
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Methodology for automating web usability and accessibility evaluation by guideline

Beirekdar, Abdo

Award date:
2004

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 05. May. 2024

https://researchportal.unamur.be/en/studentTheses/af3adca1-c6f7-4581-aea8-8ce5989cc94b

Methodology for Automating Guideline Review of Web Sites

Chapter 4

A Framework for Evaluation-
Oriented Structuring of Web

Guidelines

4.1 Introduction

U&A required for use of web sites are today widely recognized as an important
requirement for user acceptance. However, despite the fact that U&A guidelines
have been proved useful, they still suffer from a series of shortcomings that
impede their use and significantly reduce their scope.

The level of guideline expressiveness and the confidence in applying guidelines
heavily depends on the source the guidelines come from [Scapin et al. 2000].
Figure 4.1 depicts that guidelines found in the five types of sources range from
general guidelines requiring an abstract interpretation to a specific guideline only
needed concrete interpretation. The more a guideline is general, the more their
applicability domain is wide and the more their interpretation becomes abstract.

Figure 4.1: Location of sources containing guidelines.

As a consequence, general guidelines cannot be applied per se, thus requiring
some concrete interpretation for the intended context of use. On one hand, the
format of general guidelines can withdraw experimental conditions under which
the guideline has been tested and validated. On the other hand, the lack of these
conditions, which are required to ensure a correct interpretation, may invalidate
any such interpretation. Specific guidelines no longer require such interpretation,
but are so specific that they prevent designers to apply them in other situations
without any risk of invalidity. General guidelines are difficult to interpret when
and how they need to be applied at design time or evaluated at execution time.

60

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

The impact of the above shortcomings is varying according to the goals for which
guidelines are considered. If developing a tool for automated or computer-aided
evaluation of these guidelines is the ultimate goal, then these shortcomings are
important and hard to solve. If providing people with assistance and guidance in
applying and evaluating guidelines is the ultimate goal, then these shortcomings
are less important.

4.1.1 Requirements

To address the above shortcomings, the need for organizing guidelines into a
practical framework that would in turn facilitate the structuring and the
operationalization of guidelines rapidly emerged.

4.1.2 Related works

Here we will primarily focus on works that have been applied within the domain
of automated evaluation of Web guidelines.

Informal classification

[Scapin et al. 2000] proposed a framework covering the whole activities related to
the problem: guidelines collection, guidelines organization, and the incorporation
of guidelines into approach [Vanderdonckt 1999]. Figure 4.2 shows an example of
applying the framework on a Web guideline.

Figure 4.2: Application of the framework proposed by [Scapin et al. 2000]

The formalization is read as: two situations for testing this guideline may occur:
either the link label is exactly the related page title or at least one difference
exists. The automation is straightforward in the first situation, while impossible in
the second. The level of automation is consequently semi-automatic.

This framework seems difficult to apply because it poses the same problem of
interpreting a general guideline in a classification tree that has up to six levels. In
addition, it does not provide any kind of formal support to uniformly represent the
information that guidelines may involve and to communicate how to apply them.

Another attempt is the well-known WAI of W3C. The WAI proposed fourteen
Web Content Accessibility Guidelines (WCAG1.0) that were all defined in
systematic manner in order to facilitate their (automated) evaluation. A guideline
definition includes:

 The guideline number.
 The statement of the guideline.

61

Methodology for Automating Guideline Review of Web Sites

 The rationale behind the guideline and some users groups who benefit from it.
 A list of checkpoint definitions.

The checkpoint definitions in each guideline explain how the guideline applies in
typical content development scenarios. Each checkpoint definition includes:

 The checkpoint number.
 The statement of the checkpoint.
 The priority of the checkpoint. Priority can be 1, 2 or 3.
 Optional informative notes, clarifying examples, and cross references to

related guidelines or checkpoints.
 A list of techniques to precise the way of evaluating the checkpoint.

Each checkpoint is intended to be specific enough so that someone reviewing a
page or site may verify that the checkpoint has been satisfied.

This organization of guidelines aims to facilitate their operationalization. The
objective is partially achieved because the techniques show how to evaluate these
guidelines concretely (provide a text equivalent for every non-text element via
"alt", "longdesc", or in element content) for some of them or by giving some hints
for others (mark up lists and list items properly), but there is no formalism
supporting this organization.

XML support for guidelines classification and evaluation

Thus, it seems that what we need is to add a formal support to a WAI like
framework. XML is a good candidate because it allows for extremely large
flexibility when describing data format. In addition, one of its main strengths is its
suitability for describing structured data. Another advantage of using XML
compliant formalism is that we could integrate it with EARL of W3C [W3C
2002].

Many research activities were launched in this direction, especially with the
general trend of using XML as an information-structuring format in many fields.
Evallris [Abascal et al. 2003] uses XML to structure guidelines and related
evaluation techniques and checkpoints as defined in the case of WAI WCAG1.0.
Currently, the translation of accessibility guidelines into the proposed XML
schema (figure 4.3) is done manually. The designer that performs this translation
must master XML and HTML.

According to [Abascal et al. 2003], this structure is valid for most recognized
accessibility guidelines. As seen in Figure 2.5, each guideline contains a list of
checkpoints expressed in HTML. Each checkpoint is defined by its tag in HTML
and, when the affected attribute is needed. For instance, if a checkpoint referring
to "provide a description for the information displayed in a table" is about to be
formatted, in addition to the HTML tag <TABLE>, it is necessary to include
summary attributes in the definition.

62

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

Figure 4.3: XML Schema for WAI guidelines as defined in Evallris

The elements of the proposed accessibility schema are the following:

 Information regarding the guideline: identification number, title, description
and the URL where the definition of this guideline can be found.

 Information regarding each checkpoint in the guideline: identification number,
description and priority.

Next is an example of formatting a guideline with Evallris [Abascal et al. 2003].

<GUIDELINE>
<Id>X</Id>

<Title> Do not allow images as web page background.</Title>
<Description>
 Ensure that images are not defined as the background of a web page as they can make
 the readability of the text difficult.
</Description>
<URL>http://XXXXXXXXXXX</URL>

<Checkpoint>
<Id>X</Id>
<Description> Do not allow images as web page background</Description>
<Priority>3</Priority>
<Type>1</Type>
<Techniques>

<Text/>
<Type/>

</Techniques>
<Keyword>

<Name>BODY</Name>
<Type>0</Type>
<Attribute>

<Name>BACKGROUND</Name>
<Example></Example>
<ErrorWarningDescription/>
<Type>0</Type>
<Values> <Value/> </Values>

</Attribute>
</Keyword>

63

Methodology for Automating Guideline Review of Web Sites

</Checkpoint>

In fact, this structure is a step forward in the direction of automated evaluation. It
identifies the HTML elements that must be tracked in a Web page to review the
targeted guideline.

Another attempt in the same direction is the Simple Guideline Specification
Language (SGSL) [Takata et al. 2003]. Similar to currently available tools, SGSL
is designed so that one can specify checkpoints based on the syntax of a document
(e.g., "Provide the ALT attribute for every IMG element"), leaving a human user
to verify the document with respect to checkpoints such as "Use clearest and
simplest language appropriate for a site’s content". SGSL is a first-order language
which includes XPath [W3C 1999a] as first-order atomic predicates. SGSL aims
at automatically verifying a given XML document with respect to given
guidelines written in SGSL: Guidelines in SGSL are compiled into an XSLT style
sheet [W3C 1999b], and verification of the XML document is performed by an
arbitrary XSLT processor with the compiled XSLT style sheet. Specification
using the SGSL is not limited to accessibility guidelines. For example, it can be
used for verifying whether a given official document (e.g., a grant application
form) complies with requirements such as: "entry A is mandatory" and "applicant
name in page one should be the same as project organizer in page six". The SGSL
defines guidelines as a finite set of checkpoints. A checkpoint is specified as a
condition on some element in a XML document. For example, to verify the
guideline "If ALT text >150 characters, consider providing a separate
description", we specify the following SGSL checkpoint:

if some $x in //*/@alt satisfies

string-length($x)>150
then warn("consider providing a separate description")

In fact, the main focus of the SGSL is on the evaluation logic of guidelines rather
than on the organization of a set of guidelines. A SGSL specification contains a
minimum of information about the specified guideline:

<guideline id="1">

<title>Provide alternative text for all images.</title>
<expression>

<condition>
 <every-expression variable="x" select="//html:img">

<xpath-expression select="$x/@alt"/>
 </every-expression>
</condition>

</expression>
</guideline>

64

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

4.1.3 Our framework

Every one of the mentioned attempts focuses partially on the problem: Evallris
does not pay big attention to evaluation logic, whereas the SGSL pays almost no
attention on guidelines organization. In addition, both approaches deal with a
guideline as it is, without any attention to the possibility of adapting its evaluation
to multiple contexts of using a Web site (information seek, learning, targeted
users, etc.).

Our framework aims to address these issues [Beirekdar et al. 2002]. Its main goals
are:

Systematic and consistent structuring of guidelines
towards automated evaluation

The framework is intended to help the evaluator to systematically and consistently
structure Web guidelines to facilitate their automated evaluation. To do this, the
specified structure should:

 Contain a maximum of information about the guidelines: what information is
needed to evaluate them (structure), and what to do with this information in
order to review the guidelines (logic).

 Enable the adaptation of general guidelines according to a given situation
(interpretation).

 Enable the identification of potential semantic similarities and differences
among commonly structured guidelines. This identification could be very
useful because we have the intention to enable the simultaneous evaluation of
guidelines issued from multiple sources.

Estimation of automation feasibility

The framework should also enable the evaluator to estimate the feasibility of the
(automated) evaluation. For this purpose, we introduced the concept of
automation level. An automation level is an indication to what extent a given
guideline can be automatically evaluated. We defined two kinds of automation
level.

A theoretical level quantifies the available elements for the evaluation. It can be:

 Total: we estimate that identified HTML elements cover all the aspects of the
guideline.

 Partial: we estimate that identified HTML elements cover some of the aspects
of the guideline.

 NONE: we cannot identify HTML elements to evaluate any of the guideline
aspects.

A practical level qualifies the ability to implement automated evaluation of the
identified elements. It can be

 Total: we estimate that we can implement automated evaluation for all
identified HTML elements needed for the evaluation.

 Partial: we estimate that we can implement automated evaluation for some of
the identified HTML elements.

65

Methodology for Automating Guideline Review of Web Sites

 NONE: we estimate that we cannot implement automated evaluation for any of
the identified HTML elements.

Improvement and flexibility of the evaluation process

The framework should provide means to enable an automated tool based on it to
improve the evaluation process when possible. The expected improvement
possibilities are:

 Parsing the evaluated Web page: improve this process at the level of phase
number (ideally one foreword phase) and the information capture level
(capture the minimal information needed for evaluation).

 Evaluation of the captured data: the framework should improve the
execution the evaluation logic against the captured data. Some information is
added during the structuring process to enable this kind of improvement.

Table 4.1 shows examples on automation levels.

Guideline Automation level Reason
Theoretical: total There are HTML color-related

elements
Select colors that will make
your page easy to read by
people with color blindness
[Vanderheiden et al. 1997]

Practical: None Evaluation conditions difficult
to formalize

Theoretical: total There are HTML needed
elements

Never have a link that points
right back to the same page
[Nielsen 1999] Practical: total Evaluation conditions can be

formalized and easily realized
Theoretical: partial Provide equivalent

alternatives to auditory and
visual content [W3C 1999]

Practical.: partial
There are HTML elements
but not for all desired aspects
of the guideline

Table 4.1: Some guidelines and their estimated evaluation automation level

4.2 The Framework

The framework is composed of steps that correspond to the tasks and sub-tasks
that an evaluator would generally accomplish to evaluate a guideline. In figure
4.4, we give the task model of an evaluation task (CTT formalism [Paterno97]) as
it is accomplished according to the proposed framework.

Figure 4.4: Task model of the task “Specify how to evaluate a guideline”. Notice that every sub
task needs information from the preceding one. In addition, there is a clean separation between the

66

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

information needed for evaluation and the evaluation logic. This separation should facilitate any
eventual updating of the specification.

Next, we are going to describe the steps of the framework. The concepts
manipulated during these steps are presented in figure 4.5. To introduce the
framework, we will see how its related concepts are applied on the guideline:
"Select colors that will make your page easy to read by people with color
blindness". We selected this guideline because it can have many interpretations
with different degrees of theoretical and practical evaluation levels.

Figure 4.5: fundamental concepts manipulated by the framework

4.2.1 Step 1: Interpret the guideline

As guidelines are expressed as general recommendations independent from any
context, a guideline could be interpreted differently from one evaluation context
to another; the same guideline could have more than one interpretation, depending
on the interpreter, context of use, etc. In some situations, it may turn out that
evaluating a guideline, although theoretically possible, is not practically possible
for various reasons: too many HTML elements, a lot of code to perform the
evaluation, many possible evaluation cases, etc. For example, a Section508
guideline is ″Web pages shall be designed so that all information conveyed with
color is also available without color, for example from context or markup″. This
covers a lot of possibilities like making the colored text italic, bolded, underlined,
putting it in a table, changing its size, etc. An interpretation of the guideline can
not practically cover all these possibilities, thus, those that are more difficult to be
implemented or less frequently used will be ignore.

In fact, the interpretation is the re-formulation of the guideline using the evaluator
vocabularies instead of ergonomics expert vocabularies. The difference between
the two expressions depends among others on the guideline’s abstraction level and
on the evaluator comprehension level of the guideline aims. Of course, even with
interpretation, evaluation of some guidelines cannot be totally automated [Farenc
et al. 1996]. For example, guideline 1 of WCAG1.0 [W3C 1999] recommends to
″Provide a text equivalent for images″. Although, an experienced developer
knows that the only way to do this in HTML is via the alt attribute of the tag IMG,
we choose to provide an interpretation of this guideline. It can be ″alt attribute for

67

Methodology for Automating Guideline Review of Web Sites

images must exist″ or more precisely ″alt attribute for images must not be empty″.
Notice that this interpretation already gives a hint about how to evaluate the
guideline.

In order to have similar structures for all guidelines, we consider that every
guideline has at least one interpretation even if the guideline can be evaluated
without interpretation. In such cases, the interpretation is almost the same as the
guideline, but this enables us to define a default guideline interpretation that we
can use if no evaluation context is specified.

The interpretation context

The context of use of the evaluated Web site directly influences the interpretation.
Usually, we define the context of use as a triplet:

 User: this attribute characterizes the stereotype of the site users. We use terms
like normal, motor handicapped, visual handicapped, etc.

 Platform: this attribute characterizes the hardware and software constraints
over the use of the site. We use terms like laptop with Windows XP, PDA with
Windows CE, etc.

 Environment: this attribute characterizes environmental constraints over the
use of the site. We use terms like office, car, stressing noise, limited space, etc.

An interpretation is generally the projection of the guideline semantics on the
targeted interpretation context, thus, this projection is usually a limitation or
specialization of the guideline semantics. For example, for the above Section508
guideline, the interpretation will ignore some of the possibilities to convey colored
information, thus, it limits the semantics of the guideline. We can generally
characterize this limitation in terms of targeted categories of objects (ex.
structuring objects, visual objects, etc.) or simple objects (ex. tables, frames,
client-side images, fonts, etc.)

Therefore, we will define the interpretation context as a specialization of the
context of use by adding to it one additional parameter that we will call
Target_objects. This parameter gives indication about the limitation of the
interpretation to a category of objects or to some simple objects. This means that
we can have more than one interpretation in a given context of use, but no more
than one in a given interpretation context.

Heuristics for interpretation formulation

Ideally, we must pass from the guideline to the interpretation according to some
rules that should systematize as possible and somehow control the process. This is
not a trivial matter, and it appears in many situations like knowledge acquisition
[Collier 1993], database engineering, etc. As for the ergonomics field, we have
works like the framework of Scapin [1990] who proposed a framework to allow
stable, unambiguous, and precise translation of human factors recommendations
into evaluation rules for WIMP. According to Scapin [1990], this task is very
difficult, and must be based on a quite complex iterative examination, from
different points of view, of a large number of guidelines.

We had the same difficulty underlined by Scapin, therefore, here are some
heuristics that we underlined after applying the frameworks of few guidelines. We

68

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

hope that some rules will emerge in the future when applying the framework on
more examples:

H1- Use HTML related vocabularies when possible. For example, instead of
saying ″Provide a text equivalent for images″ we say ″alt attribute for images
must not be empty″.

H2- Make sure to limit the interpretation semantics to the targeted context. We
can control this rule by examining the Target_Objects and the context of use.

H3- Use simple sentences: subject, verb, complement.

Application on the guideline example

This guideline, as stated in its source, cannot be automated in a straightforward
manner.

First Interpretation (standard context of use, 8 basic colors)
If we refer to the research conducted by Murch [Murch 1987], an interpretation
(restriction) of this guideline can be expressed as: the combination between the
background color and the foreground color should belong to the best color
combination or should not belong to the worst color combinations. Figure 4.6
represents good color combinations for thin lines and text. It can be read as
follows: for thin lines and text displayed on a white background, blue is a good
choice in more or less 94% of cases, black is in 63% of cases, and red is in 25% of
cases (Murch’s research is based on legibility tests for user acceptance of color
combinations). For thin lines and text displayed on a black background, white is a
good choice in more or less 75% of cases, yellow is in 63% of cases. The other
lines can be read similarly.

Figure 4.6: Good color combinations for thin lines and text by order of acceptance.

Figure 4.7 represents the good color combinations for bold lines and panels. It can
be read as follows: for bold lines and panels displayed on a white background,
black is a good choice in more or less 69% of cases, blue is in 63% of cases, and
red is in 31% of cases. We observe that usable color combinations also depend of
the text style or area. While identifying bold text is easy thanks to the bold
text tag, identifying bold lines and panels remains more challenging to do
automatically.

69

Methodology for Automating Guideline Review of Web Sites

Figure 4.7: Good color combinations for bold lines and panels by order of acceptance.

Figure 4.8 represents the bad color combinations for thin lines and text. It can be
read as follows: for thin lines and text displayed on a white background, yellow
induces a legibility problem in almost all cases, while cyan does it in 94% of
cases, and so forth.

Figure 4.8: Bad color combinations for thin lines and text by reverse order of acceptance.

Figure 4.9 represents the bad color combinations for bold lines and panels. It can
be read as follows: for bold lines and panels displayed on a white background,
yellow induces a legibility problem in nearly 95% of cases, while cyan does it in
75% of cases, and so forth.

Now, having these experimental results in mind, we can see how to automate the
testing of this guideline. The different colors used in the HTML code should be
identified for this purpose. Color is rendered on computer-based screens as an
additive mixture of three primary colors: red, green, and blue, the intensity of
which is indicated by a value ranging from 0 to 255. Thus, in the Red-Green-Blue
(RGB) model, each color consists in a triple (red-intensity, green-intensity, blue-
intensity). This triple is represented in HTML as a hexadecimal code of the type
#XXYYZZ, where XX,YY, and ZZ represents the different intensities
respectively. Therefore, these codes need to be transformed into decimal for
comparison. When these values belong to the set {00,33,66,99,CC, FF}, the
resulting colors are said to be principal as no other palette than the basic palette

70

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

should be loaded to display the colors. The bgcolor and color HTML tags specify the
foreground and the background text colors respectively.

Figure 4.9: Bad color combinations for bold lines and panels by reverse order of acceptance

This is a basic procedure, which does not support the evaluation of hue, saturation
and lightness: each composite color is reduced to its corresponding primary color,
thus introducing a restriction of the initial guideline. Introducing another
algorithm deriving moderator from the codes can solve this shortcoming: for
example, “light blue”, “very light blue”. Graphic backgrounds are not supported
although the different colors used in GIF or JPEG files could be identified. But in
this case, a spatial algorithm should take care of physical appearance of text on
top of graphical background colors, which is far more complex. As we can see
here, the cost of developing the complete procedure for automated testing of a
single guideline can be very high. In this case, the level of support is partial
automation. A user testing technique to test the legibility can be used equally.

Second Interpretation (standard context of use, all colors)
A second more practical interpretation of our guideline could be obtained by
adopting recent findings in optics about color differences for the human eye. The
human vision system perceives images in color using receptors on the retina of the
eye which respond to three relatively broad color bands in the regions of red,
green and blue (RGB) in the color spectrum (red, orange, yellow, green, blue,
indigo, violet). According to Kingsbury [2003], to test if two colors (foreground
and background) can be differentiated by human eye, the difference between the
values of their Luminance must be greater than a given value. The Luminance of
a color can be calculated by the following formula:

Y = 0.3*Red + 0.59*Green + 0.11*Blue

Where Red, Green, and Blue can have real values in the interval [0..1]

Then we calculate the difference:
D = |Yfg-Ybg| //absolute value

Where Yfg is the luminance of the foreground color, Ybg is the luminance of
background color.

71

Methodology for Automating Guideline Review of Web Sites

If D is too small, the text cannot be read. The problem is to define the threshold
value. But we can define it by 0,2 or 0,3. Lower values of D are hard to read.

Let us apply this theory on Murch’s combinations. For example, if we want to test
the formula for the combination: White background, Blue text:

White: Yw = 0.3*1 + 0.59*1 + 0.11*1 = 1
Blue: Yb = 0.3*0 + 0.59*0 + 0.11*1 = 0,11
D = |Yw-Yb| = 0,89 //D >0.3

Thus blue text is readable on white background.

Let us examine the combination: White background, Black text:
White: Yw = 0.3*1 + 0.59*1 + 0.11*1 = 1
Black: Yb = 0.3*0 + 0.59*0 + 0.11*0 = 0
D = |Yw-Yb| = 1 // D>0.0

Thus black text is readable on white background.

Let us examine the combination: White background, Yellow text:
White: Yw = 0.3*1 + 0.59*1 + 0.11*1 = 1
Yellow: Yy = 0.3*1 + 0.59*1 + 0.11*0 = 0,89
D = |Yw-Yy| = 0,11 //D <0.3

Thus yellow text is not readable on white background.

The formula seems confirming Murch statistical results. (Black text, white
background) and (blue text, white background) are visible here whereas (yellow
text, white background) is not visible enough.

Notice that this interpretation deals with visibility and not with preference as
Murch interpretation does. In addition, it is general and can be applied on any
color combination. As for practical implementation, it is also easier than the
interpretation 1.

4.2.2 Step 2: Specify HTML elements useful for
the evaluation

This step consists in identifying and isolating the HTML elements on which the
automated evaluation will be performed. The resulting set of elements can be
different from one evaluator to another according to his HTML experience,
interpretation, and understanding of the original guideline’s aims.

By HTML element, we mean a HTML tag like IMG or a tag and one of its
attributes like (Body, bgcolor).

As an interpretation of guideline usually limits its semantics, we use only the
elements that we estimate useful for the evaluation of the interpretation, we will
ignore elements that can be used to evaluate some of the guideline aspects but
these aspects are not considered in the interpretation.

Application on the guideline example

According to our experience, HTML provides all the needed information to
control text color in Web pages, thus, we estimate that the automation of this

72

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

guideline’s evaluation is theoretically total. The HTML elements concerned by
this evaluation are:

 Body.text: determines the foreground text color all over the Web page.
 Body.bgcolor: determines the background text color all over the Web page.
 Body.link: determines the foreground color of links all over the Web page.
 Body.alink: determines the foreground color of active links all over the Web

page.
 Body.vlink: determines the foreground color of already visited links all over the

Web page.
 Font.color: determines the foreground text color between tag and

corresponding tag.
 Table.bgcolor: determines the background text color inside a table (between

<Table> tag and corresponding </Table> tag).
 TH.bgcolor: determines the background text color inside a header cell in a table

(between <TH> tag and corresponding </TH> tag).
 TD.bgcolor: determines the background text color inside a normal cell in a table

(between <TD> tag and corresponding </TD> tag).
 TR.bgcolor: determines the background text color inside a raw of cells in a table

(between <TR> tag and corresponding </TR> tag).

4.2.3 Step 3: Structure selected elements into
evaluation sets

Tasks of Step1 and step2 are traditional tasks accomplished by any evaluator
whatever the strategy used to conduct WU&AE, if the evaluation is based on the
analysis of HTML code only.

This simple identification of interesting HTML elements is not sufficient to define
a well structured methodology for U&AE, especially if we target maximizing the
automation of the evaluation process: HTML elements have different semantics,
elements scopes vary according to their position in the page, etc. Working at this
granularity level makes it very difficult to underline and to exploit automatable
aspects.

In the proposed methodology, we do not stop at this level, because we want our
evaluation methodology (and later an evaluation tool) to be flexible and
configurable to fit any evaluation context. After identifying the HTML elements
which are important for the guideline’ scope, we determine whether they could be
grouped in some way. For this purpose, we defined the concept of evaluation set.
An evaluation set, very similar to a WCAG1.0 checkpoint [W3C 1999], is a group
of HTML elements that are needed together to evaluate a precise aspect of the
guideline. Some of these sets could be more important for the guideline evaluation
than others. Thus, each set is assigned to a priority level to express its importance
in conformance with W3C specification:

 Priority 1: A web content developer must satisfy the conditions for positive
evaluation of this set. Satisfying this set is a basic requirement for the web
content to respect the guideline.

 Priority 2: A web content developer should satisfy the conditions for positive
evaluation of this set. Satisfying this set will remove significant barriers for the
web content to respect the guideline.

73

Methodology for Automating Guideline Review of Web Sites

 Priority 3: A web content developer may address this set. Satisfying this set
will improve respect of the web content to the guideline.

Notice that the priority level of a set may change according to the evaluation
context. Of course, this change is due to variation of the associated guideline’s
impact on usability in the targeted evaluation context. For example, a guideline
about using good color combinations must be satisfied (Priority 1) when targeting
users with color blindness or using low-depth colored monitors, whereas it is less
significant (Priority 2 or even 3) in the context of normal users using modern
colored monitors.

An important question arises concerning evaluation sets: what are the criteria for
grouping elements into sets? Unfortunately, until now with the few examples that
we realized, we could not formalize any general criterion. We hope that such
criteria would emerge after applying the framework on more examples.

Application on the guideline example

 Set1 (color of links): {Body.bgcolor, Table.bgcolor, TH.bgcolor, TR.bgcolor, TD.bgcolor,
Body.link, Body.vlink, Body.alink}. Priority 1.

 Set2 (color of normal text): {Body.bgcolor, Table.bgcolor, TH.bgcolor, TR.bgcolor,
TD.bgcolor, Body.text, Font.color}. Priority 1.

Why we grouped elements like this? Because we wanted a distinction between
links and other text, but it is purely arbitrary. Putting all the elements in one
evaluation set about ″color of any text″ is absolutely possible.

Definition of atomic evaluation sets

An evaluation set is said to be atomic if it contains the minimal number of HTML
elements that allow the evaluation of a precise aspect of the guideline. After
grouping the HTML elements into evaluation sets, we examine each set to see
whether it is atomic. Some evaluation sets could remain the same when they are
already atomic.

In fact, the distinction between normal evaluation set and an atomic one enables
us to provide an interesting feature in a tool adopting our methodology. This
feature is the ability to work, during guideline structuring, on two abstraction
levels concerning HTML elements:

 HTML level: a HTML experienced developer may directly work at HTML
level by using HTML tags and attributes. For example, to evaluate our
example, he will directly use the possible combinations of the HTML elements
that selected in step1 to specify evaluation sets.

 Concept level: an inexperienced developer may not be aware of all color
control possibilities provided by HTML. In this case, he may use abstract
concepts to specify evaluation sets, and the tool would automatically
determine HTML corresponding elements. In our color example, the user may
specify that the combination {foreground color, background color} must be
evaluated, and the tool will use the abstraction tree depicted in figure 4.10 to
determine the HTML combinations mentioned above.

74

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

Figure 4.10: Abstraction levels for colors in HTML4.0

Implementing this feature is complex because it is not an easy task to build a
semantic network1 for the 91 tags (and their associated attributes) of the current
version of HTML (http://www.w3.org/TR/html4/index/elements.html).

Scope of set elements

A major difference between our framework and other structuring ones (ex. WAI’s
WCAG1.0 [W3C 1999]) is that, in addition to structuring guidelines, we provide
information about how to capture the data needed for the evaluation. This
information is provided in the definition of atomic evaluation sets. Every set
element has a scope. Based on the concept on the scope of HTML elements
(figure 4.11), a scope of a set element is the zone of the Web page where
encountered instances of this element must be captured. This means that we
ignore element instances outside its scope as precised for a given set.

Thus, for every set element E1 we specify a scope that can have one of following
values:

 Scope E1=Page: means that we capture all the instances of E1 wherever we
encounter them inside the evaluated page.

 Scope E1=E2: means that we capture the instances of E1 if and only if we
encounter them inside the start and end tags of E2. Of course, E1 and E2 must
be elements of the same set.

 Scope E1=E2 OR E3…OR En: means that we capture the instances of E1 if
and only if we encounter them inside the start and end tags of any of E2…En.
Again, E1, E2…En must be elements of the same set.

 Scope E1=Ei AND Ej…AND En ⇔ Scope E1=Ei AND scope Ei=Ej AND
Scope Ej=En.

Thus, the precision of an element scope is crucial because it leads the parsing
phase of the evaluated page.

Notice that at least one element of an atomic set must have the scope Page to start
a new instance of the set.

1 A semantic network or net is a graphic notation for representing knowledge in patterns of
interconnected nodes and arcs. Computer implementations of semantic networks were first
developed for artificial intelligence and machine translation, but earlier versions have long been
used in philosophy, psychology, and linguistics. What is common to all semantic networks is a
declarative graphic representation that can be used either to represent knowledge or to support
automated systems for reasoning about knowledge. Some versions are highly informal, but other
versions are formally defined systems of logic [Sowa 1999].

75

http://www.w3.org/TR/html4/index/elements.html

Methodology for Automating Guideline Review of Web Sites

Application of atomic sets for the guideline example

Set1 will be decomposed into the following atomic sets. All of them are of
Priority 1:

 AS1={Body.bgcolor[Page], Body.link[Page]}: color of links.
 AS2={Body.bgcolor[Page], Body.alink[Page]}: color of active links.
 AS3={Body.bgcolor[Page], Body.vlink[Page]}: color of visited links.

Figure 4.11: Scope of HTML elements. Body.bgcolor has no effect of the text inside Font start
and end tags because Table.bgcolor overcomes Body.bgcolor. This is true only if we precise that
Scope Font.color=Table.bgcolor.

Every one of these sets can have one instance at most because all elements are in
the Body tag, which occurs only once in a Web page.

Set2 will be decomposed into the following atomic sets:

 AS4={Body.bgcolor[Page], Body.text[Page]}: text color over the whole page.
 AS5={Body.bgcolor[Page], Font.color[Body.bgcolor]}: color of text delimited by Font

tags outside the scope of any element (ex. Table).
 AS6={Table.bgcolor[Page], Font.color[Table.bgcolor]}: color of text delimited by Font

tags inside a table.
 AS7={TR.bgcolor[Page], Font.color[TR.bgcolor]}: color of text delimited by Font tags

inside a table row.
 AS8={TH.bgcolor[Page], Font.color[TH.bgcolor]}: color of text delimited by Font tags

inside a table header cell.
 AS9={TD.bgcolor[Page], Font.color[TD.bgcolor]}: color of text delimited by Font tags

inside a table cell.
 AS10={Body.text[Page], Table.bgcolor[Body.text]}: color of text inside a table.
 AS11={Body.text[Page], TR.bgcolor[Body.text]}: color of text inside a table row.
 AS12={Body.text[Page], TH.bgcolor[Body.text]}: color of text inside a table header cell.
 AS13={Body.text[Page], TD.bgcolor[Body.text]}: color of text inside a table data cell.

Q&A

Q1: is this the only possibility of decomposing higher evaluation sets into atomic
evaluation sets?

76

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

A1: in this evaluation context, the answer is YES. We can notice that every
atomic evaluation set corresponds to a precise aspect (very depending of its
position in the page): links, visited links, text outside Tables, etc. it is clear from
figure 4.9 that it is meanless to put in the same atomic evaluation set more that
one element controlling background color or foreground color. Thus, every set
will have at most one element from every category. Therefore, every high-level
evaluation set was decomposed into possible combinations of (foreground color,
background color) of its elements.

Q2: Are there any criteria to guide the evaluator during decomposition?

A2: We provide here a number of criteria that are potentially useful for sets
decomposition. They are still invalidated by a sufficient number of examples:

C1) atomicity of atomic sets: deleting one set element will make it impossible to
evaluate the objective targeted by the set.

C2) completeness of atomic sets: the set of aspects covered by all the atomic sets
must enable the evaluation of the aspects covered by the upper evaluation set.

C3) Uniqueness of an atomic set: every atomic set must be unique inside the
upper evaluation set. We measure this uniqueness in terms of covered aspect.

In the case of our example, we have one foreground color and one background
color in an atomic set, thus, the atomicity criterion is verified. The atomic sets
cover all possibilities of controlling text color, thus, the completeness criterion is
verified. No two atomic sets cover the same scope in a Web page, thus, the
uniqueness criterion is verified.

Exclusion among evaluation sets

We mentioned earlier (sect. 3.4.2) that exclusion among evaluation sets is a very
interesting concept. We can use this aspect to improve evaluation process at two
levels:

 The parsing level: we can choose to avoid instances of excluded sets, so, they
are not captured with usability data. For example, it is meanless to capture
instances of Font.bgcolor to add it to instances of AS5={Body.bgcolor[Page],
Font.color[Body.bgcolor]} if Font.bgcolor is inside a table that has bgcolor attribute.

 The evaluation level: we can choose, for some reason, to keep data related to
excluded sets during parsing phase. In this case, it will remain possible to
ignore this data during evaluation.

Exclusions among sets are specified after the definition of evaluations sets. By
examining the specified atomic evaluation sets, we have the following exclusion
relations (based on the scope of HTML elements):

 AS13 excludes AS11, AS10 and AS4 (TD.bgcolor overcomes TR.bgcolor, Table.bgcolor
and Body.bgcolor).

 AS12 excludes AS11, AS10 and AS4 (TH.bgcolor overcomes TR.bgcolor, Table.bgcolor
and Body.bgcolor).

 AS11 excludes AS10 and AS4 (TR.bgcolor overcomes Table.bgcolor and Body.bgcolor).
 AS10 excludes AS4 (Table.bgcolor overcomes Body.bgcolor).
 AS9 excludes AS7, AS6 and AS5 (TD.bgcolor overcomes TR.bgcolor, Table.bgcolor and

Body.bgcolor).

77

Methodology for Automating Guideline Review of Web Sites

 AS8 excludes AS7, AS6 and AS5 (TH.bgcolor overcomes TR.bgcolor, Table.bgcolor and
Body.bgcolor).

 AS7 excludes AS6 and AS5 (TR.bgcolor overcomes Table.bgcolor and Body.bgcolor).
 AS6 excludes AS5 (Table.bgcolor overcomes Body.bgcolor).
 AS5 excludes AS4 (Font.color overcomes Body.text).

4.2.4 Step 4: Specify the evaluation logic

The evaluation logic specifies how to analyze the data that we capture in a Web
page in order to check if this data respects or violates the evaluated guidelines.
The logic is specified in terms of evaluation conditions. Conditions are defined on
evaluation sets using sets elements, some constant values (numeric, Boolean, sets
of values, etc), mathematical operations, and logical operators. A single
evaluation condition may concern one or more evaluation sets.

We defined two forms of conditions: direct and Meta condition. Next, we will
describe each of them.

Direct condition

A direct condition is the specification of evaluation logic on one or more
evaluation sets by using the concrete objects (ex. set elements) needed for the
evaluation.

For example, to specify the evaluation logic on the set AS1={Body.bgcolor[Page],
Body.link[Page]}, we provide the following direct condition (case of
interpretation with the luminance concept):
IF |Luminance of Body.link – Luminance of Body.bgcolor| >0.3 THEN
 The guideline is respected
ELSE
 The guideline is violated

We used the set elements (directly) to specify the evaluation logic.

Meta condition

It is probable that many evaluation conditions, defined on some different
evaluation sets, express similar evaluation logic. In such case we define one Meta
condition to represent all these conditions.

A Meta condition is a condition whose expression can be applied on various terms
independently. For this reason, instead of using set elements directly, we use some
Meta variables to specify how to conduct the evaluation. A Meta variable is an
object that we use to specify evaluation logic in Meta conditions instead of using
direct objects, then we instantiate the Meta condition on evaluation sets by
mapping its Meta variables to their corresponding concrete elements in the sets.

For example, the evaluation logic for all the atomic sets of our case example is
identical and we can express it as the following Meta condition (case of
interpretation with the luminance concept):
IF |Luminance of backgroundColor – Luminance of foregroundColor| >0.3 THEN
 The guideline is respected
ELSE
 The guideline is violated

78

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

Where backgroundColor and foregroundColor are Meta variables.

Operations in evaluation conditions

In both kinds of evaluation condition, we decompose the condition into smaller
parts that we call operations.

An operation is a piece of evaluation logic in which we use one single operator on
some valid operands. For example:

A + B //A and B are real values

This is addition operation of two real values.

Operations allow us to have high control level on how to run the condition, when
to stop it, what message to generate for different evaluations results, etc.

In the first version of our formal language we define basic simple data types:
Integer, Float, Boolean, String and Hex (Color2). Every type has some predefined
operations: And, Or, XOR and Not for Boolean, Substring for String, getRed, getGreen,
getBlue for Color, etc. There are also three constructed data types with their
predefined operations: Table, Sequence, and Cartesian Product. The detailed
description of these data types and predefined operations will be given in the next
chapter on the GDL.

User values

In order to have a maximum of flexibility, the evaluator can specify (declare)
values of the predefined data types, and then use them in the operations.

A complex value can be assigned an identifier to simplify and clarify the
specification of evaluation expression. For example, in the above Meta condition,
we declare a user value (Id=VisibilityCoeff, type=Float, value= 0.3), then we use its id in
the evaluation expression instead of directly using the value 0.3.

User functions

As the Java programming language will be used to implement the supporting tool,
we can use some Java predefined functions by applying a Java mechanism called
Method invocation. Therefore, evaluation expressions can contain functions that
the user specifies as Java functions to be invoked during condition execution.

This mechanism is similar to DLL evaluation routines used in Sherlock
[Grammenos et al. 2000].

Application of evaluation conditions on the guideline
example

The evaluation conditions associated with the specified atomic sets are very
similar. Thus, we can define a Meta condition to specify the evaluation logic, then
we instantiate it for every set by mapping the Meta variables to corresponding
concrete set elements.

2 Color data type was defined because color is very important in Web pages

79

Methodology for Automating Guideline Review of Web Sites

Condition for Interpretation 1 (Murch combinations)
The Meta condition (MC1) corresponds to the next pseudo specification:

IF [(BgColor NOT IN ListOfMurchColors) OR
 (FgColor NOT IN ListOfMurchColors)] THEN

Unrecognized Color
ELSE IF [(FgColor IN ListOfGoodColors(BgColor)) OR
 (FgColor NOT IN ListOfBadColors(BgColor))] THEN
 Guideline is respected
ELSE IF [(FgColor IN ListOfBadColors(BgColor))]] THEN
 Guideline s violated

According to this condition:

 If the background color or the foreground color does not belong to Murch
colors, we cannot evaluate the guideline (more precisely, the interpretation of
the guideline).

 If the foreground color is of Murch colors but not in the good list nor in the
bad list for the considered background color, we cannot decide if the guideline
is respected or violated.

The condition uses the following objects:

User Values (to be declared before specifying the condition)
Black =″#000000″
White =″#ffffff″
Red =″#ff0000″
Green =″#00ff00″
Blue =″#0000ff″
Cyan =″#00ffff″
Magenta=″#ff00ff″
Yellow =″#ffff00″
ListOfMurchColors= Sequence[Black, White, Red, Green, Blue, Cyan, Magenta, Yellow]
ListOfGoodColors= Table[Black → Sequence[White, Yellow]
 White → Sequence[Blue, Black, Red]
 Red → Sequence[Yellow, White, Black]
 Green → Sequence[Black, Blue, Red]
 Blue → Sequence[White, Yellow, Cyan]
 Cyan → Sequence[Blue, Black, Red]
 Magenta→ Sequence[Black, White, Blue]
 Yellow → Sequence[Red, Blue, Black]]
ListOfBadColors= Table[Black → Sequence[Blue, Red, Magenta]
 White → Sequence[Yellow, Cyan]
 Red → Sequence[Magenta, Blue, Green]
 Green → Sequence[Cyan, Magenta, Yellow]
 Blue → Sequence[Green, Red, Black]
 Cyan → Sequence[Green, Yellow, White]
 Magenta→ Sequence[Green, Red, Cyan]
 Yellow → Sequence[White, Cyan]]

80

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

Meta Variables
BgColor : HEX (for background colors)

FgColor: HEX (for foreground colors)

Predefined operations
ListOfGoodColors(Color X) and ListOfBadColors(Color X) are predefined operations on
Table data type. For the index X, the operations return the corresponding value in
the table, in this case a value of Sequence data type.

Decomposition of the condition into operations
As we normally decompose evaluation conditions into operations, the above Meta
condition is composed of the following operations:
OP1: (BgColor IN ListOfMurchColors)
Result=FALSE → Stop evaluation: "Unrecognized background color".
Result=TRUE → Continue to Op2

OP2: (FgColor IN ListOfMurchColors)
Result=FALSE → Stop evaluation: "Unrecognized foreground color".
Result=TRUE → Continue to Op3

Notice that operations enable us to generate highly customized warnings or error
messages to provide the evaluator by clear information about the evaluation result.

OP3: (FgColor IN ListOfGoodColors)
Result=TRUE → Stop evaluation: "Good color combination".
Result=False → Continue to Op4

OP4: (FgColor IN ListOfBadColors)
Result=TRUE → Stop evaluation: "Bad color combination".
Result=FALSE → Stop evaluation: "Good color combination".

Meta condition for Interpretation 2 (Luminance formula)
The Meta condition (MC2) corresponds to the following pseudo specification:
IF ABS[((0.3*getRed(BgColor)+0.59*getGreen(BgColor)+0.11*getBlue(BgColor)) –
 ((0.3*getRed(FgColor)+0.59*getGreen(FgColor)+0.11*getBlue(FgColor))] >VisibilityCoeff
THEN
 Guideline is respected
ELSE
 Guideline is violated
The condition uses the following objects:

User Value
VisibilityCoeff=0.3

Predefined operations
 getRed, getGreen, and getBlue are predefined operations on Hex data type. They

correspond to getting red, green, and blue component of a color.

81

Methodology for Automating Guideline Review of Web Sites

 ABS (a-b) is a predefined operation on numbers. It returns the absolute value of
(a-b).

This condition covers all possible colors. The only subjective consideration is the
value under which we consider that the text is not readable. In fact, such situation
shows the strength of our methodology, because it is very easy to change this
value in a given context.

Decomposition of the condition into operations
As we normally decompose evaluation conditions into operations, the above Meta
condition is composed of the following operations:

OP1: getRed(BgColor)→ V1 (0..1)
Result=ANY → Continue to Op2

OP2: Green(BgColor)→ V2 (0..1)
Result=ANY → Continue to Op3

OP3: Blue(BgColor) → V3 (0..1)
Result=ANY → Continue to Op4

OP4: *(V1, 0.3) → V4
Result=ANY → Continue to Op5

OP5: *(V2, 0.59) → V5
Result=ANY → Continue to Op6

OP6: *(V3, 0.11) → V6
Result=ANY → Continue to Op7

OP7: +(V4, V5, V6) → V7
Result=ANY → Continue to Op8

We provide the above operations to do the corresponding calculation with the
background color. We can execute them in any order.

OP8: getRed(FgColor)→ V8 (0..1)
Result=ANY → Continue to Op9

OP9: getGreen(FgColor)→ V9 (0..1)
Result=ANY → Continue to Op10

OP10: getBlue(FgColor)→ V10 (0..1)
Result=ANY → Continue to Op11

OP11: *(V8, 0.3)→ V11
Result=ANY → Continue to Op12

OP12: *(V9, 0.59)→ V12
Result=ANY → Continue to Op13

OP13: *(V10, 0.11)→ V13

82

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

Result=ANY → Continue to Op13

OP14: +(V8, V9, V10)→ V14
Result=ANY → Continue to Op15

We provide the above operations to do the corresponding calculation with the
foreground color. We can execute them in any order.

OP15: -(V7, V14)→ V15 //Calculate the difference of luminance
Result=ANY → Continue to Op16

OP16: ABS(V15) → V16 //Get absolute value of the difference of luminance
Result=ANY → Continue to Op16

OP17: LESS(V16, VisibilityCoeff)
Result=TRUE → "Bad color combination".
Result=FALSE → "Visible color combination".

Remarks on evaluation conditions

 As we use operations to compose the evaluation condition, the number of
these operations depends on the good formulation of the condition. For
example, the second condition (PS2) could be formulated as:

ABS[0.3*(Red(BgColor)-Red(FgColor))+
 0.59*(Green(BgColor)-Green(FgColor))+
 0.11*(Blue(BgColor)-Blue(FgColor))] >0.3

 This pseudo condition will need 15 operations instead of 17 needed for MC2.

 For clarity reasons, we suppose that all operations are of depth one. For
example, the following expression: +(*(V8, 0.3), *(V8, 0.59), *(V10, 0.11)) is
not allowed because the depth of operations * is two.

 In order for the proposed methodology to a have an added value over existing
U&AE methods, its underlying GDL must be flexible enough to enable the
specification of U&AE logic of any practically evaluable guideline. For this
reason, we break evaluation conditions as small as possible to obtain this
flexibility. In fact, a major requirement of the tool supporting the proposed
methodology is to be able to automatically evaluate a high percent (ideally
100%) of guidelines evaluable by existing tools.

4.2.5 The formal Guideline

The formal guideline regroups all the formal elements of a guideline structure:
HTML element, evaluation sets and exclusion relationships, user values and user
functions, and evaluation conditions. Thus, the main purpose of this concept is to
enforce the systematical structuring aspect of the framework.

By comparing our formal guideline with the specifications of Evallris [Abascal et
al. 2003] and the SGSL [Takata et al. 2003], we estimate that our specification is
generally richer and more flexible:

 It provides good information about the guidelines.
 The very important concept of interpretation is absent in both approaches.

83

Methodology for Automating Guideline Review of Web Sites

 The concept of evaluation set corresponds to the concept of checkpoint for
Evallris.

 The concept of evaluation condition corresponds to the concept of checkpoint
for the SGSL.

 The concept of Meta condition is original. It should give us higher flexibility
and facility in specifying the evaluation logic.

 Both approaches do not optimize the capture of evaluation data in the Web
page: they scan the page completely to search for occurrences of checkpoints.
We do not need to do so because evaluation sets specify what data to capture.

 The only potential advantage of the SGSL over our approach could be in
working directly on XML documents, whereas we target HTML documents
only.

4.3 Framework Advantages

By examining the concepts introduced in the framework, we can highlight some
advantages of the proposed UE methodology over existing approaches:

4.3.1 Control of the evaluation process

In addition to the possibility to conduct an evaluation by guideline or by Web
page as traditionally done in existing UE tools, it will be possible to conduct
evaluation by HTML object (like tables, fonts, etc.): the framework allows us to
identify guidelines having the given HTML element in their structure. This
identification can be coarse grained (table, font, etc.) or fine grained (table width,
font color, etc.).

Notice that if we choose to conduct evaluation by HTML object, the UE tool is
supposed to identify all guidelines having this object in one or more evaluation
sets of their structures. In this case, we will have at least two possibilities:

 Evaluate the identified guidelines partially by evaluating the evaluation sets
having the HTML object only.

 Evaluate the identified guidelines totally.

Implementing these options in the UE tool is easy.

4.3.2 Support for multiple guidelines sources and
interpretations

An obvious advantage is the possibility to evaluate guidelines from different
sources in the same time. These guidelines can be well established (like
WCAG1.0 [W3C 1999]) or user own guidelines.

In addition, we can provide multiple interpretations for a guideline to enable
adequate adaptation of the guideline evaluation in multiple contexts of use. A
potential utilization of this support is the possibility to evaluate some heuristic and
empirical findings by transforming them into guidelines like forms. For example,
Ivory [2001] presents a set of rules based on 157 page-level and site-level metrics
formulated after an extensive survey of design recommendations from recognized

84

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

experts and usability studies. We can use such rules as additional guidelines in our
kernel database.

Example of Ivory metrics-based rule

IF ((Italicized Body Word Count is not missing AND
 (Italicized Body Word Count > 2.5)))
Class = Poor

This rule classifies Web pages as having poor design quality if they contain more
than two italicized words in the body text.

It will be possible to transform this rule into a guideline by considering that poor
means ergonomic problem: ″Avoid having more than two and a half italicized
body words in a Web page″.

Formalizing this guideline gives the following:

Interpretation
Ivory [2001] provided the value 2.5 because of some statistical calculations that
she used in her work. According to our HTML knowledge, we can’t normally
count fraction of words in a Web page, therefore, we will interpret the guideline
as: ″The Web page must have less than three italicized body words″. We consider
that this interpretation is for normal context: ordinary user, standard PC, and
comfortable environment.

HTML Elements
HTML provides a single element to italicize text:

I: italicizes text between <I> and </I> tags.

But the guideline speaks about words count, and the tag I is not sufficient to find
this information in a Web page, thus, the framework can’t formalize the guideline
unless we interpret the guideline as: ″The Web page must have less than Three
italic tags″. Unfortunately, this will be correct only if every italic structure (<i>….
</i>) enclosed one word at most, which is not usually the case.

In fact, we mentioned that the framework deals with HTML elements only, and
the evaluation of this guideline deals with information that we cannot find in these
elements only. The solution is to introduce a special element that represents any
textual content of a Web page. For example, if we have the following HTML code
in a Web page:
<I> this is an italicized text </I>

This special element will have the value: "this is an italicized text".

Fortunately, there is no problem in implementing this extension with Java (we use
it to implement our evaluation tool), and capturing instances of this element
during the parsing of a Web page is done in the same way used for HTML tags
and attributes: the Java HTML parser sends back the value of textual content
when it encounters it. For example, when it encounters the above HTML code, it
returns:
Start tag: I

85

Methodology for Automating Guideline Review of Web Sites

Data: this is an italicized text
End tag: I

Therefore, we will add this special HTML element to our elements list:

BodyText: textual content.

Evaluation sets
We will have a single (atomic) set:

S1={I[Page], BodyText[I]}. Priority 1

We consider that the set is of priority 1 because Ivory [2001] design classification
has three levels: poor, average, and good. By correspondence with our priority
levels, we will suppose that poor means that we violated a set of priority 1.

User Values
We will need one user value of type Integer:
MaxItalicizedWordNbr = 3

Evaluation conditions
We have one direct condition composed of one operation:

OP1: (Length(BodyText)) → V1
Result=ANY → Continue to Op2

OP2: (V1 < MaxItalicizedWordNbr)
Result=True → “Not poor page”
Result=False → “Poor page because it has more that 3 italicized words”.

4.3.3 Semantic similarities and differences
among guidelines

Structuring all guidelines in the same systematic manner will enable us to
discover semantic similarities and differences among them.

Let us have the guidelines G1 and G2. We can examine these relationships at
different levels:

HTML Elements

Let G1 have elems1={N elements} and G2 have elems2={M elements}. At this level, we
can see what is the percentage of HTML elements that we identify to evaluate the
guidelines. We have three possibilities:

 If elems1∩ elems2={∅}, we can say that G1’s and G2’s semantics are totally
different.

 If elems1=elems2, we can say that they are semantically similar, without being
able to affirm that they are semantically identical.

 If elems1∩ elems2={k elements}, we can say that G1 and G2 have some semantic
similarity.

86

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

When we have common elements, we can not be sure about similarity because we
do not know at this level how the elements will be manipulated. For example, the
guideline "images must have alt text" and the guideline "don’t use images as page
background" have the common element IMG, but at first look they have different
semantics.

Evaluation sets

If we have (some or all) common HTML elements between G1 and G2, evaluation
sets including these elements will give the same indication about semantics
relationships because both concepts (element, set) are used at the structuring level.
Let G1 has sets1={N1 sets} and G2 has sets2={M1 sets}:

 If sets1∩sets2={∅}, we can say that G1’s and G2’s semantics are totally different.
 If sets1=sets2, we can say that they are semantically similar. The possibility of

being semantically identical becomes higher, but we still cannot affirm that.
 If sets1∩sets2={k1 sets}, we can say that G1 and G2 have some semantic

similarity.

Therefore, even with evaluation sets, we cannot decide the effective
similarity/difference degree between G1 and G2. We still need to examine the
evaluation logic applied on these sets before we give the final judgment.

Evaluation conditions

The only possibility at this level is to examine conditions associated with identical
evaluation sets.

Let:

G1 has the set set1

G2 has the set set2
set1=set2
G1 has cond1 the condition associated to set1

G2 has cond2 the condition associated to set2
IF cond1=cond2 //they have same operations with same arguments and actions.
 ⇒ set1 and set2 are semantically identical.
ELSE ⇒ need deep examination of conditions.
Let us examine the figure 4.13. We can see that G1 and G2 are identical at step2
and step3. At Step4, we can see that the first operation is identical in both
conditions but not the global conditions.

By decomposing the two conditions into operations:

Condition1
OP1: (Input.type IN {"Submit", "Reset"}) → V1
Result=False → Stop //button is not for action
Result=True → Continue to Op2

OP2: (Length(Input.type)<=20) → V2
Result=False → Stop: Error
Result=True → Continue to Op3

87

Methodology for Automating Guideline Review of Web Sites

OP3: (V1 AND V2)
Result=False → Stop: Error
Result=True → Stop: Success

Condition2
OP1: (Input.type IN {"Submit", "Reset"}) → V1
Result=False → Stop //button is not for action
Result=True → Continue to Op2

OP2: (Input.type=Input.value) → V2
Result=False → Stop: Error
Result=True → Continue to Op3

OP3: (V1 AND V2)
Result=False → Stop: Error
Result=True → Stop: Success

Figure 4.13: Guidelines similarities and differences.

In the above example, we have identical HTML elements and identical evaluation
sets and similar evaluation conditions, therefore, we cannot give accurate answer
without deep examination of evaluation conditions.

In fact, the first operation in both conditions would indicate that both guidelines
deal with action buttons (input object with type="Submit" or "Reset"), thus, there
is some semantic similarity between them. As for the second operation, we can
deduce that in both cases it:

 Has Input.value as one of its arguments;
 Returns logical value;
 It generates an error for the False value and continues for True.
 The symbols in the two operations have some similarity (=, <=).

88

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

But the second argument is the only difference: in the first operation it is a
number, and in the second it is a string. Therefore, there is a semantic
DIFFERENCE.

The above discussion shows that the identification of similarities is potentially
feasible, but it needs a very good analysis of evaluation conditions.

4.4 Approach Extensibility

The proposed approach targets Web usability and accessibility evaluation at a
single page level and it deals with content composed of pure HTML code.

In fact, we think that the approach is potentially extensible over two axes: Scope
level (single-page towards multi-page) and Technology level (pure HTML
towards CSS).

4.4.1 Level Extension

We estimate that it is possible to extend the approach towards multi-page (site)
evaluation. Of course, in this case we target multi-page guidelines.

In fact, if we examine the concepts of evaluation set and set element, we can see
that it is possible to extend the approach by adding additional attribute to a set
component to indicate explicitly the source of the captured data. To exemplify
this, let us consider the following guideline: links behavior must be coherent all
over the site [Nogier 2002]. Next we will see how we can structure it with our
(extended) framework for a multi-page evaluation.

Step1: Interpretation

The same link can have several different behaviors like the navigation or the
triggering of functions. Our intention here is not to study all the possibilities but to
evaluate the applicability of the framework on site guidelines. For this reason, we
will limit our interpretation to navigation behavior only. In this case, for the
interpretation context {standard context of use, visible navigation links}, we
provide the following interpretation: "links that have the same label must point to
the same destination and, conversely, that a page is always indicated by the same
text".

Step2: HTML elements

Links in HTML can be defined in two ways:

1) Using the A tag to define an anchor:
W3C Web site

The A element's content defines the position of the anchor. The href attribute
makes this anchor the source anchor of exactly one link. In the above example, the
source anchor is the text "W3C Web site" and the destination page is
http://www.w3.org/.

89

http://www.w3.org/

Methodology for Automating Guideline Review of Web Sites

2) The LINK element enables an author to insert links that express other
relationships between resources than simply "activate this link to visit that related
resource".

Unlike A, the element LINK may only appear in the HEAD section of a document,
although it may appear any number of times. Although LINK has no content, it
conveys relationship information that may be rendered by user agents in a variety
of ways (e.g., a tool-bar with a drop-down menu of links).

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<HTML>
<HEAD>
 <TITLE>Chapter 2</TITLE>
 <LINK rel="Index" href="../index.html">
 <LINK rel="Next" href="Chapter3.html">
 <LINK rel="Prev" href="Chapter1.html">
</HEAD>
<Body>
…..
</Body>

This example illustrates how several LINK definitions may appear in the HEAD
section of a document. The current document is "Chapter2.html". The "rel"
attribute specifies the relationship of the linked document with the current
document. The values: "Index" refers to a document providing an index for the
current document, "Next" refers to the next document in a linear sequence of
documents, and "Prev" refers to the previous document in an ordered series of
documents.

As our interpretation context targets visible links only, we identify {A.href} as the
only HTML element available to evaluate our guideline because LINK is used for
links that have no content (invisible).

The HTML elements that we keep are:
A.href
BodyText

We will need the special element BodyText to capture the content of the link.

Step3: Evaluation Set

We do not have many choices, the only evaluation set is:
Set1= {A.href[Page], BodyText[A.href]}

We will look for links all over a Web page, and then we will capture the text
inside them. This set is already atomic.

Step4: Evaluation Condition

If we examine the identified evaluation set, we can notice that this set doesn’t
satisfy our need for multi-page evaluation because there is no way to know if two
instances of this set belong to the same page or more. Where to add such
information? In the set definition or in the set element definition?

90

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

If we add it to the set definition, we will have a new extended set definition like:
Set1[PageUrl]= {A.href[Page], BodyText[A.href]}.

The captured data from two pages will be something like:
Set1(PageUrl1)={A.href, Text1}
Set1(PageUrl2)={A.href, Text2}

In this case, and by examining the provided interpretation, we can specify an
evaluation condition like the following:
IF PageUrl1=PageUrl2 THEN
 {IF (Text1<>Text2) → Error: "The page is the destination of two distinct links"}
ELSE
 {IF (Text1=Text2) → Error: "The same link points towards two distinct pages"}

Now, if we add the page information to the set element definition, we will have a
new extended set definition like:
Set1= {A .href[PageUrl], BodyText[A.href]}

Notice that the scope of A.href is no longer Page (any page), but it is one specific
page at a time. This page is identified by the page URL. For the element
BodyText, the scope is also implicitly changed to the scope PageUrl.A.href.

The captured data from two pages will look like:
Set1={A.href[PageUrl1], Text1}
Set1={A.href[PageUrl2], Text2}

In this case, and by examining the provided interpretation, we can specify an
evaluation condition like the following:
IF PageUrl1=PageUrl2 THEN
 {IF (Text1<>Text2) → Error: "The page is the destination of two distinct links"}
ELSE
 {IF (Text1=Text2) → Error: "The same link points towards two distinct pages"}

From this single example, it looks like it is the same to add the information to the
set definition or to the set element definition. Anyway, our objective was to show
the extensibility of our approach towards multi-page evaluation.

4.4.2 Technology Extension

The proposed framework is valid to evaluate Web usability and accessibility of
pages composed of HTML elements only.

As the use of Cascading Style Sheets (CSS) mechanism for adding style (e.g.
fonts, colors, spacing) to Web documents is becoming more frequent- in fact, one
of the W3C WCAG1.0 guidelines recommends the use of CSS, it is interesting to
examine the possibility to extend our approach to the evaluation of Web pages
containing CSS code.

91

Methodology for Automating Guideline Review of Web Sites

The basis of applying styles to documents is the rule. Each rule is composed of a
number of components, each of which has a specific name and function (figure
4.15).

Figure 4.15: CSS rule structure

 The selector is the part that determines which portions of the document will be
matched by the rule. The rule’s styles will be applied to the selected
element(s). For example, a selector of H1 means that all H1 elements will be
selected. Multiple selectors can be grouped in a single rule by separating them
with commas.

 The property is a quality or characteristic that something possesses. In the
previous example, it is color. CSS2 defines around 120 properties and we can
assign values to all of them.

 The value is a precise specification of the property. In the example, it is
"green," but it could just as easily be blue, red, yellow, or some other color.

For any style sheet to affect the HTML document, it must be "glued" to the
document. That is, the style sheet and the HTML document must be combined so
that they can work together to present the document. This can be done in any of
four ways:

1) Apply the basic, document-wide style sheet for the document by using the style
element.

Here's a style sheet (shown in bold) glued to a sample document by using the style
element.
<HTML>
 <TITLE>My home page</TITLE>
 <STYLE>
 H1, H2 {color: green}
 </STYLE>
 <BODY>
…
 </BODY>
</HTML>
2) Apply a style sheet to an individual element using the style attribute.
<p style="color: red">This paragraph’s text will be colored red.</p>

3) Link an external style sheet to the document using the link element.
<link rel="stylesheet" type="text/css" href="http://www.my.site/styles/basic.css">

4) Import a style sheet using the CSS @import notation.
<style type="text/css">

@import url(http://www.my.site/styles/autumn.css);
</style>

92

Chapter 4 A Framework for Evaluation-oriented Structuring of Web Guidelines

For more information about CSS, the interested reader can refer to
http://www.w3.org/Style/CSS/.

We think that the approach is extensible to CSS for the following reasons:

 We can see that using CSS doesn’t directly change the HTML code in three of
the above four ways of gluing CSS to HTML (cases 1, 3 and 4). In these cases,
the styling code is separated from the HTML code. So, we still can specify our
formal guideline (HTML elements, evaluation sets, etc.) in the old way and,
before starting the parsing of a Web page having CSS, we create a temporary
new HTML page from the original one by applying the CSS to it. This has the
inconvenient of decreasing to some extent the performance of the evaluation
tool but it has a more important advantage which is enabling us to extend the
approach to CSS.

 In the case of mixed HTML and CSS via the style attribute (case 2), we can do
the same as for the above case but it will be very difficult because we need to
parse every tag to check if it contains the style attribute or not. Another
solution is to enable the use of CSS tags and attributes in the specification
phase. This we put the difficulty on the side of the person who accomplishes
the specification, which means that in addition to have good HTML
knowledge s/he must have similar CSS knowledge and this is very demanding.

 The explanation given above shows that extension to CSS is feasible at the
cost of developing one of the two methods.

4.5 Summary

In this chapter we have presented in details the first pillar of the proposed
methodology: a framework for structuring WU&A guidelines in a systematical
and consistent way to enable an improved and flexible automated evaluation of
these guidelines. The framework is based on concepts that act at different levels
during the structuring process:

 Interpretations provide a mean to adapt a general guideline to multiple
interpretation (evaluation) contexts.

 HTML elements and evaluation sets enable the isolation and structuring of
regions of interest (for evaluation) in a Web page.

 Evaluation conditions represent a key element in enabling an improved and
flexible specification on the evaluation logic.

The framework enabled us to underline some interesting advantages of the
proposed approach with respect to existing works. In addition, we demonstrated
the possibility to use the framework for single page and multi-page evaluation by
static analysis of CSS and/or HTML Web pages.

In the next chapter we will detail the second pillar of the proposed methodology: a
formal Guideline Definition Language (GDL) to formalize the concepts of the
framework.

93

http://www.w3.org/Style/CSS/

	Introduction
	Requirements
	Related works
	Informal classification
	XML support for guidelines classification and evaluation

	Our framework
	Systematic and consistent structuring of guidelines towards
	Estimation of automation feasibility
	Improvement and flexibility of the evaluation process

	The Framework
	Step 1: Interpret the guideline
	The interpretation context
	Heuristics for interpretation formulation
	Application on the guideline example
	First Interpretation (standard context of use, 8 basic color
	Second Interpretation (standard context of use, all colors)

	Step 2: Specify HTML elements useful for the evaluation
	Application on the guideline example

	Step 3: Structure selected elements into evaluation sets
	Application on the guideline example
	Definition of atomic evaluation sets
	Scope of set elements
	Application of atomic sets for the guideline example
	Q&A
	Exclusion among evaluation sets

	Step 4: Specify the evaluation logic
	Direct condition
	Meta condition
	Operations in evaluation conditions
	User values
	User functions
	Application of evaluation conditions on the guideline exampl
	Condition for Interpretation 1 (Murch combinations)
	User Values (to be declared before specifying the condition)
	Meta Variables
	Predefined operations
	Decomposition of the condition into operations
	Meta condition for Interpretation 2 (Luminance formula)
	User Value
	Predefined operations
	Decomposition of the condition into operations

	Remarks on evaluation conditions

	The formal Guideline

	Framework Advantages
	Control of the evaluation process
	Support for multiple guidelines sources and interpretations
	Example of Ivory metrics-based rule
	Interpretation
	HTML Elements
	Evaluation sets
	User Values
	Evaluation conditions

	Semantic similarities and differences among guidelines
	HTML Elements
	Evaluation sets
	Evaluation conditions
	Condition1
	Condition2

	Approach Extensibility
	Level Extension
	Step1: Interpretation
	Step2: HTML elements
	Step3: Evaluation Set
	Step4: Evaluation Condition

	Technology Extension

	Summary

