
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Methodology for automating web usability and accessibility evaluation by guideline

Beirekdar, Abdo

Award date:
2004

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 05. May. 2024

https://researchportal.unamur.be/en/studentTheses/af3adca1-c6f7-4581-aea8-8ce5989cc94b

A Methodology for Automating Guideline Review of Web Sites

Chapter 6

Tool-Suite for Automated Web
U&A Evaluation

6.1 Introduction
In this chapter we will focus our attention on the tools we are developing as a
support for the proposed methodology. We start in section 6.2 by precising the
requirements of them and describing their global architecture. In section 6.3 we
describe a possible implementation of this architecture. The development of these
tools is not finished yet; we will identify what is done and what is not.

The integrated set of tools is baptized KWARESMI1 (Knowledge-based Web
Automated Evaluation with REconfigurable guidelineS optiMIzation)].

6.2 Requirements and Architecture
KWARESMI is supposed to meet the following requirements [Beirekdar et al.
2002a, Beirekdar et al. 2003, Smith and Howes 2001]:

 Be knowledge-based: it exploits the ergonomic knowledge contained in
ergonomic guidelines and re-expresses it in terms of HTML knowledge
contained in the semantic of HTML elements.

 Be Web-oriented: it works on HTML code of Web pages as their HTML code
is accessible, which is not always the case for other user interfaces.

 Be automated: it should release evaluators from as many evaluation tasks as
possible whether theses procedures can be automated.

 Be reconfigurable: to address shortcomings of existing tools, the tool enables
evaluators to control both the guidelines inclusion and the evaluation process.

 Enable guidelines evaluation efficiency: it should identify potential common
ergonomic information among different guidelines. This information should be
used to improve evaluation of these guidelines.

 Support the GDL formal language: the development of these tools was
triggered by the need for a support for the guideline structuring language that
we proposed.

By meeting these requirements, the KWARESMI would overcome the major
shortcomings of existing automated UAE tools. It is worth noting that

1 Historical note: Al-Kwaresmi was an outstanding Arabian mathematician who lived around the
tenth century. He translated several Indian works on algebra and introduced many new concepts in
mathematics. Among these concepts is the “algorithm”, which is pronounced Kwaresmia in
Arabic.

134

Chapter 6 Tools for Automated Web U&A Evaluation

KWARESMI is intended to enable the evaluation of any ergonomic guideline (for
usability, for accessibility, for WebTV, etc.) as soon as we can find HTML
elements that enable the evaluation of this guideline partially or totally. Therefore,
the evaluation should not be restricted to specific types of guidelines.

Figure 6.1 depicts the task model of the tasks and sub-tasks that can be
accomplished by the tools to evaluate a guideline. We identify the following
tasks:

 Prepare the guideline: this task concerns the structure of the guideline. We
have one of two tasks to accomplish:

o Structure guideline: if the guideline is not already structured, we
need to structure it in a GDL-compliant form.

o Load the structure: if this structure already exists.
 Prepare the evaluation: this task concerns the configuration of the evaluation

session. We have two optional tasks to accomplish. These tasks are optional
and a default configuration will be used if the evaluator skips them:

o Select evaluation sets: as evaluation sets correspond to specific
aspects of the guideline, we can select the sets to be considered in
the parsing and evaluation phases. It is worth recalling that parsing
the Web page is based on the evaluation sets: the parser captures
usability data related to these sets only.

o Configure parsing and evaluation phases: a tool based on our
approach should enable the evaluator to have high control level of
the parsing and evaluation phases. This sub-task concerns the
selection of some configuration parameters provided by the tool.

 Conduct evaluation: after doing all the needed preparations, the evaluator can
start the evaluation of a Web page. To do so, he needs to accomplish the
following sub-tasks:

o Locate the Web page: we can evaluate local HTML pages or online
Web pages. In the first case, the evaluator needs to browse the
local hard disk to find the page. In the second case, the evaluator
needs to provide the URL of the page and the tool will crawl it
(download it locally).

o Parse the page: the end of locating the page triggers the GDL
parser that will use the evaluation sets and the parsing parameters
to scan the page and capture usability data. When it ends, it calls
the evaluation module (GDL evaluator).

o Evaluate the page: the evaluator checks the captured data using the
evaluation conditions and the evaluation parameters and generates
an evaluation report. The end of this sub-task triggers the report
editor.

o Visualize the evaluation report: the generated evaluation report can
be consulted under different details levels of the report (see only
errors, see passed tests, see statistics about the errors, etc.).

135

A Methodology for Automating Guideline Review of Web Sites

136

Chapter 6 Tools for Automated Web U&A Evaluation

Figure 6.2 depicts the global architecture of KWARESMI. The proposed tools are
aimed at supporting the tasks of figure 6.1.

KWARESMI
Coordinator

GDL
Editor UI

GDL
Viewer UI

Page
Locater UI

Report
Viewer UI

GDL
Editor

GDL
Viewer

KWARESMI
Repository

Configuration
module UI

Config.
Module

XML

Config

Structure guideline

Load guidelineStructure

Configure parsing/

evaluation phases

Evaluate PageCon
su

lt e
va

lua
tio

n

rep
ort Page

Locater
GDL

ParserPage

GDL
specification

GDL
specification

Config.
parameters

UD

GDL
Evaluator

Report
Viewer

Figure 6.2: Global architecture of KWARESMI

As figure 6.2 shows, a central module plays the role of coordination between the
front end components (the GUI) and the back end components of KWARESMI.
This modeling is very close to the MVC model and thus, it enables a clear
separation between the acquisition of data and its treatment. In addition, it
facilitates the reuse of individual modules separately.

The coordinator (obliges) the user to follow the steps of the underlying
methodology by presenting a sequence of input dialog boxes corresponding to
these steps. The GDL editor allows the human factor expert to introduce
information about the original guideline, its potential interpretations (at least the
default one), and the formal structure of the guideline or the interpretations. GDL
viewer allows the evaluator to load existing structures. The configuration
module enables the evaluator to parameterize the parsing and evaluation phases
of the evaluated Web pages. After providing all the needed information, the
evaluator can start evaluating Web pages by locating them locally or remotely via
the page locater. The evaluation starts by scanning the page by the GDL parser
who uses the parsing parameters and the GDL structure of reviewed guidelines to
scan the page and capture related usability data. This data is then sent to the GDL
evaluator who, according to the evaluation parameters and evaluation conditions
of the GDL structures, checks the data and generates an evaluation report and
delivers it to the report viewer. The report viewer enables the evaluator to see the

137

A Methodology for Automating Guideline Review of Web Sites

report content under many views (sort errors, show errors and/or passed tests,
show evaluation statistics, etc.).

6.3 Implementation and Application
The current prototype of KWARESMI is implemented in Java Swing (jdk1.5).
The repository is not implemented yet. At the moment, structures are introduced
manually via a text editor and are saved as standalone XML files.

Following is the presentation of the different KWARESMI modules. We will
present them with direct application of implemented ones on some guidelines of
chapter 6.

The choice of Java is mainly motivated by the following:

 Java is now widely used for different kinds of applications, and sophisticated
Java (free and commercial) IDEs are widely available.

 Java provides high support for XML: parser, generator, convert XML-HTML,
etc.

 Java is naturally portable which enables us to deploy the same code on
different platforms.

 Java is the best candidate to develop a next-step online version of
KWARESMI without big modification of the local version.

As for the KWARESMI repository, MySQL seems to be the best candidate:

 MySQL is a full-featured relational database management system.
 MySQL is portable: it has been ported to almost every platform. This means

that you don't have to change your main platform to take advantage of
MySQL. And if you do want to switch, there is probably a MySQL port for
your new platform.

 MySQL also has many different application programming interfaces (APIs).
They include APIs for Perl, TCL, Python, C/C++, Java (JDBC), and ODBC.

 The MySQL database is available at no cost under the GPL open source
license.

 MySQL is a very robust database server. It has advanced security measures. It
also provides high speed and flexibility levels.

Next, we are going to present the different modules presented in figure 6.2. We
will give screen shots of the implemented ones, and present possible designs for
non implemented ones.

6.3.1 GDL editor (Not implemented)
We started implementing this module with a database support, but we did not
continue because the introduction of evaluation conditions seemed very
complicated. We preferred to introduce the specification manually in order to
focus our attention on the parsing and evaluation phases. Figure 6.3 and 6.4 show
the implemented windows corresponding to the introduction of the guideline and
its interpretations, and the specification of evaluation sets. Figure 6.5 depicts a

138

Chapter 6 Tools for Automated Web U&A Evaluation

possible window for conditions specification. These windows have some
incompatibility with the latest version of the GDL.

Figure 6.3: Structuring phase -Window1 (will be redesigned): introduce information about the
guideline, the interpretation of this guideline if needed, and about the interpretation context. If a
formal structure of the original guideline or of its interpretation is already stored in the database,
we can load it and pass directly to the next phases.

After providing guidelines information, we specify the formal guideline
associated to every interpretation. The formal guideline is composed of two major
parts: elements related to structuring information (Figure 6.4) and elements
related to evaluation logic (Window 6.5).

139

A Methodology for Automating Guideline Review of Web Sites

Figure 6.4: Structuring phase - Window2 (will be redesigned): evaluation sets. The editor
provides some help by providing the user with the list of all available HTML tags and attributes.
He constructs the evaluation sets from HTML elements. During this construction, he provides a
default priority level for the evaluation set and the scope of every set element (whole evaluated
page or within an element of the same evaluation set). He can also provide a set name and short
description to clarify the purpose of the set. Every set is assigned an identifier generated
automatically by the tool. After specifying the evaluation sets, the user can specify exclusion
relationships among them.

When all the evaluation sets are defined, the user can go to next step to specify the
evaluation logic that consists of evaluation conditions (Meta, mapped and direct
ones).

140

Chapter 6 Tools for Automated Web U&A Evaluation

Figure 6.5: Structuring phase - Window3 (Draft, not implemented): evaluation conditions.

6.3.2 GDL Viewer (Implemented)
This module enables the user to load and visualize guidelines structures. As
structures are currently saved as separate XML files, the viewer uses the java
XML parser SAX and some auxiliary classes of the packages javax.xml.parsers,
org.xml.sax, and org.xml.sax.helpers to parse the XML file and extract the
structure. The structure is then displayed in the view window (Figure 6.6). The
viewer enables the evaluator to select and unselect guidelines or interpretations, to
see the evaluation sets of an interpretation, and to select/unselect evaluation sets.

141

A Methodology for Automating Guideline Review of Web Sites

Figure 6.6: GDL Viewer. The evaluator can sort guidelines according to their source, to related
ergonomic aspects (information provided in the guideline definition), and by the objects targeted
by the guideline. When selecting an interpretation, the composing evaluation sets are displayed.
The evaluator can select to evaluate a whole interpretation of some of its evaluation sets.
Advanced parameters enable the evaluator to define selection parameters for all the guidelines in
the same time: selection by priority (1,2,3) and by objects.

6.3.3 Configuration module (Not implemented)
This module enables the evaluator to configure the parsing and evaluation phases
(Figure 6.7).

142

Chapter 6 Tools for Automated Web U&A Evaluation

Figure 6.7: Configuration module.

6.3.4 Page locater (Implemented)
This is a very simple module (Figure 6.8). To locate the Web page on the hard
disk it calls the predefined Java file browser dialog box. To locate a remote Web
page we just need to introduce its correct URL in an edit box. In the later case, the
locater calls an auxiliary module to download the Web page and save it in a
temporary local file. That task of the locater ends by calling the GDL parser to
start its task.

Figure 6.8: the page locater.

6.3.5 The GDL parser (Implemented)
This (invisible) module is currently able to parse a Web page to capture needed
data for the evaluation of selected guidelines, but there is no support for
evaluation improvements offered by the GDL. The parser needs to do a single

143

A Methodology for Automating Guideline Review of Web Sites

forward scan of the Web page, which is an advantage of our tool over many
existing tools that need generally to scan of the page more that once.

6.3.6 The GDL evaluator (Implemented)
This is the core module of KWARESMI. It is currently able to evaluate many
guidelines in the same time but on a single Web page. As for the parser, the
current evaluator has no support for improvement possibilities offered by the
GDL. It examines all the instances of an evaluation set and applies the associated
evaluation condition of each of them. It generates an evaluation reports and
delivers it to the report viewer to present it to the evaluator.

6.3.7 The report viewer (Implemented)
This module allows the visualization of the evaluation report by the evaluator
(Figure 6.12a). The evaluation report contains also some statistics about the
evaluation, particularly the evaluation results (Rp, Rn), the number of passed tests
and the non-passed tests (Figure 6.12b).

6.4 Case Study
Here we use the current KWARESMI version to evaluate the guideline: "Provide
equivalent alternatives to auditory and visual content" [WAI 1999] on the page
www.info.fundp.ac.be (Figure 6.9).

Figure 6.9: www.info.fundp.ac.be

6.4.1 Guideline Structuring
The first thing to do is to specify the GDL structure of the guideline. As the GDL
editor is not implemented yet, we use any other editor (text or XML) to

144

http://www.info.fundp.ac.be/
http://www.info.fundp.ac.be/

Chapter 6 Tools for Automated Web U&A Evaluation

accomplish this task (figure 6.10). the detailed specification process is given in
annex B.

Figure 6.10: a freeware XML editor (©Peter Reynolds, available at www.iol.ie/~pxe)

Now that we have the structure, we can start the KWARESMI viewer to do many
things:

6.4.2 Structure visualization
We use the viewer to localize and load the structure. We can then discover its
content (interpretation and evaluation sets) and start configuration be deselecting
non interesting ones (Figure 6.11).

As advanced parameters are not implemented yet, we pass directly to the
evaluation phase.

6.4.3 Page evaluation
We use the page locator to provide the URL of the targeted page:
http://www.info.fundp.ac.be, and to call the evaluation module. This module:

 Scans the page,
 Captures data related to the selected evaluation sets,
 Applies evaluation logic on them, and
 Generates the evaluation report.

145

http://www.iol.ie/~pxe
http://www.info.fundp.ac.be/

A Methodology for Automating Guideline Review of Web Sites

Figure 6.11: Visualization of structure's content (interpretation and evaluation sets)

The evaluation report in our case is shown in figure 6.12a,b.

146

Chapter 6 Tools for Automated Web U&A Evaluation

Figure 6.12a: Presentation of an evaluation report by the report viewer. The evaluator can save the
report in a text file, and he can visualize a saved evaluation report. The evaluator can also see the
operations (as specified in the formal structure) that the evaluation module executed to generate
the result. This is useful when testing the provided structure on some page examples to verify the
correctness of the evaluation logic.

Summary
This chapter presented a prototype of the KWARESMI evaluation system. By
examining the requirements at section 6.2 and the presented modules, we can say
that the current version meets many of them partially or fully, and proves the
ability of a complete version to meet them.

 Be knowledge-based: the guideline structure makes the link between the
natural ergonomic knowledge and formal structure mainly based on
manipulating HTML elements to re-express the semantics of the guideline.

 Be Web-oriented: all the usability data is captured from HTML code only.
 Be automated: many of the evaluation related tasks are already highly

automated: examination of the HTML code (parsing), analysis of the code

147

A Methodology for Automating Guideline Review of Web Sites

(evaluation), writing of evaluation report (generated automatically) and
computation of evaluation statistics.

 Be reconfigurable: GDL viewer, configuration module, and report viewer
show a lot of configuration possibilities at many levels.

 Enable guidelines evaluation improvement: not proved yet but potentially
feasible.

 Support the GDL formal language: almost all the modules are directed by
information from GDL-compliant guidelines structures.

A lot of work is still needed to obtain a stable and fully functional version of
KWARESMI, but the first results are promising.

Figure 6.12b: statistical information about the evaluated Web page. We can see that we detected
131 instances of simple images, and that all of them are ok. The final result shows the positive
rating of the page according to a simple quality model: positive Rp=(Nbr of OK instances/Total of
instances), and negative Rn=(Nbr of KO instances/Total of instances)

148

	Introduction
	Requirements and Architecture
	Implementation and Application
	GDL editor (Not implemented)
	GDL Viewer (Implemented)
	Configuration module (Not implemented)
	Page locater (Implemented)
	The GDL parser (Implemented)
	The GDL evaluator (Implemented)
	The report viewer (Implemented)

	Case Study
	Guideline Structuring
	Structure visualization
	Page evaluation

	Summary

