
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Methodology for automating web usability and accessibility evaluation by guideline

Beirekdar, Abdo

Award date:
2004

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 26. Apr. 2024

https://researchportal.unamur.be/en/studentTheses/af3adca1-c6f7-4581-aea8-8ce5989cc94b

A Methodology for Automating Guideline Review of Web Sites

Chapter 5

A Formal Evaluation-Oriented
Guidelines Definition Language

(GDL)

5.1 Introduction
Our approach for automated WU&A evaluation is composed of a framework, a
formal language, and an evaluation tool. We presented the framework in details in
the previous chapter. Here we are going to present the GDL. Our aim is to provide
a language by which we (and others) can structure Web guidelines in the
systematical and consistent manner proposed by the framework, and to permit the
development of a tool that is capable of reading and evaluating structures written
by the language. We see great potential for structuring guidelines in an “open
source” manner. To do this, the GDL must have a defined, publicly available
syntax and semantics so that the meaning of structured guidelines is unambiguous
(figure 5.1).

Figure 5.1: Syntax vs. Semantics. Inspired from (http://coral.lili.uni-
bielefeld.de/Classes/Summer98/PragEngDialogue/pragengdialogue/node8.html)

5.1.1 The syntax

The syntax describes the collection of legal structures by means of a set of rules.
This set of structure formation rules gives a formal definition of the syntax of a
language. The syntax of a language has two forms: abstract and concrete.

The abstract syntax has the following objectives:

 to identify and separately name the abstract syntactic entities;
 to simplify and unify underlying concepts, putting similar things together, and

reducing unnecessary duplication.

96

http://coral.lili.uni-bielefeld.de/Classes/Summer98/PragEngDialogue/pragengdialogue/node8.html
http://coral.lili.uni-bielefeld.de/Classes/Summer98/PragEngDialogue/pragengdialogue/node8.html

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

It is usually defined using (extended) Backus-Naur Form (E) (BNF) grammar (a
context-free grammar). EBNF is any variation of the basic BNF notation with
(some of) the following additional constructs: square brackets "[..]" surrounding
optional items, suffix "*" for Kleene closure (a sequence of zero or more of an
item), suffix "+" for one or more of an item, curly brackets enclosing a list of
alternatives, and super/subscripts indicating between n and m occurrences. All
these constructs can be expressed in plain BNF using extra productions and have
been added for readability and succinctness.

A context-free grammar (CFG) is composed of four things (is a "4-tuple"). It
consists of 1) a set of terminal symbols, 2) set of non-terminal symbols, 3) set of
productions that are rewriting rules, and 4) a start symbol that is a non-terminal.
Following is an example of a grammar for simple arithmetic expressions:
Terminal Symbols: + - * / () i
Non-terminal Symbols: e t f
Start symbol: e
Productions:
e ::= e + t
e ::= e - t
e ::= t
t ::= f * t
t ::= f / t
t ::= f
f ::= i
f ::= (e)

This grammar will generate simple expressions such as i, i+i, i-i/(i+i) etc. The
productions tell how to rewrite one string of symbols as another.

As it is a well known formalism, we will use an EBNF-like notation to describe
the abstract syntax of constructs of the GDL.

As for the concrete syntax, we will use XML for the following reasons:

 A key component of any software for automated web usability evaluation is
the language used to structure the evaluated guideline. This language must
trade-off between the richness of structuring definition and the ease with
which this definition can be built [Ivory 2001]. XML has these two
characteristics because it allows for extremely large flexibility when
describing data format. In addition, one of its main strengths is its suitability
for describing structured data.

 XML enables us to easily separate structured guidelines from the evaluation
tool. This is one of the major requirements of our approach.

 Using XML compliant language would enable us to integrate the GDL with
EARL of W3C [W3C 2002a], especially as EARL can be considered
complementary to the GDL in the overall testing process (figure 5.2).

97

A Methodology for Automating Guideline Review of Web Sites

Figure 5.2: Complementarity of GDL and EARL in the testing process. The GDL enables the
specification of how to conduct the test (ex. what are the examined tags, what data to capture) and
provides possibilities to have high control over the test execution, whereas EARL enables the
expression of test results. Test results include bug reports, test suite evaluations, and conformance
claims.

 As most programming languages integrate XML support (parser, generator,
interpreter), using XML enables us to avoid implementing a GDL interpreter
to import structured guidelines into the evaluation tool.

 XML enables a potential portability of the evaluation. If we develop an online
evaluation service supporting the GDL, it will be possible to use it to evaluate
the guidelines stored on the server, as well as GDL-compliant guidelines
stored locally. XML is more convenient for such scenario that other Web-
oriented formats.

5.1.2 The semantics

The semantics reveals the meaning of syntactically valid strings in a language. In
addition to the informal approach to expressing the semantics, there are a number
of possible formal approaches. Aho and Ullman [1977] identify the following
ones:

 Mathematical (or denotational) semantics: in this approach a mapping is
defined between sentences in the language and mathematical objects that these
sentences are said to denote.

 Axiomatic definition: rules are defined that relate the values of data before
and after the execution of each language construct.

 Extensible Definition: the semantics is defined in terms of a set of primitive
operations.

 Translation: the semantics of a language is defined through rules that specify
how it may be translated into some other language whose semantics are
already known, such as the lambda calculus.

98

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

 Operational Semantics: an abstract machine is described and the enactment
and rules are provided for enacting programs on this abstract machine.

We choose to provide the semantics of the GDL in an informal way for the
following reasons:

 The GDL is in its beta version and is subject to modifications syntactically and
semantically.

 The GDL deals with a little number of concepts; an informal semantics would
be sufficient to clarify them and their relationships.

 Many language concepts (HTML element, evaluation set, etc.) have few
behavioral possibilities and informal semantics would be sufficient to clarify
them.

 Although the semantics is informal, it is at least:
o Structured: there is an underlying structure that organizes the

specification;
o Categorized: there are criteria that determine the nature of every

element in the structure: HTML element, evaluation set, etc.

We will provide a part of this semantics as an entity-relation-attribute (ERA)
schema with a detailed description of its entities. In addition, we will provide
intuitive semantics of GDL constructs when we present its abstract and concrete
syntaxes.

5.1.3 Aims of the GDL

The GDL main objective is to support structuring Web guidelines toward
automated evaluation.

The most important, original characteristic of the GDL is its naturalness, i.e. the
possibility offered by the language to straightforwardly map the informal natural
language guidelines statements onto GDL formal statements.

The GDL is aimed at the modeling of HTML evaluable aspects (color contrast,
alternative text for visual content, etc.), other frameworks have to be used to cope
with other usability aspects (user satisfaction, consistency and information
organization, etc.) that we can not express in terms of evaluation conditions.

5.1.4 Models of a GDL specification

The purpose of our language is to describe the admissible structures of a Web
guideline in multiple evaluation contexts. This description, called specification of
the structure, must formalize the maximum of details relevant to automating the
guideline evaluation. The different structures will be models of the specification.
The word model 1is used here in the sense of a mathematical interpretation
structure associated with a logical theory.

1 In conceptual modeling the word model refers to the specification itself and not to the
mathematical interpretation structure.

99

A Methodology for Automating Guideline Review of Web Sites

A GDL specification is structured in terms of guideline structures (the basic units
of a GDL specification), a structure represent guideline’s formal form in a given
evaluation context.

5.2 Semantics of the GDL
The language is based on the concepts defined in the framework proposed in
chapter 4. Figure 5.3 shows the ERA schema of these concepts and their
relationships. We are going to describe the semantics of all the concepts at GDL
and HTML level. As for the natural language level, we will describe the Guideline
and Interpreted_GL only. The concepts of Reference, Translated_GL, and Criteria are
used for a future integration with another schema [Mariage et al. 2003].

5.2.1 GUIDELINE

This is the definition of the original Web guideline as it is found in its source. It is
characterized by the following attributes:

Name Description Type

ID_Guideline Every guideline is identified by a number that
specifies its position within the guidelines set.

Simple,
Mandatory

GLTitle Concise title for the guideline Simple,
Facultative

GLStatement Statement of the guideline as it is expressed in its
source

Simple,
Mandatory.

Reference The identifier of the guideline source (a reference
of a book, the url of a web site, etc.).

Simple,
Mandatory.

Criteria One or more ergonomic criteria that correspond to
the taxonomy proposed by [Mariage et al. 2003]

Multiple,
Facultative

GLComment Rationale behind the guideline. Simple,
Facultative.

Example

GLTitle Equivalent alternative for multimedia content
IGLStatement Provide equivalent alternatives to auditory and visual content
IGLComment Provide content that, when presented to the user, conveys

essentially the same function or purpose as auditory or visual
content.

100

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

Figure 5.3: Schema ERA of the GDL concepts

101

A Methodology for Automating Guideline Review of Web Sites

5.2.2 INTERPRETED_GL

As we mentioned earlier, guidelines are rarely concrete enough or specific to a
precise context of Web use. Thus, an interpretation of the original guideline is
generally needed to limit the semantics of the guideline to a specific context.

An interpreted guideline is specified as a quadruplet:

Name Description Type

ID_InterpretedGL
Every interpreted guideline is identified by a
number that specifies its position in the whole
set of guidelines’ interpretations.

Simple,
Mandatory

IGLTitle Concise title for the interpreted guideline Simple,
Facultative

IGLStatement

Statement of the interpreted guideline. This
statement must be more concrete that the
original guideline, ideally in terms that can be
mapped directly onto terms of HTML.

Simple,
Mandatory.

IGLComment Rationale behind the interpretation. Simple,
Facultative.

Example

IGLTitle Equivalent for visual content

IGLStatement Provide a text equivalent for every non-text element (e.g., via "alt",
"longdesc", or in element content)

IGLComment Screen reader of text browsers can render text elements.

5.2.3 INTER_CONTEXT

An interpretation of a guideline must be done with respect to an associated
context. We could call it interpretation context or evaluation context because it
corresponds to the context in which the evaluation of the interpretation is
considered equivalent to that of the original guideline. For the reasons mentioned
in the previous chapter (4.2.1), we consider the interpretation context as an
extended context of use by adding the Target_Object attribute to it.

Name Description Type

ID_Context An identifier to uniquely refer to a context. Simple,
Mandatory.

UserTypeName Short description of the user stereotypes
targeted by the evaluation

Multiple,
Mandatory.

PlatformTypeName
A couple software-hardware that may
significantly influence the context-
sensitivity.

multiple,
Mandatory

EnvironTypeName Short description of the environment in
which the user accomplishes the task.

Simple,
Facultative.

Target_Object

Objects that limit the scope of the
interpretation. They are provided
individually (ex. IMG) or as categories (ex.
Visual objects, client-side images). If not
specified, the interpretation covers all
objects.

Multiple,
facultative

102

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

Example

ID_Context Default context
UserTypeName Ordinary healthy user.
PlatformTypeName PC with Windows XP
EnvironTypeName Low noise, non stressing environment

5.2.4 FORMAL_GL

As we mentioned in chapter 4, the formal guideline is mainly used to enforce
systematical aspect of the structuring framework. It is used to make a link
between the guideline and its formal structure. A formal guideline consists of the
result of the formalization of an interpreted guideline. Formalization only applies
to interpreted guideline.

We want to have the ability to store all original guidelines of a given source, even
those that can not be automated.

With respect to the structuring steps of the framework, a formal guideline is
composed of the following parts that are further described in the subsequent
sections:

 Evaluation Structure: in this section we specify:
o HTML elements: in this section we provide the set of all HTML

elements that we estimate needed to conduct the evaluation of the
targeted guideline. This section corresponds to step2 of the
framework.

o Evaluation sets: sub-sets of the set of HTML elements; and any
exclusion relationships among them. Exclusions are specified here
to be optionally used during parsing phase. This section
corresponds to step3 of the framework.

 Evaluation Logic: in this section we specify the evaluation conditions
associated with the defined evaluation sets. If we use any user values or user
functions, they must be introduced in this section. This section corresponds to
step4 of the framework.

5.2.5 HTML_ELEMENT

This entity represents a HTML tag or attribute. If it is an attribute, it must have its
parent tag because some attributes (ex. alt) can be found in many tags, therefore,
we need to specify the tag in order to precise the scope of the attribute.

As the schema shows, we must have at least one HTML element in our formal
guideline. The identifier of the element will be used later in the specification, so,
we can use a very simple one like E1 or a more speaking one like bodyText.

The attributes of this entity are:

Name Description Type

ID_Element An identifier to uniquely refer to the element. Simple,
Mandatory.

Tag The HTML tag (ex. BODY) Simple,
Mandatory.

103

A Methodology for Automating Guideline Review of Web Sites

Attribute
The HTML attribute (ex. text of BODY.text). This
attribute is facultative because some HTML
elements like have no attributes.

Simple,
Facultative.

Example

(Italic, I, NULL), (BodyBg, Body, bgcolor)

5.2.6 EVALUATION_SET

As described in the framework, we can have two levels of evaluation sets: high
level and atomic level. In this GDL version we deal with atomic sets only because
dealing with high level sets requires defining an abstract tree of HTML elements
(see fig 4.10).

An evaluation set is characterized by the following attributes:

Name Description Type

ID_Set An artificial identifier of the set. Simple,
Mandatory.

Name Optional name to provide concise information about the
set.

Simple,
Facultative.

Priority Priority level of the set specified in conformance with
W3C WCAG1.0 levels.

[1|2|3],
Mandatory.

Comment Provides short supplementary information about the
set.

Simple,
Facultative.

We can see in the ERA schema (the relation SComposition) that we need to specify
the scope of an HTML element when we add it to an evaluation set. A constraint
is we cannot specify in the schema is: the Scope attribute of this relation can be
the constant Page, another HTML element, inside one of many elements
(ScopeOR), or inside more that one element in the same time (ScopeAND).

Another constraint on evaluation sets (the relation Exclusion) is that a set can not
exclude itself, and two sets can not be mutually excluded.

5.2.7 USER_VALUE

Before specifying evaluation conditions, we can specify some values that can be
of predefined simple or of constructed data type. Simple data types are: INTEGER,
FLOAT, BOOLEAN, STRING, and HEXADECIMAL. These values are declared as triplet
(Identifier, value type, value). For example: (VisibilityCoeff, Float, 0.3).

In addition to values of simple data types, we can define values of three
constructed data types:

 SEQUENCE: represents an ordered list of objects of the same data type (ex.
sequence of strings: PC=Sequence{“Case”, “Monitor”, “Hard disk”}).

 TABLE: represents a mapping between two objects: the index of the table and
corresponding table content. For example, table of student results in an exam:

Exam= Table[Marc → {55, 80, 60}
Alain → {55, 70, 90}]

104

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

 CARTESIAN PRODUCT: represents a record-like structure composed of N
selector. A selector has an identifier and a data type of values that it can take.

Person= CP[Name : String, Age: float, Profession : String}

These values can then be used in specifying evaluation conditions. This approach
has the following advantages:

 It maximizes the systematical aspect of our GDL. Every value will be
specified before it is used.

 Values can be assigned to significant identifiers that reflect their semantics,
which makes reading and validating the specification easier. For example,
BlackColor is more meaningful than #000000.

 As it is possible to have a repetitive use of some values, the use of their
identifiers makes the specification of evaluation conditions easier and more
readable, especially for constructed values.

Simple data types can be implicitly used in the specification of user values, but as
we are using XML as formalism for our specification, constructed data types must
be defined in the GDL DTD to enable specification of user values of these types.

Every value is assigned to an identifier to facilitate its use in the expressions of
evaluation conditions or in other constructed user values: as we will see later,
complex values can be constructed from defined values by using their identifiers
or from new values by using a complete structure.

5.2.8 EVALUATION_CONDITION

Every evaluation set is associated to an evaluation condition that specifies the
logic to be applied on the set elements. A condition can be associated to more than
one evaluation set.

If we have an evaluation logic that can be applied on many evaluation sets with
some difference, we can define a Meta condition for all these sets, and then we
defined some mapping couples (Mapped_Meta_Variable, Mapped_concrete_object) for
every evaluation set. These couples determine how to instantiate the Meta
variables in order to execute the Meta condition on instances of the set. If a set
needs specific evaluation logic, we specify a direct condition for it. In this case,
we directly use concrete objects (set element, user value, etc.) in the specification
of the condition.

Evaluation conditions are characterized by the following attributes:

Name Description Type

ID_Condition An identifier to uniquely refer to a
condition.

Simple,
Mandatory.

Comment Provides short supplementary
information about the condition.

Simple,
Facultative.

IsMeta A Boolean value to indicate if a
condition is a Meta one or not.

(True|
False),
Mandatory

105

A Methodology for Automating Guideline Review of Web Sites

5.2.9 META_VARIABLE

A Meta condition must have at least one Meta variable because by definition it
must be mapped to some element in an evaluation set. A meta condition may hold
one to many meta variables.

A Meta variable is characterized by the following attributes:

Name Description Type

ID_Var A significant denomination of the variable. Simple,
Mandatory.

Type The type of the variable. It must be one of the
predefined data types (simple or constructed).

Simple,
Mandatory.

Comment Supplementary information about the variable. Simple,
Facultative.

We can see in the ERA schema (the relation Evaluation) that in the case of
evaluating a Meta condition on the sets, we will need to make a mapping between
meta variables and the corresponding concrete objects.

5.2.10 OPERATION

An operation enables the formal specification of evaluation expressions by
dividing it into smaller pieces and providing explicit control points over the
execution of the expression.

Another advantage is that specifying an expression with operations facilitates its
reading by non-GDL experts because many information must be explicitly
provided as operation attributes. In addition, this XML-compliant form facilitates
the display of evaluation conditions in a web page because it can be controlled by
a style sheet more easily that the case of a free text expression.

An operation is characterized by the following attributes:

Name Description Type

ID_Op

An identifier of the operation to facilitate repetitive
utilization of the operation in the specification. Its
use in an expression means the use of the result
of the operation.

Simple,
Mandatory.

Op_Symbol The operation symbol that must be that of a
predefine operation (=, +, Sub_string, etc.).

Simple,
Mandatory.

Return_Type The return type of the operation: one of the
predefined types.

Simple,
Mandatory.

Comment Short supplementary information about the
operation

Simple,
Facultative.

Example

ID_Op Op1
Op_Symbol +
Return_Type Integer
Comment Addition of

106

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

5.2.11 ARGUMENT

Operations work on one or more arguments. An argument is characterized by the
following attributes:

Name Description Type

Arg_Type

The type of the argument: Val if the argument is a
predefined user value, Op if it is the result of
another operation, SetElem/Set if it is a set
element id/Set id (operations in direct conditions),
and Var if it is a Meta variable (operations in Meta
conditions).

(Val | Var| Op|
Set|
SetElem),
Mandatory.

Arg_Value The argument content: the identifier of a
predefined value or an operation.

Simple,
Mandatory.

Position

The position of the argument in the operation call
if the position is relevant (like for Sub_string). This
attribute is optional because, by default, the
position of an argument is its position in the
arguments list.

Integer,
Facultative.

Example (for the operation IN (bgcolor ,MurchColors))

Arg_Type Val Var
Arg_Value Murch_Colors Bgcolor
Position 2 1

5.2.12 ACTION

We introduced this concept to obtain the desired high control level of the
execution of operations and the generation of customized messages (error,
warning, explanation, etc.).

After executing an operation, we specify the actions to be taken depending on the
execution result.

Name Description Type

Trigger The specific value, of the execution result of the
operation, that triggers the action

Simple,
Mandatory.

What

What action to take when obtaining the triggering
value. Possible actions are: Error to stop and
indicate an ergonomic error, Jump to indicate the
next operation, WarnStop to stop and generate a
warning, WarnJump to warn and continue, and
Success to stop and indicate that there is no
problem.

(Error | Jump |
WarnStop |
WarnJump |
Success),
Mandatory.

Why
The message to generate in the different situations.
It is facultative because it is not necessary when
Jump and eventually Success cases.

Simple,
Facultative.

Where If the action is to jump, this attribute holds the
identifier of the next operation.

Simple,
Facultative

Example (for the operation IN (bgcolor ,MurchColors))

Trigger False True
What WarnStop Jump

107

A Methodology for Automating Guideline Review of Web Sites

Why Background color does not
belong to Murch colors UNDEF

Where UNDEF Opi (ex. IN (fgcolor ,MurchColors))

Now that we presented the semantics of the language, we are going to present its
syntax. We will present the two forms (abstract and concrete) simultaneously, but
before that, as we use XML to specify the concrete syntax of the language, we are
going to give a brief description of main XML concepts that are relevant for
U&AE.

5.3 XML in a nutshell
As we are going to use XML to specify the concrete form of the GDL constructs,
we will give here a brief description of main XML concepts [Harold & Means
2002].

5.3.1 XML Documents

An XML document contains text, never binary data. A XML document is
composed of a tree of elements. Every element is delimited by the start-tag
<element_name> and the end-tag </element_name>. Everything between the start-tag
and the end-tag of the element (exclusive) is called the element's content. The
white space is part of the content. Next is an example of an element:
<Profession> Engineer </Profession>

XML Tags

XML tags look superficially like HTML tags. However, unlike HTML tags, we
are allowed to make up new XML tags as we go along. The names of the tags
generally reflect the type of content inside the element, not how that content will
be formatted.

XML is case sensitive. <Person> is not the same as <PERSON>. We are free to use
upper or lowercase or both as we choose. We just have to be consistent within any
one element.

Document Type Definitions (DTDs)

While XML can be expended with new elements and attributes, not all the
programs that read particular XML documents are so flexible. Many programs can
work with only some XML applications but not others. The solution is a document
type definition (DTD). DTDs are written in a formal syntax that explains precisely
which elements and entities may appear in the document and what the elements'
contents and attributes are. A DTD can make statements such as "Every employee
element must have a social_security_number attribute" Different XML applications
can use different DTDs to specify what they do and do not allow.

There are many things the DTD does not say. In particular, it does not say the
following:

 What the root element of the document is
 How many instances of each kind of element appear in the document
 What the character data inside the elements looks like

108

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

 The semantic meaning of an element; for instance, whether it contains a date
or a person's name

DTDs allow us to place some constraints on the form an XML document takes,
but there can be quite a bit of flexibility within those limits. A DTD never says
anything about the length, structure, meaning, allowed values, or other aspects of
the text content of an element.

XML Trees

XML documents form a tree data structure (figure 5.4). Every XML document has
one element that does not have a parent. This is the first element in the document
and the element that contains all other elements. It is called the root element of the
document. It is also sometimes called the document element.

XML gives each child exactly one parent. Each element (with one exception for
the root element) has exactly one parent element. That is, it is completely
enclosed by another element. If an element's start-tag is inside some element, then
its end-tag must also be inside that element. Overlapping tags are prohibited in
XML. The following example is a person element that contains information
marked up to show its meaning.
<person>
 <name>
 <first_name>Alan</first_name>
 <last_name>Turing</last_name>
 </name>
 <profession>cryptographer</profession>
</person>

Figure 5.4: Tree structure for the above example

Element Declarations

Every element used in a valid document must be declared in the document's DTD
with an element declaration. Element declarations have this basic form:
<!ELEMENT element_name content_specification>

The name of the element can be any legal XML name. The content specification
specifies what children the element may or must have in what order. Content
specifications can be quite complex. They can say, for example, that an element
must have three child elements of a given type, or two children of one type

109

A Methodology for Automating Guideline Review of Web Sites

followed by another element of a second type, or any elements chosen from seven
different types interspersed with text.

Child Elements
Another simple content specification is one that says the element must have
exactly one child of a given type. In this case, the content specification simply
consists of the name of the child element inside parentheses:
<!ELEMENT fax (phone_number)>

A fax element may not contain anything else except the phone_number element, and
it may not contain more or less than one of those.

Sequences
Most elements contain either parsed character data or (at least potentially)
multiple child elements. The simplest way to indicate multiple child elements is to
separate them with commas. This is called a sequence. It indicates that the named
elements must appear in the specified order. For example, this element declaration
says that a name element must contain exactly one first_name child element
followed by exactly one last_name child element:
<!ELEMENT name (first_name, last_name)>

The Number of Children
Not all instances of a given element necessarily have exactly the same children. it
is possible to affix one of three suffixes to an element name in a content
specification to indicate how many of that element are expected at that position.
These suffixes are:

? Zero or one of the element is allowed (facultative or mandatory).

* Zero or more of the element is allowed.

+ One or more of the element is required.

Choices
Sometimes one instance of an element may contain one kind of child, and another
instance may contain a different child. This can be indicated with a choice. A
choice is a list of element names separated by vertical bars. For example, this
declaration says that a User_Value element can be either a Basic_Value child or a
Constructed_Value child:
<!ELEMENT User_Value (Basic_Value | Constructed_Value)>

However, it cannot contain both at once. Each User_value element must contain one
or the other. Choices can be extended to an indefinite number of possible
elements.

Attribute Declarations

Elements can have attributes. Attributes declaration is done with ATTLIST. A single
ATTLIST can declare multiple attributes for a single element type. However, if the
same attribute is repeated on multiple elements, then it must be declared
separately for each element where it appears.

110

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

<!ATTLIST Original_Guideline
 O_ID ID #REQUIRED
 Name CDATA #IMPLIED
 Statement CDATA #REQUIRED
 Source CDATA #REQUIRED
 Comment CDATA #IMPLIED
>

Attribute Types
Attribute values can be any string of text. The only restrictions are that any
occurrences of < or & must be escaped as < and & and whichever kind of
quotation mark, single or double, is used to delimit the value must also be
escaped. However, a DTD allows you to make somewhat stronger statements
about the content of an attribute value. The most used attribute types in XML are2:

CDATA
A CDATA attribute value can contain any string of text acceptable in a well-
formed XML attribute value. This is the most general attribute type.

Enumeration
An enumeration is the only attribute type that is not an XML keyword. Rather, it
is a list of all possible values for the attribute, separated by vertical bars. Each
possible value must be an XML name token.
<!ATTLIST Meta_Var
 Type (Int | Hex | Uri | Str) #REQUIRED
>

ID
An ID type attribute must contain an XML name (not a name token but a name)
that is unique within the XML document. More precisely, no other ID type
attribute in the document can have the same value. (Attributes of non-ID type are
not considered.) Each element may have no more than one ID type attribute.
<!ATTLIST employee social_security_number ID #REQUIRED>

IDREF
An IDREF type attribute refers to the ID type attribute of some element in the
document. Thus, it must be an XML name. IDREF attributes are commonly used
to establish relationships between elements when simple containment won't
suffice.

IDREFS
An IDREFS type attribute contains a whitespace-separated list of XML names,
each of which must be the ID of an element in the document. This is used when
one element needs to refer to multiple other elements.

2 There are many more attribute types [Harold & Means 2002].

111

A Methodology for Automating Guideline Review of Web Sites

Attribute Defaults
As well as providing a data type, each ATTLIST declaration includes a default
declaration for that attribute. There are four possibilities for this default:

 #IMPLIED: The attribute is optional. Each instance of the element may or
may not provide a value for the attribute. No default value is provided.

 #REQUIRED: The attribute is required. Each instance of the element must
provide a value for the attribute. No default value is provided.

 #FIXED: The attribute value is constant and immutable. This attribute has the
specified value regardless of whether the attribute is explicitly noted on an
individual instance of the element. If it is included, though, it must have the
specified value.

 Literal: The actual default value is given as a quoted string.

Parameter Entities

It is not uncommon for multiple elements to share all or part of the same attribute
lists and content specifications. In this case, we can declare a parameter entity to
represent the common part, then, we use this entity later in the document.

A parameter entity reference is declared much like a general entity reference.
However, an extra percent sign is placed between the <!ENTITY and the name of the
entity. For instance, the following declaration defines the entity Cons_Expr as an
enumeration of all the allowed constructed values in GDL:
<!ENTITY % Cons_Expr "Set_Value | Seq_Value | Table_Value | Cp_Value">

The entity can then be used in element declarations like:
<!ELEMENT Constructed_Values (%Cons_Expr;)+>

5.3.2 GDL restrictions caused by XML

We decided to specify Web guidelines in a XML-compliant form. This raises the
question about what are the restrictions of XML that may impose further
restrictions on the GDL.

By examining the concepts manipulated by the GDL, we can see that the major
restriction appears for the specification of evaluation conditions. XML is suitable
to specify GDL concepts like guideline, interpretation, HTML elements,
evaluation sets, etc. because all what we need for these concepts is structure them
in a suitable manner. As for the evaluation logic, more precisely the operations
within conditions, we need a long specification to implement the functional
behavior of the evaluation logic.

5.4 Specification of GDL-compliant
structure for a Web guideline

In this section we will provide detailed description of what we specify in a GDL-
compliant structure for a Web guideline (specification for short).

112

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

5.4.1 Scope of the specification

A specification must respect the following constraints:

 It contains one Web guideline only;
 It contains at least one interpretation of the guideline (default interpretation);
 An interpretation is at most associated to one formal guideline;
 A formal guideline must at least have one HTML element.
 A formal guideline must at least have one evaluation set;
 All the declared HTML elements must be covered by evaluations sets;
 A HTML element can be added to more that one set;
 A formal guideline must at least have one evaluation condition. If a Meta

condition is defined, the formal guideline must at least have one mapped
condition.

5.4.2 Organization of the specification

Figure 5.5 depicts a global view of a GDL specification. There are two constraints
on this organization that are not explicitly presented in the figure:

 The horizontal position of objects determines their order in the specification.
For example, we specify HTML_elements then sets then exclusions. The only
exception is the children of Constructed_Values.

 We specify one ore more mapped condition if and only if we specified some
Meta conditions.

113

A Methodology for Automating Guideline Review of Web Sites

Figure 5.5: Organization of a GDL specification. The specification contains 0 or more occurrences
of objects followed by * (ex. Seq), 1 or more occurrences of objects followed by + (ex. Action).

5.4.3 Abstract and concrete syntaxes

We will present the two syntaxes of the specification in the following formalisms:

EBNF abstract Syntax

We will use an EBNF context-free grammar:

 Non terminals are denoted by brackets (e.g. <a>).
 Terminals are written in bold. For example, <GDL_Specification> is the terminal

that stands for a XML starting tag for the element GDL_Specification. Notice that,

114

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

as we use XML-compliant concrete syntax, < and > in terminals are interpreted
as XML opening and closing tags characters.

In the derivation rules, we use the following conventions:

 "<a> | " means <a> or .
 "[<a>]" means <a> is optional.
 "{<a>}*" means <a> n times (n ≥ 0).
 "{<a>}+" means <a> n times (n ≥ 1).
 "<a-LIST>" is a shortcut for "<a> {, <a>}*".

XML Concrete Syntax

As our intention is to separate guidelines from the evaluation tool, a XML DTD is
defined for GDL-compliant guidelines structures. By this way, structures can be
manually edited and then used by the UE tool to conduct the evaluation of the
specified guidelines.

In the remaining of this section we are going to detail the description of abstract
and concrete syntax of the nodes in figure 5.4. We will provide the abstract
syntax, the concrete syntax, and an example for first two elements only. For the
rest, we will give examples only. The complete version of the following section is
provided in Annex A.

5.4.4 A GDL specification

This is the root element of the document containing the formal structure of a
single guideline. It contains at least the original guideline a default interpretation
with/without corresponding formal structure.

Abstract Syntax

<SPEC> ::= < GDL_Specification >
 <GDL-DEF> <INTER-DEF> |
 <GDL-DEF> {<INTER-DEF> <FORMAL-GDL-DEF>}+

 < / GDL_Specification >

Notice that the combinations <Element_Name> and </Element_Name> must be used to
indicate the beginning and the end of each specification element as dictated by the
semantics inherited from XML.

Concrete Syntax

<!DOCTYPE GDL_Specification [
<!ELEMENT GDL_Specification ((Guideline, Interpretation) |

(Guideline, (Interpretation, Formal_Guideline)+))>

5.4.5 Guideline

This is the original guideline as it is cited in the literature. It could be found in one
or more references.

Abstract syntax

<GDL-DEF> ::= < Guideline
 ID_Guideline = <GLID-STRING>

115

A Methodology for Automating Guideline Review of Web Sites

 [GLTitle = <TITLE-STRING>]
 GLStatement = <STATE-STRING>
 ID_References = <IREFD-LIST>
 [Criteria = <CRITID-LIST>]
 [GLComment = <COMMENT-STRING>]

/ >

Concrete Syntax

<!ELEMENT Guideline EMPTY>
<!ATTLIST Guideline
 ID_Guideline ID #REQUIRED
 GLTitle CDATA #IMPLIED
 GLStatement CDATA #REQUIRED
 ID_Reference CDATA #REQUIRED
 Ergo_Criteria CDATA #IMPLIED
 GLComment CDATA #IMPLIED
>

Example

Following is the specification of the W3C WCAG1.0 guideline 1 [W3C 1999]. It
is related to the accessibility criteria.
<Guideline
 ID_Guideline="1"
 GLTitle="Alternatives for multimedia content"
 Source="W3C_WCAG"
 Ergo_Criteria="Accessibility"
 GLStatement="Provide equivalent alternatives to auditory and visual content"/>

In order to facilitate the reading of the remaining of this chapter, we will show the
concrete syntax only. The omitted parts can be reviewed in annex A.

5.4.6 Interpretation

An interpretation is composed of two elements: the context and the interpreted
guideline.

Example

Next is the specification of an interpretation of the a W3C WCAG1.0 guideline 1
in a normal context of use, but limiting the interpretation to simple images only
<Interpretation>
<Context
 ID_Context="C1"
 UserTypeName="Normal"
 PlatformTypeName="PC-Windows9x,XP "
 Environment="home, office"/>
<Interpreted_Guideline
 ID_InterpretedGL="I1"
 IGLTitle="Alternative for images"
 IGLStatement="Provide alternative text for simple images via alt attribute"
 IGLComment=""/>
</Interpretation>

116

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

5.4.7 Formal Guideline

The formal guideline specifies the structure of the associated interpretation. It is
composed of two parts: evaluation structure and evaluation logic. This entity is
purely structural to separate the formal structure from guideline and interpretation
definitions.

Example

Any specification will have the following part:
<Formal_Guideline>
<Evaluation_Structure>
 …….
 </Evaluation_Structure>
 <Evaluation_Logic>
 …….
 </Evaluation_Logic>
<Formal_Guideline>

5.4.8 Evaluation Structure

This section specifies the HTML elements available to evaluate the guideline, and
how these elements are regrouped into evaluation sets. If there are exclusion
relations among sets, they are specified after the specification of sets

5.4.9 HTML Element

Identified HTML elements are given unique identifiers to facilitate their use in the
specification.

Example

<HTML_Elements>
 <HTML_Element ID_Element="Bdbg" Tag="Body" Attribute="bgcolor"/>
 <HTML_Element ID_Element="Fcolor" Tag="Font" Attribute="color"/>
 <HTML_Element ID_Element="Bold" Tag="B"/>
 <HTML_Element ID_Element="Italic" Tag="I"/>
</HTML_Elements>

5.4.10 Evaluation Set

A set regroups some HTML elements needed to evaluate a precise aspect of the
guideline. Every set has a priority level (1,2,3). The formal guideline must at least
specify one set. Here we deal with atomic sets only.

Example

The following is a set to evaluate if a colored text is also italicized or bolded.
<Evaluation_Set
 ID_Set="S1"
 Name="bolded or italicized colored text"
 Priority="1"
 Description="check if colored text is also italicized or bolded">
 <Set_Element E_ID="Bdbg" Scope="Page"/>
 <Set_Element E_ID="Fcolor" ScopeOR="Bdbg Italic bold"/>

117

A Methodology for Automating Guideline Review of Web Sites

 <Set_Element E_ID="Italic" ScopeOR="Bdbg Fcolor"/>
 <Set_Element E_ID="bold" ScopeOR="Bdbg Fcolor"/>
</Evaluation_Set>

According to this specification,
<Body bgcolor=White>

 this is a red text
→ S1={Bdbg=White, Fcolor=Red, Bold=null, Italic=null}: KO

 <I> this is a red italicized text</I>

→ S1={Bdbg=White, Fcolor=Red, Bold=null, Italic!=null}: OK

 this is a bold blue text

→ S1={Bdbg=White, Bold!=null, Fcolor=Blue, Italic=null, }: OK

 <I>this is an italicized text</I>

→ S1={Bdbg=White, Italic!=null, Fcolor=null, Bold=null, }: captured but irrelevant within
our context because the text is not colored.
</Body>

5.4.11 Set Exclusion

In this section we specify any exclusion relationships among the specified
evaluation sets. An exclusion relationship is characterized by two attributes:

 Excluding_Set: the identifier of the excluding set.
 Excluded_Set: a list of one or more identifiers of sets excluded by the set.

Example

We saw the following sets in the previous chapter at page 76.
<Set_Exclusions>
 <Set_Exclusion Excluding="S7" Excluded="S6"/>
 <Set_Exclusion Excluding="S9" Excluded="S7 S8 S10"/>
</Set_Exclusions>

5.4.12 Evaluation Logic

This section specifies the evaluation conditions associated with evaluation sets
that we specified in the structure section. An evaluation condition can be applied
on one or more set. In fact, flexibility and the power of the GDL reside in the
richness of conditions specification.

Before specifying the conditions we declare any user values and/or user functions
that we intend to use inside these conditions.

5.4.13 User values

Evaluation logic is usually expressed using constant values of HTML elements.
For example, to check if an image has an alternative text, we need to specify the
logic: IMG.alt !=NULL or IMG.alt<>"" (Empty String).

In order to provide a clear and coherent specification of evaluation conditions, we
must declare all values that we use in condition in the section of User_Values. If it is

118

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

a simple value (ex. "", 5, 0.3, etc.), we declare it as Simple_Value. If it is a
constructed value (ex. Seq{White, Blue, Green}), we declare it as Constructed_Value.
Every declared value has an identifier. A previously declared value can be used in
the declaration a new constructed value by using its identifier. For example, we
may declare V1, V2, …, Vn, then we declare ListValues=Seq{V1, V2, …, Vn}.

Concrete Syntax

<!ELEMENT User_Values (Simple_Values?, Constructed_Values?)>
<!ELEMENT Simple_Values (Simple_Value+)>
<!ELEMENT Constructed_Values (Seq_Value | Table_Value | Cp_Value)+>

5.4.14 Predefined Simple Data Types and
Operations

Some simple data types and operations are predefined in the GDL to be used
when specifying user values. By examining the syntax of HTML we find that
attributes values in a Web page have one of these data type: String (ex. for IMG.alt),
Integer (ex. for Table.Width), Float (ex. for Font.Size), and Hexadecimal (especially
for colors). We add to them the Boolean data type because we use it in evaluation
conditions.

Next we will present the predefined simple data types and the predefined
operations of each of them.

Example

<Simple_Value V_ID="White" Value="#FFFFFF" Type="Hex"/>
<Simple_Value V_ID="MaxFontNumber" Value="3" Type="Integer"/>

The predefined simple data types are:

 BOOLEAN

This type is for Boolean values, i.e. True and False. The predefined operations on
this type are: NOT, AND, OR, =.

 INTEGER

This type includes the positive and negative integer numbers. The predefined
operations on this type are: INTEGER, ODD, EVEN, +, -, *, %, MOD, DIV, =, >, >, <=, >=.

 FLOAT

This type is for real numbers. The predefined operations on this type are: FLOAT, +,
-, *, /, =, >, >, <=, >=.

 HEX (Color)

We introduced this data type to deal with colors because in HTML they are
generally expressed as hexadecimal values (for example, Red=#FF0000). Only 16 of
them are widely known by their names with their sRGB values:
 Black = #000000 Green = #008000
 Silver = #C0C0C0 Lime = #00FF00
 Gray = #808080 Olive = #808000
 White = #FFFFFF Yellow = #FFFF00
 Maroon= #800000 Navy = #000080

119

A Methodology for Automating Guideline Review of Web Sites

 Red = #FF0000 Blue = #0000FF
 Purple = #800080 Teal = #008080
 Fuchsia= #FF00FF Aqua = #00FFFF

The operations on this type are: =, getRED, getGREEN, getBLUE.

 STRING

This type is for strings of characters. The predefined operations on this type are:
LENGTH, SUB_STRING, +, =, <, >.

5.4.15 Predefined Constructed Data Types and
Operations

In addition to the simple data types, we introduced some constructed data types
that can be used to define user values.

Contrarily to simple data types, we need specify to define the constructed data
types in the GDL DTD to explicit their syntax.

The predefined constructed data types and their operations are:

 The Set Type Constructor (SET)

A set of values of a given data type is characterized by the facts that:

 The order of the members in the set is not relevant;
 The number of identical members in the set is not relevant;
 A set may be empty.

Example
<Set_Value ID_Value="Colors">
 <Id_Value ID_Ref="White"/>
 <Id_Value ID_Ref="Black"/>
 <Id_Value ID_Ref="Red"/>
 <Id_Value ID_Ref="Blue"/>
 <Id_Value ID_Ref="Yellow"/>
 <Id_Value ID_Ref="Cyan"/>
</Set_Value>

The operations predefined on sets are: EMPTY, SIZE, IN, UNION, INTERSECT, DIFF,
INCLUDE, EQUAL.

 The Cartesian product type constructor (CP)

A Cartesian product of values of given type(s) is characterized buy the facts that:

 A value at a given place in the CP has always the same type;
 A CP value has always the same number of fields;
 There must be at least one field in a CP.
 A field can also be named so that we can refer to it by its name.

Example
<Cp_Value V_ID="ColorsForWhiteBg">
 <Selector Name="Good">

120

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

 <Seq_Value>
 <Id_Value ID_Ref="Black"/>
 <Id_Value ID_Ref="Red"/>
 <Id_Value ID_Ref="Blue"/>
 </Seq_Value>
 </Selector>
 <Selector Name="Bad">
 <Seq_Value>
 <Id_Value ID_Ref="Yellow"/>
 <Id_Value ID_Ref="Cyan"/>
 </Seq_Value>
 </Selector>
</Cp_Value>

We predefined the following operation on CP:

Idi: CP[id1:T1, ..., Idi: Ti, ...] → Ti

Idi(x) returns the value of Idi of x. An operation is defined for each field of the CP.

 The Sequence type constructor (SEQ)

A sequence of values of a given type is characterized by the facts that:

 The order of the elements in the sequence is relevant;
 The number of identical elements in the sequence is relevant;
 A sequence may be empty.

The operations predefined on SEQ are the followings: EMPTY, SIZE, ELEMENT,
SUB_SEQ, IN.

 The Table type constructor (TABLE)

A table is constructed on two types: the type of the elements of the table and the
type of the index. A table of elements of type T1 indexed by T2 is characterized
by the membership function which associates for each value of type T2 a value of
type T1+{UNDEF} (i.e. a value of type T1 or the special value UNDEF).

Example
<Table_Value V_ID="MapTable">
 <Table_Index>
 <Id_Value ID_Ref="White"/>
 </Table_Index>
 <Table_Elements>
 <Table_Element>
 <Id_Value ID_Red="ColorsForWhiteBg">
 </Table_Element>
 </Table_Elements>
</Table_Value>

The predefined operations on TABLE are: EMPTY, IN, [].

121

A Methodology for Automating Guideline Review of Web Sites

5.4.16 Evaluation Conditions

In this section we specify the evaluation logic that must be applied on the captured
usability and/or accessibility data (instances of the evaluation sets) in order to
check the respect/ violation of the targeted set of guidelines.

In order to have high flexibility level we introduced some concepts concerning the
specification of evaluation conditions. The major concept is that of Meta
conditions (see section 4.2.5).

This section of a specification contains zero or more Meta evaluation condition(s),
a number of direct evaluation conditions or concrete evaluation conditions less or
equal to the number of evaluation sets because we must have at least one
evaluation condition per evaluation set, but one evaluation condition may be
applied on more than one evaluation set.

A direct condition and a Meta condition are specified in the same way. The only
difference is that, for Meta conditions we use Meta variables in their expressions
to provide generic evaluation logic that can later be mapped to concrete one(s),
whereas in direct evaluation conditions we use concrete user values and elements
from the associated evaluation sets.

5.4.17 Meta evaluation Condition

A Meta evaluation condition is composed of:

 At least one Meta variable: a Meta variable has an identifier and is of one of
the predefined simple or constructed data types.

 One Meta model: the model is the place where we specify the evaluation
expression. The model’s utility is just to separate the variables from the list of
operations defined in the Meta condition.

5.4.18 Operations in evaluation conditions

As the syntax of the Meta condition depicts, its model can be specified as a
sequence of smaller operations. This way of specifying evaluation expression is
relatively complex, but it enables us to add some addition information especially
for controlling the execution of the expression and for providing specific output
messages.

An operation is composed of one or more arguments, and its execution triggers
one of many possible actions. We provide the argument’s position in the operation
header explicitly. An action is triggered by a specific result value of the operation
execution.

Example

The following operation checks whether the set instance has an instance of the bg
(background color) element or not. If the result is true, it jumps to the operation
Op2, otherwise, it stops the execution and sends a warning message.
<Operation ID_Operation="Op1" Op_Symbol="setInstanceHasElement" Return_Type="Boolean">
 <Argument Arg_Type="Var" Arg_Value="set"/>
 <Argument Arg_Type="Var" Arg_Value="bg"/>
 <Action Result="true" What="Jumb" Where="Op2"/>

122

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

 <Action Result="false" What="WarnStop" Why="No bgcolor."/>
</Operation>

5.4.19 Direct Evaluation Condition

A direct evaluation condition is the same as a Meta evaluation condition, but
instead of Meta variables, we directly use identifiers of elements of evaluation
sets on which the condition must be applied.

The same difference between direct and Meta conditions exists between
operations in direct conditions and operations in Meta conditions. Their syntax is
identical, but in the first case, we use identifiers of sets elements instead of
identifiers of Meta variables.

Example

Following is the specification of the formal guideline for evaluating the guideline
"Ne pas utiliser plus de 2-3 polices de caractères" [Nogier 2002].

To evaluate the guideline we will provide a default interpretation: "Ne pas utiliser
plus de 3 polices de caractères". We will need the HTML element Font.face only.
Therefore, we will have one evaluation set {Font.face[Page]} and finaly, we will
need one direct evaluation condition: the number of instances of this set is inferior
or equal to 3.
<Formal_Guideline>
<Evaluation_Structure>
 <HTML_Elements>
 <HTML_Element ID_Element="E1" Tag="Font" Attribute="face"/>
 </HTML_Elements>
 <Evaluation_Sets>
 <Evaluation_Set ID_Set="S1" Priority="1">
 <Set_Element E_ID="E1" Scope=”Page”/>
 </Evaluation_Set>
 </Evaluation_Sets>
</Evaluation_Structure>

<Evaluation_Logic>
 <User_Values>
 <Simple_Values>
 <Simple_Value ID_Value="MaxFontNbr" Value="3" Type="Int"/>
 </Simple_Values>
 </User_Values>
 <Evaluation_Conditions>
 <Direct_Condition ID_Condition="C1" ID_Set="S1">
 <Operation ID_Operation="Op1" Symbol="NumberOfInstances"

Return_Type="Int">
 <Argument Arg_Type="SET" Arg_Value="S1" Pos="1"/>
 <Action Result=”ANY” What=”Jump” Where=”Op2”/>
 </Operation>
 <Operation ID_Operation="Op2" Symbol="LESS" Return_Type="Boolean">
 <Argument Arg_Type="Op" Arg_Value="Op1" Pos="1"/>
 <Argument Arg_Type="Val" Arg_Value="MaxFontNbr" Pos="2"/>
 <Action Result="true" What="Success"/>
 <Action Result="false" What="Error" Why="fonts >3."/>
 </Operation>

123

A Methodology for Automating Guideline Review of Web Sites

 </Direct_Condition>
 </Evaluation_Conditions>
</Evaluation_Logic>
</Formal_Guideline>

5.4.20 Mapped Evaluation Condition

A mapped evaluation condition is the instantiation of a Meta evaluation condition
for a given evaluation set. The instantiation is realized by using a set of Meta
mappings to map between Meta variables in the Meta condition and concrete
corresponding elements in evaluation sets.

Now that we introduced all the theoretical basis of our approach, we will discuss
two aspects related to automated evaluation: defining a kind of predictive function
to predict the evaluation result, and evaluating the feasibility of the proposed
approach.

5.5 Evaluation function
Theoretically, we could follow different evaluation approaches (strategies):

 By page: we evaluate a specific page by identifying the object found in the
page, and then we select the guidelines related to these objects only. For
example, if we know that our page contains only textual content, we could
unselect (ignore) all guidelines related to multimedia content.

 By object: we decide to focus the evaluation on a single object of the page
(the form F1, the action button Btn2, etc.), or a type of objects (Frames,
Tables, action buttons, etc.). In this case, we evaluate the guidelines related to
these objects only.

 By a set of guidelines: we evaluate the whole set of guidelines on the whole
page. This set can have guidelines issued from different sources.

 By a sub-set of guidelines: we choose to evaluate a sub-set of guidelines
(from one or more sources) on the whole page.

 By priority: we choose to evaluate sub-guidelines (evaluation sets) by
selecting a priority level: 1, 2, or 3.

 By Ergonomic Criterion: we select the ergonomic criteria (usability,
accessibility, etc.) or sub-criteria (consistency, flexibility, background
consistency, etc.) to be checked.

 Checking vs. Review: in guideline checking we evaluate if a guideline is
respected/violated, thus, if one guideline-related aspect is violated, we
consider that the guideline is violated, thus, will only have two possible result
values (respected, violated). In guideline review we examine to which degree a
guideline is respected/violated, thus, the result we be respect for some aspects
of the guideline and violation for others. The importance (priority) of aspects
determines the global evaluation result.

Having all the needed information, we wish to introduce a function named EVAL
that formalizes the expression of the evaluation result in function of some
evaluation parameters (selected guidelines, selected evaluation scope, etc.) that we
can use to configure an evaluation session.

124

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

The GDL allows us to define a very flexible evaluation function. We propose the
following evaluation parameters:

 Evaluation strategy parameters:
o By guideline: we select the list of guidelines to be reviewed in the

evaluated page. This can be done by the traditional way used in
most existing evaluation tools (separated sets of guidelines) or by
selecting a mixture of guidelines from the available guideline sets.

o Evaluation by Ergonomic Criterion: we select the ergonomic
criteria (usability, accessibility, etc.) or sub-criteria (consistency,
flexibility, background consistency, etc.) to be checked. The tool
then identifies the available guidelines related to these criteria.

o Evaluation by priority.
o Evaluation by page object: we select some objects (tables, fonts,

images, etc.). The tool identifies the available guidelines related to
these objects.

o Checking vs. Review.
 Efficiency Parameters:

o Capture all or N instances of evaluation sets during the parsing
phase.

o Evaluate all or N of the captured instances of evaluation sets
related to the selected guidelines.

o Stop the evaluation after detecting N violations of the same
guideline, or stop the evaluation after detecting N violations of the
evaluated guidelines. Of course, if we used stop parameters, the
parsing and evaluation steps must be executed simultaneously.
Notice that such stopping parameters are useful only if we want to
evaluate the page (for example, a standard responsible uses the tool
to see if the page or the site is conforming to a desired set of
guidelines). If we want to repair the page (ex. a designer is using
the tool to detect all ergonomic problems), the tool must detect a
maximum of the existing problems.

 All possible combinations of the above parameters: for example, we can
select to evaluate W3C guidelines related to images, evaluated all available
priority 1 guidelines but only priority 2 and 3 guidelines related to usability,
etc.

Notice that, whatever the parameters used, we will end by a list of guidelines to be
evaluated, thus, a list of the evaluation sets for which we will search the instances
in the evaluated page.

In order to define the EVAL function precisely, let:

 A Web page p.
 j=1,…, m guideline sources.
 i=1,…, n guidelines in a source.
 EVAL_SETi,j the set of evaluation sets associated to the guideline Gi,j and that

will be used for the evaluation of the evaluated page.

 INST_EVAL_SETi, j the set of captured instances of EVAL_SETi, j in p.

125

A Methodology for Automating Guideline Review of Web Sites

 EVAL_CONDi, j the set of k conditions associated to EVAL_SETi, j.

EVAL_CONDi, j = {EVAL_COND1i,j, EVAL_COND2i,j, … , EVAL_CONDki,j}

In guideline checking, we define the EVAL function as follows:
EVAL [p, EVAL_SETi, j] = Check(EVAL_CONDi, j{INST_EVAL_SETi, j})
 = {“Respected” | ”Violated”}

Where, the function Check consists in executing the evaluation conditions on the
captured UD.

In practice, the EVAL function checks the satisfaction of each ECi.j condition, and
then it combines the results to have the overall result for the guideline. Some
guidelines are "Respected" if the execution of all the corresponding evaluation
conditions, over all the captured instances of the evaluation sets associated with
the guideline, is positive. If at least one condition is negative, the corresponding
guideline(s) is considered "Violated".

We can formalize these evaluation results through the next three definitions.

5.5.1 "Respected" Guideline

We say that a page satisfies a guideline (i.e. the guideline is respected) if and only
if all conditions of this guideline are satisfied on all the instances of the guideline
related evaluation sets. Formally:

EVAL[P, Gi.j] = “Respected” ⇔ ∧ EVAL_CONDi, j {INST_EVAL_SETi, j} = TRUE

5.5.2 "Violated" Guideline

We say that a page does not satisfy a guideline (i.e. the guideline is violated) if
and only if at least one condition of this guideline is not satisfied. Formally:

EVAL[P, Gi.j] = “Violated” ⇔ ∃ k: EVAL_CONDki, j {INST_UESi, j}=FALSE
 ⇔ ∨ EVAL_CONDi, j {INST_EVAL_SETi, j} = FALSE

Notice that generally this is not accurate, because we do not distinguish between
violating a priority 1 ergonomic aspect or priority 3 one. A page that violates only
priority 3 aspects of a guideline could still be considered (very) good page.

In fact, the concept of evaluation function is inspired from [Leporini 2003].
Leporini conducted a study to define the usability of Web sites, in order to
improve their accessibility for “special users”, who are obliged to navigate on the
internet through screen readers. She proposed 19 criteria (general principles) and
54 checkpoints defining each criterion (technical solutions); then, she specified
possible ways of application of such criteria and checkpoints. Leporini defined a
formal EVAL function that takes one page, and returns the check results
computed by using her proposed checkpoints. The function result is the
application status of a criterion (thus the checkpoints needed to check it) to a Web
page. The result can be "Applied", "Not applied" and "To be reviewed".

The GDL enables a GDL-based evaluation tool to review guidelines in a flexible
manner. In fact, as we have structured guidelines in term of evaluation sets, we
can review these guidelines to generate more accurate result than just “Violated”,

126

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

“Respected”. To do this, we will need a quality model to balance the evaluation
result.

In the next section, we will present a simple quality model before formalizing the
result of the function EVAL in the case of GDL-based guideline review.

5.5.3 A Quality Model for the evaluation result

Using the above evaluation parameters allows us to define a kind of quality model
[Brajnik 2001; Brajnik 2002] to balance the evaluation result. Contrarily to the
binary model used by most existing evaluation tools (a guideline is violated? Yes
or No), we can use a weight concept to express the evaluation result. This weight
can be predefined as default values associated with the evaluation parameters.
And for more flexibility and customization ability, the evaluator should be able to
change these values before an evaluation session.

The simplest quality model is the following:

 All ergonomic criteria and page objects have the same weight. Thus, to respect
usability or accessibility or other criteria gives the same result. On the contrary
of this, we could say, for example, that in a given context, it is usability is
more important than accessibility. In this case, we could say that usability
criteria have more weight that accessibility ones.

 Priority (1) evaluation sets have a weight of 0.7.
 Priority (2) evaluation sets have a weight of 0.2.
 Priority (3) evaluation sets have a weight of 0.1.

So, let us define the EVAL function in the case of guideline review:

Let NBR_EVAL_SETi, j, 1|2|3 be the number of evaluation sets of priority 1|2|3 that must
be evaluated.

These sets are the result of considering all the evaluation parameters during the
phase of sets identification.

Let NBR_KO_EVAL_SETi, j, 1|2|3 be the number of evaluation sets of priority 1|2|3 for
which one or more instances were captured in the evaluated page and gave a
negative result (violation).

Let NBR_OK_EVAL_SETi, j, 1|2|3 be the number of evaluation sets of priority 1|2|3 for
which one or more instances were captured in the evaluated page and gave a
positive result (respect).

NBR_EVAL_SETi, j, 1|2|3 = NBR_KO_EVAL_SETi, j, 1|2|3 + NBR_OK_EVAL_SETi, j, 1|2|3

The positive evaluation result will be:

Rp=
0.1) X 3 j, SETi,(NBR_EVAL_0.3) X 2 j, SETi,(NBR_EVAL_0.7) X 1 j, SETi,(NBR_EVAL_

0.1 X 3 j, L_SETi,NBR_OK_EVA0.3 X 2 j, L_SETi,NBR_OK_EVA0.7 XAL_SET(NBR_OK_EV)()()1 j, i,

++

++

The negative evaluation result will be:

127

A Methodology for Automating Guideline Review of Web Sites

Rn=
0.1) X 3 j, SETi,(NBR_EVAL_0.3) X 2 j, SETi,(NBR_EVAL_0.7) X 1 j, SETi,(NBR_EVAL_

0.1 X 3 j, L_SETi,NBR_KO_EVA0.3 X 2 j, L_SETi,NBR_KO_EVA0.7 XAL_SET(NBR_KO_EV)()()1 j, i,

++

++

Such formula allows the simple classification of the evaluated page according to a
classification scale. For example, Rp<0.5 means bad page, 0.5<=Rp<.75 means good
page, and Rp>=0.75 means very good page. Such classification could be enough to
publish a list of top N usable sites, or for a webmaster who wants to have a rapid
estimation of the quality of designed pages before deciding to go into details
about usability problems.

Having all the needed information, the next section will discusses the limits of
automation of an evaluation based on the proposed methodology.

5.6 Feasibility of Automatic Evaluation
In this section, we will classify guidelines according to the automation level of
their evaluation with an evaluation tool adopting the proposed methodology.

In our evaluation context, we consider that a guideline can be evaluated if all the
information required to verify it are included in the source files: the HTML code.

Before giving our classification, we will examine some classifications that were
proposed by researchers in automatic evaluation in UIs.

5.6.1 ERGOVAL

ERGOVAL [Barthet 1994] is a theoretical evaluation method for measuring the
ergonomic quality of the WIMP UIs. This method corresponds to the checking on
the presentation of an interface of the compliance with the ergonomic rules
contained in the guides of recommendations.

In ERGOVAL, ergonomic rules are classified on an automation-level basis. It
considers that a rule can be automated, whatever the implemented methods, when
all of the information required to verify it, can be found in the system. Example:
"Any non-accessible action must be grayed". At a moment "t", it is virtually
possible to know all the actions that can not be accessed. It is also possible to
know whether the object of this action is grayed or not. All the information is in
the system, therefore the rule can be automated.

After this, rules are classified into two classes: Rules that require information
automatically retrievable whatever the implemented methods are, and rules that
require information not automatically retrievable whatever the implemented
methods are.

After that, each of these classes is devised in two sub-classes: Rules that require
information related to items included in the application and rules that require
information related to items not included in the application. For both classes, rules
are also classified based on the type of information required for running them. A
summary of these various classifications is shown in figure 5.6.

128

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

Figure 5.6: Automation-based classification of ergonomic rules in ERGOVAL

Table 5.2 shows how the rules are distributed for the above three main categories
[Farenc et al. 1996].

 Rules/presentation Rules/behavior Total (%)

Rules inherently
respected (1) 28 64 93 (22.9%)

Rules that can be
automated with source
files (2)

82 2 84 (20.6%)

Rules that can not be
automated with source
files (3)

161 69 230 (56.5%)

Total 271 135 406 (100%)
Table 5.2: Summary of the automation feasibility of the evaluation of ergonomic rules in
ERGOVAL

An example of a class (1) rule is "Labels for push buttons must be centered". An
example of a class (2) rule is "All boxes and windows must have a title". An
example of a class (3) rule is "For any input field, if there are any acceptable
values, such values must be displayed".

[Farenc et al. 1996] estimated that the minimum number of rules that can be
automated ERGOVAL is 44% (22.9% + 20.6%) rules that are automatically
verifiable using the resource files. Furthermore, the maximum percentage of
ergonomic rules that can be incorporated into a totally automated evaluation is
78%.

129

A Methodology for Automating Guideline Review of Web Sites

One of the main shortcomings explained by the above study is that only resource
files of the UI were supposed to be accessible and exploitable. In the case of Web
sites, it is highly expected that since HTML code is accessible and exploitable
(and not only the resources), more guidelines could be automatically evaluated.

5.6.2 WAI guidelines

The big advantage with web sites is that their HTML code can be downloaded and
examined remotely, which is not the case for traditional interactive applications. It
is therefore expected that the automated evaluation of web design guidelines will
go beyond the barrier of 44% thank to the code accessibility. In [Cooper et al.
1998], we find another study that evaluates the automation limits of WAI
guidelines [W3C 1999] by Bobby [Cooper 1999]. Bobby has three levels of
support for WAI guidelines: manual, partial, and full. Table 5.3 shows the
percentage of these levels [Cooper 1998].

Level/Support Manual Partial Full Total (%)
1 16 2 8 26 (35%)
2 14 18 2 34 (45%)
3 7 6 1 14 (20%)

Total 37 (50%) 26 (35%) 11 (15%) 74 (100%)
Table 5.3: Repartition of support level for WAI guidelines by Bobby.

If we sum up the partial and full support, we can reach the percentage of 50% of
guidelines automatically evaluated, which is only a little bit beyond the 44%
barrier.

5.6.3 ISO 9241 - 12

Another automation estimation of a specific set of guidelines is the classification
of the guidelines of section 12 of the standard ISO 9241 [Esselinckx 2000].
Essenlinckx studied the 97 guidelines of section 12 in order to determine what is
needed to incorporate these guidelines into an automatic evaluation tool. Inspired
by the classification of Farenc [[Farenc et al. 1996]], Esselinckx classified the
targeted guidelines as depicted in figure 5.7.

Some examples of the different categories are:

 Guidelines are not applicable to Web sites: if the same displayed
information is used by many users/operators in simultaneous interaction, it is
convenient to provide for every user a visually distinct cursor and/or a pointer.

 Web guidelines naturally respected: authorize the user to select the windows
format and to save it as default format.

 Guidelines easily implemented with HTML code: provide a unique
identifier for every window (ex. its title).

 Guidelines more difficult to implement with HTML code: it is convenient
that labels be grammatically coherent.

130

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

Figure 5.7: Classification tree of ISO 9241 - section 12 recommendations

Table 5.3 shows the classification result of ISO 9241 – 12 recommendations
[Esselinckx 2000].

Category
Number

of
Guidelines

Applicable
guidelines

(%)
Guidelines not applicable to Web sites 7 7
Guidelines naturally respected 22 24.4

Easily implemented with HTML code 19 21.1
More difficult implementation 17 18.9 Guidelines that

can be automated
Probably verifiable with some other files 8 8.9
Not verifiable because need semantic
content of elements 9 10 Guidelines that

cannot be
automated Not verifiable because need information

outside the interface 15 16.7

Total 97 100
Table 5.3: Classification of ISO 9241 – 12 recommendations

As a conclusion of this study, it is possible to automate the evaluation of up to
73% of ISO 9421-12 guidelines: guidelines naturally respected (24.4%) +
guidelines that can be automated (21.1%+18.9%+8.9%).

Now, let us try to see the automation limits based on the proposed evaluation
approach.

131

A Methodology for Automating Guideline Review of Web Sites

5.6.4 Automation limits of our approach

The classification based on our approach would have some common parts with the
one given in [Esselinckx 2000] because we are dealing with Web interfaces
(sites). Figure 5.8 depicts our classification of guidelines.

From our point of view, targeted guidelines can be:

 Concrete: the guideline expression makes clear reference to HTML elements.
Example, "Documents shall be organized so they are readable without
requiring an associated style sheet" [Section508].

 Abstract: in this case, we try to interpret the guideline in the targeted
evaluation context. Interpretation means re-expressing the guideline in
concrete way. Example, "Provide equivalent alternatives to auditory and
visual content" [W3C 1999].

 By definition, concrete or interpreted guidelines are theoretically verifiable
with HTML source code of the evaluated pages if we can find HTML
elements to verify the respect or violation of the guideline. If the evaluator
considers that the identified useful HTML elements are sufficient to evaluate
all the aspects of the guideline, then the guideline is said to be theoretically
totally verifiable, else, the guideline is said to be theoretically partially
verifiable. In fact, this level corresponds to the structuring of guidelines
(evaluation sets) in term of HTML elements.

 Theoretically verifiable guidelines can then be practically verifiable or not. A
guideline is said to be practically verifiable when we can provide a GDL
expression of the evaluation logic that must be applied on evaluation sets to
verify the guideline. As figure 5.10 shows (easy or more difficult
implementation), the possibility to provide an expression is related to its
availability and not to the difficulty of implementing it. When we cannot
provide any evaluation expression, we consider that the guideline is not
practically verifiable.

 It is probable that, although we find HTML elements to structure a guideline,
we cannot implement the evaluation of all these elements. In this case, the
guideline is said to be practically partially verifiable, else, it is practically
totally verifiable. For example, in the case of our example about color, we
consider that the interpreted guideline is practically verifiable because we
used the research results of Murch, but it is partially verifiable because these
results concern basic 8 colors only.

Notice that a guideline status may change for many raisons like:

 New research results that enable the expression of some old-non expressible
evaluation logic.

 New technologies that provide new possibilities of reflecting the guideline
semantic in Web pages or new possibilities to touch more content of the
evaluated page.

 The HTML experience of the person in charge of structuring the guideline, or
his/her interpretation of the guideline semantics.

132

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

Figure 5.8: Automation-oriented classification of guidelines according to the proposed evaluation
approach

As a conclusion, we can give estimation of the evaluation automation limits of our
approach based on the above Web-related studies (Bobby, ISO9421). In fact, each
of these studies dealt with a single set of guidelines, which is not our case. We
propose an approach to automate evaluation of any Web guideline as soon as it is
possible to evaluate it with HTML code only; therefore, a tool based on our
approach is theoretically able to automate the evaluation of:

 All Bobby fully automatable guidelines because their evaluation is
theoretically and practically totally feasible.

133

A Methodology for Automating Guideline Review of Web Sites

 All the ISO 9421-12 naturally respected guidelines and automatable
guidelines.

 For the remaining guidelines, like those partially supported by Bobby, the
estimation of their automation levels depends on the interpretation context.
Contrarily to our approach, Bobby does not consider contexts, therefore, some
of these guidelines can be considered totally supported in some contexts.

Therefore, we estimate that our approach is theoretically able to go beyond the
Bobby limits. To confirm this supposition, we need to apply the approach on a
sufficient number of guidelines partially supported by Bobby.

5.7 Summary
In this chapter we presented the detailed syntax of a formal language to support
the proposed methodology by formalizing the definition of Web usability and
accessibility guidelines based on the concepts of the framework of chapter 4 in
addition to some other concepts related to the operationalization of the
framework’s concepts in the context of Web automated evaluation.

The chapter provided the GDL with respect to:

 Its semantics;
 Its abstract syntax that can be used to implement a general GDL interpreter.
 It concrete (XML-compliant) that specifies the GDL DTD.

A deep examination of the GDL syntax should enable us to highlight the
advantages underlined in the summary of chapter 4:

 The flexible structure of a formal guideline: HTML elements, evaluation sets,
operations in evaluation conditions, etc., in addition to other information like
stop values and messages, enable us to practically have good control of the
evaluation process. An important and direct result of this flexibility is the
ability to provide very customizable evaluation reports: by page, by (sub)
guideline, by object, by ergonomic criteria.

 The examples provided all over this chapter give a proof-of-concept of the
feasibility of the approach and the ability to evaluate complex guidelines. This
fact will be reinforced in next chapter by applying the approach on various
types of guidelines.

In addition, we can now underline the following advantages:

 Evaluators do not need to have detailed knowledge about the HTML elements
and conditions that need to be evaluated for each guideline. However,
provided that an expert structures and verifies the correctness of guidelines,
the structured guidelines can be used broadly by other evaluators. This is
facilitated by using XML to specify structures. Normally, it is the
responsibility of human factors expert to formalize the guidelines.

 Meta evaluation conditions and operations provide a powerful mechanism to
improve evaluation of relatively similar guidelines. This improvement is very
likely to be exploited because existing well established guideline sources (like
W3C, ISO, and Section508) are composed of very similar guidelines, and it is

134

Chapter 5 A Formal Language for Evaluation-Oriented Definition of Web Guidelines

generally desired to consider all these sources in order to have sites of high
ergonomic rating.

 Using a quality model to balance the evaluation result enables the evaluator to
manimize the subjectivity of the evaluation.

135

	Introduction
	The syntax
	The semantics
	Aims of the GDL
	Models of a GDL specification

	Semantics of the GDL
	GUIDELINE
	Example

	INTERPRETED_GL
	Example

	INTER_CONTEXT
	Example

	FORMAL_GL
	HTML_ELEMENT
	Example

	EVALUATION_SET
	USER_VALUE
	EVALUATION_CONDITION
	META_VARIABLE
	OPERATION
	Example

	ARGUMENT
	Example (for the operation IN (bgcolor ,MurchColors))

	ACTION
	Example (for the operation IN (bgcolor ,MurchColors))

	XML in a nutshell
	XML Documents
	XML Tags
	Document Type Definitions (DTDs)
	XML Trees
	Element Declarations
	Child Elements
	Sequences
	The Number of Children
	Choices

	Attribute Declarations
	Attribute Types
	CDATA
	Enumeration
	ID
	IDREF
	IDREFS

	Attribute Defaults

	Parameter Entities

	GDL restrictions caused by XML

	Specification of GDL-compliant structure for a Web guideline
	Scope of the specification
	Organization of the specification
	Abstract and concrete syntaxes
	EBNF abstract Syntax
	XML Concrete Syntax

	A GDL specification
	Abstract Syntax
	Concrete Syntax

	Guideline
	Abstract syntax
	Concrete Syntax
	Example

	Interpretation
	Example

	Formal Guideline
	Example

	Evaluation Structure
	HTML Element
	Example

	Evaluation Set
	Example

	Set Exclusion
	Example

	Evaluation Logic
	User values
	Concrete Syntax

	Predefined Simple Data Types and Operations
	Example
	BOOLEAN
	INTEGER
	FLOAT
	HEX (Color)
	STRING

	Predefined Constructed Data Types and Operations
	The Set Type Constructor (SET)
	Example

	The Cartesian product type constructor (CP)
	Example

	The Sequence type constructor (SEQ)
	The Table type constructor (TABLE)
	Example

	Evaluation Conditions
	Meta evaluation Condition
	Operations in evaluation conditions
	Example

	Direct Evaluation Condition
	Example

	Mapped Evaluation Condition

	Evaluation function
	"Respected" Guideline
	"Violated" Guideline
	A Quality Model for the evaluation result

	Feasibility of Automatic Evaluation
	ERGOVAL
	WAI guidelines
	ISO 9241 - 12
	Automation limits of our approach

	Summary

