable at x ∈ H, then f
is subdifferentiable at x and ∂f(x) = {∇f(x)}. Conversely, if at a point
x ∈ H, f is continuous, finite and has only one subgradient, then f is G–
differentiable at x and ∂f(x) = {∇f(x)}.
Some interesting properties of the subdifferential of a strongly convex func-
tion are given in the following result.

Proposition 1.4 Let f : H → IR ∪ {+∞} be a subdifferentiable proper
function. If f is strongly convex with modulus ᾱ > 0, then for each x, y ∈ H
and each r ∈ ∂f(x), s ∈ ∂f(y), we have

(i) 〈r − s, x − y〉 ≥ ᾱ‖x − y‖2;

(ii) f(y) ≥ f(x) + 〈r, y − x〉 + ᾱ‖x − y‖2/2.

Proof. This follows from the well-known fact that f is strongly convex
with modulus ᾱ if and only if the function f − ᾱ‖ · ‖2/2 is convex (see [60],
Chapter IV, Proposition 1.1.2). �

1.2 Preliminaries on Nonlinear Mappings

We first consider some basic notions for multivalued mappings. A multival-
ued mapping T from H to H associates with any x ∈ H a subset T (x) of
H, called the image or the value of T at x. If, for each x ∈ H, the set T (x)
contains at most one element, then T is said to be singlevalued.
The domain of the operator T is the set

dom T = {x ∈ H : T (x) �= ∅},

and the image of T is the set

Im T = ∪x∈HT (x) = ∪x∈dom T T (x).

Actually, a multivalued mapping T is characterized by its graph, the subset
of H × H defined by

Graph T = {(x, y) ∈ H × H : y ∈ T (x)}.
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The inverse mapping T−1 of T is the multivalued map from H to H defined
by

x ∈ T−1(y) ⇔ y ∈ T (x).

Obviously, we have that dom T−1 = Im T .
For given multivalued maps T1, T2 defined on H and for fixed scalars α1, α2 ∈
IR, the mapping α1T1 + α2T2 is defined by

(α1T1 + α2T2)(x) =

{
α1T1(x) + α2T2(x) if x ∈ dom T1 ∩ dom T2,
∅ otherwise.

The set of the operators on H is ordered by the graph inclusion, i.e.

T1 ⊂ T2 ⇔ T1(x) ⊂ T2(x), ∀x ∈ H.

1.2.1 Continuity and Related Concepts

Definition 1.3 Let T be a multivalued mapping defined on H. The operator
T is said to be upper semi-continuous at x ∈ dom T , if to any neighborhood V
of the set T (x), there corresponds a neighborhood U of x such that T (U) ⊂ V .
T is said to be weakly–strongly (resp. strongly–weakly) continuous at x ∈
dom T if it is upper semi-continuous at x from the weak (resp. strong)
topology on H into the strong (resp. weak) topology on H.
T is said to be bounded if it carries bounded subsets of dom T into bounded
subsets of H.
T is said to be weakly–strongly (resp. strongly–weakly) closed if it follows
from {xk}k∈IN ⊂ dom T , xk ⇀ x (resp. xk → x), rk ∈ T (xk), rk → r (resp.
rk ⇀ r), that r ∈ T (x). And T is said to be weakly closed if it follows from
{xk}k∈IN ⊂ dom T , xk ⇀ x, rk ∈ T (xk), rk ⇀ r, that r ∈ T (x).
We say that T is upper hemi-continuous at x ∈ dom T if (dom T is convex
and) for any y ∈ dom T , the mapping defined on [0, 1] by:

λ → {〈rλ, y − x〉 : rλ ∈ T (x + λ(y − x)) }
is upper semi-continuous at 0+.
T is said to be Lipschitz continuous on a subset B of H if

∃L > 0 such that ∀x, y ∈ B e(T (x), T (y)) ≤ L ‖x − y‖,
where e(T (x), T (y)) = supr∈T (x) infs∈T (y) ‖r − s‖.

The next lemma will be used in the sequel.
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Lemma 1.1 Let B be a bounded subset of H. If T is Lipschitz continuous
on B and if there exists ȳ ∈ B such that T (ȳ) is bounded, then T is bounded
on B, i.e., there exists c > 0 such that ‖r(x)‖ ≤ c for all x ∈ B and
r(x) ∈ T (x).

Proof. Let ε > 0. Then, by assumption, e(T (x), T (ȳ)) ≤ L‖x − ȳ‖ for all
x ∈ B, i.e.,

∀x ∈ B,∀r(x) ∈ T (x), ∃ r(ȳ) ∈ T (ȳ) such that ‖r(x)−r(ȳ)‖ ≤ L‖x−ȳ‖+ε.

Since B and T (ȳ) are bounded, there exist c1 > 0 and c2 > 0 such that
‖x‖ ≤ c1 for all x ∈ B and ‖r(ȳ)‖ ≤ c2 for all r(ȳ) ∈ T (ȳ). Then, for all
x ∈ B and r(x) ∈ T (x), we have successively

‖r(x)‖ ≤ ‖ r(x) − r(ȳ) ‖ + ‖ r(ȳ) ‖
≤ L [ ‖x‖ + ‖ ȳ ‖ ] + ε + c2

≤ L [ c1 + ‖ ȳ ‖ ] + ε + c2,

i.e., what we have to prove. �

In the case of a singlevalued mapping, we use the following terminology.

Definition 1.4 Let T be singlevalued. We say that T is continuous (resp.
weakly continuous) if for any sequence {xk}k∈IN ⊂ dom T , xk → x (resp.
xk ⇀ x), we have that T (xk) → T (x) (resp. T (xk) ⇀ T (x)).
T is said to be weakly–strongly (resp. strongly–weakly) continuous, if {xk}k∈IN

⊂ dom T , xk ⇀ x (resp. xk → x) implies that T (xk) → T (x) (resp.
T (xk) ⇀ T (x)).
T is said to be compact if it is continuous and for any bounded subset B of
H, the image T (B) is relatively compact.
T is hemi-continuous at x ∈ dom T if (dom T is convex and) for any y ∈
dom T , the map t → T (x + t(y − x)) is continuous from [0, 1] into the weak
topology of H.
T is Lipschitz continuous with constant L > 0 if for any x, y ∈ H,

‖T (x) − T (y)‖ ≤ L‖x − y‖.

T is nonexpansive if it is Lipschitz continuous with constant L = 1.

The concept of coercivity plays an important role to ensure that an
operator be onto. It is defined here after under different forms.
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Definition 1.5 The mapping T is coercive on H if

lim
‖x‖→+∞

1
‖x‖ inf

r∈T (x)
|〈r, x〉| = +∞.

It is weakly coercive on H if

lim
‖x‖→+∞

inf
r∈T (x)

‖r‖ = +∞.

It is coercive with respect to the element h ∈ H if there exist a number ρ > 0
and an element x0 ∈ dom T such that x ∈ dom T and ‖x‖ ≥ ρ imply that

〈r, x − x0〉 > 〈h, x − x0〉, ∀r ∈ T (x).

Since 〈r, x〉 ≤ ‖r‖ ‖x‖, we have that coercivity implies weak coercivity. It is
also easy to see that if T is coercive on H, it will be coercive with respect
to any element h of H (See [100], Chapter III, Section 2.8). Moreover,
the coercivity condition is satisfied whenever the mapping is defined on a
bounded domain.

1.2.2 Derivative of a Singlevalued Mapping

Definition 1.6 A singlevalued mapping T : D ⊂ H → H is Gâteaux-(or
G-)differentiable at an interior point x of D if there exists a linear operator
A : H → H such that, for any d ∈ H,

lim
λ→0

‖T (x + λd) − T (x) − λAd‖
λ

= 0. (1.2)

There exists at most one linear operator A for which (1.2) is satisfied, it is
denoted by ∇T (x) and is called the Gâteaux-(or G-)derivative of T at x.

So, if T is G-differentiable at x ∈ H, then, for any fixed d ∈ H, the mapping
G(λ) = T (x + λd) is differentiable at zero and

∇G(0) = lim
λ→0

G(λ) − G(0)
λ

= ∇T (x) d.

Consequently, G is continuous at zero and the following proposition follows:

Proposition 1.5 (See [96], Chapter 3, Point 3.1.4. and NR 3.1-2) If T :
D ⊂ H → H is G-differentiable at x ∈ D, then T is hemi-continuous at x.
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The following mean-value theorem will be used in our analysis.

Proposition 1.6 (See [96], Chapter 3, Point 3.2.5. and NR 3.2-4) If T :
D ⊂ H → H is G-differentiable on the convex set D0 ⊂ D, then for any
x, y, z ∈ D0,

‖T (y)− T (z)−∇T (x)(y − z)‖ ≤ sup
0≤t≤1

‖∇T (z + t(y − z))−∇T (x)‖ ‖y − z‖.

Definition 1.7 A mapping T : D ⊂ H → H is said to be continuously
G–differentiable on the convex set D0 ⊂ D if T is G–differentiable at each
x ∈ D0 and ∇T , the G-derivative of T , is continuous on D0.

1.2.3 Monotonicity and Related Topics

Definition 1.8 Let C be a closed convex subset of H. The mapping T is
monotone on C if, for any x, y ∈ C and any r(x) ∈ T (x), r(y) ∈ T (y),

〈r(x) − r(y), x − y〉 ≥ 0.

If T1, T2 are monotone, then T−1
1 , λT1(λ ≥ 0), T1 + T2 are monotone. One

important subclass of monotone operators is given in the following proposi-
tion.

Proposition 1.7 (See [10], Chapter 4, Section 3, Proposition 9) If f : H →
IR ∪ {+∞} is a proper convex function, then its subdifferential mapping ∂f
is monotone.

The properties of the resolvent operator corresponding to a monotone oper-
ator are given in the following proposition.

Proposition 1.8 (See [10], Chapter 6, Section 6, Proposition 8) If T is
monotone on H, then for each λ > 0, the resolvent operator (I + λT )−1 is
a singlevalued nonexpansive map from Im (I + λT ) to H.

The following result gives a characterization of monotonicity for differen-
tiable mappings.

Proposition 1.9 (See [63], Proposition 4.1) Assume that T is G–differentiable
on H and C is a nonempty closed convex subset of H. Then T is monotone
on C if and only if sym(∇T (x)) is positive semi-definite for each x ∈ C.

A basic property of monotone mappings is local boundedness.
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Definition 1.9 A multivalued mapping T is locally bounded at x ∈ H if
there exists a neighbourhood U of x such that the set

T (U) = ∪y∈U∩dom T T (y)

is bounded in H. Moreover, T is locally bounded on the set D if T is locally
bounded at each point of D.

Proposition 1.10 (See [100], Chapter III, Section 2.2) A monotone map-
ping defined on H is locally bounded at the interior points of dom T .

In general, any strongly–weakly continuous and singlevalued operator is
hemi-continuous. The converse is also true for monotone operators.

Proposition 1.11 (See [100], Chapter III, Section 2.2) Any monotone hemi-
continuous and singlevalued operator T is strongly-weakly continuous on
int(dom T ).

We can introduce the concept of maximal monotonicity.

Definition 1.10 A monotone mapping T is maximal if there is no other
monotone operator whose graph strictly contains the graph of T .

It follows that T is maximal monotone if and only if it is monotone and for
each x, y ∈ H,

〈x − ξ, y − η〉 ≥ 0, ∀(ξ, η) ∈ Graph T ⇒ y ∈ T (x).

The following characterization is crucial in the study of maximal monotone
mappings.

Proposition 1.12 (See [18], Chapitre 2, Proposition 2.2) Let T be a map-
ping defined on H. Then the following assertions are equivalent:

(i) T is maximal monotone,

(ii) T is monotone and Im (I + T ) = H,

(iii) for each λ > 0, the resolvent operator (I + λT )−1 is nonexpansive and
dom ((I + λT )−1) = H.

Note that if T is maximal monotone on H, then T−1 and λT (with λ > 0) are
also maximal monotone. Moreover, a very important subclass of maximal
monotone operators is given in the following proposition.
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Proposition 1.13 (See [100], Chapter III, Section 2.13) Let f ∈ Γ0(H).
Then the subdifferential operator ∂f is maximal monotone.

Fundamental properties of maximal monotone operators are displayed in the
following proposition.

Proposition 1.14 (See [10], Chapter 6, Section 7, Proposition 3) Let T be
a maximal monotone operator. Then for any x ∈ dom T , T (x) is closed and
convex. Moreover, T is weakly–strongly (or strongly–weakly) closed.

In the singlevalued case, the following proposition can be interesting to
characterize maximality of a monotone operator.

Proposition 1.15 (See [18], Chapitre 2, Corollaire 2.5) Le T be a monotone
singlevalued operator such that dom T = H. The following properties are
equivalent:

(i) T is maximal monotone,

(ii) T is strongly–weakly closed,

(iii) T is strongly–weakly continuous,

(iv) T is hemi-continuous.

We also recall a criterion for maximal monotone operators to be onto.

Proposition 1.16 (See [132], Chapter 32, Corollary 32.35) Let T be a max-
imal monotone operator. Assume that one of the two following conditions
holds:

(i) dom T is bounded,

(ii) T is weakly coercive.

Then T is onto.

For two maximal monotone operators T1 and T2, we have that T1 + T2

is monotone, but it does not necessarily follow that T1 + T2 is maximal
monotone. Indeed, for example, we can have that dom T1 ∩ dom T2 = ∅.
The following results give additional conditions to require.

Proposition 1.17 (See [108], Theorem 1) Let T1, T2 be maximal monotone
operators defined on H. Suppose that either one of the following conditions
is satisfied:
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(i) int(dom T1)∩ dom T2 �= ∅,
(ii) there exists an element x ∈ cl(dom T1)∩ cl(dom T2) such that T1 is

locally bounded at x.

Then T1 + T2 is maximal monotone.

Proposition 1.18 (See [18], Chapitre 2, Lemme 2.4) If T1 is a maximal
monotone operator defined on H and T2 is a Lipschitz continuous and mono-
tone operator from H to H, then T1 + T2 is maximal monotone.

Proposition 1.19 (See [108], Theorem 3) Let T1 be the subdifferential op-
erator of the indicator function of a nonempty closed convex subset C of H
and T2 be a singlevalued monotone operator such that C ⊂ dom T2 and T2

is hemi-continuous on C, then T1 + T2 is a maximal monotone operator.

Some results for maximal monotone operators can be weakened by using
the following concept of pseudomonotonicity.

Definition 1.11 Let C be a closed convex subset of H. The multivalued
mapping T is said to be pseudomonotone in the sense of Brézis ([17]) on
C if for each sequence {xk}k∈IN ⊂ C, it follows from rk ∈ T (xk), xk ⇀ x
and lim〈rk, xk − x〉 ≤ 0, that for each y ∈ C, there corresponds an element
ry ∈ T (x) such that

〈ry, x − y〉 ≤ limk→+∞〈rk, xk − y〉.

Proposition 1.20 (See [132], Chapter 32, Problem 32.3a) Any singlevalued
weakly–strongly continuous mapping on C is pseudomonotone in the sense
of Brézis on C.

Proposition 1.21 (See [132], Problem 32.3c) Assume that T is a multival-
ued and monotone operator defined on C. If T is strongly–weakly continuous
on line segments of C and for each x ∈ C, T (x) is nonempty, closed and
convex, then T is pseudomonotone in the sense of Brézis on C.

Proposition 1.22 (See [100], Chapter III, Section 2.4) Any maximal mono-
tone operator defined on H and such that dom T = H is pseudomonotone
in the sense of Brézis on H.

Stronger monotonicity conditions are defined here below.
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Definition 1.12 Let C be a closed convex subset of H and T be a multival-
ued mapping defined on H. T is said to be strictly monotone on C if it is
monotone on C and for all x, y ∈ C, and all r(x) ∈ T (x), r(y) ∈ T (y),

〈r(x) − r(y), x − y〉 = 0 ⇒ x = y.

It is strongly monotone on C if there exists a positive constant ᾱ such that,
for each x, y ∈ C, r(x) ∈ T (x), r(y) ∈ T (y),

〈r(x) − r(y), x − y〉 ≥ ᾱ‖x − y‖2.

Other generalized monotonicity concepts are also used in the literature.

Definition 1.13 Let ϕ ∈ Γ0(H) and let C be a closed convex subset of
dom ϕ. T is said to be pseudomonotone over C if for all x, y ∈ C, and all
r(x) ∈ T (x), r(y) ∈ T (y),

〈r(x), y − x〉 ≥ 0 ⇒ 〈r(y), y − x〉 ≥ 0.

T is ϕ-pseudomonotone over C if for all x, y ∈ C, and all r(x) ∈ T (x), r(y) ∈
T (y),

〈r(x), y − x〉 + ϕ(y) − ϕ(x) ≥ 0 ⇒ 〈r(y), y − x〉 + ϕ(y) − ϕ(x) ≥ 0.

Note that the pseudomonotonicity concept of Definition 1.11 is not to be
confused with the concepts presented in Definition 1.13.

1.2.4 Dunn Property

The Dunn property is a concept of generalized monotonicity for singlevalued
mappings that lies strictly between simple and strict monotonicity. This
property was introduced by Browder and Petryshyn in [22] in the context
of computing fixed point solutions. It has been later used in [23], [51] to
establish the convergence of the projection algorithm or also in [85], [46],
[105] in the framework of the auxiliary problem principle. Several other
names are used in the literature as ”cocoercivity” ([83], [126], [135], [136]),
”strong–f–monotonicity” ([80]) and ”firm–nonexpansiveness” ([43]).

Definition 1.14 Let C be a closed convex subset of H. A singlevalued
operator T is said to have the Dunn property over C with modulus γ > 0 if
for all x, y ∈ C,

〈T (x) − T (y), x − y〉 ≥ γ‖T (x) − T (y)‖2.
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The following weaker forms will be also used in this work.

Definition 1.15 Let ϕ ∈ Γ0(H), and let C be a closed convex subset of
dom ϕ. T has the pseudo Dunn property over C with modulus γ > 0 if for
all x, y ∈ C,

if 〈T (x), y − x〉 ≥ 0 holds, then

〈T (y), y − x〉 ≥ γ‖T (x) − T (y)‖2.

T has the ϕ–pseudo Dunn property over C with modulus γ > 0 when for all
x, y ∈ C,

if 〈T (x), y − x〉 + ϕ(y) − ϕ(x) ≥ 0 holds, then

〈T (y), y − x〉 + ϕ(y) − ϕ(x) ≥ γ‖T (x) − T (y)‖2.

It is straightforward that if T has the Dunn property over C, then it has
the ϕ–pseudo Dunn property over C. The converse is not true in general as
it can be seen by taking T (x) = 1/x, C = [1, +∞[ and ϕ = 0. It is obvious
that the Dunn property is strictly weaker than strict or strong monotonicity
(consider, for example, the constant mapping). The Dunn property can
also be stated as the strong monotonicity of the inverse mapping T−1 with
constant γ > 0. When this property holds, the operator T is monotone and
Lipschitz continuous with constant γ−1. Thus, the fact that T is singlevalued
is implied by the Dunn property itself. Moreover, in the case where T is the
G–derivative of a convex function, we have the following result:

Proposition 1.23 (See [14], Corollaire 10) Let C be a closed convex subset
of H. If f : H → IR is convex and G–differentiable, then the two following
assertions are equivalent:

(i) ∇f is Lipschitz continuous with constant L > 0 on C,

(ii) ∇f has the Dunn property with constant L−1 on C.

However, this equivalence is not true in the general nonsymmetric case. For
example, if for all x1, x2 ∈ IR, T (x1, x2) = (−x2, x1), then T is Lipschitz
continuous and monotone on IR2 but does not enjoy the Dunn property.
Nevertheless, we have the following result:

Proposition 1.24 If T is strongly monotone with constant ᾱ > 0 over C
and Lipschitz continuous over C with constant L > ᾱ, then T enjoys the
Dunn property with constant ᾱ/L2 over C.
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Proof. This is straightforward from the definitions. �

In the case where T is G–differentiable, we can define the following dif-
ferentiable form of the Dunn property:

Definition 1.16 Let C be a closed convex subset of H. If the mapping
T is G–differentiable, we say that it satisfies the differentiable form of the
Dunn property on C if there exists some constant γ > 0 such that the matrix
∇T (x)T − γ∇T (x)T∇T (y) is positive semi-definite for all x, y ∈ C. If this
matrix is positive semi-definite for all x = y ∈ C, then we say that T satisfies
the weak differentiable form of the Dunn property.

It is shown in [80] that the differentiable form of the Dunn property implies
the Dunn property and that the converse is true on any open convex subset of
C. Sufficient conditions imposed on ∇T and C to ensure these differentiable
forms are discussed in [80].

1.2.5 Paramonotonicity

The notion of paramonotonicity is a concept that lies strictly between mono-
tonicity and strict monotonicity. In the case of a singlevalued mapping, it is
also strictly weaker than the Dunn property. It was first used in [23] where it
was given no name, then introduced in [28] and further studied in [63]. The
name ”monotonicity–plus” is also used in the literature (See, for example,
[37], [134]).

Definition 1.17 A multivalued operator T is said to be paramonotone on
a convex subset C of H if it is monotone on C and for all x, y ∈ C, and
r(x) ∈ T (x), r(y) ∈ T (y),

〈r(x) − r(y), x − y〉 = 0 ⇒ r(y) ∈ T (x) and r(x) ∈ T (y).

If T is singlevalued, this condition amounts to require that for all x, y ∈ C,

〈T (x) − T (y), x − y〉 = 0 ⇒ T (x) = T (y).

According to the definitions, we have that strict monotonicity on C implies
paramonotonicity on C which in turn implies monotonicity on C. It is easy
to see that these classes are distinct even in the case of linear mappings. For
example, if T (x1, x2) = (x1 −x2, x1), for all x1, x2 ∈ IR, then T is monotone
but not paramonotone; if T (x1, x2) = (x1, 0), for all x1, x2 ∈ IR, then T is
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paramonotone but not strictly monotone.
The next proposition shows that paramonotonicity encompasses at least the
convex optimization case.

Proposition 1.25 (See [24], Proposition 1(i)) If T is the subdifferential of
a convex function f : H → IR, then T is paramonotone on H.

The relevance of paramonotonicity appears in the convergence analysis
of algorithms which generate a sequence {xk}k∈IN expected to converge to
a solution of the problem (GV IP ). Indeed, in many cases one can verify
only that a weak limit point x̄ of {xk}k∈IN satisfies the optimality inequality
for some solution x∗. When the operator is paramonotone, this will be
sufficient to conclude that x̄ is also a solution. This feature is proved in the
next proposition which generalizes Proposition 2.3 of [63].

Proposition 1.26 Let us consider problem (GV IP ) with ϕ ∈ Γ0(H). As-
sume that F is paramonotone on dom ϕ, and let x∗ be a solution of problem
(GV IP ). Then x̄ solves problem (GV IP ) if there exists r̄ ∈ F (x̄) such that

〈r̄, x∗ − x̄〉 + ϕ(x∗) − ϕ(x̄) ≥ 0.

Proof. Assume that

〈r̄, x∗ − x̄〉 + ϕ(x∗) − ϕ(x̄) ≥ 0, (1.3)

for some r̄ ∈ F (x̄) and some solution x∗ of problem (GV IP ) (with r(x∗) ∈
F (x∗) associated with x∗). Since F is monotone and (x∗, r(x∗)) is a solution
of problem (GV IP ), we have that

〈r̄, x̄ − x∗〉 + ϕ(x̄) − ϕ(x∗) ≥ 〈r(x∗), x̄ − x∗〉 + ϕ(x̄) − ϕ(x∗) ≥ 0. (1.4)

Combining (1.3) and (1.4), we obtain that

0 = 〈r̄, x̄ − x∗〉 + ϕ(x̄) − ϕ(x∗)
= 〈r(x∗), x̄ − x∗〉 + ϕ(x̄) − ϕ(x∗). (1.5)

And thus, 〈r̄ − r(x∗), x̄ − x∗〉 = 0, which implies that r(x∗) ∈ F (x̄) since F
is paramonotone. We deduce also from (1.5) that, for all x ∈ dom ϕ:

〈r(x∗), x − x̄〉 + ϕ(x) − ϕ(x̄) ≥ 0.

So, we conclude that x̄ is a solution of problem (GV IP ) and the proof is
complete. �
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Finally, let us mention that when ϕ is the indicator function of a closed
convex subset of H, paramonotonicity is used to ensure convergence of sev-
eral interior point methods with generalized distances (see, for example, [24],
[25], [28]).

In the singlevalued case, the definition of paramonotonicity reveals that
it is equivalent to strict monotonicity of the inverse mapping. So, the Dunn
property, which is equivalent to strong monotonicity of the inverse mapping,
is a property stronger than paramonotonicity. For example, the mapping
defined by T (x) = x3, for all x ∈ IR, is paramonotone but does not sat-
isfy the Dunn property on IR. When T is the G–derivative of a convex
function f , Proposition 1.23 amounts to say that T satisfies the Dunn prop-
erty if and only if T is paramonotone and Lipschitz continuous. However,
it is not true in general. Indeed, if we consider for all x1, x2 ∈ [1, +∞[,
T (x1, x2) = (

√
x1 + x2,

√
x2 − x1), then T is paramonotone and Lipschitz

continuous on [1, +∞[×[1, +∞[ but it does not satisfy the Dunn property
on this set.

Consider now that T is singlevalued and continuously differentiable. Suf-
ficient conditions for paramonotonicity are given in the following proposi-
tion:

Proposition 1.27 (See [63], Proposition 4.2 or [37], Proposition 9) Assume
that T is continuously differentiable on a closed convex subset C of H with
nonempty interior. If for any x ∈ C, sym(∇T (x)) is positive semi-definite
and one of the three following statements holds:

(i) 〈∇T (x) h, h〉 = 0 ⇒ ∇T (x) h = 0, ∀h ∈ H,

(ii) Ker(sym(∇T (x))) ⊂ Ker(∇T (x)),

(iii) Rank(∇T (x)) ≤ Rank(sym(∇T (x))),

then T is paramonotone on C.

This result provides easily checkable conditions since in order to check that
a monotone and differentiable operator is paramonotone, it suffices to verify
that its Jacobian matrix does not loose rank when it is symmetrized. Let
us point out that conditions (ii) and (iii) are trivially satisfied when ∇T (x)
is symmetric for all x ∈ C i.e., when T is the G–derivative of a function
defined on C.
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1.2.6 The Case of Affine Operators in IRn

In this section, we consider operators of the form T (x) = Ax + b with
A ∈ IRn×n, b ∈ IRn. Let C be a closed convex subset of IRn with nonempty
interior. According to the definitions of generalized monotonicity, we have
that T is monotone on C if and only if A is positive semi-definite on C, and
that T is strictly monotone on C if A is positive definite on C (See [63],
Proposition 3.2). In a natural way, we say that A has the Dunn property
with modulus γ > 0 on C if it is the case for T i.e.,

〈Ax, x〉 ≥ γ‖Ax‖2, ∀x ∈ C.

To describe the subclass of paramonotone operators, we need to introduce
the class of positive semi-definite–plus matices.

Definition 1.18 The matrix A ∈ IRn×n is said to be positive semi-definite–
plus (psd–plus) if A is positive semi-definite and for any h ∈ IRn,

〈Ah, h〉 = 0 ⇒ Ah = 0.

It is well–known that any symmetric positive semi-definite matrix is psd–
plus (this follows from the fact that A can be written as A = BTB for some
B ∈ IRn×n by operating a Choleski factorization of A). It can also be easily
seen that if A and A2 are both positive semi-definite, then A is psd–plus (See
[37], Proposition 10). However, the converse of the above assertions does
not hold. So, the following proposition provides necessary and sufficient
conditions for a positive semi-definite matrix to be psd–plus.

Proposition 1.28 (See [37], Proposition 11) Let A be an (n × n) positive
semi-definite matrix. Then the three following conditions are equivalent:

(i) A is psd–plus,

(ii) Ker(sym(A)) ⊂ Ker(A),

(iii) Rank(A) ≤ Rank(sym(A)).

For more details about psd–plus matrices, we refer to [55], [78] and [80].

Obviously, T is paramonotone on C if and only if A is psd–plus (See [37],
Proposition 9). Moreover, it has been shown in [135] (Proposition 3.4) that
A has the Dunn property on C if and only if A is psd–plus. Thus, in the
affine case, paramonotonicity and the Dunn property coincide. To conclude,
let us sum up our comments in one result:
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Proposition 1.29 Let C ⊂ IRn be a convex set with nonempty interior and
take T (x) = Ax + b. Then

(i) T is monotone on C if and only if sym(A) is positive semi-definite,

(ii) T is paramonotone on C
if and only if T has the Dunn property on C
if and only if sym(A) is positive semi-definite and Ker(sym(A)) ⊂
Ker(A),

(iii) T is strictly monotone on C
if and only if sym(A) is positive semi-definite and Ker(sym(A)) = {0}
i.e., sym(A) is positive definite.

1.3 Existence Theory

As observed in the introduction, the general variational inequality problem
(GV IP ) amounts to find a zero of the operator T which is the sum of F and
∂ϕ. One basic result ensuring existence of a zero of a maximal monotone
operator is the following:

Theorem 1.1 (See [108], Proposition 2) Let T be a maximal monotone
operator on H. Suppose that there exists α > 0 such that

〈x, y〉 ≥ 0, whenever ‖x‖ > α, x ∈ dom T, y ∈ T (x).

Then there exists an element x∗ ∈ H such that 0 ∈ T (x∗).

Let us give some comments on the main condition of this theorem. It ob-
viously holds, for example, if the effective domain of T is a bounded set or
if T is coercive on H. When T is the sum of two operators T1 and T2, T is
coercive for example if 0 ∈ dom T1 and T2 is coercive (or vice versa) or if
dom T1 ∩ dom T2 is bounded.

Recall that in our case, T = F + ∂ϕ and the subdifferential mapping of
a proper closed convex function is known to be maximal monotone. The
application of Theorem 1.1 gives the following result:

Theorem 1.2 (See [132], Proposition 32.36) Assume that the following as-
sumptions are satisfied:

• F is monotone on H;
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• ϕ ∈ Γ0(H);

• one of the following three conditions holds:

(i) F is singlevalued and hemi-continuous,

(ii) F is maximal monotone and int(dom F )∩ dom ∂ϕ �= ∅,
(iii) F is maximal monotone and dom F ∩ int(dom ∂ϕ) �= ∅;

• The sum F + ∂ϕ is coercive with respect to 0 i.e., there exist ρ > 0
and x0 ∈ dom F ∩ dom ∂ϕ such that

〈r, x − x0〉 > 0, ∀(x, r) ∈ Graph (F + ∂ϕ) with ‖x‖ > ρ.

Then problem (GV IP ) admits at least one solution.

When F is not maximal monotone but is only pseudomonotone in the sense
of Brézis, we dispose of the following existence result for problem (GV IP ):

Theorem 1.3 (See [132], Problem 32.4, Theorem 32.A) If the following
assumptions are satisfied:

• F is pseudomonotone in the sense of Brézis and bounded;

• ϕ ∈ Γ0(H) and dom ϕ ⊂ dom F ;

• For each x ∈ dom ϕ, the set F (x) is a nonempty closed convex subset
of H;

• F is strongly-weakly continuous on simplices i.e., for each finite subset
S ⊂ dom ϕ, the map F : co(S) → 2H is strongly–weakly continuous;

• F is ∂ϕ–coercive with respect to 0 i.e., there are x0 ∈ dom ∂ϕ and
ρ > 0 such that 〈r, x − x0〉 > 0 for all (x, r) ∈Graph F with ‖x‖ > ρ.

Then problem (GV IP ) has a solution.

Other existence results for problem (GV IP ) (or (V IP )) under pseu-
domonotonicity or other generalized monotonicity assumptions can be found,
for example, in [10], [36], [41], [48], [70], [72], [117]. In these papers, F is
assumed to be upper semi-continuous or upper hemi-continuous.

Concurrently to this, it should be noticed that many real live problems
lead to equations governed by a noncoercive operator. A general approach
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for studying the solvability of such noncoercive problems relies on the asymp-
totic behavior of the sets, functions or operators involved in the problem. It
is called the recession approach.
Consider the problem of finding a zero of a maximal monotone operator T .
The recession function associated to T is the support function of the closed
convex set cl(Im T ):

fT
∞(x) = sup

y∈cl(Im T )
〈x, y〉.

The next theorem ensures the existence of a zero of a non necessarily coercive
operator T .

Theorem 1.4 (See [6], Theorem 4.1) Let T be a maximal monotone oper-
ator defined on H. If the two following conditions are satisfied:

(i) compactness condition:

∀tk → +∞,∀xk ⇀ x with T (tkxk) bounded, we have that xk → x;

(ii) compatibility condition:

fT
∞ ≥ 0 and ker fT

∞ = {x ∈ H : fT
∞(x) = 0} is a subspace ,

then there exists at least one element x∗ ∈ H such that 0 ∈ T (x∗).

To apply this theorem when T is the sum of two maximal monotone opera-
tors T1 and T2, it should be interesting to know when fT1+T2∞ = fT1∞ + fT2∞ .
For that purpose, let us first introduce the following condition: T is said to
satisfy the Brézis–Haraux condition (See [19]) if

sup
(m,n)∈Graph T

〈n − y, x − m〉 < +∞, ∀x ∈ dom T,∀y ∈ Im T.

Situations where a given operator satisfies the Brézis–Haraux condition are
given in [19]. For example, this condition holds for the subdifferential of a
lower semi-continuous proper convex function. And the result is the follow-
ing:

Proposition 1.30 (See [6]) Let T1 and T2 be two maximal monotone oper-
ators defined on H. If T1 and T2 satisfy the Brézis–Haraux condition and
cl(T1 + T2) is maximal monotone, then fT1+T2∞ = fT1∞ + fT2∞ .

For further results based on the recession approach concerning noncoercive
variational inequalities, we refer to [1], [6], [53].
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Chapter 2

The Auxiliary Problem
Method

In this chapter, we first introduce the auxiliary problem framework designed
to solve problems like (GV IP ) and we illustrate its scope by providing some
examples of well–known methods that can be obtained as particular cases.
Then we recall the most representative convergence results that can be found
in the literature for the general auxiliary problem scheme or one instance of
it.

2.1 The Auxiliary Problem Framework and Par-

ticular Instances

As presented in the introduction, the auxiliary problem principle generates,
at iteration k, the following subproblem:

(AP k)



choose r(xk) ∈ F (xk) and

find xk+1 ∈ H such that, for all x ∈ H,

〈r(xk) + λ−1
k (Ωk(xk+1) − Ωk(xk)), x − xk+1〉

+ϕ(x) − ϕ(xk+1) ≥ 0,

where {Ωk}k∈IN is a sequence of auxiliary operators supposed to be strongly
monotone and Lipschitz continuous and {λk}k∈IN is a sequence of positive
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numbers.

Subproblem (AP k) can also be equivalently written under the following
inclusion form:

(AP k)


find xk+1 ∈ H such that,

0 ∈ F (xk) + λ−1
k (Ωk(xk+1) − Ωk(xk)) + ∂ϕ(xk+1).

The assumptions imposed on Ωk and ϕ ensure that each subproblem (AP k)
admits one and only one solution. Indeed, since ∂ϕ is maximal monotone, λk

is a positive real number, Ωk is monotone and Lipschitz continuous, we have
that λ−1

k Ωk + ∂ϕ is maximal monotone (see Proposition 1.18). Moreover,
λ−1

k Ωk + ∂ϕ is strongly monotone and thus coercive. It follows then from
Theorem 1.1 that subproblem (AP k) admits at least one solution. More-
over, strict monotonicity of λ−1

k Ωk + ∂ϕ implies that this solution is unique.

Recall that when the auxiliary operator Ωk is chosen as the gradient of
some continuously differentiable and strongly convex function Kk, problem
(AP k) reduces to the minimization problem:

(SAP k)


choose r(xk) ∈ F (xk) and

find xk+1 the solution of

minx∈H{λ−1
k Kk(x) + ϕ(x) + 〈r(xk) − λ−1

k ∇Kk(xk), x − xk〉 }.

The fact that F appears only through the linear part 〈r(xk), x−xk〉 in the
minimization subproblem (SAP k) has motivated the use of this method to
build up decomposition algorithms. Parallel decomposition can be achieved
when H is the product of N Hilbert spaces and ϕ is additive with respect to
this decomposition. Indeed, problem (SAP k) splits up into N independent
minimization subproblems provided that the auxiliary function Kk is chosen
additive with respect to the structure. Combination of this approach with
the relaxation principle leads to relaxed algorithms studied in [30], [31], [34]
for differentiable and nondifferentiable optimization. Besides the optimiza-
tion field, the auxiliary problem principle has been applied in many areas
(see the references cited in the introduction).
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Strongly related to the class of auxiliary problem methods is the cost
approximation framework of Patriksson (see [102]). In that work, the so-
lution of the auxiliary problem (AP k) is used to define a feasible search
direction. Then, a step is taken in that direction through a (possibly inex-
act) line search with respect to a merit function for problem (GV IP ). This
step defines a new iteration point and the process is repeated. Note that
Patriksson limits himself to the case where the operator F is singlevalued
and H is of finite dimension.

In the sequel, we will see that by appropriately choosing the sequence
{Ωk}k∈IN (or {Kk}k∈IN ), many well–known algorithms to solve problem
(GV IP ) fall within the auxiliary problem scheme. The fact that the auxil-
iary operator can change at each iteration allows a great degree of flexibility
and is crucial for application to methods like Newton’s method for example.

• LINEAR APPROXIMATION METHODS

Consider the classical variational inequality problem (V IP ) in H =
IRn and let the sequence of auxiliary operators {Ωk}k∈IN take the form

Ωk(x) = D(xk) x, ∀k ∈ IN, ∀x ∈ IRn,

where D(xk) is a (n× n) positive definite matrix. So, with λk = 1 for
all k, subproblem (AP k) reduces to choose r(xk) ∈ F (xk) and find xk+1 ∈ C such that,

〈r(xk) + D(xk)(xk+1 − xk), x − xk+1〉 ≥ 0, ∀x ∈ C.
(2.1)

Adequate choices of the matrix D(xk) lead to different well–known
methods:

– Projection Methods

If we take D(xk) = Gk, with Gk a symmetric positive definite ma-
trix, then it is easy to see that the point xk+1 solving subproblem
(2.1) is precisely the projection of the point xk − (Gk)−1r(xk)
onto the closed convex set C with respect to the Gk–norm, i.e. xk+1 = projG

k

C (xk − (Gk)−1r(xk))

with r(xk) ∈ F (xk),
(2.2)
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where for a given vector z, ‖z‖Gk =
√

zT Gkz and projG
k

C z is the
unique solution of

min
x∈C

‖z − x‖Gk .

Projection methods for (V IP ) are studied, for example, in [55],
[83], [99], [126].

When F is the subdifferential mapping of a function f and Gk =
I, subproblem (2.2) characterizes the projected subgradient method
to solve the constrained optimization problem (COP ). We refer
to [4], [34], and the references cited therein for more details on
this procedure.

– Newton–like Methods

When F is singlevalued and continuously differentiable, the fol-
lowing choices for D(xk) are possible:

D(xk) = ∇F (xk) (Newton),
≈ ∇F (xk) (quasi–Newton),
= sym(∇F (xk)) (symmetrized Newton),
= diag(∇F (xk)) (linearized Jacobi),

= l(∇F (xk))+diag(∇F (xk))
ω (successive over-relaxation),

= u(∇F (xk))+diag(∇F (xk))
ω ,

with

diag(∇F (xk)) = the diagonal part of ∇F (xk),
l(∇F (xk)) = the lower triangular part of ∇F (xk),
u(∇F (xk)) = the upper triangular part of ∇F (xk),
ω ∈]0, 2[.

We refer to [99] for more details and references about these meth-
ods.

Obviously, when F is the gradient of a function f twice differen-
tiable, we recover the classical Newton–type methods for solving
the constrained optimization problem (COP ).
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• SPLITTING METHODS

Consider problem (GV IP ) under the inclusion form:

find x∗ ∈ H : 0 ∈ F (x∗) + ∂ϕ(x∗).

The auxiliary problem framework can be viewed as a splitting scheme
since it exploits the special structure of problem (GV IP ) by treating
separately F and ∂ϕ. Indeed, subproblem (AP k) can be equivalently
written under a forward–backward form where a forward step for F is
followed by a backward step for ∂ϕ:

(AP k)

 xk+1 = (Ωk + λk∂ϕ)−1(Ωk(xk) − λkr(xk)),

with r(xk) ∈ F (xk).

If we take for Ωk the identity mapping, then we recover the classical
forward–backward scheme. This algorithm has been extensively stud-
ied in the literature (see, for example, [29], [51], [77], [101], [127]).

Other classes of methods can be derived by choosing an auxiliary op-
erator Ωk which depends on F or some part of F . For example, if
we choose Ωk(x) = x + λkF (x) (assuming that F is singlevalued),
the forward–backward procedure reduces to a backward step and thus
turns into the proximal point algorithm for the mapping F + ∂ϕ:

xk+1 = (I + λk(F + ∂ϕ))−1xk.

The literature about the proximal point method and its generaliza-
tions is very large. We just mention here some representative papers
such as [43], [84], [109].

These two applications follow from extreme choices for the mapping
Ωk. Now, consider the splitting of F , F = F1+F2 with F1 singlevalued.
We can make an intermediate choice for the auxiliary operator Ωk by
taking:

Ωk(x) = x + λkF1(x).

This choice leads to the following procedure: xk+1 = (I + λk(F1 + ∂ϕ))−1(xk − λkr2(xk)),

with r2(xk) ∈ F2(xk).
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Obviously, the extreme splitting where F1 = 0 and F2 = F leads to
the typical forward–backward scheme while the splitting where F1 = F
and F2 = 0 reduces to the proximal point procedure.

Each algorithm that we have shown to be a particular instance of the
auxiliary problem method includes a large variety of methods depending
on the problem formulation and the context of application. For further
references about these methods, we refer to the book of Patriksson (see
[102]) where he shows the connections among classes of algorithms for the
solution of instances of problem (GV IP ) and he provides a large number of
examples that can be described within this framework.

2.2 Convergence of the Auxiliary Problem Method

An important research work is devoted to the convergence study of the aux-
iliary problem type algorithms. In recent years, the convergence has been
established under weaker and weaker monotonicity assumptions on F . In
the sequel, we recall the most representative results existing for the scheme
described by subproblems (AP k) or one particular instance. We will treat
separately the case where F is singlevalued and the case where it is multival-
ued. Indeed, the multivalued case requires in general stronger assumptions
on F . Moreover, the selection rule for the stepsizes {λk}k∈IN is different.
In the singlevalued case, the sequence {λk}k∈IN is bounded away from zero
while in the multivalued case, this sequence converges (but not too fast) to
zero. We find the same phenomenon when we pass from differentiable to
nondifferentiable optimization (compare [31] and [34]).

Before going on further, let us mention that if the strong monotonicity
of the operator F is in general superfluous to ensure convergence of the aux-
iliary problem method, monotonicity of F without any additional condition
does not suffice. To illustrate this, consider the problem of finding a zero of
the operator F of rotation by π/2 in IR2. So, F is the linear and monotone
mapping defined by F (x1, x2) = (−x2, x1), for all x1, x2 ∈ IR. If we choose
Ωk = I and λk = λ, for each k ∈ IN , subproblem (AP k) reduces to

xk+1 = xk − λF (xk), i.e. xk+1
1 = xk

1 + λxk
2 ,

xk+1
2 = xk

2 − λxk
1 .
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Hence, we have
‖xk+1‖2 = (1 + λ2) ‖xk‖2.

So that, the norm of the iterates strictly increases for any positive λ. And
thus, the sequence generated can’t converge towards the unique zero x∗ =
(0, 0) of the operator F .

2.2.1 The Singlevalued Case

When F is singlevalued, the convergence results can be classified in two
groups following that the conditions imposed on F concern F alone or F
and the sequence {Ωk}k∈IN together. In the first group, the auxiliary oper-
ators are symmetric and assumptions like -F is strongly monotone- (see, for
example, [33], [46]) or -F has the (pseudo) Dunn property- (see, for example,
[46], [85], [136]) are considered. In the second group, the auxiliary operators
are not necessarily symmetric and assumptions linking F and {Ωk}k∈IN can
take the form of a contraction condition as in [40], [99] or the form of a
Dunn condition as in [105], [126] and [136].

For the first group, the next result establishes the convergence of the
algorithm defined by the minimization subproblems (SAP k) when the aux-
iliary function is not iteration dependent so that Kk = K for all k.

Theorem 2.1 Let H = IRn and ϕ ∈ Γ0(H). Assume that the solution set
of problem (GV IP ) is nonempty, K : H → IR is continuously differentiable
and strongly convex over dom ϕ (with modulus β > 0), and its derivative
∇K is Lipschitz continuous over dom ϕ (with constant Λ > 0). If F is
continuous and satisfies the Dunn property over dom ϕ with modulus γ > 0
and there exists λ > 0 such that λ < λk < 2βγ for all k, then the sequence
{xk}k∈IN generated by solving subproblems (SAP k) with Kk = K for all k,
is bounded and converges to some solution of problem (GV IP ).

The proof of this result can be found in [136] (Theorem 3.2) when λk = λ for
all k and ϕ = f + ΨC with f a continuous and finite–valued convex function
and C a closed convex subset of IRn, or in [46] (Theorem 3 and Corollary
1) when ϕ = ΨC and the Dunn condition on F is replaced by the weaker
requirement that F satisfies the pseudo Dunn condition over C.

When F is strongly monotone over dom ϕ with constant ᾱ > 0 and Lips-
chitz continuous over dom ϕ with constant L > 0, then it obviously satisfies
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the (pseudo) Dunn condition with modulus ᾱ/L2 (see Proposition 1.24).
Hence the condition ”λ < λk < 2βγ, for all k” reduces to ”λ < λk <
2βᾱ/L2, for all k”. In that case, Theorem 2.1 can be directly transposed
to an infinite dimensional space H with as conclusion that the sequence
{xk}k∈IN strongly converges to the unique solution of problem (GV IP ). By
this way, we recover the convergence results of [33] (Theorem 2.2) and [46]
(Theorem 2).

Now, if we allow the auxiliary operator to be non necessarily symmetric,
the convergence results at our disposal impose a condition that links F and
Ωk. In order to solve the classical variational inequality problem (V IP ) in
the finite dimensional case, Pang and Chan consider in [99], the linearization
methods described by problems (AP k) with Ωk(x) = D(xk) x where D(xk)
is an (n × n) matrix and λk = 1 for all k (see subproblem (2.1)). They
obtain the following result:

Theorem 2.2 (See [99], Theorem 2.9) Let H = IRn and let C be a nonempty
closed convex subset of H. Assume that problem (V IP ) admits a solution,
F is continuous on C, D(·) is bounded on bounded subsets of C, and the
following condition holds:

Condition (PCH):
there exists a symmetric positive definite matrix G such that, for all x ∈ C,
D(x) − G is positive semi-definite on C and there exists a positive constant
b < 1 such that, for all x, y ∈ C:

‖G−1[F (y) − F (x) − D(y)(y − x)]‖G ≤ b‖y − x‖G.

Then the sequence {xk}k∈IN generated by the linear approximation method
(2.1) converges to a solution of problem (V IP ) for any initial vector x0 ∈ C.

Note that Pang and Chan also provide a local version of this result and
apply it to methods like Newton.

This contraction approach is also used by Dafermos in [40] to solve prob-
lem (V IP ) in finite dimension. To see that the auxiliary problems (AP k)
can be encompassed in the general framework of Dafermos, let us write the
auxiliary operators under the form Ω(xk, ·) instead of Ωk. With this con-
vention and if λk = 1 for all k ∈ IN , subproblem (AP k) can be seen as a
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particular instance of Dafermos scheme: find xk+1 ∈ C such that, for all x ∈ C,

〈g(xk+1, xk), x − xk+1〉 ≥ 0,

by choosing:
g(x, y) = F (y) + Ω(y, x) − Ω(y, y).

Then the following result can be deduced:

Theorem 2.3 (See [40], Theorem 2.1) Let H = IRn and let C be any
nonempty closed convex subset of H. Assume that C is bounded, F is con-
tinuously differentiable, the auxiliary operator Ω is differentiable in x and y
and has a positive definite Jacobian with respect to y in H × H. Moreover,
suppose that the following norm condition holds:

Condition (DAF):

‖[sym(Ωy(y1, x1))]−1/2 [∇F (y2) + Ωx(y2, x2) − Ωx(y2, y2) − Ωy(y2, y2)]

[sym(Ωy(y3, x3))]−1/2‖ < 1, ∀x1, x2, x3, y1, y2, y3 ∈ C,

where the subscripts x and y indicate partial differentiation.

Then the sequence {xk}k∈IN generated by solving problems (AP k) with λk =
1 for all k ∈ IN , converges to the unique solution of problem (V IP ).

Dafermos shows that Condition (DAF ) implies that F is stricly monotone
on C (see [40], Proposition 2.3) such that problem (V IP ) has at most one
solution. Moreover, as observed by Dafermos, the requirement that C is
bounded can be dropped if Ω is strongly monotone with respect to y and if
the left-hand side of Condition (DAF ) remains bounded away from 1 uni-
formly in x1, x2, x3, y1, y2, y3 ∈ C i.e.

Condition (SDAF):
there exists a positive constant b < 1 such that,

‖[sym(Ωy(y1, x1))]−1/2 [∇F (y2) + Ωx(y2, x2) − Ωx(y2, y2) − Ωy(y2, y2)]

[sym(Ωy(y3, x3))]−1/2‖ < b, ∀x1, x2, x3, y1, y2, y3 ∈ C.
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But in that case, it can be proven that F is strongly monotone on C (see
[79], Section 4, Proposition 4).

The Conditions (DAF ) and (SDAF ) are difficult to verify when Ω is iter-
ation dependent since they involve any points x1, x2, x3, y1, y2, y3 in C. In
their study of averaging schemes, Magnanti and Perakis (see [79]) consider
a similar condition but with x1 = x2 = x3 = y1 = y2 = y3. In that case,
Condition (SDAF ) appears as a differential form of the following one:

Condition (PCH):
there exists a symmetric positive definite matrix G such that, for all x ∈ C,
Ω(x, ·) − G is monotone over C and there exists a positive constant b < 1
such that, for all x, y ∈ C:

‖G−1[F (y) − F (x) − (Ω(y, y) − Ω(y, x))]‖G ≤ b‖y − x‖G.

Observe that this last condition reduces to Condition (PCH) when Ω(x, y) =
D(x) y.
However, Dafermos provides examples showing that Condition (DAF ) cor-
responds to the classical convergence condition when applied, for example,
to the projection algorithm.

Other results are based on a kind of Dunn condition that links F and
{Ωk}k∈IN . For example, we can use the result of Renaud and Cohen (see
[105]) to derive the convergence of the auxiliary problem method defined by
problems (AP k) with λk = λ for all k and

Ωk = Ω = ∇h + λL, ∀k ∈ IN, (2.3)

where h is a continuously differentiable function from H to IR and L is a
singlevalued mapping from H into H. Note that this decomposition of Ω
is quite natural as it will be explained in Chapter 4. Then we obtain the
following result:

Theorem 2.4 (See [105], Theorem 3.4) Let ϕ ∈ Γ0(H). Assume that prob-
lem (GV IP ) admits at least one solution and that F +∂ϕ is maximal mono-
tone. Let the derivative of h be strongly monotone with modulus β > 0 on
dom ϕ and Lipschitz continuous over any bounded subset of H, and let L−F
be hemi-continuous. Moreover, suppose that the following condition holds:
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Condition (RC):
There exists a positive constant γ such that, for all x, y ∈ dom ϕ, for all
ϕx ∈ ∂ϕ(x) and ϕy ∈ ∂ϕ(y):

〈F (x) + ϕx − F (y) − ϕy, x − y〉 ≥ γ‖F (x) − L(x) − F (y) + L(y)‖2.

If 0 < λ < 2βγ, then the sequence {xk}k∈IN generated by solving subproblems
(AP k) with Ωk taking the form (2.3), is bounded, and every weak limit point
is a solution of problem (GV IP ). Moreover, if ∇K is weakly continuous
on H, then the sequence {xk}k∈IN weakly converges to a solution of problem
(GV IP ). Finally, if F + ∂ϕ is strongly monotone, then {xk}k∈IN strongly
converges to the unique solution of (GV IP ).

A slightly stronger condition for convergence is imposed in [136] (Theorem
4.1) for the case where H is a finite dimensional space. Indeed, instead
of (RC), they require L to be monotone and F − L to satisfy the Dunn
property. Tseng proposes also a similar condition (see [126], Proposition 2)
for the more particular case where Ωk(x) = Dx for all k, where D is an (n×
n) positive definite matrix which is not necessarily symmetric. Moreover,
he shows that this condition is implied by Condition (PCH) when F is
Lipschitz continuous (see [126], Proposition 3).

2.2.2 The Multivalued Case

In the multivalued case, the auxiliary operators are generally given by gra-
dient mappings such that Ωk = ∇Kk for all k. Moreover, the stepsizes
{λk}k∈IN are chosen such that

λk > 0, ∀k ∈ IN,
+∞∑
k=0

λ2
k < +∞, and

+∞∑
k=0

λk = +∞. (2.4)

As it can be seen in the convergence proofs, this selection rule ensures that
the stepsizes are small enough to guarantee boundedness of the sequence but
not too small to ensure convergence to a solution of the problem. This rule
is also considered in the literature for non smooth minimization problems
(see [4], [12], [34], [35], [103]). When F is supposed to be strongly mono-
tone, Cohen proves the strong convergence of the auxiliary problem scheme
(SAP k) to the unique solution of problem (GV IP ).
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Theorem 2.5 (See [33], Theorem 3.1) Let ϕ ∈ Γ0(H). Assume that prob-
lem (GV IP ) admits at least one solution, K is differentiable and strongly
convex over dom ϕ (with modulus β > 0). If the sequence {λk}k∈IN satisfies
the rule (2.4), F is strongly monotone over dom ϕ (with modulus ᾱ) and is
such that

∃ a, b > 0 : ‖r(x)‖ ≤ a‖x‖ + b, ∀x ∈ dom ϕ,∀r(x) ∈ F (x),

then the sequence {xk}k∈IN generated by solving subproblems (SAP k) with
Kk = K for all k, strongly converges to the unique solution of problem
(GV IP ).

Motivated by the fact that, in many applications, the mapping F is not
strongly monotone, Zhu proposed very recently in [134] a result based on
the concept of paramonotonicity which lies between monotonicity and strong
monotonicity. So, Zhu obtains the following result for the auxiliary problem
scheme (SAP k) to solve problem (V IP ).

Theorem 2.6 (See [134], Theorem 1) Let C be any nonempty closed convex
subset of H. Assume that problem (V IP ) admits at least one solution and
that the following conditions are satisfied:

(i) for each k ∈ IN,Kk : H → IR is continuously differentiable and strongly
convex with modulus βk ≥ β > 0 over C;

(ii) for each k ∈ IN , there exists a positive number ηk such that, for all
x, y ∈ C:

Kk+1(x) − Kk+1(y) − 〈∇Kk+1(y), x − y〉

≤ ηk(Kk(x) − Kk(y) − 〈∇Kk(y), x − y〉);

(iii) there exists a positive number β′ such that, for all k ∈ IN ,

βk/M
k ≥ β′,

where Mk =
∏k−1

j=0 ηj;

(iv) the sequence {λk/M
k}k∈IN satisfies the rule (2.4);

(v) F is paramotone over C;
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(vi) for any bounded sequence {zk}k∈IN of C, the sequence {rk}k∈IN with
rk ∈ F (zk) is bounded, and there exist subsequences {zk′}k′∈K⊂IN and
{rk′}k′∈K⊂IN such that

zk′
⇀ z̄, rk′

⇀ r̄, r̄ ∈ F (z̄), and lim
k′→∞

〈rk′
, zk′〉 ≥ 〈r̄, z̄〉;

(vii)
∃ a, b > 0 : ‖r(x)‖ ≤ a‖x‖ + b, ∀x ∈ C,∀r(x) ∈ F (x).

Then the sequence {xk}k∈IN generated by solving the auxiliary subproblems
(SAP k) with ϕ = ΨC is bounded and at least one of its weak limit points is
a solution of problem (V IP ).

Moreover, Zhu shows that any weak limit point is a solution if in addition to
the assumptions of Theorem 2.6 (unless condition (vi)), the operator F sat-
isfies the following property (where x∗ denotes a solution of problem (V IP )):

Condition (ZHx∗):
There exist a constant α > 0 and a function l Lipschitz continuous on any
compact subset of C such that,

〈r(y), y − x∗〉 ≥ α(l(y) − l(x∗)), ∀y ∈ C, ∀r(y) ∈ F (y), and
l(y) = l(x∗), if y is a solution of problem (V IP ),
l(y) > l(x∗), otherwise.

As observed by Zhu, this property holds for some important mappings such
as strongly monotone multivalued mappings, or paramonotone and Lipschitz
continuous mappings, or the subdifferential mappings of any functions of
Γ0(H) which are Lipschitz continuous on any compact subset of C. More
details about this kind of condition will be given in Chapter 5.

2.3 Projection Methods for Singular and Linear

Variational Inequalities in Finite Dimension

In this section, we give some comments on the results presented in [55] by
Goeleven, Stavroulakis, Salmon and Panagiotopoulos. In that paper, the
authors study projection methods to solve affine variational inequalities of
the form:

(AV IP )

 find x∗ ∈ C such that, for all x ∈ C,

〈Mx∗ − q, x − x∗〉 ≥ 0,
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where C is a nonempty closed convex subset of IRn, M is an (n×n) positive
semi-definite matrix and q is a vector of IRn. This is a particular instance
of problem (V IP ) with F (x) = Mx− q and H = IRn. This type of problem
is encountered, for example, in unilateral contact applications where x and
x∗ are displacement vectors, C is the kinematically admissible set, q is the
loading initial strain vector and M is the stiffness matrix. As discussed in
[55], if rigid body displacements or rotations can’t be excluded, then the re-
sulting matrix M is singular. This motivates the development of algorithms
which do not require the matrix M to be positive definite. The purpose of
paper [55] is to show that symmetric and asymmetric projection methods
are particularly well suited to solve this kind of problem and to show how
theory applies to concrete engineering problems as the unilateral cantilever
problem or the elastic stamp problem.

For the symmetric projection method, recall that the iterates are gener-
ated by the following rule:

xk+1 = (G + λ∂ΨC)−1(Gxk − λ(Mxk − q)),

where G is a symmetric positive definite matrix and λ > 0. The conver-
gence of this sequence {xk}k∈IN to a solution of problem (AV IP ) is ensured
(see [55], Theorem 2.2) provided that problem (AV IP ) admits at least one
solution, that the matrix M has the Dunn property with modulus γ > 0
and 0 < λ < 2γ/‖G−1‖. Note that this result follows directly from Theo-
rem 2.1. Now, when M is only positive semi-definite but does not have the
Dunn property, Goeleven et al. propose the use of an asymmetric projection
method described as follows:

xk+1 = ((G − λQ) + λ∂ΨC)−1((G − λQ)xk − λ(Mxk − q)),

where G is a symmetric positive definite matrix, λ > 0, and Q is the
skew–symmetric matrix defined by Q = (MT − M)/2. It is shown in [55]
that if the problem (AV IP ) admits at least one solution and 0 < λ <
4‖M +MT ‖−1/‖G−1‖, then the sequence generated by this asymmetric pro-
jection method converges to a solution of problem (AV IP ). Note that this
result can be deduced from Theorem 2.4. Indeed, the asymmetric projection
iteration is a particular case of subproblem (AP k) where Ωk = Ω = G−λQ,
and λk = λ for all k. Hence, we have to take

h(x) = (1/2)xT Gx and L = −Q
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in the decomposition of Ωk considered in Theorem 2.4. Then in this case,
Condition (RC) is satisfied since F (x) − L(x) = (1/2)(M + MT )x − q, and
M + MT has the Dunn property since it is positive semi-definite and sym-
metric (see Proposition 1.28).

Moreover, conditions ensuring the existence of a solution of problem
(AV IP ) are proposed by Goeleven et al. They are based on the concept of
recession cone. Let C be a nonempty subset of IRn, the recession cone of C
is the closed cone C∞ defined by: x belongs to C∞ if and only if there exist
sequences {tn}n∈IN > 0 and {χn}n∈IN ⊂ C such that tn → +∞, t−1

n χn → x.
If C is closed and convex, then

C∞ = ∩λ>0
C − x0

λ
,

where x0 is any element in C.

Let M be a general positive semi-definite matrix. Then the existence of
at least one solution of problem (AV IP ) is guaranteed (see [53]) provided
that

∃x0 ∈ C, ∀x ∈ Ker(M + MT ) ∩ C∞ \ {0} : 〈q − Mx0, x〉 < 0.

When M has the Dunn property, this condition can be replaced by the less
restrictive one (see [55], Theorem 2.2):

〈q, x〉 < 0, ∀x ∈ Ker(M) ∩ C∞ \ {0}.

Example 2.1 Let C = {(x1, x2) ∈ IR2 : x1 > 0, x1x2 ≥ 1}, and let M be
defined by

M =

(
a −ka

−ka k2a

)
,

with a, k > 0. The matrix M is symmetric, positive semi-definite and has
the Dunn property over C with modulus γ = ((k2 + 1)a)−1 > 0. Moreover,
we have that Ker(M) = {(x1, x2) : x1 = kx2}, and thus the condition
”〈q, x〉 < 0, ∀x ∈ Ker(M) ∩ IR2

+ \ {(0, 0)}” is equivalent to ”kq1 + q2 < 0”.

These solvability conditions are discussed in details in the applications con-
sidered in [55].

45



Chapter 3

Perturbation Methods

In the first section, we introduce and illustrate the convergence notion of
Mosco for convex sets and functions and we discuss its use to approximate
solutions of the original problem. In the second section, this variational con-
vergence notion is coupled with the auxiliary problem principle to generate a
general family of perturbation methods. We recall the most representative
results existing for some particular instances of this framework and com-
ment their weaknesses. In the last section, we introduce and motivate a rate
of convergence notion for convex functions that will be used in subsequent
chapters.

3.1 Convergence of Mosco and Approximation of

Variational Inequalities

In the optimization setting and more generally to solve variational inequal-
ity problems, one often uses an algorithmically generated sequence of ap-
proximations of the admissible set, objective function or operator to obtain
approximated subproblems with better computational properties. The ap-
proximations have to be constructed such that the sequence of points gen-
erated by the procedure accumulates at a solution of the original problem.
We call variational convergence a concept which is particularly well designed
for that purpose. A well-known notion of variational convergence is due to
Mosco (see Ref. [87]) and originates from difficulties encountered in the ap-
proximation of the solutions of variational inequalities. First, we recall the
Mosco–convergence for closed convex subsets of H.
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Definition 3.1 (See Ref. [5], Definition–Proposition 3.21) Let Ck, C be
nonempty closed convex subsets of H. The sequence {Ck}k∈IN is said to
be Mosco–convergent to C, which is denoted shortly by Ck M→ C, if and only
if the two following conditions hold:

(i) if for some sequence {kn}n∈IN ⊂ IN , wkn ∈ Ckn for all kn and {wkn}n∈IN

weakly converges to w, then one has w ∈ C;

(ii) for all w ∈ C, there exists a sequence {wk}k∈IN such that wk ∈ Ck for
all k and {wk}k∈IN strongly converges to w.

The geometric interpretation of the Mosco–convergence of convex sets is
given in the following proposition.

Proposition 3.1 (See [5], Theorem 3.33) Let {Ck}k∈IN , C be nonempty
closed convex subsets of H. The following statements are equivalent:

(i) Ck M→ C,

(ii) ∀x ∈ H : projCk x → projC x,

(iii) ∀x ∈ H : dist(x,Ck) → dist(x,C).

Mosco also defines a convergence notion for convex functions by saying that
a sequence of functions {ϕk}k∈IN converges to ϕ if the sequence of epigraphs
of ϕk converges in the sense of Definition 3.1 to the epigraph of ϕ. This
notion can be characterized in the following way:

Definition 3.2 (See [87], Definition 1.4, Lemma 1.10) Let {ϕk}k∈IN , ϕ ∈
Γ0(H). The sequence {ϕk}k∈IN is Mosco–convergent to ϕ, which we denote
by ϕk M→ ϕ, if and only if the two following conditions hold for all w ∈ H:

(i) for every sequence {wk}k∈IN weakly converging to w, one has

limk→∞ϕk(wk) ≥ ϕ(w);

(ii) there exists a sequence {wk}k∈IN strongly converging to w such that

limk→∞ϕk(wk) ≤ ϕ(w).

Remark 3.1 It follows from this definition that if ϕk M→ ϕ, then any w ∈ H
is the limit in the strong topology of a sequence {wk}k∈IN such that

lim
k→∞

ϕk(wk) = ϕ(w).
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Observe also that when ϕ ≤ ϕk for all k, condition (i) obviously holds. Note
that in finite dimension, the concept of Mosco–convergence of functions co-
incide with that of epiconvergence (see, for example, [7], [5]).

The Mosco–convergence of a sequence of functions is connected to the simple
convergence of the Moreau–Yosida approximates by the following proposi-
tion.

Proposition 3.2 (See [5], Theorem 3.26) Let {ϕk}k∈IN , ϕ ∈ Γ0(H).

ϕk M→ ϕ ⇔ ∀λ > 0, ∀x ∈ H, ϕk
λ(x) → ϕλ(x).

Recall that the Moreau–Yosida approximate of a function ϕ ∈ Γ0(H) is
defined for all λ > 0 and all x ∈ H by:

ϕλ(x) = inf
y∈H

{ϕ(y) + (1/2λ)‖y − x‖2}.

Based on this property, some authors use the following semi–distance be-
tween two functions ϕ1, ϕ2 ∈ Γ0(H) introduced in [8]:

Definition 3.3 Let ϕ1, ϕ2 ∈ Γ0(H). For all λ > 0 and all ρ ≥ 0, we define:

dλ,ρ(ϕ1, ϕ2) = sup
‖x‖≤ρ

|ϕ1
λ(x) − ϕ2

λ(x)|.

The Mosco–convergence is then connected to the semi–distance dλ,ρ (λ >
0, ρ ≥ 0) by the following proposition:

Proposition 3.3 (See [8], Theorem 2.51) Let {ϕk}k∈IN , ϕ ∈ Γ0(H). If there
exists λ0 > 0 such that

lim
k→∞

dλ0,ρ(ϕk, ϕ) = 0, ∀ρ ≥ 0,

then ϕk M→ ϕ. The converse is true when H is finite dimensional.

The use of the Mosco–convergence in the optimization field is based on
the following property: if ϕk M→ ϕ, then the sequence {uk}k∈IN defined
by uk ∈ argminx∈H ϕk(x) for each k, weakly accumulates at a solution
ū ∈ argminx∈H ϕ(x) (see [5], Theorem 1.10). This result will be generalized
for problem (GV IP ). Adopting the point of view of variational convergence,
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problem (GV IP ) can be perturbed by replacing the original function ϕ by
an approximate function ϕk to get the new problem:

(PGV IP k)

 find uk ∈ H and r(uk) ∈ F (uk) such that, for all x ∈ H,

〈r(uk), x − uk〉 + ϕk(x) − ϕk(uk) ≥ 0.

Assumptions ensuring that the sequence {uk}k∈IN weakly accumulates at a
solution of problem (GV IP ) will be set in Theorem 3.1 below but to prove
it we need the following lemma:

Lemma 3.1 Let ϕ ∈ Γ0(H) and let F be an upper hemi-continuous mul-
tivalued operator with nonempty convex and weakly compact values. If for
some ū ∈ dom ϕ,

〈r(y), y − ū〉 + ϕ(y) − ϕ(ū) ≥ 0, ∀y ∈ dom ϕ, ∀r(y) ∈ F (y),

then there exists some r̄ ∈ F (ū) such that

〈r̄, y − ū〉 + ϕ(y) − ϕ(ū) ≥ 0,∀y ∈ dom ϕ,

which means that ū is a solution of problem (GV IP ).

Proof. The proof will be composed of two parts.
• Firstly, we prove that condition (3.1) here below is sufficient to ensure
that ū is a solution of problem (GV IP ):

∀y ∈ dom ϕ, inf
r∈F (ū)

{ 〈r, ū − y〉 + ϕ(ū) − ϕ(y) } ≤ 0. (3.1)

So, let us suppose that ū satisfies (3.1). Then, we have that

sup
y∈dom ϕ

inf
r∈F (ū)

{ 〈r, ū − y〉 + ϕ(ū) − ϕ(y) } ≤ 0.

Since dom ϕ is nonempty and convex, F (ū) is nonempty, convex and weakly
compact, the function f(r, y) = 〈r, ū − y〉 + ϕ(ū) − ϕ(y) is linear in r and
concave in y, we can apply the classical minsup theorem (see, for example,
[117] p.433 or also [9], Chapter 2, Section 7, Theorem 1) to obtain that

supy∈dom ϕ minr∈F (ū) { 〈r, ū − y〉 + ϕ(ū) − ϕ(y) }

= minr∈F (ū) supy∈dom ϕ { 〈r, ū − y〉 + ϕ(ū) − ϕ(y) }.
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And hence, there exists r̄ ∈ F (ū) such that

sup
y∈dom ϕ

{ 〈r̄, ū − y〉 + ϕ(ū) − ϕ(y) } ≤ 0.

Therefore,
〈r̄, ū − y〉 + ϕ(ū) − ϕ(y) ≤ 0, ∀y ∈ dom ϕ

i.e., ū solves problem (GV IP ).
• Secondly, we prove the lemma by contradiction. For that, let us assume
that ū does not solve problem (GV IP ). By the first part of the proof, it
follows that ū does not satisfy (3.1) so that there exists an element ȳ in dom
ϕ such that

〈r, ū − ȳ〉 + ϕ(ū) − ϕ(ȳ) > 0, ∀r ∈ F (ū). (3.2)

For all λ ∈]0, 1], set ȳλ = ū + λ(ȳ − ū) and consider the mapping γ:

λ → γ(λ) = { 〈rλ, ū − ȳ〉 + ϕ(ū) − ϕ(ȳ) : rλ ∈ F (ȳλ) }.

From (3.2), IR+
0 is a neighborhood of the set γ(0). Moreover, since F is

upper hemi-continuous at ū, we have that γ is upper semi-continuous at 0+,
and thus that γ(λ̃) ⊂ IR+

0 for all λ̃ ∈]0, 1] sufficiently small. This means that

〈rλ̃, ū − ȳ〉 + ϕ(ū) − ϕ(ȳ) > 0, ∀ rλ̃ ∈ F (ȳλ̃).

From the convexity of ϕ, we derive that

〈rλ̃, ū − ȳλ̃〉 + ϕ(ū) − ϕ(ȳλ̃) > 0, ∀ rλ̃ ∈ F (ȳλ̃).

And this contradicts the hypothesis. �

In the case where ϕ is the indicator function of a nonempty closed con-
vex subset of H, this lemma reduces to Proposition 1 of [36], or Proposition
2.2 of [70].

Recall that an operator F is locally hemibounded at a point x ∈ dom F
if for each y ∈ dom F , y �= x, the element x + λ(y − x) ∈ dom F for any
λ ∈ [0, 1] and the set ∪0<λ≤λ̄F (x + λ(y − x)) is bounded in H. Hence, if F
is maximal monotone and locally hemibounded on dom F , it follows from
Proposition 1.14 that F is upper hemi-continuous.
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Theorem 3.1 Assume that problems (GV IP ) and (PGV IP k) admit at
least one solution and that the sequence {uk}k∈IN generated by solving sub-
problems (PGV IP k) is bounded. If {ϕk}k∈IN , ϕ ∈ Γ0(H), ϕk M→ ϕ and one
of the following conditions is satisfied:

(1) F is such that if a sequence {χk}k∈IN weakly converges to some χ̄ and
rk ∈ F (χk) for all k, then the sequence {rk}k∈IN strongly converges to
some r̄ ∈ F (χ̄),

(2) F is monotone, bounded, upper hemi-continuous and has nonempty con-
vex weakly compact values,

then each weak limit point of the sequence {uk}k∈IN is a solution of problem
(GV IP ).

Proof. Let ū be a weak limit point of the sequence {uk}k∈IN and let
{uk}k∈K⊂IN be a subsequence weakly converging to ū. Since ϕk M→ ϕ, we
have that

limk∈Kϕk(uk) ≥ ϕ(ū).

Moreover, by Remark 3.1, for each y ∈ dom ϕ, there exists a sequence
{yk}k∈IN such that

yk → y and ϕk(yk) → ϕ(y).

By definition of {uk}k∈IN , we have that for each k, there exists r(uk) ∈ F (uk)
such that

〈r(uk), yk − uk〉 + ϕk(yk) − ϕk(uk) ≥ 0. (3.3)

Hence, if F satisfies Conditon (1) and if we pass to the superior limit on
k ∈ K in inequality (3.3), then we obtain that there exists some r̄ ∈ F (ū)
such that

〈r̄, y − ū〉 + ϕ(y) − ϕ(ū) ≥ 0,

which means that ū is a solution of problem (GV IP ).

Now, when Condition (2) holds, it follows from the monotonicity of F that,
for any r(y) ∈ F (y),

〈r(uk), yk − uk〉 = 〈r(uk), yk − y〉 + 〈r(uk) − r(y), y − uk〉 + 〈r(y), y − uk〉

≤ 〈r(uk), yk − y〉 + 〈r(y), y − uk〉.
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So that, from the boundedness of F , the sequence {r(uk)}k∈IN is bounded
and we get

limk∈K〈r(uk), yk − uk〉 ≤ 〈r(y), y − ū〉.
Now, passing to the superior limit on k ∈ K in (3.3), we deduce that

〈r(y), y − ū〉 + ϕ(y) − ϕ(ū) ≥ 0.

We can then apply lemma 3.1 and conclude that ū is a solution of problem
(GV IP ). �

Remark that in this theorem, the existence of a solution of the approxi-
mate problems (PGV IP k) and boundedness of the sequence of approximat-
ing solutions have to be checked. When F is singlevalued, coerciveness of
the operator F guarantees the existence of a solution of the original prob-
lem (GV IP ) as well as the approximate problems (PGV IP k). For example,
Mosco proves in [87] (Theorem B) that if F is a strongly monotone, bounded
and hemi-continuous operator, then the sequence generated by solving sub-
problems (PGV IP k) converges to the unique solution of (GV IP ). The
situation is more critical when the operator F is not coercive and when
the solution of problem (GV IP ) and of the subproblems (PGV IP k) can be
multiple. To remedy this problem, Mosco makes use of the so–called ”el-
liptic regularization”. It consists in adding to the operator F the coercive
perturbation k−αI(α > 0) and in considering the regularized approximated
problems:

(RPGV IP k)

 find ũk ∈ H such that, for all x ∈ H,

〈F (ũk) + k−αũk, x − ũk〉 + ϕk(x) − ϕk(ũk) ≥ 0.

The approach which is then used by Mosco requires an approximation of
the original function ϕ by the sequence {ϕk}k∈IN in a stronger sense defined
by the following properties:

Condition (Mo):
there exists a positive constant α such that

(i) for any weakly convergent sequence {wk}k∈IN with limk→∞ϕk(wk) <
+∞, there exists a subsequence {ϕkn(wkn)}kn∈K∈IN ⊂ {ϕk(wk)}k∈IN

and a sequence {vn}n∈IN such that

kα
n(wkn − vn) ⇀ 0 and limk→∞kα

n(ϕkn(wkn) − ϕ(vn)) ≥ 0;
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(ii) for any w ∈ H, there exists a sequence {wk}k∈IN such that

kα(wk − w) → 0 and limk→∞kα(ϕk(wk) − ϕ(w)) ≤ 0.

When ϕ ≤ ϕk for all k, condition (i) holds. To see this, it suffices to choose
vn = wkn for each n.

When ϕ = ΨC , ϕk = ΨCk , with C,Ck nonempty closed convex subsets
of H, Goeleven and Salmon (see [54]) propose a similar approach. They
also regularize the mapping F by F + εkI where {εk}k∈IN is a sequence of
positive numbers converging to zero, but they replace the strong convergence
Condition (Mo) on the sequence {ϕk}k∈IN by a relabelling of the sequence
{Ck}k∈IN to obtain the following result:

Proposition 3.4 (See [54], Theorem 2.2.1) Assume that problem (V IP )
admits at least one solution. If {Ck}k∈IN , C are nonempty closed convex
subsets of H, Ck M→ C, εk → 0+, F is a maximal monotone and Lipschitz
continuous operator, then there exists an increasing function i : IN → IN
such that the sequence {ūk}k∈IN generated by solving the problem: find ūk ∈ Ci(k) such that, for all x ∈ Ci(k),

〈F (ūk) + εkū
k, x − ūk〉 ≥ 0,

strongly converges to the solution of miniminal norm of problem (V IP ).

Moreover, in their convergence analysis of discretization methods for com-
plementarity problems, Goeleven and Salmon ([54]) specialize the concept of
Mosco–convergence by what they call the Glowinski–convergence (see [54],
Definition 1.3). Exploiting this concept of convergence and using recent tools
of recession analysis, they prove weak convergence of the sequence generated
by solving the regularized subproblems (RPGV IP k) to the solution of mini-
mal norm of the complementarity problem when the operator F is supposed
to be monotone, bounded and hemi-continuous (see [54], Theorem 2.1.1).

Let us now illustrate the concept of Mosco–convergence by some exam-
ples:

Example 3.1 Monotone Sequence of Functions
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Proposition 3.5 (See [5], Theorem 3.20) Let {ϕk}k∈IN ∈ Γ0(H).

(i) If the sequence {ϕk}k∈IN is monotonically increasing, then

ϕk M→ sup
k∈IN

ϕk.

(ii) If the sequence {ϕk}k∈IN is monotonically decreasing, then

ϕk M→ cl( inf
k∈IN

ϕk).

More particularly, when ϕ is the indicator function of a nonempty closed
convex subset C of H, we can deduce from Proposition 3.5 the following
result concerning the approximation of C by a sequence {Ck}k∈IN of subsets
of H:

Proposition 3.6 (See [5], Theorem 3.22) Let {Ck}k∈IN , C be nonempty
closed convex subsets of H.

(i) (exterior approximation of C)
If Ck+1 ⊂ Ck for every k ∈ IN , and C = ∩k∈IN Ck, then

ΨCk
M→ ΨC (i.e. Ck M→ C).

(ii) (interior approximation of C)
If Ck ⊂ Ck+1 for every k ∈ IN , and C = cl(

⋃
k∈IN Ck), then

ΨCk
M→ ΨC (i.e. Ck M→ C).

Example 3.2 Exterior Penalty Functions

Let gi : H → IR, i = 0, 1, ...,m be convex functions and let C = {x ∈
H : gi(x) ≤ 0, i = 1, ...,m}. We suppose that C and the closure of its
interior coincide. We take ϕ = g0 + ΨC and we consider the sequence of
approximated functions ϕk = g0 + qk, where the sequence {qk}k∈IN of lower
semi-continuous convex real–valued functions belongs to the class of exterior
penalty functions in the sense that it satisfies the following properties:

(1) 0 ≤ qk(x) ≤ qk+1(x), ∀x ∈ H, ∀k ∈ IN ;

(2) if x ∈ C, then qk(x) = 0, ∀k ∈ IN ;
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(3) if x �∈ C, then limk→∞qk(x) = +∞.

Well-known examples are the classical exterior penalty functions defined by

qk(x) = (νk/2)
m∑

i=1

[max(0, gi(x))]2, ∀x ∈ H, ∀k ∈ IN,

and the exact exterior penalty functions defined by

qk(x) = νk

m∑
i=1

max(0, gi(x)), ∀x ∈ H, ∀k ∈ IN,

where {νk}k∈IN is an increasing sequence of positive numbers converging to
+∞.

Proposition 3.7 (See [125], Proposition VI.3.2) If the sequence of penalty
functions {qk}k∈IN satisfies properties (1),(2),(3) above, then ϕk M→ ϕ.

Note that this result follows directly from Proposition 3.5 (i).

These penalties have been proven useful in the study of various optimization
algorithms (see, for example, [13], [49], [73]). The drawback of such methods
is that they generate points that are not in general in the feasible set C.

Example 3.3 Barrier Functions

Let ϕ be defined like in the preceding example and consider the sequence
of approximated functions ϕk = g0 + b(νk, ·), where the sequence {νk}k∈IN

of positive barrier parameters is strictly increasing to +∞ and the barrier
function b associated with C is such that b(νk, ·) is continuous and positive
on the interior of C, takes the value +∞ elsewhere and, for each x in the
interior of C, the sequence {b(νk, x)}k∈IN is strictly decreasing to 0. The
most commonly used barrier functions associated with C are:

b1(νk, x) = −ν−1
k

m∑
i=1

[min(0, gi(x))]−1, ∀x ∈ H, ∀k ∈ IN ; (3.4)

b2(νk, x) = ν−2
k

m∑
i=1

[min(0, gi(x))]−2, ∀x ∈ H, ∀k ∈ IN ; (3.5)

b3(νk, x) = −ν−1
k

m∑
i=1

ln[min(1/2,−gi(x))], ∀x ∈ H, ∀k ∈ IN, (3.6)
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where, by convention, ln(a) = −∞ if a ≤ 0.
For these examples, we have that ϕk M→ ϕ (see [7], Theorem 4).

Barrier functions are extensively used in the literature (see [50] for a survey).

Example 3.4 Tykhonov Regularization

Any function ϕ ∈ Γ0(H) can be approximated by the following Tykhonov
regularization:

ϕk = ϕ + (tk/2) || · ||2, ∀k ∈ IN,

where the sequence of positive numbers {tk}k∈IN is stricly decreasing to 0.
In this case, it can be easily verified that ϕk M→ ϕ. This perturbation is used,
for example, in [74], [91], [125].

Example 3.5 Global Regularization of a Finite Maximum Function

Let the function ϕ be the finite maximum function

ϕ(x) = max
j=1...m

fj(x), ∀x ∈ IRn,

where for each j, fj is a convex continuously differentiable function defined
on IRn. Note that the function ϕ is generally nondifferentiable at points
where the maximum is attained for more than one function fj.

Denote by U the unit–simplex in IRn:

U = {u ∈ IRm :
m∑

j=1

uj = 1, uj ≥ 0, ∀j = 1, ...,m}.

Let ∆k be a sequence of positive numbers converging to zero and {vk}k∈IN

be a sequence of the set U . For each k, we consider the regularized functions
ϕk introduced in [15],

ϕk(x) = max
u∈U

{〈u, f(x)〉 − (∆k/2)‖u − vk‖2},

where f(x) = (f1(x), ..., fm(x))T . It is shown in [15] that for all ∆k > 0
and for all vk ∈ U , the function ϕk is differentiable on IRn and satisfies the
following inequality:

ϕ(x) − ∆k ≤ ϕk(x) ≤ ϕ(x), ∀k ∈ IN, ∀x ∈ IRn. (3.7)
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It is then clear that ϕk M→ ϕ.

Note that this global regularization is used in [15] to minimize the function
ϕ. The method presented there generates by this way differentiable sub-
problems that are approximately solved by using a quasi–Newton method.
A particular choice for the sequence {vk}k∈IN is proposed and is proven to be
optimal. More precisely, {vk}k∈IN is iteratively constructed in the following
way:  v0 ∈ U,

vk+1 = u(vk, xk),

where xk is the current iterate at iteration k and u(vk, xk) is the element in
U verifying

ϕk(xk) = 〈u(vk, xk), f(xk)〉 − (∆k/2)‖u(vk , xk) − vk‖2.

Observe that in this case, the sequence {ϕk}k∈IN is not chosen a priori but
each ϕk+1 depends on the current iterate xk. However, this dependence is
not involved explicitely to show the Mosco–convergence property thanks to
the inequalities (3.7).

For more details about the theory of Mosco–convergence, examples and
applications, we refer to [5], [7], [87], [120], [125].

Besides its use to approximate solutions of the original problem, varia-
tional convergence has also been proven useful in combination with a stan-
dard iterative method. The idea to couple variational convergence with
iterative methods to solve convex optimization problems or monotone vari-
ational inequalities has already been extensively used to perturb proximal
point algorithms (see, for example, [2], [13], [45], [64], [88], [89], [90], [91],
[125]), splitting methods as the forward–backward scheme, the Peaceman–
Rachford scheme, the Douglas–Rachford scheme, the θ−scheme (see [45],
[57]) and Tykhonov algorithms (see, for example, [88], [125]). For the aux-
iliary problem principle, the influence of a variational perturbation of ϕ is
studied by Lemaire ([73]) in the optimization field and by Sonntag ([120])
and Makler et al. ([82]) for variational inequalities. In the following sec-
tion, we recall and comment the results obtained for the perturbed auxiliary
problem method.
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3.2 The Perturbed Auxiliary Problem

A general family of perturbation methods to solve problem (GV IP ) can be
obtained by combining the variational convergence theory with the auxiliary
problem principle. More precisely, at iteration k, the auxiliary subproblem
(AP k) can be perturbed by replacing the original function ϕ by an approx-
imate function ϕk to obtain the new problem

(PAP k)



choose r(xk) ∈ F (xk) and

find xk+1 ∈ H such that, for all x ∈ H,

〈r(xk) + λ−1
k (Ωk(xk+1) − Ωk(xk)), x − xk+1〉

+ϕk(x) − ϕk(xk+1) ≥ 0.

If Ωk is symmetric (Ωk = ∇Kk for all k), the perturbed problem associated
with (SAP k) will be denoted by (PSAP k).

The convergence study of this perturbed scheme has already been ini-
tiated in the literature for some particular instances. In the following, we
recall the results that have been obtained before our own contribution.

In the case where F is singlevalued, Makler et al. ([82]) have obtained
the following convergence result for the scheme defined by subproblems
(PSAP k) i.e., with the auxiliary operators Ωk being the gradient of some
continuously differentiable function Kk.

Theorem 3.2 (See [82], Theorem 4.1) Assume that the following conditions
are satisfied:

• {Kk}k∈IN is a sequence of functions from H into IR which are con-
tinuously differentiable and strongly convex with modulus βk ≥ β > 0
over dom ϕ for all k ∈ IN ;

• {∇Kk}k∈IN is a sequence of Lipschitz continuous mappings with Lip-
schitz constants Λk ≤ Λ over dom ϕ for all k ∈ IN ;

• for each k ∈ IN , there exists a positive number ηk such that, for all
x, y ∈ dom ϕ:

Kk+1(x) − Kk+1(y) − 〈∇Kk+1(y), x − y〉

≤ ηk(Kk(x) − Kk(y) − 〈∇Kk(y), x − y〉);
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• there exist two positive numbers β′ and Λ′ such that, for all k ∈ IN ,

βk/M
k ≥ β′ and Λk/M

k ≤ Λ′,

where Mk =
∏k−1

j=0 ηj;

• F is strongly monotone with modulus α > 0 and Lipschitz continuous
with Lipschitz constant L > 0;

• there exist λ and λ such that, for all k ∈ IN ,

0 < λ ≤ λk/M
k ≤ λ < 2αβ′/L2;

• {ϕk}k∈IN , ϕ ∈ Γ0(H) are such that ϕk M→ ϕ and ϕ ≤ ϕk for all k.

Then the original problem (GV IP ) admits a unique solution x∗ and the
sequence {xk}k∈IN generated by solving subproblems (PSAP k) strongly con-
verges to x∗.

Note that the condition ϕ ≤ ϕk for all k ∈ IN , implies that the effective
domains of the approximate functions ϕk are contained in the domain of ϕ
so that interior approximations of the function ϕ can be considered.

In the particular situation where ϕ is the indicator function of a closed con-
vex set C, ϕk is the indicator function of a closed convex approximating
subset of C and Kk(x) = (1/2)‖x‖2 for all x ∈ H and all k ∈ IN , Theorem
3.2 reduces to the convergence result proposed by Sonntag in [120].

In the optimization field, Lemaire (see [73]) relaxed the strong convexity
assumption by taking advantage of the particular structure of the problem.
For solving the optimization problem (OP ) with f a finite–valued differen-
tiable function, he considers the following iteration scheme:

xk+1 = (I + λk∂ϕk)−1(xk − λk∇f(xk)).

It is clear that this problem is a particular instance of subproblem (PAP k)
where Ωk is the identity mapping for all k. The convergence result is then
the following:

Theorem 3.3 (See [73], Theorem 2) Assume that problem (OP ) admits at
least one solution and that the following conditions are satisfied:
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• f : H → IR is convex and differentiable;

• ∇f is Lipschitz continuous on dom ϕ with Lipschitz constant L;

• there exists λ, λ > 0 such that, for all k ∈ IN ,

0 < λ ≤ λk ≤ λ < 2/L;

• {ϕk}k∈IN , ϕ ∈ Γ0(H) are such that ϕk+1 ≤ ϕk for all k and ϕ =
cl(infk∈IN ϕk);

• {xk}k∈IN is bounded.

Then provided that x0 ∈ dom ϕ, any weak limit point of the sequence
{xk}k∈IN is a solution of problem (OP ) and limk→+∞(f +ϕk)(xk) = inf(f +
ϕ).

The assumption that the sequence {xk}k∈IN is bounded is crucial. Never-
theless, Lemaire proves that it is satisfied when the domain of ϕ is bounded
or f +ϕ is coercive (see [73], Proposition 4). Note that the condition on the
sequence {ϕk}k∈IN implies that ϕk M→ ϕ (see Proposition 3.5(ii)). Moreover,
Lemaire shows that this condition can be replaced by the following in terms
of the variational semi–distance between ϕk and ϕ:

∀ρ ≥ 0, dλ,ρ(ϕk, ϕ) → 0.

This condition implies also that ϕk M→ ϕ and is equivalent to the Mosco–
convergence if H is finite dimensional (see Proposition 3.3).

The weaknesses and lacknesses of Theorems 3.2 and 3.3 have already
been discussed in the introduction. For the general setting of variational
inequalities, Theorem 3.2 suffers from the facts that it is restricted to a
strongly monotone, Lipschitz continuous, singlevalued mapping and to sym-
metric auxiliary operators. In Chapter 4, we present convergence results
for the perturbed auxiliary scheme with nonsymmetric auxiliary operators
when F is singlevalued and satisfies the same kind of assumptions as in the
case where ϕ is not perturbed. In Chapter 5, we study the multivalued case
i.e., we extend the results of Section 2.2.2 to allow some perturbations of
the function ϕ.
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3.3 α–Order Convergence

To obtain convergence results for the perturbed auxiliary problem scheme
under weaker assumptions on the mapping F than strong monotonicity, we
need to control the rapidity of convergence of the approximations ϕk to ϕ.
So, adding a condition on the speed of convergence of the sequence {ϕk}k∈IN

is the price to pay to achieve our goal. The notion of ”α–order” convergence
is defined here below.

Definition 3.4 Let {ϕk}k∈IN , ϕ ∈ Γ0(H), w ∈ H, and α > 1. The sequence
{ϕk}k∈IN is said to converge to ϕ at the order α at w if there exists a sequence
{wk}k∈IN such that

kα‖wk − w‖ → 0 and kα|ϕk(wk) − ϕ(w)| → 0. (3.8)

A similar notion is used by Mosco in [87] to deal with the case where the
operator in the variational inequality is noncoercive (see Condition (Mo)).

So, in addition to the Mosco–convergence of the sequence {ϕk}k∈IN to
ϕ, we will assume that, for some solution x∗ to the original problem, there
exists a constant α > 1 such that the sequence {ϕk}k∈IN converges to ϕ at
the order α at x∗. This will be used in the proofs mainly to ensure that the
series

+∞∑
k=0

‖wk − x∗‖ and
+∞∑
k=0

|ϕk(wk) − ϕ(x∗)|

are convergent.

Let us now see on some examples what this speed of convergence amounts
to.

Example 3.6 Interior Approximation of the Feasible Set

Consider that we want to approximate ϕ = ΨC , where C is a nonempty
closed convex subset of H, by the sequence of indicator functions {ϕk}k∈IN =
{ΨCk}k∈IN , where {Ck}k∈IN is a sequence of nonempty closed convex subsets
of C. As already observed in Proposition 3.6(ii), ΨCk

M→ ΨC when the
sequence {Ck}k∈IN is chosen in such a way that C = cl(

⋃
Ck) and Ck ⊂

Ck+1, for all k ∈ IN . If, in addition, we impose that there exist α > 1 and
β > 0 such that, for all k ∈ IN ,

max
y∈C

min
x∈Ck

‖x − y‖ ≤ 1/kα+β ,
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then the sequence {ΨCk}k∈IN converges to ΨC at the order α at any w ∈ C.
To see this, it suffices to take wk = projCk w in (3.8).

Example 3.7 Barrier Functions

Let ϕk, ϕ be as in Example 3.3. The next proposition shows that the α–order
convergence is reached at any w ∈ C provided that the barrier parameters
increase sufficiently fast to +∞.

Proposition 3.8 If there exist α > 1 and β > 0 such that kα+β/νk → 0,
then the functions ϕk = g0 + b3(νk, ·) converge to ϕ at the order α at any
w ∈ C.

Proof. Let w ∈ C and let α > 1 and β > 0 such that kα+β/νk → 0. Choose
w̃ ∈ int C and for each k ∈ IN , let us consider the point

wk = k−α−βw̃ + (1 − k−α−β)w,

which belongs to the interior of C.
It is clear that kα(wk − w) → 0. So, relation (3.8) will be satisfied if we
prove that kαb3(νk, w

k) → 0 or equivalently, that for each i = 1, . . . ,m,

kαν−1
k ln[min(1/2,−gi(wk))] → 0. (3.9)

Since gi(wk) → gi(w), it is obvious that (3.9) is true when gi(w) < 0. Let us
suppose now that gi(w) = 0. By convexity of gi, we have, for all k sufficiently
large, that 0 < −gi(wk) ≤ 1/2 and gi(wk) ≤ k−α−βgi(w̃).
Therefore we deduce immediately that for all k large enough,

ln(−k−α−βgi(w̃)) ≤ ln[min(1/2,−gi(wk))] ≤ − ln 2.

Finally, multiplying each term of the above inequality by kαν−1
k and passing

to the limit on k, we obtain easily (3.9) provided we observe that kα/νk and
kα ln(kα+β)/νk tend to zero when k → +∞. �

If we set νk = kγ for all k ∈ IN , with γ > 1, then it is always possible
to find α > 1 and β > 0 such that kα+β/νk → 0.

Example 3.8 Tykhonov Regularization
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For the Tykhonov regularization considered in Example 3.4, the α–order
convergence is satisfied at any w ∈ H of the original problem provided that
the parameter sequence {tk}k∈IN converges fast enough to zero. Indeed,

kα|ϕk(w) − ϕ(w)| = (kαtk/2)‖w‖2.

So, if there exists α > 1 such that kαtk → 0, then we can take wk = w for
all k in Definition 3.4.

Example 3.9 Global Regularization of a Finite Maximum Function

For the example treated in Example 3.5, we have the inequalities (3.7) with
{∆k}k∈IN being a sequence that converges to zero such that for each w,

kα|ϕk(w) − ϕ(w)| ≤ kα∆k.

So, if there exists α > 1 such that kα∆k → 0, then we obtain the α–order
convergence of ϕk to ϕ at any w.
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Chapter 4

Convergence of the
Perturbed Auxiliary
Problem Method for
Singlevalued Mappings

In this chapter, the operator F is assumed to be singlevalued. In that case,
the perturbed auxiliary subproblem at iteration k can be written

(PAP k)


find xk+1 ∈ H such that, for all x ∈ H,

〈F (xk) + λ−1
k (Ωk(xk+1) − Ωk(xk)), x − xk+1〉

+ϕk(x) − ϕk(xk+1) ≥ 0.

We focus our attention on interior approximations of the function ϕ i.e., we
assume that ϕ ≤ ϕk for all k ∈ IN , and we suppose that the convergence of
{ϕk}k∈IN to ϕ is sufficiently fast. Global and local convergence results for
this family of perturbation methods are obtained under a kind of pseudo
Dunn property which links the mapping F and the nonsymmetric compo-
nents of the auxiliary operators. Then we deduce from this convergence
analysis, generalizations of the results mentioned in Chapter 2 Section 2.2.1
when ϕ is not perturbed. The results of this part of the work generalize in
the infinite dimensional case those appeared in [112].
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4.1 Global Convergence Results

In this section, we present a global convergence analysis for the general
scheme defined by problems (PAP k), k ∈ IN . In the sequel, we allow the
sequence of auxiliary operators {Ωk}k∈IN to be built step by step. Indeed,
very often, as for example in the Newton method, Ωk depends explicitely on
the iterate xk. To emphasize this property, we will write Ω(xk, ·) instead of
Ωk. This new notation suggests us to introduce a function Ω from H × H
into H which will be useful to express assumptions independently of the
iterate xk. With this convention, problem (PAP k) can be written as:

(PAP k)


find xk+1 ∈ H such that, for all x ∈ H,

〈F (xk) + λ−1
k (Ω(xk, xk+1) − Ω(xk, xk)), x − xk+1〉

+ϕk(x) − ϕk(xk+1) ≥ 0.

Note that if ϕ ≤ ϕk, the unique solution xk+1 of this subproblem belongs to
dom ϕ.

The next proposition is a first step towards the convergence study of the
general iterative scheme. It highlights the minimal assumptions under which
each weak limit point of the sequence {xk}k∈IN , if it exists, is a solution of
problem (GV IP ).

Proposition 4.1 Assume that the following conditions hold true:

• F : H → H is singlevalued and weakly continuous on dom ϕ and the
functional x → 〈F (x), x〉 is weakly lower semi-continuous on dom ϕ;

• Ω(x, ·) : H → H is strongly monotone over dom ϕ for each x ∈ dom ϕ
and Lipschitz continuous over dom ϕ uniformly in x;

• λk ≥ λ > 0, for all k ∈ IN ;

• {ϕk}k∈IN , ϕ ∈ Γ0(H) are such that ϕk M→ ϕ and ϕ ≤ ϕk for all k ∈ IN ;

• the sequence {xk}k∈IN is bounded and is such that the sequence
{‖xk+1 − xk‖}k∈IN converges to zero.

Then, provided that x0 be chosen in dom ϕ, every weak limit point of the
sequence {xk}k∈IN is a solution of problem (GV IP ).
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Proof. Let x∗ be a weak limit point of {xk}k∈IN and let {xk}k∈K⊂IN be
a subsequence weakly converging to x∗. Since {‖xk+1 − xk‖}k∈IN → 0, we
have that {xk+1}k∈K ⇀ x∗ and also, from the fact that ϕk M→ ϕ, that the
following inequality holds:

ϕ(x∗) ≤ limk∈Kϕk(xk+1). (4.1)

Moreover, for each y in H, there exists a sequence {yk}k∈IN such that

yk → y and ϕk(yk) → ϕ(y). (4.2)

Using the following identity:

〈F (xk), yk − xk+1〉 = 〈F (xk), yk − y〉 + 〈F (xk), y〉
+〈F (xk), xk − xk+1〉 − 〈F (xk), xk〉,

and the fact that F is weakly continuous on dom ϕ and the function x →
〈F (x), x〉 is weakly lower semi–continuous on dom ϕ, we obtain that

limk∈K〈F (xk), yk − xk+1〉 ≤ 〈F (x∗), y − x∗〉. (4.3)

Now, by definition of {xk}k∈IN , we have that, for all k ∈ IN ,

0 ≤ 〈F (xk) + λ−1
k (Ω(xk, xk+1) − Ω(xk, xk)), yk − xk+1〉

+ϕk(yk) − ϕk(xk+1).

Passing then to the superior limit on k ∈ K in the above inequality and
using the Lipschitz continuity of Ω(xk, ·) together with relations (4.1), (4.2),
(4.3) and the fact that λk > λ > 0, we obtain the following inequality:

0 ≤ 〈F (x∗), y − x∗〉 + ϕ(y) − ϕ(x∗),

which means that x∗ is a solution of (GV IP ). �

Observe that when ϕ ≤ ϕk for all k, the condition “ϕk M→ ϕ” can be re-
placed by the following one:

∀w ∈ H, ∃{wk}k∈IN : wk → w and ϕk(wk) → ϕ(w).

When F is weakly continuous on dom ϕ then the function x → 〈F (x), x〉 is
weakly lower semi–continuous on dom ϕ, for example, if F is compact on
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dom ϕ or if F is monotone on dom ϕ.

We have now to study under which assumptions the sequence {xk}k∈IN

is bounded and the sequence {‖xk+1 − xk‖}k∈IN converges to zero. In the
following result, we use a particular decomposition of Ω(xk, y) :

Ω(xk, y) = ∇hk(y) + λk L(xk, y), ∀y ∈ H, ∀k ∈ IN, (4.4)

where L is a singlevalued map from H×H into H and {hk}k∈IN is a sequence
of functions from H into IR. We assume that for all x ∈ dom ϕ, L(x, ·) is a
monotone mapping over dom ϕ and that for all k ∈ IN, hk is a continuously
differentiable and strongly convex function over dom ϕ. Note that if the
sequence {Ω(xk, ·)}k∈IN is uniformly strongly monotone with modulus β > 0,
then it is always possible to decompose Ω(xk, y) as in (4.4) by choosing
hk(y) = (β/2)yT y and L(xk, y) = λ−1

k (Ω(xk, y) − βy) for all x ∈ H and all
k ∈ IN . With this formulation of Ω(xk, y), problem (PAP k) can be written
as:

(PAP k)


find xk+1 ∈ H such that, for all x ∈ H,

〈F (xk) + L(xk, xk+1) − L(xk, xk) + λ−1
k (∇hk(xk+1) −∇hk(xk)),

x − xk+1〉 + ϕk(x) − ϕk(xk+1) ≥ 0.

The two following lemmas will be used to prove the next proposition.

Lemma 4.1 For any two reals a, b and any positive number τ , we have

ab ≤ (τ/2) a2 + (1/2τ) b2.

Lemma 4.2 (See [104], Lemma 3) Let {uk}k∈IN , {sk}k∈IN , {tk}k∈IN be non
negative sequences satisfying

uk+1 ≤ sk uk + tk, ∀k ∈ IN,

and such that limk→+∞
∏k

j=0 sj > 0 and
∑+∞

k=0 tk < +∞, then {uk}k∈IN is a
Cauchy sequence.

Proposition 4.2 Assume that the solution set of problem (GV IP ) is nonempty
and that the following conditions are satisfied:

(i) {hk}k∈IN is a sequence of functions from H into IR which are continu-
ously differentiable and strongly convex with modulus βk ≥ β > 0 over
dom ϕ for all k ∈ IN ;
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(ii) {∇hk}k∈IN is a sequence of Lipschitz continuous mappings with Lips-
chitz constants Λk ≤ Λ over dom ϕ for all k ∈ IN ;

(iii) for each k ∈ IN , there exists a positive number ηk such that, for all
x, y ∈ dom ϕ:

hk+1(x) − hk+1(y) − 〈∇hk+1(y), x − y〉

≤ ηk(hk(x) − hk(y) − 〈∇hk(y), x − y〉);

(iv) there exist two positive numbers β′ and Λ′ such that, for all k ∈ IN ,

βk/M
k ≥ β′ and Λk/M

k ≤ Λ′,

where Mk =
∏k−1

j=0 ηj;

(v) there exist λ and λ such that, for all k ∈ IN ,

0 < λ ≤ λk+1/M
k+1 ≤ λk/M

k ≤ λ;

(vi) L(x, ·) : H → H is monotone over dom ϕ for all x ∈ dom ϕ and
Lipschitz continuous uniformly in x with Lipschitz constant l > 0 over
dom ϕ;

(vii) there exists γ > λ/(2β′) such that, for all x, y ∈ dom ϕ,

if 〈F (x), y − x〉 + ϕ(y) − ϕ(x) ≥ 0 holds, then

〈F (y) − L(y, y) + L(y, x), y − x〉 + ϕ(y) − ϕ(x)

≥ γ‖(F (y) − L(y, y)) − (F (x) − L(y, x))‖2;

(viii) {ϕk}k∈IN , ϕ ∈ Γ0(H) are such that ϕk M→ ϕ and ϕ ≤ ϕk for all
k. Moreover, for some solution x∗ of problem (GV IP ), there exist a
constant α > 1 and a sequence {wk}k∈IN such that

kα‖wk − x∗‖ → 0 and kα|ϕk(wk) − ϕ(x∗)| → 0 (4.5)

i.e., {ϕk}k∈IN converges to ϕ at the order α at x∗.
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Then, provided that x0 ∈ dom ϕ, the sequence {xk}k∈IN is bounded. More-
over,

lim
k→+∞

‖xk+1 − xk‖ = 0 and

lim
k→+∞

‖[F (xk) − L(xk, xk)] − [F (x∗) − L(xk, x∗)]‖ = 0.

Proof. Let x∗ be the solution of problem (GV IP ) used in assumption (viii).
We consider the sequence of Lyapunov functions {Γk(x∗, ·)}k∈IN defined on
H by

Γk(x∗, x) = (hk(x∗) − hk(x) − 〈∇hk(x), x∗ − x〉)/Mk

+(λk/M
k)(〈F (x∗), x − x∗〉 + ϕ(x) − ϕ(x∗)). (4.6)

From assumptions (i), (iii)–(v) and the fact that x∗ is a solution of (GV IP ),
we derive immediately that, for all x ∈ dom ϕ and all k ∈ IN ,

Γk(x∗, x) ≥ (β′/2)‖x − x∗‖2 and Γk+1(x∗, x) ≤ Γk(x∗, x). (4.7)

Now, in order to prove that {xk}k∈IN is bounded and that {xk+1 − xk}k∈IN

converges to 0, we will show that the following inequality holds for all k ∈ IN :

αkΓk+1(x∗, xk+1) ≤ Γk(x∗, xk) − c1‖xk+1 − xk‖2 + T k

−c2‖F (xk) − L(xk, xk) − F (x∗) + L(xk, x∗)‖2, (4.8)

where c1, c2 are positive constants, {αk}k∈IN is a sequence of positive num-
bers such that 0 < α0 ≤ αk < 1 for all k, limk→∞ αk = 1, limk→∞

∏k
j=0 α−1

j >

0 and {T k}k∈IN is a nonnegative sequence satisfying
∑+∞

k=0 T k < +∞.

Using the second inequality of (4.7) and the definition of the Lyapunov
function, we can write

Γk+1(x∗, xk+1)−Γk(x∗, xk) ≤ Γk(x∗, xk+1)−Γk(x∗, xk) = s1+s2+s3, (4.9)

with

s1 = (hk(xk) − hk(xk+1) + 〈∇hk(xk), xk+1 − xk〉)/Mk,

s2 = 〈∇hk(xk) −∇hk(xk+1), x∗ − xk+1〉/Mk,

s3 = (λk/M
k)(〈F (x∗), xk+1 − xk〉 + ϕ(xk+1) − ϕ(xk)).

For s1, we derive easily from assumptions (i) and (iv) that

s1 ≤ −(β′/2)‖xk+1 − xk‖2. (4.10)
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Now, using the sequence {wk}k∈IN given in assumption (viii), we can write
s2 as the sum of the two following terms:

s21 = 〈∇hk(xk) −∇hk(xk+1), x∗ − wk〉/Mk,

s22 = 〈∇hk(xk) −∇hk(xk+1), wk − xk+1〉/Mk.

From assumptions (ii) and (iv), we deduce that

s21 ≤ Λ′‖xk+1 − xk‖‖x∗ − wk‖
≤ (τ/2)‖xk+1 − xk‖2 + (1/2τ)Λ′2‖x∗ − wk‖2, (4.11)

where the second inequality holds for any τ > 0 by Lemma 4.1.
Using the definition of xk+1 with x = wk (see problem (PAP k)), we obtain

s22 ≤ (λk/M
k)[〈F (xk) + L(xk, xk+1) − L(xk, xk), wk − xk+1〉

+ϕk(wk) − ϕk(xk+1)]
= (λk/M

k)[〈F (xk), x∗ − xk〉 + ϕ(x∗) − ϕ(xk)
+〈F (xk), xk − xk+1〉 + 〈F (xk), wk − x∗〉
+ϕ(xk) − ϕk(xk+1) + ϕk(wk) − ϕ(x∗)
+〈L(xk, xk+1) − L(xk, xk), wk − xk+1〉]. (4.12)

By assumption (vii) and since 〈F (x∗), xk − x∗〉+ ϕ(xk)−ϕ(x∗) ≥ 0, we get

〈F (xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)

≥ 〈L(xk, xk) − L(xk, x∗), xk − x∗〉

+γ‖(F (xk) − L(xk, xk)) − (F (x∗) − L(xk, x∗))‖2.

(4.13)

Gathering the fact that ϕ ≤ ϕk for all k with (4.12), (4.13), using Lemma
4.1 and rearranging the terms, we obtain the following inequalities:

s22 + s3

≤ (λk/M
k)[〈(F (xk) − L(xk, xk)) − (F (x∗) − L(xk, x∗)), xk − xk+1〉

+〈(F (xk) − L(xk, xk)) − (F (x∗) − L(xk, x∗)), wk − x∗〉

−γ‖(F (xk) − L(xk, xk)) − (F (x∗) − L(xk, x∗))‖2

+〈F (x∗), wk − x∗〉 + ϕk(wk) − ϕ(x∗)

+〈L(xk, xk+1) − L(xk, x∗), wk − xk+1〉]
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≤ (λk/M
k)[((µ + η − 2γ)/2)‖(F (xk) − L(xk, xk)) − (F (x∗) − L(xk, x∗))‖2

+(1/2µ)‖xk+1 − xk‖2 + (1/2η)‖wk − x∗‖2

+‖F (x∗)‖‖wk − x∗‖ + |ϕk(wk) − ϕ(x∗)|

+〈L(xk, xk+1) − L(xk, x∗), wk − xk+1〉],
(4.14)

where µ, η are any positive constants.
In order to treat the last term in the right–hand side of (4.14), we use
successively assumption (vi), Lemma (4.1) and the first inequality of (4.7)
to get

〈L(xk, xk+1) − L(xk, x∗), wk − xk+1〉 ≤ 〈L(xk, xk+1) − L(xk, x∗), wk − x∗〉

≤ l‖xk+1 − x∗‖‖wk − x∗‖

≤ (lθk/2)‖xk+1 − x∗‖2 + (l/2θk)‖wk − x∗‖2

≤ (lθk/β
′)Γk+1(x∗, xk+1) + (l/2θk)‖wk − x∗‖2,

(4.15)
where θk is any positive number.
Now, since γ > λ̄/(2β′), we can choose µ, η and τ such that µ + η − 2γ < 0
and τ + λ̄µ−1 < β′. Moreover, we take θk = θ(k + 1)−α for all k, with
0 < θ < β′λ̄−1l−1.
Then gathering (4.9),(4.10),(4.11),(4.14),(4.15), using assumption (v) and
rearranging the terms, we obtain (4.8) with

c1 = (1/2)(β′ − τ − λ̄µ−1), c2 = (λ/2)(2γ − µ − η),
αk = 1 − lλ̄β′−1θk, (4.16)
T k = (1/2)[Λ′2τ−1 + λ̄η−1 + lλ̄θ−1

k ]‖x∗ − wk‖2

+λ̄‖F (x∗)‖‖x∗ − wk‖ + λ̄|ϕk(wk) − ϕ(x∗)|. (4.17)

With the choice made for µ, η, τ and θk, it is easy to see that the constants
c1 and c2 are positive and that all the conditions required on the sequence
{αk}k∈IN are satisfied. Moreover, it follows from condition (viii) that the
series

∑+∞
k=0 T k is convergent. Dividing then each member of (4.8) by αk, we

obtain the following inequality:

Γk+1(x∗, xk+1) ≤ α−1
k Γk(x∗, xk) + α−1

0 T k, ∀k ∈ IN.
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Since limk→∞
∏k

j=0 α−1
j > 0 and

∑+∞
k=0 α−1

0 T k is convergent, it follows from
Lemma 4.2 that {Γk(x∗, xk)}k∈IN is a Cauchy sequence. Hence, it is con-
vergent in IR. Using then (4.7), we deduce that the sequence {xk}k∈IN is
bounded and, passing to the limit in (4.8), that the sequences {‖xk+1 −
xk‖}k∈IN and {‖[F (xk)−L(xk, xk)] − [F (x∗)−L(xk, x∗)]‖}k∈IN converge to
zero. �

We can now state the main convergence result.

Proposition 4.3 Let us suppose that all assumptions of Proposition 4.2 are
fulfilled such that the sequence {xk}k∈IN is bounded. The following conclu-
sions can be derived:

1. If F is weakly continuous on dom ϕ and the functional x → 〈F (x), x〉
is weakly lower semi–continuous on dom ϕ, then each weak limit point
of the sequence {xk}k∈IN is a solution of problem (GV IP ).

2. If, in addition, assumption (viii) of Proposition 4.2 is satisfied for any
solution of problem (GV IP ) with a common α > 1 and the sequence
of operators {∇hk}k∈IN satisfies

zk ⇀ z, zk ∈ dom ϕ ⇒ ∇hk(zk) −∇hk(z) ⇀ 0, (4.18)

then the whole sequence {xk}k∈IN weakly converges to some solution
of problem (GV IP ).

3. If, moreover, F is strongly monotone on dom ϕ, then {xk}k∈IN strongly
converges to the unique solution x∗ of problem (GV IP ).

Proof. Conclusion 1 follows directly from Proposition 4.2 and Proposition
4.1.

To prove conclusion 2, we have to show that the sequence {xk}k∈IN has a
unique weak limit point. Assume that {xk}k∈IN has two weak limit points x̄
and x̃. By conclusion 1, these two points are solutions of problem (GV IP )
and from the proof of Proposition 4.2, the sequences {Γk(x̃, xk)}k∈IN and
{Γk(x̄, xk)}k∈IN are convergent. Let Γ̃ and Γ̄ be their respective limits.
On the other hand, by definition of the Lyapunov function, we have, for all
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k ∈ IN and x ∈ dom ϕ,

Γk(x̃, x) − Γk(x̄, x)

= (1/Mk)(hk(x̃) − hk(x̄) − 〈∇hk(x), x̃ − x̄〉)

+(λk/M
k)(〈F (x̃), x̄ − x̃〉 + ϕ(x̄) − ϕ(x̃) + 〈F (x̃) − F (x̄), x − x̄〉).

Let {xk}k∈K⊂IN be a subsequence of {xk}k∈IN converging to x̄. If we set
x = xk in the above inequality, we can write:

Γk(x̃, xk) − Γk(x̄, xk)

= (1/Mk)(hk(x̃) − hk(x̄) − 〈∇hk(xk) −∇hk(x̄), x̃ − x̄〉 − 〈∇hk(x̄), x̃ − x̄〉)

+(λk/M
k)(〈F (x̃), x̄ − x̃〉 + ϕ(x̄) − ϕ(x̃) + 〈F (x̃) − F (x̄), xk − x̄〉).

From assumptions (i), (iv) of Proposition 4.2 and since x̃ is a solution of
problem (GV IP ), we deduce that

Γk(x̃, xk) − Γk(x̄, xk) ≥ (β′/2)‖x̃ − x̄‖2

−(1/Mk)〈∇hk(xk) −∇hk(x̄), x̃ − x̄〉
+(λk/M

k)〈F (x̃) − F (x̄), xk − x̄〉.

Then, if we take the limit on k ∈ K, condition (4.18) on {∇hk}k∈IN implies
that

Γ̃ − Γ̄ ≥ (β′/2)‖x̃ − x̄‖2.

Since the role of x̄ and x̃ is symmetric, we also have that

Γ̄ − Γ̃ ≥ (β′/2)‖x̄ − x̃‖2.

Gathering these two inequalities, we conclude that x̄ = x̃ which proves the
uniqueness of the weak limit point for {xk}k∈IN .

Let x∗ denote this weak limit point. To obtain conclusion 3, we will show
that when F is strongly monotone on dom ϕ, we also have that ‖xk −x∗‖ →
0. If we put together relations (4.9), (4.10), (4.11), (4.12) in the proof of
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Proposition 4.2, we obtain that

Γk+1(x∗, xk+1) − Γk(x∗, xk)

≤ ((τ − β′)/2)‖xk+1 − xk‖2 + (Λ′2/2τ)‖x∗ − wk‖2

+(λk/M
k)[〈F (xk), x∗ − xk〉 + ϕ(x∗) − ϕ(xk)

+〈F (xk), xk − xk+1〉 + 〈F (xk), wk − x∗〉

+ϕ(xk) − ϕk(xk+1) + ϕk(wk) − ϕ(x∗)

+〈L(xk, xk+1) − L(xk, xk), wk − xk+1〉

+〈F (x∗), xk+1 − xk〉 + ϕ(xk+1) − ϕ(xk)],

where τ is any positive constant.
When F is strongly monotone on dom ϕ (with constant ᾱ > 0), since x∗ is
a solution of problem (GV IP ), we have that

〈F (xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗) ≥ ᾱ‖xk − x∗‖2.

Using this and the fact that ϕ ≤ ϕk for all k, we deduce that

Γk+1(x∗, xk+1) − Γk(x∗, xk)

≤ ((τ − β′)/2)‖xk+1 − xk‖2 + (Λ′2/2τ)‖x∗ − wk‖2

+(λk/M
k)[−ᾱ‖xk − x∗‖2 + ϕk(wk) − ϕ(x∗)

+〈F (xk), xk − xk+1〉 + 〈F (xk), wk − x∗〉

+〈L(xk, xk+1) − L(xk, xk), wk − xk+1〉

+〈F (x∗), xk+1 − xk〉].

(4.19)

Let us now pass to the limit on k in this inequality. From assumptions
(v),(vi) and (viii) of Proposition 4.2 and since we know that {Γk(x∗, xk)}k∈IN

is convergent, {‖xk+1 − xk‖}k∈IN converges to zero and F is weakly contin-
uous, we conclude that {‖xk − x∗‖}k∈IN converges to zero. This completes
the proof. �

Observe that, for example, if hk(x) = (1/2)xT x for all x ∈ H and k ∈ IN ,
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then ∇h is weakly continuous on H. Moreover, when H is a finite dimen-
sional space, ∇h is continuous in the strong topology and thus in the weak
topology because the two topologies coincide.

Remark 4.1 If we particularize Proposition 4.3 to the finite dimensional
case, we obtain the (strong) convergence of the sequence {xk}k∈IN to some
solution of problem (GV IP ) provided that all assumptions Proposition 4.2
are satisfied, F is continuous and assumption (viii) of Proposition 4.2 is
satisfied for any solution of the problem.

Remark 4.2 Observe that if L(x, ·) is monotone over dom ϕ for all x ∈
dom ϕ, and F and L satisfy assumption (vii), then for any pair x∗

1, x
∗
2 of

solutions of problem (GV IP ), we have that

F (x∗
2) − F (x∗

1) = L(x∗
2, x

∗
2) − L(x∗

2, x
∗
1).

Indeed, by assumption (vii) and since 〈F (x∗
1), x∗

2 −x∗
1〉+ ϕ(x∗

2)−ϕ(x∗
1) ≥ 0,

we have:

〈F (x∗
2), x∗

2 − x∗
1〉 + ϕ(x∗

2) − ϕ(x∗
1) − 〈L(x∗

2, x
∗
2) − L(x∗

2, x
∗
1), x∗

2 − x∗
1〉

≥ γ‖(F (x∗
2) − L(x∗

2, x
∗
2)) − (F (x∗

1) − L(x∗
2, x

∗
1))‖2.

So, since L(x∗
2, ·) is monotone and x∗

2 is a solution of problem (GV IP ), we
deduce that

‖(F (x∗
2) − L(x∗

2, x
∗
2)) − (F (x∗

1) − L(x∗
2, x

∗
1))‖ = 0.

In the particular case where L = 0 and thus F satisfies the pseudo Dunn
property, this relation amounts to say that the set

{F (x∗) : x∗ is a solution of problem (GV IP )}

is a singleton.

Remark 4.3 When ϕk = ϕ for all k, condition (viii) of Proposition 4.2 is
obviously satisfied by setting wk = x∗ for all k. With this choice of {wk}k∈IN ,
it is unnecessary to require �L(x, ·) to be Lipschitz continuous over dom ϕ
uniformly in x (see (4.15)).

Remark 4.4 Assumption (vii) of Proposition 4.2 can be replaced by the
following slightly weaker condition:
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(vii’) There exists γ > λ/(2β′) and there exists a singlevalued operator
∆ : H → H such that:
• ∆ is monotone over dom ϕ;
• L(x, ·) − ∆ is monotone over dom ϕ for all x ∈ dom ϕ;
• for all x, y ∈ dom ϕ,

if 〈F (x), y − x〉 + ϕ(y) − ϕ(x) ≥ 0 holds, then

〈F (y) − (L(y, y) − ∆(y)) + (L(y, x) − ∆(x)), y − x〉 + ϕ(y) − ϕ(x)

≥ γ‖(F (y) − L(y, y)) − (F (x) − L(y, x))‖2.

The introduction of the operator ∆ allows us to compare L(x, ·) with a
monotone mapping independent of the argument x. So, in the case where
L(x, ·) is monotone and does not depend on x, we can choose ∆(y) = L(x, y)
for all x, y ∈ dom ϕ. With this choice of ∆, condition (vii′) is similar to
Condition (RC) imposed by Renaud and Cohen (see Theorem 2.4). For the
sake of completeness, let us state and justify the convergence result related
to this modified condition (vii′).

Proposition 4.4 Assume that the solution set of problem (GV IP ) is nonempty,
that assumptions (i)–(vi) and (viii) of Proposition 4.2 and condition (vii’)
are satisfied.

1. Then, provided that x0 ∈ dom ϕ, the sequence {xk}k∈IN generated
by subproblems (PAP k) is bounded and such that ‖xk+1 − xk‖ → 0.
Moreover, if F is weakly continuous on dom ϕ and the functional
x → 〈F (x), x〉 is weakly lower semi–continuous on dom ϕ, then each
weak limit point of the sequence {xk}k∈IN is a solution of problem
(GV IP ).

2. If, in addition, assumption (viii) is satisfied for any solution of prob-
lem (GV IP ) with a common α > 1, the operator ∆ is weakly continu-
ous and the sequence of operators {∇hk}k∈IN satisfies (4.18), then the
whole sequence {xk}k∈IN weakly converges to some solution of problem
(GV IP ).

3. If, moreover, F is strongly monotone on dom ϕ and L(x, ·) − ∆ is
Lipschitz continuous over dom ϕ, then {xk}k∈IN strongly converges to
the unique solution x∗ of problem (GV IP ).
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Proof. To show that conclusion 1 holds, we will review the proof of Propo-
sition 4.2. So, let x∗ be the solution of problem (GV IP ) used in assumption
(viii) of Proposition 4.2. We add a nonnegative term to the Lyapounov func-
tion Γk(x∗, ·) (see (4.6)) to define the sequence of functions {Ξk(x∗, ·)}k∈IN :

Ξk(x∗, x) = Γk(x∗, x) + (λk/M
k)〈∆(x∗) − ∆(x), x∗ − x〉.

In the same way as in the proof of Proposition 4.2, we can write

Ξk+1(x∗, xk+1) − Ξk(x∗, xk) ≤ s1 + s2 + s3 + s4, (4.20)

where s1, s2, s3 are like in (4.9), and

s4 = (λk/M
k)[〈∆(x∗) − ∆(xk+1), x∗ − xk+1〉 − 〈∆(x∗) − ∆(xk), x∗ − xk〉].

The terms s1 and s2 can be treated like in (4.10), (4.11) and (4.12). If we
use condition (vii′) with x = x∗ and y = xk instead of (4.13) and we make
the same manipulations as those used to get (4.14), we obtain:

s22 + s3 + s4

≤ (λk/M
k)[((µ + η − 2γ)/2)‖(F (xk) − L(xk, xk)) − (F (x∗) − L(xk, x∗))‖2

+(1/2µ)‖xk+1 − xk‖2 + (1/2η)‖wk − x∗‖2

+‖F (x∗)‖ ‖wk − x∗‖ + |ϕk(wk) − ϕ(x∗)|

+〈L(xk, xk+1) − L(xk, x∗), wk − xk+1〉 + 〈∆(x∗) − ∆(xk+1), x∗ − xk+1〉],
where µ, η are any positive constants.
From the monotonicity of L(xk, ·) − ∆, we deduce that

〈L(xk, xk+1) − L(xk, x∗), wk − xk+1〉 + 〈∆(x∗) − ∆(xk+1), x∗ − xk+1〉

≤ 〈L(xk, xk+1) − L(xk, x∗), wk − x∗〉,
and this last term can be treated like in (4.15).
So, the same arguments as in the proof of Proposition 4.2 allow us to con-
clude that the sequence {Ξk(x∗, xk)}k∈IN converges, {xk}k∈IN is bounded
and {‖xk+1 − xk‖}k∈IN converges to zero. Moreover, if follows from Propo-
sition 4.1 that any weak limit point of {xk}k∈IN is a solution of problem
(GV IP ).
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To prove conclusion 2, let us first remark that for any x, x̃, x̄ ∈ H, we have

Ξk(x̃, x) − Ξk(x̄, x)

= Γk(x̃, x) − Γk(x̄, x)

+(λk/M
k)[〈∆(x̃) − ∆(x), x̃ − x〉 − 〈∆(x̄) − ∆(x), x̄ − x〉]

= Γk(x̃, x) − Γk(x̄, x)

+(λk/M
k)[〈∆(x̃) − ∆(x̄), x̃ − x〉 + 〈∆(x̄) − ∆(x), x̃ − x̄〉].

Hence, by using the same reasoning as in the proof of part 2 of Proposition
4.3, the weak continuity and the monotonicity of ∆, we derive that the se-
quence {xk}k∈IN has only one weak limit point.

If we denote by x∗ this weak limit point and if we assume the strong mono-
tonicity of F , we can use relation (4.19) obtained in the proof of part 3 of
Proposition 4.3 to obtain that

Ξk+1(x∗, xk+1) − Ξk(x∗, xk)

≤ ((τ − β′)/2)‖xk+1 − xk‖2 + (Λ′2/2τ)‖x∗ − wk‖2

+(λk/M
k)[−ᾱ‖xk − x∗‖2 + ϕk(wk) − ϕ(x∗)

+〈F (xk), xk − xk+1〉 + 〈F (xk), wk − x∗〉 + 〈F (x∗), xk+1 − xk〉

+〈L(xk, xk+1) − L(xk, xk), wk − xk+1〉

+〈∆(x∗) − ∆(xk+1), x∗ − xk+1〉 − 〈∆(x∗) − ∆(xk), x∗ − xk〉],
where τ is any positive constant.
By observing that

〈L(xk, xk+1) − L(xk, xk), wk − xk+1〉 + 〈∆(x∗) − ∆(xk+1), x∗ − xk+1〉

−〈∆(x∗) − ∆(xk), x∗ − xk〉

= 〈[L(xk, xk+1) − ∆(xk+1)] − [L(xk, xk) − ∆(xk)], wk − xk+1〉

+〈∆(xk+1) − ∆(xk), wk − x∗〉 + 〈∆(x∗) − ∆(xk), xk − xk+1〉,
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we obtain

Ξk+1(x∗, xk+1) − Ξk(x∗, xk)

≤ ((τ − β′)/2)‖xk+1 − xk‖2 + (Λ′2/2τ)‖x∗ − wk‖2

+(λk/M
k)[−ᾱ‖xk − x∗‖2 + ϕk(wk) − ϕ(x∗)

+〈F (xk), xk − xk+1〉 + 〈F (xk), wk − x∗〉 + 〈F (x∗), xk+1 − xk〉

+‖[L(xk, xk+1) − ∆(xk+1)] − [L(xk, xk) − ∆(xk)]‖ ‖wk − xk+1‖

+〈∆(xk+1) − ∆(xk), wk − x∗〉 + 〈∆(x∗) − ∆(xk), xk − xk+1〉].

Let us now pass to the limit in this inequality. From assumptions (v) and
(viii) of Proposition 4.2, since L(xk, ·)−∆ is Lipschitz continuous, F and ∆
are weakly continuous, {Ξk(x∗, xk)}k∈IN converges and {‖xk+1 − xk‖}k∈IN

converges to zero, we conclude that {‖xk − x∗‖}k∈IN converges to zero. �

Remark 4.5 If we focus somewhat on assumptions (vi) and (vii) of Propo-
sition 4.2, it becomes clear that our analysis can be applied to decomposi-
tion of variational inequalitites with a mapping F which needs not neces-
sarily to satisfy the pseudo Dunn property. More precisely, assume that
F can be expressed as the sum of two mappings F1 and F2. If we set
L(x, y) = L′(x, y) + F2(y) in the perturbed scheme (PAP k), xk+1 is then
characterized as the solution of the following subproblem:

(PPAP k)



find xk+1 ∈ H such that, for all x ∈ H,

〈F1(xk) + F2(xk+1) + L′(xk, xk+1) − L′(xk, xk)

+λ−1
k (∇hk(xk+1) −∇hk(xk)), x − xk+1〉

+ϕk(x) − ϕk(xk+1) ≥ 0.

We see that F1 is fixed at the current iterate xk while F2 is considered at
a variable point. In that case, assumption (vi) requires that L′(x, ·) + F2 is
monotone over dom ϕ for all x ∈ H and Lipschitz continuous uniformly in
x. On the other hand, assumption (vii) reduces to

(vii”) there exists γ > λ/(2β′) such that for all x, y ∈ dom ϕ,
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if 〈F (x), y − x〉 + ϕ(y) − ϕ(x) ≥ 0 holds, then

〈F1(y) + F2(x) − L′(y, y) + L′(y, x), y − x〉 + ϕ(y) − ϕ(x)

≥ γ‖(F1(y) − L′(y, y)) − (F1(x) − L′(y, x))‖2.

Roughly speaking, it amounts to require that F2 be monotone and Lipschitz
continuous and that F1 be linked with L′ by a kind of pseudo Dunn property.
In the extreme situation where we take L′ = 0, F = F2 (F1 = 0) such that
property (vii′′) is trivially true, we recover a perturbed and generalized
instance of the proximal point algorithm:

find xk+1 ∈ H such that, for all x ∈ H,

〈F (xk+1) + λ−1
k (∇hk(xk+1) −∇hk(xk)), x − xk+1〉

+ϕk(x) − ϕk(xk+1) ≥ 0.

This shows that the scheme characterized by subproblems (PPAP k) com-
bines the auxiliary problem principle and the proximal point procedure.
This is the reason why Kaplan and Tichatschke call it the proximal auxil-
iary problem method (see [66]). In that recent paper, they generalize our
analysis in the sense that they obtain a convergence result for the scheme
(PPAP k) under assumption (vii′′) where F2 can be multivalued and the
strong convexity of the functions {hk}k∈IN is replaced by a condition of
strong monotonicity on the operators F2 + λ−1

k ∇hk.

Remark 4.6 When ϕk plays the role of a barrier function associated with
the constrained set C in problem (V IP ), our scheme generates a sequence of
points that lie in the interior of C. However, the philosophy is quite different
from that of interior point path-following algorithms for solving variational
inequalities (see, for example, [94], [116], [130], [131]).
Consider that, at each barrier parameter ν > 0 is associated the following
barrier subproblem:

(BPν)

 find x(ν) ∈ int(C) such that, for all x ∈ C,

〈F (x(ν)) + ∇b(ν, x(ν)), x − x(ν)〉 ≥ 0,

where b denotes the barrier function preventing from going out of the set C.
The sequence {x(ν)}ν>0 generated by this way constitutes what is called
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the central path.
At a current interior point xk and for a fixed νk, path-following methods solve
approximately subproblem (BPνk

) by performing Newton steps to obtain
some point xk+1 sufficiently close to x(νk). In our scheme, the approximation
xk+1 of x(νk) is obtained by making one iteration of the auxiliary problem
method applied to the operator F , i.e. by solving:

〈F (xk) + λ−1
k (Ωk(xk+1) − Ωk(xk)) + ∇b(νk, x

k+1), x − xk+1〉 ≥ 0, ∀x ∈ C.

4.2 Convergence Results for Particular Choices of
the Auxiliary Operators

Our purpose here is to derive from Proposition 4.3 generalizations of well–
known convergence results in the nonperturbed setting (see Chapter 2 Sec-
tion 2.2.1). These different results will be obtained by choosing adequately
hk and L in the decomposition of the auxiliary operator Ω (see (4.4)).

4.2.1 The Symmetric Case

Let us first consider the symmetric case where, for all k ∈ IN , Ω(xk, ·) =
Ωk = ∇Kk with Kk some continuously differentiable and strongly convex
function on dom ϕ. In this case, problem (PAP k) reduces to the optimiza-
tion problem (PSAP k). If we choose hk = Kk for all k and L = 0 in (4.4),
assumption (vi) of Proposition 4.2 obviously holds while assumption (vii) of
the same theorem amounts to express that F has the ϕ–pseudo Dunn prop-
erty on dom ϕ. Moreover, it follows from Remark 4.2 that any pair x∗

1, x
∗
2

of solutions of problem (GV IP ) is such that F (x∗
1) = F (x∗

2). This common
value will be denoted by F ∗ in the sequel. So, we derive from Proposition
4.3 the following convergence result related to subproblems (PSAP k):

Proposition 4.5 Suppose that the solution set of problem (GV IP ) is nonempty
and that assumptions (i)–(v) and (viii) of Proposition 4.2 are satisfied with
hk replaced by Kk for all k ∈ IN . Assume, in addition, that the mapping F
has the ϕ–pseudo Dunn property with modulus γ > λ/(2β′) on dom ϕ.
Then, provided that x0 ∈ dom ϕ, the sequence {xk}k∈IN associated with prob-
lems (PSAP k), k ∈ IN , is bounded, such that {‖xk+1 − xk‖}k∈IN → 0 and
the sequence {F (xk)}k∈IN converges to F ∗. Moreover the same conclusions
as in Proposition 4.3 can be deduced with hk replaced by Kk for all k. �
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In comparison with Theorem 3.2, we do not need the mapping F to be
strongly monotone and Lipschitz continuous but only satisfy the ϕ–pseudo
Dunn property. This enlarges the class of problems that can be considered,
for example, by allowing multiple solutions. But, in return, we have to im-
pose a speed of convergence on the sequence {ϕk}k∈IN described by assump-
tion (viii) of Proposition 4.2 while they only require the Mosco-convergence.

On the other hand, without perturbation on ϕ, with Kk = K for all k ∈ IN
and H = IRn, we recover Theorem 2.1 as a special case of Proposition 4.5.

From Proposition 4.5, we can derive new convergence results for the
perturbed symmetric projection method. Recall that this method is devoted
to solve problem (V IP ) and is characterized by the fact that Kk(x) =
(1/2)xT Dkx for all x ∈ IRn and k ∈ IN , where {Dk}k∈IN is some sequence
of symmetric positive definite matrices. To introduce perturbations, we
consider a sequence {Ck}k∈IN of nonempty closed convex subsets of C and
we take for {ϕk}k∈IN the corresponding indicator functions. Then, problem
(PAP k), with λk = 1 for all k, can be expressed as follows:

find xk+1 ∈ Ck such that 〈F (xk)+Dk(xk+1−xk), x−xk+1〉 ≥ 0, ∀x ∈ Ck.

It is easy to see that xk+1 is precisely the projection with respect to the
Dk–norm of the point xk − (Dk)−1F (xk) onto the closed convex set Ck.

Observe then that assumptions (i)–(v) of Proposition 4.2 only concern the
sequence {Kk}k∈IN and thus the sequence of matrices {Dk}k∈IN . The next
conditions on this sequence are sufficient to get these assumptions:

(C1) there exist two constants β and Λ such that

0 < β ≤ λmin(Dk) ≤ λmax(Dk) ≤ Λ, ∀k ∈ IN ;

(C2) for each k ∈ IN , there exists ηk ≥ 1 satisfying, for all x, y ∈ C,

‖x − y‖2
Dk+1 ≤ ηk‖x − y‖2

Dk ;

(C3) there exist two positive constants M and M such that

0 < M ≤ Mk ≤ M, ∀k ∈ IN,

where Mk =
∏k−1

j=0 ηj .
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For example, if for all k ∈ IN , Dk = ζkD where D is a symmetric positive
definite matrix and the sequence {ζk}k∈IN is such that 0 < ζ ≤ ζk ≤ ζk+1 ≤ ζ

for all k, then the sequence {Dk}k∈IN satisfies conditions (C1)–(C3) above.
Another example where these conditions hold is given by a sequence of ma-
trices {Dk}k∈IN which satisfies (C1) and ‖Dk+1 − Dk‖ ≤ θk for all k where
{θk}k∈IN is a sequence of positive numbers such that

∑+∞
k=0 θk < +∞.

The corresponding convergence result can then be stated as follows:

Theorem 4.1 (H = IRn) Suppose that the solution set of problem (V IP )
is nonempty and that the mapping F is continuous and has the ϕ–pseudo
Dunn property with modulus γ > 0 on C. If {Dk}k∈IN satisfies conditions
(C1) − (C3) above, if M < 2γβM and if assumption (viii) of Proposi-
tion 4.2 is satisfied for any solution of problem (V IP ), then, provided that
x0 ∈ dom ϕ, the sequence {xk}k∈IN generated by the perturbed symmetric
projection method is convergent to a solution of problem (V IP ). �

When Ck = C and Dk = D for all k ∈ IN , this theorem extends a conver-
gence result obtained by Marcotte and Wu ([83], Theorem 2.1).

In the very particular situation where F = 0, problem (GV IP ) reduces
to minimize the function ϕ on H. If we choose Kk(x) = (1/2)‖x‖2 for all
x and k, it is easy to see that the scheme based on problems (PSAP k),
k ∈ IN , is nothing else than the proximal point algorithm:

find xk+1 ∈ argmin {ϕk(x) + (1/2λk)‖x − xk‖2)}.

In that case, we obtain the following theorem:

Theorem 4.2 If ϕ admits at least a minimum, if assumption (viii) of
Proposition 4.2 is satisfied for any minimum of ϕ and if 0 < λ ≤ λk+1 ≤
λk ≤ λ for all k, then, provided that x0 ∈ dom ϕ, the sequence {xk}k∈IN

generated by the perturbed proximal point algorithm weakly converges to a
minimum of ϕ. �

The convergence of this algorithm has been analyzed in [65] in the case where
the sequence {ϕk}k∈IN uniformly converges to ϕ, and in [73], [125] under
different assumptions that refer to the notion of variational semi–distance
between ϕk and ϕ introduced by Attouch and Wets in [7] (see Definition
3.3).
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Remark 4.7 By naturally choosing hk = Kk for all k and L = 0 in (4.4) to
obtain Proposition 4.5, we require F to satisfy the ϕ–pseudo Dunn property.
This condition is less flexible than condition (vii) of Proposition 4.2 which
allows to consider other sequences of functions {hk}k∈IN , the only constraint
being that F and L(xk, ·) = λ−1

k (∇Kk − ∇hk) satisfy assumption (vii) for
all k. This is illustrated in the following example in IR2 where:

• ϕ is the indicator function of C = IR × {0} ⊂ IR2;

• F (x) = Qx with Q =

(
2 −2
2 0

)
, ∀x ∈ C;

• Kk(x) = K(x) = (1/2)xT Dx with D =

(
2 1
1 2

)
, ∀x, ∀k;

• λk = 1, ∀k ∈ IN .

In this case, ∇K is Lipschitz continuous with modulus
√

5 on C and strongly
monotone with modulus 2 on C. In addition, F does not satisfy the ϕ–
pseudo Dunn property with modulus γ > 1/4 on C so that Proposition 4.5
cannot be applied. However, if we choose hk(x) = h(x) = xT x for all x
and all k, it can be easily seen that ∇h is Lipshitz continuous and strongly
monotone with modulus 2 on C and that L(x, ·) = ∇K−∇h is monotone and
Lipschitz continuous on C. Moreover, little calculus shows that assumption
(vii) of Proposition 4.2 linking F with L is satisfied for any γ such that
1/4 < γ ≤ 2/5. So, for this example, Proposition 4.3 alone can ensure the
convergence of the process.

4.2.2 The Nonsymmetric Case

Now, we turn to the more general case of nonsymmetric auxiliary operators.
We will derive from Proposition 4.3 generalizations of some results due to
Tseng (see [126]) and to Pang and Chan (see [99]).
Assume that λk = 1 for all k and that there exists a symmetric positive defi-
nite matrix G such that all the operators Ω(xk, ·)−G, k ∈ IN , are monotone.
Then, we can choose hk and L in (4.4) such that:

hk(y) = (1/2)yT Gy and L(xk, y) = Ω(xk, y) − Gy, ∀y, ∀k.

In this special case, we observe easily that assumptions (i)–(v) of Propo-
sition 4.2 hold with βk = β = β′ = λmin(G), Λk = Λ = Λ′ = λmax(G),
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Mk = ηk = 1 for all k. Moreover, assumption (vi) is also immediately
satisfied if, for all x ∈ dom ϕ, Ω(x, ·) − G is monotone over dom ϕ for all
x ∈ dom ϕ and Ω(x, ·) is Lipschitz continuous over dom ϕ uniformly in x.
For the sake of convenience, we introduce the following condition:

Condition (S):
there exists a symmetric positive definite matrix G such that, for all x ∈
dom ϕ, Ω(x, ·) − G is monotone over dom ϕ and there exists a constant
γ > (2λmin(G))−1 such that, for all x, y ∈ dom ϕ,

if 〈F (x), y − x〉 + ϕ(y) − ϕ(x) ≥ 0 holds, then

〈F (y) − (Ω(y, y) − Gy) + (Ω(y, x) − Gx), y − x〉 + ϕ(y) − ϕ(x)

≥ γ‖F (y) − (Ω(y, y) − Gy) − F (x) + (Ω(y, x) − Gx)‖2.

The following convergence result related to subproblems (PAP k), k ∈ IN ,
can then be deduced from Proposition 4.3:

Theorem 4.3 Assume that the solution set of problem (GV IP ) is nonempty
and that the following conditions hold:

(i) Ω(x, ·) : H → H is Lipschitz continuous over dom ϕ uniformly in x;

(ii) F and Ω satisfy Condition (S);

(iii) {ϕk}k∈IN , ϕ ∈ Γ0(H) are such that assumption (viii) of Proposition 4.2
holds.

Then, provided that x0 ∈ dom ϕ, the sequence {xk}k∈IN associated with
problems (PAP k), k ∈ IN , is bounded. Moreover, the same conclusions as
in Proposition 4.3 can be derived (Note that in this case, condition (4.18) is
immediately satisfied). �

When for all x, y ∈ H, Ω(x, y) = D(x)y with D(x) an (n × n) positive
definite matrix and ϕk = ϕ for all k, Pang and Chan ([99]) propose a con-
vergence result using, instead of Condition (S), a contraction condition that
links F and Ω (see Condition (PCH) in Theorem 2.2). In our more general
setting, this condition can be expressed as:

Condition (GPCH):

85



there exists a symmetric positive definite matrix G such that, for all x ∈
dom ϕ, Ω(x, ·)−G is monotone over dom ϕ and there exists a positive con-
stant b < 1 such that, for all x, y ∈ dom ϕ:

‖G−1[F (y) − F (x) − (Ω(y, y) − Ω(y, x))]‖G ≤ b‖y − x‖G.

Our purpose now is to derive from Theorem 4.3 the following result which
is an extension of Theorem 2.2:

Theorem 4.4 Assume that the following conditions hold:

(i) Ω(x, ·) : H → H is Lipschitz continuous over dom ϕ uniformly in x;

(ii) F and Ω satisfy Condition (GPCH);

(iii) {ϕk}k∈IN , ϕ ∈ Γ0(H) are such that assumption (viii) of Proposition 4.2
holds.

Then, provided that x0 ∈ dom ϕ, F is weakly continuous on dom ϕ and the
functional x → 〈F (x), x〉 is weakly lower semi–continuous on dom ϕ, then
the sequence {xk}k∈IN generated by problems (PAP k) strongly converges to
the unique solution of problem (GV IP ).

Proof. First, we will prove that, without loss of generality, we can suppose
that G = I in Condition (GPCH). For that, we follow the same kind of
procedure as Tseng in [126]: we introduce a scaling on the variables in such
a way that, in the transformed space, the corresponding Condition (GPCH)
is satisfied with G = I. More precisely, we consider the linear transformation
given by x̂ = G1/2x. With this scaling, the new functions corresponding to
F,ϕ, ϕk and Ω will be denoted by F̂ , ϕ̂, ϕ̂k and Ω̂ respectively and defined,
for all x, y ∈ H, by

F̂ (x̂) = G−1/2F (G−1/2x̂),

ϕ̂(x̂) = ϕ(G−1/2x̂) and ϕ̂k(x̂) = ϕk(G−1/2x̂),

Ω̂(x̂, ŷ) = G−1/2Ω(G−1/2x̂, G−1/2ŷ).

According to this scaling, problem (GV IP ) and problem (PAP k) are re-
spectively equivalent to the problems:

( ̂GV IP ) find x̂∗ ∈ H such that 〈F̂ (x̂∗), x̂−x̂∗〉+ϕ̂(x̂)−ϕ̂(x̂∗) ≥ 0, ∀x̂ ∈ H,
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and

( ̂PAP k)



find x̂k+1 ∈ H such that, for all x̂ ∈ H,

〈F̂ (x̂k) + Ω̂(x̂k, x̂k+1) − Ω̂(x̂k, x̂k), x̂ − x̂k+1〉

+ϕ̂k(x̂) − ϕ̂k(x̂k+1) ≥ 0,

in the sense that if x∗ (resp. xk+1) is some solution of problem (GV IP )
(resp. (PAP k)), then x̂∗ (resp. x̂k+1) is a solution of problem ( ̂GV IP )
(resp. ( ̂PAP k)) and reciprocally. So, it is sufficient to prove that problem
( ̂GV IP ) admits a unique solution and that the sequence {x̂k}k∈IN strongly
converges to this solution to obtain the desired result.
Since Ω(x, ·) − G is monotone on dom ϕ for all x ∈ dom ϕ if and only if
Ω̂(x̂, ·)− I is monotone on dom ϕ̂ for all x̂ ∈ dom ϕ̂, we have that Condition
(GPCH) is equivalent to:

Condition( ̂GPCH):
For all x̂ ∈ dom ϕ̂, Ω̂(x̂, ·) − I is monotone over dom ϕ̂ and there exists a
positive constant b < 1 such that, for all x̂, ŷ ∈ dom ϕ̂:

‖F̂ (ŷ) − F̂ (x̂) − (Ω̂(ŷ, ŷ) − Ω̂(ŷ, x̂))‖ ≤ b‖ŷ − x̂‖.

So, since assumptions (i) and (iii) with ϕ,ϕk and Ω replaced respectively by
ϕ̂, ϕ̂k and Ω̂, are satisfied, we can, without loss of generality, suppose that
G = I in Condition (GPCH).
We prove now that Condition (GPCH) with G = I implies the following
condition:

Condition (SI):
For all x ∈ dom ϕ, Ω(x, ·) − I is monotone over dom ϕ and there exists a
constant γ > 1/2 such that, for all x, y ∈ dom ϕ,

if 〈F (x), y − x〉 + ϕ(y) − ϕ(x) ≥ 0 holds, then

〈F (y) − (Ω(y, y) − y) + (Ω(y, x) − x), y − x〉 + ϕ(y) − ϕ(x)

≥ γ‖F (y) − (Ω(y, y) − y) − F (x) + (Ω(y, x) − x)‖2.

Let x, y ∈ dom ϕ. If F and Ω satisfy Condition (GPCH) with G = I, we
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have
‖F (y) − F (x) − (Ω(y, y) − y) + (Ω(y, x) − x)‖2

= ‖F (y) − F (x) − Ω(y, y) + Ω(y, x)‖2 + ‖y − x‖2

+2〈F (y) − F (x) − Ω(y, y) + Ω(y, x), y − x〉

≤ 2〈F (y) − F (x) − Ω(y, y) + Ω(y, x), y − x〉 + (b2 + 1)‖y − x‖2

= 2〈F (y) − F (x) − (Ω(y, y) − y) + (Ω(y, x) − x), y − x〉

+(b2 − 1)‖y − x‖2.

Or equivalently,

2〈F (y) − F (x) − (Ω(y, y) − y) + (Ω(y, x) − x), y − x〉 ≥ (1 − b2)‖y − x‖2

+‖F (y) − F (x) − (Ω(y, y) − y) + (Ω(y, x) − x)‖2.
(4.21)

Moreover, by using again Condition (GPCH) with G = I, we obtain

‖F (y) − F (x) − (Ω(y, y) − y) + (Ω(y, x) − x)‖ ≤ (b + 1)‖y − x‖. (4.22)

So, incorporating (4.22) in (4.21), we have

〈F (y) − F (x) − (Ω(y, y) − y) + (Ω(y, x) − x), y − x〉

≥ γ‖F (y) − F (x) − (Ω(y, y) − y) + (Ω(y, x) − x)‖2,

where γ = 1/2 + (1 − b2)/(2(1 + b)2). Since γ > 1/2, we deduce that
Condition (SI) holds. Observing then that Condition (S) is satisfied with
G = I, we can apply Theorem 4.3. Since in this case {∇hk}k∈IN satisfies
condition (4.18), to conclude that the sequence {xk}k∈IN strongly converges
to the unique solution of problem (GV IP ), it remains to prove that F is
strongly monotone when Condition (GPCH) with G = I is satisfied.
Let x, y ∈ dom ϕ. From (4.21), we deduce that

〈F (y) − F (x) − (Ω(y, y) − y) + (Ω(y, x) − x), y − x〉

≥ (1 − b2)‖y − x‖2/2.
(4.23)

On the other hand, Ω(y, ·) − I being monotone on dom ϕ, it follows that

〈F (y) − F (x) − (Ω(y, y) − y) + (Ω(y, x) − x), y − x〉

≤ 〈F (y) − F (x), y − x〉.
(4.24)
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Gathering (4.23) and (4.24), we get

〈F (y) − F (x), y − x〉 ≥ (1 − b2)‖y − x‖2/2.

This means that F is strongly monotone over dom ϕ and the proof is com-
plete. �

The following proposition will be used to derive corollaries from The-
orem 4.4.

Proposition 4.6 A sufficient condition for (GPCH) to hold is the follow-
ing:

Condition (GPCHbis):
there exists a symmetric positive definite matrix G such that, for all x ∈
dom ϕ, Ω(x, ·) − G is monotone over dom ϕ and there exists a positive
constant b′ < λmin(G) such that, for all x, y ∈ dom ϕ:

‖F (y) − F (x) − (Ω(y, y) − Ω(y, x))‖ ≤ b′‖y − x‖.

Proof. Recall that, for all z ∈ H,

λmin(G)‖z‖2 ≤ ‖z‖2
G = zT Gz ≤ λmax(G)‖z‖2.

If we use the notation

R(x, y) = F (y) − F (x) − (Ω(y, y) − Ω(y, x)),

and we suppose that Condition (GPCHbis) is satisfied, the following in-
equalities can be deduced:

‖G−1R(x, y)‖2
G = ‖R(x, y)‖2

G−1

≤ λmax(G−1) ‖R(x, y)‖2

≤ (λmin(G))−1b′2 ‖y − x‖2

≤ (λmin(G))−2b′2 ‖y − x‖2
G.

It follows that Condition (GPCH) holds with b = (λmin(G))−1b′ < 1. �

The next theorem concerns the case where Ω(x, y) = D(x)y for all x, y ∈ H,
with D(x) some positive definite matrix depending on x not assumed to be
symmetric. It is an extension of Corollary 2.10 of [99].
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Theorem 4.5 Suppose that F is G–differentiable and that there exists some
positive constant Λ such that ‖D(x)‖ ≤ Λ for all x ∈ dom ϕ. Suppose also
that there exist a symmetric positive definite matrix G and positive scalars
ν and η such that ν + η < λmin(G), and for all x, y ∈ dom ϕ, D(x) − G is
positive semi-definite over dom ϕ and

‖∇F (x) −∇F (y)‖ ≤ ν and ‖∇F (x) − D(x)‖ ≤ η.

Then, if x0 ∈ dom ϕ, {ϕk}k∈IN , ϕ ∈ Γ0(H) are such that assumption (viii)
of Proposition 4.2 holds, F is weakly continuous on dom ϕ and the func-
tional x → 〈F (x), x〉 is weakly lower semi–continuous on dom ϕ, the same
conclusions as in Theorem 4.4 can be deduced.

Proof. From the mean-value Theorem (see Proposition 1.6), we have:

‖F (y) − F (x) − D(y)(y − x)‖

≤ sup0≤t≤1 ‖∇F (x + t(y − x)) −∇F (y)‖ ‖y − x‖

+‖∇F (y) − D(y)‖ ‖y − x‖.
Hence, it follows from the assumptions that

‖F (y) − F (x) − D(y)(y − x)‖ ≤ (ν + η)‖y − x‖.

Then Proposition 4.6 ensures that Condition (GPCH) is satisfied with
b = (λmin(G))−1(ν + η). �

In the special case where D(x) = ∇F (x) for all x, this corollary could be
interpreted as a global convergence result for the pertubed Newton method.

4.3 Local Convergence Results. Application to

the Newton Method

As observed in the previous section, Theorem 4.5 could be applied to the
Newton method by taking D(x) = ∇F (x) for all x. Nevertheless, this
method is known to have a good convergence rate if considered in its local
form. Motivated by this remark, we present in this section a local version of
the general convergence theorem related to problems (PAP k), k ∈ IN . To
obtain it, we suppose that assumptions (vi) and (vii) of Proposition 4.2 are
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satisfied only in a neighborhood of a solution of problem (GV IP ) and we
impose an additional condition of closeness between the sequence {ϕk}k∈IN

and the function ϕ. More precisely, our local convergence result can be
stated as follows:

Proposition 4.7 Let x∗ be a solution of problem (GV IP ). Assume that
the sequences {hk}k∈IN and {λk}k∈IN satisfy assumptions (i)–(v) of Propo-
sition 4.2 and that the following conditions are satisfied:

(a) there exist δ∗ > 0 and γ > λ̄/(2β′) such that, for all x, y in the closed ball
B(x∗, δ∗) of center x∗ and radius δ∗, the mapping L(x, ·) is monotone
on dom ϕ and Lipschitz continuous on dom ϕ uniformly in x with
Lipschitz constant l > 0 and,

if 〈F (x), y − x〉 + ϕ(y) − ϕ(x) ≥ 0 holds, then

〈F (y) − L(y, y) + L(y, x), y − x〉 + ϕ(y) − ϕ(x)

≥ γ‖(F (y) − L(y, y)) − (F (x) − L(y, x))‖2;

(b) {ϕk}k∈IN , ϕ ∈ Γ0(H) are such that ϕk M→ ϕ and ϕ ≤ ϕk for all k.
Moreover, there exist α > 1 and a sequence {wk}k∈IN satisfying (4.5)
and such that the sequences {αk}k∈IN and {T k}k∈IN defined by (4.16)
and (4.17) satisfy the inequality pT < β′δ∗2/2 where T =

∑+∞
k=0 T k

and p = limk→∞
∏k

j=0 α−1
j .

Then, provided that Γ0(x∗, x0) ≤ β′δ∗2/(2p) − T , the sequence {xk}k∈IN

generated by problems (PAP k), k ∈ IN , stays in B(x∗, δ∗). In addition, if F
is weakly continuous on B(x∗, δ∗) and the functional x → 〈x, F (x)〉 is weakly
lower semi–continuous on B(x∗, δ∗), then any weak limit point of {xk}k∈IN

is a solution of problem (GV IP ) that belongs to B(x∗, δ∗). Moreover, if x∗ is
the unique solution of (GV IP ) in B(x∗, δ∗), then {xk}k∈IN weakly converges
to x∗. In addition, if F is strongly monotone on B(x∗, δ∗), then we also have
that {xk}k∈IN strongly converges to x∗.

Proof. Let {Γk(x∗, ·)}k∈IN be the sequence of Lyapunov functions defined
in (4.6). First, let us observe that if xk ∈ B(x∗, δ∗) for each k, the same
arguments as in the proofs of Propositions 4.2 and 4.3 allow us to conclude
that any weak limit point of the sequence {xk}k∈IN is a solution of problem
(GV IP ).
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In order to show that xk ∈ B(x∗, δ∗) for each k, we consider the sequence
{rk}k∈IN defined by

r0 = δ and rk+1 = α−1
k (rk + T k), k ∈ IN,

where δ = β′δ∗2/(2p) − T . It is easy to see that for all k, we have

rk+1 = δ
k∏

j=0

α−1
j +

k∑
j=0

(
k∏

t=j

α−1
t )T j

< δp + pT = (β′/2)δ∗2. (4.25)

So, from (4.7) and (4.25), the iterate xk will belong to B(x∗, δ∗) as soon as
Γk(x∗, xk) ≤ rk.
To end the proof, it remains to see that Γk(x∗, xk) ≤ rk for all k. By
induction, since this inequality is true for k = 0, we can suppose that it is
true for k. Then xk ∈ B(x∗, δ∗) and, since assumption (a) holds on B(x∗, δ∗),
we can conclude exactly as in the proof of Proposition 4.2 (see (4.8)) that

Γk+1(x∗, xk+1) ≤ α−1
k (Γk(x∗, xk) + T k).

Then, by definition of rk+1, we obtain that Γk+1(x∗, xk+1) ≤ rk+1. Since
the last part of the theorem is straightforward, the proof is complete. �

Remark 4.8 When ϕ is the indicator function of a nonempty closed convex
subset C of H, it follows from the assumptions on {hk}k∈IN and {λk}k∈IN

of Proposition 4.7, that for all x ∈ C,

Γ0(x∗, x) ≤ (Λ′/2)‖x∗ − x‖2 + λ‖F (x∗)‖ ‖x∗ − x‖.

In this case, if we take ε > 0 such that (Λ′/2)ε2+λ‖F (x∗)‖ε ≤ β′δ∗2/(2p)−T
and if we choose the starting point x0 such that x0 ∈ C and ‖x∗ − x0‖ ≤ ε,
then Γ0(x∗, x0) ≤ β′δ∗2/(2p)−T and the conclusion of the preceding theorem
holds.

As announced above, assumption (b) imposes a condition of closeness
between the sequence {ϕk}k∈IN and the function ϕ. This closeness is mea-
sured by the parameters T and p. The more T and p are small, the more
δ∗ could be small. In order to prove the consistency of assumption (b), it is
important to see on examples that it is possible to build, for a δ∗ > 0 given,
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a sequence {ϕk}k∈IN which satisfies all the requirements of that assumption
(b). For that, we consider the barrier functions described in Example 3.3.
We suppose that the functions gi, i = 1, . . . ,m, and the subset C are as in
Example 3.3 with g0 = 0. In addition, we impose that C is bounded and
we denote by M a positive constant such that −gi(x) ≤ M for all x ∈ C
and 1 ≤ i ≤ m. For the sake of convenience, we slightly modify the barrier
functions as follows:

ϕk(x) = −ν−1
k

m∑
i=1

ln(min(1/2,−gi(x)/2M)), ∀x ∈ IRn, ∀k ∈ IN, (4.26)

where the sequence {νk}k∈IN of barrier parameters is strictly increasing to
+∞, νk > 0 for all k and, by convention, ln(a) = −∞ when a ≤ 0.
Suppose for a moment that the sequence {νk}k∈IN has been chosen. Then,
if we consider x̃ ∈ int C and define a sequence {wk}k∈IN in C by

wk = x∗ + ν
−1/2
k (x̃ − x∗), k ∈ IN,

we have successively, for all k,

wk − x∗ = ν
−1/2
k (x̃ − x∗), (4.27)

ϕk(wk) = −ν−1
k

m∑
i=1

ln(min(1/2,−gi(wk)/2M))

≤ −ν−1
k

m∑
i=1

ln(−gi(x̃)/(2Mν
1/2
k ))

= −ν−1
k

m∑
i=1

ln(−gi(x̃)/2M) + mν−1
k ln(ν1/2

k ), (4.28)

where the inequality follows from the convexity of gi, i = 1, . . . ,m and the
fact that x∗ ∈ C.
Gathering (4.17), (4.27) and (4.28), we obtain

T ≤ c1

+∞∑
k=0

ν−1
k + c2

+∞∑
k=0

(k + 1)αν−1
k + c3

+∞∑
k=0

ν
−1/2
k ,

with

c1 = (1/2)(Λ′2τ−1 + λη−1)‖x̃ − x∗‖2 − λ
m∑

i=1

ln(−gi(x̃)/2M),

c2 = lλ‖x̃ − x∗‖2/2θ,

c3 = λ‖F (x∗)‖‖x̂ − x∗‖ + mλ.
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It is now clear that it is possible to choose the sequence {νk}k∈IN in such a
way that assumption (b) be satisfied. �

By the same process as before, we can deduce from Proposition 4.7 the
local versions of the results of the preceding section. Since our aim is to
provide a local version for methods of the Newton type, we will concentrate
more particularly on local versions needed to achieve this goal. First, let us
provide a local version to Theorem 4.3 for the case where G = I.

Theorem 4.6 Let x∗ be a solution of problem (GV IP ). Assume that the
following conditions are satisfied:

(a) there exist δ∗ > 0 and γ > 1/2 such that, for all x, y ∈ B(x∗, δ∗), the
mapping Ω(x, ·) − I is monotone on dom ϕ and Lipschitz continuous
on dom ϕ uniformly in x with Lipschitz constant l > 0 and,

if 〈F (x), y − x〉 + ϕ(y) − ϕ(x) ≥ 0 holds, then

〈F (y) − [Ω(y, y) − y] + [Ω(y, x) − x], y − x〉 + ϕ(y) − ϕ(x)

≥ γ‖(F (y) − [Ω(y, y) − y]) − (F (x) − [Ω(y, x) − x])‖2;

(b) {ϕk}k∈IN , ϕ ∈ Γ0(H) are such that ϕk M→ ϕ and ϕ ≤ ϕk for all k.
Moreover, there exist α > 1 and a sequence {wk}k∈IN satisfying (4.5)
and such that the inequality pT < δ∗2/2 is satisfied with T =

∑+∞
k=0 T k,

p = limk→∞
∏k

j=0 α−1
j and for all k,

αk = 1 − lθk,

T k = (1/2)[τ−1 + η−1 + lθ−1
k ]‖x∗ − wk‖2

+‖F (x∗)‖‖x∗ − wk‖ + |ϕk(wk) − ϕ(x∗)|,

where µ, η, τ are such that µ+η−2γ < 0, τ +µ−1 < 1, θk = θ(k+1)−α

and 0 < θ < l−1.

Then, provided that

(1/2)‖x∗ − x0‖2 + 〈F (x∗), x0 − x∗〉 + ϕ(x0) − ϕ(x∗) ≤ δ∗2/(2p) − T,

the same conclusions as in Proposition 4.7 are true.
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Proof. This result follows immediately from Proposition 4.7 with hk(y) =
(1/2)yT y, L(xk, y) = Ω(xk, y) − y,∀y, ∀k and λk = 1,∀k, such that β′ =
Λ′ = 1 and λ̄ = 1. �

We can now state the local version of Theorem 4.4.

Theorem 4.7 Let x∗ be a solution of problem (GV IP ). Assume that the
following conditions are satisfied:

(a) there exist a symmetric positive definite matrix G and positive constants
δ∗ and b < 1 such that, for all x, y ∈ B(x∗, δ∗), Ω(x, ·)−G is monotone
over dom ϕ and Lipschitz continuous over dom ϕ uniformly in x with
constant l > 0 and

‖G−1[F (y) − F (x) − (Ω(y, y) − Ω(y, x))]‖G ≤ b‖y − x‖G;

(b) {ϕk}k∈IN , ϕ ∈ Γ0(H) are such that ϕk M→ ϕ and ϕ ≤ ϕk for all k.
Moreover, there exist α > 1 and a sequence {wk}k∈IN satisfying (4.5)
and such that the inequality p̂T̂ < λmin(G)δ∗2/2 is satisfied with T̂ =∑+∞

k=0 T̂ k, p̂ = limk→∞
∏k

j=0 α̂j
−1 and, for all k ∈ IN ,

α̂k = 1 − lθkλmin(G)−1/2,

T̂ k = (1/2)(τ−1 + η−1 + lθ−1
k λmin(G)−1/2) ‖x∗ − wk‖2

G

+‖G−1/2F (x∗)‖ ‖x∗ − wk‖G + |ϕk(wk) − ϕ(x∗)|,

where µ, η, τ are such that µ + η − (1 − b2)/(1 + b)2 < 1, τ + µ−1 <
1, θk = θ(k + 1)−α and 0 < θ < l−1λmin(G)1/2.

Then, provided that

(1/2)‖x∗ −x0‖2
G + 〈F (x∗), x0 −x∗〉+ ϕ(x0)−ϕ(x∗) ≤ λmin(G) δ∗2/(2p̂)− T̂ ,

the sequence {xk}k∈IN generated by problems (PAP k), k ∈ IN , stays in
B(x∗, δ∗). In addition, if F is weakly continuous on B(x∗, δ∗) and the func-
tional x → 〈F (x), x〉 is weakly lower semi–continuous on B(x∗, δ∗), then the
sequence {xk}k∈IN strongly converges to x∗.

Proof. As in the proof of Theorem 4.4, we consider the scaling x̂ = G1/2x

and we denote by F̂ , ϕ̂, ϕ̂k, Ω̂ the scaled functions corresponding to F,ϕ, ϕk
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and Ω respectively. Let us write conditions (a) and (b) for the variables x̂.
Since

‖x − x∗‖ ≤ (λmin(G))−1/2‖x − x∗‖G

= (λmin(G))−1/2‖x̂ − x̂∗‖,
we have that x ∈ B(x∗, δ∗) provided that x̂ ∈ B(x̂∗, δ∗(λmin(G))1/2).
Moreover, if a function J is Lipschitz continuous with Lipschitz constant l
in the x–space, then the function Ĵ such that Ĵ(x̂) = G−1/2J(G−1/2x̂) is
Lipschitz continuous with constant l (λmin(G))−1/2 in the x̂–space. Indeed,

‖Ĵ(x̂) − Ĵ(ŷ)‖ = ‖J(x) − J(y)‖G−1

≤ (λmax(G−1))1/2 ‖J(x) − J(y)‖
= (λmin(G))−1/2‖J(x) − J(y)‖.

With these two observations, assumption (a) implies the following one in
the x̂–space:

(â) there exist a symmetric positive definite matrix G and positive con-
stants δ∗ and b < 1 such that, for all x̂, ŷ ∈ B(x̂∗, δ∗(λmin(G))1/2),
Ω̂(x̂, ·) − I is monotone over dom ϕ and Lipschitz continuous over
dom ϕ uniformly in x̂ with constant l(λmin(G))−1/2 > 0 and

‖F̂ (ŷ) − F̂ (x̂) − (Ω̂(ŷ, ŷ) − Ω̂(ŷ, x̂))‖ ≤ b‖ŷ − x̂‖.

In the sequel, we denote δ̂∗ = δ∗ (λmin(G))1/2 and l̂ = l (λmin(G))−1/2.
From the proof of Theorem 4.4, we know that condition (â) implies that F̂
is strongly monotone in B(x̂∗, δ̂∗) and that the following condition holds:

(̂̂a) there exist positive constants δ̂∗ and γ̂ = 1/2+(1−b2)/(2(1+b2)) > 1/2
such that, for all x̂, ŷ ∈ B(x̂∗, δ̂∗), Ω̂(x̂, ·) − I is monotone over dom ϕ
and Lipschitz continuous over dom ϕ uniformly in x̂ with constant l̂
and

if 〈F̂ (x̂), ŷ − x̂〉 + ϕ̂(ŷ) − ϕ̂(x̂) ≥ 0 holds, then

〈F̂ (ŷ) − [Ω̂(ŷ, ŷ) − ŷ] + [Ω̂(ŷ, x̂) − x̂], ŷ − x̂〉 + ϕ̂(ŷ) − ϕ̂(x̂)

≥ γ̂‖(F̂ (ŷ) − [Ω̂(ŷ, ŷ) − ŷ]) − (F̂ (x̂) − [Ω̂(ŷ, x̂) − x̂])‖2;

On the other hand, condition (b) can be expressed in the following way:
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(b̂) {ϕ̂k}k∈IN , ϕ̂ ∈ Γ0(H) are such that ϕ̂k M→ ϕ̂ and ϕ̂ ≤ ϕ̂k for all k.
Moreover, there exist α > 1 and a sequence {ŵk}k∈IN = {G1/2 wk}k∈IN

satisfying

kα‖ŵk − x̂∗‖ → 0 and kα|ϕ̂k(ŵk) − ϕ̂(x̂∗)| → 0,

and such that the inequality p̂T̂ < δ̂∗2/2 is satisfied with T̂ =
∑+∞

k=0 T̂ k,
p̂ = limk→∞

∏k
j=0 α̂j

−1 and, for all k ∈ IN ,

α̂k = 1 − l̂θk,

T̂ k = (1/2)(τ−1 + η−1 + l̂θ−1
k )‖x̂∗ − ŵk‖2

+‖F̂ (x̂∗)‖ ‖x̂∗ − ŵk‖ + |ϕ̂k(ŵk) − ϕ̂(x̂∗)|,

where µ, η, τ are such that µ+η−2γ̂ < 0, τ +µ−1 < 1, θk = θ(1+k)−α

and 0 < θ < l̂−1.

Finally, it can be easily seen that the inequality

(1/2)‖x∗ − x0‖2
G + 〈F (x∗), x0 − x∗〉+ ϕ(x0)−ϕ(x∗) ≤ λmin(G) δ∗2/(2p̂)− T̂

can be expressed as

(1/2)‖x̂∗ − x̂0‖2 + 〈F̂ (x̂∗), x̂0 − x̂∗〉 + ϕ̂(x̂0) − ϕ̂(x̂∗) ≤ δ̂∗2/(2p̂) − T̂ .

This last remark together with conditions (̂̂a) and (b̂) allow us to apply The-
orem 4.6 in the x̂–space knowing that x̂∗ is the unique solution of ( ̂GV IP )
in B(x̂∗, δ̂∗). After translating these conclusions in the x–space, the proof is
then complete. �

When Ω(x, y) = D(x)y for all x, y ∈ H with D(x) some positive definite
matrix, the local convergence result corresponding to Theorem 4.5 can be
stated in the following way:

Theorem 4.8 Suppose that F is G–differentiable and let x∗ be a solution
of problem (GV IP ). Assume that the following conditions are satisfied:

(a) there exist a symmetric positive definite matrix G and positive scalars
δ∗, ν and η with ν + η < λmin(G) such that for all x, y ∈ B(x∗, δ∗),
‖D(x)‖ ≤ Λ for some Λ > 0, the matrix D(x) − G is positive semi-
definite over dom ϕ and

‖∇F (x) −∇F (y)‖ ≤ ν and ‖∇F (x) − D(x)‖ ≤ η;
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(b) assumption (b) of Theorem 4.7 holds with l = Λ + λmax(G).

Then, the same conclusions as in Theorem 4.7 can be deduced.

Proof. This result follows directly from Theorem 4.7 by using the same
arguments as in the proof of Theorem 4.5. �

To end this section, we can consider more specially the application
of this corollary to the Newton method. Suppose that F is continuously
G–differentiable. Then, the sequence generated by the perturbed Newton
method is defined by the following problems:

(NMk)

 find xk+1 ∈ H such that, for all x ∈ H,

〈F (xk) + ∇F (xk)(xk+1 − xk), x − xk+1〉 + ϕk(x) − ϕk(xk+1) ≥ 0.

The corresponding local convergence result can be expressed as follows:

Corollary 4.1 Let x∗ be a solution of problem (GV IP ). Assume that the
following conditions are satisfied:

(a) there exist a symmetric positive definite matrix G and positive scalars
δ∗ and ν < λmin(G) such that, for all x, y ∈ B(x∗, δ∗), the matrix
∇F (x)−G is positive semi-definite on dom ϕ and ‖∇F (x)−∇F (y)‖ ≤
ν;

(b) assumption (b) of Theorem 4.7 holds with l = ‖∇F (x∗)‖+ν +λmax(G).

Then, the same conclusions as in Theorem 4.7 are obtained.

Proof. This is an obvious consequence of Theorem 4.8 where we take
D(x) = ∇F (x). �

Finally, observe that, when ϕk = ϕ for all k, the parameters T k and T̂ k

are equal to zero for all k. Hence, in that case, T = T̂ = 0 and assumption
(b) of Proposition 4.7, Theorems 4.6–4.8 and Corollary 4.1 is obviously sat-
isfied. This allows us to recover well-known local convergence results as the
following one due to Pang and Chan ([99], Corollary 2.6):

Corollary 4.2 (H = IRn) If x∗ is a solution of problem (GV IP ) and
∇F (x∗) is a positive definite matrix, then, provided that x0 is chosen close
enough to x∗, the sequence generated by problems (NMk), k ∈ IN , with
ϕk = ϕ for all k strongly converges to x∗.
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Proof. Since ∇F (x∗) is a positive definite matrix, there exists a positive
constant µ such that, for all s ∈ H:

sT∇F (x∗)s ≥ µ‖s‖2.

If we take µ′ such that 0 < µ′ < µ and G = µ′I, then ∇F (x∗)−G is positive
definite and by the continuity of ∇F , there exists a neighborhood N1 of x∗

such that ∇F (x) − G is positive semi-definite for all x in N1.
Next, using again the continuity of ∇F , for any positive constant ν < µ′,
there exists a neighborhood N2 of x∗ such that ‖∇F (x) −∇F (y)‖ ≤ ν for
all x, y in N2. Hence assumption (a) of Corollary 4.1 is satisfied for a ball
B(x∗, δ∗) contained in N1 ∩N2. Since assumption (b) of Corollary 4.1 holds
obviously, the conclusion follows immediately. �
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Chapter 5

Convergence of the
Perturbed Auxiliary
Problem Method for
Multivalued Mappings

In this chapter, the operator F is multivalued and the auxiliary operator is
fixed and symmetric. So, at iteration k, the vector xk+1 is the solution of
the following perturbed symmetric auxiliary subproblem:

(PSAP k)



choose r(xk) ∈ F (xk) and

find xk+1 ∈ H such that, for all x ∈ H,

〈r(xk) + λ−1
k (∇K(xk+1) −∇K(xk)), x − xk+1〉

+ϕk(x) − ϕk(xk+1) ≥ 0.

In a first part, we provide convergence results for this perturbed scheme
under the same kind of assumptions on F as in [134] (see Theorem 2.6). In
a second part, we relax this scheme by allowing an inexact computation of
an element of F (xk). This is made by taking r(xk) in an enlargement of
F at xk. We discuss the choice of an adequate enlargement and the corre-
sponding convergence conditions. In the particular case of nondifferentiable
convex optimization, the ε–subdifferential can be chosen as the enlargement
of the subdifferential operator so that our scheme is a generalization of the
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projected inexact subgradient procedure analyzed in [4].
Most results of the first section of this chapter are presented in [113]. The
results of the third section are a generalization of those appeared in [111]
which deals with the more restrictive case where F is supposed to be strongly
monotone.

5.1 Convergence Results

In this section, we present successively the assumptions ensuring that the
sequence {xk}k∈IN generated by solving problems (PSAP k) is bounded, ad-
mits at least one weak limit point which is a solution of problem (GV IP ),
weakly and then strongly converges to a solution of problem (GV IP ).

In the multivalued case, the sequence {λk}k∈IN is chosen as, for example,
in [4], i.e.

λk = µk/ηk,∀k ∈ IN, with {µk}k∈IN a sequence of positive numbers,

and ηk =

 max{1, ‖r(x0)‖}, if k = 0,

max{ηk−1, ‖r(xk)‖}, if k ≥ 1.

The introduction of the sequence {ηk}k∈IN allows us to prove that the se-
quence {xk}k∈IN is bounded without any additional assumption on the map-
ping F . The case ηk = 1 for all k is treated in Remark 5.3 at the end of this
section. Moreover, as it is classically assumed in the multivalued case, the
positive sequence {µk}k∈IN will be such that

+∞∑
k=0

µ2
k < +∞ and

+∞∑
k=0

µk = +∞.

The sequence of Lyapunov functions {Γk(x∗, ·)}k∈IN considered here is
defined on H by

Γk(x∗, x) = K(x∗) − K(x) − 〈∇K(x), x∗ − x〉

+(µk/ηk)[〈r(x∗), x − x∗〉 + ϕ(x) − ϕ(x∗)],
(5.1)

where x∗ denotes a solution of problem (GV IP ) and r(x∗) is an element in
F (x∗) such that 〈r(x∗), x−x∗〉+ ϕ(x)−ϕ(x∗) ≥ 0, for all x in H. The next
lemma gives an upper bound on Γk+1(x∗, xk+1) − Γk(x∗, xk).
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Lemma 5.1 Assume that F is a monotone multivalued mapping defined on
H, that problem (GV IP ) admits at least one solution denoted by x∗, and
that the following conditions are satisfied:

(i) K : H → IR is continuously differentiable and strongly convex with
modulus β > 0 over dom ϕ;

(ii) ∇K is a Lipschitz continuous mapping with Lipschitz constant Λ over
dom ϕ;

(iii) {µk}k∈IN is a nonincreasing sequence of positive numbers;

(iv) {ϕk}k∈IN , ϕ ∈ Γ0(H) are such that ϕ ≤ ϕk for all k, and there exists a
sequence {wk}k∈IN such that

+∞∑
k=0

‖wk − x∗‖ < +∞ and
+∞∑
k=0

|ϕk(wk) − ϕ(x∗)| < +∞. (5.2)

Then, if {xk}k∈IN denotes the sequence generated by solving subproblems
(PSAP k), we have for all k ∈ IN ,

Γk+1(x∗, xk+1) − Γk(x∗, xk) ≤ −c‖xk+1 − xk‖2 + T k + µ2
k u

−(µk/ηk)[〈r(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)],
(5.3)

with c, u > 0, T k ≥ 0, and
∑+∞

k=0 T k < +∞.

Proof. The necessary and sufficient optimality conditions satisfied by x∗

and xk+1 are respectively

〈r(x∗), x − x∗〉 + ϕ(x) − ϕ(x∗) ≥ 0, ∀x ∈ H, (5.4)

and

〈η−1
k r(xk) + µ−1

k (∇K(xk+1) −∇K(xk)), x − xk+1〉

+η−1
k (ϕk(x) − ϕk(xk+1)) ≥ 0,∀x ∈ H, with r(xk) ∈ F (xk).

(5.5)

We consider the sequence of Lyapunov functions {Γk(x∗, ·)}k∈IN defined in
(5.1). From the strong convexity of K and inequality (5.4), we obtain that,
for all x ∈ dom ϕ, and all k ∈ IN ,

Γk(x∗, x) ≥ (β/2)‖x − x∗‖2. (5.6)
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Using the definition of the Lyapunov function and the facts that µk+1 ≤ µk,
and ηk+1 ≥ ηk for all k ∈ IN , we can write

Γk+1(x∗, xk+1)−Γk(x∗, xk) ≤ Γk(x∗, xk+1)−Γk(x∗, xk) = s1+s2+s3, (5.7)

with s1 = K(xk) − K(xk+1) + 〈∇K(xk), xk+1 − xk〉,
s2 = 〈∇K(xk) −∇K(xk+1), x∗ − xk+1〉,
s3 = (µk/ηk)[〈r(x∗), xk+1 − xk〉 + ϕ(xk+1) − ϕ(xk)].

For s1, we derive easily from the strong convexity of K that

s1 ≤ −(β/2)‖xk+1 − xk‖2. (5.8)

Now, using the sequence {wk}k∈IN given in assumption (iv), we can write
s2 as the sum of the two following terms:

s21 = 〈∇K(xk) −∇K(xk+1), x∗ − wk〉,
s22 = 〈∇K(xk) −∇K(xk+1), wk − xk+1〉.

From the Lipschitz continuity of ∇K, we deduce that

s21 ≤ Λ‖xk+1 − xk‖ ‖x∗ −wk‖ ≤ (τ/2)‖xk+1 − xk‖2 + (Λ2/(2τ))‖x∗ −wk‖2,
(5.9)

where the second inequality holds for any τ > 0.
Using (5.5) with x = wk, we obtain

s22 ≤ (µk/ηk)[〈r(xk), wk − xk+1〉 + ϕk(wk) − ϕk(xk+1)]

= (µk/ηk)[〈r(xk), wk − x∗〉

+〈r(xk), x∗ − xk〉 + ϕ(x∗) − ϕ(xk)

+〈r(xk), xk − xk+1〉

+ϕk(wk) − ϕ(x∗) + ϕ(xk) − ϕk(xk+1)],

so that

s22 + s3 = (µk/ηk)[〈r(xk), wk − x∗〉

+〈r(xk), x∗ − xk〉 + ϕ(x∗) − ϕ(xk)
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+〈r(xk), xk − xk+1〉

+〈r(x∗), xk+1 − xk〉

+ϕk(wk) − ϕ(x∗) + ϕ(xk+1) − ϕk(xk+1)]. (5.10)

From the definition of the sequence {ηk}k∈IN and the fact that µk ≤ µ0 for
all k, we have

(µk/ηk)〈r(xk), wk − x∗〉 ≤ µ0‖wk − x∗‖, (5.11)

(µk/ηk)〈r(xk), xk − xk+1〉 ≤ µk‖xk+1 − xk‖
≤ µ2

k/(2γ) + (γ/2)‖xk+1 − xk‖2, (5.12)

(µk/ηk)〈r(x∗), xk+1 − xk〉 ≤ µk‖r(x∗)‖ ‖xk+1 − xk‖
≤ (µ2

k/2µ)‖r(x∗)‖2

+(µ/2)‖xk+1 − xk‖2, (5.13)

with γ and µ any positive numbers.
Gathering the fact that ϕ ≤ ϕk for all k with inequalities (5.7)–(5.13) and
rearranging the terms, we deduce that inequality (5.3) holds with

c = (1/2)(β − τ − γ − µ),
T k = µ0‖wk − x∗‖ + µ0|ϕk(wk) − ϕ(x∗)| + (Λ2/(2τ))‖wk − x∗‖2,
u = (1/(2γ)) + (1/(2µ))‖r(x∗)‖2,
τ, γ, µ > 0 such that τ + γ + µ < β.

Since the sequence {wk}k∈IN has been chosen such that (5.2) holds, we have
that

∑+∞
k=0 T k < +∞ and the proof is complete. �

The next theorem gives conditions that ensure boundedness of the se-
quence {xk}k∈IN .

Theorem 5.1 Assume that all assumptions of Lemma 5.1 hold.
If

∑+∞
k=0 µ2

k < +∞, then provided that x0 ∈ dom ϕ, the sequence {xk}k∈IN

is bounded. Moreover,

+∞∑
k=0

‖xk+1 − xk‖2 < +∞, and
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+∞∑
k=0

(µk/ηk)[〈r(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)] < +∞.

Proof. Since r(xk) ∈ F (xk) for all k, x∗ is a solution of problem (GV IP )
and F is monotone, we have that

(µk/ηk)[〈r(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)] ≥ 0. (5.14)

So, we derive from (5.3) that

Γk+1(x∗, xk+1) − Γk(x∗, xk) ≤ T k + uµ2
k. (5.15)

Since
∑+∞

k=0 T k,
∑+∞

k=0 µ2
k are convergent series, it follows that {Γk(x∗, xk)}k∈IN

is a Cauchy sequence. This implies in turn that it is convergent in H. Using
inequality (5.6), we can conclude that the sequence {xk}k∈IN is bounded.
Then, rearranging the terms of inequality (5.3) as follows

c‖xk+1 − xk‖2 + (µk/ηk)[〈r(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)]

≤ Γk(x∗, xk) − Γk+1(x∗, xk+1) + T k + µ2
k u,

we obtain that
∑+∞

k=0 ‖xk+1 − xk‖2 < +∞ and

+∞∑
k=0

(µk/ηk)[〈r(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)] < +∞.

�

To prove that at least one weak limit point of the sequence {xk}k∈IN

is a solution of problem (GV IP ), we have to impose that F is paramono-
tone, bounded on bounded subsets of dom ϕ and weakly closed on dom ϕ.
If F is bounded on bounded subsets and weakly closed, we can prove that
at least one weak limit point x̄ of the sequence {xk}k∈IN generated by the
algorithm satisfies 〈r̄, x∗ − x̄〉 + ϕ(x∗) − ϕ(x̄) ≥ 0, with r̄ ∈ F (x̄) and x∗ a
solution of problem (GV IP ). Then paramonotonicity is used to deduce that
x̄ is a solution of problem (GV IP ) (see Proposition 1.26). Observe that,
when F is monotone, we have that F is locally bounded in the interior of
its domain (see Proposition 1.10) so that it is bounded on bounded subsets
in finite dimension. On the other hand, if F is maximal monotone, then
it is weakly–strongly (or strongly–weakly) closed (see Proposition 1.14). In
finite dimension, this implies that it is (strongly) closed.

We obtain the following convergence result.
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Theorem 5.2 Suppose that all assumptions of Lemma 5.1 are satisfied and
that the sequence {xk}k∈IN is bounded. If limk→∞ µk = 0,

∑+∞
k=0 µk = +∞,

F is paramonotone over dom ϕ, bounded on bounded subsets of dom ϕ and
weakly closed on dom ϕ, then at least one weak limit point of the sequence
{xk}k∈IN is a solution of problem (GV IP ).

Proof. Since the sequence {xk}k∈IN ⊂ dom ϕ is bounded and F is bounded
on bounded subsets of dom ϕ, we derive that the sequence {r(xk)}k∈IN is
also bounded and there exists a constant η̄ > 1 such that ‖r(xk)‖ ≤ η̄ for
all k. Therefore, we have also that ηk ≤ η̄ for all k.
Now, we show that

limk→∞[〈r(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)] = 0.

Since r(xk) ∈ F (xk) for all k and F is monotone, we have that

limk→∞[〈r(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)] ≥ 0.

To prove the equality, assume for contradiction that the inferior limit is
strictly positive i.e., there exist δ > 0 and k0 ∈ IN such that

〈r(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗) > δ, ∀k ≥ k0.

Since the sequence {µk}k∈IN converges to zero, there also exists k1 ∈ IN such
that

µku < δ/(2η̄), ∀k ≥ k1.

So, we derive from these two last inequalities and from (5.3) that

Γk+1(x∗, xk+1) − Γk(x∗, xk) ≤ T k − µkδ/(2η̄), ∀k ≥ k̄ = max(k0, k1).

Summing up, this gives for all N ≥ k̄:

0 ≤ ΓN+1(x∗, xN+1) ≤ Γk̄(x∗, xk̄) +
N∑

k=k̄

T k − (δ/(2η̄))
N∑

k=k̄

µk.

If we take the limit on N , we obtain a contradiction because the series∑+∞
k=k̄

T k is convergent and the series
∑+∞

k=0 µk is divergent.
Hence, we deduce that there exists a subsequence {xk′}k′∈K⊂IN such that

lim
k′→∞

〈r(xk′
), xk′ − x∗〉 + ϕ(xk′

) − ϕ(x∗) = 0.
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In addition, since F is monotone and weakly closed, and ϕ is weakly lower
semi–continuous (see Proposition 1.1), there exist subsequences

{xk′′}k′′∈K ′⊂K , and {r(xk′′
)}k′′∈K ′⊂K such that

xk′′
⇀ x̄, r(xk′′

) ⇀ r̄, r̄ ∈ F (x̄), and

limk′′→∞[〈r(xk′′
), xk′′ − x̄〉 + ϕ(xk′′

) − ϕ(x̄)] ≥ 0.

This implies that

0 = lim
k′′→∞

[〈r(xk′′
), xk′′ − x∗〉+ ϕ(xk′′

)−ϕ(x∗)] ≥ 〈r̄, x̄− x∗〉+ ϕ(x̄)−ϕ(x∗).

Since F is paramonotone over dom ϕ, it follows from Proposition 1.26 that
x̄ solves problem (GV IP ). �

This result provides informations on the limit behavior of the gener-
ated sequence under very weak restrictions on F . Now, to obtain that each
weak limit point of {xk}k∈IN is a solution of problem (GV IP ), we will use
the concept of gap function (see, for example, [11]). We recall that a func-
tion l : dom ϕ −→ IR ∪ {+∞} is a gap function with respect to problem
(GV IP ) if

l(x) ≥ 0 for all x ∈ dom ϕ and

l(x̄) = 0 if and only if x̄ is a solution of problem (GV IP ).

In our context, the usefulness of a gap function appears in the next proposi-
tion. In that proposition and in the sequel, we denote by E a set satisfying

{xk}k∈IN ⊆ E ⊆ dom ϕ,

where {xk}k∈IN is the sequence generated by solving subproblems (PSAP k).

Proposition 5.1 Let l be a gap function with respect to problem (GV IP ).
If l is weakly lower semi–continuous on E and if l(xk) → 0, then any weak
limit point of the sequence {xk}k∈IN generated by the algorithm is a solution
of problem (GV IP ).

Proof. First, notice that the sequence {xk}k∈IN is contained in E. Let x̄ be
a weak limit point of this sequence such that the subsequence {xk′}k′∈K⊂IN

weakly converges to x̄. Then,

0 = lim
k→+∞

l(xk) = limk′→+∞l(xk′
) ≥ l(x̄) ≥ 0,
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i.e., l(x̄) = 0 and x̄ is a solution of problem (GV IP ). �

To prove that l(xk) → 0, we will use the following lemma due to Cohen
and Zhu.

Lemma 5.2 (See [34], Lemma 4) If l is a Lipschitz continuous function on
{xk}k∈IN and if {µk}k∈IN is a sequence of positive numbers satisfying
(a)

∑+∞
k=0 µk = +∞;

(b)
∑+∞

k=0 µk l(xk) < +∞;
(c) ∃ δ > 0 such that ∀k ∈ IN, ‖xk+1 − xk‖ ≤ δµk,
then l(xk) → 0.

Before enouncing the main convergence results, we give three existence
results for gap functions weakly lower semi–continuous on E and Lipschitz
continuous on bounded subsets of E and then we present conditions under
which assumptions (b) and (c) of Lemma 5.2 are satisfied.

Proposition 5.2 Let x∗ denote any solution of problem (GV IP ).
(a) If F is paramonotone on dom ϕ and F (x) is a bounded and weakly closed
subset of H for all x ∈ dom ϕ, then

l(x) = inf
r(x)∈F(x)

〈r(x),x − x∗〉 + ϕ(x) − ϕ(x∗)

is a gap function.
(b) If, in addition, F and ϕ are Lipschitz continuous on bounded subsets of
E, then l is Lipschitz continuous on bounded subsets of E.
(c) If, in addition, F is weakly closed on dom ϕ, then l is weakly lower
semi–continuous on E.

Proof. (a) Since F is monotone and x∗ is a solution of problem (GV IP ),
for each x ∈ dom ϕ and any r(x) ∈ F (x), we have

〈r(x), x − x∗〉 + ϕ(x) − ϕ(x∗)

= 〈r(x) − r(x∗), x − x∗〉 + 〈r(x∗), x − x∗〉 + ϕ(x) − ϕ(x∗) ≥ 0.

So, using the definition of l, we obtain that l(x) ≥ 0. Now if x̄ is a solution
of (GV IP ), then we have immediately that

l(x̄) ≤ 〈r(x̄), x̄ − x∗〉 + ϕ(x̄) − ϕ(x∗) ≤ 0 ≤ l(x̄).
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So, l(x̄) = 0. Conversely, suppose that l(x̄) = 0. Then, by definition of the
infimum, there exists a sequence {rk}k∈IN contained in F (x̄) such that, for
all k ≥ 1,

0 ≤ 〈rk, x̄ − x∗〉 + ϕ(x̄) − ϕ(x∗) < 1/k.

Since the subset F (x̄) is bounded and weakly closed, there exists a sub-
sequence of {rk}k∈IN that weakly converges to some r ∈ F (x̄). Then
0 ≤ 〈r, x̄ − x∗〉 + ϕ(x̄) − ϕ(x∗) ≤ 0, and by Proposition 1.26, x̄ is a so-
lution of (GV IP ) because F is paramonotone.

(b) Let B be a bounded subset of E and c1 > 0 be such that ‖x‖ ≤ c1 for
all x ∈ B. Since ϕ is Lipschitz continuous on B, it is sufficient to prove that
there exists L1 > 0 such that, for all x, y ∈ B,

inf
r∈F (x)

〈r, x − x∗〉 + sup
s∈F (y)

〈s, x∗ − y〉 ≤ L1‖x − y‖. (5.16)

Let x, y ∈ B, ε > 0 and s ∈ F (y). Since F is Lipschitz continuous on B,
there exists L > 0 such that e(F (y), F (x)) ≤ L‖x − y‖, we have

inf
r∈F (x)

‖r − s‖ ≤ L‖x − y‖.

So, there exists r ∈ F (x) such that ‖r−s‖ ≤ L‖x−y‖+ε/(c1 +‖x∗‖). Then

〈r, x − x∗〉 + 〈s, x∗ − y〉 = 〈r, x − y〉 + 〈r − s, y − x∗〉
≤ ‖r‖‖x − y‖ + ‖r − s‖‖y − x∗‖
≤ ‖r‖‖x − y‖ + L‖x − y‖(c1 + ‖x∗‖) + ε.

(5.17)
Moreover, by Lemma 1.1, F is bounded on B and consequently, there exists
c > 0 such that ‖r‖ ≤ c for all r ∈ F (x) and x ∈ B. Then, from (5.17), we
deduce that

inf
r∈F (x)

〈r, x − x∗〉 + 〈s, x∗ − y〉 ≤ L1‖x − y‖ + ε,

where L1 = c+L(c1+‖x∗‖). Since this inequality is satisfied for all s ∈ F (y)
and ε > 0, we obtain (5.16).

(c) Suppose that F is weakly closed on dom ϕ. Since ϕ is weakly lower
semi–continuous on dom ϕ, we have only to prove that

l1(x) ≡ inf
r(x)∈F (x)

〈r(x), x − x∗〉
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is weakly lower semi–continuous on E. Let xk ⇀ x̄ with xk ∈ E, and let
l̄1 be a limit point of the sequence {l1(xk)}k∈IN . We have to prove that
l̄1 ≥ l1(x̄). Without loss of generality, we can suppose that l1(xk) → l̄1. Let
ε > 0, by definition of the infimum, for each k, there exists r(xk) ∈ F (xk)
such that

〈r(xk), xk − x∗〉 ≤ l1(xk) + ε. (5.18)

Since the sequence {xk}k∈IN is bounded and contained in E, and since
F is bounded on bounded subsets of E (see Lemma 1.1), the sequence
{r(xk)}k∈IN is bounded and thus there exists a subsequence {r(xk′

)}k′∈K

weakly converging to some r̄. Since F is weakly closed, it follows that
r̄ ∈ F (x̄). Now, F being monotone, we have that 〈r(xk′

)− r(x̄), xk′ − x̄〉 ≥ 0
and thus that

〈r(xk′
), xk′ − x∗〉 ≥ 〈r(x̄), xk′ − x̄〉 + 〈r(xk′

), x̄ − x∗〉. (5.19)

Gathering (5.18) and (5.19), we obtain

l1(xk′
) + ε ≥ 〈r(x̄), xk′ − x̄〉 + 〈r(xk′

), x̄ − x∗〉. (5.20)

Passing to the limit in (5.20) and noticing that 〈r̄, x̄ − x∗〉 ≥ l1(x̄), we have
that l̄1 + ε ≥ l1(x̄). Since ε is arbitrary, we have that l̄1 ≥ l1(x̄) and conse-
quently l is weakly lower semi–continuous on E. �

Proposition 5.3 Let x∗ denote any solution of problem (GV IP ). If F =
∂f, f ∈ Γ0(H) and dom ϕ ⊆ int(domf), then

l(x) = f(x) + ϕ(x) − f(x∗) − ϕ(x∗)

is a gap function such that, for all x ∈ dom ϕ and r(x) ∈ F (x),

〈r(x), x − x∗〉 + ϕ(x) − ϕ(x∗) ≥ l(x).

The function l is convex and weakly lower semi-continuous on dom ϕ. More-
over if, in addition, f and ϕ are Lipschitz continuous on bounded subsets of
E, then l is also Lipschitz continuous on bounded subsets of E.

Proof. For all x ∈ dom ϕ, r(x) ∈ F (x) = ∂f(x), we have f(x∗) ≥ f(x) +
〈r(x), x∗ − x〉. So, we obtain

〈r(x), x − x∗〉 + ϕ(x) − ϕ(x∗) ≥ f(x) − f(x∗) + ϕ(x) − ϕ(x∗) = l(x).
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The rest of the proof is obvious. �

Note that the Lipschitz continuity condition requested on ϕ (respectively
ϕ and f) in Proposition 5.2 (respectively Proposition 5.3) is not very re-
strictive. This fact is discussed in the following lemma and comment.

Lemma 5.3 Let g ∈ Γ0(H) and let B be a bounded subset of int(dom g).
If ∂g is bounded on B, then g is Lipschitz continuous on B.

Proof. Let x, y ∈ B. Since B ⊆ int(dom g), the subdifferentials ∂g(x) and
∂g(y) are nonempty. Let s(x) ∈ ∂g(x) and s(y) ∈ ∂g(y). Then

g(x) − g(y) ≤ 〈s(x), x − y〉 ≤ ‖s(x)‖ ‖x − y‖
g(y) − g(x) ≤ 〈s(y), y − x〉 ≤ ‖s(y)‖ ‖y − x‖.

So |g(x) − g(y)| ≤ L‖x − y‖ where L = sup{‖s(z)‖ | z ∈ B, s(z) ∈ ∂g(z)}.
Since ∂g is bounded on B, this constant L is finite and thus g is Lipschitz
continuous on B. �

Moreover, we know that ∂g is always bounded on bounded subsets of int(dom
g) when H is a finite dimensional space.

Proposition 5.4 If F is strongly monotone with modulus α > 0 on dom ϕ
and x∗ denotes the unique solution of problem (GV IP ), then

l(x) = ‖x − x∗‖2

is a gap function such that, for all x ∈ dom ϕ and r(x) ∈ F (x),

〈r(x), x − x∗〉 + ϕ(x) − ϕ(x∗) ≥ α l(x).

Moreover l is strongly convex, weakly lower semi–continuous on H and Lip-
schitz continuous on bounded subsets of dom ϕ.

Proof. Since x∗ is the unique solution of problem (GV IP ), it is obvious
that l is a gap function. Moreover, l is strongly convex and weakly lower
semi–continuous on H and for all x ∈ dom ϕ, we have

〈r(x), x − x∗〉 + ϕ(x) − ϕ(x∗)

= 〈r(x) − r(x∗), x − x∗〉 + 〈r(x∗), x − x∗〉 + ϕ(x) − ϕ(x∗).
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Since F is strongly monotone with modulus α and x∗ is the solution of
problem (GV IP ), we obtain immediately that the right–hand side of the
previous equality is greater than α l(x). Finally, let B be a bounded subset
of dom ϕ. Then there exists c1 > 0 such that ‖z‖ ≤ c1 for all z ∈ B. So, for
all x, y ∈ B, we have successively

‖x − x∗‖2 − ‖y − x∗‖2 = ‖x − y‖2 + 2〈x − y, y − x∗〉
≤ ‖x − y‖ [ ‖x − y‖ + 2‖y − x∗‖ ]
≤ ‖x − y‖ [ 4c1 + 2‖x∗‖ ]

i.e., l is Lipschitz continuous on B. �

The condition here below gathers the properties requested on the gap func-
tion. These properties are satisfied in the three situations described in
Propositions 5.2, 5.3 and 5.4.

Condition (GZHx∗):

(i) there exist a constant α > 0 and a function l defined on dom ϕ such
that,

〈r(y), y − x∗〉 + ϕ(y) − ϕ(x∗) ≥ α l(y), ∀y ∈ dom ϕ, ∀r(y) ∈ F (y);

(ii) l(x) ≥ 0 for all x ∈ dom ϕ, and l(x̄) = 0 ⇔ x̄ is a solution of (GV IP );

(iii) l is weakly lower semi–continuous on E and Lipschitz continuous on
bounded subsets of E.

If ϕ is the indicator function of a closed convex set, then Condition (GZHx∗)
is similar to Condition (ZHx∗) imposed by Zhu (see Chapter 2, Section
2.2.2).

The purpose of the next proposition is to show in which cases conditions
(b) and (c) of Lemma 5.2 are satisfied.

Proposition 5.5 (a) Assume that assumptions of Theorem 5.1 are satisfied
as also Condition (GZHx∗) (i) and (ii). If F is bounded on bounded subsets
of E, then

∑+∞
k=0 µk l(xk) < +∞.

(b) If there exists c > 0 such that

ϕk(xk) − ϕk(xk+1) ≤ c‖xk+1 − xk‖ for all k, (5.21)

then there exists δ > 0 such that, for all k, ‖xk+1 − xk‖ ≤ δµk.
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Proof. (a) Since the sequence {xk}k∈IN is bounded and F is bounded on
bounded subsets of E, the sequence {r(xk)}k∈IN is bounded and also the
sequence {ηk}k∈IN . Then, using successively Theorem 5.1 and Condition
(GZHx∗) (i) and (ii), we have

+∞∑
k=1

µk[〈r(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)] < +∞ and
+∞∑
k=1

µk l(xk) < +∞.

(b) From the optimality conditions (5.5) applied to x = xk, we obtain

〈∇K(xk+1) −∇K(xk), xk+1 − xk〉

≤ (µk/ηk)[〈r(xk), xk − xk+1〉 + ϕk(xk) − ϕk(xk+1)].

Since K is strongly convex and ‖r(xk)‖ ≤ ηk, we derive that

β‖xk+1 − xk‖2 ≤ µk‖xk+1 − xk‖ + (µk/ηk)[ϕk(xk) − ϕk(xk+1)].

Since ηk ≥ 1, we deduce from (5.21) that ‖xk+1 − xk‖ ≤ δµk for all k, with
δ = (1/β)[ 1 + c ]. �

Remark 5.1 If ϕk is the indicator function of a closed convex subset Ck

of C such that Ck ⊂ Ck+1 ⊂ C for all k ∈ IN , then inequality (5.21) is
satisfied.
When ϕ is the indicator function of the set C = {x | gi(x) ≤ 0, i = 1, . . . ,m}
with g1, . . . , gm convex functions from IRn to IR, inequality (5.21) is satisfied
by the logarithmic barrier functions and by the inverse barrier functions
provided that the barrier parameters be large enough.
Indeed, if ϕk(x) = ν−1

k b(x) with

b(x) = −
m∑

i=1

ln (min (
1
2
,−gi(x))) or b(x) = −

m∑
i=1

1
gi(x)

.

Let ek ∈ ∂b(xk) (it exists because b is convex and xk ∈ int C). Then

ϕk(xk) − ϕk(xk+1) ≤ ν−1
k 〈ek, xk − xk+1〉

≤ ν−1
k ‖ek‖ ‖xk − xk+1‖.

So, if νk ≥ ‖ek‖, then ϕk(xk) − ϕk(xk+1) ≤ ‖xk+1 − xk‖.

Notice that the choice νk ≥ ‖ek‖ is possible because ϕk is built once xk is
known.
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We are now ready to state the main convergence result.

Theorem 5.3 Suppose that the following conditions are satisfied:
(a) Assumptions of Lemma 5.1 hold;
(b) Condition (GZHx∗) holds;
(c) F is bounded on bounded subsets of E;
(d) Inequality (5.21) holds;
(e)

∑+∞
k=0 µk = +∞,

∑+∞
k=0 µ2

k < +∞.
Then the sequence {xk}k∈IN is bounded, l(xk) → 0 and any weak limit point
of {xk}k∈IN is a solution of problem (GV IP ).
If, in addition, condition (iv) of Lemma 5.1 is satisfied for each solution of
problem (GV IP ) and ∇K is weakly continuous on dom ϕ, then xk ⇀ x̄ and
x̄ is a solution of (GV IP ). If, in addition, the gap function l is strongly
convex on an open set containing dom ϕ, then xk → x∗, the unique solution
of (GV IP ).

Proof. The first part of the theorem follows immediately from Theorem
5.1, Proposition 5.5, Lemma 5.2 and Proposition 5.1.

Suppose now that the sequence {xk}k∈IN has two different weak limit points
x1 and x2. Let {xm(k)}k∈IN be the subsequence of {xk}k∈IN weakly con-
verging to x1 and {xn(k)}k∈IN be the subsequence weakly converging to
x2. By the first part of the theorem, x1 and x2 are solutions of prob-
lem (GV IP ). Then, by Theorem 5.1, the sequences of Lyapunov functions
{Γk(x1, xk)}k∈IN and {Γk(x2, xk)}k∈IN are convergent in IR. We denote re-
spectively by Γ1 and Γ2 their limits. By definition of the Lyapunov function,
we have

Γn(k)(x1, xn(k)) − Γn(k)(x2, xn(k))

= K(x1) − K(x2) − 〈∇K(xn(k)), x1 − x2〉

+(µn(k)/ηn(k))[〈r(x1), xn(k) − x1〉 − 〈r(x2), xn(k) − x2〉 + ϕ(x2) − ϕ(x1)].

If ∇K is weakly continuous on dom ϕ, since ηk ≥ 1 for all k and µk → 0,
we obtain, taking the limit on k in the last equality, that

Γ1 − Γ2 = K(x1) − K(x2) − 〈∇K(x2), x1 − x2〉. (5.22)

Since the role of x1 and x2 is symmetric, we also have that

Γ1 − Γ2 = K(x1) − K(x2) − 〈∇K(x1), x1 − x2〉. (5.23)
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Comparing (5.22) and (5.23), we obtain 〈∇K(x1) −∇K(x2), x1 − x2〉 = 0.
Since ∇K is strongly monotone, this implies that x1 = x2. So the sequence
{xk}k∈IN weakly converges to a solution of (GV IP ).

If the gap function l is strongly convex with constant s > 0 on an open
convex set containing dom ϕ, then x∗ is the unique solution of problem
(GV IP ), ∂l(x∗) is nonempty, and for any e∗ ∈ ∂l(x∗),

l(xk) − l(x∗) − 〈e∗, xk − x∗〉 ≥ (s/2)‖xk − x∗‖2. (5.24)

Since l(xk) → 0, l(x∗) = 0 and xk ⇀ x∗, we obtain, passing to the limit in
(5.24) that ‖xk−x∗‖ → 0 i.e., xk → x∗ strongly. This completes the proof. �

For example, if K(x) = (1/2)xT x, for all x ∈ H, then ∇K is weakly contin-
uous. Note that assumption (ii) of Lemma 5.1 ensures the continuity of ∇K
in the strong topology. So, in a finite dimensional space, the convergence
of the whole sequence toward a solution is established without any further
assumptions.

Remark 5.2 Our analysis can be applied directly to the optimization prob-
lem (OP ) by taking for F the subdifferential of any finite-valued convex
and continuous function f . In that case, F is paramonotone and Condition
(GZHx∗) (i) and (ii) is satisfied. If, for all x ∈ H, K(x) = (1/2)xT x, and
for all k ∈ IN , ϕk = ϕ = ΨC , where ΨC denotes the indicator function of
a closed convex subset C of H, then the method defined by subproblems
(PSAP k), k ∈ IN , reduces to the projected subgradient process and our
results generalize well-known ones (see, for example, [4]).

Remark 5.3 If we take ηk = 1 for all k in subproblems (PSAP k), the same
conclusions as in the preceding theorems can be obtained provided that the
following additional condition holds:

Condition (C):

∃ a, b > 0 : ‖r(x)‖ ≤ a‖x‖ + b, ∀x ∈ H, ∀r(x) ∈ F (x).

This essentially means that the norm of F does not increase faster than
linearly with the norm of x. Condition (C) was imposed by Cohen in the
nonperturbed setting (see [33]). Observe that this condition implies bound-
edness of F on bounded subsets and is obviously satisfied when F is Lipschitz
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continuous and there exists ȳ ∈ dom F such that ‖F (ȳ)‖ is bounded.

To prove this fact, we need the following lemma:

Lemma 5.4 (See [34], Lemma 5) Let {uk}k∈IN , {tk}k∈IN , {δk}k∈IN be se-
quences in IR+ such that∑+∞

k=0 tk < +∞, ∃ δ > 0 : δk ≤ δ ∀k ∈ IN, and uk ≤∑k−1
i=0 ti U i+1 + δk,

where Uk denotes supi≤k ui, then the sequence {uk}k∈IN is bounded.

Let us examine the proof of Lemma 5.1 in the case where ηk = 1 for all k
(so that µk = λk for all k). The terms s1, s21 and s3 of inequality (5.7) can
be treated similarly. For the term s22, inequalities (5.11) and (5.12) are no
more valid. They can be replaced in the following way. From Condition (C)
and the fact that λk ≤ λ0 for all k, we have

λk〈r(xk), wk − x∗〉 ≤ λk(a‖xk‖ + b) ‖wk − x∗‖

≤ λk a ‖xk − x∗‖ ‖wk − x∗‖

+λk(a‖x∗‖ + b) ‖wk − x∗‖

≤ (λ2
ka

2/(2θ)) ‖xk − x∗‖2 + (θ/2) ‖wk − x∗‖2

+λ0(a‖x∗‖ + b) ‖wk − x∗‖,
(5.25)

λk〈r(xk), xk − xk+1〉 ≤ (λ2
k/(2γ)) ‖r(xk)‖2 + (γ/2) ‖xk+1 − xk‖2

≤ (λ2
ka

2/γ) ‖xk − x∗‖2 + (λ2
k/γ) (a‖x∗‖ + b)2

+(γ/2) ‖xk+1 − xk‖2,
(5.26)

where the last inequalities hold for any θ, γ > 0.
So, with (5.11) and (5.12) replaced by (5.25) and (5.26) respectively, in-
equality (5.3) becomes

Γk+1(x∗, xk+1) − Γk(x∗, xk) ≤ −c‖xk+1 − xk‖2 + T̃ k + λ2
kũ

−λk[〈r(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)] + c̃λ2
k‖xk − x∗‖2,

(5.27)
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with c̃ = a2(1/(2θ) + 1/γ),

T̃ k = λ0(a‖x∗‖ + b)‖wk − x∗‖ + λ0|ϕk(wk) − ϕ(x∗)|

+(Λ2/(2τ) + θ/2)‖wk − x∗‖2,

ũ = (a‖x∗‖ + b)2/γ + (1/(2µ))‖r(x∗)‖2,

c, τ, γ, and µ > 0 as in (5.3).

Now, we can show that Theorem 5.1 holds again. Indeed, from inequality
(5.14), we derive that

Γk+1(x∗, xk+1) − Γk(x∗, xk) ≤ c̃λ2
k ‖xk − x∗‖2 + T̃ k + ũ λ2

k.

And if we take the sum in this last inequality, we obtain for all N ∈ IN :

ΓN+1(x∗, xN+1) ≤ Γ0(x∗, x0) + c̃
N∑

k=0

λ2
k‖xk − x∗‖2 +

N∑
k=0

(T̃ k + ũ λ2
k).

From relations (5.2) and the convergence of the series
∑+∞

k=0 λ2
k, it follows

that the series
∑+∞

k=0(T̃ k + ũ λ2
k) is convergent. Then, using inequality (5.6),

we can apply Lemma 5.4 and deduce that the sequence {xk}k∈IN is bounded.
The rest of the proof of Theorem 5.1 is obvious.
Now, if the sequence {xk}k∈IN is known to be bounded, we can say that
there exists a constant e > 0 such that, for all k ∈ IN , ‖xk − x∗‖ ≤ e.
Including this in (5.27), we obtain

Γk+1(x∗, xk+1) − Γk(x∗, xk) ≤ −c‖xk+1 − xk‖2 + T̃ k + λ2
k
˜̃u

−λk[〈r(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)], (5.28)

with ˜̃u = ũ + c̃e2.

Consequently, the proofs of Theorem 5.2, Proposition 5.5 and Theorem 5.3
are obtained simply by using inequality (5.28) instead of (5.3). �
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5.2 Relaxation of the Scheme and Enlargements
of Multivalued Mappings

In this section, we introduce a relaxation in subproblems (PSAP k) by allow-
ing an inexact computation of an element of F (xk) in the sense that r(xk)
can be chosen in an enlargement of F at xk. This idea originates from the
constrained optimization case:

(COP ) min
x∈C

f(x),

where f is a finite–valued convex continuous function defined on H and C
is a nonempty closed convex subset of H. A well-known method to solve
this problem is the classical projected subgradient procedure characterized
by the following subproblems: xk+1 = ProjC (xk − λkr(xk)),

with r(xk) ∈ ∂f(xk).

It is easy to see that this problem is just subproblem (SAP k) with the
auxiliary function K defined for each x ∈ H by K(x) = (1/2)xT x. We
refer to [4] and the references cited therein for details on convergence of
this method. In that paper, the projected subgradient method is relaxed by
using elements in the εk-subdifferential of f at xk. Remind that for ε ≥ 0,
the ε-subdifferential of f at x ∈ H is the set ∂εf(x) defined by:

∂εf(x) = {u ∈ H : f(y) ≥ f(x)+ < u, y − x > −ε, ∀y ∈ H }.

The introduction of the parameter ε produces an enlargement of ∂f(x) with
good continuity properties. This generally preserves the convergence prop-
erties of the method while giving more latitude and more robustness with
respect to numerical errors. This concept is studied, for example, in [16],
[20], [59], [60], [95]. It is applied to develop methods of ε-descent in [60],
bundle methods in [75], [76], [115], [121], [122] or also to devise an inexact
proximal point method with generalized Bregman distances in [69].

Following the same idea as in [35], we can see that the projected inexact sub-
gradient algorithm reduces to a projected proximal scheme like that studied
in [81] by choosing adequately the sequence {εk}k∈IN . Note also that in-
exact computation of the subgradients in the framework of the projected

118



subgradient method is considered in a different way in [3], [119]. In those
papers, the iteration is of the form xk+1 = ProjC (xk − λk[r(xk) + vk]) with
r(xk) ∈ ∂f(xk) and {vk}k∈IN such that limk→∞vk = 0 in [3] or ||vk|| ≤ τ
where τ denotes a maximal error of magnitude in [119].

Similarly, for problem (GV IP ), we can choose r(xk) in an enlargement
of F at xk depending on the iteration k. We denote it by Gk(xk). So, for a
given iterate xk, the problem considered at iteration k is now the following:

(IPSAP k)



choose rk(xk) ∈ Gk(xk) and

find xk+1 ∈ H such that, for all x ∈ H,

〈rk(xk) + λ−1
k (∇K(xk+1) −∇K(xk)), x − xk+1〉

+ϕk(x) − ϕk(xk+1) ≥ 0.

It remains now to describe how to choose these enlargements Gk in such a
way that convergence results similar to those of Section 5.1 can be obtained.

When F is monotone, a natural enlargement of F is the ε–enlargement
introduced in [25]. For ε ≥ 0, the ε-enlargement of the monotone operator
F is denoted by F ε and defined for all y ∈ H by:

F ε(y) = {u ∈ H : 〈r(x) − u, x − y〉 ≥ −ε, ∀x ∈ H, ∀r(x) ∈ F (x) }.
It is clear that F ⊂ F 0 ⊂ F ε, for all ε ≥ 0. Moreover, when F is maximal
monotone, F = F 0. For more details about F ε, we refer the reader to [25],
[27]. The ε-enlargement is applied in [26] to propose a bundle method to find
a zero of a maximal monotone operator. It is also used to devise an inexact
proximal point method with Bregman distances for variational inequalities
in [25] and to construct a hybrid approximate extragradient-proximal point
algorithm in [118]. These works show that when F is maximal monotone,
F ε inherits most properties from the ε–subdifferential and plays the role of
this one in nonsmooth optimization. One property that F ε shares with ∂εf
and that will be used in our analysis is given in the theorem of Brønsted
and Rockafellar (see, for example, [20]). For a lower semi–continuous proper
convex function f , this theorem states that any ε–subgradient of f at a
point xε can be approximated by some exact subgradient computed at some
x possibly different from xε. Here is the generalization of this property for
F ε.
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Proposition 5.6 (See [27], Theorem 2.1) Let F be a maximal monotone
operator defined on a Hilbert space H, ε > 0 and (xε, rε) ∈ Graph F ε. Then
for all η > 0, there exists (x, r) ∈ Graph F such that

‖r − rε‖ ≤ ε/η and ‖x − xε‖ ≤ η.

This formula makes clear that the best compromise will be achieved if we
take η =

√
ε. However, despite these common behaviors, observe that when

F = ∂f for some convex function f , we have that ∂εf ⊂ F ε for all ε ≥ 0 but
we do not get in general that ∂εf = F ε. The following examples illustrate
this fact and are taken from [25].

Example 5.1 Let H = IR, f(x) = |x|, F = ∂f .
In that case, we have

∂εf(x) = F ε(x) =


[ 1 − ε/x, 1 ] if x > ε/2,

[−1, 1 ] if |x| ≤ ε/2,

[−1,−1 − ε/x ] if x < −ε/2.

Example 5.2 Let H = IR, f(x) = (1/2)x2, F = ∂f .
Then we get

∂εf(x) = [ x −√
2ε, x +

√
2ε ],

F ε(x) = [ x − 2
√

ε, x + 2
√

ε ].

So, we have here that ∂εf ⊂ F ε = ∂2εf .

Example 5.3 Let H = IR, f(x) = − ln x, F = ∂f .
Then for any x > 0:

∂εf(x) = [−(1/x)s1(ε),−(1/x)s2(ε) ],

where s1(ε), s2(ε) are the two roots of the equation s − 1 − ln s = ε,

such that 0 < s2(ε) ≤ 1 ≤ s1(ε),

F ε(x) = [−(1/x)(1 + ε + 2
√

ε), (1/x) min(ε − 1, 0)].

We can see that 0 �∈ ∂εf(x) for any x > 0 and any ε ≥ 0 while 0 ∈ F ε(x)
for all x > 0 and all ε ≥ 1. Therefore, if ε ≥ 1 then F ε(x) �⊂ ∂ε̄f(x) for any
x > 0 and any ε̄ ≥ 0.
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Example 5.4 Let H = IRn, f(x) = xT Qx + b,Q ∈ IRn×n symmetric and
positive definite, b ∈ IRn, F = ∂f .
Then

∂εf(x) = {Qx + b + w : wT Q−1w ≤ 2ε},

F ε(x) = {Qx + b + w : wT Q−1w ≤ 4ε}.
Hence, ∂εf ⊂ F ε = ∂2εf .

Let us come back to our choice of an enlargement of F in our algorithm.
If x∗ denotes a solution of problem (GV IP ), then it is easy to see that, for
all y ∈ H and all ε ≥ 0:

F ε(y) ⊂ {u ∈ H : 〈u, y − x∗〉 + ϕ(y) − ϕ(x∗) ≥ −ε }.

This last set will be denoted by F ε
x∗(y). If we take Gk ⊂ F εk

x∗ for all k ∈ IN ,
where {εk}k∈IN is a sequence of nonnegative numbers converging to zero,
then we can obtain similar results to Lemma 5.1, Theorems 5.1, 5.2. This
fact is detailed in next section. Obviously, F εk

x∗ is used only to denote the
largest enlargement in which we can take elements. In practice, we will
choose a subenlargement Gk independent of a solution of problem (GV IP ).
For example, we can work with Gk = F εk

for all k ∈ IN . However, we
meet some problems to prove the results corresponding to Proposition 5.5
and Theorem 5.3 with Gk ⊂ F εk

x∗ . This would come from the fact that the
enlargement F εk

x∗ is too big. To remedy this problem, we will introduce a
new enlargement of F contained in F εk

x∗ .

Assume that for some solution x∗ of problem (GV IP ), there exists a
constant α > 0 and a function l such that the mapping F satisfies Condition
(GZHx∗)(i) and (ii). The α-ε-enlargement of F around x∗, denoted by F ε,α

x∗ ,
is defined at y ∈ dom ϕ by:

F ε,α
x∗ (y) = {u ∈ H : 〈u, y − x∗〉 + ϕ(y) − ϕ(x∗) ≥ α l(y) − ε }.

We clearly see that F ⊂ F ε,α
x∗ ⊂ F ε

x∗ . So to obtain generalizations of Propo-
sition 5.5 and Theorem 5.3, we will choose Gk ⊂ F εk,α

x∗ for all k. Again, in
practice, we work with a subenlargement without any reference to a solu-
tion x∗. In the following examples, we comment somewhat how to choose
Gk independently of x∗.
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Example 5.5 If F is paramonotone on dom ϕ and F (x) is a bounded and
weakly closed subset of H for all x ∈ dom ϕ, then it is shown in Proposi-
tion 5.2 that Condition (GZHx∗) (i) and (ii) is satisfied for any solution of
problem (GV IP ) with

l(y) = inf
r(y)∈F (y)

〈r(y), y − x∗〉 + ϕ(y) − ϕ(x∗), ∀y ∈ domϕ, and α = 1.

In that case, for all y ∈ H,

F ε,α
x∗ (y) = {u ∈ H : inf

r(y)∈F (y)
〈r(y) − u, y − x∗〉 ≤ ε }.

For this example, Gk = F , for all k, is the only well-known subenlargement
of F εk,α

x∗ independent of x∗.
Finally, let us illustrate by an example that we can have F ε,α

x∗ strictly con-
tained in F ε

x∗ . Indeed, easy calculations show that when F (y) = y, ∀y ∈ IR,
and ϕ = 0, then x∗ = 0, and

F ε,α
x∗ (y) =


[y − ε/y, +∞[ if y > 0,
] −∞, y − ε/y] if y < 0,
IR if y = 0;

F ε
x∗(y) =


[−ε/y, +∞[ if y > 0,
] −∞,−ε/y] if y < 0,
IR if y = 0.

Example 5.6 In the important particular case where F is the subdifferen-
tial of a finite-valued convex continuous function f , then as already said in
Proposition 5.3, Condition (GZHx∗) (i) and (ii) is verified for any solution
x∗ of problem (OP ) with

l(y) = f(y) + ϕ(y) − f(x∗) − ϕ(x∗), ∀y ∈ H, and α = 1.

If we write the enlargement F ε,α
x∗ in this case, we obtain, for all y ∈ H,

F ε,α
x∗ (y) = {u ∈ H : f(x∗) ≥ f(y) + 〈u, x∗ − y〉 − ε }.

This definition makes us think to the ε-subdifferential of f at y. Indeed, we
see that ∂εf ⊂ F ε,α

x∗ . So, we can take Gk = ∂εkf , for all k, in that case.

Example 5.7 If F is a strongly monotone operator with modulus α, then
we know from Proposition 5.4 that Condition (GZHx∗) holds for the unique
solution x∗ of problem (GV IP ) with

l(y) = ‖y − x∗‖2, ∀y ∈ H.
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In that case, for all y ∈ H, we have

F ε,α
x∗ (y) = {u ∈ H : 〈u, y − x∗〉 + ϕ(y) − ϕ(x∗) ≥ α‖y − x∗‖2 − ε }.

If we consider the α-ε-enlargement of F without any reference to a solution
x∗, we can define like in [111],

F ε,α(y) = {u ∈ H : 〈u−r(x), y−x〉 ≥ α‖y−x‖2−ε, ∀x ∈ H, ∀r(x) ∈ F (x) }.

It is easy to see that F ε,α ⊂ F ε,α
x∗ . So, we could choose Gk = F εk,α for all k.

As an illustration, let us consider the linear mapping defined by F (y) =
Qy + b, ∀y ∈ IRn, with Q ∈ IRn×n a symmetric positive definite matrix,
and b ∈ IRn. The mapping F is strongly monotone with modulus α =
λmin(Q) > 0 where λmin(Q) denotes the minimum eigenvalue of Q. Explicit
computation of F ε(y) and F ε,α(y) for any y ∈ IRn, gives:

F ε(y) = {Qy + b + w : wT Q−1w ≤ 4ε };

F ε,α(y) = {Qy + b + w : wT [Q − αI]−1w ≤ 4ε }.
(5.29)

Let us justify the expression of F ε,α for this example. Let y ∈ IRn. By
definition, u ∈ F ε,α(y) if and only if for all x ∈ IRn,

〈u, x − y〉 ≤ 〈Qx + b, x − y〉 − α‖y − x‖2 + ε.

Denoting x− y = λd, with λ > 0 and d ∈ IRn, we obtain that u ∈ F ε,α(y) if
and only if for all d ∈ IRn,

〈u, d〉 ≤ infλ>0 {〈Qy + b, d〉 + λ[〈Qd, d〉 − α‖d‖2] + ε/λ}

= 〈Qy + b, d〉 +
√

4ε dT (Q − αI)d.

Moreover, we can verify that√
4ε dT (Q − αI)d = sup

w∈E
〈w, d〉,

with E = {w ∈ IRn : wT (Q − αI)−1w ≤ 4ε }.
Then we deduce (5.29) from [60] (Chapter 3, Theorem 4.1.1). �
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5.3 Convergence Results for the Inexact Perturbed
Auxiliary Problem Method

In this section, we generalize the results presented in Section 5.1 to the
relaxed scheme described by the following subproblems:

(IPSAP k)



choose rk(xk) ∈ Gk(xk) and

find xk+1 ∈ H such that, for all x ∈ H,

〈rk(xk) + λ−1
k (∇K(xk+1) −∇K(xk)), x − xk+1〉

+ϕk(x) − ϕk(xk+1) ≥ 0,

where {Gk}k∈IN is a sequence of multivalued mappings defined onto H such
that F ⊂ Gk for all k ∈ IN and the sequence {λk}k∈IN takes the form:

λk = µk/ηk,∀k ∈ IN, with {µk}k∈IN a sequence of positive numbers,

and ηk =

 max{1, ‖r0(x0)‖}, if k = 0,

max{ηk−1, ‖rk(xk)‖}, if k ≥ 1.

The generalization of Lemma 5.1 holds for any enlargement Gk of F .
Generalizations of Theorems 5.1 and 5.2 deal with Gk ⊂ F εk

x∗ while those of
Proposition 5.5 and Theorem 5.3 are restricted to Gk ⊂ F εk,α

x∗ . For the sake
of completeness, we write entirely the statement of these generalizations.

Lemma 5.5 Assume that F is a monotone multivalued mapping defined on
H, that problem (GV IP ) admits at least one solution denoted by x∗, and
that the following conditions are satisfied:

(i) K : H → IR is continuously differentiable and strongly convex with
modulus β > 0 over dom ϕ;

(ii) ∇K is a Lipschitz continuous mapping with Lipschitz constant Λ over
dom ϕ;

(iii) {µk}k∈IN is a nonincreasing sequence of positive numbers;

(iv) {ϕk}k∈IN , ϕ ∈ Γ0(H) are such that ϕ ≤ ϕk for all k, and there exists a
sequence {wk}k∈IN such that

+∞∑
k=0

‖wk − x∗‖ < +∞ and
+∞∑
k=0

|ϕk(wk) − ϕ(x∗)| < +∞. (5.30)
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Then, if {xk}k∈IN denotes the sequence generated by solving subproblems
(IPSAP k), we have for all k ∈ IN ,

Γk+1(x∗, xk+1) − Γk(x∗, xk) ≤ −c‖xk+1 − xk‖2 + T k + µ2
k u

−(µk/ηk)[〈rk(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)],
(5.31)

where the Lyapunov function Γk is defined in (5.1), c, u > 0, T k ≥ 0, and∑+∞
k=0 T k < +∞.

Proof. Same proof as for Lemma 5.1. �

The following theorem analyzes boundedness of the sequence when we take
Gk ⊂ F εk

x∗ for all k.

Theorem 5.4 Assume that all assumptions of Lemma 5.5 hold.
If

∑+∞
k=0 µ2

k < +∞ and there exists ε > 0 such that 0 ≤ εk ≤ µkε for all
k ∈ IN , then provided that x0 ∈ dom ϕ, the sequence {xk}k∈IN generated by
solving subproblems (IPSAP k) with Gk ⊂ F εk

x∗ is bounded. Moreover,

+∞∑
k=0

‖xk+1 − xk‖2 < +∞, and

+∞∑
k=0

(µk/ηk)[〈rk(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)] < +∞.

Proof. Since rk(xk) ∈ F εk

x∗ (xk), εk ≤ εµk, and ηk ≥ 1 for all k, we have that

(µk/ηk)[〈rk(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)] ≥ −εkµk/ηk ≥ −ε µ2
k. (5.32)

So, we derive from (5.31) that

Γk+1(x∗, xk+1) − Γk(x∗, xk) ≤ T k + (u + ε) µ2
k. (5.33)

Since the series
∑+∞

k=0 T k,
∑+∞

k=0 µ2
k are convergent, inequality (5.33) ensures

that {Γk(x∗, xk)}k∈IN is a Cauchy sequence and thus converges in H. Using
inequality (5.6), we can conclude that the sequence {xk}k∈IN is bounded.
The rest of the proof is the same as for Theorem 5.1 �

To prove that at least one weak limit point of the sequence {xk}k∈IN
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is a solution of problem (GV IP ), we have to impose that F is paramono-
tone and that F and the operators {Gk}k∈IN satisfy the following condition:

Condition (I):
For any bounded sequence {zk}k∈IN of E, and {rk}k∈IN with rk ∈ Gk(zk),

(I.1) the sequence {rk}k∈IN is bounded, and
(I.2) there exist subsequences {zk′}k′∈K⊂IN and {rk′}k′∈K⊂IN such that
zk′

⇀ z̄, rk′
⇀ r̄, r̄ ∈ F (z̄), and limk′→∞〈rk′

, zk′ − z̄〉 + ϕ(zk′
) − ϕ(z̄) ≥ 0.

Obviously, if Gk = F for all k, F is monotone, bounded on bounded subsets
of dom ϕ and weakly closed on dom ϕ, then Condition (I) is satisfied.
Observe that if Gk = F εk

and εk ≤ ε̄ for all k, then Gk ⊂ F ε̄ for all k.
When F is maximal monotone and dom F is closed, F ε̄ is locally bounded
in the interior of its domain (see [27]). In finite dimension, if F is maximal
monotone and dom F is closed, Condition (I.1) is satisfied and Condition
(I.2) holds when εk → 0 (see [25]). A typical example is that of the subd-
ifferential of a lower semi–continuous proper convex function f in IRn (see
[107]).

Theorem 5.5 Suppose that all assumptions of Lemma 5.5 are satisfied and
that the sequence {xk}k∈IN is bounded. If limk→∞ µk = 0,

∑+∞
k=0 µk = +∞,

limk→∞ εk = 0, F is paramonotone over dom ϕ, F and {Gk}k∈IN satisfy
Condition (I), then the sequence {xk}k∈IN generated by solving subproblems
(IPSAP k) with Gk ⊂ F εk

x∗ , has at least one weak limit point which is a
solution of problem (GV IP ).

Proof.The proof is similar to that of Theorem 5.2 with “r(xk) ∈ F (xk)”
replaced by “rk(xk) ∈ F εk

x∗ (xk)”. It suffices to rewrite that proof by using
Condition (I.1) instead of “F bounded on bounded subsets of dom ϕ” and
Condition (I.2) instead of “F weakly closed on dom ϕ”. �

Now, to ensure that each weak limit point of {xk}k∈IN is a solution
of problem (GV IP ), we will use a gap function for problem (GV IP ) (and
thus Condition (GZHx∗)) as in Section 5.1. In view of Proposition 5.1 and
Lemma 5.2, we have to show that Proposition 5.5 can be generalized to
the inexact case. For that purpose, we use F εk,α

x∗ , the α-εk-enlargement of F

around x∗, instead of F εk

x∗ in subproblems (IPSAP k). More precisely, we will
choose rk(xk) in Gk(xk) with the operator Gk taken such that Gk ⊂ F εk,α

x∗ .
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On the other hand, when F is Lipschitz continuous, we can use the enlarge-
ment F εk

.

Proposition 5.7 (a) Assume that assumptions of Theorem 5.4 are satisfied
as also Condition (GZHx∗) (i) and (ii). If Gk satisfies Condition (I.1) and
either (case 1) Gk ⊂ F εk,α

x∗ , ∀k, and ∃ ε > 0 : 0 ≤ εk ≤ µk ε, ∀k,

or (case 2) F is maximal monotone, Lipschitz continuous on H,
Gk ⊂ F εk

, ∀k, and ∃ ε > 0 : 0 ≤ εk ≤ µ2
k ε2, ∀k,

then
∑+∞

k=0 µk l(xk) < +∞.

(b) If there exists c > 0 such that (5.21) holds, then there exists δ > 0 such
that, for all k, ‖xk+1 − xk‖ ≤ δµk.

Proof. (a) First, we prove that, for each k, there exists vk > 0 such that

〈rk(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗) ≥ α l(xk) − vk. (5.34)

This is true in case 1 when Gk ⊂ F εk,α
x∗ for all k. Indeed, rk(xk) ∈ F εk,α

x∗ (xk)
means that (5.34) is satisfied with vk = εk. Now, consider case 2 where
F is maximal monotone, Lipschitz continuous on H and Gk ⊂ F εk

for all
k. Since F satisfies Condition (GZHx∗) (i) and (ii), we have that for any
r(xk) ∈ F (xk),

〈r(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗) ≥ α l(xk).

Therefore, we can write for any r(xk) ∈ F (xk),

〈rk(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)

≥ α l(xk) + 〈rk(xk) − r(xk), xk − x∗〉.
(5.35)

Moreover, since rk(xk) ∈ F εk
(xk) and F is maximal monotone, an extension

of the Brønsted and Rockafellar’s Theorem (see Proposition 5.6) ensures
that, for any k:

∃ (yk, r(yk)) ∈ Graph F such that

‖xk − yk‖ ≤
√

εk and ‖rk(xk) − r(yk)‖ ≤
√

εk.
(5.36)
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Moreover, since F is Lipschitz continuous on H, there exists L > 0 such that
e(F (yk), F (xk)) ≤ L‖yk − xk‖ so that we have that there exists rk ∈ F (xk)
such that

‖r(yk) − rk‖ ≤ L‖yk − xk‖ +
√

εk. (5.37)

Hence,

〈rk(xk) − rk, x∗ − xk〉
= 〈rk(xk) − r(yk), x∗ − xk〉 + 〈r(yk) − rk, x∗ − xk〉
≤

√
εk (2 + L) ‖xk − x∗‖,

(5.38)

where the inequality comes from (5.36) and (5.37).
The sequence {xk}k∈IN being bounded, there exists a constant e > 0 such
that ||xk − x∗|| ≤ e for all k. Hence, combining (5.35) with r(xk) = rk and
(5.38), we deduce that

〈rk(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗) ≥ α l(xk) −
√

εk (2 + L) e,

i.e. (5.34) is satisfied with vk =
√

εk(2 + L)e.
So, if we couple the two situations, we obtain (5.34) with

vk =


εk, in case 1;
√

εk (1 + L) e, in case 2.

We can then deduce that

(α/η̄)
∑+∞

k=0 µk l(xk)

≤ α
∑+∞

k=0(µk/η
k) l(xk)

≤∑+∞
k=0(µk/η

k) [〈rk(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)] +
∑+∞

k=0(µk/η
k) vk

≤∑+∞
k=0(µk/η

k) [〈rk(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)] +
∑+∞

k=0 µk vk,

where the first inequality follows from the fact that {xk}k∈IN is bounded
and consequently the sequences {rk(xk)}k∈IN and {ηk}k∈IN are bounded,
the second inequality comes from (5.34) and the third one follows from the
fact that ηk ≥ 1 for all k.
From Theorem 5.4, we have that

+∞∑
k=0

(µk/η
k) [〈rk(xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗)] < +∞.
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Moreover, the bounds imposed on εk and the convergence of
∑+∞

k=0 µ2
k ensure

that
∑+∞

k=0 µk vk < +∞ and thus that
∑+∞

k=0 µk l(xk) < +∞.
(b) Same proof as for Proposition 5.5(b). �

The generalization of Theorem 5.3 can then be deduced.

Theorem 5.6 Suppose that the following conditions are satisfied:
(a) Assumptions of Lemma 5.5 hold;
(d) Condition (GZHx∗) holds;
(c) Gk satisfies Condition (I.1);
(d) Inequality (5.21) holds;
(e)

∑+∞
k=0 µk = +∞,

∑+∞
k=0 µ2

k < +∞;

(f) either (case 1) Gk ⊂ F εk,α
x∗ , ∀k, and ∃ ε > 0 : 0 ≤ εk ≤ µkε, ∀k,

or (case 2) F is maximal monotone, Lipschitz continuous on H,
and Gk ⊂ F εk

, ∀k, and ∃ ε > 0 : 0 ≤ εk ≤ µ2
kε

2, ∀k.

Then, the sequence {xk}k∈IN is bounded, l(xk) → 0 and any weak limit
point of {xk}k∈IN is a solution of problem (GV IP ).
If, in addition, condition (iv) of Lemma 5.5 is satisfied for each solution of
problem (GV IP ) and ∇K is weakly continuous on dom ϕ, then xk ⇀ x̄ and
x̄ is a solution of (GV IP ). If, in addition, the gap function l is strongly
convex on an open set containing dom ϕ, then xk → x∗, the unique solution
of (GV IP ).

Proof. The first part of the theorem follows directly from Lemma 5.5,
Theorem 5.4, Proposition 5.7, Lemma 5.2 and Proposition 5.1. The rest of
the proof is identical to that of Theorem 5.3. �

Remark 5.4 In the case where F is the subdifferential of a finite–valued
convex continuous function f such that problem (GV IP ) reduces to the
optimization problem (OP ), we know that F is paramonotone and satisfies
Condition (GZHx∗) (i) and (ii). Moreover, as discussed in Section 5.2, we
can take for Gk the εk–subdifferential of f . In that case, Condition (I) holds
in IRn.
Moreover, in the particular case where, for all x ∈ H, K(x) = (1/2)xT x,
and for all k ∈ IN , ϕk = ϕ = ΨC , where ΨC denotes the indicator function
of a closed convex subset C of H, then the method defined by subproblems
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(IPSAP k), k ∈ IN , reduces to the projected inexact subgradient process:

xk+1 = ProjC [xk − (µk/ηk)rk(xk)],

with rk(xk) ∈ ∂εkf(xk),

and ηk =

 max{1, ‖r0(x0)‖}, if k = 0;

max{ηk−1, ‖rk(xk)‖}, if k ≥ 1.
.

If problem (OP ) is solvable, Theorem 5.6 reduces, for this scheme, to the
convergence result of [4].

Remark 5.5 We can also generalize Remark 5.3 to this inexact case. If we
take ηk = 1 for all k in subproblems (IPSAP k), the preceding theorems still
hold under the following additional condition:

Condition (IC):

∃ a, b > 0 : ∀k ∈ IN : ‖rk(x)‖ ≤ a‖x‖ + b, ∀x ∈ H, ∀rk(x) ∈ Gk(x).

The proof of this fact is the same as in Remark 5.3.

Observe that Condition (IC) implies Condition (I.1). Note also that Con-
dition (IC) holds when F is maximal monotone, Lipschitz continuous on
H, there exists ȳ ∈ dom F such that F (ȳ) is bounded and Gk = F εk

. To
see this, it suffices to use the extension of the Brønsted and Rockafellar’s
Theorem in the same way as in (5.36).
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Chapter 6

A Bundle Method to Solve
Multivalued Variational
Inequalities

In this chapter, we use the perturbations in combination with a bundle
strategy to solve problem (GV IP ) in the case where

ϕ = p + ΨC ,

with p : H → IR ∪ {+∞} a lower semi-continuous proper convex function
and ΨC the indicator function of a nonempty closed convex subset C of H
such that C ⊆ dom p ⊆ dom F and C is equal to the closure of its interior
(so that int C �= ∅). The problem considered is thus the following:

(GV IP )

 find x∗ ∈ C and r(x∗) ∈ F (x∗) such that, for all x ∈ C,

〈r(x∗), x − x∗〉 + p(x) − p(x∗) ≥ 0.

The idea comes from the optimization case where F = 0 and C = H such
that problem (GV IP ) reduces to minimize p on H. That problem can
be solved by the so–called bundle method, introduced in the eighties by
Lemaréchal (see, for example, [35]). In this method, the effective domain of
p is supposed to be the whole space H and the strategy is to approximate,
at iteration k, the function p, step by step, by a piecewise linear convex
function pk, and to move to the next iterate only when the approximation
is suitable. As proven in [35], this method can be seen as a practical imple-
mentation of the classical proximal method in convex optimization.
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Our purpose in this chapter is to use the bundle strategy to solve the more
general problem (GV IP ). However, there immediately appears a difficulty
when we follow this strategy for solving approximately the auxiliary sub-
problem (SAP k). Indeed, a way to build a piecewise linear convex approx-
imation pk ≤ p, is to generate points y1, . . . , yt in C, and to consider the
function

pk(x) = max
1≤i≤t

{p(yi) + 〈s(yi), x − yi〉}, x ∈ C, (6.1)

where s(yi) denotes one subgradient of p at yi for i = 1, . . . , t. Usually the
points y1, . . . , yt are the trial points built from xk. Doing that, we suppose
that s(yi) exists for i = 1, . . . , t. But we know that the subdifferential of a
convex function is nonempty in the interior of its domain and may be empty
on the boundary of its domain (see [106], Theorem 23.4). Here, the latter
may occur because C ⊆ dom p and the trial points are in C. So, in our
method, to prevent the iterates to go to the boundary of C, we introduce
a barrier function b(νk, ·) in the objective function of subproblem (SAP k).
Then this problem becomes an unconstrained problem.

In the sequel, we first set the conditions to be satisfied by the approximations
pk of p and we show how to build, step by step, a suitable piecewise linear
approximation pk by means of a bundle strategy. Then, in a second part, we
prove the convergence of the general algorithm. The results of this chapter
are presented in [114].

6.1 Approximate Auxiliary Subproblem and Bun-

dle Strategy

In this section, we first set the approximate auxiliary subproblem that will
be considered at each iteration. Then, we propose a bundle scheme to build
an approximation of p. We show that under some conditions, this scheme
produces a suitable approximation after finitely many iterations and we give
some classical examples where the conditions are satisfied.

Consider at iteration k the symmetric auxiliary subproblem with a fixed
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auxiliary function K recalled here below:

(SAP k)


choose r(xk) ∈ F (xk) and find xk+1 the solution of

minx∈C{p(x) + λ−1
k [ K(x) − K(xk) − 〈zk, x − xk〉 ] },

where zk = ∇K(xk) − λkr(xk).

We approximate this problem by replacing the functions p and ΨC by func-
tions pk and b(νk, ·) in Γ0(H) respectively, so that we obtain the following
subproblem:

(BSAP k)


choose r(xk) ∈ F (xk) and find xk+1 the solution of

minx∈H{pk(x) + b(νk, x) + λ−1
k [K(x) − K(xk) − 〈zk, x − xk〉]},

where zk = ∇K(xk) − λkr(xk).

Recall that since K is strongly convex on C, there exists one and only one
solution for problem (BSAP k).

The function ΨC is approximated by a sequence of barrier functions
{b(νk, ·)}k associated with C where {νk}k∈IN is the sequence of positive bar-
rier parameters strictly increasing to +∞. Recall that for all k, b(νk, ·) is
continuous and positive on the interior of C and takes the value +∞ else-
where. Moreover, for each x in the interior of C, the sequence {b(νk, x)}k

is strictly decreasing to zero. We refer to Examples 3.3 and 3.7 for some
instances and convergence properties. The use of a barrier function in sub-
problem (BSAP k) ensures that the iterate xk+1 belongs to int C. In a
similar way as in the preceding chapter, we impose the following condition
on the sequence {b(νk, ·)}k: for each solution x∗ of problem (GV IP ), there
exists a sequence {wk}k∈IN in int C such that

+∞∑
k=1

‖wk − x∗‖ < +∞ and
+∞∑
k=0

b(νk, w
k) < +∞. (6.2)

Now, for the function p, we consider a sequence {pk}k∈IN of piecewise
linear convex functions such that for all k, pk ≤ p and for some tolerance
∆k > 0,

p(xk+1) − pk(xk+1) ≤ ∆k.

Each approximate function pk will be obtained by using a bundle strategy
in the sense that we build, step by step, piecewise linear convex functions
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θ1, . . . , θi, . . . and we set pk = θi when the solution yi of the unconstrained
problem

(Bk
i ) min{θi(x) + b(νk, x) + λ−1

k [ K(x) − K(xk) − 〈zk, x − xk〉 ] },

is such that p(yi)−θi(yi) ≤ ∆k. More precisely, the process is the following:

Bundle scheme

Let xk ∈ int C and let λk, ∆k > 0 be given. Compute r(xk) ∈ F (xk).
Set zk = ∇K(xk) − λkr(xk), y0 = xk and i = 1.
Step 1. Choose a piecewise linear function θi ≤ p and solve problem (Bk

i )
to obtain yi ∈ int C.

Step 2. If p(yi) − θi(yi) ≤ ∆k, STOP and set pk = θi and xk+1 = yi.
Otherwise increase i by 1 and go to Step 1.

In order to prove that the STOP occurs after finitely many iterations, we
have to impose conditions on the functions θi, i = 1, 2, . . .. Before presenting
these conditions, first we observe that, by optimality of yi ∈ int C, we have

γi ≡ λ−1
k [zk −∇K(yi)] ∈ ∂[θi + b(νk, ·)](yi). (6.3)

Then we define the aggregate affine function li by

li(y) = θi(yi) + b(νk, y
i) + 〈γi, y − yi〉, y ∈ int C. (6.4)

We have li(yi) = θi(yi) + b(νk, y
i) and, using (6.3) and (6.4),

li(y) ≤ θi(y) + b(νk, y), for all y ∈ int C. (6.5)

Now we require the following conditions on the functions θi for i = 1, 2, . . .:

(C1) θi ≤ p,

(C2) li ≤ θi+1 + b(νk, ·),
(C3) p(yi) + 〈s(yi), · − yi〉 ≤ θi+1,

(C4) p(y0) + 〈s(y0), · − y0〉 ≤ θi,
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where s(yi) denotes a subgradient of p at yi. Here we suppose that, at each
point of int C, one subgradient of p is available.
The first three conditions are similar to those introduced in [35] in the frame-
work of nonsmooth convex optimization. As in [35], they allow to prove that
the STOP occurs in the bundle algorithm after finitely many iterations. Con-
dition (C4) will be used in the next section to show the weak convergence
of the sequence {xk}k∈IN generated, step by step, by the bundle algorithm.

Let us now mention a few examples of functions θi satisfying Conditions
(C1) to (C4). For the first function, we can take θ1 = p(y0) + 〈s(y0), · − y0〉
and for i = 1, 2, . . ., we can choose

θi+1 = max
0≤j≤i

{p(yj) + 〈s(yj), · − yj〉}. (6.6)

It is easy to see that (C1), (C3) and (C4) are satisfied. Since θi ≤ θi+1, (C2)
follows from (6.5). When b(νk, ·) is differentiable on int C, other choices are
possible, for example,

θi+1 = max
0≤j≤i

{θi(yi) + 〈γi −∇b(νk, y
i), · − yi〉, p(yj) + 〈s(yj), · − yj〉}. (6.7)

Indeed, (C3) and (C4) are obvious and condition (C1) is satisfied because
γi −∇b(νk, y

i) ∈ ∂θi(yi) and s(yi) ∈ ∂p(yi). Finally, since

θi+1 ≥ θi(yi) + 〈γi −∇b(νk, y
i), · − yi〉 = li − b(νk, y

i) − 〈∇b(νk, y
i), · − yi〉,

we have, using the subdifferential inequality, that

li ≤ θi+1 + b(νk, y
i) + 〈∇b(νk, y

i), · − yi〉 ≤ θi+1 + b(νk, ·),

i.e., condition (C2).

In the sequel we will also need to consider the following functions:

l̃i(y) = li(y) + λ−1
k [ K(y) − K(xk) − 〈zk, y − xk〉 ],

θ̃i(y) = θi(y) + λ−1
k [ K(y) − K(xk) − 〈zk, y − xk〉 ].

Using (6.3) and (6.4), it is easy to see that, for all y ∈ int C,

l̃i(y) = l̃i(yi) + λ−1
k [ K(y) − K(yi) − 〈∇K(yi), y − yi〉 ]. (6.8)
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Moreover, we have

θ̃i(xk) = θi(xk) and l̃i(yi) = θ̃i(yi) + b(νk, y
i), (6.9)

and, by condition (C2),
l̃i ≤ θ̃i+1 + b(νk, ·). (6.10)

Proposition 6.1 Suppose that ∂p is bounded on bounded subsets of int C.
If the stopping test is removed from the bundle algorithm and if the sequence
{θi}i∈IN0 satisfies conditions (C1) to (C3), then p(yi) − θi(yi) → 0.

Proof. We proceed in three steps.

1. The sequence {l̃i(yi)}i∈IN0 is convergent and yi+1 − yi → 0.

For all i = 1, . . . we have

p(xk) + b(νk, x
k) ≥ θi+1(xk) + b(νk, x

k) (by (C1))

= θ̃i+1(xk) + b(νk, x
k) (by (6.9))

≥ θ̃i+1(yi+1) + b(νk, y
i+1) (definition of yi+1)

= l̃i+1(yi+1) (by (6.9))

≥ l̃i(yi+1) (by (6.10))

= l̃i(yi) + λ−1
k DK(yi+1, yi) (by (6.8)),

where DK(y, z) = K(y) − K(z) − 〈∇K(z), y − z〉 ≥ 0 for all y, z.
From these relations, we deduce that the sequence {l̃i(yi)}i∈IN0 is non-
decreasing and bounded above by p(xk)+b(νk, x

k). So it is convergent.
Moreover, since K is strongly convex of modulus β > 0, we also obtain
that

l̃i+1(yi+1) − l̃i(yi) ≥ λ−1
k DK(yi+1, yi) ≥ (2λk)−1β‖yi+1 − yi‖2 ≥ 0.

But then yi+1 − yi → 0 (strongly) because the left hand side tends to
zero.

2. The sequence {yi}i∈IN is bounded.
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Let y ∈ int C be fixed. Using successively (C1) and the definition of
θ̃i+1, (6.10), (6.8) and the strong convexity of K, we have

p(y) + b(νk, y) + λ−1
k [ K(y) − K(xk) − 〈zk, y − xk〉 ]

≥ θ̃i+1(y) + b(νk, y)

≥ l̃i(yi) + λ−1
k DK(y, yi)

≥ l̃i(yi) + (2λk)−1β‖y − yi‖2.

Since the sequence {l̃i(yi)}i∈IN0 is convergent, the sequence {y−yi}i∈IN

must be bounded and thus also the sequence {yi}i∈IN .

3. p(yi+1) − θi+1(yi+1) → 0.

Using successively (C3), (C1) and the definition of the subgradient
s(yi+1), we obtain

〈s(yi), yi+1 − yi〉 ≤ θi+1(yi+1) − p(yi)
≤ p(yi+1) − p(yi)
≤ 〈s(yi+1), yi+1 − yi〉.

Since the subdifferential ∂p is bounded on the bounded sequence {yi}i∈IN ,
the sequence {s(yi)}i∈IN is bounded and, as ‖yi+1 − yi‖ → 0, the op-
posite sides of the previous inequalities tend to zero. Hence

θi+1(yi+1) − p(yi) → 0 and p(yi+1) − p(yi) → 0,

such that

p(yi+1) − θi+1(yi+1) = p(yi+1) − p(yi) + p(yi) − θi+1(yi+1) → 0.

This completes the proof. �

Since ∆k > 0, it follows from Proposition 6.1, that the STOP occurs af-
ter finitely many iterations in the bundle scheme. So pk is well defined
and

pk ≤ p and p(xk+1) − pk(xk+1) ≤ ∆k. (6.11)

Finally, the sequence {xk}k∈IN generated by applying, step by step, the
bundle algorithm is well defined and its convergence can be studied. It is
the purpose of the next section.

137



Remark 6.1 When C ⊆ int(dom p), the subdifferential ∂p(x) is nonempty
on C and there is no need to suppose that int C is nonempty and to consider
a barrier function b(νk, ·) in the subproblems (Bk

i ). In that case, b(νk, x) is
replaced by ΨC(x) in subproblem (Bk

i ). When C is given by linear in-
equalities and K is a strongly convex quadratic function as for example,
K = 1/2‖ · ‖2, observe that subproblems (Bk

i ) become, in fact, convex
quadratic programming problems.

6.2 Convergence of the Algorithm

We proceed in three steps to prove the convergence of the sequence {xk}k∈IN

generated by solving subproblems (BSAP k). First, we study the bounded-
ness of {xk}k∈IN , then its weak convergence to some solution of problem
(GV IP ) and finally its strong convergence. The results obtained are rather
similar to those of Section 5.1 for ϕ replaced by p + ΨC , dom ϕ = C and
E = int C.

Recall that the sequence {λk}k∈IN is chosen under the following form:
λk = µk/ηk,∀k ∈ IN, with {µk}k∈IN a sequence of positive numbers,

and ηk =

 max{1, ‖r(x0)‖}, if k = 0;

max{ηk−1, ‖r(xk)‖}, if k ≥ 1.

Consider the sequence of Lyapounov functions {Γk(x∗, ·)}k∈IN given in
(5.1) with ϕ replaced by p + ΨC . The following lemma shows that we can
obtain the same kind of upper bound on Γk+1(x∗, xk+1) − Γk(x∗, xk) as in
Lemma 5.1.

Lemma 6.1 Assume that F is a monotone multivalued mapping defined on
H, that problem (GV IP ) admits at least one solution denoted by x∗, and
that the following conditions are satisfied:

(i) K : H → IR is continuously differentiable and strongly convex with
modulus β > 0 over dom ϕ;

(ii) ∇K is a Lipschitz continuous mapping with Lipschitz constant Λ over
dom ϕ;

(iii) {µk}k∈IN is a nonincreasing sequence of positive numbers;
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(iv) p ∈ Γ0(H) is such that ∂p is bounded on bounded subsets of int C;

(v) {pk}k∈IN , p ∈ Γ0(H) are such that (6.11) is satisfied with ∆k > 0 such
that

∑+∞
k=0 ∆k < +∞;

(vi) {b(νk, ·)}k∈IN is a sequence of barrier functions associated with C, and
there exists a sequence {wk}k∈IN in int C such that (6.2) holds.

Then, if {xk}k∈IN denotes the sequence generated by solving subproblems
(BSAP k), we have for all k ∈ IN ,

Γk+1(x∗, xk+1) − Γk(x∗, xk) ≤ −c‖xk+1 − xk‖2 + T̄ k + µ2
k u

−(µk/ηk)[〈r(xk), xk − x∗〉 + p(xk) − p(x∗)],
(6.12)

with c, u > 0, T̄ k ≥ 0, and
∑+∞

k=0 T̄ k < +∞.

Proof. Let us review the proof of Lemma 5.1 with ϕ replaced by p + ΨC ,
ϕk replaced by pk + b(νk, ·) and dom ϕ by C.

The terms s1, s21 of inequality (5.7) can be treated in the same way. For
the term s22 + s3, the last line of (5.10)

ϕk(wk) − ϕ(x∗) + ϕ(xk+1) − ϕk(xk+1),

is replaced by

b(νk, w
k) − ΨC(x∗) + ΨC(xk+1) − b(νk, x

k+1)

+pk(wk) − p(x∗) + p(xk+1) − pk(xk+1).

For this expression, the assumptions (v) and (vi) imposed on {pk}k∈IN and
{b(νk, ·)}k∈IN imply that

ΨC(xk+1) − b(νk, x
k+1) ≤ 0,

p(xk+1) − pk(xk+1) ≤ ∆k, and

pk(wk) − p(x∗) ≤ p(wk) − p(x∗) ≤ 〈ek, wk − x∗〉 ≤ ‖ek‖ ‖wk − x∗‖,
where ek is any subgradient of p at wk (it exists because wk ∈ int C).
Moreover, since ∂p is bounded on the bounded sequence {wk}k∈IN , there
exists d > 0 such that for all k,

pk(wk) − p(x∗) ≤ d ‖wk − x∗‖.
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So, in this case, the last line of (5.10) is lower or equal to

b(νk, w
k) − ΨC(x∗) + ∆k + d ‖wk − x∗‖.

Gathering this with inequalities (5.7)–(5.13) and rearranging the terms, we
obtain that inequality (6.12) holds with

c = (1/2)(β − τ − γ − µ),
T̄ k = µ0(1 + d)‖wk − x∗‖ + µ0 b(νk, w

k) + (Λ2/(2τ))‖wk − x∗‖2 + µ0∆k,
u = (1/(2γ)) + (1/(2µ))‖r(x∗)‖2,
τ, γ, µ > 0 such that τ + γ + µ < β.

Since the sequence {wk}k∈IN has been chosen such that (6.2) holds and the
series

∑+∞
k=0 ∆k is convergent, we have that

∑+∞
k=0 T̄ k < +∞ and the proof

is complete. �

When H is a finite dimensional space, the assumption ”∂p is bounded on
bounded subsets of int C” is always true (see, for example, [106], Theorem
24.7).

We can then deduce the boundedness of the sequence {xk}k∈IN .

Theorem 6.1 Assume that all assumptions of Lemma 6.1 hold.
If

∑+∞
k=0 µ2

k < +∞, then provided that x0 ∈ C, the sequence {xk}k∈IN is
bounded. Moreover,

+∞∑
k=0

‖xk+1 − xk‖2 < +∞, and

+∞∑
k=0

(µk/ηk)[〈r(xk), xk − x∗〉 + p(xk) − p(x∗)] < +∞.

Proof. Same proof as for Theorem 5.1. �

Now to ensure that each weak limit point of {xk}k∈IN is a solution of
problem (GV IP ), we use a gap function for problem (GV IP ) and Condition
(GZHx∗) just like in Section 5.1 with ϕ replaced by p+ΨC , dom ϕ replaced
by C and the set E by int C. To be able to use successively Lemma 5.2 and
Proposition 5.1, we have to prove the following proposition:
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Proposition 6.2 (a) Assume that assumptions of Theorem 6.1 are satisfied
as well as Condition (GZHx∗) (i) and (ii). If F is bounded on bounded
subsets of int C, then

∑+∞
k=0 µkl(xk) < +∞.

(b) If ∂p is bounded on bounded subsets of int C and if there exists δb > 0
such that

b(νk, x
k) − b(νk, x

k+1) ≤ δb‖xk+1 − xk‖ for all k, (6.13)

then there exists δ > 0 such that, for all k, ‖xk+1 − xk‖ ≤ δλk.
(c) When C = {x | gi(x) ≤ 0, i = 1, . . . ,m} with g1, . . . , gm convex func-
tions from IRn to IR, inequality (6.13) is satisfied by the logarithmic barrier
functions and by the inverse barrier functions provided that the barrier pa-
rameters be large enough.

Proof. (a) See the proof of Proposition 5.5(a).

(b) From the optimality conditions applied to x = xk, we obtain

〈∇K(xk+1) −∇K(xk), xk+1 − xk〉 ≤ (µk/ηk)[〈r(xk), xk − xk+1〉

+pk(xk) − pk(xk+1) + b(νk, x
k) − b(νk, x

k+1)].
(6.14)

Since K is strongly convex and ‖r(xk)‖ ≤ ηk, we derive from (6.14) that

β‖xk+1 − xk‖2 ≤ µk‖xk+1 − xk‖

+(µk/ηk)[pk(xk) − pk(xk+1) + b(νk, x
k) − b(νk, x

k+1)].
(6.15)

Now since pk ≤ p and, by construction (see condition (C4)),

pk(x) ≥ p(xk) + 〈s(xk), x − xk〉 for all x ∈ int C,

we have

pk(xk) − pk(xk+1) ≤ p(xk) − p(xk) − 〈s(xk), xk+1 − xk〉

= 〈s(xk), xk − xk+1〉

≤ ‖s(xk)‖ ‖xk+1 − xk‖.
Since ∂p is bounded on bounded subsets of int C, the sequence {‖s(xk)‖}k∈IN

is bounded and there exists δp > 0 such that, for all k,

pk(xk) − pk(xk+1) ≤ δp ‖xk+1 − xk‖. (6.16)
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Finally, from (6.15), (6.16), (6.13), and since ηk ≥ 1, we deduce that
‖xk+1 − xk‖ ≤ δµk for all k, with δ = (1/β)[ 1 + δp + δb ].

(c) See Remark 5.1. �

We are now ready to state our main convergence result.

Theorem 6.2 Suppose that the following conditions are satisfied:
(a) Assumptions of Lemma 6.1 hold;
(b) Assumption (GZHx∗) holds;
(c) F is bounded on bounded subsets of int C;
(d) Inequality (6.13) holds;
(e)

∑+∞
k=0 µk = +∞,

∑
µ2

k < +∞.
Then the sequence {xk}k∈IN is bounded, l(xk) → 0 and any weak limit point
of {xk}k (and there exists at least one such point) is a solution of problem
(GV IP ).
If, in addition, ∇K is weakly continuous on C, then xk ⇀ x̄ and x̄ is a
solution of (GV IP ). If, in addition, the gap function l is strongly convex on
an open set containing C, then xk → x∗, the unique solution of (GV IP ).
When H is a finite dimensional space, the (strong) convergence of the whole
sequence toward a solution is true under the only assumptions (a)–(e).

Proof. The first part of the theorem follows immediately from Lemma 6.1,
Theorem 6.1, Proposition 6.2, Lemma 5.2 and Proposition 5.1. The rest of
the proof is the same as for Theorem 5.3. �

Using Propositions 5.2, 5.3 and 5.4 which give sufficient conditions to
ensure that Assumption (GZHx∗) is satisfied, we can particularize Theorem
6.2 to get more precise convergence theorems. However, before presenting
them, and for the sake of simplicity, we collect in a statement, several as-
sumptions used previously.

Assumption (A):

(i) Assumptions of Lemma 6.1 hold;
(ii) ∇K is weakly continuous on C;
(iii) Inequality (6.13) holds;
(iv)

∑+∞
k=0 µk = +∞,

∑+∞
k=0 µ2

k < +∞.
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Notice that when H is a finite dimensional space, (ii) is always true as also
it is the case for assumption (iv) of Lemma 6.1: ∂p is bounded on bounded
subsets of int C.

Theorem 6.3 Suppose that Assumption (A) holds.
(a) If F is paramonotone, weakly closed on C and Lipschitz continuous on
bounded subsets of int C, and if F (x) is a bounded subset of H for all x ∈ C,
then the whole sequence xk ⇀ x̄ where x̄ is a solution of (GV IP ).
(b) If F = ∂f with f ∈ Γ0(H) and C ⊆ int(dom f), and if ∂f is bounded
on bounded subsets of int C, then the whole sequence xk ⇀ x̄ where x̄ is a
solution of problem (GV IP ).
When H is a finite dimensional space, the assumption on ∂f is always true.

Proof. By Theorem 6.2, it is sufficient to prove that Assumption (GZHx∗)
holds and that F is bounded on bounded subsets of int C.
(a) Since ∂p is bounded on bounded subsets of int C, it follows from Lemma
5.3 that p is Lipschitz continuous on bounded subsets of int C. All the as-
sumptions of Proposition 5.2 are then satisfied. Thus, Assumption (GZHx∗)
is satisfied. Finally, using Lemma 1.1, F is bounded on bounded subsets of
int C.
(b) By Lemma 5.3, f and p are Lipschitz continuous on bounded subsets
of int C. So, using Proposition 5.3, Assumption (GZHx∗) is satisfied. The
conclusion follows because F = ∂f is bounded on bounded subsets of int C.�

Theorem 6.4 Suppose that Assumption (A) holds. If F is strongly mono-
tone on C and bounded on bounded subsets of int C, then the whole sequence
xk strongly converges to x∗, the unique solution of (GV IP ).

Proof. From Proposition 5.4, we have that Assumption (GZHx∗) is satis-
fied. Then the conclusion follows from Theorem 6.2 because F is bounded
on bounded subsets of int C and the gap function l(x) = ‖x−x∗‖2 is strongly
convex on H. �

Remark 6.2 When C ⊆ int (dom p), the subdifferential ∂p(x) is nonempty
on C and there is no need to suppose that int C is nonempty and to introduce
a barrier function in subproblems (BSAP k). However, all our convergence
results remain true in that case, provided that each assumption made on int
C be extended to C.
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To conclude, note that we suppose that the sequence {pk}k∈IN of func-
tions approximating p, satisfies inequalities (6.11) where {∆k}k∈IN is a se-
quence of positive numbers such that

∑+∞
k=0 ∆k < +∞. But practically, the

choice of the sequence {∆k}k∈IN remains an open issue. To be efficient, the
tolerance ∆k should be determined, not in advance, but once xk has been
found by taking into account the behavior and the progress of the iterates
to the solution. Such a strategy has been proposed in nonsmooth optimiza-
tion, for solving nondifferentiable convex minimization problems (see [35]).
In our context, this question deserves more investigations.
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ercive Variational Inequalities. Nonlinear Analysis, Theory, Methods
and Applications, 26:1573–1603, 1996.

[2] P. Alart and B. Lemaire. Penalization in Non–classical Convex Pro-
gramming via Variational Convergence. Mathematical Programming,
51:307–331, 1991.

[3] Ya.I. Alber. Recurrence Relations and Variational Inequalities. Soviet
Mathematics, Doklady, 27:511–517, 1983.

[4] Ya.I. Alber, A.N. Iusem, and M.V. Solodov. On the Projected Subgra-
dient Method for Nonsmooth Convex Optimization in a Hilbert Space.
Mathematical Programming, 81:23–35, 1998.

[5] H. Attouch. Variational Convergence for Functions and Operators.
Pitman, London, 1984.

[6] H. Attouch, Z. Chbani, and A. Moudafi. Recession Operators and
Solvability of Variational Problems in Reflexive Banach Spaces. Series
on Advances in Mathematics and Applied Sciences, 18:51–67, 1994.

[7] H. Attouch and R.J.B. Wets. Approximation and Convergence in
Nonlinear Optimization. In O.L. Mangasarian, R.R. Meyer, and S.M.
Robinson, editors, Nonlinear Programming 4, pages 367–394. Aca-
demic Press, New York, New York, 1981.

[8] H. Attouch and R.J.B. Wets. Isometries for Legendre–Fenchel Trans-
form. Transactions of the American Mathematical Society, 296:33–60,
1986.

145



[9] J.P. Aubin. Applied Functional Analysis. Wiley-Interscience, New
York, 1979.

[10] J.P. Aubin and I. Ekeland. Applied Nonlinear Analysis. Wiley, New
York, New York, 1984.

[11] G. Auchmuty. Variational Principles for Variational Inequalities. Nu-
merical Functional Analysis and Optimization, 10:863–874, 1989.

[12] A. Auslender. Optimisation. Méthodes Numériques. Masson, Paris,
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56:175–180, 1987.

[89] K. Mouallif, V.H. Nguyen, and J.J. Strodiot. A Perturbed Parallel De-
composition Method for a Class of Nonsmooth Convex Minimization
Problems. SIAM Journal on Control and Optimization, 29:829–847,
1991.

[90] K. Mouallif and P. Tossings. Une Méthode de Pénalisation Exponen-
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