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Dynamique globale des débris spatiaux géosynchrones caractérisés par de grands
rapports aire-sur-masse

par Stéphane Valk

Résumé :Le travail effectué dans cette thèse s’appuie sur le développement d’une méthode
semi-analytique (basée sur le concept de mouvement moyen) particulièrement bien adaptée à
l’étude à long terme des débris spatiaux situés au voisinagede l’orbite géostationnaire. Deux
approches sont développées en parallèle : la première consiste à donner une solution alter-
native aux problèmes induits par les singularités rencontrées pour les orbites circulaires et
équatoriales et à proposer une approche hamiltonienne de lamodélisation de la résonance géo-
stationnaire. La seconde, suite à la découverte de la nouvelle population de débris spatiaux avec
grands rapports aire-sur-masse, étend la méthode de base, en tenant compte d’une modélisation
adaptée de la pression de radiation solaire, dont les effetsprincipaux sont mis en évidence par
l’étude du mouvement à long terme des vecteurs excentricitéet inclinaison. De plus, toujours
à long terme, les effets induits par l’ombre de la Terre sont intégrés dans le modèle au moyen
d’un algorithme spécialement développé à cet effet. Finalement, une étude systématique de
la stabilité des débris spatiaux proches de l’orbite géostationnaire avec grands rapports aire-
sur-masse est effectuée, au moyen d’un indicateur de chaos,le MEGNO, basé sur le concept
de système d’équations aux variations et met en évidence certaines zones spécifiques de la
dynamique.

Global dynamics of geosynchronous space debris with high area-to-mass ratios
by Stéphane Valk

Abstract: This Ph.D. thesis is devoted to the development of a specific semi-analytical algo-
rithm especially well-suited to derive the long-term evolution of near geosynchronous space
debris and based on the concept of mean orbital motion. In a first approach, the semi-analytical
theory is concerned with the singularity issues arising forcircular and equatorial orbits as well
as with the geostationary resonance modeling. In a second part, motivated by the discovery
of high area-to-mass ratios space debris in high altitude Earth’s orbit (mostly near the geosyn-
chronous region), the direct radiation pressure models arerevisited and completed. Within this
context, the main effects of the direct solar radiation pressure for the mid- and long-term evo-
lution of both the eccentricity and the inclination vectorsare analyzed through a well-suited
model. Moreover, by means of a smart extension, the passage in the Earth’s shadow is taken
into account in the computations of the orbits. Finally, a further insight into the intrinsic sta-
bility of such space debris is performed, by means of a recentnumerical technique (MEGNO)
which is based on the concept of “variational chaos indicator”.

Dissertation doctorale en Sciences mathématiques (Ph.D. thesis in Mathematics)
Date : 19-06-2008
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Unité de Systèmes Dynamiques
Promoteur (Ph.D. Advisor) : Prof. A. LEMAÎTRE





First there was the “Big Ocean Theory”,
which basically meant that the ocean
was so big that humans could dump any
amount of waste into it without envi-
ronmental consequence. Of course, that
theory has proven to be false as ocean
ecosystems today suffer from dying coral
reefs and fish populations poisoned with
mercury and other pollutants. Next came
the “Big Atmosphere Theory”, which
assumed that we could belch out billions
of tons of air pollution and carbon dioxide
from our smoke stacks and tail pipes
without environmental repercussions. We
all know how that idea has impacted the
planet : air pollution, acid rain, ozone
depletion and global warming. Now we
have a “Big Space Theory”, namely, that
space is so big that the waste we create
in it will cause no harm. That’s right
folks, fifty years after Sputnik launched
the space age, humans have turned space
into yet another junk yard, with millions
of pieces of man-made debris orbiting
the Earth. The space debris problem
is becoming so critical that space may
become too trashed to use at all. What
the world needs now, before it becomes
too late, is an environmental movement in
heaven : Space Ecology.

By Lynda Williams, 2007
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Introduction

The present near-Earth space environment is the result of a few more than 50 years of space
activities. The well-known first artificial satellite,Sputnik 1, has been launched in October
1957 by the Soviet Union (USSR). Since that time, space exploration constantly kept on pro-
ducing significant amounts of man-made objects in space. Actually, the near-Earth region was
probably the only close environment which remained unspoiled by human activities. One can
feel the uneasiness brought by such a statement.

The space debris issue is unquestionably a growing concern.Indeed, orbital debris gener-
ally move at very high speeds relative to current operational satellites. At this velocity, even
a small particle contains significant kinetic energy and momentum to damage or even destroy
functional satellites during an impact1. Collisions between satellites and debris have already
been observed. One of the first unintentional collision in space history occurred on July 1996
when a fragment of about 10 cm2 (coming from the explosion of an Ariane rocket upper stage
launched ten years before) hit the French satelliteCeriseat the relative velocity of 14 km/s
(Alby et al., 1997; Rossi, 2005).

Even more recently, the space debris concern has been put forward after the successful
deployment of an anti-satellite (ASAT) missile by the People’s Republic of China. Indeed,
in January 2007, the 880 kg weather spacecraftFengyun-1C, launched in 1999 into a sun-
synchronous orbit with a mean altitude of about 850 km, has been deliberately destroyed over
central China without any legal consequence (Pardini and Anselmo, 2007). This break-up pro-
duced around 2 600 debris, mostly larger than 10 cm (Orbital Debris Quarterly News, January
2008), thereby increasing the total amount of cataloged space junk by about 20%. The gener-
ated debris cloud currently crosses the orbits of many satellites in low-Earth orbit, increasing
the hazard of debris collision by over 15%. For the sake of completeness, we ought also to
mention that this event is not unprecedented. Indeed, the space exploration history reveals
that anti-satellite weapons date back to the 1960s with the US and USSR separately engaging
in the development and deployment of such space weapons. In particular, a successfulASAT
test was performed by the United States in September 1985. During this event, the spacecraft
Solwind P78-1was destroyed by an anti-satellite missile which was launched from a fighter
aircraft along the Californian coastline, producing about285 space debris of significant size

1To gain insight on this point, let us note that a 1-g mass travelling at 10 km/s has approximately the same
kinetic energy as a 100 kg mass travelling at 100 km/h.

1



2 Introduction

(Klinkrad, 2006).

For all theses reasons, the space debris problematic has rapidly become a major matter of
concern which in turn has been extensively investigated by the scientific community over the
past few years. Currently, the space debris investigationsare essentially performed by using
models which provide a mathematical description of the distribution of objects in space, the
motion and flux of objects and their physical characteristics. These models are said to be statis-
tical if they are devoted to the characterization of a large set of debris by a sample of objects.
The models are deterministic if each object is described individually by its orbital elements
and physical characteristics. Anyhow, most of these modelsare actually conceived within the
context of a complete numerical integration of the equations of motion, regardless the compu-
tational performances. Moreover, while numerical integrations are especially straightforward
and efficient when deriving a particular solution of a differential system of equations, they fail
in providing a complete or general solution in order to give aclear understanding of the phys-
ical nature of the dynamics.

On the contrary, this Ph.D. thesis largely focuses on the development of a specific deter-
ministic theory which extensively takes advantages of several concepts derived from Celestial
Mechanics. Among others, we can mention, an adapted Hamiltonian formalism coupled with
the well-known symplectic Lie algorithm, the resonance concerns as well as the mean orbital
motion theories. This theory can therefore be applied to derive the evolution of specific space
debris over time scales as high as several decades, while giving a detailed interpretation of the
observed dynamics.

We now give a brief description of the contents of this thesisproject and the contributions
included therein.

Contributions and structure of the manuscript

Chapter 1 gives an introduction to the space debris problematic. In particular, we shortly define
the concept of space debris which is followed by a description of the current space debris pop-
ulation. Subsequently, this chapter is also devoted to givefurther insights into the all-important
geostationary region which will actually be the backgroundand the major concern of our re-
search work. In addition, we will give a general survey of thenew unexpected population
of space debris that has been discovered recently near the geostationary region on behalf of
European Space Agency. As a matter of fact, these objects turn out to be fairly exceptional.
Indeed, these space debris are presumably characterized byboth a large outermost area and a
very small weight. These space debris are said to be marked byhigh area-to-mass ratios.

Chapter 2 is mostly devoted to the development of a specific theory which is intended
to give the long-term description of an arbitrary space debris located near the geostationary
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ring2. This chapter is effectively far from being exhaustive and is essentially devoted to give
the outline of the so-called semi-analytical theory that will be discussed, extensively used and
improved in the following chapters. In particular this semi-analytical theory is based on the
concept of mean orbital motion. In this field, what is of special relevance is not the complete
description of the motion but the prediction of an approximate position at a given time while
improving considerably the computational performance of the algorithm. On the other hand,
this chapter is also concerned with the singularity issues arising for circular and equatorial or-
bits as well as with the challenging resonance modeling for which we propose a well-adapted
solution. The results of Chapter 2 have been previously submitted in Valk et al. (2007a).

As a result of the unexpected discovery of high-area-to-mass ratio space debris, we seized
the opportunity to extend our semi-analytical theory by including the solar radiation pressure
acceleration which is assumed to be the major perturbation experienced by those space debris.
This extension is developed in Chapter 3 and is especially intended to derive the main effects
of the direct solar radiation pressure by analyzing the mid-and long-term evolution of both
the eccentricity and the inclination vectors. In addition,we also emphasize the importance of
adopting a well-suited solar radiation pressure modeling when deriving the motion of these
unfamiliar space debris. The results of Chapter 3 have been previously published in Valk et al.
(2007b).

The main objective of Chapter 4 is dedicated to an extension of the solar radiation pres-
sure modeling. This extension gives an improvement of the theory developed in Chapter 3
by taking into account the long-term effects induced by the Earth’s shadow. In this approach,
the perturbations accounting for the direct solar radiation pressure with the Earth’s shadow
are computed on a revolution-by-revolution basis, retaining the original unexpanded form of
the so-called shadow function. This latter approach is alsogeneralized into a convenient non-
singular formalism, particularly appropriate for both near-circular and near-equatorial orbits
as well as for orbits which transit periodically around nulleccentricities and null inclinations.
As an application, we propose to apply this algorithm in order to give further insight into the
dynamics of high area-to-mass ratio space debris that are subject to the Earth’s shadowing ef-
fects. The results of Chapter 4 have been previously published in Valk and Lemaître (2008).

Besides the above-mentioned semi-analytical investigations, we also propose to study the
stability of the high area-to-mass ratio space debris. These investigations are performed by
using a recent numerical technique that is based on the concept of “variational chaos indica-
tor”. This method is especially devoted to the investigation of both the regular and chaotic
components of the phase space. The results, which are given in Chapter 5, provide an accurate
understanding of the location of both the stable and unstable orbits as well as the time scale
of their exponential divergence in case of chaotic motion. In addition, we also perform some
additional frequency analysis investigations in order to give a insightful understanding of the

2Let us remark that “space debris” is commonly considered as aplural. However, in this manuscript, the
expression “a space debris” will be regularly used as “a piece of space debris”.
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structures appearing in the phase space. The results of Chapter 5 have been previously submit-
ted in Valk et al. (2008).

Finally, we conclude this manuscript by giving a summary of the work accomplished so
far and by suggesting some possible outlooks for future research.

Let us also mention the work introduced in Appendix H, and which was initially devoted to
the orbital determination of near-Earth asteroids. This work is mainly intended to the so-called
Admissible regionwhich can be computed as part of an orbital determination process, even
if the complete set of six orbital elements can not be derived. In particular, we dedicate this
work to the investigation of some important aspects relatedto the admissible region and to its
refinement for the short distances with respect to the Earth.This work is all the more important
as it has been recently extended to the main problem of orbit determination of the space debris
population. The results of Appendix H have been previously published in Valk and Lemaître
(2007a).
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PRELIMINARY





Chapter 1

A brief overview of space debris

“Space debris are all man-made objects, including their fragments
and parts, whether their owners can be identified or not, in Earth
orbit or re-entering the dense layers of the atmosphere thatare
non-functional with no reasonable expectation of their being able to
assume or resume their intended functions or any other functions for
which they are or can be authorized.”

United Nations, New York, 1999 (UN, 1999)

1.1 What are space debris ?

Orbital space debris generally refer to man-made objects which are in Earth’s orbit as the re-
sult of space missions, but are no longer serving any useful purpose. The sources and the
characteristics of such “space junks” are highly diversified. For instance, regarding the largest,
these objects come in the form of rocket upper stages, defunct satellites and various mission
related debris such as discarded equipments released during extra-vehicular activities, sensors
caps, momentum flywheels used to stabilize the spacecrafts attitude, etc., to name only a few
of them. In addition, the space debris population also includes smaller objects (centimeter-
up to meter-sized) such as fragments created by the break-upof satellites and rocket upper
stages but also millimeter-sized particles coming from material degradation as a result of solar
heating and solar radiation, as well as solid rocket motor slag.

For the sake of completeness, it is worth noting that the official definition of space debris
also includes re-entry objects, which are captured by the Earth’s atmosphere. Actually, more
than 60% of the objects which have been launched since the beginning of the space age have
decayed by burning into the atmosphere, even though some of them are known to have survived
reentry and crashed down on Earth. Typically, one “larger” man-made cataloged space debris
is known to fall back on Earth every day (Schildknecht, 2007).

7
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1.2 The current space debris population and its sources

Nowadays, as a consequence of a systematic and regular spaceactivity, the space debris pop-
ulation has significantly increased. Indeed, during each launch, only a part of the total mass
brought into space consists of active payloads1. The other remaining part are actually made of
released objects which quickly become space debris. This isthe reason why the current active
artificial satellites only account for about 7% of the present known artificial objects larger that
10 cm whose number reached 12 456 in January 2008 (The OrbitalDebris Quarterly News,
January 2008). These objects are by the so-called US Space Surveillance Network (part of
the USSTRATCOM, i.e. US Strategic Command) which is a major survey system consisting
mostly of radars and optical telescopes. Figure 1.1 reportsthe time evolution of the trackable
on-orbit population according to their sources. This latter classification clearly shows that the
fragments resulting from break-ups contribute to about 40%of the total population. Approxi-
mately 30% of the cataloged objects are payloads (wherein only 7% are active satellites), about
17% are upper stages of the rockets used to place the satellite in orbit whereas the remaining
part are mission related debris, i.e all objects dispensed,separated, or released as parts of the
planned missions. Furthermore, let us also remark that theFengyun-1Cevent, which occurred
in January 2007, is clearly identifiable at the end of the timewindow. This event is by far
surpassing the 713 objects created in the break-up of the Pegasus rocket body on June 1996 or
similarly surpassing theSolwind ASATtest of September 1985. For an exhaustive enumeration
of the most severe on-orbit fragmentation events, we refer to Klinkrad (2006).

The orbital space debris are not uniformly distributed in space but are concentrated in those
regions that are heavily used by satellites. Practically, the near-Earth environment can be ap-
proximately split into three distinct regions, namely the low-Earth, the medium-Earth and the
geostationary orbit regions.

The Low Earth Orbit region (LEO) can be defined as the region from the Earth’s surface
up to 2 000 km in altitude. In this region, the sensitivity threshold of the sensors limits the
observations to the 5–10 centimeters in size objects. At thepresent time, we can almost pre-
tend to know all the objects larger than about 20 cm. Radars have proved their efficiency in
detecting small objects in LEO. This is why the observationsin LEO are mainly performed by
radars whereas the observations at higher altitudes are achieved by means of outperforming
optical systems. The high-altitude orbits are located intothe region spanning the area between
2 000 km and about 36 000 km. This widespread region is actually constituted by a large
set of orbits having various characteristics. One of the most familiar high-altitude region is
unquestionably the so-called geostationary region (GEO) located at 36 000 km altitude. An
object placed in the GEO region will orbit around the Earth with an orbital period close to
the rotational period of the Earth, remaining almost fixed with respect to the Earth’s surface.
As a consequence, this region is extensively used for the purpose of telecommunications as
well as for weather forecasting satellites. Typically, theusual optical survey strategies allow to

1Let us remark that, in the special case of the Space Shuttle, the most part of the total mass is actually an
active payload.
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Figure 1.1: Number of cataloged objects in Earth orbit by object type: This chart displays a summary of all objects in Earth orbit officially
cataloged by the U.S. Space Surveillance. “Fragmentation”includes satellite break-up debris and anomalous event debris, “mission-related”
includes all objects dispensed, separated, or released as part of the planned mission. [Orbital Debris Quarterly News, January 2008]
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Figure 1.2: These graphics show the space debris population(cataloged objects). For the LEO
region [left] and for high altitude orbits [right]. Approximately 95% of the objects in these
illustrations are orbital debris, i.e. non-functional satellites. [Computer generated snapshot,
source: ESA]

detect such objects whose size is on the order of 1 meter. One has also to mentioned that GEO
satellites are set into the geostationary orbit by means of the Geostationary Transfer Orbits
(GTO), which are characterized by highly eccentric orbits in such a way that the perigee is
located at low altitudes and apogee precisely located at theGEO altitude. These Geostationary
Transfer Orbits extend through the so-called Medium Earth Orbit (MEO) region which is the
area where Global Navigation Satellites are placed. These constellations of satellites, such as
GPS, GLONASSand more recentlyGALILEO, span the region between 20 000 and 22 000 km.

To clarify these points, Figure 1.2 shows the distribution of the cataloged objects from two
vantage points. On the left, the figure reports the space debris population in LEO. On the right,
the figure illustrates the spatial distribution as a global view as seen from a distance of 15
Earth’s radii. In the latter figure, the geostationary orbitregion is clearly identifiable. In addi-
tion, Figure 1.3 reports the spatial density of space debrisas a function of their orbital regime.
The results are given for three different categories of objects, namely the objects whose size
is larger than 1 mm, 1 cm, and 10 cm. Actually, except for the objects larger than 10 cm, we
only have limited statistical information, like the numberand the size of pieces in particular
orbit regions. This is the reason why the latter figure has been realized by means of a specific
model which reconstructs the near-Earth environment by reproducing all the known sources
and sink mechanisms. These elaborated mathematical and physical models, called MASTER
models, are developed at the European Space Agency (ESA), orunder ESA contracts. Even if
this kind of models is surely all-important as part of space debris modeling, they exceed by far
the objective of this overview. For further details, we refer to Klinkrad (2006) which gives an
general overview of the most important space debris environment models. Figure 1.3 clearly
brings to the fore the three main regions mentioned before. In particular, for the objects larger
that 10 cm in size, this chart shows that almost 70% of the cataloged objects are actually in
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Figure 1.3: Density of the space debris population as a function of the altitude. The density is
shown for three different characteristic values, i.e the objects whose size is larger than 1 mm,
1 cm, and 10 cm. This chart has been produced by using the MASTER 2001 population of
objects. [Source:Rossi (2005)]

LEO, i.e at altitudes lower that 2000 km, 9% are in the vicinity of the GEO region, 8% are
beyond the GEO region, 10% are on high elliptical orbits suchas the Geostationary Transfer
Orbits (GTO), and the small remaining part are in MEO.

It is worth noting that the space debris problematic is basically the same in these three
regions. However, due the large discrepancies regarding the information available in these
regions as well as the various dynamical properties of the objects with respect to their orbital
regime, the space debris issue requires different as well asspecific approaches and solutions.
This is the reason why, from now on and within the context of this manuscript, we will restrict
our investigations to the near-geostationary region.

1.3 The geostationary orbit region

Except to the fact that an object located on the GEO region remains almost fixed with respect to
the Earth’s surface, one of the most specific feature of geostationary orbits, is that in contrast to
the LEO region, there are no natural energy-dissipating mechanisms, such as air-drag caused
by the resistance of the Earth’s atmosphere, to remove objects from that altitude (Klinkrad,
2006). As a matter of fact, for LEO orbits and in particular atsmall altitudes of 600–800 km,
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most of the objects reenter into the atmosphere if no active propulsion system is operational.
On the contrary, regarding the near-GEO region, the air-drag is so insignificant that the orbital
lifetime of such orbits is usually considered as immeasurable. As a consequence, since the
deployment of the first geostationary satellite Syncom-3 inAugust 1964, the GEO population
is increasing slowly but surely at a regular rate of about 25–30 objects per year.

Actually, an ideal geostationary orbit would be defined as a perfectly circular orbit (null
eccentricity) located in the equatorial plane (null inclination). The radius of such orbit would
also have to be 42 164 km to ensure that the orbital period is exactly the same as the rota-
tional period of the Earth (one sidereal day, 23 h 56 m 4 s). However, due to some external
perturbations, a GEO satellite must regularly performs some additional corrections in order to
change its orbital elements, or in other words, in order to stay within an assigned and confined
region above the Earth’s surface. For these reasons, the near-geostationary region is actually
operationally limited. Indeed, when a satellite reaches its end of life, its assigned region is not
anymore usable by other spacecrafts (Rossi, 2005). We oughtalso to mention that in recent
years, since geostationary satellites are at some risk of colliding with uncontrolled objects, the
space community has developed a new technique consisting oftransferring spacecraft at the
end of their operational life into a so-called “disposal orbit”, also called “graveyard orbit”,
which is located at least 300 km above the nominal geostationary orbit, in order to protect this
region from the natural evolution of objects without any operational control.

The latter natural evolution of non-functional objects is evidently governed by the main
perturbing forces acting on these objects. For this purpose, let us first consider a large set
of perturbing effects which are usually taken into account in the general context of artificial
satellite theories.

Let us recall that the Earth is not a perfect sphere. Actually, in first approximation, the Earth
has to be considered as an ellipsoid, that is an oblate spheroid with an equatorial diameter that
exceeds the polar diameter by about 20 km. More generally, the geopotential perturbations are
due to asymmetries in the Earth’s gravitational field which can be expressed in terms of the so-
called spherical harmonics expansion (for technical details, we refer to Subsection 2.2.1). The
second degree harmonic (denoted byJ2), also called the oblateness coefficient, actually domi-
nates all the other geopotential perturbations (excepted for the central term,GM) and exerts a
force that tries to align the orbital plane with the equatorial plane. Aside for the geopotential
perturbations, every artificial satellite is also subject to the third-body perturbations that arise
from the gravitational attraction of both the Moon and the Sun. Similar forces as for the Moon
and the Sun arise from the gravitational attraction of the planets of the Solar System. How-
ever, their amplitude is several orders of magnitude smaller than the luni-solar perturbations.
In addition to the perturbations arising from gravitational influence, we have also to recall that
artificial satellites are subject to further perturbing accelerations which depend on both the
mass and the area of the objects. For low-Earth orbit objects, we have already mentioned the
air-drag which tends to reduce the orbital kinetic energy orequivalently the altitude and, as
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Figure 1.4: Order of magnitude of the main perturbations (gravitational influence and direct
radiation pressure with typical area-to-mass ratio (A/m = 0.01 m2/kg) acting on Earth’s
orbiting objects as a function of the distance from the Earth’s center.
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a consequence, the orbital life time. Another well-known perturbing effect is the solar radi-
ation pressure acceleration resulting from the interaction of the sunlight with the surface of
the object. In contrast with the dissipative force arising from the air-drag, the radiation pres-
sure mainly depends on the so-called area-to-mass ratio, denoted byA/m. We could also cite
minor perturbations which produce extremely small variations of the orbital elements. These
perturbing effects are for instance, the acceleration resulting from the solar radiation reflected
by the Earth (albedo), both the terrestrial and ocean tides and the relativistic effects, to name
only a few of them. Those effects will be disregarded in the context of this work.
Among the above-mentioned perturbations, the major effects experienced by an object located

near the GEO region can be easily derived. This can be accomplished by using simplified ex-
pressions which give the relations between the order of magnitude of the perturbations as a
function of the distance with respect to the Earth center. The results are given in Figure 1.4.
This chart clearly indicates that the order of magnitude of the luni-solar perturbations actually
increases almost linearly with the distance between the Earth and the space debris. Conse-
quently, in the neighborhood of the geostationary region (enhanced by the vertical dashed
line), the order of magnitude of these perturbations are comparable in size to that of the domi-
nant Earth’s oblateness. Figure 1.4 also reports that the remaining perturbing accelerations are
at least two orders of magnitude lower.

The influence of the Earth’s flattening combined with the gravitational attraction of both
the Moon and the Sun actually force the orbital plane to precess with a typical period of
roughly 54 years (where the precession angle is the longitude of the ascending node denoted

-8

-6

-4

-2

0

2

4

6

8

10

-5 0 5 10 15 20

i
si

n
Ω

i cos Ω

i = 15◦i = 10◦i = 5◦

Figure 1.5: Projection of the orbital poles of all known geostationary space debris and artificial
satellites moving in the gravitational field of the Earth (status: April 2008).
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replacements

Figure 1.6: Histogram of the distribution of GEO Catalog’s objects with the inclination of their
orbit (class width:∆ i = 0.3◦, status: April 2008).

Figure 1.7: Histogram of the distribution of GEO Catalog’s objects with the eccentricity of
their orbit (class width:∆ e = 1 × 10−4, status: April 2008)

by Ω). This precessional motion can actually be seen as the motion of a gyroscope around a
fixed plane (Allen and Cook, 1964). This theoretical plane, called the Laplace plane, is in-
clined of about 7.5 degrees with respect to the equatorial plane leading to an orbital inclination
which in turn oscillates with approximately 15 degrees of magnitude. In order to make this
point clear, Figure 1.5 shows the so-called inclination vector, i.e, (sin i cos Ω, sin i sin Ω) ≃
(i cos Ω, i sin Ω) of all GEO objects in the catalog. In order to give additionalinformation,
the GEO trackable objects can also be classified according totheir orbital elements. In partic-
ular, it could be interesting to focus our attention to both the eccentricity and the inclination
distribution. First, regarding the inclination distribution, Figure 1.6 reports a wide range of val-
ues ranging from 0 to approximately 15 degrees with a evidentpeak clearly identifiable close
to the null inclination. This peak actually corresponds to the current active satellites which
are repetitively kept inside their assigned slot in order tocounteracting the perturbations that
would tend to change the orbital elements such as the orbitalinclination. On the contrary, the
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Figure 1.8: The geostationary ring (section) where are located the present cataloged space
debris. The thickness in latitude is±15◦ whereas the radial thickness is±75 km.

remaining objects consist of space debris. Second, in contrast to the inclination distribution,
the eccentricity distribution shown in Figure 1.7, reportsthat the great majority of the objects
of the catalog are clearly related to eccentricity values which correspond nearly to circular
orbits. The small variations of the eccentricity can readily be explained by the combined inter-
actions of both the third-body acceleration and the solar radiation pressure. Finally, it is worth
stressing that although these eccentricity values are small, the corresponding variation of the
geocentric distance, i.e. the maximum radial variation2ae, can be significant (typically on the
order of 75 km on both sides of the nominal geostationary orbit for e = 0.0017). For all these
reasons, the geostationary ring is thus theoretically defined as the segment of a spherical shell
with a radial thickness of 150 km and delimited by±15 degrees in latitude (see Figure 1.8).

We can not conclude this section without also mentioning that a near-geostationary object
is also significantly subject to the longitude-dependent spherical harmonics associated with
the Earth’s gravity field. The main longitude-dependent term of the geopotential expansion is
actually related to theJ22 acceleration appearing in Figure 1.4. Indeed, if a space debris revo-
lution period is commensurate with the sidereal revolutionperiod of the Earth, the higher-order
terms of the Earth’s potential may produce the so-called resonant perturbations, the amplitudes
of which may become orders of magnitude larger than ordinaryhigh-order perturbations. Res-
onant perturbations are also typically of very long periods. Therefore, the resonant perturba-
tions will turn out to be inescapable in the specific case of near-geostationary orbits. However,
a complete description of these resonant effects are beyondthe scope of this overview. This is
the reason why it will be discussed in more detail in Chapter 2.
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Figure 1.9: Eccentricity as a function of the mean motion for332 objects with elliptical orbits.
[Graphics by Schildknecht et al. (2007)].

1.4 Discovery of the high area-to-mass ratio population

The near-Earth environment and in particular the LEO regionhas already been intensively
studied during the last dozens of years. On the contrary, andas already mentioned in the pre-
vious section, the lower size threshold of objects which canbe observed in the geostationary
regime is on the order of 1 meter. As a consequence, the available information in GEO is
still very sparse in comparison with the LEO regime. However, since the significance of this
region is indisputably all-important for both commercial and scientific missions, ESA has re-
cently initiated an optical search for fragments in the geostationary ring in order to improve
the knowledge about the debris population in GEO and to understand the future evolution of
its population (Schildknecht et al., 2005). These observations have actually been performed,
on behalf of ESA, by the Astronomical Institute of the University of Bern (AIUB) by using the
European 1 meter telescope located in Tenerife (Canary Islands).

Even more recently, some new optical surveys have been coordinated in order to detect
space debris orbiting on highly elliptical orbits. In particular, for a subset of the detections, the
space debris have been followed in real-time in order to deduce a complete set of six orbital
elements whereas only circular orbits were determined for the remaining objects. Although
these latter survey campaigns were first optimized to find space debris in the Geostationary
Transfer Orbits (GTO), in particular to search out the small-sized debris population which
originates from well-know break-ups of Ariane upper stages, the results of these surveys re-
vealed not only a substantial amount of space debris at high-altitudes in the size range from
0.1 to 1 meter, but also a new unexpected population for whichno potential parent object could
be identified. The mean motion of this new space debris population actually turns out to be on
the order of one revolution per day whereas the eccentricities scattered between 0 and 0.6.
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Figure 1.10: Eccentricity as a function of the mean motion for the objects in the catalog.
[Graphics by Schildknecht et al. (2007)].

To clarify this point, Figure 1.9 shows the eccentricitye as a function of the mean motion
n, in revolution per day, for a data set of 332 objects from the ESA surveys for which ellip-
tical orbits were determined. In Figure 1.10, we show the corresponding cataloged objects in
which the data were filtered with respect to the eccentricity(0.1 < e < 0.9), to the inclination
(0 < i < 20◦) and to the mean motion (0.3 < n < 6). In this figure, the curved lines corre-
spond to the locations of constant apparent motion in right ascension when the objects are at the
apogee. In particular, the solid curved lines indicate the boundaries of region where the survey
was able to detect objects. Consequently, the objects moving slower than5′′/s or equivalently
faster that15′′/s have not been detected. The before-mentioned new population of objects is
clearly visible in Figure 1.9. These objects are actually shown as uncorrelated objects which
are particularly concentrated about the mean motion of near-geosynchronous objects. In com-
parison with Figure 1.10, these discovered objects do not correspond to any data in the catalog.

These objects are probably the result of undetermined surface degradation or low inten-
sity phenomena that occurred near the geostationary ring. Initially, Liou and Weaver (2004)
suggested that some of the resulting fragments are actuallycharacterized by high area-to-mass
ratios compared to those of typical spacecrafts and upper stages which range from about 0.01
to 0.02 m2/kg. As a consequence, they proposed a simple explanation tothe astonishing dis-
covery of high eccentricity objects: the solar radiation might induce such a particular dynamics
on space debris with such high area-to-mass ratio. Indeed, asatellite or a space debris exposed
to solar radiation pressure undergoes a force that arises from the absorption or reflection of
photons. In contrast to gravitational perturbations, the acceleration due to solar radiation pres-
sure depends linearly on the area-to-mass ratio. Under suchassumptions, space debris may
reached significant large eccentricities.
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Object A/m [m2/kg]

Lageos 1 and 2 0.0007
Starlette 0.001
GPS (Block II) 0.02

Moon 1.3 × 10−10

Space debris 0< A/m < ∼ 30

Figure 1.11: Distribution of the area-to-mass ratios of 73 objects from the recent ESA optical
survey in near GEO [Graphics and caption by Schildknecht et al. (2007)] [top]. Order of
magnitude of the area-to-mass ratiosA/m for various Earth-orbiting objects [bottom].

Indeed, by following in real-time some of these uncommon space debris and in order to
give additional measurements and mostly improve the restitution process, it was possible to de-
rive the area-to-mass ratios by estimating this parameter in the orbit determination process. For
instance, for a subset of the survey data, the correspondingdistribution for 73 objects is given
in Figure 1.11 (top). The results clearly report that the area-to-mass ratios related to the uncor-
related objects always reach significant values which are several orders of magnitude greater
than typical Earth-orbiting objects. For the sake of comparison, we show in Figure 1.11 (bot-
tom) the area-to-mass ratios of several well-known satellites. Indeed, the first three satellites
(Lageos 1 & 2, Starlette) were intentionally designed as geodetic satellites, i.e small spherical
satellites which explains the small area-to-mass ratios. On the contrary, theGPSsatellites,
such as most of the Navigation satellites and GEO satelliteshave a rather “large” area-to-mass
ratio since they are typically equipped with wide solar panels of a few square meters. Conse-
quently, these new unexpected objects must be effectively lightweight since a standard sheet
of paper has an area-to-mass ratio of about 13 m2/kg.
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Chapter 2

Semi-analytical theory of mean orbital
motion for geosynchronous space debris
under gravitational influence

“For two hundred years, satellites of all shapes and sizes, from loose
nuts and bolts to entire space villages, had been accumulating in
Earth orbit. All that came below the extreme elevation of theTower, at
any time, now had to be accounted for, since they created a possible
hazard...”

Arthur C. Clarke,The Fountains of Paradise, 1978

– The results of this chapter have been previously submittedin Valk et al. (2007a) –

Within the context of space debris modeling, it is convenient to distinguish two approaches,
namely the study of the evolution of space debris over short and long timescales. The short-
time analyses consist in propagating orbits over a period ofdays up to several weeks. Within
this context, the numerical integration of the osculating equations of motion is especially suited
as long as some valuable initial conditions are available. However, as soon as we are interested
in the study of the motion over longer timescales, typicallyone year up to several dozens of
years, the numerical integration remains technically conceivable but becomes practically inap-
propriate regarding the CPU time consumption.

In this chapter, we develop a semi-analytical theory of the mean orbital motion based on
the concept of mean orbital elements. The characteristic ofthe method is based on an ana-
lytical averaging of the initial differential system followed by a numerical integration of the
transformed equations. The main motivation of this investigation is the development of an
accurate and extensive theory well-suited for the study of near-geosynchronous space debris
over very long periods of time. The method allows the inclusion of both zonal and tesseral
harmonics as well as the third-body attractions induced by the Sun and the Moon and provides

21



22 Chapter 2. Semi-analytical theory – gravitational influence

long-term solutions that are valid for a wide range of eccentricities and inclinations.

The main objective of this chapter is basically twofold. On the one hand, we first derive
the major disturbing function acting on near-geosynchronous space debris. These perturba-
tions are then transformed by using modified orbital elements which in turn are suited for the
two singularities appearing in the problem of near-geosynchronous space debris. On the other
hand, we apply the theory by means of the above-mentioned analytical averaging process.
Therefore, the numerical integrations of the averaged systems of equations show that this the-
ory is especially well-suited for the long-term investigation and combine the ideal properties
of numerical integrations and analytical theories to obtain the best compromises between ac-
curacy and efficiency.

Section 2.2 is intended to derive the disturbing functions related to the major perturba-
tions, that is the gravitational perturbations induced both by the Earth’s gravity field and by the
combined attraction of the Sun and the Moon. Subsequently, we introduce the first analytical
development of these disturbing functions expressed in Keplerian elements by means of a se-
ries expansion in powers of the eccentricity and of the inclination.

Section 2.3 is devoted to the singularities appearing in thenumerical integrations of the
dynamical equations expressed in such classical Keplerianelements. As an alternative, we
propose a general solution based on a set of “near-canonical” and entirely non-singular vari-
ables (universal elements). This set of variables leads to the choice of a Hamiltonian formalism
and extends the period of validity of the solution while preserving a high stability of the nu-
merical integrations over very long time spans.

In Section 2.4 we explicitly present the analytical averaging process over the short periods
and we take the opportunity to present our home-made symbolic manipulator software used
for the analytical processing of the various series expansions.

In order to give a first validation of our semi-analytical theory, we give in Section 2.5 some
comparisons between numerical integrations and semi-analytical propagations. The method is
applied considering both the second degree zonal harmonicJ2 and the combined third-body
attraction of the Sun and the Moon. We also take advantage of these various propagations to
underline the main characteristics of high-altitude objects (not being subject to resonance).

Finally, we devote the end of this chapter to the investigation of the resonant effects in-
duced by the 1:1 resonance occurring for near-geosynchronous space debris. First, we briefly
depict the concept of resonance by stressing the main terms appearing in the geopotential
expansion. Second, we describe how to adapt the Hamiltonianformalism to ensure that the
resonant long-periodic effects are preserved throughout the averaging process. Moreover, we
give a simplified analytical model to underline the main effects of the above-mentioned reso-
nance (equilibrium points, stability, fundamental frequencies, width of the resonance area). At
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last, we give some semi-analytical propagations to show howthe method is in good agreement
with both our simplified analytical model and the theory of geostationary satellite.

2.1 The perturbed equations of motion

The general form of equations of motion with perturbations can be expressed in Cartesian
coordinates as follows

r̈ = apot + a$ + a⊙ + arp + aneglected , (2.1)

whereapot is the acceleration resulting from Earth gravity harmonicsthat includes the central
attraction (two-body acceleration). The perturbing accelerations,a$ anda⊙ are the results of
the third-body attraction induced by the Moon and the Sun, respectively. The componentarp

is related to the acceleration induced by the solar radiation pressure. Concerning the last term
in Eq. (2.1), it is related to the forces which are neglected in the context of this work. This
component contains the accelerations caused by small forces (essentially non-gravitational)
such those related to thermal or relativistic effects (Yarkovsky-O’Keefe-Radzievskii-Paddack,
Schwarzschild correction,. . .); the atmospheric drag, highly insignificant in the case of high-
altitude orbits; the solid and ocean tides of the Earth as well as the third-body accelerations
related to the other planets of the Solar System, such as Jupiter.

Let us remark that in order to benefit of the large set of first-order integration methods,
the second-order differential equation (2.1) is usually reformulated as a set of two first order
differential equations. This new system is then written as

ṙ = v

v̇ = apot + a$ + a⊙ + arp + aneglected ,
(2.2)

wherev(t) is the velocity vector of the propagated object at timet. However, it is also worth
noting that all the forces taken into account are actually conservative (even though a special
attention has to be given for the solar radiation pressure, see Chapter 3). As a consequence,
the total energy of the system will be constant, whereas dissipative systems may lose or gain
energy. This remark is relevant insofar as the accelerations will be further related to the gradi-
ent of a potential disturbing function.

As shown in Eq. (2.2), the orbital state vector is implicitlyexpressed in terms of six Carte-
sian coordinates(x, y, z) of the positionr and(ẋ, ẏ, ż) of the velocityṙ. However, it is well
known that this natural set of coordinates is not well-suited for the development of both ana-
lytical and semi-analytical theories due to their fast variations with high amplitudes.

There are several alternative sets of orbital parameters into which the Cartesian state can be
converted. One such set are the six Kepler’s orbital elements (hereafterKeplerian elements): a
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(semi-major axis), e (eccentricity), i (inclination), Ω (right ascension of the ascending node),
ω (argument of perigee) andM (mean anomaly), which are well-suited to describe a conical
section. Actually, expressing the orbit elements in terms of Keplerian elements has a great as-
set. Indeed, while position and velocity vectors undergo larger changes with time, most of the
Keplerian elements undergo small variations in perturbed motion. In particular, in the case of
an unperturbed motion, only the mean anomalyM changes with time at a constant rate called
the mean motion.

The Keplerian elements will be systematically used in orderto depict the dynamics, since
they are particularly well adapted to interpret the motion.Furthermore, the Keplerian elements
are also the founding grounds of the so-called expansions inpowers of the eccentricity and of
the inclination developed in Section 2.2. Indeed, the main objective of the following sections
is to derive the expressions of the disturbing functions related to the major perturbations, i.e.
the gravitational perturbations induced by both the Earth’s gravity field and the combined
attraction of the Sun and the Moon.

2.2 Disturbing functions – expansion in powers of the eccen-
tricity and of the inclination

2.2.1 Potential of the Earth

According to the Newton universal law of gravitation, the force of attraction between two
particles of massesm1 andm2 at a distancer from each other will be

F = −G
m1m2

r2
r ,

whereG is the universal constant of gravitation. Assuming the Earth to be spherical and
homogeneous and considering its mass is concentrated at itscenter, the forceF can be obtained
by expressing the acceleration as the gradient of a scalar function, called potentialU . This
potential per unit of mass is written as

U = −µ
r
,

whereµ = Gm⊕ is the so-called gravitational constant of the Earth.

However, the Earth is neither spherical nor homogeneous. Therefore, the previous as-
sumptions are no longer verified. However, the expression ofthe potential function may easily
be generalized to an arbitrary mass distribution by summingup the contributions created by
individual mass elements. In particular, we have

U(r) = µ

∫

V

ρ(rp)

‖r − rp‖
dV , (2.3)
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whereρ(rp) stands for the density at some pointrp inside the Earth, and‖r − rp‖ is the dis-
tance between the object and a particular volume element located at the geocentric positionrp.

First, let us note that the typical denominator appearing inEq. (2.3) may be developed into
a rapidly convergent series

1

‖r − rp‖
=

1

r

∞∑

n=0

(rp

r

)n

Pn

(〈r · rp〉
r rp

)
=

1

r

∞∑

n=0

(rp

r

)n

Pn (cos ψ) , (2.4)

whererp/r is the argument of the series expansion,ψ the geocentric angle betweenr andrp,
andPn are the so-calledLegendre polynomialsof degreen.

Second, by introducing the spherical coordinates in the Earth-fixed reference frame, i.e.
the geocentric longitudeλ (counted positively towards the Earth) and the geocentric latitudeφ
of the geocentric positionr

x = r cosφ cosλ

y = r cosφ sinλ

z = r sinφ ,

as well as the corresponding quantitiesλp andφp for the volume element atrp, and by using the
decomposition formula, the Legendre polynomials can be expanded into spherical harmonics

Pn(cos ψ) =
n∑

m=0

(2 − δ0m)
(n−m)!

(n+m)!
Pm

n (sin φp) cos(m(λ− λp)) ,

whereδij is the Kronecker function,δij = 1 for i = j and zero otherwise.Pm
n are the so-called

associated Legendre functions, which may be defined as

Pn(x) = Pn(x) =
1

2n n!

dn

dxn

{
(x2 − 1)n

}

Pm
n (x) = (1 − x2)m/2 dm

dxm

{
Pn(x)

}
.

We finally write the Earth’s gravity potential in the form

U(r, λ, φ) = −µ
r

∞∑

n=0

n∑

m=0

(
Re

r

)n

Pm
n (sinφ)(Cnm cos mλ+ Snm sin mλ) , (2.5)

whereRe is the equatorial Earth’s radius and where the quantitiesCnm andSnm are the spher-
ical harmonics coefficients which are given by

Cnm =
2 − δ0m

M⊕

(n−m)!

(n+m)!

∫

V

(
rp

Re

)n

Pm
n (sinφp) cos (mλp) ρ(rp) dV

Snm =
2 − δ0m

M⊕

(n−m)!

(n+m)!

∫

V

(
rp

Re

)n

Pm
n (sinφp) sin (mλp) ρ(rp) dV .

(2.6)
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Let us remark that even though the expressions (2.6) of the geopotential coefficients seem
to be fairly complicated, some first degree and order coefficients may be computed readily.
First, it is shown that the coefficientC00 is equal to1. As a consequence, the first term in the
expansion is nothing else than the two-body potential−µ/r. Moreover, it is worth noting that
all termsSn0 are zero, sincesin (mλp) in the integrand (2.6) is equal to zero form = 0. It can
also be shown easily that the coefficientsC10, C11 andS11 correspond to the center of mass
coordinates divided by the equatorial Earth’s radius. Therefore, these coefficients are zero if
the coordinate system refers to the Earth’s center of mass. Similarly, the coefficientsC21 and
S21, are zero as long as thez-axis is aligned with the Earth’s main axis of inertia. Finally, it
can be shown that

J2 = −C20 =
2C − B − A

2M⊕R2
e

and C22 =
B −A

4M⊕R2
e

,

whereA,B andC (with A < B < C) are the principal moments of inertia of the Earth and
M⊕ is the Earth’s mass.

Similarly, the potential may be expressed using an alternative way, with a single cosine
term, a phase differenceλnm as well as a newJnm coefficient

U(r, λ, φ) = −µ
r

+
µ

r

∞∑

n=2

n∑

m=0

(
Re

r

)n

Pm
n (sin φ) Jnm cosm(λ− λnm) , (2.7)

using the definitions forn ≥ m ≥ 0

Cnm = −Jnm cos (mλnm)

Snm = −Jnm sin (mλnm)

Jnm =
√
C2

nm + S2
nm

mλnm = arctan

(−Snm

−Cnm

)
.

The use of the Earth’s equatorial radiusRe and the isolation of the factorµ/r in Eqs. (2.5)
and (2.7) have the advantage that the coefficientsCnm and Snm (similarly Jnm) are non-
dimensional. The indexn is called thedegreeandm the order of the spherical harmonics
expansion. Coefficients withm = 0, which are only latitude-dependent, are denoted aszonal
harmonics. If n 6= m, theCnm andSnm coefficients are referred to astesseral harmonicsand
if n = m, they are referred to assectorial harmonics. They describe the purely longitude-
dependent part of the geopotential. Figure 2.1 illustratesthe first order and degree harmonics
of the geopotential (2.7).
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Figure 2.1: Illustration of the spherical harmonicsJnm of the geopotential for low degreesn
and orderm ≤ n. Bright regions indicate mass accumulations, while dark regions indicate
mass deficiencies. [Graphic and caption by Klinkrad (2006)].
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2.2.2 Gravity field in terms of the satellite orbital elements

In Section 2.2.1, the potential has been developed into spherical coordinates(r, λ, φ). Even
though these formulations are rather important, it is also sometimes useful to represent the po-
tential in terms of the classical Keplerian elements(a, e, i,Ω, ω,M). This last formulation may
be more convenient when using the Lagrangian as well as the Gaussian equations developed
in Appendix E (page 173). Moreover, the expansion into Keplerian elements is also relevant
when developing a simplified analytical model. Besides, thepartial derivatives of this form
can be used to evaluate numerical, analytical, and semi-analytical methods.

Several authors discussed such an expansion, in particular, Kaula (1966) which is usually
associated to this technique. As a final result, Kaula (1966)represents the Earth’s gravitational
field as

U = −µ
r
−

∞∑

n=2

n∑

m=0

n∑

p=0

+∞∑

q=−∞

µ

a

(
Re

a

)n

Fnmp(i)Gnpq(e)Snmpq(Ω, ω,M, θ) , (2.8)

where the functionsSnmpq depend on the geopotential coefficientsCnm andSnm

Snmpq(Ω, ω,M, θ) =

[
+Cnm

−Snm

]n−m even

n−m odd

cos Θnmpq(Ω, ω,M, θ)

+

[
+Snm

+Cnm

]n−m even

n−m odd

sin Θnmpq(Ω, ω,M, θ) ,

defined with respect to theKaula gravitational argument

Θnmpq(Ω, ω,M, θ) = (n− 2p)ω + (n− 2p+ q)M +m(Ω − θ) .

whereθ is the sidereal time. The subscript indexes represented byn,m, p, q are integers that
identify the terms in the so-calledinclination functionsFnmp(i) and eccentricity functions
Gnpq(e) for a particular harmonic(n,m).

For the sake of clarity, both the eccentricity functions andthe inclination functions are
presented in Eqs. (C.1) and (C.2) of Appendix C, page 165.

2.2.3 Luni-solar perturbations

As mentioned before (Figure 1.4), third bodies, such as the Sun and the Moon, have greater
influence on space debris in higher altitude orbits. According to the Newton’s law of gravity,
the acceleration of an object by a point massmi is given by

r̈ = −µi
r − ri

‖r − ri‖3
, (2.9)
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wherer andri are the geocentric coordinates of the space debris and of themassmi, re-
spectively. The quantityµi = Gmi is the gravitational constant of the third body. However,
Eq. (2.9) can not be used directly for describing the motion of space debris with respect to
the center of the Earth. Actually, the acceleration defined in Eq. (2.9) refers to an inertial
coordinate system in which the Earth is not at rest, but is itself subject to an acceleration
(Montenbruck and Gill, 2000)

r̈ = µi
ri

‖ri‖3
.

As a consequence, the acceleration of the space debris, expressed with respect to the Earth’s
center of mass is given as

r̈ = −µi

(
r − ri

‖r − ri‖3
+

ri

‖ri‖3

)
.

The first term of the third-body perturbation is known as thedirect effectand the second term
is theindirect effectaccounting for the inertial acceleration of the geocenter.

Because the reason of perturbations from a third body is the gravitational attraction, it is
also reasonable to use a disturbing function. The potentialdisturbing function can be written
as

Ri = µi

(
1

‖r − ri‖
− 〈r . ri〉

‖ri‖3

)
. (2.10)

Expansion using Legendre Polynomials

In keeping with Eq. (2.4), we find the final formulation by expressing the potential (2.10) in
terms of the Legendre polynomials

Ri =
µi

ri

∑

n≥2

(
r

ri

)n

Pn(cosψ) , (2.11)

whereri is the geocentric distance andψ is the geocentric angle between the third body and
the satellite.Pn is the Legendre polynomial of degreen.

Let us now derive the expansion of the disturbing function inpower series of the eccentric-
ity and of the inclination. To reach this goal, let us first consider the three components(x, y, z)

of the position vectorr expressed with respect to the Keplerian elements(a, e, i,Ω, ω, f) where
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f is the true anomaly. We have




x

y

z


 =




cos Ω − sin Ω 0

sin Ω cos Ω 0

0 0 1






1 0 0

0 cos i − sin i

0 sin i cos i




×




cosω − sinω 0

sinω cosω 0

0 0 1






r cos f

r sin f

0


 .

Second, let us also consider the Cartesian coordinatesXi, Yi andZi of the unit vector pointing
towards the third body. Consequently, the cosine of the geocentric angle can be expressed as

cosψ = Xi x̄+ Yi ȳ + Zi z̄

= Xi

[
cos(f + ω + Ω) + 2 sin(f + ω) sin Ω sin2 i/2

]

+ Yi

[
sin(f + ω + Ω) − 2 sin(f + ω) cos Ω sin2 i/2

]

+ Zi 2 sin(f + ω) sin i/2 cos i/2 ,

where we usedi/2 instead of the inclination and where(x̄, ȳ, z̄) are the components of the
unit vector pointing toward the space debris. To derive a series expansion forcosψ we also
need to make use of the expansions forsin f andcos f in terms of the mean anomaly which
correspond to d’Alembert series, i.e. Fourier series in themean anomaly with coefficients
containing higher powers of the eccentricity for the higherharmonics. These expansions are
given by (Brouwer and Clemence, 1961)

sin f = 2
√

1 − e2
+∞∑

s=1

1

s

d

de
Js(se) sin sM

= sinM + e sin 2M + e2
(

9

8
sin 3M − 7

8
sinM

)

+ e3
(

4

3
sin 4M − 7

6
sin 2M

)

+ e4
(

5

192
cosM − 45

128
cos 3M +

125

384
cos 5M

)
+ O(e5)

and similarly

cos f = −e+
2(1 − e2)

e

+∞∑

s=1

cos sM,

= cosM + e (cos 2M − 1) +
9e2

8
(cos 3M − cosM)

+
4e3

3
(cos 4M − cos 2M)

+

(
25

192
cosM − 225

128
cos 3M +

625

384
cos 5M

)
+ O(e5) .
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We also need the expansion ofr/a, indirectly present in Eq. (2.11) because of

(r/ri)
n = (r/a)n r−n

i an.

We have

r

a
= 1 +

1

2
e2 − 2e

+∞∑

s=1

1

s2

d

de
Js(se) cos sM

= 1 − e cosM +
e2

2
(1 − cos 2M) +

3e3

8
(cosM − cos 3M)

+
e4

3
(cos 2M − cos 4M) + O(e5) .

We show that the expansion of (2.11) has the form

Ri =
µi

ri

+∞∑

n=2

∑

k,l,j1,j2,j3

(
a

ri

)n

A
(n)
k,l,j1,j2,j3

(Xi, Yi, Zi) e
|k|+2j2

(
sin

i

2

)|l|+2j3

cos Φ , (2.12)

whereA(n)
k,l,j1,j2,j3

(Xi, Yi, Zi) are polynomial functions which depend on the Cartesian coordi-
nates of the third-body. Here,Φ is a linear combination with general form

Φ = j1 λ+ j2 ̟ + j3 Ω .

whereλ is the mean longitude, which is the sum of the mean anomaly, the argument of perigee
and the longitude of the ascending node, that isλ = M + ω + Ω; and̟ is longitude of the
perigee, i.e.̟ = ω +M .

This potential is obviously time dependent through the position of the perturbing body.
This particular formulation has two benefits: first, the expansion is rather compact which is
relevant since these series will be evaluated at each step ofthe numerical integration process;
second, the chosen parameters are easily derived from othersets of variables such as equatorial
or ecliptic spherical coordinates. Therefore, we can use any available numerical or analytical
ephemeris. In our implementation, we choose the highly accurate and well-knownDE405
solar system ephemeris. The Jet Propulsion Laboratory (JPL) provides these solar system
ephemeris in the form of Chebyshev approximations. The Development Ephemeris (DE) are
publicly available and have emerged as a standard for high-precision planetary coordinates
(Montenbruck and Gill, 2000). For further details, we referto Standish (1998).
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2.3 Expansion of the disturbing functions in universal ele-
ments

2.3.1 Singularities and numerical integrations

The Keplerian elements (a, e, i, Ω, ω, M) present three cases of singularity in the prob-
lem of an Earth-orbiting object. For circular orbits(e = 0), the mean anomalyM and the
argument of perigeeω are undetermined but the sumM + ω is well defined. Meanwhile, for
equatorial orbits(i = 0), the argument of perigee and the longitude of the ascending nodeΩ

are undetermined but the sumω + Ω is well defined. Finally, when the eccentricitye = 0 and
the inclinationi = 0, only the sumM + ω + Ω is well defined (Henrard, 1974). However,
it is worth stressing that there is no physical instability corresponding to this mathematical
singularity. In other words, for a very small value of the eccentricity, a large change in the
argument of perigeeω corresponds to a small change in both the position and the velocity
vectorsr, ṙ, respectively. For the sake of the illustration, we refer toboth the Lagrangian and
Gaussian equations developed in Appendix E (page 173), where the mathematical singularities
are clearly apparent through the presence of the so-calledsmall divisorsterms of the form1/e

and1/ sin i.

As an illustration of the effects of singularities in numerical propagations, we analyze
the stability of an osculating numerical integration process with and without small divisors. In
order to perform these tests, we have taken advantage of a suite of complete numerical osculat-
ing propagators calledLAGRAN-MICROZ developed at “L’Observatoire de la Côte d’Azur” in
Grasse (France). This extensive numerical software allowsto propagate various sets of Earth-
orbiting objects while taking into account a large set of perturbations. Moreover, the latter
allows to consider two different integration algorithms. Hereafter, we consider the Adams-
Moulton-Cowell multistep algorithm of order 12. To sum up, in brief, one can say that the
LAGRAN software is based on the numerical integrations of both the osculating Lagrangian
and Gaussian equations of motions expressed in Keplerian elements (even though some exten-
sions have been given to partly avoid the singularities (Deleflie, 2002)). On the other hand, the
MICROZ software is based on the numerical integrations of the osculating equations of motion
expressed in Cartesian coordinates.

In our investigations, we performed numerical propagations over a period of 60 days with
an integration step size of 90 s. The dynamical model includes the Earth’s gravity field devel-
oped up to degree and order 20 and the luni-solar perturbations. The initial conditions used in
the simulations are those of nearly geosynchronous space debris, that isa0 = 42 164 km, e0 =

10−4, i0 = 10−4 rad. The validation is performed by considering the differences between a
forward and a backward numerical integration. That is the final state vector of the first nu-
merical integration is used as initial condition of the second numerical integration which is
performed with a negative step size. As a consequence, the zero point of the difference is then
located at the end of the time window. Figure 2.2 shows the differences using Keplerian
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Figure 2.2: Stability of numerical integration in case of small divisors (singularities): Kep-
lerian elements of two numerical integrations performed insingular coordinates (e, i, Ω, ω)
using theLAGRAN software. Differences between a forward integration and a backward in-
tegration (a0 = 42 164 km, e0 = 10−4, i0 = 10−4 rad). Dynamical model: Earth’s gravity
field up to degree and order20, luni-solar attractions. On each graph, on the left are shown
(∆e, ∆i, ∆Ω, ∆ω) and on the right (a0∆e, a0∆i, a0∆Ω, a0∆ω).
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Figure 2.3: Stability of numerical integration without small divisors (without singularity):
Keplerian elements of two numerical integrations performed in non-singular Cartesian coordi-
nates (e, i,Ω, ω) using theMICROZ software. Differences between a forward integration and
a backward integration (a0 = 42 164 km, e0 = 10−4, i0 = 10−4 rad). Dynamical model:
Earth’s gravity field up to degree and order20, luni-solar attractions. On each graph, on the
left are shown (∆e, ∆i, ∆Ω, ∆ω) and on the right (a0∆e, a0∆i, a0∆Ω, a0∆ω).
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Table 2.1: Statistical analysis of numerical integration errors. Dynamical model: Earth’s grav-
ity field up to degree and order 20, luni-solar perturbations. Comparison between the forward
numerical integration and the associated backward numerical integration with and without
small divisors. In each orbit, there is one point every 15 min(with a total ofn = 5761 points).

a0 = 42 164 km, e0 = 10
−4, i0 = 10

−4 rad, Ω0 = ω0 = M0 = 0 rad

Keplerian elements Non-singular elements

Mean RMS χ2 Mean RMS χ2

a [m] 0.664 10−03 0.472 10−01 0.305 10−06 0.464 10−03 0.560 10−03 0.724 10−10

e 0.842 10−05 0.156 10−04 0.878 -0.139 10−11 0.464 10−11 0.129 10−14

i [rad] 0.568 10−10 0.898 10−09 0.269 10−10 0.152 10−13 0.275 10−12 0.240 10−17

Ω [rad] -0.588 10−06 0.269 10−05 0.112 10−05 -0.184 10−10 0.947 10−10 0.982 10−14

ω [rad] -0.483 10−05 0.104 10−04 0.189 -0.458 10−07 0.447 10−07 0.157 10−10

M [rad] -0.109 10−02 0.827 10−01 0.363 10−07 -0.109 10−02 0.827 10−01 0.237 10−10

elements during the integration process (using theLAGRAN software). As a consequence, the
eccentricity and the inclination are small enough to inducesmall divisors in the equations of
motion. The propagation of the numerical errors is quite fast and involves a deviance of several
thousands meters between the two orbits only after60 days.

On the contrary, Figure 2.3 shows the differences between the same orbits integrated in
non-singular Cartesian elements (using theMICROZ software), namely the projection of the
Cartesian coordinates into classical Keplerian elements.In this case, the differences remain
quite small and underline mainly the characteristics of thechosen numerical integrator.

In order to quantify the significance of singularities in thelatter numerical integrations, we
have computed a couple of statistic quantities shown in Table 2.1. The statistic quantities char-
acterize the similarity between then pointsxi of the orbit obtained by the forward numerical
integration, and then pointsx′i of the orbit obtained with the backward numerical integration.
The first two columns correspond to the mean values and the standard deviation (Root Mean
Square) of the differences. The third column shows the quantity χ2 where

χ2 =

n∑

i=1

(x′i − xi)
2

|xi|
.

The smallerχ2, the higher the similarity between the two numerical integrations. By means of
this quantity, it is even clearer that the numerical integration performed withMICROZ, i.e. by
using a set of variables avoiding the small divisors in the equations of motion, is significantly
more stable than numerical integrations performed in classical Keplerian elements.
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2.3.2 Universal set of variables: the Poincaré variables

As shown in the previous section, it is relevant to consider aspecific set of variables avoiding
both singularities and still ensuring an easy geometrical interpretation of the motion.

Non-singular sets of variables already exist in the literature. As an example, the following
equinoctial elements:a, λ = M+ω+Ω, e sin (ω+Ω), e cos (ω+Ω), tan i

2
sin Ω, tan i

2
cos Ω

are used extensively in several domains of celestial mechanics. The associated Lagrangian
equations have been computed (Giacaglia, 1977; Nacozy and Dallas, 1977; Wytrzyszczak,
1986). However, these equations are rather complicated.

As an alternative, in our approach, we prefer to adopt a non-singular set of variables which
is also canonical. The following Poincaré variables(x1, . . . , x6) hold these specific charac-
teristics and are defined by

x1 =
√

2P sin p , x4 =
√

2P cos p ,

x2 =
√

2Q sin q , x5 =
√

2Q cos q ,

x3 = λ = M + Ω + ω , x6 = L ,

(2.13)

where

P = L−G , p = −ω − Ω ,

Q = G−H , q = −Ω ,

and(L,G,H) are the Delaunay’s elements defined by

L =
√
µ a, G =

√
µ a(1 − e2) , H =

√
µ a(1 − e2) cos i

as well asλ, the mean longitude. As a consequence, canonical properties will greatly simplify
the dynamical equations leading to the following Hamiltonian system of equations

dxj

dt
=

∂H(x1, . . . , x6)

∂xj+3

1 ≤ j ≤ 3 ,

dxj

dt
= −∂H(x1, . . . , x6)

∂xj−3

4 ≤ j ≤ 6 ,

(2.14)

whereH is the Hamiltonian function taken into account. The system (2.14) is said to be
a Hamiltonian system of order 6, or, equivalently, of 3 degrees of freedom. The quantities
xj (j = 1, . . . , 3) are called the variables (similarly the coordinates) whilethe quantities
xj (j = 4, . . . , 6) are called the momenta, which are conjugated to thexj (j = 1, . . . , 3).

The Hamiltonian equations of motion differs from the Lagrangian equations because the
canonical elements rates depend not only on the disturbing function but also on the total energy
of the system. In particular, when the Hamiltonian functionH is autonomous, i.e. it does not
depend explicitly on the timet, one can show thatH is the sum of the kineticT and potential
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energyV of the system and so equals the total energy, an integral of the system. Generally, we
have a Hamiltonian

H = T + V + θ̇Λ

= H2b +
∑

n

Rn + θ̇Λ

= − µ2

2L2
+
∑

n

Rn + θ̇Λ

where−µ2/2L2 is the Hamiltonian for the two-body problem andRn are the various dis-
turbing functions which are possibly taken into account. Inorder to preserve an autonomous
Hamiltonian, we also consider a correcting termθ̇Λ which is due to the Earth’s rotation. The
quantityΛ is the momentum conjugated to the sidereal timeθ.

One major benefit of Hamiltonian systems is that it makes specific coordinate transforma-
tions easier to carry out, which will be particularly relevant when we will investigate reso-
nant dynamics. More generally, the canonical form of the differential equations can be easily
preserved while considering the so-called canonical transformations which define a subset of
transformations from one set of canonical variables to another set. Furthermore, we ought to
mention that the canonical properties will also greatly simplify the further analytical filtering
in order to eliminate the short-period variations.

However, expressed in this form, the canonical set of elements (2.13) is not well suited
for the implementation of a perturbation theory because thepotentials, expressed as a function
of them, are not simple Poisson series. This is due in part to the fact thatP andQ are not
dimension-free (Henrard, 1974). A more convenient (but notcanonical) set of elements would
be

U =

√
2P

L
, V =

√
2Q

L
.

Because of their design, these elements are dimension-freeand thus well suited for series ex-
pansions.

Let us note that for small to moderate eccentricity and inclination, these elements are di-
rectly related to both the eccentricity and the inclination. Actually, we have

U ≈ e , V ≈ 2 sin
i

2

since

e = U

(
1 − U2

4

) 1

2

= U − 1

8
U3 − 1

128
U5 + O(U7)
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Figure 2.4: Graphic ofU =
√

2P/L with respect to the eccentricitye. For eccentricity values
such ase < 0.5, the two quantities are very close.

as well as

2 sin
i

2
= V

[
1 − U2

2

]− 1

2

= V +
1

4
V U2 +

3

32
V U4 + O(U6) .

For the sake of comparison, in Figures 2.4 and 2.5, we plot thevalues of bothU =
√

2P/L

andV =
√

2Q/L with respect to the eccentricity and the inclination, respectively. It is clear
that for eccentricity values such ase < 0.5, U ande are very close. Similarly, for small to
moderate values of the inclination and of the eccentricity,the quantitiesV and2 sin i/2 are
also very similar.

If the series expansions are performed and truncated, the Hamiltonian functions taken into
account in the problem of space debris, such as the geopotential (2.8) and the third-body (2.12)
disturbing functions can be easily expressed as a combination between polynomials inU andV
and trigonometric functions with respect to the angular quantities. Regarding the geopotential
expansion and for an arbitrary harmonic of degreen, we formally have

R(n)
pot =

1

L2n+2

Nn∑

j=1

A(n)
j (U, V )B(n)

j (λ, p, q, θ) ,



2.3 Expansion of the disturbing functions in universal elements 39

0

0.5

1

1.5

2

2.5

0 π
2

π 3π
2

2π

V
=
√

2Q
/L

Inclinationi [rad]

2 sin i/2
V (e = 0.0)
V (e = 0.2)
V (e = 0.4)
V (e = 0.6)

Figure 2.5: Graphic ofV =
√

2Q/L with respect to the inclinationi for various values of the
eccentricitye.

whereas then-degree third-body expansion is related to

R(n)
i =

L2n

rn+1
i

Nn∑

j=1

A(n)
j (U, V,Xi, Yi, Zi)B(n)

j (λ, p, q) .

The quantityB(n)
j is a trigonometric function which depends on the angular variablesλ, p, q

and possiblyθ. A(n)
j is a polynomial in theU andV variables and possibly depending on the

Cartesian coordinates of the third-body when considering the third-body expansion.nmax is
the maximum degree of the expansion andNn is the number of terms in then-degree expan-
sion. Let us note that the sidereal timeθ is only present in the case of tesseral and sectorial
harmonics due to the asymmetry in longitude.

Therefore, it is straightforward to deduce the final expansion in a set of non-dimensional
Cartesian variablesX1, Y1,X2, Y2, that is

Hpot = H2b + θ̇Λ +
nmax∑

n=2

R(n)
pot

= − µ2

2L2
+ θ̇Λ +

nmax∑

n=2

1

L2n+2

Nn∑

j=1

A(n)
j (X1, Y1, X2, Y2)B(n)

j (λ, θ) ,

(2.15)
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whereΛ is the momentum conjugated to the sidereal timeθ. Similarly, from Eq. (2.12), we
obtain the third-body expansion

Hi =
nmax∑

n=2

R(n)
i

=
nmax∑

n=2

L2n

rn+1
i

Nn∑

j=1

A(n)
j (X1, Y1, X2, Y2, Xi, Yi, Zi)B(n)

j (λ) ,

(2.16)

where

X1 = U sin p =

√
2P

L
sin p , Y1 = U cos p =

√
2P

L
cos p ,

X2 = V sin q =

√
2Q

L
sin q , Y2 = V cos q =

√
2Q

L
cos q .

(2.17)

These variables are similar to the elements that we have introduced in Eq. (2.13). It is worth
noting that despite the fact that this set of variables is at present non-dimensional, the new dif-
ferential system of the equations of motion remains simple and is said to bequasi-Hamiltonian,
i.e. Hamiltonian when excluding the non-dimensional variables substitutions. We mean that
we keep the Hamiltonian formulation of the differential equations, after having divided the
momentaP andQ by L, making them non-dimensional. Of course, this division generates
some corrective terms. The new differential system of equations reads

Ẋi =
1

L

∂H
∂Yi

, Ẏi = − 1

L

∂H
∂Xi

, i = 1, 2

λ̇ =
∂H
∂L

− 1

2L

[
2∑

i=1

∂H
∂Xi

Xi +

2∑

i=1

∂H
∂Yi

Yi

]
, L̇ = −∂H

∂λ
,

(2.18)

whereH is the Hamiltonian function (2.15) and/or (2.16) taken intoaccount and expressed in
the before-mentioned non-dimensional and Cartesian set ofvariables (2.17).

2.4 Manipulating series and first order averaging process

2.4.1 The Poisson series manipulator –MSNAM

It is clear that the expansion of the disturbing functions performed so far is a non-trivial task: it
is best undertaken with the assistance of computer algebra systems (Murray et Dermott, 1999).
Actually, the various Hamiltonian series involve an extremely large number of analytical com-
putations, particularly in the case of a high order development. Hand computations are then
avoided.

To tackle this technical difficulty, we use a symbolic software developed in our University.
This tool is called theMSNAM, standing forNamur SeriesManipulator. It is based on the
idea described by Henrard (1986). This software was first written inFortran77 by Michèle
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Moons (Moons, 1993) and was further extended and improved byJacques Henrard in 2004.
This software is at present written inFortran90 and is used for manipulatingPoisson series
of the form

α

p∏

i=1

χ
exp(i)
i

(
cos

sin

)( q∑

j=1

arg(j)φj

)
,

that is Fourier series in theq anglesφ1, · · · , φq the coefficients of which are polynomials inp
variablesχ1, · · · , χp. The argumentsarg(j)j=1···q and exponentsexp(i)i=1···p are integers and
theα coefficient is a real number.

The software package is provided with various mathematicaloperation functionalities such
as the addition, the multiplication of series as well as the partial differentiation and integration
with respect to both polynomial and trigonometric variables.

When multiplying such series, more and more terms are produced and they are always
reduced to linear form by the following well-known relationships

sinA cosB = 1
2

( sin(A+B) + sin(A− B) )

cosA sinB = 1
2

( sin(A+B) − sin(A− B) )

cosA cosB = 1
2

( cos(A+B) + cos(A− B) )

sinA sinB = 1
2

( cos(A+B) + cos(A− B) ) .

The concern to keep a linear expression in both the sine and cosine functions is actually manda-
tory for the manipulation of the series. In particular, it isessential when differentiating the
Hamiltonian function in order to derive the differential equations, but also in order to perform
the averaging process which will be discussed further.

2.4.2 Averaging over the short periods

Before presenting the averaging algorithm, let us first recall that the perturbations acting on an
Earth-orbit object can be categorized with respect to theirperiodicity. First, theshort-periodic
perturbations are said to be harmonic changes in the orbitalelements with a periodicity which
is on the order of the orbital period. Second, thelong-periodicperturbations are character-
ized by harmonic changes in the orbital elements with periods on the order of the periodicity
of both the perigee and the longitude of the ascending node. These perturbation oscillations
are typically on the order of several dozens of years. Finally, the secularperturbations are
characterized by time-proportional changes of the orbitalelements. Moreover, we should also
define the resonant changes related to resonance effects linked to some synchronism between
the orbital motion and a perturbing environment. This peculiar case will be discussed further.

Figure 2.6 shows schematically the characteristics of the perturbation classes according to
their periodicity as defined above. In this figure, we show thetime evolution of an arbitrary
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osculating elementE(t) as well as the related mean elementE ′(t) which includes both the
long-periodic and secular variations (filtered over the short periods).E ′(t) is usually called
a single-averagedelement as the result of removing the short-periodic motionfrom the oscu-
lating elementE(t). Removing the long-periodic effects would lead to the so-called doubly-
averagedelement which is only associated with the secular changes represented by the straight
line.

Let us recall that in completely numerical integrations, such as those obtained in Fig-
ures 2.2 and 2.3, the state vector or more generally the chosen set of orbital elements is
propagated along the osculating trajectory. The integration step in such integrations is typi-
cally on the order of a few minutes to ensure a sufficiently high stability when following orbits
which are subject to high-frequency perturbations. In thisframework, the right-hand sides of
the differential system of equations are evaluated a huge number of times.

The main idea of our approach consists in using first an analytical filtering procedure of the
initial osculating equations of motion, and second a numerical integration of these transformed
equations. This approach is well-known and is said to be asemi-analytical theory. The main
interest of semi-analytical theories is the determinationof long-term ephemerides. In this field,
what is of special relevance is not the complete descriptionof the solution requiring a lot of

Figure 2.6: Schematic illustration of short-period, long-period as well as secular effects with
respect to a generic perturbation.E(t) andE ′(t) stand for an arbitrary osculating and mean
element, respectively. The straight line shows secular effects. The large oscillation line shows
the secular plus long-periodic effects, and the small oscillation line, which combine all the
effects, shows the short-periodic effects.
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CPU time consumption, but the prediction of an approximate position at a given time.

Before proceeding with the averaging process, it is obviously necessary to specify the cut-
off period. In our theory, the cut-off period has been set to the orbital period of the space
debris, that is 1 day in the specific case of a geosynchronous space debris. As a consequence,
in our approach, the so-called approximate position will simply corresponds to the propagation
of the long-periodic curve (Figure 2.6). When propagating along this long-periodic curve, the
integration step can be significantly increased. Typicallythe entry-level time step is chosen to
be on the order of 1 day. Consequently, the numerical integration of the transformed system
of equation guarantees a great precision for the future solution and is very fast thanks to the
absence of short-periodic oscillations in the equations (At least ten times faster than traditional
numerical extrapolation, depending on the order of the expansion).

The averaging process can be easily explained by first separating the fast periodic terms
from the long periodic ones. For geopotential and luni-solar perturbations, this has been ac-
complished by means of expansions with respect to our non-singular and Cartesian set of vari-
ables (dimension-free Poincaré variables defined in Eq. (2.17) ). Therefore, from Eqs. (2.15)
and (2.16), we can formally consider the following generic Hamiltonian functionH

H =
nmax∑

n=2

F (n)(L)
Nn∑

j=1

(
C(n)

j (X1, Y1, X2, Y2, Xi, Yi, Zi)B(n)
j (λ, θ)

+A(n)
j (X1, Y1, X2, Y2, Xi, Yi, Zi)

)
,

whereF is a positive or negative power function ofL. As we are interested in the long-term
dynamics and as we assume at this stage that we are not close toa resonance with respect to
the mean longitudeλ, we average the disturbing functions over the fast variable, i.e. the mean
longitudeλ. As shown before, all the forces taken into account induce accelerations of the
same order of magnitude. As a consequence and as a first approach, we average the disturbing
functions to the first order by dropping the fast periodic terms in the trigonometric functions
leading to the general averaged Hamiltonian formulation

H =

nmax∑

n=2

F (n)(L′)

Nn∑

j=1

A(n)
j (X ′

1, Y
′
1 , X

′
2, Y

′
2 , Xi, Yi, Zi) ,

whereX ′
1, Y

′
1 , X

′
2, Y

′
2 as well asL′ denote the averaged quantities (mean elements). For the

sake of simplicity, the primes will be omitted further on. Let us note that, at present, the fast
variableλ is now disregarded which means that the mean semi-major axiswill remain constant,
which is compatible with a first order theory. Therefore, we find easily the transformed system
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Table 2.2: First terms (4-order expansion) of the averaged Hamiltonian seriesHJ2
associated

with the second degree harmonic. Let us notice that for some convenient reasons, we use the
geostationary semi-major axis (42 164 km) as the distance unit. Moreover, the gravitational
constantµ is set to unity.

λ θ X1 Y1 X2 Y2 L X$ Y$ Z$ r$ X⊙ Y⊙ Z⊙ r⊙ Coefficient

cos (0 0) (0 0 0 0 -6 0 0 0 0 0 0 0 0) 0.123866193131270D-04
cos (0 0) (0 0 0 2 -6 0 0 0 0 0 0 0 0) -0.185799289696905D-04
cos (0 0) (0 0 0 4 -6 0 0 0 0 0 0 0 0) 0.464498224242264D-05
cos (0 0) (0 0 2 0 -6 0 0 0 0 0 0 0 0) -0.185799289696905D-04
cos (0 0) (0 0 2 2 -6 0 0 0 0 0 0 0 0) 0.928996448484529D-05
cos (0 0) (0 0 4 0 -6 0 0 0 0 0 0 0 0) 0.464498224242264D-05
cos (0 0) (0 2 0 0 -6 0 0 0 0 0 0 0 0) 0.185799289696905D-04
cos (0 0) (0 2 0 2 -6 0 0 0 0 0 0 0 0) -0.371598579393811D-04
cos (0 0) (0 2 2 0 -6 0 0 0 0 0 0 0 0) -0.371598579393811D-04
cos (0 0) (0 4 0 0 -6 0 0 0 0 0 0 0 0) 0.185799289696905D-04
cos (0 0) (2 0 0 0 -6 0 0 0 0 0 0 0 0) 0.185799289696905D-04
cos (0 0) (2 0 0 2 -6 0 0 0 0 0 0 0 0) -0.371598579393811D-04
cos (0 0) (2 0 2 0 -6 0 0 0 0 0 0 0 0) -0.371598579393811D-04
cos (0 0) (2 2 0 0 -6 0 0 0 0 0 0 0 0) 0.371598579393811D-04
cos (0 0) (4 0 0 0 -6 0 0 0 0 0 0 0 0) 0.185799289696905D-04

of equations (quasi-Hamiltonian)

Ẋi =
1

L

∂H
∂Yi

, Ẏi = − 1

L

∂H
∂Xi

, i = 1, 2

λ̇ =
∂H
∂L

− 1

2L

[
2∑

i=1

∂H
∂Xi

Xi +

2∑

i=1

∂H
∂Yi

Yi

]
, L̇ = −∂H

∂λ
= 0 .

(2.19)

2.4.3 Characteristic series expansion and coding illustration

As an illustration, Table 2.2 shows the first terms of the non-singular averaged seriesHJ2

associated with the second degree harmonic. The related Hamiltonian disturbing function is
given by

HJ2
=

1

2

µ4R2
e

L6

(a
r

)3 (
1 − 3 sin2 φ

)

=
1

2

µ4R2
e

L6

(a
r

)3 (
1 − 3 z̄2

)
.

In the present case, the Hamiltonian series is obviously independent of the positions of the
Sun and the Moon leading to the null values of the exponents. Furthermore, to give an idea
of the complexity of the various perturbations expanded in power series, we also compute the
Hamiltonian series for several order expansions. Table 2.3gives the numbers of terms for each
perturbation which is taken into account.
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Table 2.3: Number of terms in the various averaged and osculating Hamiltonian series ex-
pressed in non-singular Poincaré variables. The number of osculating terms are inside paren-
theses.

Perturbation Number of terms
n-order expansion
X i1

1 Y
i2
1 X

i3
2 Y

i4
2 with i1 + i2 + i3 + i4 ≤ n n = 2 n = 4 n = 6 n = 8

Geopotential
HJ2

5 15 31 53
(33) (145) (410) (895)

External Body - Sun & Moon
up to degree2 27 86 197 390

(205) (836) (2374) (5480)
up to degree3 73 250 611 1227

(645) (2642) (7854) (18380)

Finally, we refer to Appendix G (page 181) where the terms arealso given for the third-
body series expansion.

2.5 Checking the method

As mentioned before, the semi-analytical theory has been developed to avoid the use of numer-
ical integration of the complete differential system over very long periods of time, which are
typically on the order of several years up to hundred years. However, the numerical integration
scheme is always considered to be the reference if it is properly applied. As a consequence,
and in order to give a first validation of the theory, we applied our semi-analytical theory to
the typical case of a high-altitude abandoned space debris and we compared our results with
respect to the osculating orbits derived from complete numerical integrations.

It is worth noting that the usual way of testing semi-analytical theories that consists in
comparing directly the semi-analytical solution with the result of the osculating numerical in-
tegration is not entirely consistent. As a matter of fact, the osculating elements and the mean
elements are not directly comparable. Therefore, a highly accurate testing procedure should
have regard for this difference. For instance, Exertier andMétris (1995) describe such an ac-
curate method based on the concept oftheoretical filtered elements. Within this context, the
osculating orbit is first numerically and analytically filtered over the short periods leading to
the so-calledobserved filtered elements. Subsequently, the evolution of the mean elements
computed using the transformed dynamical model (semi-analytical method) is finely tuned
on the observed filtered elements, with adjusted initial conditions by a differential correction
procedure. For further details concerning this testing procedure, we refer to Métris (1991),
Exertier and Métris (1995) and Deleflie (2002). However, even though this testing procedure
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Figure 2.7: Comparison between the osculating orbit (blue solid line) and the mean orbit
(red dashed line) for the long-term time evolution of a fictitious space debris subject to the
second order harmonicJ2 and to the third-body perturbation (Moon). Initial conditions are
a0 = 42 164 km, e0 = 0, i0 = 0 rad, Ω0 = ω0 = λ0 = 0 rad. Initial time at epoch is
25 January 1991.

is much more rigorous, we consider that the time taken to implement such a procedure is too
much regarding the fact that our main purpose is to give a “first order” comparison.
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Figure 2.8: Differences between the osculating orbit and the mean orbit for the long-term time
evolution of a typical abandoned space debris. The model of forces is equivalent to the one
chosen in Figure 2.7.

Here, in order to make these comparisons achievable, we takeadvantage of a home-made
numerical software. This software has been first developed by N. Delsate and has been re-
cently extended for the special needs of the investigationsdeveloped in this manuscript. This
extensive tool allows to derive the osculating motion of an arbitrary object orbiting any of the
terrestrial planets of our Solar System. Similarly to theMICROZ software mentioned earlier,
the osculating equations of motion are expressed using Cartesian coordinates which ensures
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a high stability of the numerical solution by avoiding both the eccentricity and inclination
singularities. The packages include the combined third-body attractions of the Sun and the
Moon, the direct radiation pressure (possibly including the Earth’s shadow), the Earth gravita-
tional field expanded up to an arbitrary degree and order harmonic (EGM96 model, Lemoine
et al., 1987) using the Cunningham algorithm (see Appendix B, page 161) and air drag when
applicable. The latter software allows to consider two different integration algorithms. Here-
after, we adopt the variable step size Bulirsh-Stoer algorithm (see e.g. Bulirsh and Stoer, 1966;
Stoer and Bulirsh, 1980). For further details concerning a context where this software is used
extensively, we refer to Chapters 4 and 5. Concerning the numerical algorithm used in the
semi-analytical propagations, we also adopted the Bulirsh-Stoer algorithm as well as a fourth-
order Runge-Kutta algorithm when a fixed step size is required.

From this point, let us consider the dynamical evolution of atheoretical high-altitude space
debris. As a first approach, the perturbations taken into account are the oblateness of the Earth
and the third-body perturbation induced by the Moon. Figure2.7 shows the variation of both
the inclination and the eccentricity as well as the associated longitude of the ascending node
and the argument of perigee over a period of more than 100 years (40 000 days). In this fig-
ure, the mean orbit (red dashed line) obtained by our semi-analytical theory is superimposed
with the related osculating orbit resulting from the integration of the full differential system.
It is worth stressing at this point that the entry-level stepsize used in the osculating numerical
integration is fixed at 200 seconds, whereas we defined a 1 day step size when integrating the
averaged system of equations.

It is also worth noting that the short-periodic effects are especially significant on the semi-
major axis and to a lesser extent on the eccentricity. Actually, the angular quantities, that is the
inclination, the argument of perigee and the longitude of the ascending node are also subject to
short-period oscillations but with small amplitudes. In order to give a quantitative estimation
of the accuracy of the method, Figure 2.8 shows the difference between both orbits. First,
when regarding the semi-major axis, it is clear that the difference is mostly induced by the
short-period amplitudes. Second, on the remaining orbitalelements, the differences remain
small although the chosen time of integration is very sizable. Actually, the computedRMS

can really be considered as being very small insofar as the comparison has been made with-
out any preliminary fitting of the mean initial conditions. Moreover, theRMS on both the
argument of perigee and longitude of the ascending node are mostly influenced by the singular
transformation when projecting the integrated non-singular state vector into Keplerian orbital
elements.

We seize the opportunity here to regain the main dynamical properties of high-altitude
space debris which will be relevant in our further investigations. These properties will be en-
hanced by drawing the time evolution of the main orbital elements. For this purpose, Figure 2.9
shows the variation of both the inclination and the eccentricity as well as the associated longi-
tude of the ascending node and the argument of perigee over a period of more than 100 years.
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Figure 2.9: Comparison between the osculating orbit (blue solid line) and the mean orbit
(red dashed line) for the long-term time evolution of a typical abandoned space debris. The
model of forces is the second order harmonicJ2 of the geopotential and the combined Moon
and Sun third body attraction. Initial conditions area0 = 42 164 km, e0 = 0, i0 = 0 rad,
Ω0 = ω0 = λ0 = 0 rad. Initial time at epoch is 25 January 1991.

The perturbations which are considered are the oblateness of the Earth as well as the com-
bined attraction of the Sun and the Moon. As highlighted in the previous chapter, the Earth’s
oblateness causes the orbital plane of the space debris to regress about the Earth’s polar axis.
Actually, for low-altitude orbits, the dynamics is mainly affected by the oblateness perturba-
tion, leading essentially to a precession about this axis whereas for high-altitude orbits, such
as those of geosynchronous objects, the order of magnitude of the third-body attraction be-
comes similar to the one related to the Earth’s oblateness. Regarding the Sun, the perturbation
causes a regression of the orbital plane about the ecliptic pole. Similarly, the Moon’s perturba-
tion leads to a regression of the latter plane about an axis normal to the Moon’s orbital plane.
In practice, we obviously observe a superposition of the three above-mentioned precessional
motions. The plane normal to the pole of the resulting motionwas called theLaplace plane.
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Figure 2.10: Projection of the orbital poles of theoreticalgeostationary space debris mov-
ing in the gravitational field of the Earth. The initial conditions area0 = 42 164 km, e0 =
4.10−2, i0 = 8.10−2 rad for the semi-analytical propagation. The model of forces is: oblate-
ness of Earth and the combined attraction of the Sun and the Moon. Time of integration is
54 years. The orbital evolution is superimposed with the current cataloged objects.

The perturbations involve an important long-periodic variation of the inclination with values
as high as 15◦ and a periodicity of about 54 years, which is in agreement with the discussion
presented in Section 1.3. Moreover, the argument of perigeealso shows a significant preces-
sion rate. Let us note that another long period of about 10.5 years, induced by the Sun and the
Moon attraction, is also especially apparent on the eccentricity evolution.

In addition, Figure 2.10 shows the projection of the orbitalpole of a theoretical space
debris placed on a particular geostationary Earth’s orbit and propagated by using our semi-
analytical theory. The orbital evolution is also superimposed with the current cataloged GEO
space debris shown in Figure 1.5 (page 14). The clear differences between the two plots may
be explained by the two following statements: firstly, the theoretical object was propagated
over a 54 years period whereas the objects cataloged are mostly artificial satellites and space
debris which were deployed at most 35 years ago. Secondly, the objects could leave their initial
geostationary orbit only after the end of the operational maintenance period, which explains
the present distribution of the orbital poles.
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2.6 Resonance with the Earth’s rotation

The rotation period of an object in Earth’s orbit is said to bein resonancewith the Earth’s
rotation if it is commensurate with the sidereal rotation period of the Earth. In other words, the
object is in resonance if a small integer numberq1 of sidereal days is equal to a small integer
numberq2 of revolution periods of the object, that is

P⊕

Pobj
=
q1
q2
,

whereP⊕ is the Earth’s rotational period, that is2π/n⊕ = 1 day (n⊕ = θ̇) andPobj is the
orbital period of the object taken into account. In those special cases, that is when the orbital
period is commensurate with respect to the rotation period of the Earth, the object ground-trace
will be a closed or repeating path. The repeating ground-track means the object will periodi-
cally encounter the same configuration of gravitational forces. The result is a variation of the
motion with very long periods, typically the order of several months, or even years, for deep
resonance (Vallado, 2001).

The geopotential resonances exist if at least one of the orbital elements shows a net non-
zero accumulated perturbation due to the term considered over one revolution period (Beutler,
2005). These resonances occur for instance when the rate of the Kaula gravitational argument
is close to zero, that is

Θ̇nmpq(Ω̇, ω̇, Ṁ , θ̇) = (n− 2p) ω̇ + (n− 2p+ q) Ṁ +m(Ω̇ − θ̇) ≃ 0 .

Typically, when the conditionq = 0 is satisfied, that is when considering a zero-order expan-
sion with respect to the eccentricity, we have

(n− 2p) (ω̇ + Ṁ) ≃ m (θ̇ − Ω̇) ,

or similarly
ω̇ + Ṁ

θ̇ − Ω̇
≃ q1
q2
, (2.20)

Such resonances are said to beRepeat Ground-Track Resonances. Typically, the rates of both
ω andΩ are small and the condition (2.20) reads

Ṁ

θ̇
≃ λ̇

θ̇
≃ q1
q2
.

When the ratioq1/q2 is close to 1, the resonance is clearly associated with the geostationary
orbit whereas it is close to 2 forGPSsatellites.
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2.6.1 Resonant Hamiltonian formalism – the resonance angle

In order to describe the motion of a near-geostationary space debris, we take into account the
fact that the Earth’s sidereal rotation period and the revolution period of the space debris are
nearly commensurate. In the case of a purely geostationary space debris, the two frequencies
are exactly the same. Therefore, this repeat ground-track resonance will drastically increase
the amplitude of the harmonics by producing small divisors in the coefficient of the trigono-
metric terms.

Let us rewrite the Hamiltonian function of the second order and degree harmonic, denoted
by HJ22

, which can also be expanded in series of non-dimensional Poincaré variables

HJ22
= 3

µ4R2
e

L6

[
C22 (x̄2 − ȳ2) + S22 (2x̄ȳ)

]

= HJ22
(X1, X2, Y1, Y2,Λ, λ, L, θ) + θ̇Λ .

Let us define the so-calledresonant angleσ

σ = λ− θ , (2.21)

whereλ is the mean longitude defined in Eq. (2.13). In order to keep a canonical set of
variables, we use the following symplectic transformation

dσ L′ + dθ′ Λ′ = dλL+ dθΛ , (2.22)

leading to the new set of canonical variables

L′ = L, θ′ = θ, Λ′ = Λ + L

and the new Hamiltonian formulation including the resonantangle

HJ22
(X1, Y1, X2, Y2, σ, L

′, θ) + θ̇ (Λ′ − L′) . (2.23)

Averaging process

Thanks to the introduction of the resonant angleσ, it is now conceivable to average the Hamil-
tonian after making sure that only the short-periodic termsdisappear, that is guaranteeing that
long periods associated with commensurate or near-commensurate orbits are preserved. To
proceed with this particular averaging process, it is only necessary to average the Hamilto-
nian disturbing functionHJ22

over the fast angular variable, namely the sidereal time, since
the mean longitude has been replaced by the combination between the resonant angle and the
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sidereal time. The averaging process can be formally illustrated by the following relations

HJ22
(X1, Y1, X2, Y2, L,Λ, θ, λ)y

HJ22
(X1, Y1, X2, Y2, L,Λ, θ, σ)y

HJ22
(X1, Y1, X2, Y2, L,Λ,−, σ) ,

Consequently, the differential system of equations related to this new averaged Hamiltonian is
given by

Ẋi =
1

L

∂HJ22

∂Yi
, Ẏi = − 1

L

∂HJ22

∂Xi
, i = 1, 2

σ̇ =
∂HJ22

∂L
− 1

2L

[
2∑

i=1

∂HJ22

∂Xi
Xi +

2∑

i=1

∂HJ22

∂Yi
Yi

]
, L̇ = −∂HJ22

∂σ
,

which is very similar to Eq. (2.18) except thatL is at present conjugated to the resonant angleσ.
For the sake of completeness, Table 2.4 gives the number of terms appearing in the disturbing
function and Table 2.5 gives the first terms of the expansion.The4th-order series expansion is
given in Appendix G (page 181).

Table 2.4: Number of terms appearing in both the averaged andosculating Hamiltonian series
expressed in dimension-free Poincaré variables. The number of osculating terms are inside
round brackets.

Perturbation Number of terms
n-order expansion
X i1

1 Y
i2
1 X

i3
2 Y

i4
2 with i1 + i2 + i3 + i4 ≤ n n = 2 n = 4 n = 6 n = 8

Resonant disturbing function
HJ22

= HC22
+ HS22

10 40 104 206
(94) (468) (1392) (3178)

2.6.2 Long-term effects induced by the Earth’s rotation – simplified an-
alytical model

Subsequently, we will confine ourselves to the discussion ofcircular orbits in the equatorial
plane. Within these assumptions and in order to outline the main features of the 1:1 resonance,
we consider the following “minimum” resonant HamiltonianH including the two body prob-
lem as well as the second degree and order harmonic of the geopotential. From Eq. (2.23), we
have

H(L, σ,Λ) = − µ2

2L2
+ θ̇(Λ − L) +

1

L6
[α1 cos 2σ + α2 sin 2σ] ,
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Table 2.5: First terms (2-order expansion) of the averaged Hamiltonian seriesHJ22
associated

with the second degree and order harmonic. Let us notice thatfor some convenient reasons,
we use the geostationary semi-major axis (42 164 km) as the distance unit. Moreover, the
gravitational constantµ is set to unity.

σ θ X1 Y1 X2 Y2 L X$ Y$ Z$ r$ X⊙ Y⊙ Z⊙ r⊙ Coefficient

cos (2 0) (0 0 0 0 -6 0 0 0 0 0 0 0 0) 0.1077767255434384D-06
cos (2 0) (0 0 0 0 -6 0 0 0 0 0 0 0 0) 0.1080907167254767D-06
cos (2 0) (0 0 0 2 -6 0 0 0 0 0 0 0 0) -0.5404535836273835D-07
cos (2 0) (0 0 2 0 -6 0 0 0 0 0 0 0 0) -0.5404535836273835D-07
cos (2 0) (0 2 0 0 -6 0 0 0 0 0 0 0 0) -0.2702267918136917D-06
cos (2 0) (2 0 0 0 -6 0 0 0 0 0 0 0 0) -0.2702267918136917D-06
sin (2 0) (0 0 0 0 -6 0 0 0 0 0 0 0 0) -0.6204881922826443D-07
sin (2 0) (0 0 0 2 -6 0 0 0 0 0 0 0 0) 0.3102440961413221D-07
sin (2 0) (0 0 2 0 -6 0 0 0 0 0 0 0 0) 0.3102440961413221D-07
sin (2 0) (0 2 0 0 -6 0 0 0 0 0 0 0 0) 0.1551220480706611D-06
sin (2 0) (2 0 0 0 -6 0 0 0 0 0 0 0 0) 0.1551220480706611D-06

whereα1 andα2 are the numerical values of the first terms appearing in the Hamiltonian series
as shown in Table 2.5, that is

α1 ≃ 0.1077 × 10−6, α2 ≃ −0.6204 × 10−7 .

Two stable equilibria(σ∗
11, L

∗
11), (σ

∗
12, L

∗
12) as well as two unstable equilibria(σ∗

21, L
∗
21), (σ

∗
22, L

∗
22)

are found to be solutions of
∂H
∂L

=
∂H
∂σ

= 0 ,

where

σ∗
11 = λ∗ σ∗

12 = λ∗ + π

σ∗
21 = λ∗ +

π

2
σ∗

22 = λ∗ +
3π

2
,

as well as
L∗

11 = L∗
12 = 0.99999971, L∗

21 = L∗
22 = 1.00000029,

where the distance unit has been set to 42 164 km. The angular valueλ∗ is the first quadrant
solution of

tan 2λ∗ =
S22

C22

=
α2

α1

,

that isλ∗ ≃ 75.07◦.

We can understand the existence of these four equilibrium points through physical argu-
ments. First, let us consider the peculiar case of a perfect geostationary object which means
that its orbital period is exactly one sidereal day. Second,let us recognize that within these
assumptions, the Earth’s gravity field is only longitude-dependent when considering only the
second degree and order harmonics which correspond physically to the ellipticity of the equa-
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Figure 2.11: Polar view of an equatorial section of the Earth. Schematic illustration of both
the stable and unstable equilibrium points.

torial radius of the Earth (Figure 2.11). As quoted by Vallado (2001): “In a reference frame
rotating with the Earth, it is clear that when the object is onthe extension of either axis of
the equatorial ellipse, the gravitational force is purely radial. These must then be equilibrium
positions or stationary points in the rotating reference frame. On the other hand, when the
object is off-axis, there will be a net tangential force,F , toward the nearest major axis. On
first examination, we might expect the satellite to accelerate in the direction of theF . How-
ever, the drag paradox dictates just the opposite, and the satellite will accelerate toward the
nearest equilibrium position on the minor axis. Because it acquires momentum, the satellite
will actually drift pastS, and the direction ofF will then be reversed. The drift will gradually
be reversed. Hence, pointsS on the minor axis are positions of stable equilibrium, whereasU
are unstable positions.”

To investigate analytically this two degree of freedom problem, the Hamiltonian is first re-
duced to a quadratic form in a neighborhood of a stable equilibrium point. After diagonalizing
the Hessian matrix, we will be able to verify that the problemremains decoupled and that the
proper frequency is also computed from the local analysis.

Let us introduce the resonant Cartesian coordinates(x =
√

2L cosσ, y =
√

2L sin σ)

and at any equilibrium(x∗ =
√

2L∗ cosσ∗, y∗ =
√

2L∗ sin σ∗). Developing the Hamiltonian
function in Taylor series around one of the stable equilibria (x∗, y∗), up to the second order,
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we find (having dropped the constant additive terms)

H∗(X, Y,Λ) = θ̇Λ +
1

2
(aX2 + 2bXY + cY 2) + · · · ,

whereX andY are defined as

X = (x− x∗), Y = (y − y∗) .

The valuesa, b andc stand for the second order derivatives

a =
∂2H
∂x2

∣∣∣∣
(L∗,σ∗)

, b =
∂2H
∂x∂y

∣∣∣∣
(L∗,σ∗)

, c =
∂2H
∂y2

∣∣∣∣
(L∗,σ∗)

,

where(L∗, σ∗) are the values of(L, σ) evaluated at the first stable equilibrium. It is thus
possible to introduceaction-anglevariables. This can best be performed using the so-called
reducing transformationin order to eliminate the mixed terms in such a quadratic Hamiltonian
(for further details concerning contexts where similar transformations are useful, we refer to
Henrard 1988). Here, the transformation is given by

X = p cos Ψ + q sin Ψ and Y = −p sin Ψ + q cos Ψ ,

that is aΨ angle rotation, solution of

(a− c) sin 2Ψ + 2b cos 2Ψ = 0 .

As a consequence, we find the new Hamiltonian formulation

H∗(p, q,Λ) = θ̇Λ +
1

2

[
Ap2 + C q2

]
,

with
A = a cos 2Ψ − 2b sin Ψ cos Ψ + c sin 2Ψ

and
C = a sin 2Ψ + 2b sin Ψ cos Ψ + c cos 2Ψ.

A last scaling canonical transformation of the formp = α p′ andq = 1
α
q′ obtained by solving

the following equationAα2 =
C

α2
, allows us to write the new Hamiltonian as

H(J, φ,Λ) = θ̇Λ +
√
AC J ,

where(J, φ) are the correspondingaction-anglevariables

p′ =
√

2J cosφ , q′ =
√

2J cos φ .
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Subsequently, we find two frequencies, namely the frequencyof the sidereal time and the
so-calledresonant fundamental frequencyνf at equilibrium.

θ̇ =
∂H
∂Λ

, νf =
∂H
∂J

=
√
AC .

Numerical computations lead to the following value of the fundamental frequency

νf = 7.674 × 10−3/[days] ,

that is a period of 818.7 days.

By a similar approach, we can easily estimate the width of theresonant zone; we take the
Hamiltonian level curve corresponding to one of the unstable equilibriaLu andσu

H(Lu, σu,Λ) = − µ2

2L2
+ θ̇(Λ − L) +

1

L6
[α1 cos 2σ + α2 sin 2σ] ,

and we find the maxima and minima of this “banana curve”, corresponding to the stable equi-
libria; by a quadratic approximation aboutLu, we obtain the width of the banana at the stable
points, i.e. the width∆ of the resonant zone. It can be approached by

∆ =

√
γ2 + 8δβ

β2
, δ =

α1

L6
u cos 2σu

, β = −3

2

µ2

L4
u

, γ =
µ2

L3
u

− θ̇ . (2.24)

The numerical value of the width of the resonance zone is of the order of 69 km.

2.6.3 Resonant effects – numerical investigations

Let us show how the semi-analytical method can highlight themain features of the debris pop-
ulation in the geostationary region. In this section, we present the resonant motion and its main
characteristics: equilibria, stability, fundamental frequencies and width of the resonant area,
by comparison with our basic simplified model defined in Subsection 2.6.2.

Figure 2.12 shows the mean semi-major axis and the resonant angle (that is the mean
longitude in a frame rotating with the Earth) for a set of three geosynchronous space debris
propagated over a period of more than 8 years where the only perturbation taken into account
is the second degree and order tesseral (sectorial) harmonic. The mean semi-major axis as
well as the resonant angle are subject to very-long period oscillations. Near the first stable
equilibrium, namelyλ = λ∗, we observe that the period of oscillation is about 800 days,value
very close to our formal calculation of 818.7 days.

Further, the periods increase as the deviance∆λ = |λ0 − λ∗| increases with respect to
the stable equilibrium point. As a consequence, an arbitrary space debris orbiting the geosyn-
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Figure 2.12: Semi-major axisa [top] and resonant angleσ = λ − θ [bottom] of several
geosynchronous space debris with initial conditionsa0 = 42 164 km, e0 = 0, i0 = 0 rad,
Ω0 = ω0 = 0 rad, the initial longitude of which areλ0 = 5◦, 35◦, 75◦.
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Figure 2.13: Libration periods [top] and width of resonance[bottom] related to 32 virtual space
debris the initial longitudeλ0 of which varied from0 to 2π. The solid curves are obtained by
interpolation.
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Figure 2.14: Motion of a geostationary space debris near stable equilibria in a rotating ref-
erence frame as seen from the pole. The variations on the meansemi-major axis have been
amplified for the illustration by a factor 100.

chronous Earth’s orbit may considerably librate except if it is exactly located at the theoreti-
cal stable equilibrium point. As in the case of the first modelof resonance (see for instance
Breiter, 2003; Henrard and Lemaître, 1983), the amplitudesof the perturbations affecting the
mean longitudes are observed to be2 ∆λ. Moreover, the perturbations seem to induce rele-
vant variations on the mean semi-major axis. Figure 2.13 shows the variations of the periods
as well as the mean variations observed on the semi-major axis as a function of the initial
mean longitude. The two stable equilibrium points as well asthe two unstable ones appear
clearly. Near the first stable equilibrium, the period converges to the so-called fundamental
period. As a consequence, the variation on the mean semi-major axis converges to zero. On
the contrary, the periods diverge to infinity near the unstable equilibria and the variations on
the mean semi-major axis reach their maximum that is almost 70 km in the worst case, value
in agreement with our 69 km obtained analytically in Equation (2.24). These results seem to
be in agreements with Beutler (2005) where the libration period is found to be

P =
2π

νf
K̃(k),

with k = sin 2 ∆λ, ∆λ is the mean longitude deviance with respect toλ∗ andK̃(k) is the
normalized elliptic function of the first kind ink.
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We also represent the phase space(a cosσ, a sin σ); Figure 2.14 shows clearly the exis-
tence of three distinct regions: the internal region corresponds to orbital motion the period of
which is less than 24 hours. In this case, the longitude of thespace debris is increasing; that is,
the space debris seems to orbit eastward around the Earth. The second region is characterized
by mean motions synchronized with the Earth’s rotation, we deal with the so-called geosyn-
chronous orbits. When the object is near one of the two stableequilibria, the space debris
oscillates. As shown previously, this oscillation consists of a long periodic libration around
the equilibrium. The last region is external, and the motiondoes not show anymore significant
long-periodic variations.
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Part II

H IGH AREA -TO-MASS RATIOS

GEO SPACE DEBRIS

SEMI -ANALYTICAL INVESTIGATIONS





Chapter 3

Analytical and semi-analytical
investigations of geosynchronous space
debris with high area-to-mass ratios

“Houston, we have a trash problem !”

By Sean Cooper, Wired Magazine, Issue 15.05

– The results of this chapter have been previously publishedin Valk et al. (2007b) –

The recent observational discoveries in high altitude Earth’s orbit (for the most part in geosyn-
chronous orbits), stimulated the revisit of direct solar radiation pressure models. In particular,
recent numerical investigations were performed in order toassess the time evolution of objects
subject to such extreme situations (Anselmo and Pardini, 2005; Liou and Weaver, 2004; Mc-
Kee, 2004). In this framework, short-term as well as long-term evolutions of geosynchronous
space debris were studied in detail. Liou and Weaver (2005) also proposed the source of such
high area-to-mass ratios, namely thermal blankets or multi-layer insulation (MLI), which are
made from MylarR©, KaptonR© or NomexR©.

The topic specifically addressed in this chapter is the development of an accurate semi-
analytical theory. This theory provides a Hamiltonian formulation for GEO space debris sub-
jected to direct solar radiation pressure. Similarly to thesemi-analytical theory developed in
Chapter 2, this theory is still based on the concept of averaged equations of motion over the
short periods and is of order 1 regarding the averaging process. The transformed differential
system of equations is then numerically integrated over thelong periods.

First, for the sake of clarity and completeness, we present both the description and the
modeling of direct radiation pressure in Section 3.1.

Sections 3.2 and 3.3 describe the osculating equations of motion associated with the direct
solar radiation pressure followed by the non-relativisticassumption leading to our Hamiltonian

65
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formulation. This formulation is based on the analytical expansion of the disturbing function
using canonical and non-singular variables with respect toan expansion in powers of the ec-
centricity and of the inclination truncated at an arbitraryhigh order.

In addition, in order to underline the main effects induced by the direct solar radiation pres-
sure, Section 3.4 describes simplified analytical models expressed in non-singular elements.
The aim of this section elaborates and is an improvement of the analytical model presented by
Chao and Baker (1983) and Chao (2006), in order to obtain not only the averaged equations
in eccentricity and longitude of perigee, but also the coupling equations between eccentricity
and inclination as well.

Finally, Section 3.5 consists of a comparison of various assumptions in the modeling of
direct solar radiation pressure and emphasize the importance of adopting an accurate model of
radiation pressure when dealing with high area-to-mass ratios. Moreover, this section claims to
be the counterpart of previously published results (Anselmo and Pardini, 2005; Schildknecht
et al., 2007).

3.1 The direct solar radiation pressure

By direct solar radiation pressure, we mean the net acceleration resulting from the interaction
of the sunlight with each elementary surface of the space debris. The Quantum Mechanics
says that each photon of frequencyν and wavelengthλ = c/ν carries the energy

E = h ν ,

whereh = 6.62× 10−34 J s is the Planck’s constant andc is the speed of light in vacuum. The
photons carry not only energy but also linear momentum whichis given by

p = − h ν

c
s,

wheres is the unit vector pointing toward the Sun. The momentum transferred per time unit
onto a unit surface in a radiation field is calledradiation pressure. As a consequence, the radi-
ation pressure is a vectorial quantity (Beutler, 2005).

To model what happens of the linear momentum carried by the radiation impacting the
surface, we can use a combination of three standard physicalmodels, namely, theabsorption,
the reflection and thediffusion. For each elementary surfacedS of the space debris, one can
define the coefficientsα, ρ andδ, that is the fractions of incident sunlight which are absorbed,
reflected and diffused, respectively. These coefficients are related to the following equation

α + ρ+ δ = 1 .
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Figure 3.1: Elementary surfacedS, and the angleβ between the normal vectorn and the
direction of the Suns [left]. Geometry of the incident, reflected, diffused and absorbed radia-
tion [right].

To simplify the investigations of radiation pressure, it isconvenient to consider the following
assumptions

• the absorbed light is not re-emitted (black body);

• for a given direction, the intensity of diffused light is proportional to the cosine of the
angleβ from the normal to the surfacedS (Lambert law) (Figure 3.1, left);

• the reflection is perfectly specular, which means that the photons bounce on a smooth
surface following the laws of mirror reflection;

• the elementary surfacedS behaves like a linear combination of three physical models:
that is a combination of a black body, a perfect mirror and a Lambert diffuser. As
a consequence, the three coefficients completely specify the optical properties of the
surface taken into consideration (Figure 3.1, right).

Making use of these assumptions, the force induced by the radiation pressure is directed in
part along the normaln to the surface and in part along the direction of the Suns. This force
can be easily obtained by adding together the elementary forcesdF α, dF ρ anddF δ induced
by the absorbed, the reflected and the diffused sunlight, respectively.

The elementary force acting on a surface elementdS due to the absorption is naturally
oriented along the−s direction and is proportional to the cross sectiondS| cosβ|, that is

dF α = −Φ⊙

c
α cosβ s dS,

whereΦ⊙ is the energy flux, that is the flux per unit of area. Let us also remark that the
energy fluxΦ⊙ is also called thesolar-radiation constant, giving the energy flowing through
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this surface per time unit at the distance of 1 AU. The value ofthis constant is

Φ⊙ = 1368 Watt/m2 .

Concerning the elementary force resulting from the reflection of the sunlight, we know that
it will be directed along the−n direction, with a force directly proportional to the cross sec-
tion. Moreover, the fraction of photons corresponding to the reflection coefficient transfers to
the spacecraft, not only the momentum they had upon arrival,but also the recoil momentum
(Milani et al., 1987). Therefore, we have

dF ρ = −Φ⊙

c
2 ρ cosβ dS | cosβ|n.

Finally, regarding the fraction of photons corresponding to the diffusion coefficient, we have

dF δ = −Φ⊙

c
δ cos β dS

[
s +

2

3
n

]

where thes-component is first related to the absorbed part of the incident light and where the
n-component is associated with the re-emitted part.

As a final result, the resultant of the elementary forces is given by

F rp = −Φ⊙

c

∫

S

[
(1 − ρ) cosβ s +

(
2

3
δ + 2ρ cosβ

)
cos β n

]
dS , (3.1)

whereS is the portion of the space debris illuminated by the Sun.

In practice, the evaluation of the integral (3.1) is rather complicated. Actually, determining
the coefficients properly is extremely difficult. The three coefficients change over time and
are virtually impossible to predict. This is especially true for objects with complex shape,
eventually made of various materials, that enter and exit eclipse regions, and possibly have a
constantly changing orientation (Vallado, 2001). Moreover, it is not guaranteed that the resul-
tant force is applied on the center of mass of the space debris, possibly leading to variations on
the attitude. However, as reported by Milani et al. (1987), if the object subjected to direct radi-
ation pressure has some simple shapes, the integral of Eq. (3.1) can be computed analytically.
In such a case, the force induced by the radiation pressure can be directly expressed as

F rp = −Φ⊙ A

c
s , (3.2)

whereA is theeffective cross section. For instance, considering a flat panel oriented orthogo-
nal to the Sun direction vectors, the effective cross section is simply related to the area ofthe
panel. Otherwise, in the specific case of a spherical object the radius of which is defined byR,
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the effective cross section can be computed as

A =

(
α + ρ+

13

9
δ

)
π R2 , (3.3)

where the coefficients defining the optical properties of theobjects are assumed to be constant.

Let us also remark that in the literature, the name “reflectivity” coefficient is usually used
to represent the single coefficient related to the optical properties of the surface even though
it is not only related to the reflectivity properties, as it isshown in Eq. (3.3). Although this
misuse is misleading, we will adopt this generic name. This single scalar coefficient will be
denoted byCr further on in this manuscript.

3.2 Osculating equations of motion

In keeping with Eq. (3.2), the acceleration due to the directradiation pressure can thus be
written in the form

arp = Cr Pr

[
a⊙

‖r− r⊙‖

]2
A

m

r − r⊙
‖r − r⊙‖

, (3.4)

whereCr is the above-mentioned dimension-free “reflectivity” coefficient (fixed to 1 further
on in this manuscript), which depends on the optical properties of the space debris surface;
Pr = Φ⊙/c = 4.56 × 10−6 N/m2 is the radiation pressure for an object located at a distance
of 1 AU; a⊙ is a constant parameter equal to the mean distance between the Sun and the Earth,
that isa⊙ = 1 AU; r is the geocentric position of the space debris andr⊙ is the geocentric posi-
tion of the Sun. Finally,m is the mass of the object subject to radiation pressure. Furthermore,
the variation of the distance between the Sun and the Earth isimplicitly taken into account in
Eq. (3.4) since the incoming flux will change because of the eccentricity of the Earth’s orbit
around the Sun.

Without any assumption, the radiation pressure should be considered as a dissipative force.
Therefore, the equations of motion taking into account the effect of the radiation pressure are
traditionally written using the Gaussian perturbation equations (see Appendix E.1, page 173).
As a consequence, the acceleration is expressed along the radial S, along-trackT (perpendic-
ular to position vectorr in the orbital plane) and out-of-planeW (normal to the orbital plane)
directions. Under the following assumptions

1. The Sun–space debris vector is considered to be equal to the Sun–Earth vector, that is
r − r⊙ = −r⊙,

2. The albedo radiation pressure of the Earth is ignored,

3. The Earth’s shadowing effects are not taken into account,

4. The light aberration is not taken into account (relativistic effect),
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5. The YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) thermal effect is not taken into
account,

6. The radiation pressure acceleration, defined in Eq. (3.4), assumes implicitly a spherical
object, with optical properties defined by a single scalarCr,

the Gaussian equations for the variations of the osculatingorbital elements subjected to direct
radiation pressure acting along the Sun–Earth direction vector are (Appendix E.1, page 173)

da

dt
=

2χ

n η

[
eS(f) sin f + T(f)

p

r

]
,

de

dt
=

η χ

n a

{
S(f) sin f + T(f)

[
cos f +

1

e

(
1 − r

a

)]}
,

di

dt
=

χ

n a η
W

r

a
cos(ω + f) ,

dω

dt
= − cos i

dΩ

dt
+

χ η

n a e

[
−S(f) cos f + T(f)

(
1 +

r

p

)
sin f

]
, (3.5)

dΩ

dt
=

χ

n a η sin i
W

r

a
sin(ω + f) ,

dM

dt
= n− 2χ

n a
S(f)

r

a
− η

(
dω

dt
+ cos i

dΩ

dt

)
.

In Eqs. (3.5),χ = Cr Pr A/m (a⊙/r⊙)2; η =
√

1 − e2; f is the true anomaly;n the orbital
mean motion andp = a (1− e2) is thesemi-latus rectum. From Kozai (1961) and later Aksnes
(1976), we have

{
S(f)

T (f)

}
= − cos2 i

2
cos2 ǫ

2

{
cos

sin

}
(λ⊙ − ω − Ω − f)

− sin2 i

2
sin2 ǫ

2

{
cos

sin

}
(λ⊙ − ω + Ω + f)

−1

2
sin i sin ǫ

[{
cos

sin

}
(λ⊙ − ω − f) −

{
cos

sin

}
(−λ⊙ − ω − f)

]

− sin2 i

2
cos2 ǫ

2

{
cos

sin

}
(−λ⊙ − ω + Ω − f) (3.6)

− cos2 i

2
sin2 ǫ

2

{
cos

sin

}
(−λ⊙ − ω − Ω − f),

W = sin i cos2 ǫ

2
sin(λ⊙ − Ω)

− sin i sin2 ǫ

2
sin(λ⊙ + Ω) − cos i sin ǫ sinλ⊙,

whereǫ is the obliquity of the Earth with respect to the ecliptic andλ⊙ is the ecliptic longitude
of the Sun.
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3.3 Extension of the semi-analytical theory for direct radia-
tion pressure

Let us remark that under the previously defined assumptions,except for the first one which
is not a necessary condition, the direct radiation pressuredefined in Eq. (3.4) is conservative
and therefore does not induce any long-term and secular variations of the semi-major axis
(Anselmo et al., 1983; Milani et al., 1987). As a consequence, the direct radiation pressure
force may be expressed as the gradient of the following expanded potential (let us note the
similarity with Eq. 2.11 on page 29)

Hrp = Cr Pr
A

m

a2
⊙

r⊙

nmax∑

n=0

(
r

r⊙

)n

Pn(cosψ) , (3.7)

whereψ andPn are still the geocentric angle between the Sun and the space debris, and the
Legendre polynomial of degreen, respectively. In keeping with the expansion of the third-
body disturbing function in universal elements (see Section 2.3, page 32), that is using an
expansion in powers of the eccentricity and of the inclination, performed typically up to order
10 and followed by convenient substitutions, the potentialformulation of Eq. (3.7) may then
be expressed in terms of the dimension-free and non-singular variables

Hrp =

nmax∑

n=0

Rn =

nmax∑

n=0

L2n

rn+1
⊙

Nn∑

j=0

An
j (X1, Y1, X2, Y2, X⊙, Y⊙, Z⊙)Bn

j (λ) . (3.8)

In Eq. (3.8), theBn
j still denote trigonometric functions with respect to the mean longitudeλ.

TheAn
j are polynomials in the rectangular coordinates of the Sun aswell as the dimension-free

Poincaré variableswhich are recalled for the sake of clarity (see Eqs. 2.17, page 40)

X1 =

√
2P

L
sin p, Y1 =

√
2P

L
cos p ,

X2 =

√
2Q

L
sin q, Y2 =

√
2Q

L
cos q .

For similar developments and further details, we refer to Chapter 2, where the method for the
expansion of the geopotential of the Earth and the expansionof the luni-solar perturbations in
non-dimensional, non-singular and rectangular variablesis presented with its effective imple-
mentation in computer algebra. In Eq. (3.8),Nn denotes the number of terms in then-degree
potential functionsRn; nmax is the upper limit of the expansion in Legendre polynomials.Let
us remark that the potential expansion of Eq. (3.7) restricted tonmax = 1 corresponds to the
case where the Sun–space debris direction is replaced by thedirection pointing from the Sun
to the Earth, that isr − r⊙ = −r⊙, as it is the case in the Kozai’s formulation of Eq. (3.6).

In the framework of a semi-analytical theory and in the same way as described in Chapter 2,
the non-singular expanded disturbing function (3.8) can then be subsequently averaged over the
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short periods (w.r.t. the mean longitude) in order to derivethe so-called averaged differential
system of equations. This transformed system of equations is written similarly to the quasi-
Hamiltonian system of equations derived in Eq. (2.19, page 44).

3.4 Simplified analytical investigations

As shown in Eq. (3.4), the acceleration induced by the directsolar radiation pressure increases
linearly with respect to the area-to-mass ratio of the spacedebris. As an illustration and for
the sake of comparison with Figure 1.4 (page 13), the order ofmagnitude of the perturba-
tions is again represented in Figure 3.2. Aside from the forces which were represented in
Figure 1.4, we also represent the order of magnitude of the direct solar radiation pressure ac-
celeration for various area-to-mass ratios. In a first approximation of Eq. (3.4), we see clearly
that the radiation pressure acceleration does not depend onthe altitude of the space debris
(Milani et al., 1987; Montenbruck and Gill, 2000). Furthermore, for small area-to-mass ratios,
namely0.01 m2/kg, the acceleration is several orders of magnitude smaller than the acceler-
ation induced by the second zonal harmonicJ2 of the geopotential. Near the particular value
of A/m ≃ 1.63 m2/kg, the solar radiation pressure equals the acceleration fromthe Earth’s
dominant zonal gravity termJ2 for an object located at a GEO altitude. Finally, the solar radi-
ation pressure becomes the major perturbation for objects with sufficiently high area-to-mass
ratio, such as 10–20m2/kg, just behind the central body attraction (denoted byGM). In this
last case, the solar radiation pressure becomes more or lesstwo orders of magnitude greater
than the second zonal harmonic perturbation.

Referring to Section 3.3, we have developed an accurate semi-analytical method. More
precisely, we have written a mean differential system whichcan be numerically integrated
with an integration time step considerably larger than in classical numerical integration. As
shown in Chapter 2, this fact reduces hugely the time of integration as well as the round off
and truncating errors. The solution of such a mean differential system can be used to define
a so-called centered motion, that is a motion which represents the mean characteristics of the
osculating orbits. Consequently, as soon as a high quantitative accuracy is needed on a desired
mean motion, the orbit extrapolations are obtained using this semi-analytical theory. As spec-
ified in Section 3.3, the expansion of the mean differential system of equations is performed
typically up to order 10 in eccentricity and in inclination.This high order expansion ensures
a theoretical accuracy of a few meters on the position which is largely sufficient. Indeed, the
order of magnitude of the neglected effects, such as the Earth’s shadow and the assumption of
an optically uniform sphere exceeds by far the intrinsic accuracy of our model.

On the other hand, on a qualitative point of view, it would be interesting to underline the
main properties of objects with high area-to-mass ratios using simplified equations. Such an
approach is adopted in Chao (2006) where the coupling effects between the solar radiation
pressure effects and the luni-solar attractions is considered. Within this framework, the latter
provides a detailed understanding of the long-term evolution of both eccentricity and inclina-
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orbits [solid curves]. Additionally, we plot the order of magnitude of the direct radiation
pressure perturbation for various area-to-mass ratios, namelyA/m = 0.01, 1, 10, 40 m2/kg
[dashed curves].

tion. Regarding our approach, we will focus our efforts on the radiation pressure without taking
into account the coupling between the radiation and the luni-solar effects. Consequently, this
analysis will then emphasize the intrinsic effects relatedto radiation pressure. On the other
hand, to avoid any singularity in eccentricity and inclination, the following simplified equa-
tions will be expressed using our non-singular set of variables.

As we are interested in the long-term dynamics, we average the disturbing function over
the fast variable, namely the mean longitudeλ. As a first approach, we average the disturbing
function to the first order by dropping the fast periodic terms in the trigonometric functions.
Using the non-dimensional ecliptic spherical coordinates(λ⊙, β⊙) of the Sun instead of the
before-mentioned rectangular coordinates(X⊙, Z⊙, Z⊙), the averaged potential expansion de-
fined in Eq. (3.7), truncated up to degree 1 in Legendre polynomials, takes the form

〈Hrp〉λ = −3

2
Cr Pr

A

m

(
a⊙
r⊙

)2

a e [C1 cos g1 + C2 cos g2

+C3 cos g3 − C3 cos g4 + C4 cos g5 + C5 cos g6] .

(3.9)
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Figure 3.3: Magnitudes of coefficientsC1, C2, · · · , C5 appearing in the averaged Hamiltonian
disturbing function (3.9) as a function of the space debris orbital inclination.

This potential formulation is consistent with the Gaussianequations described in Chao (2005),
where the coefficientsCi are defined by (we take the opportunity here to correct misprints that
occurred in them)

C1 = cos2 i

2
cos2 ǫ

2
,

C2 = sin2 i

2
sin2 ǫ

2
,

C3 =
1

2
sin i sin ǫ , (3.10)

C4 = sin2 i

2
cos2 ǫ

2
,

C5 = cos2 i

2
sin2 ǫ

2
,

and the angular valuesgi are given by

g1 = λ⊙ −̟ ,

g2 = λ⊙ −̟ + 2Ω ,

g3 = λ⊙ −̟ + Ω , (3.11)

g4 = λ⊙ +̟ + Ω ,

g5 = λ⊙ +̟ − 2Ω ,

g6 = λ⊙ +̟ .
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In Eqs. (3.10) and (3.11), as in Section 3.2,ǫ still denotes the obliquity of the Earth with respect
to the ecliptic and̟ denotes the longitude of perigee. The coefficientsC1 to C5 are clearly
functions of the orbital inclination. Figure 3.10 shows theorders of magnitudes of these coef-
ficients as a function of the inclination. As shown in this figure,C1 is the leading coefficient
for small to moderate inclinations.C2 andC5 are very small for every value of the inclination
whereasC3 andC4 reach relevant values for moderate to high inclinations.

The potential formulation defined in Eq. (3.9) is computed assuming that the relative mo-
tion of the Sun around the Earth is circular because of the small eccentricity of the orbit of
the Earth. The angular motion of the Sun on its orbit is therefore assumed to be constant, that
isn⊙ = 2π/[year]. Moreover, we assume that the Sun lies on the mean ecliptic, that isβ⊙ = 0.

This potential formulation may then be expressed using the dimension-free Poincaré vari-
ables. After isolating the dominant terms (first order approximation in eccentricity and in
inclinationO(e, sin i/2)), the averaged potential takes the form

〈Hrp〉λ = −Z1

{
(C⊙Y1 − S⊙X1)

(
1 − 1

4
(X2

2 + Y 2
2 )

)

+
1

4

[
(Y 2

2 −X2
2 ) (C⊙Y1 + S⊙X1)

]
− 2X2Y2(S⊙Y1 − C⊙X1)

}

−Z2

{
(C⊙Y1 + S⊙X1)

(
1 − 1

4
(X2

2 + Y 2
2 )

)

+
1

4

[
(Y 2

2 −X2
2 ) (C⊙Y1 − S⊙X1)

]
+ 2X2Y2(S⊙Y1 + C⊙X1)

}

−Z3

{
S⊙ (Y1X2 −X1Y2)

}
+ O(e2, sin2 i/2) ,

(3.12)
where

Z =
3

2
aCr Pr

A

m

(
a⊙
r⊙

)2

, C⊙ = cosλ⊙(t), S⊙ = sinλ⊙(t)

and
Z1 = Z cos2 ǫ

2
, Z2 = Z sin2 ǫ

2
, Z3 = Z sin ǫ .

3.4.1 Mid-term evolution of eccentricity and longitude of perigee

The coupled averaged equations in eccentricity and longitude of perigee due to direct solar
radiation pressure have been treated by a couple of authors.The problem has been solved
by Chao and Baker (1983) in the particular(e, φ) phase space wheree is the eccentricity and
φ = λ⊙ − ̟, that is the angular distance between the Sun and the longitude of perigee (see
also Chao 2006). Afterwards, Chao and Campbell (2005) used the same(e, φ) formalism to
explain why a Sun-pointing strategy can minimize long-termeccentricity variations for space
debris located within the GEO ring, as well as for disposed satellites at 250 to 300 km above
GEO. Similarly, Krivov and Getino (1997) investigated the motion of artificial satellites with
large area-to-mass ratios in high altitude low inclined orbits, perturbed by solar radiation pres-
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sure coupled with the Earth’s oblateness. However, the derived averaged equations turn out to
be singular in eccentricity, that is awkward for geostationary space debris. On the other hand,
the authors represent the motion of the eccentricity and of the angleφ; we prefer to keep the
classical eccentricity vector, linked toe and̟, and to introduceλ⊙ as an external function of
time. It is true that the averaged frequencies ofλ⊙ and of̟ are very similar (equal in first
approximation); however the introduction of their difference as a new angleφ could be con-
fusing, introducing a kind of virtual resonance in the problem which we do not identify as a
resonance in our Hamiltonian approach.

Thanks to the quasi-Hamiltonian formalism, the averaged equations of variation (w.r.t. the
mean longitudeλ) of the eccentricity related variablesX1, Y1 are given by

Ẋ1 =
1

L

∂ 〈Hrp〉λ
∂Y1

= −Z1/L

[
C⊙

(
1 − 1

2
X2

2

)
− S⊙

1

2
X2Y2

]

−Z2/L

[
C⊙

(
1 − 1

2
X2

2

)
+ S⊙

1

2
X2Y2

]

−Z3/L S⊙X2 ,

(3.13)

Ẏ1 = − 1

L

∂ 〈Hrp〉λ
∂X1

= −Z1/L

[
S⊙

(
1 − 1

2
Y 2

2

)
− C⊙

1

2
X2Y2

]

+Z2/L

[
S⊙

(
1 − 1

2
Y 2

2

)
+ C⊙

1

2
X2Y2

]

−Z3/L S⊙ Y2 .

(3.14)

Eqs. (3.13) and (3.14) can be further reduced by neglecting the first and second order terms in
X2, Y2. One can then integrate the equations with respect to time toobtain the solution of our
so-calledsimplified modelin eccentricity

X1(t) = − Z
Ln⊙

sinλ⊙(t) + β0,

Y1(t) =
Z cos ǫ

Ln⊙
cosλ⊙(t) + α0 ,

(3.15)

where(α0, β0) are constants of integration determined from initial conditions. These equations
describe an ellipse with center coordinates(α0, β0). In addition to the choice of non-singular
variables, this simplified analytical model differs from the one developed by Chao and Baker
(1983) by the presence of the term insin2 ǫ/2. Neglecting the terms insin2 ǫ/2, the ellipse
becomes a circle, the radius of which isR = (1/Ln⊙)Z cos2 ǫ/2. Eqs. (3.15) show that the
so-calledeccentricity vector(Y1, −X1) ≃ (e cos(ω + Ω), e sin(ω + Ω)) moves along this
circle (counter clockwise) at a constant raten⊙ = 2π/[year]. As a consequence, the longitude
of perigee̟ librates (Figure 3.4, left) or circulates (Figure 3.4, right) about a fixed value which
depends on the initial conditions in eccentricitye0 and in longitude of perigee̟ 0 as well as on
the radius of the circle, that is a directly proportional function of the area-to-mass ratioA/m.
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To draw a parallel with our complete modeling of the radiation pressure, the mid-term evo-
lution (several years) of the eccentricity is plotted in (Figure 3.5, top) using our semi-analytical
theory. The corresponding eccentricity vector evolution is shown in (Figure 3.5, bottom). For
clarity, only a subset of area-to-mass ratios are shown, namelyA/m = 5, 10, 20 m2/kg. The
amplitude of the mid-term oscillations, with a period of nearly one year, significantly grows
from 0.1 to 0.4 with increasing area-to-mass ratio. On the other hand, the eccentricity vector
defines nearly a circle with center coordinates depending onthe initial conditions as well as
on the area-to-mass ratios. Each circle intersects the origin of the frame of reference. There-
fore, these last numerical results are in agreement with thesolution of the simplified analytical
model defined in Eqs. (3.15).

If we choose the initial eccentricitye0 and the initial longitude of perigee̟0 in such a way
thatα0 = β0 = 0, the circle will be centered in(Y1,−X1) = (0, 0). In that case, the module
of the eccentricity vector will remain constant over time (Figure 3.4, right). The conditions
leading to such an equilibrium in eccentricity can then be written as

√
2P0/L cos̟0 =

Z cos2 ǫ/2

Ln⊙
cosλ⊙(0) ,

√
2P0/L sin̟0 =

Z cos2 ǫ/2

Ln⊙
sinλ⊙(0) ,
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leading to




e0 =
3

2
Cr Pr

A

m

1

nan⊙
cos2 ǫ

2
=
def.

e∗ ,

̟0 = λ⊙(0) .

These values are in good agreement with those of Chao and Baker (1983), where the so-called
forced eccentricitye∗ turns out to be directly related to the area-to-mass ratio ofthe space
debris by the following equation

e∗ ≃ 0.01Cr
A

m
.

As a comparison with our semi-analytical model, Figure 3.6 shows the mid-term evolution
of the eccentricity and the corresponding eccentricity vector evolution for a fixed value of
the area-to-mass ratio (A/m = 10 m2/kg) and a fixed value of the initial conditions, that is
a0 = 42 164 km, e0 = 0.1, i0 = 0 rad, Ω0 = ω0 = λ0 = 0 rad. The numerical propagations
were carried out with our semi-analytical theory over 2 years. The difference between the cho-
sen release orbits only depends on the initialtime at epochparameterst0. Different initial times
at epoch will induce different initial ecliptic longitudesof the Sunλ⊙(0). Figure 3.6 revealed
a quite rich collection of behaviors depending only on the initial ecliptic longitude of the Sun,
that is the initial angular distance between the Sun and the longitude of perigee. Assuming an
initial time at epoch of 21 March 2000, that is adopting a Sun pointing longitude of perigee
strategy (λ⊙(0) = 0 rad), the eccentricity will remain nearly constant. In thiscase, the ec-
centricity vector moves counter-clockwise on a circle, thecenter coordinate of which matches
nearly the center coordinate of the eccentricity vector reference frame. Assuming other initial
ecliptic longitudes of the Sun, the eccentricity presents clearly a yearly variation. On the other
hand, the amplitude of variations of the eccentricity is equivalent in each case, namely twice
the radius of the circle in the eccentricity vector reference frame. These numerical results are
over again in good agreement with our simplified analytical model.

3.4.2 Long-term evolution of inclination and longitude of the ascending
node

The coupled equations in inclination and longitude of the ascending node under the influence
of direct solar radiation pressure were studied by several authors (e.g. Anselmo et al., 1983).
As part of this work, the authors present some results concerning the long-term variation of
the inclination and longitude of the ascending node. Especially, the authors quote: “The in-
clination i and the nodeΩ undergo no long-periodic or secular perturbation to zero order in
the eccentricity”. However, this result were obtained within the context of small to moderate
area-to-mass ratios. As a matter of fact, as seen previouslyin Subsection 3.4.1, a space debris
subjected to direct solar radiation pressure presents periodic oscillations of the eccentricity
with high amplitudes for moderate to high area-to-mass ratio. As a consequence, the zero or-
der assumption in eccentricity does not hold anymore.
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The direct solar radiation pressure mean potential defined in Eq. (3.12) can be differentiated
to obtain the coupled averaged equations in inclination andlongitude of the ascending node

Ẋ2 =
1

L

∂ 〈Hrp〉λ
∂Y2

= −Z1/2L

[
−X2 (S⊙Y1 − C⊙X1) + 2S⊙X1Y2

]

−Z2/2L

[
+X2 (S⊙Y1 + C⊙X1) − 2S⊙X1Y2

]

+Z3/L S⊙X1 ,

(3.16)

Ẏ2 = − 1

L

∂ 〈Hrp〉λ
∂X2

= +Z1/2L

[
− Y2 (S⊙Y1 − C⊙X1) − 2C⊙X2Y1

]

+Z2/2L

[
+ Y2 (S⊙Y1 + C⊙X1) − 2C⊙X2Y1

]

+Z3/L S⊙Y1 .

(3.17)

After substituting the first order approximation of the eccentricity and longitude of perigee
variation defined by Eqs. (3.15) into Eqs. (3.17) and (3.16),we find the doubly averaged equa-
tions with respect to the mean longitudeλ and the ecliptic longitudeλ⊙, that is

〈
Ẋ2

〉

λ⊙

=
Z

2n⊙ L2

[
(Z1 − Z2) Y2 −Z3

]
=

1

2n⊙ L2

[
Z2 cos ǫ Y2 − ZZ3

]
,

〈
Ẏ2

〉

λ⊙

=
Z cos ǫ

2n⊙ L2
(Z1 + Z2) X2 = −Z2 cos ǫ

2n⊙ L2
X2 ,

(3.18)

where the relative motion of the Sun around the Earth is stillassumed to be circular with a
constant angular motion ofn⊙ = 2π/[year]. This system of differential equations (3.18) is no
more and no less than a harmonic oscillator expressed in the rectangular coordinatesX2

〈
Ẍ2

〉

λ⊙

= −ν2
ΩX2 with νΩ =

Z2 cos ǫ

2n⊙ L2
. (3.19)

Moreover, a general solution of our secondsimplified modelin inclination can be written as
follows

〈X2〉λ⊙
= −A0 sin(νΩt+ θ0) ,

〈Y2〉λ⊙
= sin ǫ− A0 cos(νΩt+ θ0) + O(ǫ2) ,

(3.20)

where the amplitudeA0 and the phase differenceθ0 are determined from initial conditions.
Eqs. (3.20) describe a circle with fixed center coordinates(0, sin ǫ) = (0, ǫ+ O(ǫ3)) and a ra-
diusR = A0. The so-calledinclination vector(Y2, −X2) ≃ (sin i cosΩ, sin i sinΩ) moves
along this circle (clockwise) at a constant rateνΩ. Similarly to the case of the eccentricity
vector presented in Eqs. (3.15), the longitude of the ascending node will librate or circulate
depending only on the initial conditions in inclinationi0 and longitude of the ascending node
Ω0 (Figure 3.7, top). However, the libration regime takes place at about 0 degree. On the
other hand, the amplitudeA0 of the solution (3.20), that is the radius of the circle, is indepen-
dent of the area-to-mass ratio as well as of any multiplying factor present in the direct solar



82 Chapter 3. Geosynchronous space debris with high area-to-mass ratios

Y2

−X2

Ω

ǫ

2 ǫ

i0 = 0, Ω = ω0

i0 = ǫ,Ω = 0

 0

 50

 100

 150

 200

 250

 300

 0  10  20  30  40  50  60

P
re

ce
ss

io
n 

pe
rio

d 
of

 th
e 

in
cl

in
at

io
n 

[y
ea

rs
]

Area-to-mass ratio A/m [m2/kg]

Figure 3.7: Schematic long-term evolution of the inclination vector in (Y2,−X2) ≃
(sin i cos Ω, sin i sin Ω) phase space [top]. Various regimes of the inclination vector are rec-
ognizable:circulation [solid line] andlibration [dashed and dotted line]. Period of precession
2π/νΩ of the inclination vector with respect to the area-to-mass ratioA/m [bottom].
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radiation pressure formulation (Eq. 3.4). Indeed, the amplitude only depends on the initial
conditions and on the obliquityǫ of the Earth’s orbit with respect to the ecliptic. Concerning
the long-term evolution for small area-to-mass ratios (typically 0 up to∼ 5 m2/kg) there is
no significant long-term variation of the inclination and the longitude of the ascending node
over a time span of several decades. Indeed, the period of precession of the inclination vector
(Figure 3.7, bottom) becomes extremely large. As a consequence, adding all the other relevant
perturbations, that is the luni-solar interactions and theoblateness of the Earth, we expect that
the space debris presents the behavior of a typical abandoned geosynchronous spacecraft, with
a maximum inclination of15◦ and a periodicity of about 54 years (Agrawal, 1986; Allen and
Cook, 1964).

As a comparison with respect to the simplified analytical model in inclination, we plotted
the long-term evolution (several decades) of the inclination and the corresponding inclination
vector using our semi-analytical theory. The numerical propagations were carried out over
a time span of 80 years using the initial conditions of a typical geosynchronous space de-
bris. Figure 3.8 shows clearly that an increase of the area-to-mass ratio has as consequence a
faster orbit pole precession. Taking into account only the effects of the direct solar radiation
pressure, we also see that the maximum amplitude of the inclination, that is the amplitude of
the plane motion, is independent of the area-to-mass ratio.A small wobble, with a period of
approximately 1 year, is also clearly identified due to the mid-term variations present in the
numerical integrations. The maximum reached by the inclination seems always to converge to
the particular value of47◦, that is twice the obliquity of the Earth with respect to the ecliptic.
Actually, if we choose a zero inclinationi0 as initial condition (Figure 3.7, top, dashed circle),
the inclination variation can be written as

sin2 i

2
≃ sin2 ǫ sin2

(
νΩt

2

)
.

In this particular case, corresponding to the initial inclination of most geosynchronous objects,
the maximum valueimax reached by the inclination can be computed easily to obtain

imax ≃ 2 ǫ ,

which is in agreement with our previous numerical propagations.

Moreover, if we choose the initial inclination and longitude of node in such a way that the
inclination vector matches the center coordinates of the circle, the module of the inclination as
well as the longitude of the ascending node will remain constant over time. Such equilibrium
conditions happen if and only if

i0 = ǫ, Ω0 = 0 .
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This result is in complete agreement with the fact that, considering the Gauss equations, the
inclination and the node are affected only by the out-of-plane component

W = sin i cos2 ǫ

2
sin(λ⊙ − Ω)

− sin i sin2 ǫ

2
sin(λ⊙ + Ω) − cos i sin ǫ sin λ⊙ ,

where this quantity is zero if and only if the inclinationi is equivalent to the obliquityǫ, and
the longitude of the ascending node is equal to zero. However, let us note that this theoreti-
cal equilibrium is certainly important but to a lesser extent than the equilibrium presented in
the eccentricity vector phase space. As a matter of fact, this equilibrium will be easily bro-
ken through the addition of the luni-solar perturbations, which induce important variations of
the inclination and longitude of the ascending node as well.On the contrary, as explained
in Anselmo and Pardini (2007a), the equilibrium in eccentricity can be used to adopt a Sun
pointing perigee within the framework of eccentricity management during reorbitation (see
also Delong and Frémaux, 2005). However, for typical satellites, this Sun-pointing re-orbit
strategy is applicable only for small eccentricities (e < 0.005), but in general is inappropriate
for about 8 months of the year, due to the effects of luni-solar perturbations on the evolution
of the perigee altitude. In general, the perigee should be pointed towards about90◦ or 270◦

in right ascension, and this may also correspond to sun-pointing conditions only around the
solstices.

3.4.3 Long-term coupled equations between eccentricity and inclination

As shown in Subsection 3.4.2, Eqs. (3.13), (3.14) and (3.17), (3.16) are not uncoupled in the
set of variables(X1, Y1) and(X2, Y2), respectively. Similarly to this latter analysis, it can be
shown that the mid-term variations of the inclination related variables(X2, Y2) will induce
additional long-term variations on the eccentricity vector by combination of mid-term periods
only. The solution of this additional coupling effect between eccentricity and inclination can
be written

X1(t) = − Z
Ln⊙

sinλ⊙(t) + B0 sin(νΩt+ φ0) ,

Y1(t) =
Z cos ǫ

Ln⊙
cosλ⊙(t) + B0 cos(νΩt+ φ0) ,

(3.21)

where the amplitudeB0 and the phase differenceφ0 are determined from initial conditions
only. More precisely, the amplitudeB0 depends only on the initial center of coordinates
(α0, β0) by the following relation

B0 =
√
α2

0 + β2
0 .

Eqs. (3.21) show that the eccentricity vector always moves (counter clockwise) along a circle,
defined in Eqs. (3.15), the center of coordinates of which moves (clockwise) along a great
circle of radiusB0 with a proper period of2π/νΩ. The combination of mid-term and long-term
variations is illustrated schematically in Figure 3.9 (top). Using our semi-analytical theory,
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Figure 3.9: Long-term and mid-term variations of the eccentricity vector coupled
with the inclination and node revolution. Theoretical evolution in the (Y1,−X1) ≃
( e cos(ω + Ω), e sin(ω + Ω) ) [top]. Numerical propagation over 40 years of a space de-
bris projected in thee cos(ω + Ω), e sin(ω + Ω) phase space [bottom]. Area-to-mass ratio and
initial conditions areA/m = 10 m2/kg and (a0 = 42 164 km, e0 = 0.2, i0 = 0, Ω0 = ω0 =
M0 = 0 rad), respectively.
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Figure 3.9 (bottom) shows the evolution, over 40 years, of the eccentricity vector of a space
debris, taking into account only direct solar radiation pressure. The pattern observed is, as
expected, basically produced by the superimposition of twovariations, the first with a period
of 1 year, associated with the solution presented in Eqs. (3.15), and the other with a period of
several decades, that is the proper period2π/νΩ of the longitude of the ascending node defined
in Eq. (3.19).

3.5 Comparison of radiation pressure models – long-term
analysis

The aim of the analysis presented in this section is to compare the long-term evolution of
geosynchronous orbits predicted by various models for the direct solar radiation pressure. As
shown in Section 3.2, the direct solar radiation pressure acceleration was given by Eq. (3.4).
As a first approximation, if the Sun–space debris direction is replaced by the direction pointing
from the Sun to the Earth, that isr − r⊙ = −r⊙, Eq. (3.4) becomes

arp = −Cr Pr

[
a⊙
‖r⊙‖

]2
A

m

r⊙
‖r⊙‖

. (3.22)

This simplified acceleration may then be expressed as the gradient of the following potential

Hrp = Cr Pr
A

m

(
a⊙
r⊙

)2

r cosψ ,

and therefore can be expanded using non-singular variables. This approximation seems consis-
tent inasmuch as the ratio of the position vector of the spacedebris with respect to Sun–space
debris vector may be assumed to be small (‖r‖/(‖r − r⊙‖ = 2.8 × 10−4 for a geosyn-
chronous space debris). Figures 3.10 and 3.11 show the differences between two mean orbits
propagated with our semi-analytical theory over 54 years. The first orbit is propagated us-
ing a first degree expansion in Legendre polynomials that is making the assumption that the
Sun–space debris direction coincides with the Sun–Earth direction. The second orbit is prop-
agated using a third degree expansion in Legendre polynomials. The initial conditions are
those of a perfect geostationary space debris. Figures 3.10and 3.11 correspond to numerical
propagations with a small area-to-mass (A/m = 0.01 m2/kg) and a high area-to-mass ratio
(A/m = 30 m2/kg), respectively. Although the differences remain moderatein each case,
these figures show the importance of adopting a complete expansion, when dealing with ra-
diation pressure. Indeed, Figure 3.11 reports clearly thatthe order of magnitude of the error
on the position may reach high values, namely hundreds of kilometers when propagating an
object with extremely high area-to-mass ratios. It should however be remarked that modeling a
30 m2/kg very strange object as an optically uniform sphere for several decades would affect
the computations with a significant uncertainty. On the other hand, the order of magnitude
of the error on the position remains moderate for small area-to-mass ratios and even if the
difference in the inclination related variable∆X2 presents an apparent secular behavior, the
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Figure 3.10: Differences between two mean orbits expressedin the non-singular and non-
dimensional variables (X1, Y1, X2, Y2) and propagated with a first degree (nmax = 1) and a
third degree expansion (nmax = 3) of the direct solar radiation pressure, respectively. Initial
conditions are:a0 = 42 164 km, e0 = 0, i0 = 0 rad,Ω0 = ω0 = λ0 = 0 rad and the area-to-
mass ratio isA/m = 0.01 m2/kg. On each graph, the left vertical scale shows the deviations
(∆X1, ∆Y1, ∆X2, ∆Y2) and the right vertical scale shows the order of magnitude ofthe error
on the position (a0∆X1, a0∆Y1, a0∆X2, a0∆Y2) [meter(s)].

deviation reaches at most 80 m after 54 years of propagation (see Figure 3.10).

A further simplification may be introduced, by disregardingthe small eccentricity of the
Earth’s orbit around the Sun (e⊕ = 0.0167), that is putting the geocentric vector of the Sun
r⊙ = 1 AU in Eq. (3.22), leading to the doubly simplified acceleration

arp = −Cr Pr
A

m

r⊙
‖r⊙‖

. (3.23)

However, even though the correct evolution of the Sun motionin the geocentric reference
frame is retained in the computation of the running Earth–Sun direction, the dynamics may
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Figure 3.11: Differences between two mean orbits expressedin the non-singular and non-
dimensional variables (X1, Y1, X2, Y2) and propagated with a first degree (nmax = 1) and a
third degree expansion (nmax = 3) of the direct solar radiation pressure, respectively. Initial
conditions are:a0 = 42 164 km, e0 = 0, i0 = 0 rad,Ω0 = ω0 = λ0 = 0 rad and the area-
to-mass ratio isA/m = 30 m2/kg. On each graph, the left vertical scale shows the deviations
(∆X1, ∆Y1, ∆X2, ∆Y2) and the right vertical scale shows the order of magnitude ofthe error
on the position (a0∆X1, a0∆Y1, a0∆X2, a0∆Y2) [kilometers].

change considerably. Figure 3.12 shows the effects inducedby the eccentricity of the Earth
on a geosynchronous space debris, subjected only to radiation pressure, when its area-to-mass
ratio reached17 m2/kg. First, we choose the complete model of radiation pressure defined in
Eq. (3.4) to perform an orbital propagation, taking into account the variation of the distance
between the Sun and the Earth. Second, we perform the same orbital propagation with the
same initial conditions but using the doubly simplified radiation pressure model defined in
Eq. (3.23), that is neglecting the eccentricity of the Earth. Finally, we plot the two propagated
orbits as well as the difference between them. As a result, wesee that the difference between
the two models remains small on the inclination variation. However, the eccentricity dynamics
clearly presents additional variations due to a phase difference effect, the period of which is
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Figure 3.12: Eccentricity [top] and inclination [bottom] evolution in GEO over 80 years taking
into account only direct solar radiation pressure. Orbitalpropagations taking into account the
eccentricity of the Earth, (Eq. 3.4, complete model) [Solidcurves]. Orbital propagation assum-
ing r⊙ = 1 (Eq. 3.23, simplified model) [dashed curves]. Difference between the two orbital
propagations [bottom curves]. Area-to-mass ratio and initial conditions areA/m = 17 m2/kg
and(a0 = 42 164 km, e0 = 0, i0 = 0, Ω0 = ω0 = M0 = 0 rad), respectively.
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Figure 3.13: Eccentricity [top] and inclination [bottom] evolution in GEO over 80 years taking
into accountJ2 and direct solar radiation pressure. Orbital propagationstaking into account the
eccentricity of the Earth (Eq. 3.4, complete model) [Solid curves]. Orbital propagation assum-
ing r⊙ = 1 (Eq. 3.23, simplified model) [dashed curves]. Difference between the two orbital
propagations [bottom curves]. Area-to-mass ratio and initial conditions areA/m = 17 m2/kg
and(a0 = 42 164 km, e0 = 0, i0 = 0, Ω0 = ω0 = M0 = 0 rad), respectively.
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Figure 3.14: Evolution of the eccentricity for an object of the new population over ten years as
computed in Schildknecht et al. (2007). The additional spurious long-periodic effect is clearly
visible. [Graphic by Schildknecht et al. (2007)].

directly related to the period of revolution2π/νΩ of the inclination vector. The amplitudes of
these variations are on the order of the maximum eccentricity, that is 0.37. Let us remark that
if we consider all the other relevant luni-solar perturbations, we can draw the same conclusion.

When considering the direct solar radiation pressure coupled with the effects induced by
the second zonal harmonic of the geopotential, the differences between the complete model
and the simplified one become considerable. Indeed, Figure 3.13 shows the effects induced by
the eccentricity of the Earth on the same geosynchronous space debris, subjected to radiation
pressure and also influenced by the second zonal harmonicJ2. In this case, the dynamics of
the eccentricity as well as the dynamics of the inclination are completely different. In addi-
tion to the yearly eccentricity oscillations, obvious in all the plots, some long-term trends with
high amplitudes are clearly recognizable. In this case, thecoupling between radiation pressure
and the oblateness of the Earth produces such a large eccentricity (Figure 3.13, top) able to
induce a fictitious orbital decay (Anselmo and Pardini, 2005, 2007b). Then we can draw a
conclusion:the assumption of a fixed Sun–Earth distance, in the estimation of solar radiation
pressure magnitude, introduces a significant spurious longperiod effect, especially when the
radiation pressure is coupled with the influence ofJ2.

Consequently, these results confirm that a correct modelingof the Sun–Earth distance is
very important to describe accurately the long-term evolution of geosynchronous objects, in
particular if the area-to-mass ratio is large. This simplifying assumption is not considered
in the numerical investigations performed by Liou and Weaver (2005) and Chao (2006). On
the contrary, considering the elements provided, such a simplified assumption seems to be
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adopted in Schildknecht et al. (2007), where orbital determinations provide estimates for the
area-to-mass ratios of a small sample of the newly discovered population of space debris (see
Figure 3.14). However, as mentioned before, a fixed value of the Sun–Earth distance induces
significant spurious long-period effects, mainly affecting the eccentricity and, therefore, the
orbital lifetime, but also the inclination. Consequently,this assumption might introduce im-
portant additional residuals in the restitution process oforbital elements as well as parameters
such as the area-to-mass ratios.
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Chapter 4

Semi-analytical investigations of high
area-to-mass ratio geosynchronous space
debris including Earth’s shadowing effects

“The Kessler Syndrome is a scenario, proposed by NASA consultant
Donald J. Kessler, in which the volume of space debris in Low Earth
Orbit is so high that objects in orbit are frequently struck by debris,
creating even more debris and a greater risk of further impacts. The
implication of this scenario is that the escalating amount of debris in
orbit could eventually render space exploration, and even the use of
satellites, too prone to loss to be feasible for many generations.”

IAF website, 2008 (Source: Kessler and Cour-Palais, 1978)

– The results of this chapter have been previously publishedin Valk and Lemaître (2008) –

As shown in Chapter 3, the effects of direct solar radiation pressure on the motion of a space
debris, in particular those with high area-to-mass ratios,have been treated by a number of
authors (Anselmo and Pardini, 2005; Chao, 2006; Liou and Weaver, 2005). As an example,
we performed analytical and semi-analytical investigations which both emphasize and lead to
an insightful understanding of the intrinsic effects of direct solar radiation pressure. In the
latter papers as well as in Chapter 3, the authors mainly focus their attention on the long-term
variations of both the eccentricity and the inclination vectors. On the other hand, the analytical
investigations of direct solar radiation pressure have been derived under the assumption of full
illumination by the Sun, that is not taking into account the Earth’s shadowing effects on the
orbital dynamics. However, most of the space debris orbiting around the Earth are subjected
to eclipses of the Sun by the Earth, inducing a great fluctuation in the available solar radia-
tion caught by the objects. Therefore, unlike the classicalgravitational forces which affect the
motion permanently, the solar radiation pressure perturbation has to be considered as a discon-
tinuous function.

95
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Usually, the Earth’s shadowing effects are considered within the framework of a completely
numerical integration process. For this purpose, the integration process is only performed dur-
ing the sunlight portion of the orbit; the radiation pressure being obviously turned off if the
radiation is blocked by the Earth between the Sun and the space debris. This approach can be
realized by the introduction of a so-calledshadow functionwhich is equal to one if the space
debris is illuminated by the Sun, and to zero if the space debris is in shadow (Ferraz-Mello,
1972).

In this chapter, and as a subsequent review of solar radiation pressure developed in Chap-
ter 3, we will stay within the framework of a mean motion semi-analytical theory, that is only
the long-term and secular effects will be derived. In other words, the resulting theory will not
include any short-term effects. In practice, the theory consists of the numerical integration of
the filtered equations of motion over the short periods onto which we superimpose the mean
variation induced by the Earth’s shadowing effects.

For the purpose of computing the effects induced by the Earth’s shadow, our semi-analytical
theory proposes an improvement of the analytical method developed by Aksnes (1976), where
the expressions for the perturbations on the orbital elements are given. In this approach, the
perturbations accounting for the direct solar radiation pressure with the Earth’s shadow are
computed on a revolution-by-revolution basis, retaining the original unexpanded form of the
shadow function.

In this chapter, this latter approach is adopted and generalized into a more convenient non-
singular formalism, particularly suitable for both near-circular and near-equatorial orbits as
well as for orbits which transit periodically around null eccentricities and null inclinations.

This chapter is organized as follows. First, in Section 4.1,in opposition to the classical ap-
proach where the singular eccentric anomalies at shadow entry and shadow exit are computed,
we present our algorithm allowing to compute the non-singular mean longitude at shadow en-
try and shadow exit.

In Section 4.2, as an extension of the semi-analytical theory developed in Chapters 2 and 3,
we show how to apply the above-mentioned algorithm in order to derive the mean net change
over each orbital revolution.

Finally, in Sections 4.3 and 4.4, the algorithm is applied bymeans of numerical integrations
of the equations, averaged over the short periods, including radiation pressure with Earth’s
shadow,J2, the combined Moon and Sun third-body attraction as well as the long-term effects
of the 1:1 resonance occurring for geosynchronous objects.Both the numerical and semi-
analytical investigations are performed within the framework of short-, mid- and long-term
analyses. Subsequently, these semi-analytical investigations, which are compared with com-
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pletely numerical propagations, will lead to a deep understanding of the long-term evolution
of the semi-major axis.

4.1 Orbital entry and exit of a space debris from the shadow
of the Earth – the algorithm

This section introduces the main algorithm previously mentioned in the introduction: consid-
ering a fixed orbit in space, characterized by a set of well-defined elements as well as by the
position of the Sun with respect to the Earth, we show how to compute the mean longitudes at
shadow entryλ1 and shadow exitλ2 of a space debris orbiting around the Earth.

For the purpose of eclipse investigations, we assume that the Earth is perfectly spherical
with radiusRe (the Earth’s atmosphere is neglected in the present algorithm). Moreover, we
also assume that the Sun is infinitely far from the Earth, in such a way that the light rays are par-
allel in the neighborhood of the Earth. Under these assumptions, the boundary of the Earth’s
shadow is a circular cylinder with radiusRe, the axis of which is parallel to the Sun–Earth
direction. Figure 4.1 illustrates the geometry of the entryand exit points of a space debris with
respect to the position of the Sun and of the space debris, respectively.

The geometric constraint of the problem can be obtained by realizing that, upon entry or
exit from the Earth’s shadow, the angular distanceψ between the radius vector to the Sunr⊙

and the radius vector to the space debrisr is solution of the following equation

r2 cos2 ψ = r2 − R2
e , (4.1)

whereψ is taken within the intervalπ/2 ≤ ψ ≤ 3π/2, since this is the only domain where a
shadow exists (Escobal, 1965). Let us remark that the scalarproduct of the Sun vector with
the space debris vector determines the angular distance at any time

cosψ =
〈r⊙ · r〉
r⊙ r

. (4.2)

This formulation is elementary but does not include any direct information on the space debris
location on its orbits. However, considering the non-singular equinoctial orbital elements

a he = e sin(ω + Ω) pe = tan(i/2) sin Ω

λ = M + ω + Ω ke = e cos(ω + Ω) qe = tan(i/2) cosΩ ,

wherea is the semi-major axis,e the eccentricity,i the inclination,ω the argument of perigee,
Ω the longitude of the ascending node andM the mean longitude, the radius vectorr(xc, yc, zc)

of the space debris can be expressed in the equinoctial reference frame (f, g, h) using the
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Figure 4.1: Entry and exit orbit geometry for solar radiation pressure in the non-singular equinoctial reference frame(cylindrical shadow). The
Earth’s shadow is supposed to be cylindrical. The true longitudes at shadow entry and shadow exit are represented byVin andVout, respectively.



4.1 Orbital entry and exit of a space debris from the shadow ofthe Earth 99

following matrix relation



xc

yc

zc


 =

1

1 + p2
e + q2

e




1 − p2
e + q2

e 2peqe 2pe

2peqe 1 + p2
e − q2

e −2qe
−2pe 2qe 1 − p2

e − q2
e





Xe

Ye

0




=
[

f g h
]


Xe

Ye

0


 ,

where the quantities(Xe, Ye, 0) are the coordinates relative to the equinoctial reference frame,
which can now be expressed either in terms of the true longitudeV = f+ω+Ω or, alternatively,
of the eccentric longitudeF = E + ω+ Ω, wheref andE are the true and eccentric anomaly,
respectively. The equations are given by

Xe = r cosV = a ( (1 − h2
eη) cosF + heke sinF − ke) ,

Ye = r sinV = a ( (1 − k2
eη) sinF + heke cosF − he) ,

(4.3)

making use of the auxiliary quantity (Broucke and Cefola, 1973)

η =
1

1 +
√

1 − h2
e − k2

e

.

As a consequence, the angular distance between the Sun radius vector and the space debris
radius vector can be obtained as a function of the true longitude

cosψ = β cosV + ξ sinV , (4.4)

where the quantitiesβ andξ are defined as

β = X⊙ fx + Y⊙ fy + Z⊙ fz, ξ = X⊙ gx + Y⊙ gy + Z⊙ gz ,

where(fx, fy, fz) and (gx, gy, gz) are the Cartesian components of the first two equinoctial
reference frame vectors, that isf andg, respectively. The quantities(X⊙, Y⊙, Z⊙) are the
Cartesian normalized components of the Sun radius vectorr⊙ evaluated at some convenient
time, say at the timeti when performing the integration step in the interval[ti, ti+1]. Therefore,
the so-calledshadow functionΣ1 can be computed when the squares of Eqs. (4.2) and (4.4)
are made equal

Σ1 ≡ p2(β cos V + ξ sin V )2 +R2
e(1 + he cosV + ke sinV )2 − p2 = 0 , (4.5)

where we substituted the magnitude of the radius vectorr, using the following expressions

r =
p

1 + ke cosV + he sin V
, p = a(1 − e2) .
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As expected, the shadow functionΣ1 is a second-order equation containing both sine and co-
sine values of the true longitude. Unfortunately, contraryto the results obtained by Escobal
(1965) and Vallado (2001), the equation can not be convertedinto a simple fourth-order poly-
nomial containing only cosine values of the true longitude because of the double products.
Consequently, the equation can not be solved in closed form by quadratic radicals. Let us re-
mark that, at this stage, we could use a numerical technique to solve the equation with respect
to the angular variableψ. However, a drawback of this technique is that the shadow function
can admit at most four solutions, whereas numerical methodssuch as the Newton–Raphson
approach (or any other iteration method) only converge to a unique root, which depends on
the choice of the initial condition. Moreover, under special circumstances, the numerical con-
vergence of the method is not systematically ensured. Therefore, our method claims to be
analytical so far as we can.

Here, we propose to show how the so-calledresultant methodcan be used to solve analyt-
ically our problem as a system of two algebraic equations in two variables. Let us define the
two following Cartesian variables

x = cosV , y = sin V ,

which satisfy the trivial algebraic relationΣ2 ≡ x2 + y2 − 1 = 0. As a result, the shadow
functionΣ1 can be written as a second-order polynomial function in the variablex

Σ1 ≡ a2(y) x
2 + a1(y) x+ a0(y) = 0,

whose coefficientsai are functions of the variabley

a2(y) = R2
eh

2 + p2β2 ,

a1(y) = 2R2
eh+ 2R2

ehke y + 2p2βξ y ,

a0(y) = R2
ek

2
e y

2 + 2R2
eke y + p2ξ2 y2 +R2

e − p2 .

The resultant is built by computing the determinant of the4 × 4 Sylvester’s matrix(Sylvester,
1840), leading to a fourth-order polynomial function iny, namely the sine of the true longitude

R[Σ1,Σ2](y) ≡

∣∣∣∣∣∣∣∣∣

a2(y) 0 1 0

a1(y) a2(y) 0 1

a0(y) a1(y) y2 − 1 0

0 a0(y) 0 y2 − 1

∣∣∣∣∣∣∣∣∣

= A4 y
4 +A3 y

3 +A2 y
2 +A1 y+A0 = 0 ,

where the coefficientsAi are considered to be constant during the current interval ofintegration
and are functions of the equinoctial elements

A0 =
(
p2β2 +R2

e − 2 R
e

2he + R
e

2he
2 − p2

) (
p2β2 +R2

e + 2R2
ehe + R

e

2he
2 − p2

)
,

A1 = −4R2
e

(
R2

ekehe
2 − R2

eke + 2 p2β ξ he + p2ke − kep
2β2
)
,
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A2 = 6R4
eke

2 − 2 p4ξ2 − 2R4
ehe

2ke
2 + 2R2

ep
2ξ2 + 2R2

ehe
2p2 − 2 p2β2R2

e

+2 p4β2 − 4 p2β2R2
ehe

2 + 2R2
ehe

2p2ξ2 + 2 p2β2R2
eke

2 − 8 p2β ξ R
e

2heke

−2R4
ehe

4 − 2 p4β2ξ2 − 2 p4β4 − 2 p2R2
eke

2 + 2R4
ehe

2,

A3 = 4R2
e

(
2 p2β ξ he +R2

ekehe
2 − kep

2β2 +R2
eke

3 + p2ξ2ke

)
,

A4 =
(
p2ξ2 +R2

ek
2
e − 2 R

e
keβ p + p2β2 + 2 ξR

e
hep +R2

ehe
2
)
×

(
p2ξ2 + R

e

2ke
2 + 2 R

e
keβ p + p2β2 − 2 ξ R

e
hep +R2

ehe
2
)
.

The resultantR[Σ1,Σ2], as a fourth-order polynomial function, admits at most fourreal solu-
tions which can be computed in closed form by quadratic radicals using the Descartes method.
Moreover, by construction of the resultant polynomial function, these solutions in the sine of
the true longitude are solutions of the complete system of equations. Once one has solved
for thesey values, one can substitute them back into the original equations and solve for the
corresponding cosine values of the true longitude through the x variable. Rejection of the
two additional spurious roots can be accomplished, considering the fact that only the solutions
which lead to

cosψ = β cosV + ξ sinV < 0 ,

are of any physical meaning, because of the restriction of the interval where a shadow exists
(Eq. 4.1). Let us remark that the solutions of Eq. (4.5) couldalso be computed within the
complex formalism. Indeed, by expressing the sine and cosine functions of the true anomaly
in terms of an auxiliary quantityz = eiV , Eq. (4.5) is easily converted into a fourth-order
polynomial inz, which is in turn solved for its real and imaginary part, respectively.

Finally, considering Eqs. (4.3) and solving for the sine andcosine of the eccentric longitude
F , yields the following expressions

cosF = ke +
(1 − k2

eη)Xe − hekeηYe

a
√

1 − h2
e − k2

e

,

sinF = he +
(1 − h2

eη)Ye − hekeηXe

a
√

1 − h2
e − k2

e

,

for determining the eccentric longitude, from which the mean longitudeλ can be computed
using the generalized Kepler’s equation

λ = F − ke sinF + he cosF .

4.2 Analytical averaging

As mentioned before, the approach pursued in this chapter isbased on the one developed by
Aksnes (1976). In this theory, the shadowing effects are nottaken into account using some
specific series expansion of the shadow function such in Ferraz-Mello (1972), Vashkoviak
(1974) as well as in Lála and Sehnal (1969). The accelerationof the solar radiation pressure is
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kept in its original form and the perturbation is computed ona revolution-by-revolution basis.
Under such a formalism, the Gauss variational equations of motion are analytically integrated
under the assumption that all the variables on the right-hand sides, except those depending
explicitly on the position of the space debris within its orbit, are held constant. Therefore,
Kozai (1961) and later Aksnes (1976) derived the perturbations suffered by a satellite that
moves in sunlight from eccentric anomalyE1 toE2

δa = 2a3F |S cosE + T(1 − e2) sinE|E2

E1 ,

δe = a2 F (1 − e2)1/2

∣∣∣∣
1

4
S(1 − e2)1/2 cos 2E + T

(
3

2
E − 2e sinE +

1

4
sin 2E

)∣∣∣∣
E2

E1

,

δi = a2 F W(1 − e2)−1/2

∣∣∣∣
[
−3

2
eE + (1 − e2) sinE − e

4
sin 2E

]
cosω

+(1 − e2)1/2
(
cosE − e

4
cos 2E

)
sinω

∣∣∣
E2

E1
,

sin i δΩ = a2 F W(1 − e2)−1/2

∣∣∣∣
[
−3

2
eE + (1 − e2) sinE − e

4
sin 2E

]
sinω

−(1 − e2)1/2
(
cosE − e

4
cos 2E

)
cosω

∣∣∣
E2

E1
,

δω = − cos iδΩ +
a2 F (1 − e2)1/2

e

∣∣∣∣S
(
−3

2
E + e sinE +

1

4
sin 2E

)
+

T(1 − e2)−1/2

(
e cosE − 1

4
cos 2E

)∣∣∣∣
E2

E1

,

δM = −(1 − e2)1/2(δω + cos i δΩ)

−3a2 F

∣∣∣∣S
[
−3

2
eE +

(
5

3
+

2

3
e2
)

sinE − 5

12
e sin 2E

]

−T(1 − e2)1/2

(
5

3
cosE − 5

12
e cos 2E

)

−
[
S cosE + T(1 − e2)1/2 sinE

]
(E − e sinE)

∣∣E2

E1
,

whereS = S(0), T = T (0) andW are the direction cosines of the force, along the ra-
dial, along-track and cross-track direction, respectively, and evaluated at true anomalyf = 0

(Kozai, 1961). The anglesE1 andE2 denote the eccentric anomalies at shadow exit and
shadow entry, respectively. The author stresses that the expressions forδω andδM are sin-
gular for circular orbits. Similarly, a problem appears forthe expressions ofδΩ andδω for
equatorial orbits. Through some corrections, the latter algorithm is also assumed to hold when
the eccentricity and the inclination are zero. Actually, these singularities can be partly avoided
by expanding some eccentricity denominators in powers of the eccentricity or by computing
the perturbations directly in the radius vector and in the argument of latitudeu = ω + f (Ak-
snes, 1976). However, let us remark that these new perturbation expressions always depend on
the eccentric anomalies at shadow exit and shadow entry. These angular values can be theoret-
ically determined by solving a fourth-order polynomial equation in the cosine of the eccentric
anomaly, but only when the eccentricity and the inclinationare not too small (Escobal, 1965).
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4.2.1 Analytical evaluations of the perturbations

The solution addressed in this chapter is based on the adoption of the algorithm outlined in
Section 4.1, in addition to the non-singular extension of the analytical averaging discussed in
Section 4.2. In this approach, the acceleration of the solarradiation pressure including the
Earth’s shadowing effects is always computed on a revolution-by-revolution basis. Within our
theory, the mean net change over an orbital revolution is computed by means of the osculat-
ing Hamiltonian disturbing function expressed in terms of non-singular variables. The latter
disturbing function is a function of the mean longitudeλ and can be therefore averaged taking
into account that the space debris crosses the Earth’s shadow between shadow entryλ1 and
shadow exitλ2.

Making use of the Cartesian Poincaré variables(X1, Y1, X2, Y2, L, λ), the osculating Hamil-
tonian disturbing function of the direct solar radiation pressure is given by (see Eq. 3.8,
page 71)

Hrp =

nmax∑

n=0

L2n

rn+1
⊙

Nn∑

j=0

An
j (X1, Y1, X2, Y2, X⊙, Y⊙, Z⊙)Bn

j (λ) ,

that is a well-known Fourier series in the angular variable,namely the mean longitudeλ, whose
coefficients are polynomials in the Cartesian variablesXi, Yi, X⊙, Y⊙, Z⊙. For similar de-
velopments and further details, we refer to Chapters 2 and 3.

Thanks to the Hamiltonian formalism, the associated differential system of equations has
been easily derived. More precisely, we have

Ẋi =
1

L

∂H
∂Yi

, Ẏi = − 1

L

∂H
∂Xi

, i = 1, 2

λ̇ =
∂H
∂L

− 1

2L

[
2∑

i=1

∂H
∂Xi

Xi +
2∑

i=1

∂H
∂Yi

Yi

]
, L̇ = −∂H

∂λ
.

(4.6)

This differential system of osculating equations can be therefore analytically integrated with
respect to the mean longitudeλ, if all the variables on the right-hand side in the polynomial
functions are considered as constants. Subsequently, the long-term mean variations, over a
complete revolution of the space debris, are given by

∆X i =
1

L

{
δHrp

δYi
−
∫ λ2

λ1

δHrp

δYi
dλ

}

=
not

HYi

rp − SYi

rp(λ1, λ2) ,

(4.7)

and similarly

∆Y i = − 1

L

{
δHrp

δXi
−
∫ λ2

λ1

δHrp

δXi
dλ

}

=
not

HXi

rp − SXi

rp (λ1, λ2) ,

(4.8)
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whereHrp is the first-order averaged Hamiltonian disturbing function

Hrp =

nmax∑

n=0

Rn =

nmax∑

n=0

L2n

rn+1
⊙

Nn∑

j=0

An
j (X1, Y1, X2, Y2, X⊙, Y⊙, Z⊙) .

In both Eqs. (4.7) and (4.8), the quantitiesHYi

rp, H
Xi

rp denote the mean variations in the orbital
elementsXi andYi, respectively, without considering the Earth’s shadowingeffects, from
which we subtract the mean net changeSYi

rp(λ1, λ2) andSXi

rp (λ1, λ2) when the space debris
crosses the Earth’s shadow between shadow entryλ1 and shadow exitλ2. Let us remark that,
whenever the space debris does not encounter the Earth’s shadow within its orbit over a rev-
olution, the functionsSrp equal zero, by fixing, sayλ1 = λ2. It is also worth noting that the
mean net changesSrp are defined as integrals of functions expanded into Fourier series. As a
consequence, these integrations can be easily performed ina completely analytical way.

In addition, the long-term variation of the semi-major axisover a complete revolution is
simply related to

∆L = [Hrp]
λ2

λ1
= Hrp(λ2) −Hrp(λ1) . (4.9)

4.2.2 How to apply the semi-analytical theory

Let us assume that a set of well-defined variables, such as Poincaré variables or equinoctial
variables, are given for an initial timet0.

1. For the purpose of numerical integration of the filtered equations of motion, we consider
the differential system of equations (4.6). At each step of the integration process, the net
change of the variables can be computed for all the perturbations excluding the Earth’s
shadowing effects.

2. By means of the algorithm mentioned before, the mean longitude at shadow entry and
shadow exit are computed within the assumption that the orbit is held frozen during the
integration time step.

3. From Eqs. (4.7), (4.8) and (4.9), the perturbations in theelements are computed on a
revolution-by-revolution basis. If the integration time step is lower than the orbital period
of the space debris, the perturbations induced by the Earth’s shadow are linearized over
the current integration time step.

4. Summing the latter perturbations with the perturbationsobtained in the first step, gives
the total perturbations in the elements.
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4.3 Short- and mid-term investigations for objects with high
area-to-mass ratios

In the framework of short-term investigations, numerical integrations of the osculating equa-
tions of motion, without taking into account eclipses, showthat the direct solar radiation pres-
sure mainly produces short-period effects (1 sidereal day) on the semi-major axis. These short-
period effects are characterized by high amplitudes, the order of which is proportional to the
area-to-mass ratioA/m. Considering the Gaussian equations of motion, the acceleration of a
near-circular and near-equatorial object is given by

da

dt
= −Cr Pr

A

m

2

n
cos2 ǫ

2
sin(λ⊙ − V ) .

Let us recall thatCr is the non-dimensional “reflectivity” coefficient which depends on the
optical properties of the space debris surface;Pr = 4.56×10−6 N/m2 is the radiation pressure
for an object located at a distance of 1 AU;ǫ is the obliquity of the Earth with respect to the
ecliptic; λ⊙ is the ecliptic longitude of the Sun andn is the mean motion, that is2π/day for
geosynchronous space debris.

Consequently, a first estimation of the short-period amplitudesχ appearing in the semi-
major axis can be derived

χ = 2Cr Pr
A

m
cos2 ǫ

2

1

n2
.

As a matter of fact, these high amplitude short-period effects are responsible for the long-term
variations of the semi-major axis, when considering solar radiation pressure with the pertur-
bations induced by the Earth’s shadowing effects. Actually, in the latter case, the radiation
pressure cannot be considered as a conservative force anymore (Milani et al., 1987), (Anselmo
et al., 1983), what is due to the breakage of short-period effects during the transit time through
the shadow of the Earth. On the contrary, the radiation pressure does not induce any signifi-
cant short-period variation of the other orbital elements.This statement explains why radiation
pressure with eclipses does not affect significantly the other orbital elements, in contrast with
the variations of the semi-major axis. These remarks are in agreement with Anselmo and
Pardini (2007b) where, among other results, the authors present geosynchronous objects prop-
agations with and without eclipses.

Let us recall that in the theoretical context of classical geostationary space debris (A/m≪
1 m2/kg), the orbital plane remains reasonably close to the equatorial plane. As a conse-
quence, the Sun moves through the orbital plane twice per year. As a matter of fact, a classical
geostationary space debris will experience eclipses around the spring and autumn equinoxes.
During these two eclipse seasons, the space debris transitsthrough the Earth’s shadow once per
day, leading to eclipses of the Sun by the Earth. Figure 4.2 illustrates the two eclipse seasons
occurring over a year.
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Let us now consider the evolution of several higher area-to-mass ratio space debris sub-
jected to solar radiation pressure with eclipses; we analyze the dynamical evolution of objects
over both short-term (a few days) and mid-term (a few years) time scales.

The simulations were carried out by means of both completelynumerical integrations and
semi-analytical extrapolations, that is numerical integrations of the filtered equations of mo-
tion, including the Earth’s shadowing effects. The chosen orbits correspond to initial geo-

Time

3 6 5 d a y s

Shadow seasons

Shadow season entry

Shadow season exit

No shadow

Entrance 

Exit

Figure 4.2: Schematic evolution of the shadow transits overa year for near-equatorial orbits.
Twice per year, the Sun moves through the orbital plane of motion, leading to eclipse seasons.
By means of the before-mentioned algorithm (Section 4.1), the mean longitudes at shadow
entryλ1 and shadow exitλ2, as well as the mean change over an orbital period, are determined
at each step of the integration process.
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stationary space debris with area-to-mass ratios between1 to 20 m2/kg. The top graphs of
Figure 4.3a-c shows the short-term evolution of the semi-major axis (the osculating semi-
major axis obtained by numerical integration) and its mid-term evolution (obtained by the
semi-analytical approach), over 5 years, for three area-to-mass ratios (5, 10 and20 m2/kg).
The bottom graphs of the same figures show the mid-term evolution of the eccentricity for the
same period.

The amplitudes of the short-term variations, observed in the osculating semi-major axis,
are obviously directly proportional to the area-to-mass ratio. The sign of variation of the cu-
mulated mean change over an eclipse season,∆atot, depends on the sign of variation of the
mean eccentricity over this period. Indeed, an increase of the eccentricity induces a decrease
of the mean semi-major axis during the eclipse season. Figure 4.4 represents schematically
the mean and osculating semi-major axis over an eclipse season for an increasing eccentricity
during a shadow transit. A similar plot could be drawn for a decreasing eccentricity, with a
resulting increasing semi-major axis over an eclipse season. Let us now plot the cumulated
mean change∆atot over an eclipse season with respect to the area-to-mass ratio; the behavior
is clearly quadratic (Figure 4.5). Besides the understanding of the dynamics occurring in the
semi-major axis, these results also report to what extent our semi-analytical theory is in good
agreement with accurate numerical integrations. The theory seems to define accurately the
so-called mean motion even with the simplifying assumptions which are made.

It is worth stressing that a particular attention has to be given when making comparisons
between osculating orbits and mean orbits derived within the context of mean orbital theories.
As shown in Figure 4.3a-c, the chosen osculating initial conditions do not have to be equal to
the initial conditions given in the semi-analytical extrapolations. Indeed, the osculating initial
conditions have to be computed, taking into account the presence of short-term variations. This
is the reason for which we indicate the initial osculating semi-major axis on the graphs; it does
not coincide with the initial mean semi-major axis and it is systematically distant from the
exact equilibrium. Fortunately, thanks to the chosen Hamiltonian formalism, the conversion
between osculating and averaged initial conditions can be realized within the framework of
Lie transforms theory (Deprit, 1969; Deprit and Rom, 1970; Henrard, 1970). For instance,
within the context of a first order averaging process over theshort periods, the transformation
between both the osculating and mean semi-major axis related variablesL and L′, is given by
(expanded up to order 1)

L = L′ −
{
∂W1

∂λ

}∣∣∣∣
E′

,

whereE ′ stands for the complete set of mean variables and whereW1 is the first-order gen-
erating function, that is a function of the discarded “short-periodic” terms, which is computed
in the following by an analytical integration with respect to the fast angleλ (see Eq. F.6,
page 178).
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Figure 4.3: Short-term (1 day) and mid-term (a few years) evolution of the semi-major axis
over 5 years. The amplitude of variation of the short periodsas well as the cumulated varia-
tion ∆atot over an eclipse season is represented for three area-to-mass ratios. The mid-term
evolution of the eccentricity is given below for each case.
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Figure 4.4: Schematic evolution of the mean and osculating semi-major axis over an eclipse
season. The sign of the cumulated variation of the mean semi-major axis∆atot depends on the
sign of variation of the mean eccentricity during the eclipse season.
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Figure 4.5: Amplitudes of both short-term variationsχ and cumulated mean change over an
eclipse season∆atot, as a function of the area-to-mass ratio.
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Similar transformations are available for the remaining orbital elements. For further details,
we refer to Appendix F (Section F.4, page 178), where such transformations between mean and
osculating elements are given.

4.4 Long-term investigations for objects with high area-to-
mass ratios

In Figure 4.3, besides the cumulated mean change over eclipse seasons, there is no significant
long-term variation of the semi-major axis. During this 5 years period, the dates and duration
of the eclipse seasons are almost the same for every year. As aconsequence of the low incli-
nation of the orbits with respect to the equatorial plane, each eclipse season lasts more or less
46 days, from February 26 to April 13 (spring eclipse season)and from August 31 to October
16 (autumn eclipse season) (Soop, 1994). Actually, even formoderate area-to-mass ratios,
the radiation pressure, coupled withJ2 and the third-body attractions, induces only small to
moderate variations of the inclination.

For the purpose of long-term investigations (∼ 25 years) of the semi-major axis, we also
performed several propagations by means of both complete numerical integrations and numer-
ical integrations of the filtered equations of motion, including Earth’s shadowing effects. The
chosen model of forces included the second zonal harmonicJ2 and the luni-solar perturba-
tions. These numerical investigations were performed for various high area-to-mass ratios.

In each case, we show both the dynamical evolution of the osculating semi-major axis
and the mean semi-major axis over a period of27 years. In addition, we plot the evolution
of the eclipse seasons by means of the mean longitude at shadow entry and shadow exit, su-
perimposed with the evolution of the longitude of the ascending node. Finally, the long-term
evolution of the inclination is represented.

4.4.1 Earth’s shadow,J2, third-body – moderate area-to-mass ratios

On the one hand, forA/m = 5 m2/kg (Figure 4.6), the inclination remains moderate and the
eclipse seasons present a regular pattern over time. The consequence is a small to moderate
long-term variation of the semi-major axis. For the sake of clarity, it is important to note that
the growth of the duration of the eclipse seasons due to an increasing inclination can not explain
completely the long-term evolution of the semi-major axis.In fact, in the latter case, the length
of the eclipse seasons has almost increased linearly by a fewdays (Figure 4.7, bottom), while
the semi-major axis seems to present a more intricate evolution. In particular, the cumulated
variation over eclipse seasons seems to decrease in the firstpart of the integration process,
reaches very small amplitudes after11 years and finally increases. This specific dynamics
is directly related to the asymmetry between the length of the spring eclipse seasons and the
length of the autumn eclipse seasons. More precisely, the lengths of the spring eclipse seasons
always seem to be greater than those of the autumn eclipse seasons (Figure 4.7, bottom). To
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Figure 4.6: [Top] Long-term semi-major axis evolution taking into accountJ2 and solar ra-
diation pressure with Earth’s shadowing effects: mean semi-major axis (solid curve), oscu-
lating semi-major axis (dotted curve). Area-to-mass ratioand mean initial conditions are
A/m = 5 m2/kg anda0 = 42 164 km, e0 = 0, i0 = 0, Ω0 = ω0 = M0 = 0 rad, re-
spectively. The osculating semi-major axis initial condition is a⋆

0 = 42 158.810 km (solid
square). [Middle left] Mean longitudes at shadow entryλ1 and shadow exitλ2 superimposed
with the longitude of the ascending nodeΩ (dashed curve). [Middle right] A blow-up of the
first eclipse season. [Bottom] Long-term inclination evolution.

explain this behavior, we investigated the values of the eccentricities at both entry and exit
of the eclipse seasons. As indicated in Figure 4.7 (top), it is clear that the eccentricities at
both entry and exit of the eclipse seasons change over time. The eccentricities are also clearly
greater during the spring seasons than during the autumn seasons, explaining the differences
of duration of the seasons between spring and autumn. It is also clear that, after11 years
of integration, the eccentricities at both shadow entry andshadow exit converge to the same
values, leading therefore to vanishing cumulated mean changes of the semi-major axis over
the eclipse seasons.

4.4.2 Earth’s shadow,J2, third-body – high area-to-mass ratios

On the other hand, the situation is more elaborate for higherarea-to-mass ratios. In this case,
the inclination reaches larger values. In particular, the inclination vector nearly describes a
circle with fixed center coordinates depending on the selected area-to-mass ratio. Figure 4.8
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Figure 4.7:A/m = 5 m2/kg. [Top] Eccentricities values at both entry and exit of the eclipse
seasons, superimposed with the long-term eccentricity evolution. The solid dark rectangle
underlines the region where the eccentricities at both entry and exit of the eclipse seasons are
similar. [Bottom] Evolution of the length of eclipse seasons.

illustrates schematically the evolution of the inclination when taking into account the second
zonal harmonicJ2 and possibly the solar radiation pressure with eclipses (even if the Earth’s
shadowing effects do not induce significant effects on the inclination), as well as the combined
Moon and Sun third-body attraction. ForA/m = 0 m2/kg, that is not taking into account the
effects of the radiation pressure, a space debris presents the behavior of a typical abandoned
geosynchronous spacecraft, with a maximum inclination of 15 degrees and a periodicity of
about54 years (see Chapter 2 as well as Allen and Cook, 1964 and Agrawal, 1986). However,
for A/m = 10 m2/kg, the inclination almost reaches the specific value corresponding to the
obliquity of the Earth on the ecliptic. Let us also remark that the longitude of the ascending
node always converges to zero when the inclination reaches its maximum.

As a consequence of the large variation of the inclination, both the time of the eclipse sea-
son and its total length change considerably over time (Figure 4.9, bottom).The longer is the
season, the smaller is the angle between the orbital plane and the ecliptic plane. As an illustra-
tion, Figure 4.10 shows the evolution of the semi-major axisfor an area-to-mass ratio equal to
10 m2/kg. At the beginning of the integration process, the inclination remains small to mod-
erate, leading to moderate variations of the semi-major axis such as in Figure 4.6. Moreover,
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Figure 4.8: [Top] Schematic long-term evolution of the inclination vector in(Y2,−X2) ≃
(sin i cos Ω, sin i sin Ω) phase space, taking into accountJ2, solar radiation pressure and the
combined Moon and Sun third-body attraction. [Bottom] Evolution of the inclination for vari-
ous area-to-mass ratios.
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the decrease of the cumulated variations on the semi-major axis, observed after5 years, can
also be explained by the evolution of the eccentricities at both entry and exit of the eclipse
seasons as indicated in Figure 4.9 (top). After20 years of integration, the inclination reaches
its maximum. The eclipse seasons become “permanent” for a long time, since the orbital plane
of motion is almost parallel to the ecliptic. Consequently,the semi-major axis is subjected to
large variations without any conservative regime, due to the lack of a complete illumination
region over successive orbital revolutions (see Figure 4.11). During this particular period, the
semi-major oscillates with a period of1 year, following what we called theeccentricity law,
that is increasing eccentricity during eclipse seasons leads to decreasing mean semi-major
axis, and conversely.

The patterns illustrated in Figure 4.12, corresponding toA/m = 15 m2/kg, mainly show
the same dynamics as forA/m = 10 m2/kg. As expected, the amplitudes of the variation
of the semi-major axis are larger than previously, what is due to a larger area-to-mass ratio.
However, the large variations of the semi-major axis occur faster, since the rate of the orbital
pole precession, as well as the variation of the inclination, increase with higherA/m.

Figure 4.9:A/m = 10 m2/kg. [Top] Eccentricities values at both entry and exit of the eclipse
seasons, superimposed with the long-term eccentricity evolution. The solid dark rectangle
underlines the region where the eccentricities at both entry and exit of the eclipse seasons are
similar. [Bottom] Evolution of the length of the eclipse seasons.
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Figure 4.10: [Top] Long-term semi-major axis evolution taking into accountJ2, solar radiation
pressure with Earth’s shadowing effects and the combined Moon and Sun third-body attraction:
mean semi-major axis (solid curve), osculating semi-majoraxis (dotted curve). Area-to-mass
ratio and mean initial conditions areA/m = 10 m2/kg anda0 = 42 164 km, e0 = 0, i0 =
0, ω0 = Ω0 = M0 = 0 rad, respectively. The osculating semi-major axis initialcondition is
a⋆

0 = 42 153.621 km (solid square). [Middle] Mean longitudes at shadow entryλ1 and shadow
exit λ2 superimposed with the longitude of the ascending nodeΩ (dashed curve). [Bottom]
Long-term inclination evolution.

In all the previous investigations, our homemade semi-analytical theory gives an insightful
understanding of the semi-major axis dynamics. The extrapolation of the mean motion is
in complete agreement with the numerical integrations, even for longer time scales such as
25 years. Moreover, let us emphasize that the extrapolation ofthe mean orbital motion is
considerably faster than in classical numerical integrations. Indeed, the integration of the
filtered differential system of equations is made with a large integration time step of the order
of the orbital period (1 day). This fact hugely reduces the time of integration as well as the
round off and truncating errors (Exertier and Métris, 1995).

4.4.3 Earth’s shadow,J2, third-body and resonant effects

Finally, the patterns illustrated in Figure 4.13 (page 118)show the evolution of the semi-major
axis when including the 1:1 resonance effects in addition toJ2, the radiation pressure with
the Earth’s shadow and the third-body attractions. The propagation is performed with an area-
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Figure 4.11: The duration of eclipse seasons depends on inclination of the space debris with
respect to the orbital plane of the Sun (ecliptic). When the inclination is small, the space
debris is only affected at equinox periods (short eclipse seasons) whereas it is affected at each
orbital revolution when the inclination reaches a value close to the obliquity value (long eclipse
seasons – “permanent” seasons).

to-mass ratio equal to10 m2/kg. Since the 1:1 resonance effects do not affect significantly
the inclination, the eclipse seasons display partially thesame evolution over time as in Fig-
ure 4.10. The inclination always reaches its maximum after20 years of integration, leading to
large yearly variations of the semi-major axis. Furthermore, the dynamics of the semi-major
axis presents an additional long-term variation, clearly apparent at the beginning of the inte-
gration window. The additional period can easily be relatedto the long-term effects induced
by the 1:1 resonance. Indeed, it is well known that geostationary objects are subjected to a
long-term variation of both the semi-major axis and mean longitude (libration around stable
equilibrium longitudes). Moreover, the period of variation significantly depends on the chosen
initial conditions with respect to both stable and unstableequilibrium points (Chao, 2005). In
this latter propagation, we consider an initial mean longitude close to the first stable equilib-
rium point (∼ 75◦ E). In this case, the object in consideration begins immediately to oscillate
with a period close to theproper periodof geostationary objects (see Subsection 2.6.2), that
is 818.7 days even though the evolution is considerably more intricate. Let us remark that at
the end of the integration interval the agreement between the mean semi-major axis and the
osculating one seems to break up. However, these significantdifferences are not the conse-
quences of the simplifying assumptions adopted in the semi-analytical method. Indeed, high
area-to-mass space debris, subjected to both radiation pressure and the 1:1 resonance effects,
seems to present highly unstable dynamics. Further investigations have to be made to quantify
the order of instability as a function of both the area-to-mass ratios and the initial conditions.
These further analyses should clarify the regular and chaotic components of the phase space.
These investigations are the main objective of the next chapter.
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Figure 4.12: [Top] Long-term semi-major axis evolution taking into accountJ2, solar ra-
diation pressure with Earth’s shadowing effects and the combined Moon and Sun third-
body attraction. Area-to-mass ratio and mean initial conditions areA/m = 15 m2/kg and
a0 = 42 164 km, e0 = 0, i0 = 0, ω0 = Ω0 = M0 = 0 rad, respectively. The osculating
semi-major axis initial condition isa⋆

0 = 42 148.432 km. [Middle] Mean longitudes at shadow
entryλ1 and shadow exitλ2 superimposed with the longitude of the ascending nodeΩ (dashed
curve). [Bottom] Long-term inclination evolution.
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Figure 4.13: [Top] Long-term semi-major axis evolution taking into accountJ2, solar radiation
pressure with Earth’s shadowing effects, the combined Moonand Sun third-body attraction
and the 1:1 resonance induced by theC22 andS22 tesseral harmonics: mean semi-major axis
(solid curve), osculating semi-major axis (dotted curve).Area-to-mass ratio and mean initial
conditions areA/m = 10 m2/kg anda0 = 42 164 km, e0 = 0, i0 = 0, ω0 = Ω0 = 0, σ0 =
λ0 − θ0 = 1.32 rad, respectively. The osculating semi-major axis initialcondition isa⋆

0 =
42 153.621 km (solid square). [Middle] Mean longitudes at shadow entryλ1 and shadow exit
λ2 superimposed with the longitude of the ascending nodeΩ (dashed curve). [Bottom] Long-
term inclination evolution.
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Chapter 5

Global dynamics of high area-to-mass
ratios GEO space debris by means of the
MEGNO indicator

“Two golf balls will soon be hit into Earth orbit from the International
Space Station for a television commercial [. . . ] The cosmonaut is
a golf novice and was tutored in July by a golf instructor and a
retired professional golfer [. . . ] the ball does come equipped with
a transmitter. So the satellites should be able to keep tabs on the
ball...until the transmitter’s batteries wear out.”

NewScientist, 23 August and 17 November 2006

– The results of this chapter have been previously submittedin Valk et al. (2008) –

As mentioned in the previous chapters, the recent optical surveys in high-altitude orbits, per-
formed by the European Space Agency 1 m telescope in Tenerife(Canary islands), have
discovered a new unexpected population of 10 cm sized space debris near the geostation-
ary region (GEO). These objects sometimes present highly eccentric orbits with eccentricities
as high as 0.55 (Schildknecht et al., 2004, 2005). Followingthe initial guess of Liou and
Weaver (2004), who suggested that this new population may beGEO objects with high area-
to-mass ratios, recent numerical and analytical investigations were performed to defend this
assumption (Anselmo and Pardini, 2005; Liou and Weaver, 2005). In addition, these authors
and others, such as Chao (2006), Valk et al. (2007b), Valk andLemaître (2007b), presented
some detailed results concerning the short- and long-term evolution of high area-to-mass ra-
tios geosynchronous space debris subjected to direct solarradiation pressure (see Chapter 3).
More specifically, these latter authors mainly focused their attention on the long-term varia-
tion of both the eccentricity and the inclination vector. Moreover, some studies concerning
the effects of the Earth’s shadowing effects on the motion ofsuch space debris were given in
Chapter 4.

121
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However, no concern about the intrinsic stability of such uncommon orbits has been given
so far. In other words, up to the present, nobody ever dealt with the question to know whether
these orbits are really predictable or not on the time scalesof their investigations.

The objective of this chapter is basically twofold. The firstgoal is the investigation of
the long-term stability of high area-to-mass ratios space debris subjected to the direct solar
radiation pressure, by means of the MEGNO criterion (Cincotta et al., 2003). Second, while
considering high area-to-mass ratios, we bring to the fore arelevant class of additional sec-
ondary structures appearing in the phase space.

This chapter is organized as follows. In Section 5.1, we focus our attention to the speci-
fication of the underlying model and we give some details about the numerical aspects of the
method.

In Section 5.2, for the sake of completeness, we dwell upon the detailed definition of the
Mean Exponential Growth factor of Nearby Orbitsindicator, also providing a review of its
main properties, in order to understand the behavior of the chaos indicator.

Then in Section 5.3, within the framework of the validation of our implementation, we
regain the results obtained by Breiter et al. (2005a). We also discuss the significance of the
time of integration, recently reported by Barrio et al. (2007).

In Section 5.4, we first apply the MEGNO technique in order to give an insightful un-
derstanding of the stability of high area-to-mass ratios space debris. More specifically, we
show that the orbits of such peculiar space debris are extremely sensitive to initial conditions,
especially with respect to the mean longitude and the semi-major axis. Second, we perform
extended analyses, showing that the related 2-dimensionalphase space is dominated by chaotic
regions, in particular when the area-to-mass ratio is large. In addition, we also provide some
results presenting the importance of the initial eccentricity value in the appearance of chaotic
region.

Finally, in Section 5.5, we give extensive numerical and analytical investigations of the
additional patterns which will be identified as secondary resonances.

5.1 The model

For the purpose of our study, we consider the modeling of a space debris subjected to the
influence of the Earth’s gravity field, to both the gravitational perturbations of the Sun and the
Moon as well as to the direct solar radiation pressure. As a consequence the differential system
of equations governing the dynamics is given by

r̈ = apot + a$ + a⊙ + arp ,
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whereapot is the acceleration induced by the Earth’s gravity field, expressed as the gradient of
the following potential (see Eq. 2.5, page 25)

U(r, λ, φ) = −µ
r

∞∑

n=0

n∑

m=0

(
Re

r

)n

Pm
n (sinφ)(Cnm cos mλ+ Snm sin mλ) , (5.1)

which is subsequently expressed in Cartesian coordinates by means of the recursive Cunning-
ham algorithm (see Appendix B, page 161).

Both the accelerationsa$ anda⊙ result from the gravity interaction with a third body of
massm∗, where∗ = $ and∗ = ⊙, and can be expressed with respect to the Earth’s center of
mass (see Subsection 2.2.3, page 28)

a∗ = −µ∗

(
r − r∗

‖r − r∗‖3
+

r∗

‖r∗‖3

)
,

Regarding the direct solar radiation pressure, we assume a hypothetical spherical space debris
with optical properties defined by a single scalar coefficient. The albedo of the Earth is ignored
and the Earth’s shadowing effects are not taken into accounteither. For the sake of clarity, the
acceleration induced by the direct solar radiation pressure is recalled here. From Section 3.2,
we have

arp = Cr Pr

[
a⊙

‖r− r⊙‖

]2
A

m

r − r⊙
‖r − r⊙‖

.

5.2 The Mean Exponential Growth factor of Nearby Orbits

We present in this section the definition and some propertiesof the MEGNO criterion.

Let H(p, q), with p ∈ R
n, q ∈ T

n, be an-degree of freedom Hamiltonian system and let
us introduce the compact notationx = (p, q) ∈ R

2n as well asf = (−∂H/∂q, ∂H/∂p) ∈
R

2n, then the dynamical system is described by the following setof ordinary differential equa-
tions

d

dt
x(t) = f (x(t),α) , x ∈ R

2n , (5.2)

whereα is a vector of parameters entirely defined by the model. Letφ(t) = φ(t; x0, t0) be a
solution of the flow defined in Eq. (5.2) with initial conditions(t0,x0), then it has associated
the Lyapunov Characteristic Number (hereafter LCN), defined by (Benettin et al., 1980a)

λ = lim
t→∞

1

t
ln

‖δφ(t)‖
‖δφ(t0)‖

, (5.3)

whereδφ(t), the so-calledtangent vector, measures the evolution of an initial small deviation
δφ(t0) ≡ δ0 betweenφ(t) and a nearby orbit, and whose evolution is given by the variational
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equations (terms of orderO(δ2) are omitted)

δ̇φ =
d

dt
δφ(t) = J(φ(t)) δφ(t) , with J(φ(t)) =

∂f

∂x
(φ(t)) , (5.4)

whereJ(φ(t)) is the Jacobian matrix of the differential system of equations, evaluated on the
solutionφ(t). Let us note that the definition of the LCN, given by Eq. (5.3),can also be written
in an integral form

λ = lim
t→∞

1

t

∫ t

0

δ̇φ(s)

δφ(s)
ds ,

whereδφ = ‖δφ‖, δ̇φ = δ̇φ · δφ/δφ.

The Mean Exponential Growth factor of Nearby Orbits (hereafter MEGNO)Yφ(t) is based
on a modified time-weighted version of the integral form of the LCN (Cincotta and Simó,
2000). More precisely

Yφ(t) =
2

t

∫ t

0

δ̇φ(s)

δφ(s)
s ds ,

as well as its corresponding mean value to get rid of the quasi-periodic oscillation possibly
existing inYφ(t)

Y φ(t) =
1

t

∫ t

0

Yφ(s) ds .

In the following we will omit the explicit dependence ofY andY on the specific orbitφ, once
this will be clear from the context.

Actually, this latter approach allows to study the dynamicsfor long time scales, where
genericallylimt→∞ Y (t) does not converge, whilelimt→∞ Y (t) is well defined (Cincotta et
al., 2003). Consequently, the time evolution ofY (t) allows to derive the possible divergence
of the norm of the tangent vectorδ(t), giving a clear indication of the character of the different
orbits. Indeed, for quasi-periodic (regular) orbits,Y (t) oscillates around the value2 with a
linear growth of the separation between nearby orbits. On the other hand, for chaotic (irreg-
ular) motion, the module ofδ grows exponentially with time, andY (t) oscillates around a
linear divergence line. Cincotta et al. (2003) showed that,for the quasi-periodic regime,Y (t)

converges to 2, that is a fixed constant, independent of the orbit. Moreover, it has been shown
that ordered motions with harmonic oscillations, i.e. orbits very close to a stable periodic orbit,
result asymptotically toY (t) = 0.

These latter properties can also be used to compute efficiently a good estimation of the
LCN, or similarly the Lyapunov timeTλ = 1/λ, by means of a linear least square fit ofY (t).
Indeed, in the case of an irregular orbit, the time evolutionof Y (t) may be easily written as

Y (t) ≃ a⋆ t+ d, t→ ∞,
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wherea⋆ is simply related to the LCN by the relationa⋆ = λ/2 andd is close to zero.

Regarding the numerical computation of the MEGNO indicator, we adopt the same strategy
as in Goździewski et al. (2001). To be specific, in addition to the numerical integrations of both
the equations of motion and the first order variation equations, we consider the two additional
differential equations

d

dt
y =

δ̇ · δ
δ · δ t ,

d

dt
w = 2

y

t
, (5.5)

which allow to derive the MEGNO indicators as

Y (t) = 2 y(t)/t, Y (t) = w(t)/t .

The MEGNO criterion, unlike the common Lyapunov variational methods, takes advantage of
the whole dynamical information for the orbits and the evolution of its tangent vector, which
results in shorter integration times, to achieve comparable results. Moreover, a couple of appli-
cations found in the literature (e.g. Goździewski et al. 2001; Goździewski 2003; Goździewski
et al. 2008; Cincotta and Simó 2000; Breiter et al. 2005a; Breiter et al. 2005b) justify and con-
firm that the MEGNO is relevant, reliable and provides an efficient way for the investigation
of the dynamics by detecting regular as well as stochastic regimes.

5.2.1 MEGNO and numerical integrations

As previously mentioned, in order to evaluate the MEGNO indicator, we have to integrate
the differential system of equations of motion (5.2), the linear first order variational system
of equations (5.4) as well as the two additional differential equations (5.5). We choose to
write both the expressions of the perturbing forces and the variational system, i.e. the Jacobian
matrix, in rectangular coordinates,positionsandvelocities. In such a way we can overcome
both the null eccentricity and the null inclination singularity present in the dynamics of space
debris. Moreover, the explicit analytical expressions of the vector fields allow us to avoid the
difficulties inherent in the classical method of neighboring trajectories (two particles method).
For further detail concerning the explicit computation of the variational system of equations,
we refer to Appendix D on page 167.

In order to numerically integrate the two differential systems of equations, we adopted the
variable step size Bulirsh-Stoer algorithm (see e.g. Bulirsh and Stoer, 1966; Stoer and Bu-
lirsh, 1980). Let us note that, for the purpose of validation, the numerical integrations were
also made with a couple of other numerical integrators. However, the Bulirsh-Stoer algorithm
seems to be the best compromise between accuracy and efficiency. Moreover, as quoted by
Wisdom (1983):What is more important for this study, Benettin et al. (1980a,b) found that the
maximum LCE did not depend on the precision of their calculation. It appears likely that as
long as a certain minimum precision is kept, maximum LCE’s may be accurately computed,
even though it is not possible to precisely follow a specifiedtrajectory for the required length



126 Chapter 5. Numerical stability investigations of high area-to-mass ratios space debris

of time.

Although this latter observation was formulated in the framework of both Lyapunov vari-
ational method and Hamiltonian systems, it seems that it remains relevant in the computation
of the MEGNO criterion, at least in the particular case of ouranalysis.

5.2.2 Influence of the initial tangent vectorδ0

By construction MEGNO depends on the initial value of the tangent vectorδ0, although the lat-
ter does not influence significantly the detection of chaoticregion. Nevertheless we preferred
to adopt the strategy of initializing randomly the initial tangent vectors in order to avoid some
parts ofartificially created zones of low MEGNO due to the proximity of δ0 to the minimum
Lyapunov exponent direction(Breiter et al., 2005a). Moreover, as pointed out by Goździewski
et al. (2001), the random sampling ofδ0 is relevant in the sense that different initial tangent
vectors can lead to different behaviors of the MEGNO time evolution while considering the
same orbit. This observation has been reported in the framework of extrasolar planetary sys-
tems and seems to be similar in the case of Earth orbiting objects, and more generally for
high-dimensional dynamical systems (having more than 3 degrees of freedom).

Regarding the impact of the choice of the initial tangent vector δ0, we performed a set
of exhaustive numerical investigations of regular orbits.More specifically, we compared the
time evolution of the MEGNO using different initial tangentvectors and identical generic
initial conditions. The results confirm that the random choice of the initial tangent vector
induces a significant random behavior in the way MEGNO approaches the limit value2, hence
preventing this information from being useful to check the stability/instability character of
regular orbits. Actually, when considering a slightly perturbed two-body problem (such as
the central attraction disturbed by the oblateness of the Earth), the MEGNO convergence to2
is completely random, leading to more or less 50% of convergence ofY (t) to 2 from above
and the other remaining 50% from below. This result is formally discussed in the following
subsections. However, when the order of magnitude of the perturbation is larger, the result
does not completely hold anymore. In particular, when considering the perturbing effects
induced by the 1:1 resonance, the MEGNO evolution no longer depends on the random choice
of the initial tangent vector. In this latter case, the intrinsic stability of the chosen orbits
seems also to dictate the evolution of the MEGNO as reported in Cincotta et al. (2003). More
specifically, the stability of the orbit seems to influence the time evolution of the MEGNO the
stronger the orbit is closer to a stable or unstable equilibrium point. For instance, regarding
the orbits extremely close to a stable equilibrium point, the MEGNO generally approaches
slowly the limit value2 from below even though some infrequent orbits present a MEGNO
convergence from above. Conversely, the orbits initially close to the separatrices generally
present a MEGNO approaching the value 2 from above.
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5.2.3 MEGNO for integrable systems

In this paragraph we will study the MEGNO indicator for integrable Hamiltonian systems and
we will show that generically (if the system is not isochronous) it always converges to2, more-
over the wayY (t) reaches this limit value, say from higher or lower values, depends only on
the choice of the initial tangent vector and not on the orbit itself.

So let us consider an integrable Hamiltonian system and assume action-angle variables,
H = H(p), wherep ∈ B ⊂ IRn denotes the action variables andq ∈ ITn denotes the angle
variables. Then the Hamiltonian equations are

ṗ = 0 ,

q̇ =
∂H
∂p

= ω(p) .

The tangent space (to a given orbit) can be split into the action direction and angle direction,
namelyδ = (δp, δq), thus the variational system can be written as

δ̇p = 0 ,

δ̇q =
∂2H
∂p2

δp = M(p) δp .

If the system is isochronous thenM ≡ 0, thusδp andδq are constant andY (t) = 0 for all
t. On the other hand, if the system is non-isochronous we getδp(t) = δp(0) andδq(t) =

δq(0) +M(p(0)) δp(0)t. To simplify the notations let us introduce

M (p(0)) = M0, δp(0) = ξ0 andδq(0) = η0 .

Using the definition of MEGNO, we get

Y (t) =
1

t

∫ t

0

(M0ξ0)
2s+M0ξ0 · η0

(ξ0)
2 + (η0)

2 + 2M0ξ0 · η0s+ (M0ξ0)
2s2

s ds ,

and this integral can be explicitly computed and we obtain

Y (t) = 2 − M0ξ0 · η0

t(M0ξ0)
2

log
[
1 + 2M0ξ0 · η0t+ (M0ξ0)

2t2
]
+

− 2

t

√
(M0ξ0)

2 − (M0ξ0 · η0)
2

(M0ξ0)
2

[
arctan

M0ξ0 · η0 + (M0ξ0)
2t2√

(M0ξ0)
2 − (M0ξ0 · η0)

2

− arctan
M0ξ0 · η0√

(M0ξ0)
2 − (M0ξ0 · η0)

2

]
.

(5.6)

One can check that the square root is well defined, i.e. positive, and thus one can cast (5.6)
into

Y (t) = 2 − M0ξ0 · η0

t
F1(t) −

1

t
F2(t) ,

whereF1 andF2 are positive functions andF2 is bounded. We can then conclude that
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1. if M0ξ0 · η0 > 0 thenY (t) approaches2 from below;

2. if M0ξ0 · η0 < 0 thenY (t) approaches2 from above, in fact for larget the first contri-
bution dominates the bounded termF2.

In this last part we will consider if and under which assumptions the previous results con-
cerning the convergenceY → 2 are still valid, for a quasi–integrable Hamiltonian systemof
the formH(p, q, ǫ) = H0(p) + ǫV (p, q). The main idea is the following, fixǫ > 0 but small
and consider a “non–chaotic”orbitφǫ, namely an orbit without a positive Lyapunov exponent
(or if you prefer with a bounded MEGNO), then ifǫ is sufficiently small this orbit is a pertur-
bation of an orbit existing also forǫ = 0, φ0, and we can check thatYφǫ

= Yφ0
+ O(ǫ), hence

the smallness of suchǫ–correction cannot change “the wayY goes to2”. More precisely the
Hamilton equations are now

ṗ = −∂H
∂q

= −ǫ∂V
∂q

q̇ =
∂H
∂p

= ω(p) + ǫ
∂V

∂p
,

and a similar decomposition can be done for the variational system

δ̇p = −ǫ ∂
2V

∂p∂q
δp − ǫ

∂2V

∂q2
δq

δ̇q =

(
∂2H
∂p2

+ ǫ
∂2V

∂p2

)
δp + ǫ

∂2V

∂p∂q
δq .

Looking forδp andδq asǫ–power series, i.e.δp = δp,0+ǫδp,1+. . . andδq = δq,0+ǫδq,1+. . . ,
and collecting together, in the definition of MEGNO, terms contributing to the same power of
ǫ, we can thus get

Yφǫ
(t) =

1

t

∫ t

0

(M0δp,0)
2s+M0δp,0 · δq,0

(δp,0)2 + (δp,0)2 + 2M0δp,0 · δq,0s+ (M0δq,0)2s2
s ds+ O(ǫ)

= Yφ0
(t) + O(ǫ) .

5.3 Validation of the method

To validate our method we first apply the technique on a simplified model, containing only
the Earth’s gravity field expanded up to the second degree andorder harmonics, namely,
J2 = −C20, C22 and S22. For the purpose of the analysis, we followed a set of 12 600
orbits, propagated over a 30 years time span, that is the order of 104 fundamental periods
(1 day) empirically required by the method (Goździewski etal., 2001). As reported in Breiter
et al. (2005a), a 30 years time span seems to be relatively small for long-term investigation of
geosynchronous space debris. However, on the one hand, the numerical integration of varia-
tional equations in addition to the extrapolation of the orbit is quite time consuming. Indeed,
the simulation with an entry-level step size of 400 seconds takes approximately 20 seconds per
orbit when including only the Earth’s gravity field whereas it takes 42 seconds with a complete
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Figure 5.1: MEGNO for quasi-integrable Hamiltonian system. We consider the evolution of
Yφǫ

for the system:H = p2
1/2 + p2 + ǫ cos q1 + ǫ cos(q1 − q2). On the top panelǫ = 10−4

while on the bottom panelǫ = 10−3. In both casesǫ is small enough to confirm the theoretical
predictions, let observe that in this case the matrixM is given by( 1 0

0 0 ) and thus the sign
condition readsMδp,0 · δq,0 = δ1

p,0δ
1
q,0.

model, which is already significant when examining large sets of initial conditions (typically
more than104 orbits). On the other hand, the analysis of the following section will bring to the
fore some indications about the Lyapunov times resulting inlower than 30 years. As a conse-
quence, our choice of integration time can be considered as sufficiently large in the particular
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case of our study.

For the purpose of this validation study, we consider a set ofinitial conditions defined by a
mean longitude grid of1◦, spanning90◦ on both sides of the first stable equilibrium point and
a semi-major axisa grid of 1 km, spanning the42 164 ± 35 km range. The other fixed initial
conditions aree0 = 0.002 for the eccentricity,i0 = 0.004 for the inclination,Ω0 = ω0 = 0 for
the longitude of the ascending node and argument of perigee,respectively. These values have
been fixed to compare our results for the nearly-geosynchronous orbits with the ones of Breiter
et al. (2005a). As pointed out by Breiter et al. (2005a), due to the 1:1 resonance, good variables
to present our results will be(a0, σ0), wherea0 is the osculating initial semi-axis andσ is the
so-called resonant angle, i.e.σ = λ− θ with the sidereal timeθ.

Figure 5.2 (top) shows the MEGNO values computed using 30 years of integration time.
We identify clearly a blow-up of the typical double pendulum-like pattern related to the 1:1
resonance (observe the horizontal range of180◦). Both the unstable and the two stable equilib-
rium points are clearly visible. We observe that the phase space seems to be essentially filled
in with MEGNO valuesY (t) ≃ 2, that is plenty of regular orbits. Moreover, the two separa-
trices are also identifiable and are associated with neighboring MEGNO values2 < Y (t) ≤ 4.
Therefore, following the properties defined in Section 5.2,one could consider that these orbits
are chaotic, however, we will show that this conclusion is false. Indeed, a careful identifica-
tion of the MEGNO time evolution shows that the latter alwaysapproaches slowly the limit2
from above. The closer to the separatrice, the slower the convergence. More precisely, none of
the above simulated orbits presents a MEGNO time evolution around a linear divergence line,
leading to the conclusion that these orbits are actually unstable periodic orbits, and as a matter
of fact also regular.

To clarify this point, we performed a similar study but usinga significantly longer time
span, namely 300 years. The results are showed in Figure 5.2 (bottom). For the sake of
comparison, the color bars have been taken identical on bothplots. Let us observe that the
maximum value reached by the MEGNO is4 for the top panel and2.5 for the bottom one.
In the 300 years simulation (Figure 5.2, bottom), the MEGNO values, associated with orbits
close to the separatrices, turn out to be, on average, smaller than in Figure 5.2 (top), reaching
almost the limitY (t) → 2, due to the longer time of integration. Similarly, the dark zone in the
neighborhood of the stable equilibrium point corresponding to MEGNO values close to zero,
is strongly shrunk, supporting the result that, in the limitof infinitely larget, only the orbit
originating from the exact stable equilibrium point leads to Y = 0 whereas the neighboring
trajectories converge slowly toY (t) = 2.

Let us note that the importance of integration time has been recently reported by Barrio et
al. (2007) in the framework of applications of the MEGNO method, and it is here confirmed.
Moreover, the latter paper also underlines some spurious structures appearing in the maps of
the variational chaos indicators, explaining the presenceof some background patterns (Fig-
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Figure 5.2: The MEGNO computed as a function of initial mean longitudesλ0 and osculating
semi-major axisa0. The equations of motion include the central body attraction as well as the
second degree and order harmonicsJ2, C22 andS22. The mean longitude grid is1◦ and the
semi-major axis grid is1 km, spanning the42 164 ± 35 km range. The initial conditions are
e0 = 0.002, i0 = 0.004, Ω0 = ω0 = 0. Time at epoch is 25 January 1991. The patterns have
been obtained using two different integration times,tf = 30 years [top] andtf = 300 years
[bottom].
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ure 5.2), “suggesting that the same periodic orbit is more or less regular depending on the
initial conditions choice”.

5.4 High area-to-mass ratios analysis

In the particular case of classical near-geosynchronous objects, the long-term stability has been
studied by computing the MEGNO indicator for a family of simulated geostationary, geosyn-
chronous and super-geosynchronous orbits. The classical near-geosynchronous object with a
period which is close to the sidereal day (1 day) is subjected to the main gravitational effects
of the Earth, including the 1:1 resonance, the luni-solar perturbing effects as well as the solar
radiation pressure for small area-to-mass ratio (A/m ≪ 1 m2/kg). According to Breiter et al.
(2005a) and Wytrzyszczak et al. (2007), the near-geostationary region presents chaotic orbits
only very close to the separatrices due to the irregular transits between the libration and the
circulation regimes. Regarding the super-geostationary orbits, all the orbits seem to be entirely
regular on the time scale of the investigations, that is a fewdecades.

The aim of this section is to provide a more extensive analysis of the dynamics of near-
geosynchronous space debris, subjected to the solar radiation pressure with high area-to-mass
ratios (typicallyA/m ≫ 1 m2/kg). Our main objective is to study the effects of high area-
to-mass ratios on the stability of the principal periodic orbits and on the chaotic components.
This analysis is divided into three parts. First, Subsection 5.4.1, we focus our attention on
the sensitivity to initial conditions; then, Subsection 5.4.2, we report results of dedicated nu-
merical analyses which emphasize the importance of the area-to-mass ratio value. Finally, in
Subsection 5.4.3, we study the influence of both the initial eccentricity and time at epoch.

Let us recall that for large area-to-mass ratios, the solar radiation pressure becomes the ma-
jor perturbation, by far larger than the dominant zonal gravity termJ2. In this particular case,
the larger the area-to-mass ratio, the more affected the dynamics of the near-geosynchronous
space debris, leading to daily high-amplitude oscillations of the semi-major axis, yearly oscil-
lations of the eccentricity as well as long-term variationsof the inclination. As an illustration,
Figure 5.3 shows the orbital elements histories of the first 210 years of an initial geosyn-
chronous high area-to-mass ratio space debris (A/m = 10 m2/kg). The yearly variation of the
eccentricity reaches0.2, which confirms the expected values predicted by the theories (see e.g.
Anselmo and Pardini, 2005; Liou and Weaver, 2005). The inclination variation presents a well
known long-term variation whose period is directly relatedto the area-to-mass ratio value. Re-
garding the argument of perigee as well as the longitude of ascending node, they both present
a libration regime due to the chosen set of initial conditions. For further details, we refer to
Chapter 3, where a full description of the long-term motion of high area-to-mass ratios space
debris is given.
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Figure 5.3: Time evolution of a typical high area-to-mass ratio space debris. Orbital elements
over 210 years for aA/m = 10 m2/kg, initial conditions are(a0 = 42 166.473 km, e0 =
0.002, i0 = 0.004 rad,Ω0 = ω0 = 0 rad,M0 = 4.928 rad). Time at epoch is 25 January 1991.



134 Chapter 5. Numerical stability investigations of high area-to-mass ratios space debris

5.4.1 Sensitivity to initial conditions

To start with, we follow the evolution of two high area-to-mass ratio space debris (A/m =

10 m2/kg) defined by two sets of very close initial conditions, differing only in the 10th digits
in mean longitude. Figure 5.4 shows the differences of the dynamical variables for the two
orbits, confirming the hypothesis that the sensitivity to initial conditions is especially relevant
for the semi-major axis and resonant angle whereas the difference between the other orbital
elements remain small. Consequently, we first focus our attention on the time evolution of the
semi-major axis and on the resonant angle.

As a complement to Figure 5.3, we numerically compute two orbits for two space debris
with different area-to-mass ratios,A/m = 1 m2/kg andA/m = 10 m2/kg, whose initial con-
ditions have been chosen near the separatrices, to emphasize their chaotic behaviors. Figure 5.5
shows a blow-up of the evolution of the semi-major axis (top panels) and of the resonant angle
[middle panels] over the time span of250 years. It is clear that the semi-major axis presents
some irregular components over its evolution, related to some transitions between different
regimes of motion, clearly identifiable in the resonant angle plots. In addition we also com-
puted the corresponding MEGNO time evolution. The bottom panel in each graph shows the
time evolution of the MEGNO indicator as well as its corresponding mean value. First, we see
that the time evolution ofY (t) presents a quasi-linear growth almost since the beginning of
the integration process, leading to the conclusion that these orbits are clearly chaotic over that
time scale. Therefore, we also computed the linear fitY (t) ≃ a⋆ t + d in both cases in order
to evaluate the Lyapunov timeTλ, by means of the LCNλ or similarly the linear regression
coefficientsa⋆ = λ/2. Let us remark that to avoid the initial transient state, theleast square
fits were performed on the last 85% of the time interval. This latter analysis brings to the
fore the fact that larger area-to-mass ratios lead to lower Lyapunov times, i.e. larger Lyapunov
Characteristic Number. Indeed, forA/m = 1 m2/kg, the Lyapunov time turns out to be on the
order of11 years, whereas it reaches the valueTλ ≃ 3.7 years forA/m = 10 m2/kg. Second,
let us also remark that the behavior of the MEGNO indicator isof particular interest in these
cases. A careful analysis ofY (t) underlines some irregular patterns directly related to theevo-
lution ofσ, in particular when the orbits seem to transit across the separatrices. Finally, we can
also highlight the fact that the sudden changes between libration and circulation regimes occur
mainly when the inclination changes its sign of variation, especially at the maximum value for
A/m >> 1 m2/kg and at the minimum forA/m ≤ 1 m2/kg (Figure 5.5, top panels, dashed
line), with an empirical long-term periodTΩ, that is the long-term period of the longitude of
the ascending node, which decreases asA/m increases (Valk et al., 2007b).

5.4.2 Extended numerical analyses

We considered a set of12 600 simulated orbits with various initial semi-major axes and mean
longitudes. All the before-mentioned perturbing effects were taken into account with several
values of the area-to-mass ratios regarding the solar radiation pressure. Results are reported in
Figure 5.6 (in the caseA/m = 1 m2/kg – top left panel – we recognize the same pendulum-
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Figure 5.4: Effect of sensitivity to initial conditions forhigh area-to-mass ratio space debris.
The figure shows the differences between two orbits with the same initial conditions(a0 =
42 166.473 km, e0 = 0.002, i0 = 0.004 rad,Ω0 = ω0 = 0 rad,M0 = 4.928 rad) differing from
the 10th digit in mean longitudeλ0. On each graph, the left vertical scale shows the deviations
(∆a,∆e,∆i,∆Ω,∆ω,∆σ) and the right vertical scale the order of magnitude of the difference
(−, a0∆e, a0∆i, a0∆Ω, a0∆ω, a0∆σ) [meters]. Time at epoch is 25 January 1991.
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Figure 5.5: For each graph, we show the orbital evolution of the semi-major axesa (solid line)
superimposed with the evolution of the inclinations (dashed line) [top panels]. The time evo-
lution of the resonant angles [middle panels] and the time evolution of the MEGNO indicator
(Y andY =< Y (t) >) as well as the corresponding linear fitY (t) ≃ a⋆ t+ d [bottom panels].
The area-to-mass ratios areA/m = 1 m2/kg in the upper panel andA/m = 10 m2/kg in
the lower one. The initial conditions are chosen near the separatrices. The computed linear
regression coefficients are given bya⋆ = 0.043 (for A/m = 1 m2/kg) anda⋆ = 0.134 (for
A/m = 10 m2/kg).
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like pattern as in Figure 5.2). Considering the same integration time (30 years), we notice that
the MEGNO values tend to be slightly larger than in Figure 5.2(left). Moreover, some irregu-
larly distributed MEGNO values are clearly visible close tothe two saddle unstable stationary
points. These results completely agree with those presented by Breiter et al. (2005a) where
the solar radiation pressure was taken into account, but only for very small area-to-mass ratios
(typically 0.005 m2/kg). Indeed, our latter analysis shows that in addition to the luni-solar
perturbations, the solar radiation pressure (with small tomoderate area-to-mass ratios, that is
0 ≤ A/m ≤ 1 m2/kg), do not change considerably the phase space pattern.

On the other hand, the remaining panels of Figure 5.6 show that the phase portrait be-
comes significantly more intricate with increasing area-to-mass ratios. Indeed, the width of
the stochastic zone in the neighborhood of the separatricesbecomes relevant with a large dis-
placement of the separatrices on the phase plane. The largerchaotic region can readily be
explained by the osculating motion of the separatrices due to the before-mentioned daily vari-
ations of the semi-major axis with respect to some mean value, as well as by the increasing
amplitudes of the eccentricities. These variations lead inevitably to transits between both the
regions separating libration and circulation motion for orbits initially close to the separatrices.

Moreover, it is also clear that the usual double pendulum-like phase space shows a tendency
to be distorted with a apparent displacement of the unstableequilibrium points, whereas the
stable equilibrium points remain almost fixed. This last result is however quite awkward inso-
far as there is no physical interpretation of this phenomenon. Indeed, the direct solar pressure
does not depend explicitly on the resonant angle with respect to the long-term investigations
and therefore can not induce a displacement of the equilibrium points in the phase space. Ac-
tually, an ingenious explanation can be found regarding theway the sampling is considered
in the elaboration of the graphics. More specifically, it is worth noting that, at first, the sam-
pling is carried out with respect to osculating initial conditions. Second, within the framework
of mean-motion theory, it is well-known that, due to the short-period oscillations, the mean
and the osculating initial conditions can not be consideredto be equal. In other words, when
considering a horizontal line in the initial conditions sampling, even though it corresponds
to a fixed value of the initial osculating semi-major axis, itis actually related to various sets
of mean initial semi-major axis as explained with Figure 5.7. Actually, the different initial
mean longitudes induce a phase difference in the corresponding evolution of the semi-major
axis, leading to different mean initial semi-major axes. Let us remark that the maximum dif-
ference between both mean semi-major axes is directly related to the order of magnitude of
the short-period variations, and as a consequence, also directly related to the area-to-mas ratio.

More rigorously and as already mentioned in Chapter 4, the difference between osculat-
ing and mean initial conditions is a well-defined transformation, depending on the generat-
ing function used within the averaging process allowing to change from mean to osculating
dynamics (see Appendix F.4, page 178). However, because we bound our analysis mainly
to numerical simulations, we cannot access such a generating function; we can nevertheless
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Figure 5.6: The MEGNO computed as a function of initial mean longitudesλ0 and initial (osculating) semi-major axisa0. The equations
of motion include the central body attraction, the second degree and order harmonicsJ2, C22 andS22, the luni-solar interaction as well as
the perturbing effects of the solar radiation pressure. Themean longitude grid is1◦ and the semi-major axis grid is1 km, spanning the
42 164 ± 35 km range. The initial conditions are(e0 = 0.002, i0 = 0.004,Ω0 = ω0 = 0). The integration time is 30 years from epoch fixed
at 25 January 1991. The patterns have been obtained using four different area-to-mass ratios,A/m = 1, 5, 10, 20 m2/kg, respectively top left,
top right, bottom left and bottom right panel.
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6=

Figure 5.7: Cartoon to illustrate the difference between mean and osculating initial conditions
with respect to the semi-major axis (s.m.a.) evolution. Forthe sake of simplicity, the mean
semi-major axis does not present any long-term variation whereas the osculating semi-major
axis present daily oscillations related to the direct solarpressure (the implicit underlying model
is radiation pressure only). It is clear that even if the osculating initial conditionsaosc

1 andaosc
2

are identical, the corresponding mean initial conditionsamean
1 andamean

2 can be significantly
different due to different initial mean longitudes (similarly different initial resonant angle val-
ues).

overcome this problem by numerically computing, for each semi-major axis osculating initial
condition, the related mean initial semi-major axis, by considering the average over a short
time span of 10 days. As an illustration, in Figure 5.8, we give the relation between the mean
semi-major axis and the resonant angle for various values ofthe osculating semi-major axis
(A/m = 10 m2/kg). The first difference is related to a semi-major axis sampling taken above
the libration region, the second is related to a semi-major axis sampling which crosses the
libration region and, finally, the third sampling is taken below this region. In conclusion, we
clearly see that the order of magnitude of the differences is, as previously mentioned, the order
of the amplitudes of the daily variations observed in the semi-major axis dynamics. Let us
note that in the latter case, i.e.A/m = 10 m2/kg, the differences reach at most 27 km, which
corresponds exactly to the difference between the stable and unstable equilibrium points, as
shown in Figure 5.6 (bottom, left).

We can thus numerically apply the transformation as a post-treatment process, that is con-
sidering the MEGNO values not in the osculating initial conditions phase space, but in the
mean initial conditions phase space. For the sake of comparison with Figure 5.6, we show
the results once such a transformation has been applied (Figure 5.9). It is clear that now the
vertical gaps between both the stable and unstable equilibrium points, are almost completely
eliminated, hence these points have almost the same mean semi-major axis, getting rid of what
we called the “short-period artefact”. Let us also remark that, from now on, all the results will
be shown in the mean initial conditions phase space.

5.4.3 Initial time at epoch and importance of the mean eccentricity

One should also recall that the solar radiation pressure leads to a theoretical equilibrium defined
both in eccentricitye0 and longitude of perigee̟ 0 (see Subsection 3.4.1, page 75). The
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Figure 5.8: Relation between the mean semi-major axis and the resonant angle for various
values of the osculating semi-major axis. The first osculating semi-major axis is taken above
the libration region, the second is related to an osculatingsemi-major axes sampling which
crosses the libration region and finally, the third samplingis taken below this region.

conditions leading to such an equilibrium were derived and are written as





e0 =
3

2
Cr Pr

A

m

1

n an⊙
cos2 ǫ

2
≃ 0.01Cr

A

m
,

̟0 = λ⊙(0) .

wheren andn⊙ are the angular motion of both the space debris and the Sun respectively,ǫ
is the obliquity of the Earth with respect to the ecliptic andλ⊙(0) the initial ecliptic longi-
tude of the Sun. If these conditions are fulfilled, it has beenshown that the eccentricity vector
(e cos̟, e sin̟) remains constant leading to a fixed value of both the eccentricity and lon-
gitude of perigee. For an illustration, we refer to Figure 3.6 (page 80). Regarding this latter
figure, it is clear that, apart from a phase difference, the amplitudes of variations of the ec-
centricities are qualitatively the same, except when adopting an initial time at epoch equal to
21 March. In this latter case, the eccentricity remains almost constant, as expected by the the-
ory.
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Figure 5.9: The MEGNO computed as a function of initial mean longitudesλ0 and initial
mean semi-major axesa0. The model is the same as in Figure 5.6. The area-to-mass ratio is,
A/m = 5, 10 m2/kg for the top and for the bottom graph, respectively.

For the purpose of this investigation, Figure 5.10 shows thephase space in mean semi-
major axis and longitude for a fixed value of the area-to-massratio A/m = 10 m2/kg

and fixed values of initial conditions, namelye0 = 0.1, i0 = 0.004, Ω0 = ω0 = 0. The
differences between the two graphs only depends on the initial time at epochparametert0.
We could actually expect that different initial times at epoch, namely, different initial ecliptic
longitudes of the Sunλ⊙(0), will reveal a quite rich collection of behaviors dependingon
the different states with respect to the before-mentionedeccentricity equilibrium. Actually,
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Figure 5.10: The MEGNO computed as a function of initial meanlongitudesλ0 and semi-
major axisa0. The equations of motion include the central body attraction, the second degree
and order harmonicsJ2, C22 andS22, the luni-solar interaction as well as the perturbing effects
of the solar radiation pressure. The mean longitude grid is1◦ and the semi-major axis grid is
1 km spanning the42 164±35 km range. The initial conditions aree0 = 0.1, i0 = 0.004,Ω0 =
ω0 = 0 with an area-to-mass ratioA/m = 10 m2/kg. The patterns have been obtained using
two different initial times at epoch, namely, 21 December 2000 [top], 21 March 2000 [bottom],
respectively.
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assuming an initial time at epoch of 21 December 2001, we see clearly that the phase space is
filled by a large number of chaotic orbits (Figure 5.10, top).On the contrary, starting with an
initial time at epoch of 21 March 2000, that is adopting a Sun pointing longitude of perigee
(λ⊙(0) = 0 rad), the values reached by the MEGNO tend to be lower and associated with
a significantly narrower chaotic region always located close to the separatrices (Figure 5.10,
bottom). In the latter case, the eccentricity presents onlysmall yearly variations due to the
proximity of the theoretical equilibrium. Therefore, these results seem to suggest that high-
amplitude variations of the eccentricity increase considerably the order of magnitude of the
chaotic region close to the separatrices and conversely, small eccentricity variations seem to
considerably minimize the extent of chaotic regions. To justify this assumption, we performed
a dedicated numerical simulation with the same set of parameters used in the one reported in
Figure 5.10, but considering higher values of the initial eccentricity. Results are reported in
Figure 5.11, the chosen time at epoch is 21 December 2000 and the initial eccentricities are,
e0 = 0.2 (top panel) ande0 = 0.4 (bottom panel). In the latter case, the huge variations of the
perigee altitude, induced by the large variations of the eccentricity as well as by the variations
of the semi-major axis, lead to even more complicated dynamics. These results confirm thus
the importance of the initial eccentricity in the appearance of chaos.

5.5 Secondary resonances

It is worth noting that inspecting Figures 5.9, 5.10 and 5.11, we clearly note the presence of
some additional patterns located on both sides of the separatrices in the phase space. These
never seen before regions, unexplained so far, are actuallycharacterized by significant very low
MEGNO values. Indeed, this observation underlines the factthat the dynamics of high area-to-
mass ratios space debris is even more intricate than expected. In the following two paragraphs
we will provide some numerical results and an analytical theory based on a simplified model,
to better understand such zones.

5.5.1 Numerical investigations

We followed a large set of near-geosynchronous space debris, related to an extremely large set
of initial conditions taken on both sides of the pendulum-like pattern, and for each one of the
72 000 orbits we computed the related MEGNO indicator. The initial conditions have been
fixed by a mean longitude grid of 1◦, spanning 360◦ and a semi-major axis grid of 1 km span-
ning the42 164±100 km range, while the remaining ones and time at epoch are the same as in
Figure 5.6. Moreover, as in the previous extended analyses,the model of forces also includes
the central body attraction, the second degree and order harmonicsJ2, C22 andS22 as well as
the combined attractions of the Sun and the Moon. The perturbing effects of the direct solar
radiation pressure are also considered for a high area-to-mass ratio fixed toA/m = 10 m2/kg.
The results are reported in Figure 5.12, which is nothing butan extensive enlargement of the
phase space presented in Figure 5.6 (bottom, left). This phase space widening clearly un-
derlines the before-mentioned additional structures located at± 40 km on each side of the
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Figure 5.11: The MEGNO computed as a function of initial meanlongitudesλ0 and semi-
major axisa0. The equations of motion include the central body attraction, the second degree
and order harmonicsJ2, C22 andS22, the luni-solar interaction as well as the perturbing effects
of the solar radiation pressure. The mean longitude grid is1◦ and the semi-major axis grid is
1 km spanning the42 164 ± 35 km range. The initial conditions arei0 = 0.004, Ω0 = ω0 = 0
with an area-to-mass ratioA/m = 10 m2/kg. Time at epoch is 21 December 2000. The
patterns have been obtained using two initial eccentricities, e0 = 0.2 [top] and e0 = 0.4
[bottom].
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resonant area. Furthermore, besides these patterns, what is of special interest is that this figure
also brings to the light supplementary structures located at approximately 80 km on both sides
of the main resonance, suggesting that the phase space is actually foliated by a larger set of
secondary structures. Moreover, the order of magnitude of these additional patterns seems to
be directly related to the inverse of the distance with respect to the resonant area.

In addition, we also performed a set of similar numerical investigations, in order to distin-
guish qualitatively the relative relevance of some parameters such as the initial mean eccentric-
ity and the value of the area-to-mass ratio, as well as the importance of the 1:1 resonance and
of the third-body perturbations in the occurrence of such secondary structures. Even though
these results are not presented here in detail, we can draw the following preliminary conclu-
sions: the second order harmonicJ2 as well as the third-body perturbations do not seem to be
really relevant and crucial in the appearance of these additional patterns. In other words, the
unexpected patterns occur only when taking into account thecombined effects of both the sec-
ond order and degree harmonic and the direct solar pressure.As a matter of fact, the extended
numerical investigations performed in Figure 5.6 (top, left) or similarly those performed in
Breiter et al. (2005a) also present these structures even though they are difficult to perceive.
Actually, the order of magnitude of the secondary patterns seems to be directly proportional
to the area-to-mass ratio value or equivalently directly proportional to the mean value of the
eccentricity. To get even more concluding results, we considered a blow-up of the phase space
(dashed line rectangle in Figure 5.12) with a fairly high-resolution sampling (approximately
150 meters w.r.t. the semi-majora axis and0.3◦ w.r.t. the resonant angleσ). Figure 5.13 (top)
shows this phase space widening, wherein we defined a so-calledresonant angle section(hori-
zontal black solid line), that is the subset of orbits havingthe same initial resonant angle value.
This resonant angle section spans the complete range in semi-major axis and passes next to
the stable equilibrium point. For each orbit defined on this section, we computed the MEGNO
indicator and in Figure 5.13 (middle) we report this value atthe end of the simulation as a
function of the semi-major axis.

To double check our results, we performed a frequency analysis investigation (Laskar et al.,
1992; Laskar, 1995; Noyelles et al., 2008) aimed to study thebehavior of the proper frequency
of the resonant angleσ, whose results are reported in Figure 5.13 (bottom). Here one can
clearly see the distinctive characteristics regarding thewell-know 1:1 resonance between the
mean longitude and the sidereal time. Indeed, both the MEGNOand the fundamental period
show distinctively a minimum close to the stable equilibrium point. In this case, as previously
mentioned in Section 5.3, the MEGNO should slowly converge toY (t) = 2 everywhere except
at the equilibrium point where the limit value isY (t) = 0; this is why, using a finite integra-
tion time, we obtain such V-shaped curve, close to 0 in the center of the resonance and to 2
on the borders. It is also worth noting that the fundamental period ofσ is reported to be close
to 2.25 years, which is in good agreement with the well-known818 days libration period of a
typical uncontrolled near-geosynchronous object. Near the separatrices, the MEGNO clearly
presents some obvious high values which confirms the presence of chaotic orbits. Here, the
fundamental period reaches significant values and is as a matter of fact not well determined,
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Figure 5.12: The MEGNO computed as a function of initial meanlongitudesλ0 and semi-
major axisa0. [Top] Enlargement of the complete phase space. [Bottom] Enlargement of the
complete phase space shown in polar coordinates. The equations of motion include the central
body attraction, the second degree and order harmonicsJ2, C22 andS22 as well as the luni-solar
perturbations. The mean longitude grid is1◦ and the semi-major axis grid is1 km, spanning
the42 164 ± 100 km range. The initial conditions aree0 = 0.002, i0 = 0.004, Ω0 = ω0 = 0.
The area-to-mass ratio isA/m = 10 m2/kg. Time at epoch is 25 January 1991.
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Figure 5.13: Blow-up of the phase space with the specification of aresonant angle section(horizontal black solid line), that is the set of orbits
having the same (osculating) initial resonant angle value,near the first stable equilibrium, namelyσsection

0 = 81.67◦ (top panel). Evolution of
the MEGNO with respect to the initial semi-major axisa0 for the specified section (middle panel). The fundamental period of σ with respect
to the initial semi-major axisa0, computed by means of frequency analysis for the specified section (bottom panel). The estimation of the
periods are made over a 20 years period of time.
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once again supporting the result of the existence of a chaotic zone. Moreover the use of fre-
quency analysis allows us to strongly support the hypothesis that the additional patterns are
actually related tosecondary resonances. Indeed, if we look at the evolution of the fundamen-
tal period with respect to the semi-major axis, it is clear that the so-called secondary resonances
are associated, regarding the angleσ, with periods that are commensurate with 1 year. More
precisely, the major secondary resonance located at approximately 40 km on both sides of the
pendulum-like pattern are related to a 2 years fundamental period ofσ. Concerning the farther
patterns located at±80 km, the fundamental period ofσ turns out to be very close to 1 year. As
a consequence, we can presumably assume that these before-mentioned secondary resonances
are actually related to a commensurability betweenσ and the 1 year period angleλ⊙, that is
the ecliptic longitude of the Sun.

To justify this assumption, we focused our attention on the major secondary resonances
located at±40 km on both sides of the pendulum-like pattern, considering the time evolution of
various linear combinations betweenσ andλ⊙. For this purpose, we considered various initial
semi-major axes in the phase space. The results are shown in Figure 5.14. At first glance, it
is apparent that three propagations stand apart from others. In the first row of Figure 5.14,
that is regarding the evolution of the resonant angleσ, we clearly identify the well-know
characteristics related to the primary resonance. In particular, in Figure 5.14a, that is when
considering an initial semi-major axis inside the primary resonant (a0 =42 188 km),σ shows
a well-known long-periodic libration (2.25 years) whereasσ circulates outside this region.
Furthermore, what is of special interest is the time evolution of both2σ + λ⊙ and2σ − λ⊙
shown in the second and third row, respectively. It is clear that most of the time these angles
show a significant circulation regime. However, when considering an initial semi-major axis
inside the major lower secondary resonance for2σ − λ⊙ or similarly inside the major upper
secondary resonance for2σ + λ⊙, both these angles show a significant long-term evolution
(Figure 5.14b,c).

5.5.2 Analytical investigation – simplified model

The presence and the location of these secondary resonancescan be studied using an appropri-
ate simplified model. Hence we model the averaged geostationary motion by a pendulum-like
system, given by its Hamiltonian formulation up to ordere2 in the series expansion

H = − µ2

2L2
− θ̇L+ 3

µ4

L6
R2

e (1 − 5

2
e2) S2200(Ω, ω,M, θ) ,

where
S2200(Ω, ω,M, θ) = C22 cos 2σ + S22 sin 2σ .

In the context of direct solar radiation pressure, we can introduce the factorZ proportional
to A/m through the eccentricitye (for further details, we refer to the averaged simplified
analytical model developed in Chapter 3). In keeping with Eq. (3.15), the time evolution
of both the eccentricitye and the longitude of perigee̟ were found to be (neglecting the
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Figure 5.14: Time evolution of the anglesσ, 2σ + λ⊙ and2σ − λ⊙ (in radians) for several semi-major axes. In the lower majorsecondary
resonance,a0 = 42 122 km. In the eye of the principal resonance,a0 = 42 188 km. Between the primary resonance and the upper secondary
resonance,a0 = 42 204 km. Inside the upper major secondary resonance,a0 = 42 212 km. Outside the upper major secondary resonance,
a0 = 42 230 km.
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obliquity of the Earth w.r.t. to the ecliptic)

e cos̟ =
Z
Ln⊙

cosλ⊙ + α0 ,

e sin̟ =
Z
Ln⊙

sinλ⊙ − β0 ,

which introducesλ⊙ in the Hamiltonian. The quantityn⊙ is the mean motion of the Sun and
bothα0 andβ0 are related to initial conditions with respect to the eccentricity and the longitude
of perigee. Then, the resulting Hamiltonian takes the generic form

H = − µ2

2L2
− θ̇L+

F

L6
cos(2σ − 2σ0) −

G

L6
2 cos(2σ − 2σ0) cos(λ⊙ + δ) ,

whereδ, F , G, σ0 are constants. A suitable transformation is then necessaryto introduce
action-angle variables(ψ, J) in the libration and in the circulation region of the double pendu-
lum, in such a way any trajectory of the double pendulum is characterized by a constant action
J and a corresponding constant frequencyψ̇. Rewriting the perturbed system (because of the
λ⊙ terms) by means of these new variables and then using the expansions in Bessel functions,
we could isolate any resonance of the typekψ ± λ⊙, in the circulation region, for any|k| and
in the libration region, for|k| ≥ 3, which corresponds to our frequency analysis. This analysis
is surely promising, but it exceeds the goals of our numerical investigations.



Conclusions and Outlooks





Conclusions

The main objectives of this research work have been accomplished. Indeed, we have devel-
oped a new method especially devoted to the specific study of space debris orbiting in the
neighborhood of the geostationary ring. Our approach has been motivated by the distinctive
features characterizing this region. More specifically, our approach has been first developed in
order to tackle the well-known problem of small-divisors arising in the numerical integrations
of the equations of motion of such objects. This problem has been solved by using a set of
universal elements in the framework of a quasi-Hamiltonianformalism. Moreover, our ap-
proach has also been designed as a so-called semi-analytical method, that is a procedure based
on an analytical filtering of the osculating differential equations which is in turn followed by
a numerical integration of the transformed equations. As a consequence of both the choice
of a semi-analytical theory and the alternative selection of entirely non-singular variables, our
work accounts for a new theory which ensures a high stabilityof the numerical integrations
over periods of several dozens of years mostly because the analytical averaging process has
been made once and for all, allowing an extremely fast numerical integration of a large number
of orbits, without any short-period variations.

As a result of the unexpected discovery of high-area-to-mass ratio space debris presumably
located in geosynchronous orbit, we seized the opportunityto extend our theory by including
the solar radiation pressure acceleration. This extensionhas been especially intended to derive
the main effects of the direct solar radiation pressure by analyzing the mid- and long-term evo-
lution of both the eccentricity and the inclination vectorsof geosynchronous space debris with
high area-to-mass ratios. These last results have shown to be in good agreement with the works
of Anselmo and Pardini (2005) and Chao (2006) and elaborate these results, emphasizing the
importance of adopting an accurate and well-suited model. The results also confirm that such
high area-to-mass ratio space debris are surely good candidates to the recently discovered de-
bris population with mean motions of about one revolution per day and orbital eccentricities
as high as 0.6.

As a second improvement of our theory, we have also presentedan extension of our home-
made semi-analytical theory, by developing a complete algorithm taking into account the long-
term effects induced by the Earth’s shadow. This algorithm was built within the context of
non-singular motion and can therefore be applied to an even larger class of orbits. In all the
performed investigations, we showed that our semi-analytical theory is in good agreement with
numerical integrations. Furthermore, the integration of the filtered equations of motion over
the short periods, coupled with our algorithm, as well as theintegration of the osculating equa-
tions of motion, led also to an insightful understanding of the dynamics of the semi-major
axis. We showed how both the eccentricity and the inclination induce various amplitudes of
the cumulated mean variations of the semi-major axis over the eclipse seasons.

Finally, the predictability of high area-to-mass ratio space debris located near the geosyn-
chronous region has also been investigated by means of a recent variational chaos indicator



called the MEGNO. Thanks to this highly capable technique, we have clearly identified the
regular (stable) and irregular (chaotic) orbits. This efficient method allowed us to obtain a clear
picture of the phase space, hence showing that chaotic regions can be particularly relevant, es-
pecially for very high area-to-mass ratios objects. Moreover, we discussed the importance of
both the initial eccentricity and time at epoch in the appearance of chaos. We unveiled a rel-
evant class of additional unexpected patterns which were identified as secondary resonances,
that were numerically studied by means of both the MEGNO criterion and frequency map
analysis, to eventually conclude that they involve commensurabilities between the primary
resonant angle and the ecliptic longitude of the Sun. We alsopresented an analytical scheme
that could explain their existence.

Outlooks

Regarding the elaboration of our theory, and though our semi-analytical theory has been mostly
applied to the peculiar case of high area-to-mass ratio space debris, we ought to mention that
our method could easily be applied to an even larger class of orbits such as LEO and MEO
orbits. In this case, the theory should be adapted by considering the cross-coupling effects by
means of a more rigorous averaging process to be carried out to a higher order by using the
Lie algorithm. Furthermore, although we mainly consideredthe first major perturbations of
the Earth’s gravity field, the theory generally allows the inclusion of both zonal and tesseral
harmonics developed up to an arbitrary degree and order.

With regard to the solar radiation pressure modeling, the theory could surely be extended
by taking into account some theoretical space debris attitude motions. Indeed, the space de-
bris have doubtlessly complex shape that could significantly affect the dynamics. Though this
attitude motion as well as the shape can not be easily derivedin most of the cases, it should
be all-interesting to investigate to what extent the motioncan be affected. These investigations
could be first developed in the framework of our semi-analytic theory. Subsequently, the sta-
bility could also be investigated by using the MEGNO criterion.

Concerning the Earth’s shadowing effects, our algorithm could also be improved by consid-
ering a more elaborate model. In particular, one should investigate the consequences of adopt-
ing a cylindrical boundary (where the radiation pressure isinstantaneously “turning on/off”)
instead of taking into account the two conic boundaries witha continuous transition between
the penumbra and umbra boundaries.
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Appendix A

List of principal symbols and notations

Symbols Designation Dimension
a semi-major axis [m]
a acceleration vector (often with subscripts) [m s−2]
ae Earth equatorial radius,ae = 6 378 135 m [m]
a⊙ mean distance between the Sun and the Earth,a⊙ = 1 AU [m]
A/m area-to-mass ratio [m2/kg ]
A area, effective cross-section [m2]

A(n)
j arbitrary polynomial function

B(n)
j arbitrary trigonometric function

c speed of light in vacuum [m s−1]
Cnm geopotential harmonic coefficient
Cr “reflectivity” coefficient, radiation coefficient
dV elementary volume [m3]
dS elementary surface [m2]
e eccentricity
E eccentric anomaly [rad], [degree]
ǫ obliquity of the Earth w.r.t. the ecliptic [rad], [degree]
f true anomaly [rad], [degree]
Fnmp inclination functions
G Delaunay’s element,G =

√
µ a(1 − e2) [m]

Gnpq eccentricity functions
h Planck’s constant,h = 6.62 × 10−34 J s [J s]
H Delaunay’s element,H =

√
µ a(1 − e2) cos i [m]

H generic Hamiltonian disturbing function
H3b third-body Hamiltonian disturbing function
Hpot geopotential Hamiltonian disturbing function

continued on next page
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continued from previous page

Symbols Designation Dimension
i inclination [rad], [degree]
In×n n-dimensional identity matrix
I symplectic matrix
J Jacobian matrix
Jn zonal geopotential harmonic coefficient,Jn = −Cn0

Jnm geopotential harmonic coefficient,Jnm =
√
C2

nm + S2
nm

L L =
√
µ a, conjugate momentum w.r.t.λ [m]

m mass [kg]
mi mass of the third bodyi [kg]
M mean anomaly [rad], [degree]
M⊕ mass of the Earth [kg]
n mean orbital motion of the space debris [rad s−1]
n⊙ mean motion of the Sun w.r.t. to the Earth,n⊙ = 2π/[year] [rad s−1]
p longitude of perigee [opposite sign] [rad], [degree]

semi-latus rectum,p = a (1 − e2) [m]
P conjugate momentum w.r.t.p, P = L−G

Pn Legendre polynomial of degreen
Pm

n Legendre functions, degreen, orderm
Pr radiation pressure,Pr = 4.56 × 10−6 N/m2 [N m−2]
q longitude of the ascending node [Opposite sign] [rad], [degree]
Q conjugate momentum w.r.t.q,Q = G−H [m]
r geocentric vector of the space debris [m]
r geocentric distance of the space debris [m]
r⊙ geocentric position of the Sun [m]
r⊙ geocentric distance of the Sun [m]
S radial direction
Tλ Lyapunov time,Tλ = 1/λ

T along-track direction
U dimension-free quantity defined byU =

√
(2P/L)

V dimension-free quantity defined byV =
√

(2Q/L)

W out-of-plane direction
W generating function w.r.t the averaging process

x, y, z state vector [m]
x̄, ȳ, z̄ normalized state vector [m]

x1 Poincaré variablesx1 =
√

2P cos p

continued on next page
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continued from previous page

Symbols Designation Dimension
y1 Poincaré variablesy1 =

√
2P sin p

x2 Poincaré variablesx2 =
√

2Q cos q

y2 Poincaré variablesy2 =
√

2Q sin q

X1 non-dimensional Poincaré variablesx1 =
√

2P/L cos p

Y1 non-dimensional Poincaré variablesy1 =
√

2P/L sin p

X2 non-dimensional Poincaré variablesx2 =
√

2Q/L cos q

Y2 non-dimensional Poincaré variablesy2 =
√

2Q/L sin q

X⊙, Y⊙, Z⊙ normalized state vector of the Sun
Y, Y (t) MEGNO and its averaged value, respectively

Z auxiliary quantity,Z = 3
2
aCr Pr

A
m

(
a⊙

r⊙

)2

λ mean longitude,λ = M + Ω + ω [rad], [degree]
geocentric equatorial longitude (spherical coordinates)[rad], [degree]

λ⊙ ecliptic longitude of the Sun [rad], [degree]
λ⋆ mean longitude equilibrium points w.r.t. 1:1 resonance [rad], [degree]
β⊙ ecliptic latitude of the Sun [rad], [degree]
δij Kronecker function,δij = 1 for i = j, zero otherwise
δφ(t), δ tangent vector (variational method)
µ gravitational constant of the Earth [m3 s−2]
µ$ gravitational constant of the Moon [m3 s−2]
µ⊙ gravitational constant of the Sun [m3 s−2]
µi gravitational constant of the third bodyi [m3 s−2]
ω argument of perigee [rad], [degree]
Ω longitude of the ascending node [rad], [degree]
θ sidereal time [rad], [degree]
̟ longitude of perigee,̟ = Ω + ω [rad], [degree]
σ resonant angle,σ = λ− θ [rad], [degree]
Ψ geocentric angle between the Sun and the space debris [rad],[degree]
φ geocentric equatorial latitude (spherical coordinates) [rad], [degree]
Φ⊙ solar radiation constant,Φ⊙ = 1368 Watt/m2 [Watt m−2]
ν fundamental frequency [s−1]
R

n n-dimensional set of real numbers
T

n n-dimensional torus

◦̇ first time derivative
◦̈ second time derivative

continued on next page
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continued from previous page

Symbols Designation Dimension
(◦; ◦) Poisson’s brackets
◦ averaged quantity (singly averaged)
◦̃ auxiliary quantity
∇ gradient operator
⊗ Cartesian product
〈 ◦ . ◦ 〉 scalar product
〈 ◦ 〉α average w.r.t. angleα
◦⊙ with respect to the Sun
◦$ with respect to the Moon
◦⊕ with respect to the Earth



Appendix B

Cunningham’s method

B.1 Cunningham’s method

It is worth noting that in the computation of the geopotential, some recurrence relations can be
used. In this section, the method is presented for the accurate and efficient computation of the
forces from any number of zonal and tesseral terms in the Earth’s gravitational potential.

Let us first consider the following quantities

Vnm =

(
Re

r

)n+1

Pnm(sinφ) cosmλ ,

Wnm =

(
Re

r

)n+1

Pnm(sinφ) sinmλ .

Making use ofVnm andWnm, the Earth’s gravitity potential may be written as

U =
µ

Re

∞∑

n=0

n∑

m=0

(CnmVnm + SnmWnm) ,

whereVnm andWnm satisfy the following recurrence relations

Vmm = (2m− 1)

{
xRe

r2
Vm−1,m−1 −

yRe

r2
Wm−1,m−1

}
,

Wmm = (2m− 1)

{
xRe

r2
Wm−1,m−1 −

yRe

r2
Vm−1,m−1

} (B.1)

as well as

Vn,m =

(
2n− 1

n−m

)
zRe

r2
Vn−1,m −

(
n +m− 1

n−m

)
Re

r2
Vn−2,m ,

Wn,m =

(
2n− 1

n−m

)
zRe

r2
Wn−1,m −

(
n +m− 1

n−m

)
Re

r2
Wn−2,m .

(B.2)
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162 Cunningham’s method

Furthermore, we have

V00 =
Re

r
and W00 = 0

leading to the following recursions scheme

V00,W00

↓ ց
V10,W10 V11,W11

↓ ↓ ց
V10,W10 V11,W11 V22,W22

↓ ↓ ↓ ց
...

...
...

. . .

↓ ↓ ↓ ց
Vn0,Wn0 Vn1,Wn1 Vn2,Wn2 . . . Vnn,Wnn .

B.2 Osculating equations of motion in Cartesian coordinates

The osculating acceleration induced by the geopotential can be written as the gradient of the
Earth’s potential as

r̈ = ∇U ,

where U is written as (see Eq. 2.5)

U =
µ

r

∞∑

n=0

n∑

m=0

(
Re

r

)
Pm

n (sinφ)(Cnm cos mλ+ Snm sin mλ) .

Making use of the before-mentioned algorithm, the acceleration, expressed with respect to the
Cartesian coordinates, can be computed as

ẍ =
∑

n,m

ẍnm, ÿ =
∑

n,m

ÿnm, z̈ =
∑

n,m

z̈nm,

where

ẍnm
m=0
=

µ

R2
e

{
Jn Vn+1,1

}

m>0
=

1

2

µ

R2
e

{
(−Cnm Vn+1,m+1 − SnmWn+1,m+1)

+
(n−m+ 2)!

(n−m)!
(Cnm Vn+1,m−1 + SnmWn+1,m−1)

}
,
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ÿnm
m=0
=

µ

R2
e

{
JnWn+1,1

}

m>0
=

1

2

µ

R2
e

{
(−CnmWn+1,m+1 − Snm Vn+1,m+1)

+
(n−m+ 2)!

(n−m)!
(CnmWn+1,m−1 + Snm Vn+1,m−1)

}
,

z̈nm =
µ

R2
e

{
(n−m+ 1) (−Cnm Vn+1,m − SnmWn+1,m)

}
.

For further details, we refer to Cunningham (1970) or latterMontenbruck and Gill (2000)
where a detailed description of the algorithm is given.
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Appendix C

Eccentricity and inclination functions

C.1 Eccentricity functions

For instance, whenq = 2p− n

Gnpq(e) =
1

(1 − e2)n−1/2

p′−1∑

d=0

(
n− 1

d

)(
2d+ n− 2p′

d

)(e
2

)2d+n−2p′

, (C.1)

wherep′ = p if p ≤ n/2, andp′ = n − p if p ≥ n/2 (Vallado, 2001). For the terms,
n − 2p + q 6= 0, that is for the short-period terms, the development ofGnpq(e) is much more
complicated, leading to an infinite series of the eccentricity. Actually, the eccentricity functions
are directly related to the Hansen coefficients by

Gnpq = X
−(n+1),(n−2p)
n−2p+q .

The third indexq can be negative or positive and its magnitude determines thepower of

Table C.1: Eccentricity FunctionsGnpq(e) from Eq. (C.1). For a more complete list, we refer
to Kaula (1966) and Chao (2005)

n p q n p q Eccentricity Functions,Gnpq(e)

2 0 −2 2 2 2 0

2 0 −1 2 2 1 −e/2 + e3/16 + · · ·
2 0 0 2 2 0 1 − 5 e2/2 + 13 e4/16 + · · ·
2 0 1 2 2 −1 7e/2 − 123 e3/16 + · · ·
2 0 2 2 2 −2 17 e2/2 − 115 e4/6 + · · ·
2 1 −2 2 1 2 9 e2/4 + 7 e4/4 + · · ·
2 1 −1 2 1 1 3 e/2 + 27 e3/16 + · · ·

2 1 0 (1 − e2)−3/2
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166 Eccentricity and inclination functions

the eccentricity of the first term of the infinite series. Thanks to the properties of the Hansen
coefficients, some symmetries are found in most of the terms,and some terms are represented
in closed-form functions of the eccentricity as shown in Eq.(C.1) (Chao, 2005). Table C.1
shows the expressions forGnpq with npq values up to222.

C.2 Inclination functions

Unlike the eccentricity functions, the inclination functions are always expressed in closed-form
series of the inclination by the following relation (Zarrouati, 1987)

Fnmp(i) =
(−1)⌈n−m/2⌉(n +m)!

2n!

(
n

p

) inf{n−m,2p}∑

j=sup{0,2p−n−m}

(−1)j

(
2p

j

)
(C.2)

×
(

2n− 2p

n−m− j

)
(cos i/2)n+m−2p+2j (sin i/2)n−m+2p−2j .

Table C.2 shows the expressions forFnmp with nmp values up to222.

Table C.2: Inclination FunctionsFnmp(i) from Eq. (C.2). For a more complete list, we refer to
Kaula (1966) and Chao (2005)

n m p Inclination Functions,Fnmp(i)

2 0 0 −(3/8) sin2 i

2 0 1 (3/4) sin2 i− (1/2)

2 0 2 F200

2 1 0 (3/4) sin i (1 + cos i)

2 1 1 −(3/2) sin i cos i

2 1 2 −(3/4) sin i (1 − cos i)

2 2 0 (3/4) (1 + cos i)2

2 2 1 (3/2) sin2 i

2 2 2 (3/4) (1− cos i)2



Appendix D

Variational equations – linearization

In order to measure the possible exponential divergence in the framework of stability inves-
tigations, the equations of motion are linearized. Linearization explores the dynamics of the
solution flow locally around a given initial condition. Morespecifically, consider the set of
differential equations

d

dt
x(t) = f (x(t),α), x ∈ R

n , (D.1)

wherex represents a point in an-dimensional space andα is a vector of parameters entirely
defined by the model. Letx0 be an initial point close tox. Let x0(t) be the trajectory arising
from the initial pointx0. Since we assume thatx is close tox0, we can use a Taylor series
expansion to write

f(x) = f (x0) +
df(x)

dx

∣∣∣∣
x0

(x − x0) + · · · .

We now find that the rate of change of the distance between the two trajectories is given by

dδ

dt
= ẋ − ẋ0 = f (x) − f (x0) .

Consequently, we can now write readily the so-called first ordervariation system of equations

δ̇ =
dδ

dt
=

df

dx

∣∣∣∣
x0

(x − x0) = J(t) δ(t) , (D.2)

which is found by keeping only the linear terms inδ and subtracting equation (D.1). In
Eq. (D.2),J(t) is the Jacobian matrix. This is an× n time-dependent matrix. In practice, the
Jacobian matrix is unknown and its components must be computed numerically.

It has to be noted that the equations have to be integrated simultaneously with the state
vector solution of Eq. (D.1). Indeed, the state vector, thatis, in practice, the position and
the velocity of the space debris, is required in order to evaluate the components of the Jaco-
bian matrix, that is the partial derivatives of the accelerations. The variational equations are
usually numerically integrated with the same algorithm used for integrating the equations of
motion. In order to reduce the computational cost and since accuracy requirements for the
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partial derivatives are generally more relaxed than for thetrajectory itself (Montenbruck and
Gill, 2000), the force model used to integrate the variational equations are most often reduced
from that used to integrate the equations of motion. Let us remark that since equation (D.2) is
a first order linear differential system of equations, the absolute length of the initial vectorδ is
irrelevant. A new displacement vectorδ′, which is initially related toδ by δ = k δ′, wherek
is a scale factor, will always be related toδ by the same relationδ′(t) = k δ(t). “The original
vectorδ must be infinitesimally small so that the linear approximation is valid. However, after
linearization the scale factork is arbitrary and may be chosen to makeδ′ computationally
convenient, i.e. of order unity” (Wisdom, 1983).

Hereafter, we present the partial derivatives of the acceleration for the geopotential, the
luni-solar attraction and the direct solar radiation pressure, respectively.

D.1 Geopotential

D.1.1 The Two-Body problem – central term

The most important contribution to the variational equations arises from the central term of the
Earth’s gravitational field (Cunningham, 1970; Montenbruck and Gill, 2000)

r̈ = − µ

r3
r ,

wherer is the position vector of the object in consideration. Making use of the following
relation

∂rn

∂r
=
∂(x2 + y2 + z2)n/2

∂r
= n rn−2 rT ,

it follows that

∂r̈

∂r
=

µ

r5




3x2 − r2 3xy 3xz

3yx 3y2 − r2 3yz

3zx 3zy 3z2 − r2




(D.3)

= − µ

r3

{
I3×3 −

3

r2
r ⊗ rT

}
,

wherer ⊗ rT is Cartesian product, or outer product, of the column arrayr with its transpose
rT andI3×3 is the3-dimensional identity matrix. Eq. (D.3) shows that the gravity gradient is
symmetric with respect to the main diagonal and that the sum of the diagonal elements is zero.
Actually, this property is independent of the form of the potentialU taken into consideration.
As a consequence, the number of independent components thathave to be computed reduces
significantly from nine to five.
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D.1.2 Variational equations for the terms of degreen and order m

In an Earth-fixed reference frame, when taking into account an expansion of the geopotential
up to degreen and orderm, the partial derivatives can be computed from

∂r̈

∂r
=
∑

n,m

∂r̈nm

∂r
, (D.4)

where the partial derivatives appearing in the right-hand side of Eq. (D.4) are given by (Mon-
tenbruck and Gill, 2000)

∂ẍnm

∂x

(m=0)
=

µ

R3
e

1

2

{
(−Jn Vn+2,2) −

(n+ 2)!

n!
(−Jn Vn+2,0)

}

(m=1)
=

µ

R3
e

1

4

{
(Cn1 Vn+2,3 + Sn1Wn+2,3)

+
(n+ 1)!

(n− 1)!
(−3Cn2 Vn+2,1 − Sn1Wn+2,1)

}

(m>1)
=

µ

R3
e

1

4

{
(Cnm Vn+2,m+2 + SnmWn+2,m+2)

+2
(n−m+ 2)!

(n−m)!
(−Cnm Vn+2,m − SnmWn+2,m)

}

+
(n−m+ 4)!

(n−m)!
(+Cnm Vn+2,m−2 + SnmWn+2,m−2)

}
.

(D.5)

Similarly, we have

∂ẍnm

∂y

(m=0)
=

µ

R3
e

1

2

{
(−JnWn+2,2)

(m=1)
=

µ

R3
e

1

4

{
(Cn1Wn+2,3 − Sn1 Vn+2,3)

+
(n+ 1)!

(n− 1)!
(−Cn1Wn+2,1 − Sn1 Vn+2,1)

}

(m>1)
=

µ

R3
e

1

4

{
(CnmWn+2,m+2 − Snm Vn+2,m+2)

+
(n−m+ 4)!

(n−m)!
(−CnmWn+2,m−2 + SnmWn+2,m−2)

}
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and
∂ẍnm

∂z

(m=0)
=

µ

R3
e

{
(n+ 1) (−Jn Vn+2,1)

}

(m>0)
=

µ

R3
e

{n−m+ 1

2
(Cnm Vn+2,m+1 + SnmWn+2,m+1)

+
(n−m+ 3)

2(n−m)
(−Cnm Vn+2,m−1 − SnmWn+2,m−1

}

and
∂ÿnm

∂z

(m=0)
=

µ

R3
e

{
(n+ 1) (−JnWn+2,1)

}

(m>0)
=

µ

R3
e

{n−m+ 1

2
(CnmWn+2,m+1 − Snm Vn+2,m+1)

+
(n−m+ 3)

2(n−m)
(+CnmWn+2,m−1 − Snm Vn+2,m−1)

}

and finally

∂z̈nm

∂z
=

µ

R3
e

{(n−m+ 2)!

(n−m)!
(+Cnm Vn+2,m + SnmWn+2,m)

}
, (D.6)

where the quantitiesVnm, Wnm are defined in Eqs. (B.1) and (B.2) whereasCnm andSnm are
the well known geopotential coefficients defined in Eq. (2.6). Let us note that these acceler-
ations are derived under the assumption of a non-rotating Earth. Due to the Earth’s rotation,
some additional corrections have to be considered. More specifically, the transformation be-
tween the space-fixed “sf” and the Earth-fixed “ef” reference frame are given by

(
∂r̈

∂r

)

sf

= U−1(t)

(
∂r̈

∂r

)

ef

U(t) . (D.7)

However, in practice, the Earth-fixed components may be computed by evaluating the deriva-
tives (D.5), . . . , (D.6) with the Earth-fixed coordinates defined by

ref = U(t) rsf .

Finally, it has to be noted that both(∂r̈/∂r)sf and(∂r̈/∂r)ef are partial derivatives of the ac-
celeration defined in inertial reference frames which are rotated each other by a given rotation
matrix U (t). Actually, the acceleration in a rotating reference frame is different by Corio-
lis and centrifugal terms. For further details, we refer forinstance to Montenbruck and Gill
(2000).

Finally, since the acceleration induced by the Earth’s gravity field is independent of the
velocity of the space debris, we only have to compute the partial derivatives with respect to
the position of the space debris. Consequently, the complete Jacobian matrix needed in the
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variational equations is given by

J(t) =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
∂ẍnm

∂x

∂ẍnm

∂y

∂ẍnm

∂z
0 0 0

∂ẍnm

∂y
−∂ẍnm

∂y
− ∂z̈nm

∂z

∂ÿnm

∂z
0 0 0

∂ẍnm

∂z

∂ÿnm

∂z

∂z̈nm

∂z
0 0 0




.

D.2 Third-body variational equations

Since, the indirect termr⊙/‖r⊙‖3 is independent of the satellite position, the corresponding
partial derivative is zero. As a consequence, only the partial derivatives of the direct part
remains, leading to

∂r̈

∂r
= −µi

(
1

‖r − ri‖
I3×3 −

3

‖r − ri‖5
(r − ri) ⊗ (r − ri)

T

)
,

whereµi is the gravitational constant of the third body. Notice that, because the acceleration
is also independent of the velocity, the partial derivatives are zero, that is

∂r̈

∂ṙ
= 0 .

D.3 Radiation pressure variational equations

Similarly, the partial derivatives of the direct solar radiation pressure can be easily derived.
The computation yields

∂r̈

∂r
= Pr Cr

A

m

(
1

‖r − r⊙‖
I3×3 −

3

‖r − r⊙‖5
(r − r⊙) ⊗ (r − r⊙)T

)
.

Over again, the partial derivatives with respect to the velocity is zero, leading to

∂r̈

∂ṙ
= 0 .
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Appendix E

The perturbed equations

E.1 The Gauss perturbation equations

For many applications, it is convenianent to express the rates of change of the elements explic-
itly in terms of the disturbing accelerations. The asset of the Gaussian perturbed equations is
for non-conservative forces because it’s directly expressed from the disturbing forces. How-
ever, let us also remark that this formulation also works forconservative forces bacause the
forces are simply gradients of the potential functions (Vallado, 2001).

Let us now present the rates of changes of the Keplerian elements using a disturbing accel-
erationaR = (aS, aT , aW ) expressed in terms of its radial (aS), transversal (along-track) (aT )
and out-of-plane components (aW ) in the orbit oriented system

da

dt
=

2

n
√

1 − e2

{
e sin f aS +

p

r
aT

}
,

de

dt
=

√
1 − e2

n a

{
sin f aS +

(
cos f +

e+ cos f

1 + e cos f

)
aT

}
,

di

dt
=

r cos(ω + f)

n a2
√

1 − e2
aW ,

dΩ

dt
=

r sin(ω + f)

n a2
√

1 − e2 sin i
aW ,

dω

dt
=

√
1 − e2

n a e

{
− cos f aS + sin f

(
1 +

r

p

)
aT

}
− r sin(ω + f)

n a2
√

1 − e2 sin i
aW ,

dM

dt
=

1

n a2 e

{
(p cos f − 2 e r) aS − (p+ r) sin f aT

}
.
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E.2 The Lagrange Perturbation Equations

If the perturbing accelerationaR (more precesly the related forceFR) may be represented as
the gradient of the scalar perturbation functionR, that isFR = ∇R, the rate of change of
the osculating Keplerian elements as a function of the derivatives∂R/∂a, ∂R/∂e, ∂R/∂i,
∂R/∂Ω, ∂R/∂ω, ∂R/∂M is given by

da

dt
= − 2

na

∂R
∂M

,

de

dt
= −1 − e2

n a2 e

∂R
∂M

+

√
1 − e2

n a2 e

∂R
∂ω

,

di

dt
= − cos i

n a2
√

1 − e2 sin i

∂R
∂M

+

√
1 − e2

n a2 e

∂R
∂ω

+
1

n a2
√

1 − e2 sin i

∂R
∂Ω

,

dΩ

dt
= − 1

n a2
√

1 − e2 sin i

∂R
∂i

,

dω

dt
=

cos i

n a2
√

1 − e2 sin i

∂R
∂i

−
√

1 − e2

n a2 e

∂R
∂e

,

dM

dt
= n+

1 − e2

n a2 e

∂R
∂e

+
2

n a

∂R
∂a

.



Appendix F

Lie transforms and computational
algorithm

F.1 Symplectic Lie Transforms

Let us consider ax to y transformationX , close to the identity and developed as a power series
expansion of a small parameterǫ

x = X (y, ǫ) = y + ǫX1(y) + ǫ2X2(y) + ... . (F.1)

For ǫ sufficiently small, the transformation is always invertible

y = Y(x, ǫ) = x+ ǫY1(x) + ǫ2Y2(x) + ... .

Let us remark that the before-mentioned transformation canalso be defined as being the solu-
tion at “time” ǫ of an auxiliaryn-dimensional system of differential equations

dx

dǫ
= W(x, ǫ)

for the initial conditionx(ǫ = 0) = y. Therefore, theǫ-dependent transformation is considered
to be the flow spawn by a non-autonomous differential system of equations. Let us remark that
it is always possible when considering agenerating vector field

W(x, ǫ) =

[
∂X (y, ǫ)

∂ǫ

]

y=Y(x,ǫ)

.

If we wish to generate a canonical transformation it is sufficient to define the system of differ-
ential equations

ẋ = IHT
x ,

whereI is the well-known symplectic matrix and(qi, pi) are the variables and momenta, re-
spectivaly. As a consequence, it restricts the Lie transforms group to the subgroup of sym-
plectic Lie transforms. For this purpose, it is sufficient and necessary to impose the generating
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vector fieldW to be a Hamiltonian field, that is the product of the symplectic matrixI by the
gradient of a Hamiltonian function

W = IWT
x .

Therefore, let us define the Lie transforms (F.1) as the solution of an auxiliary Hamiltonian
differential system

dx

dǫ
= IWT

x .

F.2 Computational algorithm

Let us develop the functionf(X (y, ǫ), ǫ) as a powers series expansion ofǫ aboutǫ = 0. We find
that the transformationg(y, ǫ) of any analytical functionf(x, ǫ), using the before-mentioned
transformation (F.1), spawn by the generating vector field (F.1), is given by

g(y, ǫ) = f(X (y, ǫ), ǫ) =
∑

i≥0

ǫi

i!

[
Dif(x, ǫ)

]
x=y;ǫ=0

, (F.2)

where the differential operatorD is defined by

Df(x, ǫ) =
∂f

∂ǫ
+
∂f

∂x
IWT

x =
∂f

∂ǫ
+ (f ;W) , (F.3)

and where(f ;W) corresponds to the Poisson brackets of the two functions, that is

(f ; W) ≡ fxIWT
x =

∑

i

(
∂f

∂qi

∂W
∂pi

− ∂W
∂qi

∂f

∂pi

)
.

Consequently, following Eqs. (F.2) and (F.3), it is possible to write a simple computational
algorithm.

First, let us consider the analytical function

f(x, ǫ) =
∑

i=0

ǫi

i!
f

(0)
i (x)

as well as the generating vector field

W =
∑

i=0

ǫi

i!
Wi+1(x) . (F.4)

Second, we successively construct the intermediate functionf (j)
i (x)

dj

dǫj
f(X (y, ǫ), ǫ) =

∑

i=0

ǫi

i!
f

(j)
i (x)
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using the following recurrence formula

f
(j)
i = f

(j−1)
i+1 +

i∑

k=0

Ck
i

(
f

(j−1)
i−k ; Wk+1

)
, (F.5)

whereCk
i stands for the binomial coefficients in the indices(i, k)

Ck
i =

(
i

k

)
=

i!

k!(i− k)!
.

Finally, the transformationg(y, ǫ) of the functionf(x, ǫ) is given by

g(y, ǫ) =
∑

i=0

ǫi

i!

[
f

(i)
0 (x)

]
x=y

.

The recursion (F.5) is easily visualized in Figure F.1. Indeed, the construction is reminiscent
of that of Pascal’s triangle. For instance, assume that all the elements of the first three lines
have been computed. The filling of the fourth row begins with the computation off (1)

2 which
involves only the elements above and includingf

(0)
3 on the column passing throughf (0)

3 . Then
one is ready to computef (2)

1 , which involvesf (1)
2 and the elements above it on the column

passing throughf (1)
2 . Finally, the algorithm ends with the computation off

(3)
0 , involving f (2)

1

andf (2)
0 .

f
(0)
0

f
(0)
1 f

(1)
0

f
(0)
2 f

(1)
1 f

(2)
0

f
(0)
3 f

(1)
2 f

(2)
1 f

(3)
0

f
(0)
4 f

(1)
3 f

(2)
2 f

(3)
1 f

(4)
0

...
...

...
...

...
. . .

Figure F.1: Recursive transformation of an analytic function under Lie transform, better known
asthe Lie triangle
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F.3 Homologic equation

In the framework of Hamiltonian system, the before-mentioned Lie algorithm consists in re-
solving, at each orderk, the followinghomologic equation

H(k)
0 − H̃(k)

0 =
(
H(0)

0 ; Wk

)
= −

n∑

i=1

ωi
∂Wk

∂qi
, (F.6)

whereωi =
∂H(0)

0

∂pi

andH̃(k)
0 is a known quantity and whereH(0)

0 depends only on the momenta

qi. In order to find the generating function, we have to proceed to an integration with respect
to the angleqi. For this purpose, let us consider the Fourier series expansion of the first term
in Eq. (F.6). We have

H̃(k)
0 −H(k)

0 =
∑

i1,i2,...,in

[
Ci1,i2,...,in cos

(
n∑

l=1

ilql

)
+ Si1,i2,...,in sin

(
n∑

l=1

ilql

)]
,

leading formally to

Wk =
∑

i1,i2,...,in



Ci1,i2,...,in sin

(∑n
l=1 ilql

)

i1ω1 + . . .+ inωn
−
Si1,i2,...,in cos

(∑n
l=1 ilql

)

i1ω1 + . . .+ inωn


 .

In order to ensure the existence of the generating functionW, it would be relevant to inspect
that no denominator is close to zero. It can happen if all the argumentsin are zero(i1 = i2 =

· · · = in = 0) as well as in the case of resonances (more precisely, close toan exact resonance).
In either case, the incriminated terms have to be included into the new HamiltonianH(k)

0 , the
other terms being integrated to form the generating function of the transformation. In this latter
case, it is sufficient to choose

H(k)
0 = 〈H̃(k)

0 〉 ,

where〈 · 〉 stands for the mean value with respect to some assigned angles if the specific
requirement of the transformation is the suppression of some or all periodic terms.

F.4 Transformation between mean and osculating elements

The osculating elements(qi, pi) can be deduced from the mean elments(q′i, p
′
i) by a canonical

transformation induced by the generating functionW developed in powers of the small param-
eterǫ (see Eq. F.4) and computed during the averaging process. In keeping with Deprit (1969),
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Deprit and Rom (1970) and Henrard (1970), such a transformation is given by (up to order 2)

qi = q′i +

{
ǫ
∂W1

∂pi
+
ǫ2

2

[
∂W2

∂pi
+

(
∂W1

∂pi
; W1

)]}∣∣∣∣
(q′,p′)

+ O(ǫ3) ,

pi = p′i −
{
ǫ
∂W1

∂qi
+
ǫ2

2

[
∂W2

∂qi
+

(
∂W1

∂qi
; W1

)]}∣∣∣∣
(q′,p′)

+ O(ǫ3) ,

(F.7)

whereqi andpi are the variables and their conjutated momenta, respectively. Although the pre-
sented formulae were truncated to the second order, they areeasily generalized to any order.
At this point, it is worth stressing that the right-hand sides appearing in Eqs. (F.7) are evaluted
in the mean elements(q′i, p

′
i).

Practically, in the framework of a first order averaging process over the short periods, the
transformation simply reads as

qi = q′i +

{
ǫ
∂W1

∂pi

}∣∣∣∣
(v′,V ′)

+ O(ǫ2) ,

pi = p′i −
{
ǫ
∂W1

∂qi

}∣∣∣∣
(v′,V ′)

+ O(ǫ2) ,

whereW1 is the first-order generating function, that is a function ofthe discarded “short-
periodic” terms, which is computed following Eq. (F.6) by ananalytical integration with re-
spect to the fast angle, namely the mean longitudeλ or equivalently, for resonant motion, with
respect to the sidereal timeθ.
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Appendix G

Characteristic series expansion

In the following4-order series expansion, the distance unit is equal to the mean geostationary
radius, i.e 42 164 km. Furthermore, the gravitational constant of the Earth is set toµ = 1.

G.1 Third-body averaged disturbing function Hi

The third-boby disturbing function (3-degree expansion in Legendre polynomials) is given for
the particular case of the Sun attraction.

λ θ X1 Y1 X2 Y2 L X$ Y$ Z$ r$ X⊙ Y⊙ Z⊙ r⊙ Coefficient
cos (0 0) (0 0 0 0 4 0 0 0 0 0 0 0 -3) -0.1664730190000000D+06
cos (0 0) (0 0 0 0 4 0 0 0 0 0 2 0 -3) 0.2497095285000000D+06
cos (0 0) (0 0 0 0 4 0 0 0 0 2 0 0 -3) 0.2497095285000000D+06
cos (0 0) (0 0 0 1 4 0 0 0 0 0 1 1 -3) 0.4994190570000000D+06
cos (0 0) (0 0 0 2 4 0 0 0 0 0 0 2 -3) 0.2497095285000000D+06
cos (0 0) (0 0 0 2 4 0 0 0 0 0 2 0 -3) -0.2497095285000000D+06
cos (0 0) (0 0 0 3 4 0 0 0 0 0 1 1 -3) -0.3121369106250000D+06
cos (0 0) (0 0 0 4 4 0 0 0 0 0 0 2 -3) -0.6242738212500000D+05
cos (0 0) (0 0 0 4 4 0 0 0 0 0 2 0 -3) 0.6242738212500000D+05
cos (0 0) (0 0 1 0 4 0 0 0 0 1 0 1 -3) 0.4994190570000000D+06
cos (0 0) (0 0 1 1 4 0 0 0 0 1 1 0 -3) -0.4994190570000000D+06
cos (0 0) (0 0 1 2 4 0 0 0 0 1 0 1 -3) -0.3121369106250000D+06
cos (0 0) (0 0 1 3 4 0 0 0 0 1 1 0 -3) 0.1248547642500000D+06
cos (0 0) (0 0 2 0 4 0 0 0 0 0 0 2 -3) 0.2497095285000000D+06
cos (0 0) (0 0 2 0 4 0 0 0 0 2 0 0 -3) -0.2497095285000000D+06
cos (0 0) (0 0 2 1 4 0 0 0 0 0 1 1 -3) -0.3121369106250000D+06
cos (0 0) (0 0 2 2 4 0 0 0 0 0 0 2 -3) -0.1248547642500000D+06
cos (0 0) (0 0 2 2 4 0 0 0 0 0 2 0 -3) 0.6242738212500000D+05
cos (0 0) (0 0 2 2 4 0 0 0 0 2 0 0 -3) 0.6242738212500000D+05
cos (0 0) (0 0 3 0 4 0 0 0 0 1 0 1 -3) -0.3121369106250000D+06
cos (0 0) (0 0 3 1 4 0 0 0 0 1 1 0 -3) 0.1248547642500000D+06

continued on next page
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continued from previous page
λ θ X1 Y1 X2 Y2 L X$ Y$ Z$ r$ X⊙ Y⊙ Z⊙ r⊙ Coefficient

cos (0 0) (0 0 4 0 4 0 0 0 0 0 0 2 -3) -0.6242738212500000D+05
cos (0 0) (0 0 4 0 4 0 0 0 0 2 0 0 -3) 0.6242738212500000D+05
cos (0 0) (0 1 0 0 6 0 0 0 0 1 0 0 -4) 0.1248547642500000D+07
cos (0 0) (0 1 0 0 6 0 0 0 0 1 2 0 -4) -0.1560684553125000D+07
cos (0 0) (0 1 0 0 6 0 0 0 0 3 0 0 -4) -0.1560684553125000D+07
cos (0 0) (0 1 0 1 6 0 0 0 0 1 1 1 -4) -0.3121369106250000D+07
cos (0 0) (0 1 0 2 6 0 0 0 0 1 0 2 -4) -0.1560684553125000D+07
cos (0 0) (0 1 0 2 6 0 0 0 0 1 2 0 -4) 0.1560684553125000D+07
cos (0 0) (0 1 0 3 6 0 0 0 0 1 1 1 -4) 0.1950855691406250D+07
cos (0 0) (0 1 1 0 6 0 0 0 0 0 0 1 -4) 0.1248547642500000D+07
cos (0 0) (0 1 1 0 6 0 0 0 0 0 2 1 -4) -0.1560684553125000D+07
cos (0 0) (0 1 1 0 6 0 0 0 0 2 0 1 -4) -0.4682053659375000D+07
cos (0 0) (0 1 1 1 6 0 0 0 0 0 1 0 -4) -0.6242738212500000D+06
cos (0 0) (0 1 1 1 6 0 0 0 0 0 1 2 -4) -0.3121369106250000D+07
cos (0 0) (0 1 1 1 6 0 0 0 0 0 3 0 -4) 0.7803422765625000D+06
cos (0 0) (0 1 1 1 6 0 0 0 0 2 1 0 -4) 0.3901711382812500D+07
cos (0 0) (0 1 1 2 6 0 0 0 0 0 0 1 -4) -0.1560684553125000D+06
cos (0 0) (0 1 1 2 6 0 0 0 0 0 0 3 -4) -0.1560684553125000D+07
cos (0 0) (0 1 1 2 6 0 0 0 0 0 2 1 -4) 0.3316454675390625D+07
cos (0 0) (0 1 1 2 6 0 0 0 0 2 0 1 -4) 0.2145941260546875D+07
cos (0 0) (0 1 2 0 6 0 0 0 0 1 0 0 -4) -0.6242738212500000D+06
cos (0 0) (0 1 2 0 6 0 0 0 0 1 0 2 -4) -0.4682053659375000D+07
cos (0 0) (0 1 2 0 6 0 0 0 0 1 2 0 -4) 0.7803422765625000D+06
cos (0 0) (0 1 2 0 6 0 0 0 0 3 0 0 -4) 0.2341026829687500D+07
cos (0 0) (0 1 2 1 6 0 0 0 0 1 1 1 -4) 0.8193593903906250D+07
cos (0 0) (0 1 3 0 6 0 0 0 0 0 0 1 -4) -0.1560684553125000D+06
cos (0 0) (0 1 3 0 6 0 0 0 0 0 0 3 -4) -0.1560684553125000D+07
cos (0 0) (0 1 3 0 6 0 0 0 0 0 2 1 -4) 0.1950855691406250D+06
cos (0 0) (0 1 3 0 6 0 0 0 0 2 0 1 -4) 0.5267310366796875D+07
cos (0 0) (0 2 0 0 4 0 0 0 0 0 0 0 -3) -0.2497095285000000D+06
cos (0 0) (0 2 0 0 4 0 0 0 0 0 2 0 -3) -0.2497095285000000D+06
cos (0 0) (0 2 0 0 4 0 0 0 0 2 0 0 -3) 0.9988381140000001D+06
cos (0 0) (0 2 0 1 4 0 0 0 0 0 1 1 -3) -0.3745642927500000D+06
cos (0 0) (0 2 0 2 4 0 0 0 0 0 0 2 -3) -0.1248547642500000D+06
cos (0 0) (0 2 0 2 4 0 0 0 0 0 2 0 -3) 0.1248547642500000D+06
cos (0 0) (0 2 1 0 4 0 0 0 0 1 0 1 -3) 0.2122530992250000D+07
cos (0 0) (0 2 1 1 4 0 0 0 0 1 1 0 -3) -0.9988381140000001D+06
cos (0 0) (0 2 2 0 4 0 0 0 0 0 0 2 -3) 0.1123692878250000D+07
cos (0 0) (0 2 2 0 4 0 0 0 0 2 0 0 -3) -0.1123692878250000D+07
cos (0 0) (0 3 0 0 6 0 0 0 0 1 0 0 -4) 0.7803422765625000D+06
cos (0 0) (0 3 0 0 6 0 0 0 0 1 2 0 -4) 0.1755770122265625D+07
cos (0 0) (0 3 0 0 6 0 0 0 0 3 0 0 -4) -0.1885827168359375D+07
cos (0 0) (0 3 0 1 6 0 0 0 0 1 1 1 -4) 0.2731197967968750D+07
cos (0 0) (0 3 1 0 6 0 0 0 0 0 0 1 -4) 0.1092479187187500D+07
cos (0 0) (0 3 1 0 6 0 0 0 0 0 2 1 -4) 0.1365598983984375D+07

continued on next page
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continued from previous page
λ θ X1 Y1 X2 Y2 L X$ Y$ Z$ r$ X⊙ Y⊙ Z⊙ r⊙ Coefficient

cos (0 0) (0 3 1 0 6 0 0 0 0 2 0 1 -4) -0.6827994919921875D+07
cos (0 0) (0 4 0 0 4 0 0 0 0 0 0 0 -3) 0.6242738212500000D+05
cos (0 0) (0 4 0 0 4 0 0 0 0 0 2 0 -3) 0.6242738212500000D+05
cos (0 0) (0 4 0 0 4 0 0 0 0 2 0 0 -3) -0.2497095285000000D+06
cos (0 0) (1 0 0 0 6 0 0 0 0 0 1 0 -4) -0.1248547642500000D+07
cos (0 0) (1 0 0 0 6 0 0 0 0 0 3 0 -4) 0.1560684553125000D+07
cos (0 0) (1 0 0 0 6 0 0 0 0 2 1 0 -4) 0.1560684553125000D+07
cos (0 0) (1 0 0 1 6 0 0 0 0 0 0 1 -4) -0.1248547642500000D+07
cos (0 0) (1 0 0 1 6 0 0 0 0 0 2 1 -4) 0.4682053659375000D+07
cos (0 0) (1 0 0 1 6 0 0 0 0 2 0 1 -4) 0.1560684553125000D+07
cos (0 0) (1 0 0 2 6 0 0 0 0 0 1 0 -4) 0.6242738212500000D+06
cos (0 0) (1 0 0 2 6 0 0 0 0 0 1 2 -4) 0.4682053659375000D+07
cos (0 0) (1 0 0 2 6 0 0 0 0 0 3 0 -4) -0.2341026829687500D+07
cos (0 0) (1 0 0 2 6 0 0 0 0 2 1 0 -4) -0.7803422765625000D+06
cos (0 0) (1 0 0 3 6 0 0 0 0 0 0 1 -4) 0.1560684553125000D+06
cos (0 0) (1 0 0 3 6 0 0 0 0 0 0 3 -4) 0.1560684553125000D+07
cos (0 0) (1 0 0 3 6 0 0 0 0 0 2 1 -4) -0.5267310366796875D+07
cos (0 0) (1 0 0 3 6 0 0 0 0 2 0 1 -4) -0.1950855691406250D+06
cos (0 0) (1 0 1 0 6 0 0 0 0 1 1 1 -4) 0.3121369106250000D+07
cos (0 0) (1 0 1 1 6 0 0 0 0 1 0 0 -4) 0.6242738212500000D+06
cos (0 0) (1 0 1 1 6 0 0 0 0 1 0 2 -4) 0.3121369106250000D+07
cos (0 0) (1 0 1 1 6 0 0 0 0 1 2 0 -4) -0.3901711382812500D+07
cos (0 0) (1 0 1 1 6 0 0 0 0 3 0 0 -4) -0.7803422765625000D+06
cos (0 0) (1 0 1 2 6 0 0 0 0 1 1 1 -4) -0.8193593903906250D+07
cos (0 0) (1 0 2 0 6 0 0 0 0 0 1 2 -4) 0.1560684553125000D+07
cos (0 0) (1 0 2 0 6 0 0 0 0 2 1 0 -4) -0.1560684553125000D+07
cos (0 0) (1 0 2 1 6 0 0 0 0 0 0 1 -4) 0.1560684553125000D+06
cos (0 0) (1 0 2 1 6 0 0 0 0 0 0 3 -4) 0.1560684553125000D+07
cos (0 0) (1 0 2 1 6 0 0 0 0 0 2 1 -4) -0.2145941260546875D+07
cos (0 0) (1 0 2 1 6 0 0 0 0 2 0 1 -4) -0.3316454675390625D+07
cos (0 0) (1 0 3 0 6 0 0 0 0 1 1 1 -4) -0.1950855691406250D+07
cos (0 0) (1 1 0 0 4 0 0 0 0 1 1 0 -3) -0.2497095285000000D+07
cos (0 0) (1 1 0 1 4 0 0 0 0 1 0 1 -3) -0.2497095285000000D+07
cos (0 0) (1 1 0 2 4 0 0 0 0 1 1 0 -3) 0.1248547642500000D+07
cos (0 0) (1 1 1 0 4 0 0 0 0 0 1 1 -3) -0.2497095285000000D+07
cos (0 0) (1 1 1 1 4 0 0 0 0 0 0 2 -3) -0.2497095285000000D+07
cos (0 0) (1 1 1 1 4 0 0 0 0 0 2 0 -3) 0.1248547642500000D+07
cos (0 0) (1 1 1 1 4 0 0 0 0 2 0 0 -3) 0.1248547642500000D+07
cos (0 0) (1 1 2 0 4 0 0 0 0 1 1 0 -3) 0.1248547642500000D+07
cos (0 0) (1 2 0 0 6 0 0 0 0 0 1 0 -4) -0.7803422765625000D+06
cos (0 0) (1 2 0 0 6 0 0 0 0 0 3 0 -4) -0.1755770122265625D+07
cos (0 0) (1 2 0 0 6 0 0 0 0 2 1 0 -4) 0.9169021749609375D+07
cos (0 0) (1 2 0 1 6 0 0 0 0 0 0 1 -4) -0.1092479187187500D+07
cos (0 0) (1 2 0 1 6 0 0 0 0 0 2 1 -4) -0.4096796951953125D+07
cos (0 0) (1 2 0 1 6 0 0 0 0 2 0 1 -4) 0.9559192887890626D+07

continued on next page
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λ θ X1 Y1 X2 Y2 L X$ Y$ Z$ r$ X⊙ Y⊙ Z⊙ r⊙ Coefficient

cos (0 0) (1 2 1 0 6 0 0 0 0 1 1 1 -4) 0.1911838577578125D+08
cos (0 0) (1 3 0 0 4 0 0 0 0 1 1 0 -3) 0.6242738212500000D+06
cos (0 0) (2 0 0 0 4 0 0 0 0 0 0 0 -3) -0.2497095285000000D+06
cos (0 0) (2 0 0 0 4 0 0 0 0 0 2 0 -3) 0.9988381140000001D+06
cos (0 0) (2 0 0 0 4 0 0 0 0 2 0 0 -3) -0.2497095285000000D+06
cos (0 0) (2 0 0 1 4 0 0 0 0 0 1 1 -3) 0.2122530992250000D+07
cos (0 0) (2 0 0 2 4 0 0 0 0 0 0 2 -3) 0.1123692878250000D+07
cos (0 0) (2 0 0 2 4 0 0 0 0 0 2 0 -3) -0.1123692878250000D+07
cos (0 0) (2 0 1 0 4 0 0 0 0 1 0 1 -3) -0.3745642927500000D+06
cos (0 0) (2 0 1 1 4 0 0 0 0 1 1 0 -3) -0.9988381140000001D+06
cos (0 0) (2 0 2 0 4 0 0 0 0 0 0 2 -3) -0.1248547642500000D+06
cos (0 0) (2 0 2 0 4 0 0 0 0 2 0 0 -3) 0.1248547642500000D+06
cos (0 0) (2 1 0 0 6 0 0 0 0 1 0 0 -4) 0.7803422765625000D+06
cos (0 0) (2 1 0 0 6 0 0 0 0 1 2 0 -4) -0.9169021749609375D+07
cos (0 0) (2 1 0 0 6 0 0 0 0 3 0 0 -4) 0.1755770122265625D+07
cos (0 0) (2 1 0 1 6 0 0 0 0 1 1 1 -4) -0.1911838577578125D+08
cos (0 0) (2 1 1 0 6 0 0 0 0 0 0 1 -4) 0.1092479187187500D+07
cos (0 0) (2 1 1 0 6 0 0 0 0 0 2 1 -4) -0.9559192887890626D+07
cos (0 0) (2 1 1 0 6 0 0 0 0 2 0 1 -4) 0.4096796951953125D+07
cos (0 0) (2 2 0 0 4 0 0 0 0 0 0 0 -3) 0.1248547642500000D+06
cos (0 0) (2 2 0 0 4 0 0 0 0 0 2 0 -3) -0.1872821463750000D+06
cos (0 0) (2 2 0 0 4 0 0 0 0 2 0 0 -3) -0.1872821463750000D+06
cos (0 0) (3 0 0 0 6 0 0 0 0 0 1 0 -4) -0.7803422765625000D+06
cos (0 0) (3 0 0 0 6 0 0 0 0 0 3 0 -4) 0.1885827168359375D+07
cos (0 0) (3 0 0 0 6 0 0 0 0 2 1 0 -4) -0.1755770122265625D+07
cos (0 0) (3 0 0 1 6 0 0 0 0 0 0 1 -4) -0.1092479187187500D+07
cos (0 0) (3 0 0 1 6 0 0 0 0 0 2 1 -4) 0.6827994919921875D+07
cos (0 0) (3 0 0 1 6 0 0 0 0 2 0 1 -4) -0.1365598983984375D+07
cos (0 0) (3 0 1 0 6 0 0 0 0 1 1 1 -4) -0.2731197967968750D+07
cos (0 0) (3 1 0 0 4 0 0 0 0 1 1 0 -3) 0.6242738212500000D+06
cos (0 0) (4 0 0 0 4 0 0 0 0 0 0 0 -3) 0.6242738212500000D+05
cos (0 0) (4 0 0 0 4 0 0 0 0 0 2 0 -3) -0.2497095285000000D+06
cos (0 0) (4 0 0 0 4 0 0 0 0 2 0 0 -3) 0.6242738212500000D+05

G.2 Direct solar radiation pressure disturbing function Hrp

λ θ X1 Y1 X2 Y2 L X$ Y$ Z$ r$ X⊙ Y⊙ Z⊙ r⊙ Coefficient
cos (0 0) (0 0 0 0 0 0 0 0 0 0 0 0 -1) 0.2574575394591462D+03
cos (0 0) (0 0 0 0 4 0 0 0 0 0 0 0 -3) -0.1287287697295731D+03
cos (0 0) (0 0 0 0 4 0 0 0 0 0 2 0 -3) 0.1930931545943597D+03
cos (0 0) (0 0 0 0 4 0 0 0 0 2 0 0 -3) 0.1930931545943597D+03
cos (0 0) (0 0 0 1 4 0 0 0 0 0 1 1 -3) 0.3861863091887194D+03
cos (0 0) (0 0 0 2 4 0 0 0 0 0 0 2 -3) 0.1930931545943597D+03
cos (0 0) (0 0 0 2 4 0 0 0 0 0 2 0 -3) -0.1930931545943597D+03
cos (0 0) (0 0 0 3 4 0 0 0 0 0 1 1 -3) -0.2413664432429496D+03
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cos (0 0) (0 0 0 4 4 0 0 0 0 0 0 2 -3) -0.4827328864858993D+02
cos (0 0) (0 0 0 4 4 0 0 0 0 0 2 0 -3) 0.4827328864858993D+02
cos (0 0) (0 0 1 0 4 0 0 0 0 1 0 1 -3) 0.3861863091887194D+03
cos (0 0) (0 0 1 1 4 0 0 0 0 1 1 0 -3) -0.3861863091887194D+03
cos (0 0) (0 0 1 2 4 0 0 0 0 1 0 1 -3) -0.2413664432429496D+03
cos (0 0) (0 0 1 3 4 0 0 0 0 1 1 0 -3) 0.9654657729717985D+02
cos (0 0) (0 0 2 0 4 0 0 0 0 0 0 2 -3) 0.1930931545943597D+03
cos (0 0) (0 0 2 0 4 0 0 0 0 2 0 0 -3) -0.1930931545943597D+03
cos (0 0) (0 0 2 1 4 0 0 0 0 0 1 1 -3) -0.2413664432429496D+03
cos (0 0) (0 0 2 2 4 0 0 0 0 0 0 2 -3) -0.9654657729717985D+02
cos (0 0) (0 0 2 2 4 0 0 0 0 0 2 0 -3) 0.4827328864858993D+02
cos (0 0) (0 0 2 2 4 0 0 0 0 2 0 0 -3) 0.4827328864858993D+02
cos (0 0) (0 0 3 0 4 0 0 0 0 1 0 1 -3) -0.2413664432429496D+03
cos (0 0) (0 0 3 1 4 0 0 0 0 1 1 0 -3) 0.9654657729717985D+02
cos (0 0) (0 0 4 0 4 0 0 0 0 0 0 2 -3) -0.4827328864858993D+02
cos (0 0) (0 0 4 0 4 0 0 0 0 2 0 0 -3) 0.4827328864858993D+02
cos (0 0) (0 1 0 0 2 0 0 0 0 1 0 0 -2) -0.3861863091887194D+03
cos (0 0) (0 1 0 0 6 0 0 0 0 1 0 0 -4) 0.9654657729717985D+03
cos (0 0) (0 1 0 0 6 0 0 0 0 1 2 0 -4) -0.1206832216214748D+04
cos (0 0) (0 1 0 0 6 0 0 0 0 3 0 0 -4) -0.1206832216214748D+04
cos (0 0) (0 1 0 1 6 0 0 0 0 1 1 1 -4) -0.2413664432429496D+04
cos (0 0) (0 1 0 2 6 0 0 0 0 1 0 2 -4) -0.1206832216214748D+04
cos (0 0) (0 1 0 2 6 0 0 0 0 1 2 0 -4) 0.1206832216214748D+04
cos (0 0) (0 1 0 3 6 0 0 0 0 1 1 1 -4) 0.1508540270268435D+04
cos (0 0) (0 1 1 0 2 0 0 0 0 0 0 1 -2) -0.3861863091887194D+03
cos (0 0) (0 1 1 0 6 0 0 0 0 0 0 1 -4) 0.9654657729717985D+03
cos (0 0) (0 1 1 0 6 0 0 0 0 0 2 1 -4) -0.1206832216214748D+04
cos (0 0) (0 1 1 0 6 0 0 0 0 2 0 1 -4) -0.3620496648644244D+04
cos (0 0) (0 1 1 1 2 0 0 0 0 0 1 0 -2) 0.1930931545943597D+03
cos (0 0) (0 1 1 1 6 0 0 0 0 0 1 0 -4) -0.4827328864858993D+03
cos (0 0) (0 1 1 1 6 0 0 0 0 0 1 2 -4) -0.2413664432429496D+04
cos (0 0) (0 1 1 1 6 0 0 0 0 0 3 0 -4) 0.6034161081073740D+03
cos (0 0) (0 1 1 1 6 0 0 0 0 2 1 0 -4) 0.3017080540536870D+04
cos (0 0) (0 1 1 2 2 0 0 0 0 0 0 1 -2) 0.4827328864858993D+02
cos (0 0) (0 1 1 2 6 0 0 0 0 0 0 1 -4) -0.1206832216214748D+03
cos (0 0) (0 1 1 2 6 0 0 0 0 0 0 3 -4) -0.1206832216214748D+04
cos (0 0) (0 1 1 2 6 0 0 0 0 0 2 1 -4) 0.2564518459456340D+04
cos (0 0) (0 1 1 2 6 0 0 0 0 2 0 1 -4) 0.1659394297295279D+04
cos (0 0) (0 1 2 0 2 0 0 0 0 1 0 0 -2) 0.1930931545943597D+03
cos (0 0) (0 1 2 0 6 0 0 0 0 1 0 0 -4) -0.4827328864858993D+03
cos (0 0) (0 1 2 0 6 0 0 0 0 1 0 2 -4) -0.3620496648644244D+04
cos (0 0) (0 1 2 0 6 0 0 0 0 1 2 0 -4) 0.6034161081073740D+03
cos (0 0) (0 1 2 0 6 0 0 0 0 3 0 0 -4) 0.1810248324322122D+04
cos (0 0) (0 1 2 1 6 0 0 0 0 1 1 1 -4) 0.6335869135127426D+04
cos (0 0) (0 1 3 0 2 0 0 0 0 0 0 1 -2) 0.4827328864858993D+02
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cos (0 0) (0 1 3 0 6 0 0 0 0 0 0 1 -4) -0.1206832216214748D+03
cos (0 0) (0 1 3 0 6 0 0 0 0 0 0 3 -4) -0.1206832216214748D+04
cos (0 0) (0 1 3 0 6 0 0 0 0 0 2 1 -4) 0.1508540270268435D+03
cos (0 0) (0 1 3 0 6 0 0 0 0 2 0 1 -4) 0.4073058729724775D+04
cos (0 0) (0 2 0 0 4 0 0 0 0 0 0 0 -3) -0.1930931545943597D+03
cos (0 0) (0 2 0 0 4 0 0 0 0 0 2 0 -3) -0.1930931545943597D+03
cos (0 0) (0 2 0 0 4 0 0 0 0 2 0 0 -3) 0.7723726183774388D+03
cos (0 0) (0 2 0 1 4 0 0 0 0 0 1 1 -3) -0.2896397318915396D+03
cos (0 0) (0 2 0 2 4 0 0 0 0 0 0 2 -3) -0.9654657729717985D+02
cos (0 0) (0 2 0 2 4 0 0 0 0 0 2 0 -3) 0.9654657729717985D+02
cos (0 0) (0 2 1 0 4 0 0 0 0 1 0 1 -3) 0.1641291814052057D+04
cos (0 0) (0 2 1 1 4 0 0 0 0 1 1 0 -3) -0.7723726183774388D+03
cos (0 0) (0 2 2 0 4 0 0 0 0 0 0 2 -3) 0.8689191956746187D+03
cos (0 0) (0 2 2 0 4 0 0 0 0 2 0 0 -3) -0.8689191956746187D+03
cos (0 0) (0 3 0 0 2 0 0 0 0 1 0 0 -2) 0.4827328864858993D+02
cos (0 0) (0 3 0 0 6 0 0 0 0 1 0 0 -4) 0.6034161081073740D+03
cos (0 0) (0 3 0 0 6 0 0 0 0 1 2 0 -4) 0.1357686243241591D+04
cos (0 0) (0 3 0 0 6 0 0 0 0 3 0 0 -4) -0.1458255594592820D+04
cos (0 0) (0 3 0 1 6 0 0 0 0 1 1 1 -4) 0.2111956378375809D+04
cos (0 0) (0 3 1 0 2 0 0 0 0 0 0 1 -2) -0.4827328864858993D+02
cos (0 0) (0 3 1 0 6 0 0 0 0 0 0 1 -4) 0.8447825513503237D+03
cos (0 0) (0 3 1 0 6 0 0 0 0 0 2 1 -4) 0.1055978189187904D+04
cos (0 0) (0 3 1 0 6 0 0 0 0 2 0 1 -4) -0.5279890945939523D+04
cos (0 0) (0 4 0 0 4 0 0 0 0 0 0 0 -3) 0.4827328864858993D+02
cos (0 0) (0 4 0 0 4 0 0 0 0 0 2 0 -3) 0.4827328864858993D+02
cos (0 0) (0 4 0 0 4 0 0 0 0 2 0 0 -3) -0.1930931545943597D+03
cos (0 0) (1 0 0 0 2 0 0 0 0 0 1 0 -2) 0.3861863091887194D+03
cos (0 0) (1 0 0 0 6 0 0 0 0 0 1 0 -4) -0.9654657729717985D+03
cos (0 0) (1 0 0 0 6 0 0 0 0 0 3 0 -4) 0.1206832216214748D+04
cos (0 0) (1 0 0 0 6 0 0 0 0 2 1 0 -4) 0.1206832216214748D+04
cos (0 0) (1 0 0 1 2 0 0 0 0 0 0 1 -2) 0.3861863091887194D+03
cos (0 0) (1 0 0 1 6 0 0 0 0 0 0 1 -4) -0.9654657729717985D+03
cos (0 0) (1 0 0 1 6 0 0 0 0 0 2 1 -4) 0.3620496648644244D+04
cos (0 0) (1 0 0 1 6 0 0 0 0 2 0 1 -4) 0.1206832216214748D+04
cos (0 0) (1 0 0 2 2 0 0 0 0 0 1 0 -2) -0.1930931545943597D+03
cos (0 0) (1 0 0 2 6 0 0 0 0 0 1 0 -4) 0.4827328864858993D+03
cos (0 0) (1 0 0 2 6 0 0 0 0 0 1 2 -4) 0.3620496648644244D+04
cos (0 0) (1 0 0 2 6 0 0 0 0 0 3 0 -4) -0.1810248324322122D+04
cos (0 0) (1 0 0 2 6 0 0 0 0 2 1 0 -4) -0.6034161081073740D+03
cos (0 0) (1 0 0 3 2 0 0 0 0 0 0 1 -2) -0.4827328864858993D+02
cos (0 0) (1 0 0 3 6 0 0 0 0 0 0 1 -4) 0.1206832216214748D+03
cos (0 0) (1 0 0 3 6 0 0 0 0 0 0 3 -4) 0.1206832216214748D+04
cos (0 0) (1 0 0 3 6 0 0 0 0 0 2 1 -4) -0.4073058729724775D+04
cos (0 0) (1 0 0 3 6 0 0 0 0 2 0 1 -4) -0.1508540270268435D+03
cos (0 0) (1 0 1 0 6 0 0 0 0 1 1 1 -4) 0.2413664432429496D+04
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cos (0 0) (1 0 1 1 2 0 0 0 0 1 0 0 -2) -0.1930931545943597D+03
cos (0 0) (1 0 1 1 6 0 0 0 0 1 0 0 -4) 0.4827328864858993D+03
cos (0 0) (1 0 1 1 6 0 0 0 0 1 0 2 -4) 0.2413664432429496D+04
cos (0 0) (1 0 1 1 6 0 0 0 0 1 2 0 -4) -0.3017080540536870D+04
cos (0 0) (1 0 1 1 6 0 0 0 0 3 0 0 -4) -0.6034161081073740D+03
cos (0 0) (1 0 1 2 6 0 0 0 0 1 1 1 -4) -0.6335869135127426D+04
cos (0 0) (1 0 2 0 6 0 0 0 0 0 1 2 -4) 0.1206832216214748D+04
cos (0 0) (1 0 2 0 6 0 0 0 0 2 1 0 -4) -0.1206832216214748D+04
cos (0 0) (1 0 2 1 2 0 0 0 0 0 0 1 -2) -0.4827328864858993D+02
cos (0 0) (1 0 2 1 6 0 0 0 0 0 0 1 -4) 0.1206832216214748D+03
cos (0 0) (1 0 2 1 6 0 0 0 0 0 0 3 -4) 0.1206832216214748D+04
cos (0 0) (1 0 2 1 6 0 0 0 0 0 2 1 -4) -0.1659394297295279D+04
cos (0 0) (1 0 2 1 6 0 0 0 0 2 0 1 -4) -0.2564518459456340D+04
cos (0 0) (1 0 3 0 6 0 0 0 0 1 1 1 -4) -0.1508540270268435D+04
cos (0 0) (1 1 0 0 4 0 0 0 0 1 1 0 -3) -0.1930931545943597D+04
cos (0 0) (1 1 0 1 4 0 0 0 0 1 0 1 -3) -0.1930931545943597D+04
cos (0 0) (1 1 0 2 4 0 0 0 0 1 1 0 -3) 0.9654657729717985D+03
cos (0 0) (1 1 1 0 4 0 0 0 0 0 1 1 -3) -0.1930931545943597D+04
cos (0 0) (1 1 1 1 4 0 0 0 0 0 0 2 -3) -0.1930931545943597D+04
cos (0 0) (1 1 1 1 4 0 0 0 0 0 2 0 -3) 0.9654657729717985D+03
cos (0 0) (1 1 1 1 4 0 0 0 0 2 0 0 -3) 0.9654657729717985D+03
cos (0 0) (1 1 2 0 4 0 0 0 0 1 1 0 -3) 0.9654657729717985D+03
cos (0 0) (1 2 0 0 2 0 0 0 0 0 1 0 -2) -0.4827328864858993D+02
cos (0 0) (1 2 0 0 6 0 0 0 0 0 1 0 -4) -0.6034161081073740D+03
cos (0 0) (1 2 0 0 6 0 0 0 0 0 3 0 -4) -0.1357686243241591D+04
cos (0 0) (1 2 0 0 6 0 0 0 0 2 1 0 -4) 0.7090139270261644D+04
cos (0 0) (1 2 0 1 2 0 0 0 0 0 0 1 -2) 0.4827328864858993D+02
cos (0 0) (1 2 0 1 6 0 0 0 0 0 0 1 -4) -0.8447825513503237D+03
cos (0 0) (1 2 0 1 6 0 0 0 0 0 2 1 -4) -0.3167934567563713D+04
cos (0 0) (1 2 0 1 6 0 0 0 0 2 0 1 -4) 0.7391847324315332D+04
cos (0 0) (1 2 1 0 6 0 0 0 0 1 1 1 -4) 0.1478369464863066D+05
cos (0 0) (1 3 0 0 4 0 0 0 0 1 1 0 -3) 0.4827328864858993D+03
cos (0 0) (2 0 0 0 4 0 0 0 0 0 0 0 -3) -0.1930931545943597D+03
cos (0 0) (2 0 0 0 4 0 0 0 0 0 2 0 -3) 0.7723726183774388D+03
cos (0 0) (2 0 0 0 4 0 0 0 0 2 0 0 -3) -0.1930931545943597D+03
cos (0 0) (2 0 0 1 4 0 0 0 0 0 1 1 -3) 0.1641291814052057D+04
cos (0 0) (2 0 0 2 4 0 0 0 0 0 0 2 -3) 0.8689191956746187D+03
cos (0 0) (2 0 0 2 4 0 0 0 0 0 2 0 -3) -0.8689191956746187D+03
cos (0 0) (2 0 1 0 4 0 0 0 0 1 0 1 -3) -0.2896397318915396D+03
cos (0 0) (2 0 1 1 4 0 0 0 0 1 1 0 -3) -0.7723726183774388D+03
cos (0 0) (2 0 2 0 4 0 0 0 0 0 0 2 -3) -0.9654657729717985D+02
cos (0 0) (2 0 2 0 4 0 0 0 0 2 0 0 -3) 0.9654657729717985D+02
cos (0 0) (2 1 0 0 2 0 0 0 0 1 0 0 -2) 0.4827328864858993D+02
cos (0 0) (2 1 0 0 6 0 0 0 0 1 0 0 -4) 0.6034161081073740D+03
cos (0 0) (2 1 0 0 6 0 0 0 0 1 2 0 -4) -0.7090139270261644D+04
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cos (0 0) (2 1 0 0 6 0 0 0 0 3 0 0 -4) 0.1357686243241591D+04
cos (0 0) (2 1 0 1 6 0 0 0 0 1 1 1 -4) -0.1478369464863066D+05
cos (0 0) (2 1 1 0 2 0 0 0 0 0 0 1 -2) -0.4827328864858993D+02
cos (0 0) (2 1 1 0 6 0 0 0 0 0 0 1 -4) 0.8447825513503237D+03
cos (0 0) (2 1 1 0 6 0 0 0 0 0 2 1 -4) -0.7391847324315332D+04
cos (0 0) (2 1 1 0 6 0 0 0 0 2 0 1 -4) 0.3167934567563713D+04
cos (0 0) (2 2 0 0 4 0 0 0 0 0 0 0 -3) 0.9654657729717985D+02
cos (0 0) (2 2 0 0 4 0 0 0 0 0 2 0 -3) -0.1448198659457698D+03
cos (0 0) (2 2 0 0 4 0 0 0 0 2 0 0 -3) -0.1448198659457698D+03
cos (0 0) (3 0 0 0 2 0 0 0 0 0 1 0 -2) -0.4827328864858993D+02
cos (0 0) (3 0 0 0 6 0 0 0 0 0 1 0 -4) -0.6034161081073740D+03
cos (0 0) (3 0 0 0 6 0 0 0 0 0 3 0 -4) 0.1458255594592820D+04
cos (0 0) (3 0 0 0 6 0 0 0 0 2 1 0 -4) -0.1357686243241591D+04
cos (0 0) (3 0 0 1 2 0 0 0 0 0 0 1 -2) 0.4827328864858993D+02
cos (0 0) (3 0 0 1 6 0 0 0 0 0 0 1 -4) -0.8447825513503237D+03
cos (0 0) (3 0 0 1 6 0 0 0 0 0 2 1 -4) 0.5279890945939523D+04
cos (0 0) (3 0 0 1 6 0 0 0 0 2 0 1 -4) -0.1055978189187904D+04
cos (0 0) (3 0 1 0 6 0 0 0 0 1 1 1 -4) -0.2111956378375809D+04
cos (0 0) (3 1 0 0 4 0 0 0 0 1 1 0 -3) 0.4827328864858993D+03
cos (0 0) (4 0 0 0 4 0 0 0 0 0 0 0 -3) 0.4827328864858993D+02
cos (0 0) (4 0 0 0 4 0 0 0 0 0 2 0 -3) -0.1930931545943597D+03
cos (0 0) (4 0 0 0 4 0 0 0 0 2 0 0 -3) 0.4827328864858993D+02

G.3 Second degree and order disturbing functionHJ22

σ θ X1 Y1 X2 Y2 L X$ Y$ Z$ r$ X⊙ Y⊙ Z⊙ r⊙ Coefficient
cos (2 0) (0 0 0 0 -6 0 0 0 0 0 0 0 0 ) 0.1080907167254767D-06
cos (2 0) (0 0 0 2 -6 0 0 0 0 0 0 0 0 ) -0.5404535836273835D-07
cos (2 0) (0 0 0 4 -6 0 0 0 0 0 0 0 0 ) 0.6755669795342294D-08
cos (2 0) (0 0 2 0 -6 0 0 0 0 0 0 0 0 ) -0.5404535836273835D-07
cos (2 0) (0 0 2 2 -6 0 0 0 0 0 0 0 0 ) 0.1351133959068459D-07
cos (2 0) (0 0 4 0 -6 0 0 0 0 0 0 0 0 ) 0.6755669795342294D-08
cos (2 0) (0 2 0 0 -6 0 0 0 0 0 0 0 0 ) -0.2702267918136917D-06
cos (2 0) (0 2 0 2 -6 0 0 0 0 0 0 0 0 ) 0.2296927730416380D-06
cos (2 0) (0 2 1 1 -6 0 0 0 0 0 0 0 0 ) 0.1396098432635950D-06
cos (2 0) (0 2 2 0 -6 0 0 0 0 0 0 0 0 ) -0.1351133959068460D-07
cos (2 0) (0 4 0 0 -6 0 0 0 0 0 0 0 0 ) 0.1553804052928729D-06
cos (2 0) (1 1 0 2 -6 0 0 0 0 0 0 0 0 ) -0.1396098432635950D-06
cos (2 0) (1 1 1 1 -6 0 0 0 0 0 0 0 0 ) 0.4864082252646452D-06
cos (2 0) (1 1 2 0 -6 0 0 0 0 0 0 0 0 ) 0.1396098432635950D-06
cos (2 0) (2 0 0 0 -6 0 0 0 0 0 0 0 0 ) -0.2702267918136917D-06
cos (2 0) (2 0 0 2 -6 0 0 0 0 0 0 0 0 ) -0.1351133959068460D-07
cos (2 0) (2 0 1 1 -6 0 0 0 0 0 0 0 0 ) -0.1396098432635950D-06
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cos (2 0) (2 0 2 0 -6 0 0 0 0 0 0 0 0 ) 0.2296927730416380D-06
cos (2 0) (2 2 0 0 -6 0 0 0 0 0 0 0 0 ) 0.3107608105857458D-06
cos (2 0) (4 0 0 0 -6 0 0 0 0 0 0 0 0 ) 0.1553804052928729D-06
sin (2 0) (0 0 0 0 -6 0 0 0 0 0 0 0 0 ) -0.6204881922826443D-07
sin (2 0) (0 0 0 2 -6 0 0 0 0 0 0 0 0 ) 0.3102440961413221D-07
sin (2 0) (0 0 0 4 -6 0 0 0 0 0 0 0 0 ) -0.3878051201766527D-08
sin (2 0) (0 0 2 0 -6 0 0 0 0 0 0 0 0 ) 0.3102440961413221D-07
sin (2 0) (0 0 2 2 -6 0 0 0 0 0 0 0 0 ) -0.7756102403533053D-08
sin (2 0) (0 0 4 0 -6 0 0 0 0 0 0 0 0 ) -0.3878051201766527D-08
sin (2 0) (0 2 0 0 -6 0 0 0 0 0 0 0 0 ) 0.1551220480706611D-06
sin (2 0) (0 2 0 2 -6 0 0 0 0 0 0 0 0 ) -0.1318537408600619D-06
sin (2 0) (0 2 1 1 -6 0 0 0 0 0 0 0 0 ) 0.2432041126323226D-06
sin (2 0) (0 2 2 0 -6 0 0 0 0 0 0 0 0 ) 0.7756102403533053D-08
sin (2 0) (0 4 0 0 -6 0 0 0 0 0 0 0 0 ) -0.8919517764063013D-07
sin (2 0) (1 1 0 2 -6 0 0 0 0 0 0 0 0 ) -0.2432041126323226D-06
sin (2 0) (1 1 1 1 -6 0 0 0 0 0 0 0 0 ) -0.2792196865271899D-06
sin (2 0) (1 1 2 0 -6 0 0 0 0 0 0 0 0 ) 0.2432041126323226D-06
sin (2 0) (2 0 0 0 -6 0 0 0 0 0 0 0 0 ) 0.1551220480706611D-06
sin (2 0) (2 0 0 2 -6 0 0 0 0 0 0 0 0 ) 0.7756102403533053D-08
sin (2 0) (2 0 1 1 -6 0 0 0 0 0 0 0 0 ) -0.2432041126323226D-06
sin (2 0) (2 0 2 0 -6 0 0 0 0 0 0 0 0 ) -0.1318537408600619D-06
sin (2 0) (2 2 0 0 -6 0 0 0 0 0 0 0 0 ) -0.1783903552812603D-06
sin (2 0) (4 0 0 0 -6 0 0 0 0 0 0 0 0 ) -0.8919517764063013D-07
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Appendix H

Admissible regions: nodal distances and
elongations

The beginning of my research work has been originally devoted to the most recent theories
which were developed within the context of near-Earth asteroids orbital determination. Es-
pecially, we investigated the new techniques which are well-suited even if the astrometry in-
formation is not enough to compute an orbit and/or perform anidentification with an already
discovered object. In particular, we focused on the theory developed in Milani et al. (2004a)
where the so-calledAdmissible regionis introduced.

This Ph.D manuscript gives us the opportunity to present ourpersonal contribution to the
above-mentioned theory which is all the more important as ithas been recently adapted to the
main problem of orbit determination of the space debris population. For further details, we
refer to Tommei et al. (2007).

The results of this appendix have been previously publishedin Valk and Lemaître (2007a)

When a non identified object is observed, the first reaction ofthe scientific community is to
try to determine its orbit. Unfortunately, for the data collected on very short periods of time,
the arc of observation is not large enough to give any estimation of the curvature; the deter-
mination of the orbit is impossible, using traditional methods of orbital determination, such as
the Gauss method. If we intend to build a complete catalog of such objects, the conclusion is
easy: this object is rejected, and the observers hope to be luckier a few months or years later, to
re-observe the same body, on a larger timescale. However, inmany cases, the right ascension,
the declination and their instantaneous time derivatives are measured.

For the last few years, associations like Space Guard or the specialists of the Near-Earth
Asteroids (Minor Planet Center1 or NEODYS group2) have a completely different point of

1http://cfa-www.harvard.edu/iau/mpc.html
2http://newton.dm.unipi.it/cgi-bin/neodys/neoibo
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view concerning these unexpected observed objects. The main question is not only the im-
provement of their orbit, but also the potential hazard thatthey represent for the Earth: could
this unknown body becomes dangerous for us, in a delay of one or two hundreds years ?

Virtually, this too short arc (TSA) corresponds to an infinity of orbits. We assume, because
it is true in many cases, that its right ascensionα and declinationδ are know, as well as their
time derivatives; on the opposite, there is no data concerning either their distance to the Earth
or the time derivative of this distance. Consequently, on a set of six variables (α, δ, α̇, δ̇, r, ṙ),
the first four are determined with a specific accuracy, while the last two are completely arbi-
trary. This means that the object lies in a 2 dimensional subspace of a general 6 dimensional
space.

This idea was introduced by Milani et al. (2004a) and pushed further on in Milani et al.
(2004b), Gronchi et al. (2004), Milani et al. (2005) and Milani and Kneževíc (2005). This in-
complete set of data (2 angles and 2 time derivatives) is called an “attributable” by the authors
mentioned above and this denomination is conserved here. Thanks to reasonable hypotheses
(the fact that the object belongs to the Solar System, or thatit is not a satellite of the Earth),
Milani et al. (2004a) proved that this region, in the plane(r, ṙ), could be closed and formed of
one or two connected sets. Curves of constant values of the osculating Keplerian elements can
be drawn on this region.

Unfortunately, if a second observation is not available, the admissible region is still very
large; one of the challenges is to follow the propagation of this admissible region, by means of
linear and non linear techniques, in order to compare its evolution with a potential new arc.

Our purpose here is to concentrate on some aspects of the initial admissible region. Firstly,
we recalculate one of its boundaries, for the short distances to the Earth, introducing the hy-
perbolic shape of the orbit instead of its linear approximation; secondly, we introduce, on the
admissible zone, and in complement of the Keplerian elements information, the nodal dis-
tances, corresponding to the intersections of the Earth andpotential Earth’s impactors orbits.
We present different situations, where the singularity in inclination is inside or outside the
admissible region, following the chosen attributable. These curves could be very interesting
in the context of propagation of the motions, reducing the dimension of the admissible re-
gion (dimension one instead of two). Thirdly we introduce the concept of elongations on the
graphics.

H.1 The admissible region

Let ~PA and~VA be the heliocentric position and velocity vectors of a celestial bodyA at a ref-
erence timet. At the same time, the position vector~P⊕ and the velocity vector~V⊕ of the Earth
are well known.
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The heliocentric energy per unit mass ofA is given by

E⊙ =
1

2
‖~VA‖2 − k2

⊙

1

‖ ~PA‖
(H.1)

and its geocentric energy takes the form

E⊕ =
1

2
‖~VA − ~V⊕‖2 − k2

⊕

1

‖~PA − ~P⊕‖
, (H.2)

wherem⊕ andm⊙ are the masses of the Earth and of the Sun respectively. Gauss’ constant
is defined by:k⊙ =

√
Gm⊙ = 0.01720209895 andk2

⊕ = k2
⊙

m⊕

m⊙
. The solar mass is taken as

the mass unit, the mean semi-major axis of the Earth orbit is the distance unit (AU) and the
average day is the time unit.

An attributable is defined as a fourth dimension vector

~A = (α, δ, α̇, δ̇) ∈ [−π, π[ × ] − π

2
,
π

2
[ × R

2 (H.3)

computed at the timet and to which an apparent magnitudeM can be associated. We use
the classical geocentric equatorial coordinates(α, δ) with α, the right ascension, andδ, the
declination. The position vector~PA can be expressed as

~PA = ~P⊕ + r ~u (H.4)

wherer is the geocentric distance of the bodyA and~u is the unit vector in the direction of the
observation

~u = (cosα cos δ, sinα cos δ, sin δ). (H.5)

The first time derivative of equation (H.4) gives the velocity vector

~VA = ~V⊕ + ṙ ~u+ r α̇ ~uα + r δ̇ ~uδ, (H.6)

where

~uα = (− sinα cos δ, cosα cos δ, 0) (H.7)

~uδ = (− cosα sin δ,− sinα sin δ, cos δ) . (H.8)

The geocentric position and velocity vectors can be computed as functions ofr andṙ

‖~PA − ~P⊕‖2 = r2 (H.9)

‖~VA − ~V⊕‖2 = ṙ2 + r2 α̇2 cos2 δ + r2 δ̇2 = ṙ2 + r2η2 , (H.10)

where
η =

√
α̇2 cos2 δ + δ̇2 (H.11)
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is the proper motion. The energies are given by

E⊕ =
1

2

[
ṙ2 + r2 η2 − 2k2

⊕

r

]
(H.12)

and

E⊙ =
1

2

[
ṙ2 + c1 ṙ +W (r) − 2k2

⊙√
S(r)

]
, (H.13)

where the quantitiesW (r) andS(r) are functions of the geocentric distancer (see Milani et
al. (2004a) for details).

To determine the admissible regions, let us recall the conditions chosen by Milani et al.
(2004a)

1. A is not a satellite of the Earth

D1 = {(r, ṙ) : E⊕ ≥ 0} ,

2. A is not influenced by the Earth’s gravity field (of radiusRSI)

D2 = {(r, ṙ) : r ≥ RSI} ,

3. A is on an elliptic orbit around the Sun

D3 = {(r, ṙ) : E⊙ ≤ 0} ,

4. A is obviously outside the Earth’s globe (of radiusR⊕)

D4 = {(r, ṙ) : r ≥ R⊕} .

The admissible region is defined as

D = {D1 ∪ D2} ∩ D3 ∩ D4 . (H.14)

A schematic example of such a region is given in Figure H.1.

H.2 Immediate impact trajectory and inner boundary

Our first purpose is to exclude, from the admissible regionD, all the objects which are on a
collision course with the Earth within a short time span; as mentioned by Milani et al. (2004a),
this gives an additional boundary for the left part of the admissible region, betweend4 andd2

where the curvesdi are the boundaries of the regionsDi. It is based on the assumption that the
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d1

d4 d2

d3

PSfrag replacements

Figure H.1: The topology of an admissible region with two connected components in the plane
(r, ṙ); the curvesdi, for i = 1, 2, 3, 4 are the boundaries of the regionsDi.

trajectory of the bodyA is rectilinear and can be written as

η r2

|ṙ| ≥ R⊕ , (H.15)

whereR⊕ = 4.26352×10−5 AU. However, when the geocentric speedṙ is low, the hypothesis
of linearity is not suitable anymore and the boundary description can be easily improved by
using a two body (Keplerian) formalism: the object is assumed to move within the sphere of
influence of the Earth where its orbit is only controlled by the Earth’s gravity field. In this
context, our new condition can be expressed as

q⊕(r, ṙ) −R⊕ > 0 , (H.16)

whereq⊕ is the perigee corresponding to the geocentric orbit of the near-Earth objectA. This
latest expression has no simple analytic form as a function of (r, ṙ), nevertheless it can be
computed numerically. As it is obvious thatq⊕ = a⊕ (1 − e⊕), we compute the semi-major
axisa⊕ (negative for hyperbolic orbits) and the eccentricitye⊕ by

a⊕ = − k2
⊕

2 E⊕
, e⊕ =

√
1 − C2

⊕

a⊕ k2
⊕

,

where
C⊕ = ‖ ~C⊕‖ = ‖(~PA − ~P⊕) × (~VA − ~V⊕)‖ = r2 η2
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rr

ηr
ηr

E

A

E

A

Figure H.2: Immediate impact trajectory in the linear and Keplerian cases (schematic repre-
sentation).

is the norm of the angular momentum~C⊕ of the geocentric orbit. The linear and Keplerian
boundaries are represented in Figure H.2 in a descriptive way and in the plane(r, ṙ) on Fig-
ure H.3. The two conditions are very similar, even if, as expected, for low radial geocentric
speedṙ, the differences are significant. Nevertheless, as alreadypointed out by Milani et al.
(2004a), our new condition is only useful for the discovery of very small objects or of objects
with a very small apparent magnitude. In other words, this condition allows to discriminate
between the population of asteroids and that of future shooting stars.

A particular region appears clearly in Figure H.3, inside the green curve (geocentric en-
ergy) and to the right of the red curve (Keplerian condition): this is a region of bodies orbiting
around the Earth. Of course, most of the artificial satellites have very precise orbits and do not
require such a study. However, it is not always the case for space debris where orbital uncer-
tainty is a common fact, especially in the case of uncatalogued geostationary space debris. A
detailed analysis of this confined area, associated to a suitable model of propagation, would
give an interesting tool to follow this population and to measure the risk for future missions.
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Figure H.3: Immediate impact trajectory in the linear and Keplerian cases; represented in the
(r, ṙ) plane wherer is given in astronomical unit.

H.3 Nodal distances

Our second purpose is to define the subset of this admissible region associated with the objects
which impact the Earth. The necessary conditions for an impact between the Earth (considered
on a circular heliocentric orbit) and an hypothetic object can be easily formulated: the object
and the Earth should be exactly at one of the nodes of the orbitat the same time

Ω − λE =
π

2
∓ π

2
(H.17)

ω + f =
π

2
∓ π

2
, (H.18)

whereλE is the longitude of the Earth, on its geocentric circular orbit, measured in the ecliptic
plane,Ω, ω andf are respectively the longitude of the ascending node, the argument of the
pericenter and the true anomaly of the heliocentric orbit ofthe bodyA, in an ecliptic reference
frame. The upper sign corresponds to an impact at the ascending node, and the lower sign to an
impact at the descending node. For a collision at the ascending node, the so calledascending
nodal distancemust vanish

d+ =
a(1 − e2)

1 + e cosω
− aE = 0 , (H.19)
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whereaE is the Earth’s semi-major axis,a that of the bodyA ande its eccentricity. We have a
very similar condition for a collision at the descending node, for thedescending nodal distance

d− =
a(1 − e2)

1 − e cosω
− aE = 0 . (H.20)

For any set of values of(r, ṙ) in the admissible zone, we compute numerically the orbital
elements using the usual transformations

a =
k2
⊙

2 E⊙

, e =

√
1 − C2

a k2
⊙

, cos i =

(
Cz

C

)
,

where~C = (Cx, Cy, Cz) is the angular momentum of the body on its heliocentric orbitandC
is its norm.E⊙ is defined by the Equation (H.13). A smart way for calculatingω is to use a
scalar product between the line of nodes and the Laplace vector defined by

~q = ~VA × ~C − k2
⊙

~PA

‖~PA‖
. (H.21)

We present two very different cases; in the first one (corresponding to the attributableα =

2.018, δ = 0.204, α̇ = −0.00623 and δ̇ = 0.000302), the level curvei = 90◦ divides the
admissible region into two parts; the level curves seem to converge towards a point located
outside the admissible region. In the second one (corresponding to the attributableα = 2.018,
δ = −1.204, α̇ = −0.0623 andδ̇ = 0.00302), theconvergencepoint of the inclination curves
is inside the admissible region. This point corresponds to asingularity: the orbit is so elliptic
than it becomes a straight line; it means that the inclination is not defined anymore, the orbital
plane being reduced to a line.

For both cases, the level curves of the ascending (in red) anddescending (in blue) nodal
distances are plotted, giving a clear idea about the location of virtual impactors in the admis-
sible zone (Figure H.4). In the first case, on the left part of Figure H.4, the ascending and
descending nodal distances curves have no intersection, except for the caser = 0 andṙ = 0

(i.e. the orbit of the Earth) which is obviously common to both conditions. On the opposite, on
the right part of Figure H.4, they cross several times, inside the admissible region, for different
types of non circular and non coplanar orbits.

The location of the nodal distances in the admissible regionis crucial to determine the po-
tential hazard of this attributable. Indeed, it is easy to sample the curvesd+ = 0 or d− = 0;
to each point of this subset corresponds a set of six orbital elements, i.e. an orbit and an in-
stantaneous position on this orbit. By propagating the motions of the body (on a Keplerian
orbit, for the simplest case) and of the Earth, we can rapidlycheck whether a close encounter
is scheduled or not for the next few tens of years. By close encounter, we mean that the
body enters the sphere of influence of the Earth. A that moment, another analysis has to be
developed, using specific variables and formulae (see for example Öpik (1976) and Valsecchi
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et al. (2003)) to make the final model of approach and detect a significant probability of impact.

In a less restrictive use, this new information (the nodal distances location) may also be of
great interest to improve the choice of the metric function to enhance some important subsets
of the admissible region for future propagation (Milani et al., 2004a).

H.4 Circular and linear orbits

Let us draw the contour levels of the eccentricity in the admissible zone, for the two selected
attributables (Figure H.5). There are two apparent centersof circular orbits: the first one
coincides with the Earth itself (r = 0 and ṙ = 0) which is assumed to be on a circular orbit;
the second one is more interesting and can be characterized as a solution of the two following
equations

ṙ = − Ar

r +B
, (H.22)

p7 + 2
[
p2 ṙ + p4 r α̇ + p6 r δ̇

]
+ ṙ2 + r2 α̇2 cos2 δ + r2δ̇2 =

k2

√
p0 + 2 p1 r + r2

, (H.23)

where

A = p2 + p3 α̇ + p5 δ̇

B = p1 ,

as well as
p0 = 〈~P⊕, ~P⊕〉 p7 = 〈~V⊕, ~V⊕〉
p1 = 〈~P⊕, ~u〉 p3 = 〈~P⊕, ~uα〉 p5 = 〈~P⊕, ~uδ〉
p2 = 〈~V⊕, ~u〉 p4 = 〈~V⊕, ~uα〉 p6 = 〈~V⊕, ~uδ〉 ,

These equations were obtained by combining two conditions characterizing circular orbits.
First, the position vector~PA must be perpendicular to the velocity vector~VA

〈 ~PA, ~VA〉 = 0 (H.24)

secondly, the orbital heliocentric velocity must correspond to

‖ ~VA‖2 =
k2
⊙

a
,

that is
‖ ~VA‖2 ‖ ~PA‖ = k2

⊙ . (H.25)

Let us notice that all the values of the eccentricities lie between0 and1, the values outside
the admissible region correspond to hyperbolic orbits. Thecurvea = 1 (more visible on the
bottom diagram) corresponds to the positions of Earth’s Trojans. We plot the curves corre-
sponding to conditions (H.24) and (H.25) in Figure H.6. The condition (H.24) describes the
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Figure H.4: Level curves of the inclination (i = 20, 30, 45, 60, 90, 110, 135, 160 degrees), of
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(α = 2.018, δ = −1.204, α̇ = −0.0623, δ̇ = 0.00302) [bottom]. The unit is the astronomical
unit.
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Figure H.5: Values of the eccentricity (e = 0.2, 0.4, 0.6, 0.8, 0.9) and of the inclination
(i = 20, 30, 45, 60, 90, 100, 135, 160 degrees) for the two test attributables: (α = 2.018,
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δ̇ = 0.00302) [bottom]. Two level curves of the semi-major axis are also drawn corresponding
to a = 1 AU anda = 2 AU [bold].
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objects which are exactly at perihelion or aphelion dividing the admissible region into two
distinct parts. The intersections of the curves (H.24) and (H.25) give the circular orbits in the
admissible region. Beside the obvious case (ṙ = 0, r = 0), two potential circular orbits ap-
pear in the case of the first attributable and only one for the second one. The supplementary
solution hidden in Figure H.5 appears clearly as shown in Figure H.6 (bottom). Let us remark
that the virtual impactors detected by vanishing the nodal distances (except in the trivial case)
correspond to non-circular orbits, which is obvious, the Earth moving on a circular orbit itself.

H.5 Elongations and related angular distance

Let us remind that the attributable consists of two angles and their time derivatives; usually
they are connected toα, the right ascension, andδ, the declination, the geocentric equatorial
coordinates, but they could also be replaced byλ andβ, the ecliptic longitude and latitude of
the object, or deduced from each other thanks to the relations

cosβ cos λ = cos δ cosα

cosβ sin λ = sin ǫ sin δ + cos ǫ cos δ sinα

sin β = cos ǫ sin δ − sin ǫ cos δ sinα ,

whereǫ is the obliquity, i.e. the angle between the ecliptic and theequatorial plane. A quantity
directly linked to the attributable is theelongation, denoted byφ, the angular distance between
the Sun and the bodyA as viewed from the Earth. The elongation is given by the expression

cosφ = −xE cos λ cosβ − yE sin λ cosβ , (H.26)

where(xE , yE, 0) is the heliocentric position of the Earth on its circular ecliptic orbit. For the
first attributable, the elongation isφ = 166.87◦. This value suggests that the observations have
been performed close to the opposition (φ = 180◦). The elongation value corresponding to the
second attributable isφ = 91.48◦. In this particular case, the observations would have been
acquired near quadrature.

Let us notice that all the virtual asteroids corresponding to the same attributable have the
same elongation. On the contrary, the opposite angleθ, between the objectA and the Earth,
as viewed from the Sun, for a fixed elongation, is a function ofr and its level contours are
vertical lines in the admissible region, as shown in (FigureH.5). Let us remark that the two
selected attributables have quite different proper motions. Indeed, we haveη2 ≈ 4 η1 with
η1 = 6.1 · 10−3 rad/day, whereη1 andη2 are the proper motions of the first and second at-
tributable, respectively. On the other hand, the declination δ of the second attributable differs
significantly from the first one giving to this last case a moretheoretical and singular aspect.
As a consequence, the internal structure of the admissible region associated to the second at-
tributable shows several uncommon properties such as the inclination singularity, for example.
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Figure H.6: Condition (H.24) and (H.25) for the two test attributables: (α = 2.018, δ =
0.204, α̇ = −0.00623, δ̇ = 0.000302) [top]. (α = 2.018, δ = −1.204, α̇ = −0.0623,
δ̇ = 0.00302) [bottom].
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H.6 Conclusion

The topology of the admissible region is clearly dependent on the selected attributable, as
shown by our two test attributables, corresponding to two very different observations: at the
opposition or at the quadrature.

We have shown that the number and the positions of the potential circular orbits, the loca-
tion, the shape and the length of the ascending and descending nodal distances, the behaviour
of the inclination level curves are very different from one situation to the other one and contain
substantial information about any virtual body compatiblewith the partial set of observations.

In the search for potential impactors, we have proposed to sample the curves of zero nodal
distances and to propagate this set of points for several years. This procedure reduces in a sig-
nificant way the size of the admissible region and allows to use specific propagation methods,
adapted to close encounters. It should be also interesting to compute the minimal orbital inter-
section distance (MOID) using the Öpik (1976) formalism, tohave a more complete analysis
about potential Earth’s impactors. However, in this last case, we should check the validity of
the theory by computing the Tisserand parameter.
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