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Abstract

I
n software engineering, software reuse has been a popular topic since 1968. Nowa-
days, Software Product Line (SPL) engineering promotes systematic reuse throughout
the whole software development process. Within SPL, reusability strongly depends on

variability. In this context, variability modelling and management are crucial activities that cross-
cuts all development stages. Different techniques are used to model variability and one of them is
Feature Diagrams (FDs). FD languages are a family of popular modelling languages used to model,
and reason on, variability. Since the seminal proposal of a FD language, namely FODA, many
extensions have been proposed to improve it. However, the pros and cons of these languages are
difficult to evaluate for two main reasons: (1) most of them are informally defined and (2) no well
defined criteria were used to justify the extensions made to FODA. As a consequence, variability
modelling and management techniques proposed in the literature or used by practitioners may be
suboptimal.

Globally, this work underlines that the current research on FDs is fragmented and provides
principles to remedy this situation. A formal approach is proposed to introduce more rigour in the
motivation, definition and comparison of FD languages. Thereby, examining their qualities should
be more focused and productive. A formal approach guarantees unambiguity and is a prerequisite
to define formal quality criteria and to produce efficient and safe tool automation. A quality analysis
is necessary to avoid the proliferation of languages and constructs that are an additional source of
misinterpretations and interoperability problems. The creation or selection of a FD language should
be driven and motivated by rigourous criteria. Translations from one FD language to another should
be defined and carefully studied to avoid interoperability problems.

The main contributions of this work are: (1) to use a quality framework to serve as a roadmap to
improve the quality of FD languages, (2) to formally evaluate and compare FD language qualities
according to well-defined criteria and following a clear method, (3) to formally define and motivate
a new FD language that obtains the best scoring according to the quality criteria and (4) to develop
tool support for this language.

Keywords

Software Product Line, Requirements Engineering, Formal Methods, Formal Semantics, Variability
Management, Feature Diagrams, Feature Modelling, Automated Reasoning, Language Evaluation,
Language Quality.
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CRFT Constraintless Feature RSEB Tree language
DAG single-rooted Directed Acyclic Graph
EFD Extended Feature Diagram language
EQBF Existentially Quantified Boolean Formulae
FD Feature Diagram
FFD Free Feature Diagram language
FODA Feature Oriented Domain Analysis (Kang et al., 1990)
FoFD Forfamel Feature Diagram language
FOPLE Feature-Oriented Product Line Engineering (Kang et al., 2002)
FORM Feature-Oriented Reuse Method (Kang et al., 1998)
GCT Graphical Constraint Type
GMF Graphical Modelling Framework
GP Generative Programming (Eisenecker and Czarnecki, 2000)
GPFT Generative Programming Feature Tree language
GT Graph Type
ITG Iterative Tree Grammar
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LX Syntactic domain of a language X
MDE Model-Driven Engineering
mutex MUTually EXclusive with
MX Semantic function of a language X
NF Normal Form
NLC Node-labelled Controlled (Janssens and Rozenberg, 1980)
NLDAG Node-Labelled Directed Acyclic Graph
NT Node Type
NP Nondeterministically Polynomial (Papadimitriou, 1994)
OCL Object Constraint language
OFD FORM Feature Diagram language
OFT FODA Feature Tree language
OP Node type OPerator
PLUSS Product Line Use case modelling for System and Software engi-

neering (Eriksson et al., 2005)
PFT PLUSS Feature Tree language
PL Product Line
Pr Propositional Logic
QBF Quantified Boolean Formulae
RFD RSEB Feature Diagram language
RSEB Reuse-Driven Software Engineering Business (Griss et al., 1998)
SX Semantic domain of a language X
SAT Boolean SATisfiability (Papadimitriou, 1994)
SDF Syntax Definition Formalism (van Deursen and Klint, 2002)
SPL Software Product Line
SPLE Software Product Line Engineering
TCL Textual Constraint Language
UML Unified Modelling Language (OMG, 2008)
VBFD van Gurp and Bosch Feature Diagram language (van Gurp et al.,

2001)
vDFD van Deursen and Klint Feature Diagram language (van Deursen

and Klint, 2002)
VFD Varied Feature Diagram language
XFD XML-based Feature Diagram language
XOR Exclusive OR



Introduction

I
n software engineering, software reuse (Jacobson et al., 1997) has received a substantial
attention by the research community since the publication of the seminal papers: Mass
Produced Software Components (McIlroy, 1968) and On the Design and Development of

Program Families (Parnas, 1976).
Nowadays, many researchers and organisations still believe in software reuse as a powerful

means to improve productivity and quality in software development. Software reuse is defined
by (Krueger, 1992) as “using existing artifacts during the construction of a new software sys-
tem”. Consequently, it helps avoiding redevelopment and capitalising on previous work. Hence,
well-established solutions can be deployed in new contexts with minimal efforts, leading to better
products delivered in shorter times with reduced development and maintenance costs.

Software reuse’s advantages have been widely acknowledged (Biggerstaff and Perlis, 1989a,b),
however, at that time, significant improvements were difficult to deliver (Krueger, 1992; IEEE Soft-
ware Staff, 1994). In the past decades, several development paradigms have proposed approaches
to improve software reuse. Many concepts have been introduced to deal with reuse (see Table 1) at
various software development phases.

Software reuse has often been limited to principles and mechanisms that facilitate reuse within
the classical software development process. Nevertheless restricting reuse to code and managing
it application by application does not sufficiently pay off. Lately, planned and systematic software
reuse has been considered as the focus of a particular and novel software development process with
the following qualities:

• it enables and advocates the development of sets of applications that share common function-
alities (commonalities),

• its efficiency relies on the number of applications developed and on the degree of commonality
they share,

• it manages reuse through all development phases including requirements, design, code and
tests,

• it industrialises software development.

This new software development process is known as Software Product Line Engineering (SPLE)
where a Software Product Line (SPL) is defined as “a set of software-intensive systems that share
a common, managed set of features satisfying the specific needs of a particular market segment or

1
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Decade Development
Paradigm

References Reusable
artifacts

Phases

1970s Procedural (Sebesta, 1993) Modules Coding
1980s Object-

Oriented
(Dahl and Nygaard, 1966;
Henderson-Sellers, 1992;
Armstrong, 2006)

Classes Coding Design

1990s Component-
Oriented

(D’Souza and Wills, 1999) Components Coding Design

1990s Agent-
Oriented

(Shoham, 1990; Wooldridge and
Jennings, 1995)

Agents Coding Design

1990s Aspect-
Oriented

(Kiczales, 1996) Aspects Coding Design

1990s Software Prod-
uct Lines

(Foreman, 1996; Clements and
Northrop, 2001; Pohl et al.,
2005)

Core Assets All

2000s Model-Driven (Kleppe et al., 2003; Thomas
and Barry, 2003; Thomas, 2004)

Models Coding Design

Table 1: Software Reuse over the years

mission and that are developed from a common set of core assets in a prescribed way” (Clements
and Northrop, 2001).

SPLE introduces the concept of core assets that generalises all reusable artifacts proposed in the
previous approaches (see Table 1). Core assets refer to pieces of code (modules, classes, compo-
nents, aspects, models) but are not limited to them. In addition, they include requirement documents,
architecture descriptions, test cases and artifacts from all phases of the single software development
life-cycle.

As illustrated in Figure 1, the classical (i.e. waterfall) single software development process
encompasses knowledge, tools and methods to define application requirements and then to perform
application design, coding and testing. Many extensions of this process have been proposed. SPLE
suggests to adapt it in order to leverage reuse in a systematic manner.

Application
Design

Application
Coding

Application
Requirements

Application
Testing

Figure 1: Software Development Life-Cycle



3

SPLE promotes systematic reuse and intends to maximise it. In current practice however, reuse
is frequently opportunistic and essentially lacks systematisation and standardisation. Opportunis-
tic reuse is a non-repeatable process where various realisation mechanisms are used in an ad-hoc
manner. Examples of realisation mechanisms are: cut and paste, inheritance, frameworks, design-
patterns, software libraries, components, agents, aspects, web services. While it may suffice within
limited developer teams working on small projects involving few stakeholders, when projects grow
in size with more products and higher complexity, systematic reuse is strongly recommended. Plan-
ning, systematising and institutionalising reuse throughout the whole software development life-
cycle is crucial. Ultimately, the SPL would benefit from large scale economies thereby reducing its
costs and improving its productivity, time to market and software quality.

One of the most challenging aspects of systematic reuse is variability management, i.e., how to
describe, manage and implement the commonalities and variabilities existing between SPL mem-
bers. Indeed, each member shares commonalities with all SPL members and differs from them
through variabilities. Furthermore, variability impacts the whole development life-cycle. Variabil-
ity analysis is therefore essential before constructing any reusable artefact. This global analysis
describes what varies in the SPL, how it varies and why it varies. Variability management is a
complex endeavour. Therefore, models abstracting variability from other considerations are highly
profitable.

Different techniques are used to model variability. One of them is called Feature Modelling (Eise-
necker and Czarnecki, 2000) and is dedicated to model variability using Feature Diagram (FD)
languages (Kang et al., 1990). The main purpose of FD languages is to model variability in terms
of “features” at a relatively high level of granularity. FD languages enable (1) to capture common
and variable features, (2) to represent dependencies between features, and (3) to determine combi-
nations of features that are allowed or disallowed in a SPL. The notion of feature can be understood
as “a distinguishable characteristic of a concept (e.g., system, component and so on) that is relevant
to some stakeholder of the concept” (Eisenecker and Czarnecki, 2000).

The seminal FD language was first introduced by Kang et al. back in 1990 as part of the FODA
(Feature Oriented Domain Analysis) method (Kang et al., 1990). A simple FD modelling variability
in a SPL of car systems (see Figure 2) has been proposed by Kang et al. to illustrate the main FD
language concepts. This model represents a SPL of car systems. Each car system is a combination
of features. Each feature may be decomposed into sub-features. Each combination of features
is determined according to the constraints imposed by the FD. For instance, the arc between the
features “Manual” and “Automatic” indicates that they are alternative features. It means that both
features may not appear at the same time in a combination. Therefore no car may have a manual
and an automatic transmission at the same time. Once all the constraints are resolved, four different
car systems (combination of features) are allowed. The four possible car systems are:

• a car system with manual transmission and without air conditioning,

• a car system with manual transmission and air conditioning,

• a car system with automatic transmission and without air conditioning,

• a car system with automatic transmission and air conditioning.
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Car

Transmission Horsepower

Automatic

Air Conditioning

Manual

Figure 2: FODA FD: Car Systems (Kang et al., 1990)

Motivation

Feature Modelling is a popular technique that has the potential to deliver significant improvements
in terms of variability management, development time, quality and costs. The benefits associated to
Feature Modelling are however still restrained. Many reasons may explain this situation. Through-
out the thesis we focus our efforts on issues essentially concerning FD languages:

• There is a profusion of FD language proposals: (Kang et al., 1990, 1998; Griss et al., 1998;
Eisenecker and Czarnecki, 2000; van Gurp et al., 2001; van Deursen and Klint, 2002; Man-
nion, 2002; Riebisch et al., 2002; Riebisch, 2003; Cechticky et al., 2004; Eriksson et al., 2005;
Czarnecki et al., 2005c,b; Batory, 2005; Benavides et al., 2005a; Wang et al., 2005a,b; Sun
et al., 2005; Asikainen et al., 2006; Janota and Kiniry, 2007),

• FD languages are not always properly defined,

• FD languages have not been compared and evaluated according to a clear and systematic
method,

• FD languages are not sufficiently supported by tools and, hence, lack automatisation.

Clearly, many different proposals exist for FD languages, what is the most suitable is unclear
and no standard exists. Accordingly, our first goal is to analyse and categorise existing FD languages
in a systematic way. This categorisation should be elaborated according to a well-defined method
and to specific criteria in order to evaluate and compare these languages.

In addition, FD reasoning and automation are frequently underexploited and suboptimal. Ac-
cordingly, our second goal is to elaborate safe and efficient tool support based on formal approaches.
FD reasoning addresses typical questions that arise in every SPL containing various possible com-
binations of features (a.k.a products):
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• Is a combination of features part of the SPL or not? If not, how should we extend the SPL to
include this new combination of features?

• Which and how many combinations of features are valid within the SPL?

• Which combinations of features are invalid and which constraint(s) do they break?

• How many products include a given feature?

• Can we, and if so, how do we translate a FD written in one FD language into another one,
preserving the same allowed combinations?

• Are two SPLs described in two different FDs equivalent? If not, can we integrate them, and
what SPL will result from this integration?

This thesis aims to improve FD languages’ definition, automation and comparison from research
and practical perspectives. In terms of research, our purpose is to collect objective knowledge on FD
languages and to improve them usefully. In terms of practice, our purpose is to deliver powerful tool
support to handle FD languages and to decrease the complexity associated to variability modelling
and reasoning. Essentially, we claim that formal approaches and formal quality criteria help to
achieve these goals.

Thesis

Currently, formalisation of, and tool support for, FD languages are still immature (Fey et al., 2002a;
Batory et al., 2006). However, proper formalisation is a prerequisite for safe and efficient tool sup-
port. Formal approaches propose various mechanisms to (1) specify the system, (2) formalise the
desired properties of it and (3) to prove that the specification satisfies the properties (Bowen and
Hinchey, 2006). Used in a proper way, formal approaches enable to provide formal specifications.
These specifications are independent of any implementation and assure that the “what” should be
developed is described rather than the “how” it should be developed. In addition, these specifica-
tions are computer-understandable, concise, unambiguous and complete. Formal approaches allow
identifying ambiguities or errors and eliminating them in the early phases of the development pro-
cess. Therefore, adopting them has a great potential to improve the quality of FD languages and
their tool support.

Similarly, evaluation and comparison of FD languages are also immature and mainly based on
informal quality criteria (Djebbi and Salinesi, 2006). Formal quality criteria should be based on
well established theories such as language theory (Hopcroft et al., 2000) or computational complex-
ity theory (van Leeuwen, 1990; Papadimitriou, 1994) and helps reducing subjectivity when com-
paring languages. We claim that both formal and informal criteria are complementary and should
be combined to depict a better quality panorama.

Hence, our thesis mainly concerns language engineering and the thesis statement can be sum-
marised as follows: Adopting formal approaches and formal quality criteria contributes to better FD
languages with more rigourous methods to define and compare them.
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Research Problem and Questions

In general, this thesis investigates the problem of quality evaluation and comparison of specific mod-
elling languages called “Feature Diagram (FD) languages”. Several research questions are inherent
to this problem and provide insights as to why and how we proceed to tackle it. As a starting point
for the upcoming reflection and in order to clearly state our research questions, we first describe the
main concepts appearing in the title of the thesis: “Quality of Feature Diagram Languages: Formal
Evaluation and Comparison”. Four concepts must be underlined: (1) Languages, (2) Quality (of
Languages), (3) FD Languages and (4) Formal Evaluation and Comparison (of Languages).

• Languages refer to systems of symbols used to represent and communicate information (Krogstie,
2001a).

• Quality (of Languages) refers to the perception of the degree to which the language meets
the users’ expectations (Krogstie, 2001a).

• FD Languages are a family of popular languages, mostly used to model variability during
Requirements Engineering (RE) of Software Product Lines (SPL) (Kang et al., 1990).

• Formal Evaluation and Comparison (of Languages) refers to the use of mathematically
based techniques for the evaluation and comparison of languages.

Firstly, our investigation is targeted at language quality rather than diagram quality. Language
and diagram qualities are complementary views. However, in model quality, the study is mainly
empirical and the objects of study (the models) are not always easily available. Indeed, real exam-
ples of FDs are not accessible mainly due to two reasons: (1) Feature Modelling is an emerging
modelling paradigm and (2) FDs represent highly strategic information that companies want to pre-
serve. Therefore, representative (as opposed to research or illustrative) diagrams are almost nowhere
to be found. Hence, we focus our efforts on the quality improvement of FD languages for which
many references and documentation exist in literature.

Secondly, quality of languages itself is a multidimensional and complex endeavour. The notion
of user’s expectations must be clarified. Indeed, different users may have different expectations for
the same language. One could favour the match between the statements of the language and his
knowledge whereas another could address the degree to which the language lends itself to automatic
reasoning or executability, and so on.

Thirdly, FD languages are visual languages dedicated to represent variability. Visual means that
the symbols manipulated by the languages are mainly graphical ones. Variability models should be
easily understandable by non-technical users and be effective to communicate with. They should
be supported by tools to minimise tractability and complexity issues. As already mentioned, FD
languages are characterised by a profusion of different proposals. Many authors have proposed new
FD languages or extended previous ones for their own context with different syntaxes and semantics.

Fourthly, we address the evaluation and comparison of FD Languages from a formal perspec-
tive. Obviously, this perspective is not sufficient in itself and should be complemented by an “infor-
mal” one. For instance, the guarantee that a language by itself helps capturing the right information
about the domain can not be formally provided. Furthermore, the notion of “adequate” modelling
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language is also relative to the context of the use of the language. Priorities over the quality may
differ from one company, or project, or individual to another.

Finally, we believe that one critical issue is to formally compare and evaluate FD languages
according to their semantics and to well-defined criteria. The definition of such criteria should be
driven by a systematic approach where the studied languages and the criteria are formally defined to
avoid any ambiguities or misinterpretations. Therefore, our research problem is stated as follows:

Research Problem: How can the quality of FD languages be formally evaluated and compared?
From this research problem, we investigate three main research questions:

• RQ.1: Which qualities could be evaluated for a FD language?
This question addresses the concept of quality of FD languages. The various quality dimen-
sions should be identified and related to quality of languages in general. The purpose is to
identify and understand the main quality dimensions of FD languages.

• RQ.2: Which formal approaches facilitate evaluation and comparison of FD languages’ qual-
ity and how to use them?
This question involves the analysis of FD language quality according to formal approaches.
Which quality dimensions are involved? Which formal evaluation criteria can help us to com-
pare FD languages? How should such an analysis proceed? What are the main limitations to
this analysis?

• RQ.3: How are existing FD languages evaluated according to this analysis?
This question studies existing FD languages and compare them according to formal evaluation
criteria.

Throughout this thesis, previous work concerning formal languages and quality of languages is
recalled and answers to these research questions constitute the core of our contributions.

Claimed Contributions

In general, this thesis underlines that the current research on FDs is fragmented and therefore pro-
vides principles to remedy this situation. A formal approach is presented and designed to introduce
more rigour in the motivation, definition and comparison of FD languages. Hence, examining their
qualities will be more focused and productive. This quality analysis is necessary to avoid the pro-
liferation of languages and constructs that are an additional source of misinterpretations and inter-
operability problems. In addition, the creation or selection of a FD language should be driven by
rigourous criteria.

The main contributions of this thesis are:

• A semantics is defined and discussed for FDs (Bontemps et al., 2004, 2005). This definition
is original in the sense that it is formally defined and it is generic to allow language engineers
to provide formal definitions for a family of FD languages. This definition of a family of FD
languages is named FFD, standing for Free Feature Diagram.
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• A method based on formal criteria is described to evaluate FD language quality from a formal
perspective (Schobbens et al., 2006; Heymans et al., 2008).

• This method is applied to both informal and formal FD languages (Trigaux et al., 2006;
Schobbens et al., 2006, 2007; Heymans et al., 2008). The practical contributions when apply-
ing this method are to (1) provide a formal semantics to informal FD languages, (2) compare
and discuss FD languages and their constructs according to formal criteria and (3) compare,
relate and discuss different proposals of semantics for FD languages including our.

• A new FD language, called Varied Feature Diagram language (VFD), is formally defined
using FFD. VFD is proposed as a minimal language with the best rankings according to the
defined criteria.

• A Reasoning Tool is proposed to support VFD and to resolve associated decision problems.

Structure

The thesis is organised in five parts and eleven chapters (Figure 3).
Part I, The Research Domain intends to provide enough background knowledge to familiarise

readers with the domain to which this thesis contributes. This part contains two chapters.

• Chapter 1: Software Product Lines introduces the SPL paradigm. Variability is presented as
a key issue that should be addressed during the whole SPL process, and in particular during
Requirements Engineering.

• Chapter 2: Feature Modelling: The Basic Concepts introduces Feature Modelling as a way
to model variability in SPL, and more specifically the variability in requirements.

Part II, Quality of Models and Languages presents the notion of quality in the context of
Models and Languages. This part contains three chapters.

• Chapter 3: A Quality Framework gives an overview of a global semiotic quality framework
assessing the quality of models and languages named SEQUAL and developed in (Krogstie,
2001a). In addition, SEQUAL is refined to evaluate the quality of FD languages according to
the formal criteria defined in Chapter 5.

• Chapter 4: Languages: Formal Definition recalls the basic principles developed by (Harel
and Rumpe, 2004) to formally define the abstract syntax and semantics of languages.

• Chapter 5: Languages: Formal Criteria and Quality presents the set of formally defined
criteria proposed to assess the semantically related qualities of languages. These criteria are
situated according to the quality framework presented in Chapter 3 and their definition is
based on the principles presented in Chapter 4.

Part III, Quality of Feature Diagram Languages presents how the principles associated to
language quality could be transposed to FD language quality. This part contains four chapters.
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Figure 3: Structure of the Thesis
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• Chapter 6: Feature Diagram Languages: State of the Art surveys the existing FD languages,
whether informally or formally defined.

• Chapter 7: Feature Diagram Languages: A Comparison Method describes and illustrates
methods to evaluate and semantically compare FD languages. The principles presented in
Chapter 4 are adapted in order to formally define formal and informal FD languages in a
systematic and efficient way. The evaluation method is based on the set of formal criteria
presented in Chapter 5. The comparison method mainly shows how to adapt and transform
the informal or formal definitions of FD languages in order to render them suitable for com-
parison.

• Chapter 8: Free Feature Diagram Language (FFD) : A Formal Configurable Definition
presents the definition of Free Feature Diagram language (FFD) following principles pre-
sented in Chapter 4. We mainly present and discuss the semantic proposed originally for
VFD and then for FFD. More precisely this chapter describes how we have formalised the
original semantics of FODA FD that was previously given in natural language. The FFD def-
inition is original in the sense that it is configurable. Accordingly, FFD enables to formally
redefine most of the FD languages introduced in Chapter 6. This definition is reused in Chap-
ter 9 to provide a formal definition to informal FD languages and in Chapter 10 to implement
the VFD semantics within a reasoning tool.

• Chapter 9: Feature Diagram Languages: Quality Analysis presents the quality evaluation
and comparison of (1) the informal FD languages covered by FFD (Chapter 8), (2) three
formal FD languages: our FD language (VFD) (Bontemps et al., 2004; Schobbens et al.,
2007), van Deursen et al.’s FD language (vDFD) (van Deursen and Klint, 2002) and Batory’s
FD language (BFT) (Batory, 2005) and (3) Boolean Circuits (BC) (Shannon, 1937, 1938;
Vollmer, 1999). Although BCs are not a FD language, our comparison method remains ap-
plicable. FDs are closely related to Boolean logic. Hence, one could question whether visual
languages associated to Boolean logic may not replace FDs advantageously. To answer this
question we propose to apply our method to compare FFD and BC.

These quality analyses are based on the criteria defined in Chapter 5 and on the method
presented in Chapter 7.

Part IV, Automation of Feature Diagram Languages presents solutions to support automa-
tion and reasoning on VFD.

• Chapter 10: Varied Feature Diagram Language (VFD): A Reasoning Tool describes a tool
based on the semantics defined in Chapter 8 and automating various decision problems related
to FD languages.

Part V, Conclusion and Future Work summarises the major findings and discusses possible
future work.

• Chapter 11: Conclusion and Future Work first presents conclusions related to the research
problem and questions, then recalls the claimed contributions and their limitations. Finally,
suggestions for future work are provided.
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Chapter 1

Software Product Lines

I
n this chapter, we recall the main concepts of Software Product Lines (SPL) and underline
why variability is a major issue in SPL Engineering (SPLE), specifically during Require-
ments Engineering. Subsequently, we discuss why variability modelling is crucial and

why we address it. This will lead us to the second chapter that describes Feature Modelling and
how it contributes to variability modelling within SPL.

The structure of this chapter is as follows. Firstly, we introduce SPL in Section 1.1. The
main points that we address are: SPL process and principles (Section 1.1.2), SPL evolution and
adaptation (Section 1.1.3), SPL benefits (Section 1.1.4), SPL challenges (Section 1.1.5) and concrete
applications successfully applying SPL principles (Section 1.1.6).

Secondly, in Section 1.2 we underline that variability is a crucial issue in SPL. Variability is de-
fined in Section 1.2.1 and its main activities are described in Section 1.2.2. Categorisation and levels
of variability are respectively addressed in Section 1.2.3 and 1.2.4. Several variability mechanisms
are presented in Section1.2.5. Finally, variability modelling is discussed in Section 1.2.6.

1.1 Software Product Lines

1.1.1 Introduction

In software engineering, software reuse (Jacobson et al., 1997) has been a popular topic since the
publication of the seminal papers: Mass Produced Software Components (McIlroy, 1968) and On
the Design and Development of Program Families (Parnas, 1976). Nowadays, many researchers and
organisations still believe in software reuse as a powerful means to improve productivity and qual-
ity in software development. A general definition of “software reuse” is given in (Krueger, 1992):
“Software reuse is using existing artifacts during the construction of a new software system”.

More recently, a new approach has been proposed to improve reusability within software de-
velopment. This approach is called Software Product Lines (SPL) and leads to economies of scale,
reduction in terms of cost and time to market, better quality and planning (Clements and Northrop,
2001). Previously, other proposals (Table 1) were aiming at similar objectives. However, the SPL

13
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approach goes further and proposes to institutionalise systematic reuse throughout all software de-
velopment phases. In more details, the SPL approach proposes solutions to cope with various
problems that may occur during software development:

• Most software products in the same application domain have been built before at some levels.
Industries, such as telecommunications, home appliances or car industry, build the same or
similar products over and over again. Therefore, on specific market segments, software de-
velopment should evolve from single product development to multiple products development
based on massive reuse.

• Software producers interests are often in contradiction with customers interests. Indeed, pro-
ducers want to maximise their benefits, minimising their production costs and time to market,
while customers ask for better quality software tailored to their individual needs.

• Software products rapidly evolve and increase in size and complexity with high product di-
versity. Typical problems occur when product complexity increases:

– The same functionalities are developed several times at different places,

– The same changes are repeated at different places,

– Identical features behave differently according to a particular product,

– Updating products and managing changes are challenging tasks,

– Maintaining products requires too much efforts and resources.

A SPL is defined as “a set of software-intensive systems that share a common, managed set
of features satisfying the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way” (Clements and Northrop, 2001).

SPL is a new step forward in the field of reusability and represents an innovative and growing
approach in software engineering. Reuse is achieved through the development of a set of core
assets shared among all members of the SPL. Core assets are common development artifacts such as
requirement’s documents, conception’s diagrams, architectures, codes (reusable components), test’s
procedures or maintenance’s procedures. SPL offers a new strategy, for designers and programmers,
to cope with the emergence of new similar products. The main ideas behind this strategy are:

1. New products are not implemented from scratch but the implementation is driven by a planned,
proactive and systematic reuse of the core assets,

2. A specific development process prescribes how the core assets should be built and how they
should be reused when developing final products,

3. New necessary artifacts might be developed,

4. Various reuse mechanisms might be used such as parametrisation, inheritance, plugins, etc.
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1.1.2 Software Product Line Engineering

Software Product Line Engineering (SPLE) is “a paradigm to develop software applications (software-
intensive systems and software products) using platforms and mass customisation” (Pohl et al.,
2005). The purpose is to reduce time and costs during development and to increase software quality
and efficiency by reusing core assets that have been already tested and secured.

As illustrated in Figure 1.1, SPLE dedicates a specific process, named Domain Engineering, to
the development of core assets. These core assets are then reused extensively during the second
process called Application Engineering that corresponds to the development of the final products.

Domain
Engineering

Application Engineering

Domain
Analysis

Application
Coding

Domain
Coding

Reusable
Components

Domain
Expertise

New
Require-

ments

Reference
Requirements

Core Assets 
including 

variabilities

Domain
Design

Application
Design

Application
Requirements

Reference
Architecture

Final
Applications

Feedback /
Adaptation

Domain
Testing

Application
Testing

Figure 1.1: Software Product Line Engineering adapted from (Foreman, 1996; Pohl et al., 2005)

Both processes are related with traceability relationships to facilitate SPL evolution. Backward
and forward traceability are established between reference requirements, reference architecture
and reusable components to manage changes in SPL. A feedback loop is used during application
engineering to revise domain analysis, design, coding and testing. New products developed within
a SPL may contain specific requirements. These requirements could remain specific to a product or
a decision could be taken to integrate them into the SPL. New products may reveal the necessity to
modify reusable components or to integrate new reusable components into the SPL.
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1.1.2.1 Domain Engineering

Domain Engineering, a.k.a development for reuse, is composed of four activities: domain analysis,
domain design, domain coding and domain testing. Its main purposes are:

1. to identify which products will be included in the SPL,

2. to identify what differs between products, how it differs and where,

3. to identify and implement core assets.

In more details, Domain Engineering determines which functionalities are common to all products
(a.k.a commonalities) and which differentiate one product from another (a.k.a variabilities). Once
this distinction is made explicit, commonalities and variabilities are implemented. This process also
determines where variabilities may occur, identifying variation points. Variation points are taken
into account in the reference architecture where reusable components are selected and correctly
combined to constitute the final product. Experience of the company is also often reused, e.g. cod-
ing standards, patterns and frameworks.

At the end, the outputs of this process are the scope of the family and its core assets. Core assets
form the basis for the SPL and include, but are not limited to: reference requirements, reference
architecture, reusable software components. Other development artifacts are often also included,
such as domain models, documentation and specifications, performance models, schedules, bud-
gets estimation, test plans, test cases, work plans, process descriptions,... (Clements and Northrop,
2008a). Here is a short description of these elements:

• The scope of the family is defined as the set of products included in the SPL. It often consists
of (1) an enumerated list of product names, (2) a list of characteristics (functionalities) that
the products have all in common, and (3) the ways in which they vary from one to another
(Clements and Northrop, 2008a). This scope is a statement, made by the company, about
which systems will be part of the product line and which will not. This set will obviously
vary during time: market will evolve and variation in organisations’ strategy will occur.

A good definition of the scope is crucial, because if too broad it renders the core assets too
complex to be effectively reused, and too narrow it does not justify the cost of core asset
development and maintenance.

• The set of reference requirements gathers the commonalities and variabilities that will be
reused to elicit requirements for a new product. Once the variabilities have been selected for
the product, the designer may turn all his/her attention to the product particularities (a.k.a un-
expected variabilities). These particularities are unforeseen requirements completely specific
to a customer. First, they must be elicited and then integrated in the final product.

• The reference architecture defines (1) the infrastructure common to all the final products
and (2) the interfaces of the reusable components that will be extensively reused during the
development of the final products.

• Reusable components are software components reused during final product coding.
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• Production plans specify a prescribed way to derive final products from the core assets. It
specifies:

1. how the core assets will be reused to build a product,

2. the SPL’s constraints to which the products must conform,

3. the links between core assets and products.

In other words, a production plan corresponds to a developers’ guide that helps reusing core
assets in a correct and efficient manner.

1.1.2.2 Application Engineering

Application Engineering, a.k.a development with reuse, is composed of four activities: application
requirements engineering, application design, application coding and application testing. This pro-
cess is built on the previous one and consists in developing a final product, reusing the core assets
and adapting the final product to specific requirements. Its inputs are the core assets and its output
the final product. At this stage, reuse is driven by:

1. the reference requirements that determined which requirements will be reuse, and therefore,
by following the traceability links, which reusable components,

2. the reference architecture and production plans that determine how reusable components can
be combined.

On step further is to automate application engineering. This is the main proposal of Gener-
ative Programming (GP) (Eisenecker and Czarnecki, 2000) that seeks to replace manual search,
adaptation, and assembly of components by the automatic generation of needed components given
a particular requirements specification. More specific product derivation approaches and tech-
niques have been also proposed. Typical examples of such approaches are: the component-based
approach (Atkinson et al., 2001), the feature-oriented programming approach (Batory, 2003), the
aspect-oriented programming approach (Lee et al., 2006) and the model-driven approach (Botter-
weck et al., 2007).

1.1.3 Software Product Line Adoption and Evolution

A SPL does not appear accidentally, but requires a conscious and explicit effort from the interested
organisation (Bosch, 2002). Firstly, the organisation may adopt an evolutionary or a revolutionary
approach. The company has the choice to create its SPL from scratch (maybe using the old system
at the same time to avoid interrupting the production) or to evolve its current system incrementally.
Secondly, the SPL approach can be applied to an existing line of products or to a new system.

Each case has associated risks and benefits that should not be neglected. In general, the revolu-
tionary approach involves more risks, but higher returns compared to the evolutionary approach (Bosch,
2002). Nevertheless, we can rarely expect a company to realise a complete SPL life-cycle immedi-
ately from the start. Most would start small, one component at a time, within pilot projects.
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Once the SPL approach has been adopted, mechanisms have been proposed to manage it and
make it evolve. One proposal (Northrop, 2002) is to divide SPL evolution into three essential
activities: the core asset development, the product development and the SPL management. These
activities can not be considered sequentially. Products and core assets are influenced by each other
and evolve in parallel during their life cycle. For instance, core assets are reused to produce new
products, but they are also defined on the basis of preexisting products and in prevision of upcoming
products. They also evolve with the appearance of new products.

1.1.4 Software Product Line Benefits

The SPL approach can generate various benefits classified according to: organisational benefits,
software engineering benefits and business benefits (Clements and Northrop, 2001).

Organisational benefits gather advantages like: a better domain comprehension, better mobil-
ity and training for employees, high quality products and customer’s trust increase.

Software engineering benefits include advantages like: better requirements and components
reusability, better requirements analysis, better software quality control, programming standards
establishment, means to erase redundant implementations and more complete and reusable docu-
mentation.

Last but not least, business benefits mainly concern the diminution of production, maintenance
and test costs. In addition, SPL improves process efficiency, budget planning and time schedule.
For a detailed description of SPL benefits we refer to section “benefits and costs of product line” in
(Clements and Northrop, 2001).

Several figures and statistics have been provided in (Baas et al., 2003) to illustrate notably the
improvements in costs, time to market and productivity:

• Nokia is able to produce 25 to 30 different phone models per year (up from 4 per year) because
of the SPL approach.

• Cummins, Inc., was able to reduce the time it takes to produce software for a diesel engine
from about a year to about a week.

• Motorola observed a 400% productivity improvement in a family of one-way pagers.

• Hewlett-Packard reported a time to market reduced by a factor of seven and a productivity
increase by a factor of six, for a family of printer systems.

Other success stories for SPL are gathered in the hall of fame for product lines (Clements and
Northrop, 2008b) maintained by the SEI.
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1.1.5 Software Product Line Challenges

Applying SPL principles necessitates important investments, generates risks and impacts both or-
ganisation and management. In more details, the company may be confronted to the following
challenging problems (Clements and Northrop, 2001):

1. Estimate economic results. The initial investment is generally consequent and the first prod-
ucts to be developed within a SPL are often delayed. Real costs are difficult to estimate and
therefore the return on investment is difficult to plan. Despite the potential future benefits,
these problems are crucial especially for small and medium companies. When we compare
traditional (Figure 1) and SPL development (Figure 1.1), we can underline that the SPL ap-
proach needs a long term management, because the visible benefits are not immediate. In-
deed, as illustrated in Figure 1.2, the adoption of a SPL approach requires a considerable
initial investment. In addition, the break even point would, generally, be reached at middle
term, delaying the return on investment. A sufficient number of products must be developed
to earn the real benefits.

Figure 1.2: SPL Break Even Point (Pohl et al., 2005, p.10)

2. Resistance to changes. Changing the organisation’s original development scheme from a
single product to a product line approach entails a fundamental shift in mentalities and in the
organisation itself. Such a shift should be carefully managed. Everyone in the organisation
should feel involved and be convinced by the benefits of the approach for the organisation and
for himself.

3. Difficulty to introduce new technologies. Introducing a new process is very risky when no
development process has been previously defined explicitly and used in the company. Under
project the new process will be quickly ignored and previous habits reestablished (Knauber
et al., 2000).

4. Evolution and flexibility. Evolution is a complex problem. Evolution within a SPL is even
harder as the SPL must remain consistent, even when two final products evolve in opposite
directions. Some difficulties may appear when a new product should be included within the
SPL. It requires to fix cautiously the SPL scope. In addition, once a core asset is shared
between several products its evolution should be carefully controlled.
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Problems Percent responding
Organisational resistance 52 %
Management resistance 36%
Developer resistance 32%
Concerns over large investment 45%
Lack of properly trained staff 29%
Inability to measure impact 19%
Concerns of long lead time 18%

Table 1.1: Software Product Line Risks (Cohen, 2002)

To be efficient, a SPL is often less flexible. Indeed, the application domain should remain
stable and the strategy for the past, present and upcoming products should remain coherent.

Once the SPL needs to evolve, the relevant information should be efficiently communicated
through the organisation. The SPL and the way it evolves must be known by everyone in
time. Although it allows rapid exchange of information, oral communication is not sufficient.
Better communication mechanisms should be used to guarantee information accessibility and
non-alternation.

5. Difficulty to find a champion. A champion is a person who has enough experience, responsi-
bility and authority inside the company. He is familiar with the SPL principles and possesses
a general overview over (1) the company’s application domain and (2) its past, present and
future products. This kind of profile is rare, especially in small and medium companies. In-
deed, most of the time, nobody corresponds and when one corresponds, his or her workload
is too big to take in charge such responsibilities.

Thus SPL adoption is mainly hindered by organisational risks. In (Cohen, 2002), different prob-
lems (see Table 1.1) are listed underlining that organisational and management resistance are the
most critical.

1.1.6 Software Product Line Applications

SPL principles are applied to many kinds of software-intensive systems: telecommunications (Mac-
cari, 2001; Bosch, 2005), home appliances (Kolberg et al., 2003), car industry (Thiel et al., 2001),
etc.

In the following, we shortly describe five representative and successful applications of the SPL
approach. Our goal is to underline that proactive and systematic reuse is applicable to many different
systems in many different domains and organisations. More details on these success stories and
others can be found in (Clements and Northrop, 2008b; Pohl et al., 2005).
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1.1.6.1 Car Periphery Supervision (CPS)

Car periphery supervision systems (Thiel et al., 2001) are a family of automotive products designed
to guarantee more safety and comfort for car drivers. These systems are based on sensors installed
around the vehicle to monitor its local environment.

The functionalities provided by such systems are parking assistance, automatic detection of
objects in vehicles blind spots and the adaptive control of airbags and seat-belt tensioners.

• Commonalities mainly concern data analysis. Indeed, each car periphery supervision system
typically requests, filters, and evaluates data from sensors while at the same time performing
diagnostics, availability tests, and consistency checks.

• Variabilities mainly concern car models, sensor measurement methods and data evaluation
mechanisms.

1.1.6.2 Celsius Tech: Ship System 2000

Ship system 2000 (Brownsword and Clements, 1996) is a family of naval defence systems unifying
all weapon systems, command-and-control, and communication functions on a warship.

• Commonalities mainly concern communication, fire-control and electronic warfare.

• Variabilities mainly concern ship types (surface or submarine) and classes, weapon systems,
languages (English, French, etc. ) and platforms.

1.1.6.3 Nokia: Mobile phones

Mobile phone systems are family of systems offering telecommunication services described in (Mac-
cari, 2001; Bosch, 2005). For example, the functionalities provided by those systems are: voice
communication, messages, clock, alarm clock, countdown timer, organiser, calculator, currency
converter, reminders, games, . . .

• Commonalities mainly concern basic communication functionalities (call, dial, handle gsm
protocol, handle sms protocol, etc.), contact groups, message boxes, . . .

• Variabilities mainly concern imaging, connectivity, number of keys, display sizes, languages,
communication protocols and games.

1.1.6.4 Smart Homes

Smart home systems (Kolberg et al., 2003) are a family of systems providing extensive automatic
control of home appliances. This includes services that basically enable to control heating, venti-
lation, security and energy. Those can be automatically or remotely controlled through a network
interface connecting the home appliance to the Internet. In the end, fridges, televisions, stoves,
lights, curtains, security cameras, stereos and ambient temperatures can be controlled.

• Commonalities mainly concern automatic control of appliances, sensor systems and security
protocols.
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• Variabilities mainly concern the level and type of services proposed according to the inhab-
itants and the type of building equipped with these systems. For instance adequate services
can be provided for elderly people living in houses equipped with health control devices.

1.1.6.5 Weather Stations

Weather station systems (Kuusela and Savolainen, 2000) are a family of systems measuring weather-
related phenomena in the environment and transmitting this information.

• Commonalities mainly concern sensor systems and algorithms to convert sensor data into
meaningful information, such as wind speed and direction. Moreover, weather station rules
and constraints are highly standardised.

• Variabilities mainly concern ways of communicating and information formats (digital or
analog). Furthermore, the environmental conditions (polar regions, equatorial regions, dry
regions) impose specific requirements on the system design. Indeed, many different kinds
of weather stations exist such as ice weather stations, agricultural weather stations, high
tower/NRC weather stations, water resource weather stations and shipboard weather stations.

1.2 Variability

One of the main challenges to obtain systematic reuse within SPL is variability management. Vari-
ability must be anticipated and documented to facilitate SPLE. Unfortunately, variability cannot
always be anticipated and may introduce conflicts or unexpected interactions. Variability shows
how products may vary within a SPL. In addition, SPL evolves over time when new products are
engaged in and when existing products are evolving. These evolutions impact variability overview
and may gradually degrade the SPL at all development phases. Hence, variability plays a central
role in the entire SPL development process from requirements elicitation to architecture, compo-
nents, coding and tests.

1.2.1 Definition of Variability

Variability is defined as the “ability to change or customise a system” (van Gurp et al., 2001). Weiss
and Lai define variability in SPL as “an assumption about how members of a family may differ from
each other”(Weiss and Lai, 1999). Variabilities specify the particularities of a system corresponding
to the specific expectations of a client. Commonalities specify assumptions that are true for each
member of the family.

Variability is usually described with variation points and variants. A variation point locates
the place where variability may occur. In other words, it identifies where a choice between specific
variants should be made. Each variant corresponds to one possible alternative that could be selected
to resolve the variation point.
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1.2.2 Variability Activities

Handling variabilities is decomposed into four essential activities suggested in (van Gurp et al.,
2001):

• Variability identification determines product differences (variants) and their location (varia-
tion point) within the SPL artifacts.

• Variability delimitation defines variation point binding times and multiplicities.

• Variability implementation determines implementation mechanisms.

• Variant management makes evolve variants and variation points.

1.2.3 Categories of Variability

Variability appears in every software development phase. During variability identification, various
sources may be identified as the origin of variabilities. Bachmann and Bass propose in (Bachmann
and Bass, 2001) to classify variabilities into categories where each category corresponds to one
possible source of variation (Figure 1.3):

• Variability in function means that a particular function may exist in some products and not
in others.

• Variability in data means that a particular data structure may vary from one product to an-
other.

• Variability in control flow means that a particular pattern of interaction may vary from one
product to another.

• Variability in technology means that from a technical point of view the platform (OS,
hardware, dependency on middleware, user interface, run-time system for programming lan-
guages) may vary from one product to another.

• Variability in product quality goals means that goals like security, performance or adapt-
ability may vary from one product to another.

• Variability in product environment means that the product domain may impose different
specific requirements to any products.

Another classification, based on the distinction between essential and technical variability, has
been proposed in (Halmans and Pohl, 2003). Essential variability refers to the customer’s viewpoint
who cares about usage aspects concerning functional and non-functional requirements. Technical
variability refers to the product family engineer’s viewpoint who cares about variation points, vari-
ants and binding times to realise variability. Essential variability defines what to implement and
technical variability defines how to implement it. These two classes of variability have also been
refined in various subcategories that are summarised in Figures 1.4 and 1.5. For more details we
refer to (Halmans and Pohl, 2003).
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Figure 1.4: Essential product family variability (Halmans and Pohl, 2003)
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Figure 1.5: Technical product family variability (Halmans and Pohl, 2003)

Following the same approach, Becker et al. distinguish Specification and Implementation vari-
abilities in their meta-model of variability (Becker, 2003).

Another categorisation has been proposed by (Metzger et al., 2007). The authors distinguish
Software and Product Line variabilities.

• Software variability refers to the “ability of a software to be efficiently extended, changed,
customised or configured for use in a particular context” (Svahnberg et al., 2002).

• Product Line variability refers to the “variation between the systems that belong to a Product
Line in terms of properties and qualities, like features that are provided or requirements that
are fulfilled”(Metzger et al., 2007).
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Product Line variability adopts the business (market segmentation) point of view while software
variability adopts the SPL engineer point of view. An important challenge is to guarantee a corre-
spondence between business and technical constraints.

In the end, we identify four categories of variability corresponding to each concern:

1. one addresses the SPL developer’s point of view (Technical and Implementation variabilities),

2. one addresses the SPL designer’s point of view (Specification, Internal and Software variabil-
ities),

3. one addresses the customer’s point of view (Essential and External variabilities),

4. one addresses the business’ point of view (Product Line variability).

In the sequel, we refer to those categories respectively as developer, designer, customer and business
variabilities.

1.2.4 Levels of Variability

Concerning the designer variability, Svahnberg, et al. have defined five levels of variability (Svahn-
berg and Bosch, 2000) where different variability design issues appear:

• SPL Level. Variability concerns how products differ, i.e, which components are used by
different products and which product specific code (PSC) is used.

• Product Level. Variability concerns the architecture and choice of components for a particu-
lar product. On the product level, the components are fit together to form a product architec-
ture, and the PSC is customised for the particular product variation. The variability issues on
this level are:

1. how to fit components together,
2. how to cope with evolving interfaces, and
3. how to extract and/or replace parts of the PSC.

• Component Level. This level is where the set of framework implementations are selected.
The variability issues on this level are:

1. how to enable addition and usage of several component implementations,
2. how to design the component interfaces in such a way that it survives the addition of

more concrete implementations.

• Sub-Component Level. A component consists of a number of feature sets. On the sub-
component level the unnecessary features are removed to avoid dead code and others are
added.

• Code Level. The code-level is where evolution and variability between products are imple-
mented, ideally matching the provided and the required class interface defined in previous
steps.
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Variability
Mechanism

Development phase Description

Inheritance At class definition time Specialisation is done by modifying or adding
to existing definitions.

Configuration Previous to run-time A separate resource, such as file, is used to
specialise the component.

Parametrisa-
tion

At component implemen-
tation time

A functional definition is written in terms of
unbound elements that are supplied when ac-
tual use is made of the definition.

Template in-
stantiation

At component implemen-
tation time

A specification type is written in terms of un-
bound elements that are supplied when actual
use is made of the specification.

Generation Before or during run-time A tool that produces definitions from user in-
put.

Table 1.2: Variability Mechanisms adapted from (Jacobson et al., 1997)

1.2.5 Variability Mechanisms

Concerning the developer variability, several variability mechanisms exist. In (Jacobson et al.,
1997), the authors identify various variability mechanisms (described in Table 1.2) and situate them
according to the development phases where to apply them.

In (Svahnberg and Bosch, 2000), the authors make the links between developer and designer
variability. They describe which variability mechanisms can be used at which variability levels.
They underline the central role played by two variability mechanisms: configuration and parametri-
sation. Indeed, configuration is useful at higher variability levels (i.e, the SPL, product and compo-
nent levels). Parametrisation is useful at lower levels ( i.e, the component, sub-component and code
levels). Other mechanisms such as inheritance and extension are also used at all levels of variability
because they can be easily combined with other mechanisms.

Nevertheless, in industry, parametrisation is often used as the only mechanism for all variability
levels using ifdefs, for instance. This is generally a bad habit that leads to difficulties in managing
variability and to maintain an efficient and consistent SPL. This goes along the lines of Krueger
who recognises that ifdefs are often inappropriate to implement variabilities as they violate the
principle of separation of concerns:

“ Ifdefs and related preprocessor approaches mix product line logic with runtime
application logic. This mixing of concerns does not scale because source code be-
comes increasingly opaque as multiple preprocessor conditionals are added to a source
file.” (Krueger, 2001)
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1.2.6 Variability Modelling

Variability modelling is becoming more and more crucial in SPL. Variability models help docu-
menting variation points and their variants. They facilitate the identification and delimitation of
variabilities (Section 1.2.2). Managing variability becomes a primary concern to mitigate complex-
ity that may grow exponentially when variability increases. It is necessary to model variation points
and their variants to express variability (Jacobson et al., 1997). Variability needs to be managed
already during requirements engineering. In the initial phases of a SPL project, an efficient com-
munication between SPL designers and customers about requirements and hence variabilities is a
critical success factor.

One way to communicate efficiently on variability is to model it. Variability modelling lan-
guages are therefore used to produce variability models. Variability modelling languages can be
graphical, textual or a mixture of both. In the SPL context, two main approaches are proposed to
model variability: (1) single product languages that are extended with variability concepts (Sec-
tion 1.2.6.1) and (2) variability languages that are specifically dedicated to model variability inde-
pendently from any other languages (Section 1.2.6.2).

1.2.6.1 Extended Single Product Languages

Some languages originally dedicated to model single products have been extended to include con-
cepts such as variants or variation points. For instance, UML diagrams (OMG, 2008) or Goal Mod-
elling Languages (van Lamsweerde, 2001; Mylopoulos, 2006) have been respectively extended for
this purpose. One shortcoming is the lack of uniformity regarding the variability representation.
Each language is extended with its own extension mechanisms and variability constructs. No global
coherence between variability modelling languages is obtained. Different proposals to extend single
product languages have been published:

• UML Use Case Diagrams: (Gomaa and Shin, 2002), (Halmans and Pohl, 2003), (Bertolino
et al., 2002), (John and Muthig, 2002) and (van der Maßen and Lichter, 2002).

• UML Class Diagrams: (Clauss, 2001), (Gomaa, 2001) and (Choi et al., 2006).

• UML Sequence Diagrams: (Ziadi et al., 2002, 2003).

• Goal Modelling Languages: (González-Baixauli et al., 2004) and (Liaskos et al., 2006).

We note that even within UML the mechanisms used to extend the different types of diagrams can
be heterogeneous.

• Add new variability constructs to one specific UML diagram notation. (Halmans and Pohl,
2003)

• Use UML stereotypes or profiles to extend the UML notation (Gomaa, 2001; Atkinson et al.,
2001; Ziadi et al., 2003).
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• Use meta-modelling to extend UML diagrams separately and to describe variability depen-
dencies between models (Gomaa and Shin, 2002; van der Maßen and Lichter, 2002; Gomaa
and Shin, 2004).

The last mechanism is a first step to harmonise variability in UML. However, if other non UML
languages such as Goal Modelling Languages (Liaskos et al., 2006) are used in the modelling pro-
cess these mechanisms are limited and difficult to perceive for non UML modellers.

1.2.6.2 Variability Modelling Languages

As variability is a cross-cutting concern in many (different types of) models, some authors have
proposed to dedicate one specific model to represent variability. The first proposal was published
by Kang et al. back in 1990. The authors have suggested a Feature-Oriented Domain Analysis
language called FODA (Kang et al., 1990). This language provides a concise and explicit way to:

• centralise and model variability in terms of features,

• model dependencies between features,

• help the engineer to derive final products from the SPL (i.e. making decision concerning
variability and therefore configuring the SPL),

• facilitate the reuse and evolution of software components implementing these features.

Since Kang et al.’s initial proposal, many other “feature diagram” (FD) dialects have appeared
in the literature: (Kang et al., 1998; Griss et al., 1998; Eisenecker and Czarnecki, 2000; Eriksson
et al., 2005; Riebisch et al., 2002; Riebisch, 2003; van Gurp et al., 2001; van Deursen and Klint,
2002; Asikainen et al., 2004; Cechticky et al., 2004; Czarnecki et al., 2004, 2005c,b; Antkiewicz and
Czarnecki, 2004; Wang et al., 2005b; Sun et al., 2005; Wang et al., 2005a; Batory, 2005; Asikainen
et al., 2006; Janota and Kiniry, 2007).

Once a language is used to model variability, the next issue is to link this variability model
with other models in which no information about variability is initially described. The challenge
is now to manage variability across models and hence for all modelling languages used during all
development phases. Various approaches have been proposed to deal with this issue:

• Gomaa and Shin (Gomaa and Shin, 2002) have proposed a meta-model to deal with variability
within UML models. This approach is restricted to UML models and does not explicitly
possess the concept of variation point. Elements in models are stereotyped as mandatory,
optional or variant.

• Bachmann et al. (Bachmann et al., 2003) have proposed a meta-model for variability with
variants, variation points and rationale.

• Becker et al. (Becker, 2003) have proposed a meta-model for variability distinguishing spec-
ification from implementation variabilities and static from dynamic variation points.
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• Sinnema et al. (Sinnema et al., 2004) have proposed a framework for modelling variability
in SPL called COVAMOF. This framework enables (1) to model and organise hierarchically
variability, (2) to model dependencies between variabilities and (3) to model relations between
dependencies.

• We have proposed in (Trigaux and Heymans, 2005) a definition of a “varied construct and
link notation” (VCLN) including the concepts of variation point, unit of reuse, dispatching
and reuse links. The purpose of this language is to uniformly manage variability across all
models that can be abstracted to simple constructs and links between them.

• Pohl et al. (Pohl et al., 2005) have proposed an Orthogonal Variability Model (OVM) that
contains a variability meta-model and its graphical representation to model variability inde-
pendently from other modelling aspects.

• Czarnecki and Antkiewicz (Czarnecki and Antkiewicz, 2005) have suggested to keep FD
languages as the main variability model and to superimpose features to other model elements.
Model elements are therefore tagged with feature names. Once a feature is not selected in a
valid configuration the corresponding model elements are successively eliminated.

1.3 Chapter Summary

In this chapter, we have presented the general SPL approach with its basic concepts, its process, its
advantages and disadvantages. We have pinpointed variability as one crucial challenge that should
be tackled to achieve systematic reuse. Finally, we have suggested that variability modelling and
particularly Feature Modelling is one way to improve it. In the sequel of the thesis, our investiga-
tion is mainly limited to the early phases of the SPL approach and more specifically to variability
modelling in SPL requirements.

In the following chapter, we will present Feature Modelling and its basic concepts. In Chap-
ter 9, we will show how we evaluate Feature Diagram languages in order to improve variability
management and thus systematic reuse within SPL.
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Chapter 2

Feature Modelling: The Basic Concepts

I
n the previous Chapter, we have familiarised the reader with Software Product Lines.
Variability modelling has been presented as a key issue that should be addressed during
the whole SPL process and particularly during domain analysis. In this chapter, we will

present the basic concepts of one approach used to model variability. This approach is called Feature
Modelling. Feature Modelling is defined as “the activity of modelling the common and the variable
properties of concepts and their dependencies and organising them into a coherent model referred
to as feature model (Eisenecker and Czarnecki, 2000)”.

Feature Modelling has been considered as “the greatest contribution of Domain Engineering to
Software Engineering (Eisenecker and Czarnecki, 2000)”.

The structure of this chapter is as follows. Firstly, in Section 2.1, we describe the notion of
Feature Diagram (FD). We present FDs’ purposes (Section 2.1.1), a FD example (Section 2.1.2)
and symbols and constructs included into FDs (Section 2.1.3). In Section 2.1.4 we distinguish and
discuss three essential notions:“Feature Diagrams”, “Feature Models” and “Feature Languages”.
Secondly in Section 2.2, we discuss the fuzzy notion of “feature”.

2.1 On the Notion of Feature Diagrams

A Feature Diagram (FD) is a directed acyclic graph (DAG) describing the hierarchical decompo-
sition of features (called parents) into sub-features (called children) and the dependencies between
them:

• Features are represented by nodes;

• Feature decomposition is represented by directed links between nodes. The origin of the link
is the parent and the destination of the link is one of its children;

• Constraints between features are represented by textual constraints or links that crosscut the
DAG.

A Feature Tree (FT) is a restricted FD where feature sharing is not allowed. A feature is said
“shared” by two parents when it is the destination of two different feature decompositions.

31
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A FD represents variability in a SPL and is used to determine which products (feature combi-
nations) are included in the SPL. Although listing valid products contained in a SPL is a primary
concern, FDs are also relevant in other situations.

2.1.1 Feature Diagrams’ Purposes

FDs are an essential means of communication between domain and application engineers (see Sec-
tion 1.1.2) as well as customers and other stakeholders such as: marketing representatives, man-
agers, etc. In particular, FDs play an essential role during requirements engineering (Kang et al.,
1990). FDs provide a concise and explicit way to:

• describe allowed feature combinations and variabilities between them,

• represent features dependencies,

• guide the selection of features during the derivation of a specific product,

• facilitate the reuse and the evolution of software components implementing these features.

2.1.2 Feature Diagram Example

In less than twenty years, mobile phones have gone from being rare and expensive pieces of equip-
ment used by businesses to pervasive low-cost personal items. Rapid evolution and adaptation of
mobile devices and their systems have been necessary to obtain this tremendous shift. One of the
main challenges for the mobile phone industry was to maintain a short development life-cycle for
new mobile phone models in order to remain competitive and to limit costs. Companies involved
in this industry face harsh competition and therefore need to adapt quickly to satisfy the increasing
demand.

Mobile phone systems are embedded systems that offer various features: voice communication,
text messaging, phonebook, calendar, internet browsing, games, etc. An embedded system is char-
acterised by its strong dependency on the device it controls and in which the system is completely
encapsulated. Features from the device and features from the system are tightly bound together.
In addition, seamless dependencies exist between logically separate features and bring many unex-
pected difficulties. Eliciting and modelling these feature dependencies are likely to be profitable.

In this context, FDs have been used in order to model feature dependencies, to shorten life-
cycle development, to allow rapid adaptation and to improve reuse. In Figure 2.1, a simplified FD
using the FODA FD language (Kang et al., 1990) is presented. It describes a Mobile Phone PL in
terms of features. These features frequently correspond to the mobile phone capabilities available
to the customer. The FD enables to guide the customer choice according to the defined variability
and the corresponding mobile phone models. In order to avoid any confusion brought by the term
“model” and to keep vocabulary uniform throughout the thesis, we will call them products as they
are included in a PL. Products that are composed of features. Hence, mobile phone models are now
called mobile phone products.

A FD should be read from the top to the bottom. In this specific case, the features form a tree in
which they are decomposed into sub-features. In Figure 2.1, the top feature, MobilePhone, corre-
sponds to the whole PL (i.e. the Mobile Phone PL). It is decomposed into four sub-features: Dial,
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Mobile Phone

MessagingDial

Picture Messaging requires Camera

Imaging Connectivity

Keyboard Voice Chat MMS
Picture

Messaging

Camera Video WAP Bluetooth

WAP 1.0 WAP 2.0

Figure 2.1: FODA FD: Mobile Phone PL

Messaging, Imaging and Connectivity. The feature Dial indicates that every Mobile Phone must be
able to dial a phone number. This feature is also decomposed into two sub-features: Keyboard and
Voice. This decomposition indicates that every product must be able to dial using keyboard and that
some products could also allows dialling using voice recognition. The difference between “could”
and “must” is represented graphically by the appearance of a hollow circle above the feature or not.
Keyboard must be present as this feature is not decorated by a hollow circle while Voice could
be present as this feature is decorated by it. It should be underlined that this graphical convention
depends on the FD Language used, nevertheless the principle remains.

Many feature dependencies are expressed within a FD:

• Firstly, feature decompositions are dependencies and different types of decompositions exist.
For instance the WAP feature is decomposed into sub-features WAP 1.0 and WAP 2.0 that
mutually exclude each other. The feature Imaging is decomposed into sub-features Camera
and Video. However, both features are optional (decorated with hollow circles), it means that
either both, either only one, either none of them may be selected.

• Secondly, an implicit dependency between a sub-feature and its parent exist. Indeed, a sub-
feature is only available for a product if at least one of its parents is selected for the product.
Later, we will formalise this dependency as the justification rule (Definition 8.1.5, last point)
where at least one parent is the justification of the sub-feature. In Figure 2.1, the feature Dial
is the parent and justification of its son Keyboard. In our example, the FD is actually a FT
and therefore each feature has exactly one parent. However, when FDs form DAGs, a sub-
feature could be shared by several parents. The justification rule will be respected if at least
one parent of the sub-feature is selected.

• Thirdly, explicit dependencies can be stated in a textual or graphical form. For instance,
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the textual dependency Picture Messaging requires Camera, at the bottom of the figure,
indicates that the feature Camera is needed by the feature Picture Messaging. It corresponds
to a domain constraint stating that to send messages containing pictures, the mobile phone
product should be equipped with a camera.

In the end, this FD and its constraints enables to represent a Mobile Phone PL containing 462
possible different products. Here are some of them, each represented as a feature set:

• {Mobile Phone, Dial, Keyboard}

• {Mobile Phone, Dial, Keyboard,Voice}

• {Mobile Phone, Dial, Keyboard,Messaging, Picture Messaging, Imaging, Camera}

• {Mobile Phone, Dial, Keyboard, Messaging, MMS , Chat, Imaging, Camera, Video, Connectivity,
WAP, WAP 2.0, Bluetooth}

• etc.

2.1.3 Feature Diagram Constructs, Symbols & Meanings

In the last 15 years or so, research and industry have developed several FD languages with different
constructs. To each of these constructs different (graphical) symbols and sometimes meanings have
been associated. The first and seminal proposal was introduced as part of the FODA method back in
1990 (Kang et al., 1990). Since Kang et al.’s initial proposal, several extensions have been devised
as part of the following methods: FORM (Kang et al., 1998), FeatureRSEB (Griss et al., 1998),
Generative Programming (Eisenecker and Czarnecki, 2000), FORE (Riebisch et al., 2002; Riebisch,
2003), PLUSS (Eriksson et al., 2005), and in the work of the following authors: van Gurp et al. (van
Gurp et al., 2001), van Deursen et al. (van Deursen and Klint, 2002), Czarnecki et al. (Czarnecki
et al., 2005c,b), Batory (Batory, 2005), Benavides et al. (Benavides et al., 2005a) and Wang et al.
(Wang et al., 2005a; Sun et al., 2005; Wang et al., 2005b).

All these languages will be presented in Chapter 6. In the next sections, we will first present
the initial proposal by Kang and the basic principles shared by most proposals (see Section 2.1.3.1).
Then, we will describe the principal extensions that have been provided throughout the years (see
Section 2.1.3.2).

2.1.3.1 FODA FD Constructs, Symbols & Informal Meanings

As illustrated in Figure 2.2, a FODA FD is basically a tree with nodes related with various types of
edges. A FODA FD is composed of various constructs to which symbols are associated:

• A root, a.k.a concept, is a feature that refers to the complete system. In Figure 2.2, the root
or concept is the feature at the top of the tree, namely MobilePhone. The root derogates to
the justification rule by being the only feature without any parent and that must be always
selected.
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Figure 2.2: FODA FD: Constructs & Symbols

• Features, that can be mandatory (by default), optional or alternative and which are subject to
decomposition.

– A mandatory feature is part of a product iff at least one of its parents is in the product.
In Figure 2.2, the feature Keyboard is mandatory.

– An optional feature can be part of a product iff at least one of its parents is in the
product. In Figure 2.2, the feature Bluetooth is optional.

– An alternative feature or xor-feature is part of a product iff at least one of its parents
is in the product and no other sub-feature of the selected parent(s) of this alternative
feature is selected. In Figure 2.2, the features WAP 1.0 and WAP 2.0 are alternative and
mutually exclude each other.

• Dependencies between features are materialised by:

1. Decomposition Edges represented in a graphical form and that allow relating features
that share at least one parent:

(a) and-decomposition indicates that every sub-feature should be selected. In Fig-
ure 2.2, the feature Imaging is decomposed through an and-decomposition into
features Camera and Video;

(b) xor-decomposition, a.k.a alternative, indicates that only one sub-feature should be
selected. In Figure 2.2, the feature WAP is decomposed through a xor-decomposition
into features WAP 1.0 and WAP 2.0;



36 Chapter 2. Feature Modelling: The Basic Concepts

2. Constraints represented in a textual form and that allow relating features that do not
share a parent:

(a) requires, indicates that when a feature is selected, the other features that are re-
quired by it should be selected. In Figure 2.2, a requires constraint is expressed
between features Picture Messaging and Camera;

(b) mutex, an abbreviation for “mutually exclusive with”, indicates that two features
cannot be present simultaneously.

2.1.3.2 FD: More Constructs, Symbols & Meanings

Since Kang et al.’s initial proposal (Kang et al., 1990), several extensions have proposed new con-
structs for FD languages (see Figure 2.3):

• A new type of feature has been added: or-feature (Griss et al., 1998). An or-feature can be
part of a product iff at least one of its parents is in the product. The additional constraint is
that for each selected parent that is decomposed into or-feature(s) at least one of its or-features
should be selected too;

• Three new types of decomposition edges have been added:

1. or-decomposition (Griss et al., 1998) indicates that one or more sub-features should be
selected;

2. card-decomposition (Riebisch et al., 2002) indicates the minimum and maximum
number of sub-features that should be selected;

3. group-decomposition has been proposed by (Eisenecker and Czarnecki, 2000) and
enables to decompose one feature with several types of feature decomposition. For
instance, in Figure 2.3, the example illustrating the graphical representation of the con-
struct group-decomposition indicates that the feature f 0 is a feature on which two dif-
ferent types of decompositions apply: an and-decomposition where f 0 is decomposed
into f 3 and f 4 and a xor-decomposition where f 0 is decomposed into f 1 and f 2;

• Feature cardinalities have been proposed by (Czarnecki et al., 2005b). According to their
metamodel, a feature cardinality is an attribute of a leaf feature (non decomposed feature).
This feature cardinality is an interval < m, n > indicating the minimum (m) and maximum (n)
number of times the sub-feature can be selected;

• Group cardinalities have been proposed by (Czarnecki et al., 2005b). A group cardinality
defines an interval < m, n > indicating a minimum (m) and maximum (n) number of distinct
features that can be selected within a feature group. This construct is equivalent to card-
decomposition proposed in (Riebisch et al., 2002);

• FD references have been proposed by (Czarnecki et al., 2002, 2005c). These references
allow reuse and modularisation of FDs;
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• Feature binding times have been proposed by (van Gurp et al., 2001). Feature binding time
describes when a variable feature is to be bound, i.e. selected, to become a feature of the final
product or not;

• Feature attributes have been proposed by (Griss et al., 1998) and later by (Benavides et al.,
2005a) to express attribute-based constraints. Feature attributes are defined as a characteristic
of a feature that can be measured (Benavides et al., 2005a);

• New Types of dependencies such as specialisation and implementation dependencies pro-
posed in (Kang et al., 1998) or usage, modification and activation dependencies proposed
in (Lee and Kang, 2004).

The main FD constructs are illustrated in Figure 2.3. They are associated to their original
symbols and authors. The upper part of the figure presents the constructs of the FODA FD lan-
guage (Kang et al., 1990) and the lower part presents some popular new constructs that appeared in
various extensions of this language.

Variation in FD languages did not only come from new constructs, but also from new symbols
being associated to previously existing constructs. For instance, graphical forms of requires and
mutex constraints have been proposed in (Griss et al., 1998) (Figure 2.4). The proliferation of new
symbols associated to the same constructs is confusing. Another more striking example concerns
the five different graphical symbols proposed for the construct xor-decomposition (Figure 2.4).

Considering the meaning of these constructs, most proponents have not discussed it and refer
implicitly to the informal semantics provided in FODA (Kang et al., 1990). However, when new
constructs are introduced their semantics should be defined, and preferably formally. In this sense,
some authors (van Deursen and Klint, 2002; Czarnecki et al., 2004, 2005b; Batory, 2005; Benavides
et al., 2005a; Wang et al., 2005a; Sun et al., 2005; Wang et al., 2005b; Schobbens et al., 2007,
2006; Asikainen et al., 2006; Janota and Kiniry, 2007) have now proposed formal definitions of FD
languages and their semantics.

2.1.4 The Distinction between Languages, Models and Diagrams

The distinction between languages, models and diagrams is not always clear. In this section we
clarify this distinction and the terminology we use throughout the thesis in which FDs and FD
languages play a central role.

2.1.4.1 Languages

According to (Harel and Rumpe, 2004, 2000), a language is a system of symbols used to represent
and communicate information. A language is preferably defined by a concrete syntax, an abstract
syntax and a semantics. A concrete syntax defines how the language elements appear in a concrete,
human-usable form (symbols). An abstract syntax characterises in an abstract way the kinds of
elements that make up the language and the rules to combine them. The semantics assigns an
unambiguous meaning to each syntactically correct diagram written in this language. For example,
if we consider a FD language, its definition should preferably be composed of:
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Figure 2.3: FD: Constructs & Symbols

• a Concrete Syntax that defines the graphical symbols (see examples in Figure 2.3 column 2)
that are used to draw FDs and that represent FD abstract constructs;
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• an Abstract Syntax that defines (1) the abstract constructs (or concepts) (see examples in
Figure 2.3 column 1) used to build a FD and (2) the rules to combine them. For instance, one
construct would be the or-decomposition (Griss et al., 1998) and one rule would be that the
root has no parent;

• a Semantics that provides one unambiguous meaning to each FD respecting (1) the graphical
conventions defined in the concrete syntax and (2) the rules defined in the abstract syntax. For
instance, the informal semantics of an or-decomposition (Griss et al., 1998) is that at least
one sub-feature of the parent must be selected.

2.1.4.2 Models

According to (Krogstie, 1995), a model is “an abstraction externalised in a language”. A model is an
abstract description focussing on some main aspects of the problem to solve. The main purpose is to
prevent the analyst to be hampered by irrelevant aspects of the problem simultaneously. Therefore,
a model is an abstraction that enables to separate concerns and isolates information on one specific
aspect facilitating its management.

For example, a Feature Model is an abstract feature-based description of variability in a SPL.
A Feature Model is usually composed of a graphical part, the FD, and of a textual part containing
additional information over the FD. Examples of additional information are: feature descriptions,
complex feature constraints, feature attributes, variability rationale, variability binding, variabil-
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ity prioritisation, semantic descriptions, traceability links to requirements, code or other types of
models, etc.

2.1.4.3 Diagrams

According to (Anderson, 1997), a diagram is a “pictorial, yet abstract, representations of infor-
mation, and maps, line graphs, bar charts, engineering blueprints, and architects’ sketches are all
examples of diagrams, whereas photographs and video are not”. A Feature Diagram is a DAG de-
scribing the hierarchical decomposition of features into sub-features and constraints between them.
In the end, a FD is written in a FD language and is part of a feature model.

2.2 On the Notion of Feature

In the previous section, we have clarified the notions of diagrams, models and languages. Once
this distinction has been made clear, one problematic question remains: What is exactly meant by
feature?

Unfortunately, the term ”feature” is heavily overloaded in the SPL community. Many different
definitions have appeared including the following:

• A feature is “a prominent or distinctive user-visible aspect, quality or characteristic of a
software system or systems.” (Kang et al., 1990)

• A feature is “a distinguishable characteristic of a system that is relevant to a stakeholder of
the system.” (Simos et al., 1996)

• A feature is “anything users or client programs might want to control about a concept.” (Eise-
necker and Czarnecki, 2000)

• A feature is “a logical unit of behaviour specified by a set of functional and non-functional
requirements.” (Bosch, 2000)

• A feature is “a capability or value which the user is willing to pay for.” (Maccari, 2001)

• A feature is “a chunk of functionality that adds value to the product.” (Maccari and Heie,
2003)

• A feature “describes a product characteristic from user or customer views, which essentially
consists of a cohesive set of individual requirements.” (Chen et al., 2005)

• A feature “represents a distinguishable characteristic of a concept. A concept consists of a
set of related features with constraints.” (Sun et al., 2005);

• A feature is “an elaboration or augmentation of an entity(s) that introduces a new service,
capability or relationship.” (Batory, 2006)

• A feature is “an increment in product functionality.” (Batory et al., 2006)
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• A feature is “a property of your products that are meaningful to your customers and marketing
people.” (Pure-systems, 2007)

• A feature is “a structure that extends and modifies the structure of a given program in order
to satisfy a stakeholder’s requirement, to implement and encapsulate a design decision, and
to offer a configuration option.” (Apel et al., 2007)

Obtaining a consensus on the notion of feature seems unfeasible. The situation is very similar to
the problems encountered when defining the notion of “requirement” in Requirements Engineering.
Research communities have not reached a common agreement on the definition of both concepts.

The first attempt to categorise features has been proposed in (Kang et al., 1990) with the notion
of layers, graphically represented in (Kang et al., 1998). Features are thus categorised according
to the capability layer, operating environment layer, domain technology layer or implementation
technique layer.

More recently, as presented in (Classen et al., 2007), the problem frames approach (Jackson,
1995, 2001) can help clarifying the concept of features by putting them in their context and disam-
biguating features that are requirements, domain properties or specifications. This approach allows
a detailed and systematic analysis of variability according to a well established framework. Addi-
tionally, it allows automated reasoning and feature interaction detection. Still, one could argue that
features are intended to be more general and may correspond to sets of requirements or mixture of
requirements, domain properties and specifications (Classen et al., 2008).

Even though, we do not want to go much further into this debate. For this work, we simply
avoid this problem by considering features as “black boxes”. This hypothesis has no impact on our
formal approach where features define indivisible elements of reasoning.

Nonetheless, as already introduced in Sections 2.1.3.1 and 2.1.3.2, a feature is characterised by
a type and can be annotated with attributes.

2.2.1 Feature Types

Various types of features exist and mainly depends on how the parent(s) of the feature are decom-
posed. Classical feature types are:

• A Mandatory feature (Kang et al., 1990) is part of a product iff at least one of its parents is
in the product.

• An Optional feature (Kang et al., 1990) can be part of a product when at least one of its
parents is in the product.

• An Alternative feature (Kang et al., 1990) or Xor-feature is part of a product iff at least one
of its parents is in the product and iff no other sub-features of the selected parent(s) of this
alternative feature is selected.

• An Or-feature (Griss et al., 1998) can be part of a product iff at least one of its parents is in
the product. The additional constraint is that for each selected parent that is decomposed into
Or-feature(s) at least one of its Or-features should be selected too.
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Another proposal (Eisenecker and Czarnecki, 2000) suggests to distinguish common and vari-
able features. A common feature is a feature that is part of every product included in the SPL.
Common feature should no be confused with mandatory features since the latter ones are not nec-
essarily common to all products. On the contrary, variable features are all the features except
the common features. By definition, Optional, Alternative, Or-features and their sub-features are
variable features.

Later, other types of features have been provided:

• In (van Gurp et al., 2001) the authors define external features. An external feature refers to
a feature offered by the platform of the system.

• In (Metzger et al., 2007) the authors make the distinction between required and provided
features. A provided feature refers to a feature that the SPL offers. A required feature refers
to a feature that the customer needs.

2.2.2 Feature Attributes

Feature attributes are defined as any characteristic of a feature that can be measured (Benavides
et al., 2005a). Constraints on the attribute values may be specified. For instance, a value attribute
may be associated to the feature “Horsepower” ( see Figure 2). Additionally, a constraint may
be defined for this attribute such has “Horsepower” should exceed 100 when “Air Conditioning”
is selected (“Air Conditioning requires (Horsepower >100)”). Feature attributes are also used to
document features with relevant information (Pohl et al., 2005) such as:

• Feature Rationale specifies why a feature is selected.

• Feature Binding specifies when, where and how a feature is selected.

– Binding Time:
The feature Binding Time specifies when a feature is selected. Typical binding times
are: run-time, design-time, compilation-time or installation-time.

– Binding Location:
The feature Binding Location specifies where a feature is selected.

– Binding Mode:
The feature Binding Mode specifies how a feature is selected. Typically, two different

modes are allowed: statically or dynamically bound.

• Feature priorities:
Feature priorities specify how important a feature is. These priorities determine the feature

implementation schedule according to the relevance of the features and/or their marketing
advantages. However, these priorities may enter in conflict with the constraints described in
the FD. For instance, if “ f 1 requires f 2” and f 1 has a higher priority than f 2 then the priority
of f 2 should be at least as important as the one of f 1.
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2.3 Chapter Summary

Throughout this chapter, we have described the basic concepts of Feature Modelling. Our intention
was essentially to familiarise the reader with Feature Diagram (FD) languages. Following a mobile
phone example, we have presented their constructs, symbols and meanings. We have also discussed
the notion of feature for which no consensus exists. We have provided informal descriptions of
constructs appearing in specific FD languages. However, this list of constructs is far from being
exhaustive since there is a profusion of FD languages. Even, the same relatively simple construct
may be represented with different symbols and/or may have different meanings. The informality
and the multiplicity of FD languages, symbols and meanings bring much confusion.

Throughout the rest of the thesis, we will try to reduce this confusion by improving the formal-
isation of FD languages, studying their quality and comparing them. In the next Part 2, we present
the general concepts and theories on which we rely on to solve the aforementioned issues. First,
we introduce, refine and situate ourselves within a generic quality framework notably designed to
compare the quality of languages (Chapter 3). Then, we describe and adapt denotational semantic
principles (Harel and Rumpe, 2004) to formally define modelling languages (see Chapter 4). Fi-
nally, we discuss and redefine formal criteria (see Chapter 5) that will be used later to compare FD
languages (see Chapter 9) .
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Chapter 3

A Quality Framework

I
n the previous chapter, we have presented the basic concepts of Feature Modelling.
Throughout this chapter, we will present and refine a framework that will be further
used to evaluate the quality of feature models and languages. The framework we use is

the semiotic quality framework (SEQUAL) (Krogstie, 2001b; Krogstie et al., 2006). Our purpose
is to refine it in order to evaluate languages according to well-known formal properties. Here, these
formal properties are discussed and justified according to SEQUAL. They will then be formally
defined in Chapter 5 and used in Chapter 9 to evaluate FD languages.

Modelling is a crucial activity in many fields such as economics, industrial and software engi-
neering. A model is considered as an abstract representation of the domain. A model provides a
representation of a domain that is understandable. Models constitute a means of communication to
facilitate the dialogue between participants sharing different knowledge and views on the domain.
A central problem is how to evaluate the quality of those models and languages used to produce
them. Assessing and improving the quality of models and languages is a complex and multidimen-
sional endeavour. To facilitate it, we suggest to use and refine the SEQUAL framework proposed by
Krogstie et al. (Krogstie, 2001b,a; Krogstie et al., 2006). SEQUAL is arguably the most complete
framework we know of. Its main advantages are:

1. to be neutral with respect to a particular type of models and languages,

2. to help situate quality analysis within a comprehensive quality space,

3. to act as a checklist of qualities to be pursued and

4. to recommend general guidelines on how the analysis should proceed.

However, SEQUAL does not detail on how to carry out specific quality evaluation or improvement
tasks.

The structure of this chapter is as follows. Firstly, SEQUAL is briefly presented in Section 3.1.
Its main concepts are introduced in Section 3.1.1. We describe, according to SEQUAL, how model
and language qualities are evaluated respectively in Section 3.1.2 and Section 3.1.3. Then, this
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framework is refined with formal language properties in Section 3.2. Finally, we briefly present
some related work in Section 3.3.

3.1 SEQUAL Framework

The SEQUAL or semiotic quality framework has been developed over the last decade by Krogstie
et al. (Krogstie, 2001b,a; Krogstie et al., 2006) as an extension of the original framework proposed
in (Lindland et al., 1994). SEQUAL is grounded in semiotic theory that studies how humans
communicate using signs. The theory is applied to modelling: elements in a model are considered as
signs made to communicate meaning. SEQUAL is based on a distinction between various “semiotic
levels”: syntactic, semantic and pragmatic. It adheres to a constructivist world-view that recognises
model creation as a part of a dialogue between participants whose knowledge changes as the process
takes place. SEQUAL defines quality goals and sub-goals (called means) that contribute to achieve
them. Different sub-goals were identified such as increasing the quality of modelling languages,
processes, techniques or tools.

In (Krogstie, 2001b,a; Krogstie et al., 2006), one can find further details as well as suggestions
of concrete means to pursue and measure the achievement of the quality goals. In the next three
sections, we briefly present the concepts of the framework (Section 3.1.1), the quality goals for
models (Section 3.1.2) and for languages (Section 3.1.3).

3.1.1 Framework Concepts

In (Krogstie, 2001b,a; Krogstie et al., 2006), Krogstie et al. have inventoried the elements involved
in the modelling activity and used them to define quality for models and for languages. These
elements are:

• M, the externalised model i.e., the set of all statements explicitly or implicitly made in the
model.

• L, the language extension i.e., the set of all statements that are possible to make according to
the graphical elements, vocabulary, and syntax of the modelling languages used.

• D, the domain i.e., the set of all statements that can be stated about the situation at hand.
Enterprise domains are socially constructed and are more or less inter-subjectively agreed
upon. That the world is socially constructed does not make it any less important to model that
world.

• G, the organisationally motivated goals of the modelling task.

• KS , the relevant explicit knowledge of the set of stakeholders (the audience A) involved in
modelling . A subset of the audience is those actively involved in modelling with their knowl-
edge indicated as KM.

• I, the audience interpretation i.e., the set of all statements that the audience thinks an exter-
nalised model M consists of.
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• T , the technical actor interpretation i.e., the statements in the model as interpreted by different
model activators i.e., modelling tools.

3.1.2 Quality of Models (M)

In model quality, various general quality goals have been defined to study M. Models are evaluated
and categorised according to them. These goals strongly depend on the models used and on the
domain modelled. An overview of SEQUAL is given in Figure 3.1. It highlights various broad
quality types that models should achieve.

• Physical quality pursues two basic goals: Externalisation, meaning that the explicit knowl-
edge KM of a participant has to be externalised in the model M by the use of a modelling
language L; and Internalisability, meaning that the externalised model M can be made persis-
tent and available, enabling other stakeholders to make sense of it. In other words, physical
quality concerns the persistence and the availability of the model.

• Empirical quality pursues one goal: Minimal error frequency. It deals with error frequencies
when different users read, write or encode model M, as well as ergonomy of human-computer
interaction in modelling tools.

• Syntactic quality pursues one goal: Syntactic correctness. It deals with the correspondence
between the model M and the language L in which M is written.

• Semantic quality pursues two goals: Feasible completeness and validity. It examines the
correspondence between the model M and the domain of modelling, or universe of discourse,
D. Feasible completeness examines that the model contains all statements about the domain
that are relevant to the model except those that are not worthwhile trying to find. Feasible
validity examines that all the statements made in the model are correct, except for the invalid
ones that are not worthwhile trying to find.

• Perceived semantic quality pursues two goals: Perceived completeness and validity. It exam-
ines the correspondence between the audience interpretation I of a model M and the audience
current explicit knowledge KS .

• Pragmatic quality pursues one goal: Feasible Comprehension. It assesses the correspondence
between the model M and its social and technical audience interpretations I and T , respec-
tively. It evaluates to what extent people understand the models and to what extent tools can
be developed to understand the models.

• Social quality pursues two goals: Feasible Agreement and Resolution of conflict. It seeks
agreement among the audience interpretations I.

• Organisational quality pursues two goals: Organisational completeness and validity. It looks
at how well the modelling goals G are fulfilled by the model M.
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Figure 3.1: SEQUAL: Model Quality adapted from (Krogstie, 2001b; Krogstie et al., 2006)

3.1.3 Quality of Languages (L)

In (Krogstie, 2001b), language quality is assessed by the appropriateness of the modelling language
L to achieve the model quality goals described above. SEQUAL has been adapted to evaluate
language appropriateness (Figure 3.2). Six types of appropriateness and their corresponding goals
were proposed, each of them concerns both the conceptual basis of the language (abstract syntax
and semantics) and the visual representation of the language (concrete syntax).

• Domain appropriateness pursues Domain suitability. It deals with how suitable a language
is for use within different domains. It means that language L must be powerful enough to
express any statements in the domain D.

• Participant language knowledge appropriateness pursues Language acquisition. It measures
if the audience knows the language or is able to easily learn it. It shows how the statements
of L used by the audience match the explicit knowledge K of the audience.

• Knowledge externalisability appropriateness pursues Semantic domain completeness. It means
that there are no statements in K that cannot be expressed in L.

• Comprehensibility appropriateness pursues Concrete syntax suitability. It measures that lan-
guage users understand all possible statements of L and that these statements are closely
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related to the way they think.

• Technical actor interpretation appropriateness pursues Language automation. It defines the
degree to which the language lends itself to automatic reasoning and supports analysability
and executability.

• Organisational appropriateness pursues Organisational suitability. It relates L to standards
and other needs within the organisational context of modelling.
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Figure 3.2: SEQUAL: Language Quality adapted from (Krogstie, 2001b; Krogstie et al., 2006)

3.2 Refining SEQUAL with Formal Language Properties

SEQUAL mainly targets two different concerns: quality of models and languages. However, using
a high quality modelling language increases the chance of obtaining higher quality models. Hence,
before starting any modelling activity, assessing modelling languages is decisive. Our purpose is to
refine SEQUAL with tangible quality criteria that allow a formal quality evaluation of languages.
These quality criteria are based on well-known formal language properties inspired from:

• The principles proposed in (Harel and Rumpe, 2004), that set the base to formally define
modelling languages and their properties (see Chapter 4).

• Computational complexity theory (van Leeuwen, 1990; Papadimitriou, 1994), that allows
studying the complexity of the decision problems needed to support the language.
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• Languages theory (Hopcroft et al., 2000), that provides well-accepted formal language prop-
erties such as language expressiveness, embeddability and succinctness (see Chapter 5).

These formal criteria are defined and detailed in Chapter 4 and 5. In Table 3.1, we describe them
briefly and informally.

Criteria Informal Description
Formal Definition A language is formally defined when its abstract syntax, its

semantic domain and its semantic function are mathemati-
cally defined (Harel and Rumpe, 2004);

Complexity Determines the potential efficiency of the algorithms to
handle the language (van Leeuwen, 1990; Papadimitriou,
1994);

Expressiveness Determines what the language is able to express (Hopcroft
et al., 2000);

Embeddability Determines whether the models written in one language are
translatable into another language with translations (em-
beddings) that preserve the structure and the semantics of
the models (Hopcroft et al., 2000);

Succinctness Determines the worst impact on the size of the models
when there is a translation from one language to another
(Hopcroft et al., 2000).

Table 3.1: Formal Criteria: Informal Description

In Figure 3.3, we gather the different quality goals for models and languages and we show how
the formal properties introduced above may contribute to them. Firstly, the reader should keep in
mind that we do not aim at comparing languages quantitatively. We do not associate quantitative
measures to all criteria. Furthermore, there are many factors that should be taken into account and
these formal properties constitute only some of them. It is one possible refinement of SEQUAL
and it should be complemented with other quality criteria. Secondly, the fulfilment of the language
quality goals does not mean that the model quality goals are equally fulfilled. Indeed, good models
can be obtained with poor modelling languages and conversely poor models can be obtained with
comparatively good modelling languages.

The formal language properties have an impact on both language and model quality goals,
directly or indirectly. In Section 3.2.1, we underline the contributions of these properties to language
quality goals. In Section 3.2.2, the contributions of these properties to model quality goals are
studied. Finally, in Section 3.2.3, we describe how quality of languages may contribute to quality
of models.

3.2.1 Formal Criteria & Quality of Languages

When a language is formally defined, it possesses three main characteristics: an abstract syntax, a
semantic domain and a semantic function (see Chapter 4). The abstract syntax should determine (1)
the concepts used by the participants and (2) the rules followed by the participants to combine these
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concepts. The concrete syntax provides a graphical representation for each concept. Therefore, the
abstract syntax contributes to Concrete Syntax Suitability (Figure 3.3) and Comprehensibility Ap-
proriateness. Indeed, Concrete syntax suitability does not only concern the graphical representation
of the concepts but also how they are related to the way participants think.

The semantic function’s definition assigns an unambiguous meaning to each syntactically cor-
rect model. Therefore, this function contributes to Efficient language automation (Figure 3.3) and
Technical Actor Interpretation Appropriateness. Indeed, this function helps to define and implement
decision problems associated to the language and its models. For instance, an interesting decision
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problem is satisfiability: It checks whether a model has a non empty semantics or not. Satisfiability
is formally defined as: given a model m and a semantic function [[]], is [[m]] , ∅ true? One possible
implementation would be: if [[m]] , ∅ then true else f alse.

Although, most languages do not have a clear abstract syntax and semantics, they are amenable
to them. Once their abstract syntax and semantics have been formally defined they can be compared
according to four criteria (Table 3.1):

• The Computational complexity associated to the relevant decision problems that allow rea-
soning on the language is an indicator of the tool support scalability. Indeed, it studies from
a theoretical perspective the potential efficiency or inefficiency of the decision problems im-
plemented in the tool. Hence, Computational complexity contributes to Efficient language
automation (Figure 3.3) and Technical Actor Interpretation Appropriateness.

• The Expressiveness of a language addresses Domain Suitability (Figure 3.3) and Domain
Appropriateness. Indeed, the expressiveness studies whether every element of the semantic
domain can result from the application of the semantic function to at least one model that
conforms to the constraints of the abstract syntax.

• The Embeddability and Succinctness respectively study whether it exists a translation from
one language to another that preserves structure (embeddability) and, if it exists, how this
translation affects the size of the resulting models (succinctness). Hence, Embeddability and
Succinctness contribute to Efficient Language Automation (Figure 3.3) and Technical Actor
Interpretation Appropriateness. In addition, they contribute to Concrete Syntax Suitability
(Figure 3.3) and Comprehensibility Approriateness. For instance, we assume that the con-
crete syntax of a language is not suitable when a language is translatable within itself (self-
embeddable). Indeed, a language user might be confused when two different statements in
one language share the same understanding. In addition, we assume that a language is more
suitable than another when it is more succinct than the other.

We indicate in Table 3.2 which language quality dimensions (a.k.a. language appropriateness
in (Krogstie, 2001a)) from the SEQUAL framework may be partially evaluated according to our
selection of criteria.

Formal Criteria Domain appropri-
ateness

Comprehensibility
appropriateness

Technical actor
interpretation
appropriateness

Formal Definition
√ √

Computational
Complexity

√

Expressiveness
√

Embeddability
√ √

Succinctness
√ √

Table 3.2: Formal Criteria and Language Appropriateness
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3.2.2 Formal Criteria & Quality of Models

Both informal and formal language definitions may contribute to increase the modeller’s explicit
knowledge (KM). Once the language definition becomes more familiar to the modellers, models
are written (externalised) with more caution. The modeller is influenced by the constraints imposed
by the abstract syntax and by the semantics that provides a model understanding that may differ
from its intuitive understanding. Therefore, as soon as more constraints are defined, the frequency
of errors is higher and the correspondence between the model and the language is more difficult to
reach. From this point of view, Formal Semantic Domain, Formal Semantic Function and Formal
Abstract Syntax hinders Minimal Error Frequency and Syntactic Correctness.

In addition, once the explicit knowledge of the audience (KS ) increases, the correspondence
between the interpretation of the audience and its explicit knowledge may be more difficult to reach.
For instance, with formal languages one has an unambiguous definition where no interpretation is
possible while for informal languages there are many potential interpretations. Once one is not
limited by a formal definition, every model can be understood differently and it becomes easier to
align it with the audience interpretation. Hence, a formal language definition hinders Perceived
Validity and Completeness since the perception of the audience is different.

Beside the positive contributions defined in Section 3.2.1, a formal language definition also con-
tributes to Feasible Comprehension and Feasible Validity and Completeness. Indeed, when defining
the language semantics, the main purpose is to find the best correspondence between the model
and the intuitive audience understanding for this model (Feasible Comprehension). Moreover, the
semantic function defines the correspondence between the formal abstract syntax and the seman-
tic domain (Feasible Validity and Completeness). The Formal Abstract Syntax corresponds to the
model formalisation and the semantic domain corresponds to the formalisation of the modelling
domain.

In addition, a formal abstract syntax of language facilitates the Externalisation of the knowledge
into a model. The abstract syntax has been constructed in order to relate each of its construct to a
concept in the domain. These concepts correspond to the way participants think and will be easily
used during the modelling activity. A formal abstract syntax also contributes to Internalisability.
The abstract syntax corresponds to the language meta-model and can be easily made persistent and
available by the use of a repository.

3.2.3 Quality of Languages & Quality of Models

The various contributions (positive or negative) presented here are not exhaustive and intentionally
refer to contributions provided by the defined formal language properties. According to these prop-
erties, mainly two language qualities may influence the quality of models. The first one is Efficient
Language Automation that helps (1) to minimise Error frequency, (2) to improve the correspon-
dence between the model and the language and (3) to oppose and integrate different models in order
to resolve conflict. The second one is Concrete syntax suitability that facilitates the language acqui-
sition and the externalisation of knowledge into models written in the specified language. Therefore,
the negative contributions of a Formal Language Definition impacting Minimal error frequency and
Syntactic correctness are mitigated with tool support that helps to check and validate these models.
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3.3 Other Frameworks and Criteria

As presented in the previous sections, our purpose is to refine SEQUAL with quality criteria that
evaluate languages and mainly their foundations (semantics and abstract syntax). SEQUAL is
known as the most complete framework to evaluate models and languages (Genero et al., 2005).
However, the quality goals described in SEQUAL are too general to be directly applicable. Hence,
many proposals (listed and analysed in (Genero et al., 2005)) define quality criteria that may fit
into SEQUAL. According to (Genero et al., 2005), many of them are focused on model qual-
ity criteria (van Griethuysen, 1982; Moody, 1991; Batini et al., 1992; Reingruber and Gregory,
1994; Lindland et al., 1994; Moody and Shanks, 1994; Boman et al., 1997; Moody, 1998; Schuette
and Rotthowe, 1998; Genero et al., 2000; Moody, 2003; Moody and Shanks, 2003; Moody, 2005;
Berenguer et al., 2005; Moody, 2006a) and few propose language quality criteria (Kim and March,
1995; Rossi and Brinkkemper, 1996; Prasse, 1998; Matulevičius et al., 2006; Djebbi and Salinesi,
2006; Opdahl and Berio, 2006) and modelling process criteria (Moody, 1998; Maier, 2001).

3.3.1 Prasse’s Framework

One major reference for language evaluation is the framework proposed in (Prasse, 1998) that is
specifically dedicated to the evaluation of object oriented modelling languages. It provides a list of
“criteria of investigation” informally defined in Table 3.4). Both SEQUAL and Prasse’s frameworks
distinguish language abstract syntax and semantics from concrete syntax. In this latter framework
the criteria are categorised according to three perspectives: User-Relevant, Model-Relevant and
Economic Criteria (Table 3.3).

User-Relevant Criteria Model-Relevant Criteria Economic Criteria
Usability Unambiguity Reusability
Clarity Consistency Extensibility

Understandability Formalisation
Adequacy Integration

Verification
Expressive Power

Table 3.3: Criteria of Investigation adapted from (Prasse, 1998)

It is difficult to establish a clear correspondence between the criteria we have selected (Table 3.1)
and Prasse’s criteria (Table 3.4). We notice that we address only a subset of Prasse’s criteria: ver-
ification, expressive power, unambiguity, consistency, formalisation and integration (Table 3.5).
However, the automation of the language and its efficiency is not addressed by any of Prasse’s
criteria.

3.3.2 Djebbi’s Framework

Another evaluation framework has been provided in (Djebbi and Salinesi, 2006) where the evalu-
ation criteria (Table 3.6) are originally dedicated to variability modelling languages. Some criteria
are applicable to all modelling languages and others, that are not described here (Variability Type,
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Criteria Informal Description
Usability Determines if a language is usable for humans in opposi-

tion to machines;
Clarity Determines if a model corresponds directly to recognition

patterns of the user;
Understandability Conceptual understandability determines if the language

concepts are adequate for modelling. Notational under-
standability examines the notation concerning ergonomic
aspects like the one studied in (Moody, 2005);

Adequacy Determines whether the model corresponds to its problem
domain. By definition a model is a simplified and idealised
description of a problem domain;

Verification Determines if a model is not error-prone according to a
problem domain;

Expressive Power Determines how far essential facts of the problem domain
can be expressed in a clear and natural manner;

Unambiguity Determines if the interpretation of the language concepts
and of the combining rules are unambiguous according to
its abstract syntax and semantics;

Consistency Determines if the model is consistent according to the con-
cepts and rules of the language (abstract syntax);

Formalisation Determines if the semantics of the language and its con-
cepts are defined exactly;

Integration Determines if the language can be easily integrated with
other languages, with other paradigms and with other de-
velopment processes;

Reusability Determines if the language with its concepts and rules
can be reused (language reusability). Determines if the
language contains concepts that enable to reuse or ex-
tend models such as generalisation or specialisation (model
reusability);

Extensibility Determines if the language can be extended following for-
mal rules and preserving the structure of its meta-model.

Table 3.4: Prasse’s Criteria: Informal Description adapted from (Prasse, 1998)
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Formal Criteria Prasse’s Criteria
Formal Definition Formalisation,

Consistency,
Unambiguity

Computational
Complexity

Verification

Expressiveness Expressive Power
Embeddability Expressive Power
Succinctness Integration

Table 3.5: Formal Criteria and Prasse’s Criteria

Variability Documentation and Variability Dependencies), are specific to variability modelling. In
addition, most of these criteria do not provide a quality criteria but rather prescribe concepts and
rules to be included in the abstract syntax of a variability modelling language. It is specific in the
sense that it concerns the usage of FDs in a particular company, for a given kind of project. How-
ever the notion of a “good” modelling language is relative to the context of use of the language.
The priorities to be put on the expected qualities and criteria are very likely to be different from one
company, or project, to another.

Criteria Informal Description
Readability Expresses the facility to visually apprehend the model;
Clearness Examines graphic arrangement of the elements that make

the model;
Simplicity Determines if the model contains a minimal number of ob-

jects;
Expressiveness Determines if the model represents obviously the user’s

needs and can be easily understood without additional ex-
planation;

Evolution Determines if the model can evolve overtime and integrate
changes;

Minimality Determines if each concept is represented once and only
once in a language;

Adaptability Determines if the language is flexible enough to fit each
company specific needs;

Scalability Determines if the language allows modelling of large-scale
systems;

Support Determines if the language is supported by a tool that au-
tomates handling of models.

Table 3.6: Djebbi’s Criteria: Informal Description adapted from (Djebbi and Salinesi, 2006)

It is difficult to establish a clear correspondence between the criteria we have selected (Ta-
ble 3.1) and Djebbi’s criteria (Table 3.6). We notice that we address only a subset of Djebbi’s
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criteria: simplicity, minimality and support (Table 3.7). The reader should note that the definitions
of expressiveness given in Tables 3.1 and 3.6 are incompatible. Djebbi’s definition of expressiveness
is closer to understandability as defined by Prasse (see Table 3.4).

Formal Criteria Djebi’s Criteria
Formal Definition
Computational
Complexity

Support

Expressiveness
Embeddability Minimality
Succinctness Simplicity

Table 3.7: Formal Criteria and Djebbi’s Criteria

3.4 Chapter Summary

Throughout this chapter, we have presented and refined the SEQUAL framework used to evaluate
the quality of models and languages. Our purpose is to provide formal criteria to compare languages
and to discuss them according to SEQUAL. These criteria have the advantages to be (1) language-
independent, (2) user-independent, (3) non-subjective and (4) based on established theories such
as language theory (Hopcroft et al., 2000) and computational complexity theory (van Leeuwen,
1990; Papadimitriou, 1994). These formal criteria are by no means to be considered complete.
Other suitable criteria should be provided to evaluate languages and models in further research.
Many criteria exist to evaluate languages. We have mentioned the ones proposed in (Prasse, 1998)
and (Djebbi and Salinesi, 2006). These criteria are described informally and cover more quality
dimensions. We believe that both formal and informal approaches are complementary and should
be combined to depict a better quality panorama.

Our purpose in the next chapters is to provide a formal description of our language-independent
and formal criteria. How a language should be formally defined is described in Chapter 4 while the
studied language criteria (complexity, expressiveness, embeddability and succinctness) are formally
defined and discussed in Chapter 5.
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Chapter 4

Languages: Formal Definition

I
n Chapter 3, we have presented the SEQUAL framework in order to evaluate models
and languages. We have shown how formal language properties may contribute to lan-
guage and model quality. Throughout this chapter, we present and detail how to define a

language formally denotational semantics (Stoy, 1977) recalled in (Harel and Rumpe, 2000, 2004).
In their illuminating papers “Meaningful modelling: What’s the Semantics of ‘Semantics’?” (Harel

and Rumpe, 2004) and “Syntax, Semantics and All That Stuff. Part I: The Basic Stuff” (Harel and
Rumpe, 2000), the authors recognise that:

“Much confusion surrounds the proper definition of complex modelling languages
[. . . ]. At the root of the problem is insufficient regard for the crucial distinction be-
tween syntax and true semantics and a failure to adhere to the nature and the purpose
of each.” (Harel and Rumpe, 2004)

Although their main purpose is to improve the definition of complex modelling languages such
as the Unified Modelling Language (UML) (OMG, 2008), we argue that, even if FDs are far less
complex, they are also “victims” of similar “mistreatments”. Moreover, we claim that the added
value provided by formalisation largely compensates the efforts needed to formally define a FD
language. The objective of this chapter is to recall the basic principles from (Harel and Rumpe,
2000, 2004) used to formally define a language. In the subsequent chapters, we will show how, based
on these notions, we have devised an approach to (re)define, assess and compare FD languages.

The structure of this chapter is as follows. First we recall and illustrate the principles proposed
by (Harel and Rumpe, 2000, 2004) in Section 4.1 where we detail the notions of Syntax (Sec-
tion 4.1.1) and Semantics (Section 4.1.2). Then we recall in Section 4.2 the main misconceptions
over semantic definitions as introduced by the same authors.

4.1 Formal Definition of Language

Formally, Harel and Rumpe make it clear that the unambiguous definition of a modelling language,
be it textual or graphical, must consist of three equally necessary elements: a syntactic domain (L),
a semantic domain (S) and a semantic function (M). Furthermore, the authors argue that L, S and
M must all be defined formally i.e. mathematically, in order to keep the risk of ambiguity at a

61
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minimum. Throughout the thesis we will use the following convention: the syntactic domain of a
language X will be notedLX , the semantic function of a language X will be notedMX and semantic
domain of a language X will be noted SX .

Figure 4.1 summarises Harel and Rumpe’s approach. This figure illustrates the three necessary
elements that are respectively two sets and one function between them. The set on the left is L
and contains all the diagrams one can write in L. The set on the right is S and contains all the
possible meanings of every diagram one can write in L. The total function that relates these sets is
M: it maps every diagram of L to a meaning in S. Two diagrams may share the same meaning,
as illustrated in Figure 4.1 where two diagrams in L (herDiagram and hisDiagram) are mapped
to the same meaning in S, that isM(herDiagram) =M(hisDiagram). Indeed, two diagrams with
different graphical representations may share the same meaning. In contrast, two different meanings
may not be mapped by the same diagram. SinceM is a total function no ambiguity is possible: one
diagram always maps to exactly one meaning.

Syntactic domain (L) Semantic domain (S)

All the diagrams

one can write in L
All the possible meanings

of L
 
diagrams

Semantic function

(M: L ! S)
myDiagram

yourDiagram

herDiagram

M(yourDiagram)

M(myDiagram)

M(herDiagram)

= M(hisDiagram)
hisDiagram

Figure 4.1: Formal language: the three constituents

A language with such formal L, S andM is called a denotational formal language. For pro-
gramming languages, it is easy to understand why they need to be formal: given the same input, a
given program must deliver exactly the same output whatever the interpreter or compiler that exe-
cutes it. A formal programming language leaves no ambiguity in this regard to the implementers
of interpreters. For modelling languages, we do not necessarily need to execute diagrams, espe-
cially if the language’s purpose is not to represent behaviours that could be executed, animated or
simulated in some way. However, most of the time, there is a great interest in carrying out precise
computations on diagrams in order to derive properties about their meaning. For example, it might
be extremely useful to have a tool that tells whether a given FD allows for at least one feature con-
figuration, or if it is overconstrained and thereby allows none (Satisfiability, see Section 7.1). For a
realistic FD, this verification is far from trivial and it can be very time-consuming and error-prone
if left to humans. This type of verification is known as satisfiability checking and is one of the
many FD-related tasks that can be automated (Benavides et al., 2006; Schobbens et al., 2007, 2006)
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(see Section 7.1). If we want to describe languages in such a way that no ambiguity is left to tool
developers, then we need a formal modelling language.

Finally, and maybe most importantly, we should not forget that modelling languages are mainly
used to ease communication between human participants (Moody, 2006b). If a language has no
well identified, clear and concise definition of a semantics to which one can refer in case of doubt,
an expression in this language might well convey an unintended meaning. The semantic reference
used to resolve conflicts may also evolve during the debates to reflect a consensus of its users. This
is a necessary condition for the language and its tool support evolution and maintenance.

After this discussion on why a formal language definition is needed, we now give more details on
how the syntax (Section 4.1.1) and the semantics (Section 4.1.2) of a language are defined according
to denotational semantics (Harel and Rumpe, 2000, 2004).

4.1.1 Syntax Definition

In diagrammatic (a.k.a. visual, or graphical) languages, basic expressions include lines, arrows,
closed curves, boxes and composition mechanisms involving connectivity, partitioning and “insid-
eness” (Harel and Rumpe, 2004). These form the physical representation of the data (on screen, or
on paper) that is known as concrete syntax. Most informal definitions of FD language semantics we
found in the literature were based on concrete syntax, and usually discussed on FD examples. Most
of the time, a substantial part of the semantics was implicit, leaving it to the diagrams to “speak for
themselves”. But actually, each readers’ intuition is potentially different. And for computer support,
we need to make everything explicit. As Harel and Rumpe put it:

“It is possible to guess the meaning of most terms, since a good language designer prob-
ably chooses keywords and special symbols with a meaning similar to some accepted
norm. But a computer cannot act on such assumptions. To be useful in the computing
arena, any language – whether it is textual or visual or used for programming, require-
ments, specification, or design – must come complete with rigid rules that clearly state
allowable syntactic expressions and give rigid description of their meaning” (Harel and
Rumpe, 2004).

According to the state of the art in compilation and formal methods, it is better not to use
concrete syntax as a basis for defining semantics. One reason is that, for visual languages, it appears
particularly difficult to define rigid syntactic rules that clearly segregate between the allowed and
the forbidden diagrams. Another reason is that, when based on the concrete syntax, the expression
of the semantic interpretation rules is polluted by considerations related to visualisation, that makes
the rules cumbersome. This is why the common practice in the aforementioned areas is to define
the semantics of a language based on a so-called abstract syntax.

The abstract syntax is a representation of data that is independent of its physical representation
and of the machine-internal structures and encodings. The set of all data that comply with a given
abstract syntax is called the syntactic domain. Independence from machine-internal structures and
encodings is useful (1) to simplify the description of the rules, and (2) to make the rules portable
from one implementation to another.

For visual languages, the two most widespread ways to define an abstract syntax are: (1) math-
ematical notation (set theory) and (2) meta-modelling. In the latter case, the abstract syntax is
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described through a so-called meta-model describing what is a well-formed (allowed) diagram. A
meta-model is usually a UML Class Diagram (CD), possibly complemented with Object Constraint
Language (OCL) rules (OMG, 2008). This format has the main advantage to be easily readable
(UML CDs are a standard visual language with a partially well-accepted, although informal, se-
mantics∗), and to facilitate some tool implementation tasks, especially persistent storage of dia-
grams in a repository. Nevertheless, we prefer the mathematical format for its greater universality,
unambiguity, conciseness and suitability to undergo rigorous proofs.

4.1.2 Semantic Definition

Once we have established a rigid set of syntactic rules, the role of a semantics is to assign an unam-
biguous meaning to each syntactically correct diagram. Harel and Rumpe recognise that “agreement
on a language’s meaning is partly a sociological process, without which the communicated data is
worthless” (Harel and Rumpe, 2004). As we have seen in Chapter 3, this point of view is acknowl-
edged and further elaborated in (Krogstie, 2001b; Krogstie et al., 2006) that adopts a constructivist
view of the modelling activity. The sociological aspects of semantics are however out of the scope
of this thesis. At the moment, we stick to the view where “a language’s semantics must provide
the meaning of each expression, and that meaning must be an element in some well-defined and
well-understood domain” (Harel and Rumpe, 2004). Following (Harel and Rumpe, 2004, 2000), a
semantics must have two main constituents: a semantic domain (S) and a semantic function (M).
For describing them in the most universal, unambiguous and concise way, we opt again for mathe-
matics.

4.1.2.1 Semantic Domain

According to denotational semantics (Harel and Rumpe, 2004), the first constituent of a semantics
is the semantic domain (S) that “[. . . ] specifies the very concepts that exist in the universe of
discourse. As such, it serves as an abstraction of reality, capturing decisions about the kinds of
things the language should express”. Typically, a semantic domain is a mathematical domain built
to have a structure that matches as much as possible to the real-world objects the language is used
to account for, up to some level of fidelity. Having an explicit and well-defined semantic domain is
crucial to get a clear idea of the kind of things that the modelling language is intended to represent.
Without an explicit definition, it is difficult to judge the appropriateness of the language with respect
to (1) the application domain, (2) the usage that the audience wants to make of it, and (3) the tools
that will support it. Furthermore, looking at the semantic domain is necessary to compare two
semantic definitions, as we will show in Chapter 7.

4.1.2.2 Semantic Function

The second constituent of a semantics is M, the semantic function. It maps L to S and assigns
a meaning to each syntactically allowable diagram (Figure 4.1). The signature of this function is
therefore simplyM : L → S.

∗Several formal semantics of CD have been proposed in the literature (Kim and Carrington, 1999; Szlenk, 2006) but,
at the time being, none appears in the official standard (OMG, 2008), nor as a de facto standard.
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An important point is that the definition of M should be rigid too, that is, it should make it
crystal clear which object (meaning) in S is assigned to any allowable diagram of L. SinceM is
a function, there is one and only one such object for a given allowable diagram. Ambiguity in this
context is therefore not possible.

Finally, the semantic function should be total, that is, it should not be possible to have a diagram
in L which is not given a meaning in S byM. A total semantic function ensures that the definition
of the semantics is complete. The converse question will help language engineers to evaluate the
expressiveness of their language (Section 5.2): is every element in S expressible by a diagram inL?

4.2 Languages: Formal Definition and Misconceptions

The above may seem all too obvious to some readers. However, Harel and Rumpe have observed
that many languages were never defined properly despite the benefits. Moreover, the authors have
identified reasons why most of these languages are not properly defined. They have pointed out
a set of frequent mistakes or misconceptions associated to semantics across software and systems
engineering (Harel and Rumpe, 2004, 2000):

• “Semantics is the meta-model”. The most common mistake is to confuse the meta-model
of the language and its semantics. The meta-model is one possible technique to describe the
syntactic domain of the language, but not more. Usually, a meta-model is a combination
of UML class diagrams (OMG, 2008) and OCL constraints. The class diagram specifies
the allowed abstract syntax of the language and the OCL constraints specify additional rules
but still syntactic rules that the diagram should respect. Nevertheless, nothing concerns the
meaning of the diagram.

• “Semantics is the semantic domain”. The semantics could not be restricted to the semantic
domain because the semantic domain is useless if no link is established between the represen-
tation of a diagram (an element in the syntactic domain) and its meaning (an element in the
semantic domain). Hence, without a semantic function we have no semantics at all.

• “Semantics is the context conditions”. Context conditions entail neither a semantic domain
nor a semantic mapping. They constrain the syntax as OCL constraints constrain the meta-
model.

• “Semantics is dealing with behaviour”. Semantics is not restricted to behaviour defini-
tion. Some languages such as FD languages do not define behaviours, but they still need a
semantics. Semantics may deal with behaviour but not always.

• “Semantics is being executable”. When a language is executable, it certainly has an op-
erational semantics. However, even if the language is executable, there is no assurance that
its execution is the intended one, that the semantics is adequately described and understood.
In addition, the implementation aims at efficiency and deals with low level details while the
semantic definition aims to highlight the underlying concepts, to be clear, precise but still
understandable, and to facilitate equivalence proofs (do two diagrams have the same seman-
tics?).
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• “Semantics is the meaning of individual construct(s)”. The semantics of a language should
be complete, all its constituent parts should be mathematically defined. However, defining the
meaning of all its constituent parts is not always sufficient, a compositional semantics could
be defined as a function on the meanings of all its constituent parts.

• “Semantics means looking mathematical”. Using mathematical symbols to define a lan-
guage is often necessary but by no means a sufficient condition. The presence of mathe-
matical symbols neither implies that there is a proper semantics, nor guarantees precision or
unambiguity.

4.3 Chapter Summary

Throughout this chapter, we have presented how to formally define a modelling language according
to (Harel and Rumpe, 2000, 2004). Various fundamental principles and concepts have been defined
and discussed, such as syntactic domain, semantic domain and semantic function. They will be
extensively reused throughout the next chapters. We have also underlined the main advantages
associated with formal languages: unambiguity and language automation. In the following chapter
(Chapter 5), we will reuse these principles and concepts to formally redefine language properties
that will be used later to compare FD languages.



Chapter 5

Languages: Formal Criteria and Quality

I
n Chapter 4, we have presented how Harel and Rumpe propose to formally define a
language (Harel and Rumpe, 2000, 2004). Once languages are equipped with such a
formal and denotational definition, we can compare them in a rigorous yet natural way.

Our formal comparison is based on four criteria: Complexity, Expressiveness, Embeddability and
Succinctness. Throughout this chapter, we define and discuss these criteria to evaluate the quality
of languages.

The first criterion concerns the efficiency (computational complexity) of the algorithms used to
reason on languages and to evaluate the scalability of the language according to defined decision
problems. The three other selected criteria are commonly used in language theory (Hopcroft et al.,
2000) and allows answering three questions:

• Expressiveness: What can the language express?

• Embeddability: When a diagram written in one language is translated into another language,
does this translation preserve the structure of the diagram? If yes, we call this translation an
embedding. The structure of a diagram usually corresponds to the shape formed by its nodes
and edges.

• Succinctness: When a diagram written in one language is translated into another language,
what’s the impact of this translation on the size of the diagram? The size of a diagram is
usually measured by the number of its nodes and edges.

These three criteria will be formally (re)defined in the next sections using Harel and Rumpe’s
concepts (Harel and Rumpe, 2000, 2004) already presented in Chapter 4.

The structure of this chapter is as follows. Each criteria is defined and discussed in turn. Compu-
tational complexity is defined in Section 5.1, expressiveness in Section 5.2, embeddability in Section
5.3 and finally succinctness in Section 5.4.

5.1 Complexity

Among its many advantages, formalising a language enables to rigorously define a set of questions
(a.k.a decision problems) that can be asked about diagrams written in this language. These decision

67
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problems concern the satisfaction of a certain “property” of the diagram. To automatically resolve
them several algorithms can be provided and their efficiency should be carefully studied. Determin-
ing if a solution is efficient or not is only one facet of the problem. Indeed, one major problem is to
identify whether the inefficiency is due to a suboptimal solution or to the difficulty of the problem
in itself.

The theory that tackles these issues is complexity theory (Papadimitriou, 1994). In the context
of languages, a decision problem is a question about a diagram that can be answered by ‘yes’ or
‘no’. The efficiency of the algorithm that answers this question is related to how do the running
time and memory requirements of the algorithm change given the size of the input.

For example, in formal languages that have a set as semantic domain, we can state precisely the
satisfiability problem. The question we want to answer is: “is the given diagram satisfiable?”. The
diagram property we want to satisfy is satisfiability. A diagram is said satisfiable when its semantics
is non empty. Satisfiability is naturally formalised as: given a semantic functionM[[]] and a diagram
d, isM[[d]] , ∅ true?

Once these problems are formalised, one can ask (1) whether algorithms exist at all to solve
this problem (decidability) and (2), if so, what is their optimal complexity in time and memory.
A decision problem that can be solved by some algorithm is called decidable. A typical measure
of complexity is time complexity, i.e., the number of steps for a Turing machine that it takes to
solve an instance of the problem as a function of the size of the input, using the most efficient
algorithm (Papadimitriou, 1994). Measuring the memory usage of the most efficient algorithm is
called space complexity. Time and space are usually ranked into complexity classes (Papadimitriou,
1994):

• P is the set of decision problems solvable in polynomial time on a deterministic Turing ma-
chine.

• NP is the set of decision problems solvable in polynomial time on a non-deterministic Turing
machine. This type of non-determinism is called “angelic”: the Turing machine is supposed
to make perfect guesses leading to the “yes” answer.

• A decision problem is NP-complete if it is in NP and every other problem in NP can be re-
duced to it in polynomial time. NP-complete problems are the most difficult problems in NP
in the sense that they are the smallest subclass of NP that could conceivably remain outside
of P. Classical NP-complete problems are: the Boolean satisfiability problem (SAT), the
knapsack problem, the Hamiltonian cycle problem, the Travelling Salesman Problem (TSP),
the graph colouring problem, . . .

• coNP is the set of decision problems for which the complement is in NP, i.e. solvable in poly-
nomial time on a non-deterministic Turing machine. The complement of a decision problem
is obtained by swapping the yes and no answers. In other terms, coNP is the set of problems
for which it is possible to find counter-examples in polynomial time on a non-deterministic
Turing machine.

• The polynomial hierarchy is a hierarchy of complexity classes that generalize the classes P,
NP and coNP to oracle machines. An oracle machine is a Turing machine connected to an
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oracle that is able to resolve any problem of a given complexity class in a single step. In this
case, a polynomial number of queries can be sent to the oracles. The class of problems solv-
able in polynomial time by a deterministic Turing machine calling an oracle solving problems
in complexity C is noted PC, and similarly for NPC and coNPC. Note that PP = P, NPP = NP
and coNPP = coNP. For instance, the class of all languages decided by polynomial-time ora-
cle machines calling a SAT oracle is noted PSAT or PNP. According to (Papadimitriou, 1994,
p. 424), the polynomial hierarchy is defined as the following sequence of classes:

– 40P =
∑

0 P =
∏

0 P = P
– ∀i ≥ 0 :

∗ 4i+1P = P
∑

i P,
∗
∑

i+1 P = NP
∑

i P,
∗
∏

i+1 P = coNP
∑

i P.

Hence,
∏

1 P = coNP and
∏

2 P = coNPNP. In addition, if P = NP the polynomial hierarchy
collapses to the level 0, with P = NP = coNP = 4iP =

∑
i P =

∏
i P.

• PS PACE is the set of decision problems that can be solved by a deterministic or non-
deterministic Turing machine using a polynomial amount of memory (space) and unlimited
time.

• A decision problem is PS PACE-complete if it is in PS PACE and every other problem in
PS PACE can be reduced to it in polynomial time. One Classical PS PACE-complete prob-
lem is the Quantified Boolean Formula (QBF) problem (Papadimitriou, 1994, p. 455) or the
satisfiability of linear temporal logic.

• EXPTIME is the set of decision problems solvable by a deterministic Turing machine in
O(2p(n)) time, where p(n) is a polynomial function of n where n is the size of the input.

• NEXPTIME is the set of decision problems that can be solved by a non-deterministic Turing
machine using time O(2p(n)) for some polynomial function p(n).

• EXPSPACE is the set of decision problems solvable by a Turing machine in O(2p(n)) space,
where p(n) is a polynomial function of n.

In complexity theory, it is known that (Papadimitriou, 1994):
P ⊆ NP ⊆ PS PACE ⊆ EXPT IME ⊆ NEXPT IME ⊆ EXPS PACE

Complexity results are important because they help evaluating (1) languages according to the
complexity of their associated decision problems and (2) the scalability of tool support for this
language. Formalisation of both the syntax and semantics is a necessary prerequisite to devise
decision problems. Complexity analysis will then help identifying the worst case for each decision
problem and to propose solutions to handle it. Heuristics taking into account the most usual cases
can be added to the backbone algorithm, to obtain practical efficiency. Complexity results are good
indicators to evaluate the quality of a language. When languages share common decision problems,
their complexity with respect to these problems can be compared. Nevertheless, decision problems
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may differ between languages, hence complexity results should be carefully analysed. For instance,
a language X with a decision problem solvable by a deterministic Turing machine in O(2p(n)) space
(EXPS PACE) is not necessarily worse than a language Y with all its decision problem solvable
in polynomial time on a deterministic Turing machine (P). Y is maybe insufficiently expressive to
model real world problems (Section 5.2).

Obviously, other criteria are used to compare languages such as expressiveness, embeddability
or succinctness. However, these criteria require that the languages share, or are amenable to, a
common semantic domain. We start with expressiveness.

5.2 Expressiveness

The expressiveness of a language is commonly understood as what can be expressed in the lan-
guage, more precisely in its syntactic domain. For a formal language, we can be more specific: the
expressiveness E of a language X, noted E(X), is the part of its semantic domain (SX) that it can
express, i.e., the image of its syntactic domain (LX) through its semantic function (MX). This is
what Definition 5.2.1 says, and what Figure 5.1 illustrates. The syntactic domain of the language X
(LX) has an image E(X) =MX(LX), a subset of X’s semantic domain (SX).

Definition 5.2.1 (Expressiveness) The expressiveness of a language X is the set E(X) = {MX[[d]]|d ∈
LX}, also notedMX[[LX]]. A language X is more expressive than a language Y if E(X) ⊃ E(Y).

If S is the common semantic domain of several languages, say W, X, Y and Z , their respective
expressiveness can be compared. They form a partial order.

In Figure 5.1 we illustrate a situation where, because of their respective definitions, no two
languages have the same expressiveness. For instance, Z is more expressive than Y: E(Z) ⊃ E(Y).
The expressiveness of X and Y are disjoint: E(X)

⋂
E(Y) = ∅. The expressiveness of X and Z

overlap: E(X)
⋂

E(Z) , ∅ but are incomparable: E(X) 1 E(Z) and E(Z) 1 E(X). In general, the
relationships between the syntactic domains (disjoint, overlapping, equal) of several languages are
non-correlated with the relationships existing between their respective semantic domains. This is
because the semantic function can be different for each language.

In Figure 5.1, we also notice that E(W) = S. In cases like this, when the image of LW is the
whole of SW, we say that the language W is expressively complete (Definition 5.2.2), or in other
words, the part of the semantic domain it can express is the semantic domain itself.

Definition 5.2.2 (Expressive Completeness) A language W with a semantic domain SW is expres-
sively complete if E(W) = SW .

The usual way to prove that a language Y is at least as expressive as X is to provide a translation
(Definition 5.2.3) between their syntactic domain from LX to LY .

Definition 5.2.3 (Translation) A translation is a total function T : LX → LY that preserves se-
mantics:MY [[T (d1)]] =MX[[d1]].



5.2. Expressiveness 71

...

Syntactic domains Semantic domain 

Semantic functions

E(W)=S
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E(Z)

E(X)
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LY
LX
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Figure 5.1: Comparing expressiveness

T
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Semantic functions

E(X)= E(Y)=S

LX

LY

MX!LX"

MY!LY "

MX!d1" =
MY!T(d1)"

MY

d1

MX

d2

Figure 5.2: Translation between expressively complete languages

One major quality for a language is to be expressively complete (Definition 5.2.2). It assures
that all the intended meanings can be expressed within the language and that the tools supporting it
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will not be restrained at the end. Since languages compete for expressiveness, it often happens that
they reach the same maximal expressiveness. It means that they are all expressively complete and
that there exists a translation between each couple of compared languages (Figure 5.2). Therefore,
comparing them according to their expressiveness is not sufficient. This is for instance the case
for programming languages, that are almost all Turing-complete and can thus express the same
computable functions. Consequently, we need finer criteria than expressiveness to compare these
languages.

The idea is to study the properties of the translations between those languages:

• Do they preserve the structure of the original diagram?

• Do they increase or reduce the size of the original diagram?

The former property is addressed by the concept of embeddability (or naturalness) (Section 5.3)
whereas succinctness takes care of the second (Section 5.4).

5.3 Embeddability

In theory, when two languages have the same expressiveness, there are two translations back and
forth between them that preserve their respective semantics. However, these translations might mod-
ify the structure of the original diagram. The structure of a diagram usually corresponds to the shape
formed by its nodes and edges. Embeddability (a.k.a naturalness) checks if these translations are
natural. A translation is said natural when it respects the structure of the original diagram (Kleene,
1952; Felleisen, 1990). A natural translation is also called an embedding (Definition 5.3.1).

Definition 5.3.1 (Embedding) An embedding is a translation (Definition 5.2.3) T : LX → LY that
is compositional (Definition 5.3.2).

Definition 5.3.2 (Compositional Translation) A translation of a sentence is compositional (or
modular or homomorphic or natural) when it is determined by the translations of its constituent
parts, and the way in which those parts are combined. The translation T : LX → LY , is composi-
tional whenT (C1(~x)) =C2(T (~x)), for all constructs C1 ofLX , where ~x is a vector of meta-variables,
adequately typed with respect to C1’s sub-terms expected types. C2 is an expression in LY contain-
ing the same meta-variables. C2 is usually noted T (C1).

Example 5.3.1 A typical example is the compositional translation between programming languages
“Pascal” (Mickel et al., 1991) and “Pascal without for”. The translation is immediate for all the
constituent parts of a sentence (program) written in Pascal except for the for instruction that should
be translated according to the translation provided in Table 5.1 where i, l, h, S are meta-variables.

However, the sentences to translate are not only textual. In the following, we distinguish textual
(Section 5.3.1) and visual languages (Section 5.3.2)
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Instead of . . . write . . .

for i := l to h do S

i := l;
while i <= h do

begin
S;
i:=i+1

end;

Table 5.1: Translation in Pascal: for into while

5.3.1 Textual Languages

For textual languages, the requirement to preserve string structure (i.e. embeddability (Defini-
tion 5.3.3)) has been called macro-eliminability and inspired by (Kleene, 1952; Felleisen, 1990).
Macro-eliminability relies on the assumption that the concerned textual languages have a context-
free grammar (Definition 5.3.4), which in turn enables to define the translation in a compositional
way (i.e as an embedding (Definition 5.3.1)).

Definition 5.3.3 (Embeddability) A Context-Free language X is embeddable into Y iff there is an
embedding (Definition 5.3.1) from LX to LY .

Definition 5.3.4 (Context-Free Grammar) A Context-Free Grammar G is a 4-tuple:
G = (Vt,Vn, Pr, S ) where

• Vt is a finite set of terminals;

• Vn is a finite set of non-terminals;

• Pr is a finite set of production rules where a production rule is of the form Vn → (Vt ∪ Vn)∗;

• S is an element of Vn, the distinguished starting non-terminal.

Example 5.3.2 This example illustrates Definition 5.3.4 by providing a simple Context-Free Gram-
mar with an alphabet composed of two symbols: “a”, “b” that contains a different number of “a”
and “b”. This Context-Free Grammar G is a 4-tuple: G = ({a, b}, {S , A, B,T }, Pr, S ) where∗

Pr ={ S → A|B,
A→ TaA|TaT ,
B→ TbB|TbT ,
T → aTbT |bTaT |ε }

More real examples of Context-Free Grammars can be found in the literature. For instance, it
exists a definition in BNF of the “Pascal” programming language Context-Free grammar in (Mickel
et al., 1991, p215).

∗ε stands for the empty string.
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5.3.2 Visual Languages

For visual languages (Definition 5.3.5), the notion of context-free grammar is not general enough
to be directly applicable. In addition, complex visual languages are not always “context-free” as,
for instance, relative positions in multi-dimensional spaces are meaningful.

Definition 5.3.5 (Visual Languages) A visual language is any language that lets users communi-
cate by manipulating graphical elements in a multi-dimensional space.

As recalled in (Moody, 2006b), graphical representation allows visual variables to encode
information such as shape, size, colour, orientation, texture, horizontal and vertical position and
their corresponding values. Textual languages are visual languages working in one dimension where
only the sequence of characters is important. Examples of more complex visual languages are
the American Sign Language (ASL) where the temporal dimension is central or dataflow diagram
language (Sutherland, 1966), FD languages (Kang et al., 1990) and UML (OMG, 2008) where
labelled graphs are essentially used to represent their syntactic domain. Once the syntactic domain
of a language is a graph, the definitions of embeddability and embedding can be adapted for Node-
Labelled graphs (Definition 5.3.6) (Janssens, 1983). We will call them graphical embeddability and
graphical embedding.

Definition 5.3.6 (Node-Labelled Graph (Janssens, 1983)) A Node-Labelled Graph G is a 4-tuple:
G = (NG, EG, LG, λG) where

• NG is a finite non-empty set of labelled nodes;

• EG is a finite set of edges where an edge is a couple of elements in NG;

• LG is a finite non-empty set of labels;

• λG is a labelling function from NG into LG.

In the following, we revisit the classical definitions of embeddability (Definition 5.3.3) and
embedding (Definition 5.3.1). We propose definitions for graphical embeddability (Definition 5.3.9)
and graphical embedding (Definition 5.3.10) that generalise the definitions of embeddability and
embedding. We follow and adapt the ideas presented in (Janssens and Rozenberg, 1980).

In (Janssens and Rozenberg, 1980; Janssens, 1983) the authors propose a “context-free” gram-
mar for graph languages called Node-Label Controlled (NLC) graph grammar (Definition 5.3.7).
The NLC grammar is analogous to the rewriting performed in classical string grammars. Neverthe-
less, productions in NLC grammar are more complex. Indeed a production is of the form M → D
where a mother graph (M) is replaced by a daughter graph (D) in the host graph (H). The new host
graph is named H. Therefore, comparatively with string grammars graph rewriting is not sufficient.
Daughter graphs should be correctly reconnected to the host graph. This reconnection, called graph
embedding in (Janssens, 1983), is provided through a set of connection relations (C) for the whole
grammar rather than for each node separately. The production is said node-controlled when the
mother graph (M) (left part of the production) is restricted to an element of the total alphabet (A).
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Definition 5.3.7 (NLC Grammar (Janssens, 1983)) A NLC grammar G is a 5-tuple:
G = (A,T, Pr,C,Z) where

• A is a finite non-empty set, called the total alphabet;

• T is a non-empty subset of A, called the terminal alphabet;

• Pr is a finite subset of A × W, called the set of productions, where W is the set of all Node-
Labelled Graphs over A;

• C is a subset of A × A, called the connection relation;

• Z is a Node-Labelled Graph over A called the axiom.

Example 5.3.3 This example illustrates Definition 5.3.7. It provides a Node-Label Controlled
Grammar with an alphabet composed of five labels: a, b, c, d, e. They are all terminal. The pro-
duction defined translates each node labelled by e into four nodes (two labelled by c, one labelled
by b and the last labelled by d) and four edges connecting these new nodes. In addition, two
(re)connections have been defined: {(b, a), (c, d)}. The last (re)connection ((c, d)) means that if one
new node labelled by c is generated by a production, this new node should be connected to every
node labelled by d. This is only possible if it exists a node labelled by d in the graph before and
after the trigger of the production.

Let G be the NLC Grammar of the form G = (A,T, Pr,C,Z) where

• A = {a, b, c, d, e};

• T = {a, b, c, d, e};

• Pr = {( e,

c c

b d

c c

b

da

b

c

da

b

c

a

)};

• C = {(b, a), (c, d)};
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• Z =

c c

b d

c c

b

da

b

c

da

b

c

e
d

da

b

c

e
.

In Table 5.2, the single production rule in Pr is applied to the application node labelled by e
that is circled. This node with its connected edges are eliminated in H and replaced by four new
nodes and four new edges. In addition, three new edges are added to replace the previous edges
connected to this node labelled by e. According to the definition of the (re)connections (C), both
new nodes labelled by c are connected to the node labelled by d and the new node labelled by b is
connected to the node labelled by a.

H H

c c

b d

c c

b

da

b

c

da

b

c

e
d

c c

b d

c c

b

da

b

c

da

b

c

e
d

Table 5.2: Example: Production in NLC Grammar adapted from (Janssens, 1983)

Once we have recalled the work presented in (Janssens and Rozenberg, 1980), we now underline
how we adapt it to define graphical embeddings:

• Graphical embeddings are defined over visual languages with syntactic domains defined as
Node-labelled Directed Acyclic Graphs (NLDAGs) (Definition 5.3.8).

Definition 5.3.8 (Node-Labelled Directed Acyclic Graph) A Node-Labelled Directed Acyclic
Graph G is a Node-Labelled Graph (NG, EG, LG, λG) (Definition 5.3.6) where
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– G is directed: EG is a subset of (NG × NG) \ {(x, x)|x ∈ NG}, with (x, y) ∈ EG, (x, y)
alternatively noted: x→ y.

– EG is acyclic: @n1, ..., nk ∈ NG.n1 → . . .→ nk → n1.

• Graphical embeddings are not limited to translations within the same language. They may
translate graphs from one visual language (X) to another (Y) with different syntactic domains
(LX , LY ) and eventually different labels (LX , LY ).

• Graphical embeddings should not be confused with “graph embeddings” in (Janssens and
Rozenberg, 1980) that only concerns the reconnection of the edges previously related to the
defined node.

• Graphical embeddings are of the form M → D with a mother NLDAG (M) and its daughter
NLDAG (D). M and D respectively contain more information than in (Janssens and Rozen-
berg, 1980):

– M contains the defined node (N), all the nodes connected to it and the edges connecting
them.

– D contains the new node(s) that will replace the defined node and in addition new
edge(s) that will reconnect the new node(s) to the nodes previously connected to the
defined node in M.

Definition 5.3.9 (Graphical embeddability) A visual language X is embeddable into Y iff there is
a graphical embedding (Definition 5.3.10) from LX to LY .

Definition 5.3.10 (Graphical embedding) A graphical embedding is a linear translation (Defi-
nition 5.2.3) T : LX → LY that is node-controlled (Janssens and Rozenberg, 1980) (Defini-
tion 5.3.11).

Definition 5.3.11 (Node-Controlled Translation) The translation of a diagram is node-controlled
(or compositional on graphs) when it is determined by translations of its constituent nodes, and
the way in which edges are reconnected within the diagram (Janssens and Rozenberg, 1980). A
node-controlled translation T is of the form T : M → D, where:

• M is a NLDAG called mother diagram of the form M = ({N}∪NM, EM, {LN}∪LM, λM) where:

– N < NM is the node called the defined node;

– NM is the set of nodes connected to N;

– EM ⊆ (({N} × NM)∪ (NM × {N})) is the set of all possible incoming and outgoing edges
related to the node N;

– LN is the label of N;

– LM is the set of labels associated to the nodes connected to N;

– λM is a labelling function from {N} into {LN} and from NM into LM.
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• D is a NLDAG called the daughter diagram of the form D = (ND ∪ NM, ED, LD ∪ LM, λD)
where:

– ND is the set of new nodes with ND ∩ (NM ∪ {N}) = ∅ ;

– ED ⊆ (NM ∪ ND) × (ND ∪ NM) is the set of new edges;

– LD is the set of labels associated to new nodes in ND;

– λD is a labelling function from ND into LD and from NM into LM.

The node-controlled translation (T : M → D) replaces the application node (S ) by a NLDAG
composed of new nodes (ND) and new edges (ED). An application node is a node in the host graph
(S ∈ NH) that has the same label than the defined node (N) in M: λH(S ) = λM(N). Hence, the
translation of the host NLDAG (H) results in a new NLDAG (H) where NH = (NH \ {S }) ∪ ND,
EH = (EH \ EM) ∪ ED and LH = (LH \ {LM}) ∪ LD.

Example 5.3.4 Consider the translation T between two different languages with respectively syn-
tactic domain LX and LY . The only difference between these languages is that they do not have the
same sets of labels: L2 ∈ LX while L2 < LY . Hence, to translate a diagram LX to LY we need to
translate nodes labelled by L2. In Figure 5.3 we illustrate such a translation (named r : M → D)
where each node labelled by L2 is simply eliminated while its incoming and outgoing edges are re-
connected. Its mother NLDAG (M) is composed of a defined node (N) labelled by L2 (λX(N) = L2)
and connected to nodes (X1, . . . , X j+i) by incoming (e1, . . . , e j) and outgoing (e j+1, . . . , e j+i) edges
(EM). Its daughter NLDAG (D) contains no new nodes (ND = ∅) but many new edges (ED) recon-
necting remaining nodes (X1, . . . , X j+i). For this reconnection, each origin of the incoming edges of
N are reconnected to each destination of the outgoing edges of N. Formally, the translation r is of
the form M → D where:

• M = ({N} ∪ {X1, . . . , X j+i}, {(X1,N), . . . , (X j,N)} ∪ {(N, X j+1), . . . , (N, X j+i)}, {L2} ∪ LM, λM);

• D = ({X1, . . . , X j+i}, {(X1, X j+1), . . . , (X1, X j+i)} ∪ . . . ∪ {(X j, X j+1), . . . , (X j, X j+i)}, LM, λD)

Table 5.3 illustrates an application of the translation r on the application node n2 since λ(n2) =
L2. The host NLDAG (H) is composed of four nodes n1, n2, n3, n4 and three edges (n1, n2), (n2, n3),
(n2, n4). The resulting NLDAG (H) is composed of three nodes n1, n3, n4 and two edges (n1, n3),
(n1, n4). Formally:

• H = ({n1, n2, n3, n4}, {(n1, n2), (n2, n3), (n2, n4)}, {L1, L2, L3}, λH)

• H= ({n1, n3, n4}, {(n1, n3), (n1, n4)}, {L1, L3}, λH)

The graphical definitions given for embeddability and embedding generalise the original ones.
As illustrated in the following Example 5.3.5, every syntax tree can be viewed as a labelled tree.
Moreover, if syntax trees in context free grammars allow sharing (that means that they are graphs),
then the graphical embedding is always linear in graph size.
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N

ej+1 = (N, Xj+1)

e1 = (X1, N)

ND = !

ED = {(Xm, Xn)} 1<=m<=j<n<= j+i

LD = !

ej = (Xj, N)

ej+i = (N, Xj+i)
...

...

M D

NM = {X1,..., Xj+I}

EM = {e1,..., ei+j}

LN = {L2}

!(N) = L2

X1 Xj

Xj+1 Xj+I

X1 Xj

Xj+1 Xj+I

...

...

e1,j+1 = (X1, Xj+1) ej,j+1 = (Xj, Xj+1)

r :

Figure 5.3: An example of a Node-controlled Translation

H ∈ NLDAGX H ∈ NLDAGY

n2

n3 n4

n1
n1

n4n3

r(n2)

!(n1) = L1

!(n2) = L2

!(n3) = L3 !(n4) = L3

!(n1) = L1

!(n3) = L3 !(n4) = L3

n2

n3 n4

n1
n1

n4n3

r(n2)

!(n1) = L1

!(n2) = L2

!(n3) = L3 !(n4) = L3

!(n1) = L1

!(n3) = L3 !(n4) = L3

Table 5.3: An example of application of the translation r to the node n2
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Example 5.3.5 A program written in Pascal can also be represented as a syntax DAG (NLDAG).
Hence, the textual translation between f or and while instructions, presented in Table 5.1, can be
understood as a graphical embedding (Table 5.4). The node (N) labelled by for is the defined node
and is connected to nodes i, l, h, S . In the tree form, i is duplicated by the translation, and if i is
big, this can blow up the translation. In the graph form, i cannot be duplicated since it is allowed
to occur only once in D. But we can connect the nodes of D (n2, n4, n7 and n8) several times to i.
Thus we obtain the same net effect without blow-up. Hence, “Pascal” is embeddable into “Pascal
without for”. Since the defined node N and its outgoing edges are replaced by a single rooted
NLDAG, its incoming edges should be reconnected to the node (n1) that has no parents at the top of
D.

Instead of . . . write . . . Expansion
Factor

N

i l h S

n3

i h n6

S

n5

n7

i n8

n1

i n9

n2

i l

n4

!(N) = for

!(n1) = ;

!(n6) = ;

!(n2) = := !(n3) = while

!(n7) = :=

!(n9) = 1

!(n8) = +

!(n5) = begin-end
!(n4) = <=

!(i) = var

!(l) = expression

!(h) = expression

!(S) = Instruction

N

i l h S

n3

i h n6

S

n5

n7

i n8

n1

i n9

n2

i l

n4

!(N) = for

!(n1) = ;

!(n6) = ;

!(n2) = := !(n3) = while

!(n7) = :=

!(n9) = 1

!(n8) = +

!(n5) = begin-end
!(n4) = <=

5

Table 5.4: Graphical embedding in Pascal: for into while

The graphical convention illustrated in Table 5.4 will be used throughout the thesis to define
graphical embeddings. The defined node and its associated edges (M) are represented in the first
column (Instead of ...) of the table while the replacing nodes and their associated edges (D) are
represented in the second column (write...). A third column (Expansion Factor) is added to indicate
what are the impacts of this embedding on the size of the NLDAG. This expansion factor will be
useful during succinctness analysis (see Section 5.4). To avoid overloading of the table, we consider
that if the incoming edges of the defined node (and how they are reconnected in D) are not explicitly
represented then these incoming edges are implicitly reconnected to each node that has no parents
in D.

Embeddings are of practical relevance because they ensure that it exists a translation from one
language to another that preserves the whole shape of the diagrams and generates only a linear in-
crease in size. Traceability between two diagrams is then greatly facilitated and tool interoperability
is made more transparent. Furthermore, controlling the size of diagrams helps avoiding tractability
issues for reasoning algorithms taking the diagrams as input (Section 5.1).
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Embeddability can also exist between a language and a subset of itself. A language that is
non-trivially self-embeddable is called harmfully redundant (Definition 5.3.12). A language is self-
embeddable when there is a graphical embedding inside the same language. This means that it is
unnecessarily complex. All diagrams can be expressed in the simpler sub-language without loss of
structure and with only a linear increase in size.

Definition 5.3.12 (Harmful redundancy) A language X is harmfully redundant iff there is a con-
struct c in X that has a graphical embedding in X \ c.

Example 5.3.6 The Pascal programming language is harmfully redundant because thefor instruc-
tion can be linearly translated into the same language without for (see Table 5.4). Hence, it exists
a self-embedding.

Nevertheless, every decently natural language is harmlessly redundant (Definition 5.3.13). In-
deed, when two different diagrams share the same meaning they are semantically equivalent but vi-
sually different. This situation is illustrated in Figure 4.1 where two different diagrams (herDiagram
and hisDiagram) in the syntactic domain of the language map to the same element in the semantic
domain (M(herDiagram) =M(hisDiagram)).

Definition 5.3.13 (Harmless redundancy) A language X is harmlessly redundant iff ∃d1, d2 ∈

LX .d1 , d2 ∧MX[[d1]] =MX[[d2]] ∧ @c ∈ LX .c has a graphical embedding in X \ c.

Example 5.3.7 If no self-embeddings exists in the programming language “Pascal without for”
then this language is harmlessly redundant. Indeed, two different programs written in “Pascal
without for” may share the same meaning (see Table 5.5). Here, two programs share the same
meaning when they respectively end with the same memory state.

hisProgram herProgram

x:=0;
i:=4;
x:=x+1:
x:=x+2:

x := 0;
i := 1;
while i <= 3 do

begin
x:=x+1;
i:=i+1;

end;

Table 5.5: Two semantically equivalent programs in Pascal
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5.4 Succinctness

However, linear translations are not always possible. In this case, the blow-up in size of the diagram
must be measured. The size of a diagram is usually measured by the number of its nodes and edges.
This is achieved by examining succinctness (Definition 5.4.1) that is a coarser-grained criteria.

For languages with the same expressiveness, embeddability guarantees that their respective dia-
grams are (roughly) of the same size (since there exists a linear translation). Sometimes, languages
of the same expressiveness cannot be compared by embeddings since they are a very refined com-
parison. Succinctness enables to compare the size of their respective diagrams by computing the size
of the diagrams before and after translation from one language to the other. Succinctness measures
the blow-up caused by a change of language.

Definition 5.4.1 (Succinctness) Let G be a set of functions from N → N. A language X is G-
as succinct as Y, noted Y ≤ G(X), iff there is a translation T : LX → LY that is within G:
∃g ∈ G,∀n ∈ N,∀d ∈ LX , |d| ≤ n ⇒ |T (d)| ≤ g(n). Common values for G are “identically” = {n},
“thrice” = {3n}, “linearly” = O(n), “cubically” = O(n3), “exponentially” = O(2n). We will omit
“identically”.

Example 5.4.1 If sharing is allowed in the second column of Table 5.4 then the expansion factor
of this embedding is 5. Indeed, the defined Node (N) in M and its four outgoing edges are re-
placed by nine nodes (n1, . . . , n9) and fifteen edges. If a program written in “Pascal” contains n for
instructions then its translation into a program written in “Pascal without for” increases at max-
imum the size of the program by n.5. Hence, “Pascal” is linearly-as succinct as “Pascal without
for” (“Pascal without for” ≤ O(“Pascal”)) and conversely “Pascal without for” is identically-as
succinct as “Pascal” since “Pascal without for” is a sub-language of “Pascal”.

If the language X is G-as succinct as Y , this might entails that LX’s diagrams are likely to be
more “readable”. Also, if one needs to translate diagrams from LX to LY

†, succinctness will be an
indicator of the difficulty to maintain traceability between the original and the generated diagram.
We should note that traceability is hard to measure precisely because succinctness does not provide
information on the structure of the generated diagrams. However, looking at the translation will
provide the information. In this sense, succinctness is a coarser-grained criteria than embeddability.
Finally, as we already pointed out for embeddability, increases in size are generally not good for the
tractability of algorithms (Section 5.1).

5.5 Chapter Summary

Throughout this chapter, we have defined and discussed formal criteria to compare languages in a
rigorous yet natural way. These criteria are complexity, expressiveness, embeddability and succinct-
ness. Their main advantages are to be (1) language-independent, (2) user-independent, (3) formal
and (4) based on strong theories such as language theory (Hopcroft et al., 2000) and computational
complexity theory (van Leeuwen, 1990; Papadimitriou, 1994). Complexity is usually linked to

†E.g., because a tool for achieving some desired functionality is only available in language Y
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expressiveness and succinctness. In general, the more a language is expressive, the more its deci-
sion problems are complex. In addition, more succinct problems tend to have higher complexity. A
compromise between the language expressiveness or succinctness and the complexity of its decision
problems should be devised.

This chapter concludes Part II where we have described our approach, its purpose, central
concepts and scope according to SEQUAL framework. In Part III, we will apply and refine it to
evaluate FD languages. We will survey existing FD languages (Chapter 6) and study them according
to an explicit method. This method (Chapter 7) will allow us to (1) formally define FD languages
(Chapter 8) and to (2) compare and evaluate them (Chapter 9).
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Quality of Feature Diagram Languages
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Chapter 6

FD Languages: State of the Art

I
n Part II, we have described SEQUAL as a quality framework to evaluate model and lan-
guage quality. We have refined it according to principles and criteria related to formal
languages. Throughout this chapter, we present a state of the art of the existing FD lan-

guages, underlining their main particularities. Afterwards, we will describe, in Chapters 7 and 8,
a method to evaluate them according to the formal criteria defined in Chapter 5. Finally, we will
apply this method and provide the main results concerning FD languages in Chapter 9.

In the last 15 years or so, research and industry have developed several FD languages. The first
and seminal proposal was introduced as part of the FODA method back in 1990 (Kang et al., 1990).
An example of a FODA FD inspired from a case study defined in (Cohen et al., 2002a) is given in
Figure 6.1.

Monitor 
Temperatures

Coolant

 Oil

Monitor Engine 
system

Monitor Fuel 
Consumption

Monitor Engine 
Performance

Engine

Transmission

Monitor exhaust 
levels and 

temperature

Monitor RPM

Based on 
type of 
driving

Gallon/mileL/Km

Measures

Based on 
drive

Based on 
distance

Methods

Based on drive requires Monitor RPM

Figure 6.1: FODA (OFT): Monitor Engine System
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This FODA FD indicates the allowed combinations of features for a family of systems intended
to monitor car engines. FODA features are nodes of a graph represented by strings and related by
various types of edges. On top of the figure, the feature Monitor Engine System is called the root
feature, or concept. The edges are used to progressively decompose it into more detailed features.
The various kinds of edges and their exact meaning will be discussed extensively throughout the
next chapters.

In the sequel, we will refer to FODA FD as Original Feature Trees or OFT for short. “Original”
is because OFTs were the first FD language ever proposed and because they were the starting point
for the work of many researchers. “Tree” is because in OFT, FD are structured as trees vs. single-
rooted directed acyclic graphs (DAG) (Kang et al., 1998). Accordingly and for convenience, we
have developed a naming scheme to designate the reviewed FD languages (Table 6). FD languages
are named with three or four letters acronyms. The first or first two letters are representative of the
original name of the language, the method it comes from or one of its authors. Then comes an ‘F’
(for feature). The last letter is either ‘D’ (for DAG) or ‘T’ (for trees).

Since Kang et al.’s initial proposal, several extensions have been devised as part of the follow-
ing methods: FORM (Kang et al., 1998), FeatureRSEB (Griss et al., 1998), Generative Program-
ming (Eisenecker and Czarnecki, 2000), FORE (Riebisch et al., 2002; Riebisch, 2003) , PLUSS (Eriks-
son et al., 2005), and in the work of the following authors:(van Gurp et al., 2001; van Deursen and
Klint, 2002; Mannion, 2002; Cechticky et al., 2004; Czarnecki et al., 2005c,b; Batory, 2005; Be-
navides et al., 2005a; Wang et al., 2005a; Sun et al., 2005; Wang et al., 2005b; Asikainen et al.,
2006; Janota and Kiniry, 2007). First proposals of FD languages (Kang et al., 1998; Griss et al.,
1998; Eisenecker and Czarnecki, 2000; Riebisch et al., 2002; Riebisch, 2003; van Gurp et al., 2001;
Eriksson et al., 2005) were not formally defined. Recently some authors have proposed formal def-
initions for FDs (van Deursen and Klint, 2002; Mannion, 2002; Bontemps et al., 2004; Cechticky
et al., 2004; Czarnecki et al., 2004, 2005b; Batory, 2005; Benavides et al., 2005a; Wang et al.,
2005a; Sun et al., 2005; Wang et al., 2005b; Schobbens et al., 2007; Asikainen et al., 2006; Janota
and Kiniry, 2007).

The structure of this chapter is as follows. First, we describe in Section 6.1 the method followed
to gather the FD languages to study and to define the scope of our survey. Then, we introduce in
Section 6.2 an example on which we illustrate each selected FD language. Finally, we distinguish
and present informal and formal FD languages, respectively in Sections 6.3 and 6.4.

6.1 Survey Method

The purpose of this survey was to review and analyse the literature in order to elicit the relevant pro-
posals concerning FD languages. Primary proposals of FD languages were identified from Citeseer,
Google Scholar, ACM and IEEE databases. Bibliographical references and cross-references were
used to discover other proposals. A proposal was selected when either it presents and discusses the
basic constructs of the proposed FD language or it presents and justifies the various extensions it
provides with respect to another FD language.

During this survey, we have mainly looked for (1) differences between FD languages, (2) de-
scriptions of their syntax and semantics and (3) methods and tools supporting them. Among these
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Acronyms Languages Language references
BFT Batory Feature Tree language Batory (2005)
EFD Extended Feature Diagram language Riebisch et al. (2002)
FFD Free Feature Diagram language Schobbens et al. (2007)
FoFD Forfamel Feature Diagram language Asikainen et al. (2006)
GPFT Generative Programming Feature Tree language Eisenecker and Czarnecki (2000)
OFD FORM Feature Diagram language Kang et al. (1998)
OFT FODA Feature Tree language Kang et al. (1990)
PFT PLUSS Feature Tree language Eriksson et al. (2005)
RFD RSEB Feature Diagram language Griss et al. (1998)
VBFD van Gurp and Bosch Feature Diagram language van Gurp et al. (2001)
vDFD van Deursen and Klint Feature Diagram language van Deursen and Klint (2002)
VFD Varied Feature Diagram language Bontemps et al. (2004)
XFD XML-based Feature Diagram language Cechticky et al. (2004)

Table 6.1: FD Languages: Acronyms

proposals, we have distinguished two types of FD languages: the formal and the informal FD lan-
guages. A language is considered as formal if it possesses mathematical definitions for its syntax
and semantics (Harel and Rumpe, 2000, 2004). The implementation of these definitions should
drive to minor adaptations. Conversely, a language is considered as informal when no such mathe-
matical definitions are provided. Hence, a language supported by a tool is not necessarily formal. It
guarantees that the language has a semantics but does not assure that this semantics has been, previ-
ously, formally defined. In addition, there is no absolute evidence that an informal or even a formal
semantics is correct with respect to intuition. The first purpose of models is to be understandable by
all stakeholders, therefore informal sketches of the (formal) models are also needed.

6.2 Survey Illustration

To illustrate the different FD languages introduced in the next sections, we reuse and simplify an ex-
ample proposed at the SPLC2 Workshop on Techniques for Exploiting Commonality Through Vari-
ability Management (Cohen et al., 2002b). Our aim is to use the different FD languages to model the
variability of an engine monitor system. This system manipulates and provides crucial information
about fuel consumption and engine performances. Various types of engine monitor systems exist,
however each of them should be able to monitor the number of Rounds Per Minute (RPM), the oil,
engine and transmission temperatures and the exhaust levels and temperatures. Some of them may
also monitor the coolant temperature while others do not. In addition, different measures are offered
to monitor the fuel consumption and only one must be selected: L/Km or Gallon/mile. Finally,
various methods are offered to monitor the fuel consumption and at least one must be selected.
The system may monitor the fuel consumption according to the distance, the type of driving or the
effective drive.

In terms of features, we identify for this example one root, eleven primitive features and five
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non-primitive features. The root is named Monitor Engine system. Among the eleven primitive
features:

• one is optional (Coolant) and five are mandatory (Oil, Engine, Transmission, Monitor
RPM, Monitor exhaust levels and temperature);

• three are or-features (Based on distance, Based on type of driving and Based on
drive) and two are xor-features (L/Km and Gallon/mile).

The five remaining non-primitive features are used to structure feature decomposition in the FD:

• Monitor Engine Performance gathers the features related to the monitoring of the engine;

• Monitor Fuel Consumption gathers the features related to the monitoring of the fuel con-
sumption;

• Monitor Temperatures gathers the features for which the temperature should be checked;

• Measures gathers the features corresponding to the allowed type of measures to monitor the
fuel consumption;

• Methods gathers the features corresponding to the methods used to monitor the fuel con-
sumption.

6.3 Informally Defined FD Languages

In this section, we survey OFT (Kang et al., 1990) and its informal extensions. Originally, these
languages are mainly described informally, their semantics being usually introduced by way of
examples. We will first describe each of these languages according to its syntax, stressing the main
particularities of its concrete and abstract syntax. As we will see, many differences appear in their
concrete syntax, e.g. an xor-decomposition is sometimes represented by a diamond, sometimes by
a triangle and sometimes by another symbol. Although concrete syntax is an important matter in its
own (Moody, 2006b), we will not investigate those kinds of issues. Our main interest is to determine
which abstract constructs allow distinguishing one FD language from another.

6.3.1 FODA (OFT)

OFT, the first ever FD language, was introduced as part of the Feature Oriented Domain Analysis
(FODA) method (Kang et al., 1990). Its main purpose was to capture commonalities and variabilities
at the requirement level. As depicted in Figure 6.1, OFT has the following characteristics:

1. A concept, a.k.a root node, that refers to the complete system (e.g. Monitor Engine System).

2. Features that are subject to decomposition (see below) and that can be mandatory (by default,
e.g. Engine) or optional (with a hollow circle above, e.g., Coolant) or alternative (under an
xor-decomposition, e.g. L/Km)). The concept is always mandatory.
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3. Relations between nodes materialised by:

(a) decomposition edges (or consists-of ): FODA further distinguishes:

i. and-decomposition, e.g., between Monitor Fuel Consumption and its sons (Meas-
ures and Methods) indicating that they should both be present in all feature com-
binations where Monitor Fuel Consumption is present.

ii. and xor-decomposition, e.g., between Measures and its sons, L/Km and Gallon/mile,
indicating that only one of them should be present in combinations where Measures
is.

Decomposition edges form a tree. See (Kang et al., 1990, p64) where the authors
underline that: “a feature diagram [...] is an and/or tree of different features”.

(b) textual constraints:

i. requires, e.g., one could add in Figure 6.1 the constraint: Based on drive re-
quires Monitor RPM. It indicates that we need to monitor the engine’s RPM in
order to monitor fuel consumption using a method based on drive. Thus, the for-
mer feature cannot be present if the latter is not.

ii. mutex, an abbreviation for “mutually exclusive with”, indicates that two features
cannot be present simultaneously.

Semantically, the diagram provided in Figure 6.1 differs from the original example. Indeed, the
choice when selecting the method to monitor fuel consumption should not be exclusive. One, two or
the three different methods can be integrated in the system even if only one is executed at run-time.
The confusion appears because FODA does not allow or-decomposition.

6.3.2 FORM (OFD)

Kang et al. have proposed the Feature-Oriented Reuse Method (FORM) (Kang et al., 1998) as an
extension of FODA. Their main motivation was to enlarge the scope of feature modelling. They
argue that feature modelling is not only relevant for requirements engineering but also for software
design. Hence, they propose to extend OFT. According to our naming scheme, we call this first
extension of OFT: OFD for “Original Feature Diagram language”.

OFD is frequently used in the literature. There are two variants of it. The simplest just extends
OFT with the possibility to draw DAGs (directed acyclic graphs) instead of being limited to trees.
The second is more complex as it further adds three new constructs to OFT: layers, implementation
and generalisation/specialisation relationships. We only look at the simpler form illustrated in Fig-
ure 6.2 where one marginal difference between OFD and OFT appears: feature names in OFD are
depicted within boxes while not in OFT. In this work, we consider the constructs that have an influ-
ence on the feature combinations allowed in the final products. Therefore, the only relevant (and, as
we will see, crucial) change concerns the structure of the FD. Indeed, OFDs are not limited to trees
but allow feature sharing, i.e. DAGs. See (Kang et al., 1998, p1) where the authors underline that
“a feature model [...] captures commonality as an AND/OR graph”.

In our running example, the OFD still forms a tree. Therefore, the FORM version of it (Fig-
ure 6.2) is similar to Figure 6.1, except that features are graphically represented within boxes. Still
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Figure 6.2: FORM (OFD): Monitor Engine System

the diagram in Figure 6.2 does not exactly reflect the intended product line. This time we can
bring a solution for OFD. Indeed, since OFD allows feature sharing, an or-decomposition could
be translated into and and xor-decompositions. This translation consists in replacing the desired
or-decomposition under the feature Methods by its corresponding xor-decompositions for which
new intermediate features must be added. This translation is illustrated in Figure 6.3 where the in-
termediate nodes Or1, Or2, Or3 and Or4 are necessary to guarantee the semantic equivalence with
the original or-decomposition.

6.3.3 FeatuRSEB (RFD)

The FeatuRSEB method (Griss et al., 1998) is a combination of FODA and the Reuse-Driven Soft-
ware Engineering Business (RSEB) method. RSEB is a use-case driven systematic reuse process,
where variability is captured by structuring use cases and object models with variation points and
variants. According to our naming scheme, we call this FD language RFD for “RSEB Feature
Diagram language”. RFD has the following new characteristics in comparison to OFT:

1. RFDs are DAGs. See (Griss et al., 1998, p6) where a feature model is described as “a feature
tree or graph, showing feature names, major relationships and a few attributes.”

2. Or-decomposition (black diamond) is added to xor (white diamond) and and-decompositions.
Features decomposed with or or xor are called variation points and their sons are called
variants.

3. Graphical representations are given for the constraints requires (leftwards or rightwards dashed
arrow) and mutex (left right dashed arrow).
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Figure 6.3: FORM (OFD): Or-decomposition translation

Figure 6.4 illustrates how our running example can be modelled using RFD.
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6.3.4 Van Gurp, Bosch and Svahnberg (VBFD)

Van Gurp, Bosch and Svahnberg define another FD language in (van Gurp et al., 2001). According
to our naming scheme, we call this FD language VBFD for “van Gurp and Bosch Feature Diagram
language”.

This language extends FeatuRSEB (RFD) with binding times and external features. Binding
times indicate when features can be selected and external features indicate which technical possi-
bilities are offered by the target platform of the system. VBFD has the following new characteristics
in comparison to OFT:

1. VBFDs are DAGs. See (van Gurp et al., 2001, p3) where the authors underline that: “Our
extended feature graph is based on the work presented in (Griss et al., 1998)”.

2. Binding times are used to annotate relationships between features.

3. Features are boxed, as in FORM (OFD).

4. External features are represented in dashed boxes.

5. Or-decomposition (black triangle) is added to xor (white triangle) and and-decompositions.

6. Graphical representations (dashed arrows) are given for the constraints requires and mutex, as
in FeatuRSEB (RFD).

Figure 6.5 illustrates how our running example can be modelled using VBFD.
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Figure 6.5: VBFD: Monitor Engine System

In comparison to RFD, these changes essentially concern concrete syntax. Except for the new
notions of “binding times” and “external features” that we do not consider, here, since they do not
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influence the final combination of features. Hence, we consider the abstract syntax of this language
equivalent to the one of RFD.

6.3.5 Generative Programming (GPFT)

Czarnecki and Eisenecker (Eisenecker and Czarnecki, 2000) have studied and adapted FDs in the
context of Generative Programming (GP), a new programming paradigm that aims to automate the
software development process for product families. For this purpose, they propose a new Feature
Tree language extending OFT. See (Eisenecker and Czarnecki, 2000, p87) where the authors un-
derline that: “The nodes and edges [in a feature diagram] form a tree”. According to our naming
scheme, we call this FD language GPFT for “Generative Programming Feature Trees”. GPFT has
the following new characteristics in comparison to OFT:

1. Or-decomposition (filled cross-cutting curve) is added to xor (cross-cutting curve) and and-
decompositions.

2. Mandatory features are decorated with a filled circle in contrast with the hollow circle used
for optional ones.

Figure 6.6 illustrates how our running example can be modelled using GPFT.
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Figure 6.6: Generative Programming (GPFT): Monitor Engine System

Recently, the authors have further augmented their approach with concepts such as staged con-
figuration (Czarnecki et al., 2005c), distinguishing between group and feature cardinalities and for-
malising their language in (Czarnecki et al., 2005b). This work is shortly described in Section 6.4.5.
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6.3.6 FORE (EFD)

Riebisch et al. claim that multiplicities (a.k.a. cardinalities) are only partially represented with the
previous notations (Riebisch et al., 2002). Moreover, they argue that “combinations of mandatory
and optional features with alternatives, or and xor relations could lead to ambiguities” (Riebisch,
2003, p.4). As we will see, those “ambiguities” are due to a different conception of what “manda-
tory” and “optional” mean, and better termed redundancy (see Section 9.1.3.1).

In order to limit these drawbacks, the authors replace or and xor operators by UML-like mul-
tiplicities (Riebisch et al., 2002) (a.k.a group cardinalities (Czarnecki et al., 2005b)). Multiplicities
consist of two integers: a lower and an upper bound. Multiplicities are illustrated in Figure 6.7 for
the decomposition of features Measures and Methods. In fact, they are used for all decompositions
but not mentioned explicitly. For instance, when both lower and upper bounds equal the number of
sons, this decomposition with multiplicities is equivalent to an and-decomposition.

The second particularity of this language concerns the edges that can be mandatory or optional.
The first ones are marked with a filled circle at the lower end and the second ones are marked with
a hollow circle at the lower end. This should be underlined as most other FD languages prefer to
mark optionality on nodes rather than on edges. As illustrated in Figure 6.8, optional edges are
convenient when DAGs are used since a shared feature can be optional on one side and mandatory
on another.

According to our naming scheme, we call this FD language EFD for “Extended Feature Diagram
language”. EFD has the following new characteristics in comparison to OFT:

1. EFDs are DAGs. See (Riebisch et al., 2002, p3) where the authors underline that: “A feature
is a node in a directed-acyclic graph. Relationships between features are expressed by edges
[...].”

2. The xor, or and and-decompositions are replaced by the more general card-decomposition.

3. Optional and mandatory features are replaced by optional (lines terminated by a hollow circle)
and mandatory edges (lines terminated by a filled circle).

4. Graphical representations (dashed arrows) are given for the constraints requires and mutex.

6.3.7 PLUSS (PFT)

The Product Line Use case modelling for System and Software engineering (PLUSS) approach (Eriks-
son et al., 2005) is based on FeatuRSEB. It combines FDs and use case diagrams to depict the high
level view of a product family. The authors propose a new Feature Tree language based on Man-
nion’s proposal (Mannion, 2002). See (Eriksson et al., 2005, p2) where the authors underline
that: “In feature models, features are organized into trees of AND and OR nodes that represent the
commonalties and variations in the modeled domain.”. According to our naming scheme, we call
this FD language PFT for “PLUSS Feature Tree language”. As illustrated in Figure 6.9, the main
characteristics of PFT in comparison to OFT are:



6.3. Informally Defined FD Languages 97

Monitor 
Temperatures

Coolant

 Oil

Monitor Engine 
system

Monitor Fuel 
Consumption

Monitor Engine 
Performance

Engine

Transmission

Monitor exhaust 
levels and 

temperature

Monitor RPM

Based on 
type of 
driving

Gallon/mileL/Km

Measures

Based on 
drive

Based on 
distance

Methods

1..3
1..1

<< requires >>

Figure 6.7: EFD: Monitor Engine System
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Figure 6.8: EFD: optional and mandatory edges (Riebisch et al., 2002)

1. The usual FD representation conventions are changed: the type of decomposition operator is
not found in the decomposed feature anymore, nor on the departing edges but in the operand
features: single adaptors (features with a circled ‘S’) represent an xor-decomposition of their
father while multiple adaptors (features with a circled ‘M’) represent or-decomposition.

2. Mandatory features are decorated with a filled circle in contrast with hollow circle for optional
features.

3. Graphical representations (dashed arrows) are given for the constraints requires and mutex.

4. No textual representation is given for constraints.

6.3.8 General Overview

The general overview on FD languages given in Figures 6.11 and 6.12 immediately highlights
aesthetic differences among them. Particularly, we observe at least five different representations
for the xor-decomposition (Figure 6.10). These issues mainly concern concrete syntax, i.e. what
the users see. In this work, our main purpose is to study what is really behind the pictures, i.e.,
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Figure 6.9: PFT: Monitor Engine System

semantics. This crucial issue has also been investigated by other authors. Their proposals are
briefly introduced in the following section (Section 6.4). Some of them will be presented in detail
in Chapter 9.

1..1

s s
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Figure 6.10: Concrete syntaxes for xor-decomposition
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Main Characteristics Example

Survey Short Name: OFT
Method: FODA
Author(s): Kang et al. 1990
Graph Type: Tree
Decomposition: and, xor, opt
Constraint Types: Textual
Formal Semantics: 
     - Originally: none
     - A posteriori: Bontemps et al. 2004, 
Schobbens et al. 2006, Schobbens et al. 2007.

Survey Short Name: RFD
Method: FeatuRSEB
Author(s): Griss et al. 1998
Graph Type: DAG
Decomposition Types: and, xor, opt, or
Constraint Types: Textual & Graphical
Formal Semantics:
     - Originally: none
     - A posteriori: Schobbens et al. 2006, 
Schobbens et al. 2007.   

Survey Short Name: GPFT
Method: Generative Programming
Author(s): Czarnecki et al. 2000
Graph Type: Tree
Decomposition Types: and, xor, opt, or
Constraint Types: Textual 
Formal Semantics: 
     - Originally: none
     - A posteriori:  Batory 2005, Czarnecki et al. 
2005b, Benavides et al. 2005a, Sun et al.  2005, 
Wang et al. 2005a, Schobbens et al. 2006, 
Schobbens et al. 2007. 

Survey Short Name: OFD
Method: FORM
Author(s): Kang et al. 1998
Graph Type: DAG
Decomposition Types: and, xor, opt
Constraint Types: Textual
Formal Semantics: 
     - Originally: none
     - A posteriori: Schobbens et al. 2006, 
Schobbens et al. 2007.   
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Figure 6.11: Survey of FD languages (1/2)
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Main Characteristics Example

Survey Short Name:  VBFD
Method: /
Author(s): van Gurp et al.  2001
Graph Type: DAG
Decomposition Types: and, xor, or, opt
Constraint Types: Textual & Graphical
Formal Semantics: 
     - Originally: none
     - A posteriori:  Schobbens et al. 2006, 
Schobbens et al. 2007.

Survey Short Name:  EFD
Method: FORE
Author(s): Riebisch et al.  2002
Graph Type: DAG
Decomposition Types: card, opt
Constraint Types: Textual & Graphical
Formal Semantics: 
     - Originally: none
     - A posteriori:  Schobbens et al. 2006, 
Schobbens et al. 2007.   

Survey Short Name: PFT
Method: PLUSS
Author(s): Eriksson et al. 2005
Graph Type: Tree
Decomposition Types: and, xor, opt, or
Constraint Types:  Graphical
Formal Semantics: 
     - Originally: none
     - A posteriori:  Schobbens et al. 2006, 
Schobbens et al. 2007.
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Figure 6.12: Survey of FD languages (2/2)
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6.4 Formally Defined FD Languages

In this section, we survey and summarise the main proposals providing a formal definition for a
FD language. We have identified the following proposals: (van Deursen and Klint, 2002; Mannion,
2002; Bontemps et al., 2004; Cechticky et al., 2004; Czarnecki et al., 2005c,b; Benavides et al.,
2005a; Batory, 2005; Wang et al., 2005b; Sun et al., 2005; Asikainen et al., 2006; Janota and Kiniry,
2007). In the sequel, we successively present these proposals in a chronological order. For each
proposal, we establish:

1. Which FD language is formally defined,

2. How this FD language is formally defined and

3. Which tool is provided to support this FD language and its semantics.

6.4.1 Van Deursen and klint

In (van Deursen and Klint, 2002), the authors define a textual FD language for which they formalise
a semantics. The approach is original as it is the first time that a FD language has been formally
defined. This FD language has the particularity to limit feature sharing to the leaves of the FD. The
abstract syntax of the language is defined with a feature grammar. The semantic definition is based
on a feature algebra with rewriting rules specified in the ASF and SDF formalisms (Brand et al.,
2001). Then, the Meta-Environment (Brand et al., 2001) associated to these formalisms is used to
generate tool support for the defined language. This language will be studied in detail in Section 9.3.

6.4.2 Mannion

In (Mannion, 2002), the author proposes an abstract syntax and a semantics for a product line model
language that we called PLMD. This formal definition is the first one that (1) allows unrestricted
feature sharing and (2) maps FDs to logical expressions. The abstract syntax is represented within
a lattice that allows requirements (features) sharing. Later, a concrete syntax for this language has
been proposed in the PLUSS method (Eriksson et al., 2005).

In the original version, the author does not use the terms “FD” or “FD language” however he
defines the notion of product line model. A product line model is “a pool of numbered, atomic and
natural-language requirements, a domain dictionary and a set of discriminants” (Mannion, 2002).
These requirements are related through parent-child links. This definition is closely related to FDs,
if we consider that requirements are replaced by features. The semantics of the language is de-
fined by translations from product line models to logical expressions. Basically, requirements are
mapped to atoms and relationships between requirements are mapped to logical expressions. These
product line models are then validated by instantiating the resulting logical expression and by using
propositional calculus.

6.4.3 Bontemps et al.

In (Bontemps et al., 2004; Schobbens et al., 2007), we have formally defined a new FD language
called VFD that is a simplified form of EFD while other FD languages are extensions of the original
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one (OFD). The main ideas are that VFD forms a DAG and that card-decomposition is the only type
of feature decomposition allowed. All the constraints and types of features present in other concrete
syntaxes are mapped to card Boolean operators. The VFD abstract syntax is therefore minimal
and, as we will see further, sufficient to represent every possible product line. Initially, the VFD
semantics has been used to define the semantics of our family of FD languages, FFD (Chapter 8).
In this work, the VFD semantics is defined as a translation to FFD. As mentioned before, concrete
syntaxes are not our major concern. However, as illustrated in Figure 6.13, we suggest, for the
VFD concrete syntax, to keep arrows for requires and excludes constraints and to represent optional
features with hollow circles to facilitate FD visualisation.

Monitor 
Temperatures

Coolant

 Oil

Monitor Engine 
system

Monitor Fuel 
Consumption

Monitor Engine 
Performance

Engine

Transmission

Monitor exhaust 
levels and 

temperature

Monitor RPM

Based on 
type of 
driving

Gallon/mileL/Km

Measures

Based on 
drive

Based on 
distance

Methods

1..1 1..3

2..2

2..2

3..3

4..4

<< requires >>

Figure 6.13: VFD: Monitor Engine System

6.4.4 Cechticky et al.

In (Cechticky et al., 2004), the authors propose a meta-model and a semantics for an XML-Based FD
language that we call XFD. The originality of their approach is that the FD is expressed as an XML
document based on the defined meta-model. Similarly, the global composition constraints (requires,
mutex) are described in another XML document called constraint family model. The notion of
feature macro is introduced to split a large diagram into smaller modules. The semantic definition is
based on translations from FDs to composition rules specified in the eXtensible Stylesheet Language
(XSL). These composition rules are then evaluated on XFD. This approach has been implemented
within the XFeature Tool (Rohlik and Pasetti, 2006).
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6.4.5 Czarnecki et al.

In (Czarnecki et al., 2005b), the authors define a new FT language based on (Eisenecker and Czar-
necki, 2000) and its semantics to account for staged configuration. They introduce feature cardinali-
ties (the number of times a feature can be repeated in a product) in addition to the more usual (group)
cardinality. Foremost, a semantic domain is proposed where the full shape of the unordered tree is
important, including repetition and decomposable features. The semantics is defined in a 4-stage
process where FDs are translated in turn into an extended abstract syntax, a context-free grammar
and an algebra. In (Czarnecki et al., 2005c), the authors provide an even richer syntax. The seman-
tics of the latter is yet to be defined, but is intended to be similar to (Czarnecki et al., 2005b). This
semantics has been implemented in the Eclipse Feature Modelling Plug-in (fmp) (Czarnecki et al.,
2005a) and is based on Binary Decision Diagrams (BDD) algorithms (Brace et al., 1990).

6.4.6 Benavides et al.

In (Benavides et al., 2005a), the authors apply the techniques of constraint programming to provide a
semantics for FTs and to reason on them. They extend the FT language proposed in (Eisenecker and
Czarnecki, 2000) with extra-functional features, attributes and relations between attributes. Subse-
quently, they describe tool support based on mappings between these FTs and Constraint Satisfac-
tion Problems (CSP) (Tsang, 1995). This semantics has been implemented in the tool FAMA (Be-
navides et al., 2007).

6.4.7 Batory

In (Batory, 2005), the author provides a semantics to the FT language proposed in (Eisenecker and
Czarnecki, 2000). This semantic definition is based on translations from FTs to both iterative tree
grammars and propositional logic. This FT language uses the whole propositional logic as con-
straint language. The semantic definition is supported by the guidsl tool (Batory, 2005) and enables
(1) to propagate constraints using off-the-shelf Logic Truth Maintenance Systems (LTMS) (Forbus
and de Kleer, 1993) and (2) to check feature compatibility and constraints using SAT-Solvers. This
language will be studied in detail in Section 9.4.

6.4.8 Sun et al.

In (Sun et al., 2005), the authors first provide a semantics for the FT language proposed in (Eise-
necker and Czarnecki, 2000) based formal specifications respecting the Z language (Spivey, 1988;
Woodcock, 1993; Saaltink, 1997). Secondly, they validate the correctness of this semantics using the
Z/EVES (Saaltink, 1997) theorem prover. Finally, they implement this semantics in Alloy (Jackson,
2006) to check feature model consistency, resolvability and equivalence.

6.4.9 Wang et al.

In (Wang et al., 2005a), the authors define a semantics for the FT language proposed in (Eise-
necker and Czarnecki, 2000) using ontologies. A semantic web environment is used to model and
verify FDs with OWL DL (McGuinness and van Harmelen, 2004). Features are represented as
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OWL classes and feature constraints as OWL properties. OWL reasoning tools (Renamed ABox
and Concept Expression Reasoner (RACER)) (Haarslev and Möller, 2003) allow checking fully au-
tomatically inconsistencies. The parallel between feature modelling and semantic web is interesting
as both represent and structure concepts in a particular domain.

6.4.10 Asikainen et al.

In (Asikainen et al., 2006), the authors propose to synthesise the conceptual foundation of feature
models by introducing a domain ontology for feature modelling, called “Forfamel”. They suggest
a new FD language based on Forfamel that we name FoFD. The semantics of FoFD is defined via
a translation from the Forfamel ontology to a general purpose knowledge representation language
called Weight Constraint Rule Language (WCRL) (Soininen et al., 2001). FoFD and its semantics
are supported by a tool called Kumbang Configurator. It helps to configure the feature model; it
allows checking whether a configuration is valid and, if not, it identifies the constraints that are not
satisfied.

6.4.11 Janota and Kiniry

In (Janota and Kiniry, 2007), the authors propose a meta-model and a semantics for the FT language
proposed in (Eisenecker and Czarnecki, 2000) extended with feature attributes, cardinalities and
cloning. Its semantic domain is defined as a set of sets of valid configurations. The semantic
function relies on a restriction function that indicates whether a configuration is valid or not. This
approach is similar to our. However, their semantics is based on high-order logic while our and
others on propositional logic. In this case, we don’t see any reason to prefer high-order logic. We
suspect that the tool implementing their semantics has been selected beforehand. This tool is based
on high-order logic and is called Prototype Verification System (PVS) (Owre et al., 1992).

6.4.12 General Overview

The general overview and comparison proposed in Table 6.2 underlines several interesting observa-
tions. Firstly, we notice a profusion of languages, semantics, formalisms and tools. Secondly, the
semantics of these FD languages are often defined by translations to other languages that have an
already well-defined semantics. However, the semantic domains of these languages are not neces-
sarily suitable for FD languages. Most of the time, the first intention of the authors was to provide
efficient tool support for FD languages, directly based on these translations.

The comparison presented in Table 6.2 still remains superficial. Well-defined criteria should
be applied to compare formal FD languages following a clear and systematic method. We have
experienced that these issues are even more crucial when FD languages with different semantics
and formalisms are compared.
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Author(s) FD Language Mapped to Tool Support
van Deursen and Klint (2002) vDFD ASF + SDF Meta-

Environment
Mannion (2002) PLMD Propositional

Logic
Bontemps et al. (2004) VFD Propositional

Logic
VFD reasoning
tool

Cechticky et al. (2004) XFD XSL XFeature
Czarnecki et al. (2005b) GPFT +Cardinalities BDD fmp
Benavides et al. (2005a) GPFT + Attributes CSP FAMA
Batory (2005) GPFT +

Propositional Logic
Propositional
Logic

guidsl: LTMS +
SAT

Sun et al. (2005) GPFT Z Alloy
Wang et al. (2005a) GPFT OWL RACER
Asikainen et al. (2006) FoFD WCRL Kumbang-

Configurator
Janota and Kiniry (2007) GPFT + Cardinali-

ties + Attributes and
Cloning

High-order
Logic

PVS

Table 6.2: Formal FD Languages

6.5 Chapter Summary

Throughout this chapter, we have surveyed FD languages. First, we have described the graphical
aspects and particularities of informal FD languages. Then, we have given an overview of the main
proposals that formally define FD languages. The current situation is characterised by a profusion
of languages and semantics, many loosely defined, and loosely compared with their “competitors”.
Clearly defined criteria and terminology are paramount to structure the research efforts that focus
on providing effective modelling techniques. The research on feature modelling and FD languages
should be no exception. Therefore, in the next Chapter 7, we propose a method to evaluate FD
languages according to formal criteria previously defined in Chapter 5.
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Chapter 7

FD Languages: A Comparison Method

I
n Chapter 3, we have presented the basic concepts and goals of the SEQUAL Framework.
We have also extended this framework with formal properties to improve language and
model evaluation. In Chapter 6, we have surveyed formal and informal FD languages.

In the present chapter, we suggest a method, previously published in (Schobbens et al., 2006), to
compare FD languages from a formal perspective. In the next chapter, we will apply this method to
the surveyed FD languages.

Our investigation targets FD languages rather than the FDs themselves. A problem with evaluat-
ing model (diagram) quality is that representative objects of study – that are models – do not always
exist, or at least are not easily available. Indeed, this is the case for FDs which (1) are an emerging
modelling paradigm, and (2) have the purpose of representing highly strategic company informa-
tion. Therefore, representative FDs are almost nowhere to find. At this stage, we thus thought we
should concentrate on improving the appropriateness of FD languages before any standardisation is
attempted and they hopefully become widespread in industry. Not being able to assess FD qualities
directly, our investigations are rather targeted on FD language quality. The idea is to investigate
how formal language properties may improve FD language quality as defined in (Krogstie, 2001b;
Krogstie et al., 2006).

In Chapter 5 we have proposed to study four formal quality criteria to compare FD languages:
Computational Complexity, Expressiveness, Embeddability and Succinctness. Once decision prob-
lems have been identified, Computational Complexity is applicable to any formal language with-
out any adaptation. Although formality is required, comparing languages wrt complexity does not
require that these languages follow Harel and Rumpe’s principles (Chapter 4) or share the same
semantic domain. Nevertheless, these conditions are necessary to compare FD languages according
to Expressiveness, Embeddability and Succinctness. Formally it means that (1) for each language
Xi to be compared, we exactly know their syntactic domain LXi , semantic domain SXi and semantic
functionMXi and (2) SX1 = SX2 = . . .= SXi = . . .= SXn . This ideal situation almost never occurs
in practice. Most of the time, we have to cope with three different cases:

• Case 1: FD Languages that are described in natural language without formal semantics at all
(Section 7.3). Proposals of this kind can be found in (Kang et al., 1998; Griss et al., 1998;
Eisenecker and Czarnecki, 2000; Riebisch et al., 2002; Riebisch, 2003; van Gurp et al., 2001;
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Eriksson et al., 2005);

• Case 2: FD Languages with a formal semantics but defined with quite different principles
from what is advocated in Chapter 4 (Section 7.4.1). Proposals of this kind can be found
in (Mannion, 2002; Czarnecki et al., 2005c,b; Batory, 2005; Sun et al., 2005; Wang et al.,
2005a; Benavides et al., 2005a; Asikainen et al., 2006);

• Case 3: FD Languages with a formal semantics compliant with what is advocated in Chapter 4
but using different semantic domains (Section 7.4.2). Proposals of this kind can be found in
(van Deursen and Klint, 2002)∗ or appear when FD languages from Case 2 are reformulated.

The structure of this chapter is as follows. First, we list and define in Section 7.1 essential deci-
sion problems that allow comparing FD languages according to Computational Complexity. Then
a comparison process to evaluate FD languages according to Expressiveness, Embeddability and
Succinctness is proposed in Section 7.2. Finally, we describe how informal and formal languages
should be adapted in order to compare them in Sections 7.3 and 7.4, respectively.

7.1 Computational Complexity

Computational complexity analysis is important because its results help the language engineer to
evaluate the scalability of the tool support for their language. Formalisation of both the language
syntax and semantics is a necessary prerequisite to devise precise questions over the language that
the tool can answer with an efficiency that must be evaluated. Complexity results then give an indi-
cation about the worst case and how to handle it.

Evaluating FD languages according to computational complexity criterion requires to identify
decision problems (questions) that check automatically essential properties on FDs (a.k.a. auto-
mated analysis (Batory et al., 2006)). Once they have been formally stated, their complexity can be
studied. Here, we formally define six essential decision problems associated to FD languages, or
more generally any language whose semantic domain is a set. These decision problems are: Sat-
isfiability (Definition 7.1.1), Product-Checking (Definition 7.1.2), Equivalence (Definition 7.1.3),
Intersection (Definition 7.1.4), Inclusion (Definition 7.1.5) and Union (Definition 7.1.6).

7.1.1 Satisfiability

Satisfiability is a fundamental property. For any logic, satisfiability is the problem of determining
if the variables of a given formula can be assigned to make the formula evaluate to TRUE. In FDs,
satisfiability is the problem of determining if a FD represents a product line with at least one product.
It must be checked for the product line and also for the intermediate FDs produced during a staged
configuration (Czarnecki et al., 2005c).

Definition 7.1.1 (Satisfiability) A FD d is satisfiable iffM[[d]] , ∅ .
∗van Deursen and Klint language definition does not follow exactly the principles and terminology presented in

Chapter 4, however its syntactic domain, semantic domain and semantic function can be deduced from the original
definition with minor adaptations.
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7.1.2 Product-Checking

Product-checking (a.k.a model-checking) verifies whether a given product (set of primitive features)
is in the product line of a given FD or not.

Definition 7.1.2 (Product-Checking) A product c is in the product line of a FD d iff c ∈ M[[d]].

7.1.3 Equivalence

Equivalence of two FDs is useful whenever we want to compare two versions of a product line (for
instance, after a refactoring). A related problem is to produce a product showing their difference
when they are not equivalent.

Definition 7.1.3 (Equivalence) Two FDs d1 and d2 are equivalent iffM[[d1]] =M[[d2]].

7.1.4 Intersection

Intersection is useful when two feature interference engineers work independently and therefore
obtain two different restrictions of the initial product line. To put their work together, one must
produce a FD representing the intersection.

Definition 7.1.4 (Intersection) Given two FDs d1 and d2, a FD d3 represents the intersection of d1
and d2 iffM[[d3]] =M[[d1]]

⋂
M[[d2]].

7.1.5 Inclusion

Inclusion is useful to check whether a product line is included into another one. For instance, it
checks whether a new product line takes into account all the products contained in the previous one.

Definition 7.1.5 (Inclusion) Given two FDs d1 and d2, d1 is included into d2 iffM[[d1]] ⊆ M[[d2]].

7.1.6 Union

Union is useful when teams validate in parallel the feature combinations that lead to an acceptable
product, without feature interference. Their work can be recorded in separate FDs. The union of
these FDs will represent the validated products.

Definition 7.1.6 (Union) Given two FDs d1 and d2, a FD d3 represents the union of d1 and d2 iff
M[[d3]] =M[[d1]]

⋃
M[[d2]].
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7.2 Comparison Process

Before comparing FD languages according to expressiveness, embeddability and succinctness, we
first need to make them suitable for comparison. Hence, the three cases mentioned in the introduc-
tion of this chapter should be handled. For this purpose we propose a comparison process for FD
languages such as illustrated in Figure 7.1. Let us call X the language we want to compare with
other languages respectively Y1, ...,Yn which, we assume, (1) are formalised according to (Harel
and Rumpe, 2004) and (2) share the same semantic domain.

Both formal and informal languages receive a specific attention when they need to be compared.
However, the distinction between formal and informal languages is not always clear. In section 6.1,
we have clarified this distinction, following (Harel and Rumpe, 2004) where a language is consid-
ered formal if it possesses mathematical definitions for its syntax and semantics. Once the studied
FD language has been qualified as formal or informal, the necessary properties to compare lan-
guages can be studied and the FD languages adapted in consequence.

The activity diagram (OMG, 2008) of Figure 7.1 illustrates how we propose to adapt and com-
pare FD languages. The corresponding activities will be described in the next sections. The succes-
sion of activities is determined according to six different choices (represented as white diamonds):

• The first one (X is formal?) concerns the distinction between formal and informal FD lan-
guages which both receive specific adaptations.

• The second one (X in FFD?) concerns the formalisation of informal languages. Such lan-
guages could be totally redefined following the principles recalled in Chapter 4. To facilitate
this, we proposed a configurable formal definition named FFD (Chapter 8). FFD deliber-
ately covers OFT (Kang et al., 1990), OFD (Kang et al., 1998), RFD (Griss et al., 1998),
GPFT (Eisenecker and Czarnecki, 2000), EFD (Riebisch et al., 2002), VBFD (van Gurp et al.,
2001), PFT (Eriksson et al., 2005) and VFD (Bontemps et al., 2004). The activity “Config-
ure FFD” will be detailed in Chapter 8. We can already underline that this activity highly
facilitates the adaptations of many informal languages. Indeed, FFD is based on Harel and
Rumpe’s principles (H&R) (Chapter 4) and provides FD languages with a common semantic
domain. Hence, these FD languages are automatically adapted and ready for comparison.

• The third one (X follows H&R?) concerns how formal languages are defined. The question
is: Does the studied language follow Harel and Rumpe’s principles (H&R) (Chapter 4) or
not? If not the language definition should be adapted.

• The fourth one (SX = SYi?) concerns the semantic domains. When both languages share the
same semantic domain, they can be directly compared. Otherwise, their semantic domains
should be related by abstraction functions.

• The fifth one (X is as expressive as Yi?) concerns the expressiveness analysis results. Indeed,
if two languages do not have the same expressiveness there is no way to find a correct embed-
ding between both languages. Hence, embeddability and succinctness analyses are irrelevant.
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Figure 7.1: Comparison Method for FD languages
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• The sixth one (X is embeddable into Yi and conversely?) concerns the embeddability analysis
results. Indeed if a language (X) is embeddable into another language (Yi), then the translation
between X and Yi is linear and therefore X is linearly as succinct as Yi. Conversely, if Yi is
embeddable into X then the translation between Yi and X is also linear and Yi is linearly
as succinct as X. Otherwise, when one non linear translation exists in one way or another,
succinctness should be studied.

7.3 Informal FD languages

When X has no formal syntax or semantics (Case 1), two alternatives exist:

• The first alternative is to formalise the concerned FD language from scratch according to
Harel and Rumpe’s principles (Chapter 4). Then, X is completely defined independently
from Y1, ...,Yn.

• The second alternative is to make scale economies and to reuse the configurable formal def-
inition, called FFD, that we propose and which defines several FD languages at once. In
Chapter 6, we observed that most of the FD languages largely share the same goals, the same
constructs and, as we understood from the informal definitions, the same (FODA-inspired)
semantics. For this reason, we propose to define not one FD language but a family of re-
lated FD languages (Chapter 8). We suggest a parametric and configurable definition called
FFD, in which parameters correspond to variations in the FD language’s abstract syntaxes:
LX ,LY1 , . . . ,LYn . Once these parameters are instantiated, FFD automatically provides an ap-
propriate formal definition for the desired FD language. FFD follows and slightly adapts the
principles advocated in Chapter 4. The semantic domain and semantic function are common
to all FD language variants, maximising semantic reusability.

With this FFD definition, we are confined to handle FD languages whose only significant
variations are in their abstract syntax. For FD languages with different semantic choices
(Section 8.4), FFD is not sufficient. For instance, we present in Section 7.4.2 a method to
compare FD languages with different semantic domains.

7.4 Formal FD languages

When X has formal syntax and semantics, two alternatives exist:

1. The first alternative concerns FD languages with a formal semantics defined with different
principles from what is advocated in Chapter 4 (Case 2). The adaptation consists in improving
the language’s semantic definition according to these principles (Section 7.4.1).

2. The second alternative concerns FD languages with a formal semantics compliant with what
is advocated in Chapter 4 but using different semantic domains (Case 3). The adaptation
consists in relating the language’s semantic domains (Section 7.4.2).
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7.4.1 Adapt Semantic Definition to Harel and Rumpe’s Principles

The second case is when a language X actually has a formal semantics, but expressed in a form that
does not comply with the one advocated by Harel and Rumpe (Chapter 4) (Case 2). To facilitate the
assessment of the criteria we are interested in, it is convenient to reformulate the way in which the
FD languages to be compared are defined. This reformulation is due to missing mathematical defi-
nitions of LX , SX andMX . Therefore, LX , SX andMX need to be clarified. Typically, LX is clear
but SX andMX are not. Most of the time, the semantics of X is given by describing a transformation
of X’s diagrams to another language, say W, which is formal. W does not even need, and usually
it is not, to be a FD language. Therefore, the semantic domain might be very different from the
one intuitively thought of for FDs. The main motivation for formalising this way is usually because
W is supported by tools. The problem is that these kinds of “indirect”, or tool-based, semantics
complicate the assessment of the language†.

The main advantage of adapting a formal language according to Harel and Rumpe’s principles
(Chapter 4) rather than completely reformalising an informal language is that formalisation deci-
sions are usually much more straightforward since they have already been made. However, they
might be hard to dig out if they are coded in a tool.

7.4.2 Relate Semantic Domains

The third case is when we have a clear and self-contained mathematical definition of L, S andM
(either from the origin, or having previously gone through Case 1 or 2) but the semantic domains of
the languages to be compared differ (Case 3). Hence, they cannot be compared directly for expres-
siveness, embeddability and succinctness. They all rely on the hypothesis that the languages under
study share a common semantic domain. But, in general, the semantic domain of the languages may
differ. Therefore, X has a formal semantics with clear LX , SX andMX but SX , SYi(i ∈ {1, ..., n}).
In this case, we thus need to define a relation between the semantic domains.

Comparing languages with different semantic domains is actually possible, but it requires pre-
liminary work (de Boer and Palamidessi, 1994). Consider two languages with their syntactic do-
mains L1 and L2 and two different semantic domains, respectively S1 and S2. Their semantic
functions are respectivelyM1 andM2. We must first compare intuitively the two domains to deter-
mine the information they share. We then create a domain S for this shared information and provide
functions A1 : S1 → S and A2 : S2 → S, called abstractions. The purpose of these abstraction
functions is to remove additional information and keep the “core” of the semantic domain, where we
will perform the comparisons. However, the question of the relevance of this discarded information
remains and should be studied carefully.

A simple but frequent case is illustrated in Figure 7.2, where domain S1 is too rich and contains
more information than S2; we then take S2 as the common domain. An abstraction function A
removes from elements ofS1 their supplementary information and maps them intoS2. It then makes
sense to look for two translations between their syntactic domains: T : L1 → L2 and T ′ : L2 →

†Even more if W is also given a formal semantics in a similarly “indirect” way, just as X.
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Figure 7.2: Abstracting a semantic domain

L1. They are translations for the abstracted semantics A ◦M1, and can thus be used to compare
languages for expressiveness, embeddability and succinctness. In (de Boer and Palamidessi, 1994),
the authors mainly study the translation T ′ indicating if and how the diagrams of the language
with the simplest semantic domain (S2) are translatable into the language with the more complex
semantic domain (S1). This translation T ′ is often more complex. Here, the translation T is
also interesting since we consider FFD as the family of FD languages with the simplest semantic
domain. Our goal is to study whether every FD language can be easily translated into FFD while
preserving their original abstracted semantics. This is what we call semantic equivalence relatively
to the abstraction functionA.

Hence, if we apply T to d1 in the syntactic domain L1 we will obtain d2 in the syntactic domain
L2 with the same abstracted semantics. Semantically, if we apply the semantic function M1 to
d1 and then A or, if we apply T to d1 and then M2, we will map to the same element in S2:
∀d1 ∈ L1 : A(M1[[d1]]) =M2[[T (d1)]].

Similarly, if we apply T ′ to d2 in the syntactic domain L2 we will obtain d1 in the syntactic
domain L1 with the same abstracted semantics. Semantically, if we apply the semantic function
M2 to d2 or, if we apply T ′ to d2 thenM1 and finally A, we will map to the same element in S2 :
∀d2 ∈ L2 :M2[[d2]] = A(M1[[T ′(d2)]]).

When applied to more than two languages, this method will create many semantic domains
related by abstraction functions. These abstraction functions can be composed and will describe
a category of semantic domains (Figure 7.3). At the syntactic level, the translations can also be
composed to yield embeddability and succinctness results. Similarly, the composition of embed-
dings yields an embedding. In Figure 7.3, we consider FD languages with six different syntactic
domains (L1, . . . , L6) and six semantic domains (S1, . . . , S6). These languages do not share the
same semantic domain except for L4 and L6 where S4 = S6. S5 is considered as the more abstract
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or common semantic domain. It can be reached by composition of the abstraction functions (A1,
. . . ,A6). Conversely, S1 is considered as the less abstract semantic domain.
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Figure 7.3: Semantic Domain Category

When two languages share a common semantic domain and when a translation exists between
their syntactic domains, their results concerning expressiveness are identical. Hence, we need to go
further and to study the translation properties that determine embeddability and succinctness. This
is the case for L4 and L6 in Figure 7.3 which share the same semantic domain and are related by a
translation T7.

The situation is similar when two languages are amenable to a common semantic domain and
when a translation exists between their syntactic domains. When two languages do not share the
same semantic domain, their semantic domains should be related by an abstraction function in order
to define a correct embedding between languages at the syntactic level. This is the case for L1 and
L2 in Figure 7.3. The idea is that both semantic domains ( S1 and S2) could be abstracted to one
common semantic domain (S5). When a semantic domain category exists, the task is to construct
an abstraction function between the given semantic domain and one member of the category. Once
this abstraction function is defined, the semantic domain could be related to the common one by
composition of abstraction functions. For instance, in Figure 7.3, several possibilities exist to relate
S1 andS5. The abstraction function between S 1 and S 5 may result from three different compositions
of already existing abstraction functions: A5 ◦ A2 orA6 ◦ A3 orA6 ◦ A4 ◦ A1.
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7.5 Chapter Summary

In this chapter, we have proposed a method that describes (1) how the formal criteria defined in
Chapter 5 should be used to compare FD languages, (2) which properties these languages should
have to be comparable and (3) how to adapt both formal and informal FD languages to satisfy
these properties. In Chapter 8, we further equip our comparison method with FFD, a configurable
definition for a family of FD languages. In Chapter 9, we will apply our method to compare both
informal FD languages covered in FFD and selected formal FD languages.



Chapter 8

FFD: a Formal Configurable Definition

I
n Chapter 4, we have recalled the principles defined by Harel and Rumpe (Harel and
Rumpe, 2004) to improve the formal definition of languages. In the present chapter, we
show how to define a family of FD languages according to these principles. This defini-

tion is original in the sense that it is configurable. It allows formally (re)defining most of the FD
languages presented in Chapter 6. The semantics formally defined here, reflects how we understand
the informal semantics of OFD described in FORM (Kang et al., 1998). This formal definition will
be the basis for further reasoning on FD languages and for tool implementation.

The structure of this chapter is as follows. First, in Section 8.1, we formally define OFD (Kang
et al., 1998) applying the principles proposed in Chapter 4. This first main contribution has been
previously published in (Bontemps et al., 2005). Based on this OFD definition, we formally define
in Section 8.2 a family of FD languages named Free Feature Diagram Language (FFD). This sec-
ond main contribution has been previously published in (Schobbens et al., 2006). FFD definition
still follows the principles described in Chapter 4 but with some necessary adaptations presented in
Section 8.2.1. In Section 8.2.2, we apply these adapted principles to provide a formal and config-
urable definition of FFD. In Section 8.3, we illustrate how the FFD definition can be instantiated
(parametrised) and, by this mean, we show how each member of the family can be formally de-
fined with minimal efforts. Finally, we discuss in Section 8.4 the semantic choices that have been
necessary to define FFD semantics.

8.1 OFD Definition

OFD (Kang et al., 1998) is the first extension of the seminal FD language (OFT) (Kang et al.,
1990) proposed eight years later by the same authors. Both languages are frequently cited and
experimented in practice within numerous product line case studies. As mentioned in Section 6.3.2,
two variants of OFD exist. Only the simplest one will be formally defined here. This version simply
extends OFT with DAGs instead of being limited to trees.

In Section 8.1.1, we formally define the OFD syntactic domain (LOFD). Then, in Section 8.1.2,
we formally define the OFD semantic domain (SOFD). Finally, in Section 8.1.3, we formally define
the OFD semantic function (MOFD : LOFD → PL).

117
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8.1.1 The syntactic domain of OFD (LOFD)

From the concrete syntax point of view, OFDs are graphical combinations of elementary symbols
such as boxes (features), strings (feature names and textual constraints), lines (feature decomposi-
tion) and circles (on top of optional features). Defining the allowed combinations of these symbols
involves describing where they should be placed, which size and colour they should have, etc. This
is not necessarily difficult, but bulky.

The abstract syntax or syntactic domain defines the allowed essential syntactic structures be-
hind these visualisation details. As mentioned earlier, for visual languages, the two most widespread
ways to define an abstract syntax are: (1) mathematical notation (set theory) and (2) meta-modelling.
Several meta-models of FDs exist in the literature (Fey et al., 2002b; Czarnecki et al., 2004; Cechticky
et al., 2004; Czarnecki et al., 2005b,c; Chen et al., 2005; Benavides et al., 2005b; Asikainen et al.,
2006; Djebbi and Salinesi, 2006). Nevertheless, we prefer the mathematical format for its greater
universality, unambiguity, conciseness and suitability to undergo rigorous proofs.

A mathematical abstract syntax for OFD is given in Definition 8.1.1 and illustrated in Figure 8.1.
The left part of this figure corresponds to one FD illustrating the concrete syntax of OFD. The right
part illustrates the abstract syntax we have defined for OFD (LOFD). Please note that the graphical
representation given for the abstract syntax is by no means a proposal for a new concrete syntax. It
just serves to illustrate the formal definition.

OFD Concrete Syntax

f1

f2 f3

f5 f6 f7

f8 f9

f4 requires f9

f4

LOFD

f9?

f1

f2 f3

f5 f6 f7

f8

f9
! = {f4 requires f9}

!(f1) = and2

!(f3) = xor3
!(f2) = xor2

f4 !(f7) = and2

!(f9?) = opt1

r :

! f2 " N

f2

f5

f2

! (f2,f5) " DE

Legend

Figure 8.1: OFD’s syntactic domain: LOFD

The illustrated FD is composed of nine features; one being optional ( f9), four being mandatory
( f1, f2, f3, f8) and four being alternative ones ( f4, f5, f6, f7). In terms of feature decomposition,
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this FD contains one and-decomposition ( f1 into and( f2, f3)) and three xor-decompositions ( f2 into
xor( f4, f5), f3 into xor( f5, f6, f7) and f7 into and( f8, f9)). As the feature f5 is shared by f2 and f3
this FD is not a tree but a DAG with particular characteristics:

• A FD written in OFD is essentially a DAG, that is, a set of nodes (let us call it N) and a
relation between nodes. Nodes are related by decomposition edges (DE ⊆ N × N). Features
naturally map to elements of N, and decomposition edges to elements of DE.

• In OFD, there is always a unique root feature. We will call it r and thus have r ∈ N. In
Figure 8.1, the root is f1. As the feature f1 is decomposed into features f2 and f3, there we
have ( f1, f2) ∈ DE and ( f1, f3) ∈ DE.

• Although decomposition edges are represented in the concrete syntax by plain lines instead
of arrows, they do have a direction from top to bottom. In OFD (as well as in most FD
languages), the direction is represented by the fact that a feature is placed graphically above
its sub-features. This relation is thus directed. For instance, the directed edge ( f1, f3).

• Also, in OFD, the decomposition graph must have no cycle (that is less restrictive than having
to be a tree, like in OFT).

• Hence, DE must form a single-rooted DAG.

To abstract the various kinds of decompositions, we introduce a labelling function λ that maps
each node to a Boolean operator either ands or xors, respectively for and- and xor-decompositions.
s denotes the arity of the operator and must be equal to the number of sub-nodes (sub-features) of
the labelled node. The signature of λ is thus λ : N → NT , and NT (node type) is a set of Boolean
operators. It contains operators and1, and2, and3, . . . as well as operators xor2, xor3, . . . ∗ So, if f1
is and-decomposed into f2 and f3, we will have λ( f1) = and2. The node f1 is thus called an and2-
node, or simply and-node. The node f3 is thus called a xor3-node, or simply xor-node. The arity of
λ( f1) is two because f1 has two sons ( f2, f3) and the arity of λ( f3) is three because f3 has three sons
( f5, f6 and f7). We adopt similar terminological conventions for nodes labelled with other (types of)
operators. Another convention is that terminal features, i.e. features that have no sub-feature, are
λ-labelled with and0. In Figure 8.1, the terminal features are f4, f5, f6, f8, f9. Their and0 λ-label is
not indicated in the abstract syntax to avoid overloading of the figure.

The abstract syntax for optional features (those with a hollow circle on top in the concrete syn-
tax) is a little trickier. In Figure 8.1, the main difference between the concrete and abstract syntax
is manifest: the abstract syntax possesses one node ( f9?) for the circle. It corresponds to the de-
composition of the feature f9. Indeed, for each optional feature in the concrete syntax (for instance
f9), our abstract syntax possesses two nodes ( f9 and f9?). f9? corresponds to the hollow circle and
is introduced as an intermediate node between f9 and its parents. The only son of f9? is f9 and
λ( f9?) = opt1. This definition for optional nodes came after noticing that they actually play a role
similar to the and- and xor-decomposition, except for the fact that this kind of operator only acts

∗In addition, and1 = xor1 and NT also contains and0, xor0 and opt1.
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upon one sub-node.

The last part of OFD’s concrete syntax that LOFD should account for is the textual constraint
language, called “Composition Rules” (CR) in (Kang et al., 1990). In the concrete diagram, the
language is used to specify a (possibly empty) set of rules, located at the bottom of the diagram. In
the abstract syntax, we call the set of rules Φ and define it as a set of words obeying the following
production rule: CR ::= f1(requires | excludes) f2, where f1, f2 ∈ N. In Figure 8.1, Φ = { f4
requires f9}.

Important concepts we introduced inLOFD are the concepts of primitive feature and non-primitive
feature. A primitive feature is a feature that has an interest per se and that will influence the final
products. We do not confuse primitive and terminal features. A terminal feature (or leaf feature) is a
feature without any sub-feature. Following (Batory, 2005), we distinguish terminal and compound
(or non-terminal) features. A compound feature is an intermediate node used for decomposition.
Terminal features are usually primitive, but compound features can also be designated as primitive
too. In the literature, there is currently no agreement on the following questions:

• Are constraints only expressible between primitive features?

• Are all the features in a FD relevant to distinguish two products, or is there a subset of the
features that is relevant and one that is not?

• Is this relevant subset limited to terminal features or can it also include non-terminal features?

Actually, these questions primarily address semantics, but have consequences on the syntax.
For example, in Figure 6.2, one could question whether the (absence or presence of the) feature
Measures is useful to describe a product, or if (the absence or presence of) its sub-features, L/Km
and Gallon/mile, suffice. Since we found no agreement on these questions in the literature, we
adopted a neutral formalisation. Our solution accounts for the fact that the modeller can consider
only part of the features as relevant. Although there is no construct in the concrete syntax (neither
for OFD, nor any other FD language we know of), we need to introduce one in the abstract syntax,
namely a subset P of N (P ⊆ N). We will see the impact of P when we address the semantics of
OFD. Finally, although we leave it to the modeller to determine P, we reasonably expect that P
contains terminal nodes and does not contain opt-nodes. But we do not need to impose these rules.

In the previous paragraphs, we have informally described and justified the constructs of LOFD.
Now it is time to define it formally.

Definition 8.1.1 (Original Feature Diagram) An OFD d ∈ LOFD is a tuple (N, P, r, λ,DE,Φ)
where:

• N is its set of nodes;

• P ⊆ N is its set of primitive nodes;

• r ∈ N is the root;

• λ : N → NT labels each node with an operator from NT, where NT = and∪xor∪{opt1}. The
semantics of each operator will be provided in the semantic function of OFD (Section 8.1.3);
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• DE ⊆ N × N is the set of decomposition edges; (n, n′) ∈ DE is alternatively noted n→ n′;

• Φ ⊆ CR are the textual constraints.

Furthermore, d must satisfy the following well-formedness rules:

1. Only r has no parent: ∀n ∈ N.(@n′ ∈ N.n′ → n)⇔ n = r.

2. DE is acyclic: @n1, ..., nk ∈ N.n1 → . . .→ nk → n1.

3. Node operators are of adequate arities: ∀n ∈ N.λ(n) = opk ∧ k = ]{(n, n′)|n→ n′}.

4. Terminal Nodes (leaves) are and0 or xor0-labelled†: ∀n ∈ N.(@n′ ∈ N.n → n′) ⇔ λ(n) =
and0 ∨ λ(n) = xor0.

Note that the first two well-formedness rules above should be enforced at the level of the con-
crete syntax (e.g., by a graphical OFD editor), whereas the last two rules should be guaranteed when
moving from the concrete to the abstract syntax, and the modeller should not care about them.

8.1.2 The semantic domain of OFD (SOFD)

In the surveyed literature, there seems to be an agreement that FDs are meant to represent sets
of products, and each product is seen as a combination of features. These tenets were present
from the beginning in OFT (Kang et al., 1990) and were adopted without much controversy in
its extensions, including OFD (Kang et al., 1998). In particular, none of the surveyed languages
attempted to further define the “content” of a feature beyond its name (viz., the labels appearing in
the nodes of the FD), except for some recent work (Benavides et al., 2005a; Classen et al., 2008).
We published the first formalisation of a semantic domain specifically devoted to FDs in (Bontemps
et al., 2004). In this semantic domain, named PL, the atomic building blocks are features (nodes),
a bit in the same way that propositions are the atomic building blocks in the semantic domain of
propositional logic (see, e.g., (Tarski, 1956)). Definition 8.1.2 presents mathematically the notions
of product and product line. This definition relies on the more general notion of configuration given
in Definition 8.1.4.

Definition 8.1.2 (OFD Semantic Domain) The semantic domain of OFD is mathematically de-
fined as the product lines. A product line (PL) is a set of products, i.e., any element of PL = PPP
where

• P is the set of primitive nodes.

• PP is the set of all possible products.

Figure 8.2 gives an illustration of this. A product, say c, is a combination (i.e. a set) of primitive
nodes. In this case, c is the set { f1, f3, f4, f5, f6, f7}. A product line, e.g. pl, is a set of products.
Here, pl is a set of 3 products: {{ f3, f6}, { f1, f2, f3, f4, f5, f6, f7}, { f1, f4, f5, f7}}.

†The xor0 node is also called the FALSE node that is only necessary for theorem proving (see Theorem 9.1.9).



122 Chapter 8. FFD: a Formal Configurable Definition

c ! P P f1 f3 f4 f5 f6 f7

...

pl ! P P P

f1 f2 f3 f4 f5 f6 f7

f1 f4 f5 f7

f3 f6

Figure 8.2: OFD’s semantic domain: SOFD

However, the definition of semantic domains may differ from PL. For example, some authors
have proposed to use lists instead of sets (van Deursen and Klint, 2002). The cause usually turns out
to be an implementation bias. How to compare PL with other semantic domains will be discussed
in Chapter 9. For the time being, an important observation is that PL, as all semantic domains, is
indeed insufficient to describe semantics: it does say what is a product line, but it fails to say which
products pertain to the product line a given OFD stands for. This is the role of the semantic function.

8.1.3 The semantic function of OFD (MOFD : LOFD → PL)

In Figure 8.3, we illustrate the semantic function of OFD (MOFD). To every diagram d, it assigns a
product line, notedMOFD[[d]], in the semantic domain PL.MOFD[[d]] is formally described in Def-
initions 8.1.3 and 8.1.5. Definition 8.1.3 indicates which set of products is returned byMOFD[[d]]:
the set of the configurations (combinations of nodes) that are valid wrt d, restricted to their prim-
itive nodes. Definition 8.1.5 provides four clear and compact rules telling what in OFD is a valid
configuration wrt d. The fact that a configuration c is valid wrt d is noted c � d.

Definition 8.1.3 (OFD Semantic function) The semantics of an OFD d is a product line (Defini-
tion 8.1.2) consisting of the products of d, i.e. its valid configurations (Definitions 8.1.4 and 8.1.5)
restricted to primitive nodes:MOFD[[d]] = {c

⋂
P|c � d}

Definition 8.1.4 (Configuration) A configuration is a set of nodes, i.e., any element of PN.

Definition 8.1.5 (Valid configuration) A configuration (Definition 8.1.4) c ∈ PN is valid for a
d ∈ LOFD, noted c � d, iff:

1. The root is in: r ∈ c and the node operator labelling r is TRUE;
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...
...

 L
OFD

PL

d
2

d
1

d
3

M
OFD
!d
1
"

MOFD

MOFD!d3"

MOFD!d2"

Figure 8.3: OFD’s semantic function:MOFD

2. The meaning of nodes is satisfied: If a node n ∈ c, and n has sons s1, . . . , sk and λ(n) = opk,
then opk(s1 ∈ c, . . . , sk ∈ c) must evaluate to TRUE. This evaluation depends on the possible
values of NT = and ∪ xor ∪ {opt1} that are mapped to Boolean functions (operators) where:

• and is the set of operators ands (s ∈ N), that return TRUE iff all their s arguments are
TRUE;

• xor is the set of operators xors (s ∈ N \ {0, 1}) that return TRUE iff exactly one of their s
arguments is TRUE;

• opt1 is the operator that returns TRUE;

3. The configuration must satisfy all textual constraints: ∀φ ∈ Φ, c � φ, where m � φ means
that we replace each node name n in φ by the truth value of n ∈ c, evaluate φ and get TRUE.
Namely:

• if φ is a CR constraint of the form f1 requires f2, we say that m � φ iff ( f1 ∈ c) ⇒
( f2 ∈ c) evaluates to TRUE;

• if φ is a CR constraint of the form f1 excludes f2, we say that m � φ iff and2( f1 ∈
c, f2 ∈ c) evaluates to FALSE.

4. If f is in the configuration and f is not the root, one of its parents n, called its justification,
must be too: ∀ f ∈ N. f ∈ c ∧ f , r: ∃n ∈ N : n ∈ c ∧ n→ f .

WhenMOFD[[d]] returns an empty set of products, i.e. the empty PL, it means that d is non-
satisfiable (or, inconsistent). In Figure 8.3, this is the case for d3. This happens when there is no
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product combination that can satisfy the constraints in d. Checking consistency, as well as many
other tasks, can usually not be performed efficiently just by processing syntax, nor by letting the
modeller inspect the diagram. Hence, our semantics enables a correct and faithful implementation
of time-consuming and error-prone tasks.

In Figure 8.4, we now take a closer look at the product validity rules of Definition 8.1.5.

• The left part of the figure presents the abstract syntax d1 of the FD, written in OFD, that
is identical to the right part of Figure 8.1. We assume that all nodes in the abstract syntax
represented by d1 are primitive nodes, except for “ f9?” that is an optional node generated to
account for an optional feature in the concrete syntax.

• The right part of the figure presents the semantics of d1 (MOFD[[d1]]) in the semantic domain
PL. The application of the semantic function (MOFD) on d1 results in a product line composed
of two products:{{ f1, f2, f3, f4, f7, f8, f9}, { f1, f2, f3, f5}}.

f1

f2 f3

f5 f6 f7

f8 f9?

!(f1) = and2

!(f3) = xor3
!(f2) = xor2

f4 !(f7) = and2

PL

f1 f2 f3 f4 f7 f8 f9 

f1 f2 f3 f5 

f2 f3 f4 f7 f9 

f1 f2 f3 f5 f6  

f1 f2 f3 f4 f7 f8 

f1 f2 f3 f4 f6 f8 

Rule 1

Rule 2

Rule 3

Rule 4

L
OFD

M
OFD

d
1

!(f9?) = opt1

MOFD!d1
"

r :

! = {f4 requires f9}

# f2 $ N

f2

f5

f2

# (f2,f5) $ DE

Legend

f9

Figure 8.4: OFD’s semantics: validity rules

Furthermore, we illustrate in Figure 8.4 why some products are discarded according to the four
rules presented in Definition 8.1.5:

1. The first rule (Rule 1) imposes that the root (r = f1) appears in every valid product. Hence, the
product { f2, f3, f4, f7, f8, f9}, for instance, cannot be part of the product line ({ f2, f3, f4, f7, f8, f9} <
MOFD[[d1]]).

2. The second rule (Rule 2) describes the semantics of the Boolean operators coming from the
decomposition edges and from the optional features. This rule relies on the semantics of the
Boolean operator opt1 as well as the operators in and and xor. Their semantics has been
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recalled in point 2 of Definition 8.1.5. In Figure 8.4, the second rule is applied to discard the
product { f1, f2, f3, f5, f6}, say c, because f3 appears in it together with more than one node
among f5, f6 and f7. Indeed, f3 is labelled with xor3 and has 3 sons: f5, f6 and f7. In c,
xor3( f5 ∈ c, f6 ∈ c, f7 ∈ c) would then evaluate to FALSE.

3. The third rule (Rule 3) is similar in spirit to the former, except that it deals with the oper-
ators (requires and excludes) appearing in Φ, the CR textual constraints accompanying
the graphical part of the OFD. When applied to the example, the rule interprets the CR f4
requires f9 by checking the truth value of ( f4 ∈ c) ⇒ ( f9 ∈ c), which in the case of the
product c = { f1, f2, f3, f4, f7, f8} evaluates to FALSE.

4. The fourth and last rule (Rule 4) is called the justification rule. It guarantees that, except
for the root, a node cannot be present in a valid product without at least one of its parent
nodes being present as well. It says “at least one of its parents” because OFDs are DAGs
and a node can therefore have multiple parents. In the example, this rule discards the product
{ f1, f2, f3, f4, f6, f8} because f8 belongs to c but f7, its only parent, does not. The justifica-
tion rule has often been overlooked in the literature. This leads to strongly counter-intuitive
semantics. Without the justification rule, the OFD in Figure 8.4 would accept, e.g., products
{ f1, f2, f3, f5, f8, f9} or { f1, f2, f3, f4, f6, f8} as part of its semantics. Justifications also explain
the difference between an and-decomposition of a feature into sub-features and a requires
constraint between two features: the presence of sub-feature is justified by its parent, while a
requires gives no justification.

When all the rules in Definition 8.1.5 are satisfied and when all the non-primitive nodes in the
products have been discarded according to Definition 8.1.3, we see that the semantics of the OFD
in Figure 8.4 comes unambiguously as the following product line, made of two valid products:
{{ f1, f2, f3, f4, f7, f8, f9}, { f1, f2, f3, f5}}.

8.2 Formal Configurable Definition of FD Languages

Once OFD has been formally defined, its definition can be used as a starting point to define a family
of FD languages, called FFD. The idea is to extend the OFD definition in order to integrate other
FD languages. Obviously this extended definition should still follow Harel and Rumpe’s principles
(Chapter 4) but however they need to be slightly adapted. Hence, we first show in Section 8.2.1
how we adapt these principles to define FFD and, then, we apply these principles in Section 8.2.2
to provide a formal and configurable definition to FFD.

8.2.1 How to define Free Feature Diagram (FFD)

The definition of FFD is no exception and should still follow Harel and Rumpe’s principles (Chap-
ter 4). However, these principles have been proposed to formally define one language while our
purpose is to define a family of languages. Consequently, some adaptations are necessary:

1. Firstly, the scope of the family should be defined to determine which FD languages are mem-
bers of FFD. Initially, the scope of FFD contains our formal language VFD (Bontemps et al.,
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2004; Schobbens et al., 2007) and the informal FD languages gathered in the state of the art
(Chapter 6): OFT (Kang et al., 1990), OFD (Kang et al., 1998), RFD (Griss et al., 1998),
GPFT (Eisenecker and Czarnecki, 2000), EFD (Riebisch et al., 2002), VBFD (van Gurp et al.,
2001), PFT (Eriksson et al., 2005).

2. Secondly, we need to adapt the principles proposed by Harel and Rumpe (Chapter 4). These
adaptations are illustrated in Figure 8.5 and should be analysed in comparison with the orig-
inal concepts already described in Figure 4.1. The main adaptation concerns the syntac-
tic domain that should be generic to take into account all the members contained in the
scope of our family of languages. The left part of the figure illustrates this generic syn-
tactic domain (LFFD, see Definition 8.2.1) that enables to describe, not one single syntac-
tic domain for one language, but syntactic domains of all the members of the FFD family
(LOFT ,LOFD, . . . ,LPFT ∈ LFFD).

LOFT

LOFD

LPFT

...

Generic syntactic domain

LFFD(GT,NT,GCT,TCL)

All the diagrams one can write

in a language of the FD family 

(LOFT, LOFD, ... , LPFT 
! LFFD)

All the diagrams one

can write in LOFT

All the diagrams one

can write in LOFD

All the diagrams one

can write in LPFT

Common semantic domain

PL

All the possible meanings

of FDs

Common semantic

function MFFD

Figure 8.5: Meaningful Modelling for FD Family

Once this generic syntactic domain is defined, the semantic domain and function are now com-
mon for OFT (Kang et al., 1990) and most of its extensions (Kang et al., 1998; Griss et al., 1998;
Eisenecker and Czarnecki, 2000; Riebisch et al., 2002; van Gurp et al., 2001; Eriksson et al., 2005;
Bontemps et al., 2004). Hence, this new approach allows managing a family of languages reusing
the semantics that we have already defined for OFD (Section 8.1).

8.2.2 Free Feature Diagram (FFD) Definition

In this section, we formally define FFD and more specifically its generic syntactic domain (Sec-
tion 8.2.2.1), common semantic domain (Section 8.2.2.2) and common semantic function (Sec-
tion 8.2.2.3).
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8.2.2.1 FFD Syntactic Domain (LFFD)

The definition of the generic syntactic domain (LFFD) is a generalisation of OFD syntactic do-
main (Section 8.1). It should be adapted to cover not only OFD but all the FD languages included
in FFD. The resulting generic syntactic domain (Definition 8.2.1) is defined with a parametric
construction that generalises the syntax of all FD variants. The FFD abstract syntax definition is
parametrised according to four variation points revealed by the comparison of OFD with the other
FD languages covered by FFD. Accordingly, the FFD abstract syntax is parameterized and is of the
form: FFD(GT,NT,GCT,TCL) where:

• Parameter GT. The decomposition edges in a FD can form a tree or a DAG. For this, we
introduce the parameter GT: GT (Graph Type) is either DAG or TREE. In OFD, the decom-
position edges form a DAG. For the studied FD languages, the values for this parameter are
given in Figure 8.6.

Generic syntactic domain

LFFD(GT,NT,GCT,TCL)

LRFD

LGPFT

LPFT

For languages in

FFD(TREE,_,_,_)

diagrams can only

be tree-shaped

For languages in

FFD(DAG,_,_,_)

Directed Acyclic Graphs

are allowed too

LOFD

LOFT

LVBFD

LEFD LVFD

Figure 8.6: Variation Point: Graph Type (GT)

• Parameter NT. The type of Nodes in a FD may vary. The different types of nodes found in
the literature are: and, xor, opt1, or and card.

Example 8.2.1 In the running example used in Chapter 6, we have already encountered dif-
ferent types of nodes (see Figure 8.7):

– The node Monitor Engine Performance in Figure 8.7(a) is a node of type and, i.e.
a and-node. Since it has 3 sons, we will use the operator of this arity, and3. We say that
it bears the operator and3.

– The node Methods in Figure 8.7(b) bears operator or3.

– The node Measures in Figure 8.7(c) bears operator xor2.
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– The nodes Monitor Engine Performance, Measures and Methods in Figure 8.7
also bear, respectively, operators card3[3..3], card2[1..1] and card3[1..3].

Based on 
type of 
driving

Based on 
drive

Based on 
distance

Methods

Monitor 
Temperatures

Monitor Engine 
Performance

Monitor exhaust 
levels and 

temperature

Monitor RPM

Gallon/mileL/Km

Measures

(a) 

(b) 

(c) 

Figure 8.7: Examples of and3, or3, xor2 in GPFT

For this, we introduce the parameter NT: NT (Node Type) is a set of Boolean functions (oper-
ators): and, xor, or, opt and card. In OFD, the type of nodes allowed are xor-node, and-node
and opt1-node. Or-node and card-node are also included in some other languages whereas
xor-node is not available in others. It is possible to add more node types by defining Boolean
operators. For the studied FD languages, the values for this parameter are given in Figure 8.8.

• Parameter GCT. The type of graphical constraints may vary. Some languages do not have
any graphical constraints whereas others have requires (⇒) and excludes ((|)) graphical con-
straints. For this, we introduce the parameter GCT: GCT (Graphical Constraint Type) is a
set of binary Boolean operators. E.g.: Requires (⇒) or Mutex (|). In OFD, no graphical
constraints are allowed. Other graphical constraints between features that are not boolean
constraints exist such as generalisation or implementation (Kang et al., 1998). However,
since we are not able to give them a semantics we prefer, at this point, not to consider them
as possible values for GCT. For the studied FD languages, the values for this parameter are
given in Figure 8.9.

• Parameter TCL. The textual constraint language may vary. Some languages do not have any
textual constraints whereas others (re)use constraint languages. For this, we introduce the
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Generic syntactic domain

LFFD(GT,NT,GCT,TCL)

LGPFT LPFT

LOFT FFD(_, { and ! xor ! { opt1 } }, _, _)

FFD(_, { and ! xor ! or ! { opt1 } }, _, _)

FFD(_, { card ! { opt1 } }, _, _)

LRFD

LOFD

LVBFD

LEFD

LVFD FFD(_, { card }, _, _)

Figure 8.8: Variation Point: Node Type (NT)

Generic syntactic domain

LFFD(GT,NT,GCT,TCL)

LGPFT

LPFT

LOFT

LRFD

LOFD

LVBFDLEFD

LVFD
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Figure 8.9: Variation Point: Graphical Constraint Type (GCT)

parameter TCL: TCL (Textual Constraint Language) is a subset of the language of Boolean
formulae where the atomic predicates are the nodes of the FD. The main difference with the
previous parameter is that the semantics of the constraint languages are defined independently
from the FD language itself while the semantics of the graphical constraints still need to
be explicitly defined within the FD language. In OFD, the textual constraint language is
“Composition Rules (CR)” (Kang et al., 1990, p.71), CR ::= f1(requires | excludes) f2 where
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f1, f2 boolean variables correspond to features (Section 8.1.1). In addition, more powerful
languages, such as propositional logic, can be included in the FD language (Batory, 2005).
For the studied FD languages, the values for this parameter are given in Figure 8.10.

Generic syntactic domain

LFFD(GT,NT,GCT,TCL)

LGPFT

LPFT

LOFT

LRFD

LOFD

LVBFD

LEFD

LVFD

FFD(_, _, _, CR)

where

CR is the language of composition rules

CR ::= p1 (requires | mutex) p2

FFD(_, _, _, ! )

Figure 8.10: Variation Point: Textual Constraint Language (TCL)

The values of these four parameters are summarised in Table 8.1 for the studied FD languages.
Other combinations of values exist and determine other possible FD languages. Defining a language
now boils down to filling in a row of Table 8.1. Similarities and differences in the abstract syntax
of the languages can also be studied. A prominent example is that the FD languages RFD (Griss
et al., 1998) and VBFD (van Gurp et al., 2001)) appear to be identical in our definition (Line 3 in
Table 8.1).

Short Name References GT NT GCT TCL
OFT Kang et al. (1990) TREE and ∪ xor ∪ {opt1} ∅ CR
OFD Kang et al. (1998) DAG and ∪ xor ∪ {opt1} ∅ CR

RFD=VBFD Griss et al. (1998); van Gurp et al. (2001) DAG and ∪ xor ∪ or ∪ {opt1} {⇒, |} CR
EFD Riebisch et al. (2002); Riebisch (2003) DAG card ∪ {opt1} {⇒, |} CR
GPFT Eisenecker and Czarnecki (2000) TREE and ∪ xor ∪ or ∪ {opt1} ∅ CR
PFT Eriksson et al. (2005) TREE and ∪ xor ∪ or ∪ {opt1} {⇒, |} ∅

VFD Bontemps et al. (2004); Schobbens et al. (2007) DAG card ∅ ∅

Table 8.1: Family of Existing FD languages

When comparing definitions of FFD syntactic domain (LFFD) (Definition 8.2.1) and OFD syn-
tactic domain (LOFD) (Definition 8.1.1), we can underline three main differences:

• LFFD is defined according to four parameters (GT, NT, GCT, TCL) and their associated values
described previously.

• Two other types of nodes are allowed in LFFD: or and card.
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• LFFD allows graphical constraints formalised as Constraint Edges (CE).

Definition 8.2.1 (Free Feature Diagram (FFD)) A FFD d ∈ FFD(GT,NT,GCT,TCL) =
(N, P, r, λ,DE,CE,Φ) where:

• GT (Graph Type) is either DAG or TREE;

• NT (Node Type) is a set of node types where NT = and∪ xor∪{opt1}∪or∪ card. Each node
type is mapped to a set of commutative Boolean operators, at most one per arity;

• GCT (Graphical Constraint Type) is a set of binary Boolean operators. E.g.: Requires (⇒)
or Mutex (|);

• TCL (Textual Constraint Language) is a subset of the language of Boolean formulae where
the atomic predicates are the nodes of the FD;

• N is its set of nodes;

• P ⊆ N is its set of primitive nodes;

• r ∈ N is the root of the FD, also called the concept;

• λ : N → NT labels each node with an operator from NT;

• DE ⊆ N × N is the set of decomposition edges; (n, n′) ∈ DE will rather be noted n→ n′;

• CE ⊆ N ×GCT × N is the set of constraint edges;

• Φ ⊆ TCL are the textual constraints.

In addition, a FD must obey the following constraints:

1. Only r has no parent: ∀n ∈ N.(@n′ ∈ N.n′ → n)⇔ n = r.

2. DE is acyclic: @n1, ..., nk ∈ N.n1 → . . .→ nk → n1.

3. If GT = TREE, DE is a tree: @n1, n2, n3 ∈ N.n1 → n2 ∧ n3 → n2 ∧ n1 , n3.

4. Node operators are of adequate arities: ∀n ∈ N.λ(n) = opk ∧ k = ]{(n, n′)|n→ n′}.

5. Terminal Nodes are and0 or xor0-labelled‡: ∀n ∈ N.(@n′ ∈ N.n→ n′)⇔ λ(n) = and0∨λ(n) =
xor0.

‡The xor0 node is also called the FALSE node and is only necessary for theorem proving (see Theorem 9.1.9).
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8.2.2.2 FFD Semantic Domain (SFFD)

The Semantic Domain of FFD (SFFD, Definition 8.2.2) is identical to the one defined for OFD
(SOFD, Definition 8.1.2).

Definition 8.2.2 (FFD Semantic Domain) The semantic domain of FFD is mathematically defined
as the product lines. A product line (PL) is a set of products, i.e., any element of PL = PPP where

• P is the set of primitive nodes.

• PP is the set of all possible products.

8.2.2.3 FFD Semantic function (MFFD : LFFD → PPP)

In Figure 8.5, we illustrate MFFD, the semantic function of FFD. To every diagram d, written in
any FD language contained in the language family, it assigns a PL notedMFFD[[d]]. MFFD[[d]] is
formally described in Definitions 8.2.3 and 8.2.5. Definition 8.2.3 indicates which set of products is
returned byMFFD[[d]]: the set of the configurations (combinations of features) that are valid wrt d,
restricted to their primitive features. Definition 8.2.5 provides five clear and compact rules telling
what in FFD is a valid configuration wrt d. The fact that a configuration c is valid wrt d is noted
c � d.

Definition 8.2.3 (FFD Semantic function) The semantics of an FFD d is a product line (Defini-
tion 8.2.2) consisting of the products of d, i.e. its valid configurations (Definitions 8.2.4 and 8.2.5)
restricted to primitive features/nodes:MFFD[[d]] = [[d]] = {c

⋂
P|c � d}

Definition 8.2.4 (Configuration) A configuration is a set of nodes, i.e., any element of PN.

Definition 8.2.5 (Valid configuration) A configuration c ∈ PN is valid for a d ∈ LFFD, noted
c � d, iff:

1. The root is in: r ∈ c and the node operator labelling r is TRUE;

2. The meaning of nodes is satisfied: If a node n ∈ c, and n has sons s1, . . . , sk and λ(n) = opk,
then opk(s1 ∈ c, . . . , sk ∈ c) must evaluate to TRUE.

• and maps to the set of operators ands that return TRUE iff all their s arguments are
TRUE;

• xor maps to the set of operators xors that return TRUE iff exactly one of their s argu-
ments is TRUE;

• opt1 is the only operator in opt. It always returns TRUE. By providing only one operator,
we restrict these nodes to have only one son.

• or maps to the set of operators ors that return TRUE iff some of their s arguments are
TRUE;

• card[i..j] maps to the set of operators cards[i.. j] where i ∈ N and j ∈ N ∪ {∗} that return
TRUE iff at least i and at most j of their arguments are TRUE.
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3. The configuration must satisfy all textual constraints: ∀φ ∈ Φ, c � φ, where m � φ means
that we replace each node name n in φ by the truth value of n ∈ c, evaluate φ and get TRUE.
Namely:

• if φ is a CR constraint of the form f1 requires f2, we say that m � φ iff ( f1 ∈ c) ⇒
( f2 ∈ c) evaluates to TRUE;

• if φ is a CR constraint of the form f1 excludes f2, we say that m � φ iff and2( f1 ∈
c, f2 ∈ c) evaluates to FALSE.

4. The configuration must satisfy all graphical constraints: ∀(n1, op2, n2) ∈ CE, op2(n1 ∈

m, n2 ∈ m) must be TRUE.

5. If s is in the configuration and s is not the root, one of its parents n, called its justification,
must be too: ∀s ∈ N.s ∈ c ∧ s , r: ∃n ∈ N : n ∈ c ∧ n→ s.

When comparing definitions of FFD semantic function (MFFD) (Definition 8.2.3) and OFD
semantic function (MOFD) (Definition 8.1.3), we can underline two main differences:

• Two other types of nodes are allowed in LFFD: or and card. Therefore, their respective
semantics is defined in rule 2 of Definition 8.2.5.

• LFFD allows graphical constraints represented as Constraint Edges (CE). Therefore, the se-
mantics of graphical constraints is defined in the new rule 4 of Definition 8.2.5.

8.3 Instantiating FFD

Each surveyed FD language can now be defined by providing adequate values to the parameters
of FFD (Table 8.1). Semantics, on the other hand, is given once for all the members of FFD (see
Section 8.2.2.3). The formal semantics of a particular FD language defined through FFD thus
comes for free. The transformation from one FD language to the FFD structure or syntactic do-
main is a translation from concrete to abstract syntax. For instance, Figure 8.11 illustrates the
translation from OFD concrete syntax to FFD abstract syntax: LOFD = LFFD(DAG, {and ∪ xor ∪
{opt1}}, {},CR). Indeed, OFD allows DAGs with optional and mandatory features. These features
could be decomposed with an and-decomposition or a xor-decomposition. In addition, OFD allows
requires and excludes textual constraints between features. Another example is provided in Fig-
ure 8.12 that illustrates the translation from EFD concrete syntax to FFD abstract syntax: LEFD =

LFFD(DAG, {card ∪ {opt1}}, {→, |},CR).

The values of the parameters used to instantiate FFD into OFD and EFD indicates how both
languages differ. The first difference is the presence of graphical constraints (→ for requires, | for
excludes) in EFD. The second difference is the substitution in NT of the and and xor operators by
the card operator. These differences concern the abstract syntaxes of the languages and reveal how
they can be distinguish without considering aesthetic differences (concrete syntax). In our research
context, examining how a xor-decomposition is represented graphically (see Figure 8.13) is not
relevant. Nevertheless, examining whether the xor-decomposition is allowed or whether another
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OFD Concrete Syntax
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Figure 8.11: From OFD to FFD
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Figure 8.12: From EFD to FFD
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construct stands for it is capital. Finally, we should notice that a pair of FDs, one written in OFD
and the other in EFD, may share the same translation to FFD. Therefore, they also share the same
semantics. However, two FDs that do not map to the same FFD can also share the same semantics.
In both cases, we say that they are semantically equivalent.

1..1

s s

Construct

xor-
decomposition

Symbol(s)

Griss et al. 
1998

van Gurp et al. 
2001

Riebisch et al. 
2002

 Kang et al. 
1990, 1998

 Eisenecker and 
Czarnecki, 2000

 Eriksson et al. 
2005

Figure 8.13: Xor-decomposition from Abstract to Concrete Syntax

From Table 8.1, we can immediately observe that some FD languages are syntactically richer
than others. For instance, LOFD ⊂ LRFD. Indeed, both languages (1) allow DAG and (2) share
the same constraint language. However, LRFD admits the or operator and graphical constraints
whereas LOFD does not. The results concerning syntactic inclusion of FD languages are presented
in Theorem 8.3.1 and illustrated in Figure 8.14.

Theorem 8.3.1 We observe the following syntactical inclusions:

1. LOFT ⊂ LOFD ⊂ LRFD ⊂ LFFD

2. LOFT ⊂ LGPFT ⊂ LRFD ⊂ LFFD

3. LPFT ⊂ LRFD ⊂ LFFD

4. LVFD ⊂ LEFD ⊂ LFFD

Nevertheless, Theorem 8.3.1 should not be over-interpreted. From the syntactic point of view,
we can observe that LRFD includes most of the other FD languages except LEFD and LVFD. We
also notice that LVFD and LOFT seem to be minimal but that no intersection exists between them.
The quality of a language does not only depend on the constructs it allows or not. The syntactic
analysis is not a sufficient criteria to evaluate languages. Once a language is syntactically included
in another language, it does say anything about their respective quality. In addition, when two
languages have no syntactic intersection, no conclusion can be drawn. A language with a large
number of constructs is not necessarily of better quality than a language with a minimal number
of constructs and conversely. Some constructs may not be used or even two constructs may be
redundant.
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Figure 8.14: FD languages: Syntactic Inclusion

At this stage, the reader should keep in mind that FFD is not a user notation, that is, a notation
meant to be used by analysts to draw FD. FFD aims at including the studied FD languages with
their respective constructs. By this mean, FFD provides a coherent and unified semantics to all of
included constructs but does not question their relevance. Based on this semantics, the languages
included in FFD will now become comparable according to the various criteria defined in Chapter 5.
Hence, FFD is a formal framework to be applied by method engineers and scientists to formally
define, study and compare FD languages. FFD is intended to facilitate these tasks and to increase
their rigour and accuracy.

8.4 Semantic issues

Defining a formal semantics as we just did for FFD imposes to take decisions and gives the oppor-
tunity to uncover some important issues that might well have remained unnoticed. If such issues are
not made explicit and solved before a language is made public (resp. building tools), interpretations
of the user (resp. developer) might differ from the intended one, possibly leading to misunderstand-
ings and faulty developments. It is important to note that we do not claim to have provided the right
semantics for all these languages. We have formalised one semantics that should now be discussed
according to these issues and the semantic choices we have made.

8.4.1 Node or Edge-based Semantics

The semantic definition of every language composed of edges and nodes could be based on edge or
node transformations. In most studied FD languages, the semantics seems to be node-based with
mandatory and optional nodes. However, the semantics of EFD (Riebisch et al., 2002) is edge-based
with mandatory and optional edges.

At the syntactic level, both solutions are clearly relevant and therefore, for generality, we pro-
pose specific decompositions for optional nodes as presented in Figure 8.15. Consider Figure 8.15
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(a), a very basic FD. OFD (Kang et al., 1998) seems to hint that it should be abstracted to (b), while
EFD (Riebisch et al., 2002) to (c). Because we want to account for both, we take the finer decom-
position (d), adding an opt1-node f1? under node f0. The opt1-node must have f1 as a son, thus we
also add a new decomposition edges in the abstract syntax between f1? and f1.

f0

f1

f0

f1

f0

f1

f0

f1

(a) Concrete syntax (b) Mapping according to 
     Kang et al., 1998 (OFD)

(c) Mapping according to 
           Riebisch et al., 2002 (EFD)

(d) General abstract syntax

decomposition
edge

root node

optional
node

decomposition
edge

root node

node

added
opt-node

optional
decomposition

edge

root node

node

added decom- 
position edge

}

}

}

}

}

}

(

(

(

}
λ

λ

f1?λ

}
(f0) = and1

(f1?) = opt1

(f1) = and0

Figure 8.15: Optionality: Three possible abstract syntaxes

At the semantic level, the two apparently equivalent FDs in Figure 8.16 actually are not: one is
written in OFD with a node-based semantics while the other is written in EFD with an edge-based
semantics hinted at (Riebisch et al., 2002). If all features are considered primitive, the OFD al-
lows two products: { f0, f1, f2, f3, f5} and { f0, f1, f2, f4}. Meanwhile, the EFD allows two additional
products: { f0, f1, f2, f3, f4} and { f0, f1, f2, f4, f5}. This difference only occurs when FDs are DAGs.
Indeed, the node-based semantics for xor-node implies that once the feature f3 or f5 has been se-
lected for a product, the feature f4 will not be reachable. On the contrary, the edge-based semantics
for xor-decomposition does not prevent that when the edge ( f1, f3) is selected, the edge ( f2, f4) is
not. Similarly, both edges ( f1, f4) and ( f2, f5) may be selected for the same product.

These semantics are clearly different. Our choice in the OFD and FFD definitions is to follow
a node-based semantics. However, as illustrated in Figures 8.17 and 8.18, an edge-based semantics
can be emulated by a node-based semantics. The idea is first to translate EFD into FFD as previ-
ously described (see Figure 8.17) and then to apply a transformation T on this abstract syntax (see
Figure 8.18) before computing the semantics. This transformation T replaces each node shared by
several parents with a non-primitive and-node for each incoming edge, each of these and-nodes
having only one son which is the shared node.
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1..11..1
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Figure 8.16: Node- vs. edge-based semantics
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Figure 8.17: From EFD to FFD

For instance, in Figure 8.17 the node f4 is shared by f1 and f2. Therefore two and-nodes f ′4 and
f ′′4 (λ( f ′4) = card1[1..1] and λ( f ′′4 ) = card1[1..1]) sharing son f4 are added and each incoming edge
of f4 is linked back to them (Figure 8.18). At the end, the node-based semantics corresponding to the
translated diagram determines four valid products: { f0, f1, f2, f3, f5}, { f0, f1, f2, f4}, { f0, f1, f2, f3, f4}
and { f0, f1, f2, f4, f5}.
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Figure 8.18: From edge-based to node-based Semantics

8.4.2 Trees or DAGs

The second issue concerns the structure of the FDs. Semantically, distinguishing between trees and
DAGs brings some interesting consequences. The main FD variants (Kang et al., 1990; Eisenecker
and Czarnecki, 2000; Eriksson et al., 2005; Batory, 2005; Czarnecki et al., 2005c) only use trees.
This brings several simplifications to our semantics:

1. A textual variant of the language is now easily obtained by using this tree as an abstract syntax
tree, see e.g. (van Deursen and Klint, 2002).

2. The justification rule (Definition 8.1.5, last point) simplifies since each node has exactly one
parent.

3. We know that each sub-tree contains only primitive features that do not occur in its brothers,
since no sharing is allowed. We call this the signature of the sub-tree.

4. The difference between node-based and edge-based semantics vanishes.

5. The semantics of feature trees can now be expressed compositionally: [[n]], where n is a
node of a diagram, is the set of products that would be obtained by choosing n as the root
of the diagram. Let opk be the operator of n, and s1, . . . , sk its sons. We observe that
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[[opk(s1, . . . , sk)]] = {
⋃

ci|∃v1, . . . vk ∈ B.opk(v1, . . . , vk) = 1 ∧ ∀i ∈ 1 . . . k, (vi = 0 ⇒ ci =

∅) ∧ (vi = 1⇒ ci ∈ [[si]])}.

(a) For and-nodes, this simplifies to [[andk(s1, . . . , sk)]] = {
⋃

i ci|ci ∈ [[si]])}.

(b) For xor-nodes, this simplifies to [[xork(s1, . . . , sk)]] =
⋃

i[[si]].

(c) For or-nodes, this simplifies to [[ork(s1, s2, . . . , sk)]] = {ci} ∪ {
⋃

i ci|ci ∈ [[si]])}

6. Decision problems on feature tree are less complex than on feature DAGs. For instance, as
we will see in Chapter 9, the computational complexity for FD Satisfiability (Section 7.1.1)
is NP-Complete for feature DAGs while linear for feature trees.

All these simplifications may convince one to use feature trees rather than feature DAGs. How-
ever, as we will see in Section 9.1.2, feature trees without constraints are less expressive than feature
DAGs.

8.4.3 Optional Nodes

Optional nodes (hollow circles in concrete syntax and opt1-nodes in abstract syntax) should be used
carefully, especially under xor-nodes. Following our semantics, the FD presented in Figure 8.19 ad-
mits a product with neither f2 nor f3. Indeed, inLEFD, each hollow circle is translated to card1[0, 1]
node (in this case, f2? and f3?). Each such node has one son (in this case, respectively f2 and f3) that
was originally the node under the hollow circle. Therefore, the configurations { f1, f2?} and { f1, f3?}
are valid since one hollow circle could be selected while its son is not. If the features f2? and f3?
are non-primitive, then the only resulting product is { f1}. This is clearly not the semantics intended
in (Riebisch et al., 2002). We simply suggest to use hollow circles with precaution especially under
a xor-node.

8.4.4 Mandatory Nodes

Similarly to optional nodes, mandatory nodes should be used with precaution. Following our se-
mantics, the FD presented in Figure 8.20 does not admit products with both features “automatic”
and “manual”. However, since these features are mandatory it becomes counterintuitive. This am-
biguity reappears with the sub-features of the or-node “engine”. In addition, decorating with filled
circles the sons of the and-node “car” is redundant since the and-node already guarantees that they
will be in every product, if their parent (“car”) is in the product and if they are not optional.

In our abstract syntax, we prefer to omit mandatory nodes. An example is given in Figure 8.17
where the fact that the mandatory nodes f1 and f2 are decorated with a filled circle in EFD does not
influence the translation to our FFD abstract syntax.

Following our semantics, determining if a node is mandatory, or not, is only relative to its in-
coming edge(s). Our justification rule (Definition 8.1.5, last point) says that a node, should it be
mandatory or optional, will not be part of a configuration if none of its parents is. This inter-
pretation contradicts the following sentence: “All mandatory features are part of all [configura-
tions]”(Streitferdt et al., 2003, p.2). However, in the same paper, the authors seem to agree with our
interpretation. Indeed, in Figure 8.21, extracted from (Streitferdt et al., 2003, Figure 3), Email is
mandatory, but they make clear that it is not included in configurations where Net is not present.
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Figure 8.19: Optional Node
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metaprogramming, partial evaluation at compile time, etc. In the case of changeable binding, it is

useful to collect statistics such as frequencies of rebounds and average time between rebounds

for different features. Based on these statistics, we can decide whether to apply runtime

optimizations for certain features. Finally, if we need maximum flexibility, we have to use

dynamic binding. Implementation techniques for dynamic feature binding include dynamic

method binding, flags, dispatch tables, interpreters, and dynamic reflection.

5.5 Relationship Between Feature Diagrams and Other

Modeling Notations and Implementation Techniques

Feature diagrams allow us to express variability at an abstract level. As stated, the variability

specified by a feature diagram is implemented in analysis, design, and implementation models

using different variability mechanisms. We already discussed some variability mechanisms in

Table 7. For example, variability mechanisms for use cases include parameters, templates,

extends relationships, and uses relationships. Variability mechanisms for class diagrams include

inheritance, parameterization, dynamic binding, and cardinality ranges.

The following example illustrates the point that feature diagrams express variability at a more

abstract level than class diagrams. Figure 36 shows a feature diagram of a simple car. The car

consists of a car body, transmission, and an engine. The transmission may be either manual or

automatic. Furthermore, the car may have a gasoline engine or an electric engine, or both.

Finally, the car may pull a trailer.

Figure 37 shows one possible implementation of our simple car as a UML class diagram. The car

is represented as the parameterized class Car, where the transmission parameter implements

the transmission dimension. CarBody is connected to Car by a part-of relationship. The

optional Trailer is connected to Car by the association pulls. The cardinality range 0..1

expresses optionality. Finally, cars with different engine combinations are implemented using

inheritance (classes ElectricCar, GasolineCar, and ElectricGasolineCar). If there were

additional constraints between features in the feature model, we could have implement them as

UML constraints (e.g. using the UML Object Constraint Language [Rat98b]).

automatic manual

pulls trailercar body

electric gasoline

car

transmission engine

Figure 36    Feature diagram of a simple car

Figure 8.20: Mandatory Node, example from (Eisenecker and Czarnecki, 2000, Figure 4-14)

8.4.5 Semantic Domain

The last issue concerns the definition of the semantic domain (Definition 8.2.2) that is defined as a
set of products where a product is a set of primitive nodes PP. The way we define this semantic
domain has important consequences:

• Some features are not taken into account to define a product. In FD languages, the atomic
building blocks are features (nodes). However, we want to leave the flexibility to the mod-
ellers to decide whether a feature is relevant for them to discriminate products and to deter-
mine which features are only used for the decomposition. These features should not be taken



142 Chapter 8. FFD: a Formal Configurable Definition

digital TV shows. Since all of the system features including
their internals need to be extracted, to form a system family,
Linux, and thus, open source as the basic platform was cho-
sen. In addition we are making use of the vdr-Project [xx],
the video-streaming project [xx] and the dvb-driver [xx] for
Linux. In Figure 2 a brief system overview is sketched, as a
UML component diagram.

Figure 2: Digital Video System Overview

Within the requirements elicitation phase we evaluated
commercial digital video systems, using brochures, web sites
and interviews in local electronic stores. Together with a fu-
ture product analysis we elaborated a list of more than 70
high level requirements. In this stage, features deducted out
of requirements and elaborated in discussions were recorded
within a simple list, forming the first step towards feature
modeling.

3 State-of-the-Art
Feature modeling was first described by FODA. The goal

of feature models is to describe a system according to its fea-
tures, where a feature is defined as:

“A prominent or distinctive uservisible aspect, quality,
or characteristic of a software system or systems”

This is general definition was refined by later publications
to address the needs of different stakeholders.

“Features are any prominent and distinctive aspects or
characteristics that are visible to various stakeholders (i.e.,
end-users, domain experts, developers, etc.).”

There are still many possible interpretations of this defini-
tion.A a first little example is presented to explain this defini-
tion and to give an brief introduction to FODA.

Digital
Video System

Telephone

Control

Remote

Net

Web EmailSMS

WAP

Feature B is optionalA B Feature B is optional

Feature B is mandatoryA B

Concept Node

Network-HW

Ethernet

Modem

requires

Figure 3: Simple Feature Diagram

As depicted in Figure 3, a feature diagram has a root node
called 'concept', referring to the complete system. Hierarchi-
cally located below the concept node are all the features of
the system. Features are marked either mandatory or op-
tional. All mandatory features are part of all systems to be
generated within this family. Thus, the set of mandatory fea-
tures is forming the core of the system family.

In Figure 3 we have taken a subset out of all the features
of the digital video project. At the top the concept node re-
fers to the system itself. Below the concept node the 'control'
feature is modeled mandatory, since we need to control the
video system in some way. At the level below the 'control'
feature there is the mandatory 'remote' feature. The system
will be equipped with a simple infrared remote control in any
case. Thus, these two mandatory features belong to the core
of the system family – they are present in every system. Op-
tionally we can choose to control the system via the internet.
By the time we choose the 'net' feature we automatically will
have to choose the 'email' feature, which means, we are able
to send an email to the video system to control the recording
of a TV-show. All features of the system are arranged hierar-
chically and will be marked optional or mandatory to model
the core and all variable parts of the system.

To build an application out based on the system family a
selection of features has to be made. The user can choose out
of all optional features of the family. FODA defines two rela-
tions between features to support the consistency of the over-
all model and the correctness of a choice of features in par-
ticular. First, a relation called “requires” can be established
to state the need for the selection of a specific feature in case
another feature should have been chosen. In the above de-
scribed example a user might want to choose the “Net” fea-
ture to control his system via emails. This features would
definitely require the installation of network hardware in the
system. Thus, the “Net” feature requires another hardware
feature. Second, the opposite relation can be used to state the
vital exclusion of a specific feature. Assume we the choice
between two graphics cards, but we have only one graphics
port. In case a user chooses to include one graphics card the
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Vdr
{executable}

VideoStreaming
{executable}

VideoStreaming
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IrDA
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Network-
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Figure 8.21: EFD example from (Streitferdt et al., 2003, Figure 3)

into account to define a product. Intuitively, we consider that some intermediate features are
only used to organise the decomposition of features, while others, the so-called primitive fea-
tures, are used to effectively distinguish one product from another. Introducing the notions of
primitive and non-primitive nodes (or features) impacts both syntax and semantics. When all
nodes are primitive ones (P = N), the set of configurations exactly maps the set of products.
However, if the FD is a DAG and if non-primitive node(s) exist (P ⊆ N) several configura-
tions may map to the same product. When every feature is kept primitive (P = N) the original
definition of OFD is preserved.

In Figure 8.22, if all nodes are primitive ones ( f0, . . . , f5 ∈ P = N) then the resulting products
are: { f0, f1, f3}, { f0, f1, f4}, { f0, f2, f4} and { f0, f2, f5}. On the other hand, if f0, f1, f2 ∈ N
are non-primitive nodes then the resulting products are: { f3}, { f4} and { f5}. In this case the
configurations { f0, f1, f4} and { f0, f2, f4} both maps to the same product { f4}. This indicates
that two different paths exist in the DAG between the root f0 and the leaf feature f4. We will
see in Chapter 9 that it also worsens computational complexity for some decision problems.

f0

f1 f2

f3 f4 f5

Figure 8.22: Primitive and non-primitive Nodes
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• No order is kept in the set of products or in the set of primitive nodes. Intuitively, we consider
that two products with the same nodes or two product lines with the same products should
be identical. Following our semantic domain, a product { f1, f2} and a product { f2, f1} are
identical. However, ordering nodes could be relevant. For instance, a node (or feature) may
correspond to a transformation (on code or models) (Eisenecker and Czarnecki, 2000; Ryan
and Schobbens, 2004) and these transformations may not produce the same result if they are
applied in a different order. In this case, an order on primitive nodes should be defined and
therefore a product would be defined as a list (van Deursen and Klint, 2002) rather than a set.
Since order of features now counts in a product, the number of possible resulting products
will grow exponentially.

• Duplication of features is not allowed. Since we define products as sets, a product containing
the same feature several times is not allowed. Instead, some authors (Czarnecki et al., 2005b)
may prefer to define products as multi-sets. Hence, products { f1, f1, f2}+ and { f1, f2, f2}+

would be allowed and are different.

8.5 Chapter Summary

In this chapter, we have formalised the informal semantics proposed in (Kang et al., 1990, 1998)
and proposed a formal definition for OFD (Kang et al., 1998) following the principles proposed by
Harel and Rumpe (Chapter 4). Secondly, we have extended these principles and proposed a formal
definition for a family of FD languages (FFD) including OFT (Kang et al., 1990), OFD (Kang
et al., 1998), RFD (Griss et al., 1998), GPFT (Eisenecker and Czarnecki, 2000), EFD (Riebisch
et al., 2002), VBFD (van Gurp et al., 2001), PFT (Eriksson et al., 2005) and VFD (Bontemps et al.,
2004). FFD is configurable and gives a common semantics to the studied informal FD languages.
Once FFD is configured, formal criteria such as expressiveness, succinctness and embeddability
can be applied. Thirdly, we have discussed semantic issues and solved them according to our own
interpretation. We do not claim that our semantic is the right one but at least we have made it
explicit. In the next chapter, we will use FFD to compare informal and formal FD languages.
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Chapter 9

Feature Diagram Languages: Quality
Analysis

I
n Chapter 3, we have introduced the semiotic quality Framework (SEQUAL) and ex-
tended it with formal properties for language evaluation. Throughout this chapter, we
apply the method defined in Chapter 7 to evaluate and compare FD languages. First, we

compare the informal FD languages covered by FFD (Chapter 8). The main results concerning in-
formal FD languages analysis have been previously published in (Schobbens et al., 2007; Heymans
et al., 2008). Then, we compare a first selection of formal languages with FFD. Since formal FD
languages are closely related to Propositional Logic, one could question whether other graphical
languages associated to Propositional Logic may not replace FDs advantageously. For instance,
formal languages such as Boolean Circuits (BC) (Shannon, 1937, 1938; Vollmer, 1999) or Binary
Decision Diagrams (BDD) (Akers, 1978) could be considered. To further investigate this question,
we propose to compare FFD and Boolean Circuits (Shannon, 1937, 1938; Vollmer, 1999). In ad-
dition, we propose to compare FFD with two other formal FD languages supported by tools. In a
chronological order, they are respectively van Deursen et al.’s language (vDFD) (van Deursen and
Klint, 2002) and Batory’s language (BFT) (Batory, 2005). The results concerning the analysis of
vDFD have been previously published in (Trigaux et al., 2006).

The structure of this chapter is as follows. Firstly, in Section 9.1, we analyse and compare FFD
and its members. Then, we investigate its computational complexity (Section 9.1.1), expressiveness
(Section 9.1.2), embeddability (Section 9.1.3) and succinctness (Section 9.1.4). These analyses
are based on FFD formal definition that has been already provided and extensively discussed in
Chapter 8.

Secondly, we analyse and compare formal properties of BCs (Shannon, 1937, 1938; Vollmer,
1999), vDFD (van Deursen and Klint, 2002) and BFT (Batory, 2005) in Sections 9.2, 9.3 and
9.4 respectively. For each of them, we (1) present their formal definition according to Harel and
Rumpe’s principles (Chapter 4), (2) provide an abstraction function between their semantic domain
and FFD semantic domain, (3) study the semantic equivalence or non-equivalence with FFD and
(4) analyse their expressiveness, embeddability and succinctness.
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9.1 Free Feature Diagram (FFD) Analysis

Following the comparison method described in Figure 7.1 and Section 7.2, once FFD has been
formally defined, it guarantees that all members of FFD (1) are in FFD (X in FFD?), (2) follow
H&R principles (Harel and Rumpe, 2004) (X follows H&R?) and (3) share a common semantic
domain PL = PPP (S FFD = S X). When these conditions are satisfied, all FFD members can be
analysed and compared according to their formal properties. We start with complexity analysis.

9.1.1 FFD Complexity Analysis

We consider the computational complexity of six fundamental decision problems: Satisfiability
(Section 9.1.1.1), Product-Checking (Section 9.1.1.2), Equivalence (Section 9.1.1.3), Intersection
(Section 9.1.1.5), Inclusion (Section 9.1.1.4) and Union (Section 9.1.1.6). These decision problems
have been already defined in Chapter 7. They rely on the fact that the semantic domain of FFD
(S FFD, Definition 8.2.2) is defined with sets.

In the following sections, we first recall each decision problem and then we discuss their decid-
ability (Is there an algorithm for this problem?) and complexity (What is its relative computational
difficulty measured in computation time or memory?).

9.1.1.1 FFD Satisfiability

In terms of FFD, Satisfiability is a decision problem that consists in determining if a FD represents
a product line that has at least one product (see Definition 9.1.1).

Definition 9.1.1 (FFD Satisfiability) A FFD diagram d is satisfiable iffMFFD[[d]] , ∅.

Theorem 9.1.1 Deciding whether a FD is satisfiable is NP-complete.

Proof To prove this theorem, we translate the FFD to Existentially Quantified Boolean Formulae
(EQBF, Definition 9.1.2) in Conjunctive Normal Form (CNF, Definition 9.1.3) and conversely. Such
a formula is satisfiable iff it is satisfiable without the existential quantifiers. This problem is the SAT-
problem that is known to be NP-Complete (Cook, 1971).

Definition 9.1.2 (Existentially Quantified BF) Given a set of propositional variables V, the set of
Existentially Quantified Boolean Formulae (EQBF) is syntactically defined in BNF notation as:
EQBF := a | ⊥ | φ1 ∨ φ2 | φ1 ∧ φ2 | φ1 ⊕ φ2 | ¬φ1 | φ1 ⇔ φ2 | φ1 ⇒ φ2 | ∃a EQBF where

• a ∈ V;

• ⊥ is the bottom symbol (FALSE).

Semantically, ∃v Σ ∈ EQBF is TRUE iff (Σ[v/TRUE] ∨ Σ[v/ ⊥]) is TRUE. Σ[v/v′] means that in
the BF Σ the value of the propositional variable v is set to v′.

Although it may be exponentially larger, there exists a propositional formula that is equivalent
to every EQBF. EQBF satisfiability is

∑
1 P-complete and therefore NP-complete (Papadimitriou,

1994, p.428).
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Definition 9.1.3 (BF in Conjunctive Normal Form) In Propositional Logic, a BF is in Conjunc-
tive Normal Form (CNF) when it is a conjunction of clauses, where a clause is a disjunction of
literals.

• For easiness: The FFD semantic function gives a translation from a FFD to EQBF. BF should
be existentially quantified to discard non-primitive features.

The translation from FFD to EQBF in CNF consists in:

1. Translate each node in the FD into a card-node as defined in Table 9.1.

Instead of . . . write . . .
an opt1-node a card1[0..1]
a xors-node a cards[1..1]
an ors-node a cards[1..s]

an ands-node a cards[s..s]

Table 9.1: From nodes to card-nodes

2. Translate each card-node into CNF. If we consider a node g of type cardn[i.. j] with
maximum n sons ( f1 . . . fn), the translation of this card-node into CNF consists in:

(a) Translate into CNF the card-operator (see rule 2 in Definition 8.2.5). This trans-
lation (Table 9.2∗) is based on the optimal encoding of boolean cardinality in CNF
proposed in (Sinz, 2005). This encoding translates boolean cardinality constraints
into CNF. Boolean minimal and maximal cardinality constraints (i,j) are formu-
lae expressing that at least i (≥ i(x1, ..., xn)) and at most j (≤ j(x1, ..., xn)) out of
n propositional variables (x1, ..., xn) are TRUE. In (Sinz, 2005), the author pro-
posed two CNF encodings for ≤ j(x1, ..., xn). The complexity of the encoding is
O(n. j) (Sinz, 2005) where n is the number of propositional variables and j the
maximal cardinality. This translation and the selection of the encoding are detailed
and discussed in Sections 10.3.3.1 and 10.3.3.2.

(b) Translate into CNF the justification rule (see rule 5 in Definition 8.2.5). The justi-
fication rule says that if a node is evaluated to TRUE, at least one of its parent(s)
must be too. Except for the root that has no parent and that is always evaluated to
TRUE (see rule 1 in Definition 8.2.5). The corresponding translation is given in
Table 9.3.

(c) Make the conjunction of the two BFs resulting from the two previous steps.

3. Translate into CNF each excludes or requires constraint (see rules 3 and 4 in Defini-
tion 8.2.5), would it be graphical or textual. The corresponding translations (the last two
rows of Table 9.2) are immediate.

4. Make the conjunctions of the BFs in CNF resulting from the two previous steps.

∗Formulae in Table 10.1 are not yet in CNF. This is for readability reasons. They are converted to CNF with a standard
CNF conversion algorithm.
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λ(g) Conditions Conjunctive Normal Form
cardn[0..0] n ≥ 1

∧
i=1..n (¬g ∨ ¬ fi)

cardn[0..n] no output generated
cardn[0.. j] 1 ≤ j < n, n ≥ 2 ¬g∨ ≤ j( f1, . . . , fn))
cardn[1..n] n ≥ 1 ¬g ∨ f1 ∨ . . . ∨ fn
cardn[n..n] n ≥ 2

∧
i=1..n (¬g ∨ fi)

cardn[i.. j] 1 ≤ i ≤ j < n, n ≥ 2 ¬g ∨ (≥ i( f1, . . . , fn)∧ ≤ j( f1, . . . , fn))
f1 requires f2 ¬ f1 ∨ f2
f1 excludes f2 ¬ f1 ∨ ¬ f2

Table 9.2: FFD to CNF

VFD Nodes Justification rule in CNF
cardn[i.. j] = root g
cardn[i.. j] , root ¬g ∨ p1 ∨ . . . ∨ pm

Table 9.3: Boolean Formula for justification rule

5. Existentially quantified non-primitive features in the BF. Once non-primitive features
are allowed, the BFs should be existentially quantified with non-primitive features. In-
deed, when variables are existentially quantified within a BF, they do not influence its
satisfiability (see last column in Table 9.4). These variables will correspond to the non-
primitive features. Fortunately, when there is no alternation of quantifiers within a BF,
its satisfiability remains

∑
1 P-complete and hence NP-complete (Papadimitriou, 1994,

p. 428). However, as we will see further, this is not the case for equivalence (Sec-
tion 9.1.1.3) and inclusion (Section 9.1.1.4) for which there is an alternation of quanti-
fiers.

x y x ∨ y x ∧ y ∃x x ∨ y ∃x x ∧ y
1 1 1 1 1 1
1 0 1 0 1 0
0 1 1 0 1 1
0 0 0 0 1 0

Table 9.4: Existentially Quantified Boolean Formula

Example 9.1.1 As an example, we illustrate in Table 9.5 the translation of a FD into EQBF.
This FD is composed of three nodes and two edges. The root of the FD is a non-primitive node
n of node type card2[1..2]. This root is decomposed in two sons ( f1, f2) that are primitive
nodes ( f1, f2 ∈ P) of type and0. This FD is then translated into an EQBF. The node n is
translated according to the fourth line of Table 9.2 and the first line of Table 9.3. In addition, r
is the root and is non-primitive. Hence, r must be always evaluated to TRUE and existentially
quantified. The nodes f1, f2 are translated according to the second line of Table 9.2 and the
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second line of Table 9.3. We notice that only their justification rules matter since they are of
type and0 = card0[0..0].

Instead of . . . write . . .

n !(n) = cardm [µ..!]

f1 fmfi... ...

n = (i,j) !(n) = xor2

(i,j)- (i,j)+!((i,j)-) = and2 !((i,j)+) = and2

(i+1,j)¬ fi+1 (i+1,j+1) fi+1

0 ! i ! m

... ...

n !(n) = card2 [1..2]

f1 f2
!(f1) = x !(f2) = y

(0,0)

(0,0)- (0,0)+

(1,0)- (1,0)+

(1,0) (1,1)¬ f1 f1

(1,1)- (1,1)+

!((i,j)) = xor2

!((i,j)+) = and2

!((k,l)) = xor2

!((i,j)-) = and2

(2,2)f2

t

¬ f2(2,1)f2¬ f2 (2,0)

tf
!(f2) = y

!(f1) = x

∃n
n∧
(¬n ∨ f1 ∨ f2)∧
(¬ f1 ∨ n)∧
(¬ f2 ∨ n)

Table 9.5: Example: a FD into EQBF

• For hardness: Checking whether an EQBF in a CNF is satisfiable is known to be NP-complete
(Papadimitriou, 1994, p. 428). To prove that at worst satisfiability checking for FD language
is NP-complete, we need to provide a translation from EQBF in CNF to each member of
FFD. The easiest way is to define two translations in polynomial time:

1. The first one translates any EQBF (in CNF) into a simplified version of RFD that we
call Constraintless Feature RSEB Diagrams language (CRFD) (Figure 9.1). This sim-
plification removes constraints in RFD.
An EQBF is in CNF when it is of the form ∃px . . . py C1 ∧ . . . ∧Ci ∧ . . . ∧Cn where:

– px , py;
– all Ci are clauses of the form Ci = (pi

1 ∨ . . . ∨ pi
j ∨ . . . ∨ pi

m);

– pi
j are literals of the form p j (positive literal) or ¬p j (negative literal);

– p j is a propositional variable;

As illustrated in Figure 9.1, the translation from EQBF to CRFD (TEQBF→CRFD) consists
in:

– For each p j, create a xor-node (Xp j) related to the root r with two sons: the positive
literal (p j) and its negation (¬p j).
The negation of a node n, written ¬n, is translated into a xor2-node with two sons:
the original node n and the TRUE node t. The node t is always evaluated to TRUE
and corresponds to an and0-node (i.e with no son) that is directly related to the
root. As t is always TRUE, ¬n is only TRUE when n is FALSE. For abbreviation,
the negative node of n is named ¬n but the reader should keep in mind that it stands
for a more complex diagram as illustrated in Table 9.6.

– For each clause (Ci = pi
1∨. . .∨pi

j∨. . .∨pi
m), create an or-node (Ci) and decompose

it into one node for each of its literals. These nodes have already been created in
the previous point. The purpose here is to connect the node (Ci) with its correct
literals;
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Instead of . . . write . . .

n?

n V

!(n?) = xor2

!(V ) = and0
!(n) = xn !(n) = x

n? !(n?) = opt1

n !(n) = orm

f1 fmfi

n

s1 smsi

!(n) = xorm

!(si) = andm

fi fj? 

j<>i & 1<=j<=m

fj 

!(fj?) = opt1
!(fi) = x

!(fi) = x

...

... ...... ...

...

...

¬ n

n t

!(n?) = xor2

!(t) = and0
!(n) = x

r !(r) = andn

¬ n

n?

n V

!(n?) = xor2

!(V ) = and0
!(n) = xn !(n) = x

n? !(n?) = opt1

n !(n) = orm

f1 fmfi

n

s1 smsi

!(n) = xorm

!(si) = andm

fi fj? 

j<>i & 1<=j<=m

fj 

!(fj?) = opt1
!(fi) = x

!(fi) = x

...

... ...... ...

...

...

¬ n

n t

!(n?) = xor2

!(t) = and0
!(n) = x

r !(r) = andz

¬ n

Table 9.6: Translation: Node Negation

– Add a root (r) as an and-node connected to all or-nodes (corresponding to clauses)
and all xor-nodes (corresponding to literals);

– Finally, each existentially quantified variable (px, . . . , py) is set as a non-primitive
node within the CRFD (px, . . . , py < P). In addition, auxiliary nodes (Xp j , ¬p j,
Ci, t and r with 1 ≤ j ≤ m and 1 ≤ i ≤ n) introduced by the translation are also
set as non-primitive nodes. The other nodes (variables that are not existentially
quantified) are set as primitive nodes.

r !(r) = andn+m

C1 CnCi 

!(Ci) = orm

... ...Xp1 Xpj Xpm
......

!(Xpj) = xor2

pj¬pj

!(pj) = and0

pk

!(pk) = and0

r

pj

¬pj

t

Xpj

!(r) = and2

!(Xpj) = xor2

!(¬pj) = xor2

!(pj) = and0 !(t) = and0

Figure 9.1: Translation: EQBF into CRFD

One could argue that this translation forgets to take into account the justification rules
added for each node contained in the resulting FD. Indeed, the justification rule of the
node p j says that at least one parent of p j should be evaluated to TRUE. However,
Xp j is always TRUE since Xp j is an and-son of the root r that is always TRUE. The
implementation of the semantics of the FD given in Figure 9.1 produces a BF in which
clauses corresponding to the justification rules can be eliminated.

– Since r is a root and thus is always TRUE, every justification rule of the form
si ⇒ r associated to sons (si) of the and-root r can be eliminated. Therefore, every
justification rule for the nodes Xp j , 1 ≤ j ≤ m and Ci, 1 ≤ i ≤ n can be eliminated.

– Since r is an and-root, all its sons are also TRUE and the justification rule associated
to the sons of the sons of r are also redundant. For instance, the justification rule



9.1. Free Feature Diagram (FFD) Analysis 151

for p j says that p j ⇒ Xp j ∨ Ci ∨ ¬p j. We know that r is always true and, since r
is an and-node, that r ⇒ Xp j ∧ Ci. Hence, Xp j and Ci are true and the right part
of the implication (Xp j ∨ Ci ∨ ¬p j) is always TRUE. This means that the value of
p j does not matter here and that the justification rule p j ⇒ Xp j ∨ Ci ∨ ¬p j can be
eliminated.

– p j is also shared by its negation, the node “¬p j”, as illustrated in Figure 9.2. In
addition, the node “¬p j” is evaluated to FALSE when p j is selected. The resulting
BF for this FD is: r∧ (r ⇒ Xp j ∧ t)∧ (Xp j ⇒ “¬p j” ⊕p j)∧ ( “¬p j”⇒ p j ⊕ t). Four
justification rules are added (by conjunction):
∗ t ⇒ ¬p j ∨ r;
∗ Xp j ⇒ r;
∗ p j ⇒ Xp j ∨ ¬p j ∨Ci . . .;
∗ ¬p j ⇒ Xp j .

We already know that all the right parts of these implications are TRUE therefore
they can be eliminated.

r !(r) = andn+m

C1 CnCi 

!(Ci) = orm

... ...Xp1 Xpj Xpm
......

!(Xpj) = xor2

pj¬pj

!(pj) = and0

pk

!(pk) = and0

r

pj

¬pj

t

Xpj

!(r) = and2

!(Xpj) = xor2

!(¬pj) = xor2

!(pj) = and0 !(t) = and0

Figure 9.2: Justification rule elimination

2. For the second translation we show how CRFD can be translated into COFD. COFD is
the simplified version of OFD to which we have removed constraints. Similar transla-
tions exist with all FD languages included in FFD as we will see in the analysis of the
succinctness of FFD (Section 9.1.4).
As defined in Table 9.7 the translation from CRFD to COFD consists in translating
or-nodes that are allowed in CRFD but not in COFD. An or-node n with m sons fi is
translated into a xor-node with m sons. Each of its sons si is an and-node with a son fi
and the other m − 1 are optional nodes f j, j , i.

�

The above complexity result (Theorem 9.1.1) seems rather pessimistic. However, it should be
mitigated. For instance, in one specific case, checking satisfiability for FDs is linear and, in other
cases, it is even constant.
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Instead of . . . write . . .

n?

n V

!(n?) = xor2

!(V ) = and0
!(n) = xn !(n) = x

n? !(n?) = opt1

n !(n) = orm

f1 fmfi

n

s1 smsi

!(n) = xorm

!(si) = andm

fi fj? 

j!i & 1!j ! m

fj 

!(fj?) = opt1
!(fi) = x

!(fi) = x

...

... ...... ...

...

...

¬ n

n t

!(n?) = xor2

!(t) = and0
!(n) = x

r !(r) = andz

¬ n

n?

n V

!(n?) = xor2

!(V ) = and0
!(n) = xn !(n) = x

n? !(n?) = opt1

n !(n) = orm

f1 fmfi

n

s1 smsi

!(n) = xorm

!(si) = andm

fi fj? 

j’!j!i Æ 1! j ! m

       Æ 1! j’ ! mfj 

!(fj?) = opt1
!(fj’?) = opt1

!(fi) = x

!(fi) = x

...

... ...... ...

...

...

¬ n

n t

!(n?) = xor2

!(t) = and0
!(n) = x

r !(r) = andz

¬ n

fj’? 

fj’ 

Table 9.7: Embedding: CRFD to COFD

1. For FTs without constraints satisfiability is checked in linear time. We propose the following
algorithm:

(a) The algorithm first eliminates inconsistent card-nodes (Definition 9.1.4), replaces them
by xor0 representing FALSE. A card-node whose lower bound is above the number of
sons is translated into xor0;

Definition 9.1.4 (Consistent and inconsistent card-node) Consistent card-node are de-
fined as cards[i.. j] where 0 ≤ i ≤ j. Otherwise they are inconsistent.

(b) Then the algorithm propagates all FALSE node (xor0) up in the tree. For each xor0:
• If its parent is a xor-node, an opt-node or an or-node then remove xor0;
• If its parent is an and-node, then remove xor0 and translate the parent into xor0;
• If its parent is a card-node, then remove xor0 and check if the number of sons of

the parent is still over or equal to its lower bound. If it is not the case, translate the
parent into xor0;

(c) The propagation either brings a xor0 to the root and the tree is unsatisfiable, or eliminates
all xor0 from the tree that is satisfiable. If λ(root) = xor0 then return “no”, else return
“yes”.

2. For FDs with only xor-nodes except for the leaves that can be and0-nodes, satisfiability is
checked in constant time. The algorithm checks whether there exists and0-node (to exclude
the case xor0 as root). Each and0-node corresponds to one product;

3. For FDs with only and-nodes, satisfiability is checked in constant time. Such FDs are always
satisfiable since only one product always exists. This product is either composed of all the
primitive features or of none (The case when no primitive features have been defined). Hence
the algorithm always returns “yes”;

4. For FDs in Normal Form (Definition 9.1.5), satisfiability is checked in constant time. The
algorithm checks whether at least one product exists and therefore checks whether the root
has at least a son or not.
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Definition 9.1.5 (Normal Form for a FFD) A FFD is in a Normal Form when

• it is a DAG;

• its root is the only xor-node and this node is non-primitive;

• each product is directly connected to the root and is represented by a non-primitive and-node
with sons corresponding to the constituent features of the product. Therefore, the product
with no feature is represented by and0-node without son;

• it does not possess any opt-, or-, card-node or constraint.

r

PP

!(r) = and3

!(PP) = xor3

f1 f2 p1 p2 p3

!(pi) = and0

r

p1 p2 p3

f1 f2

!(fi) = and0

!(fi) = and0

!(p1) = and1

!(r) = xor3

!(p3) = and1

!(p2) = and2

f1?!(f2?) = opt1 f2?

!(f1?) = opt1

p4

p1 requires f1

p1 requires f2

p2 requires f1

p2 excludes f2

p3 requires f2

p3 excludes f1

p4 excludes f1

p4 excludes f2

Figure 9.3: FFD Normal Form: FD of product line {{ f1}, { f2}, { f1, f2}}

Table 9.8 summarises the complexity results obtained for satisfiability. The first row corre-
sponds to the most general case: a FD language on which no restriction is imposed. The last row
corresponds to a specific case: a FD language where only and-nodes are allowed. In addition,
modellers do not necessarily use all the constructs offered by a FD language. The table could also
be used to study complexity when checking the satisfiability of one particular model containing a
specific subset of constructs.

Translating a propositional formula to FDs without constraints or sharing is mostly impossible
because such FDs are not expressively complete. The satisfiability problem is NP-Complete for
all “useful” FD languages, where useful means expressively complete (Definition 5.2.2). Note that
any FD can be simply translated into a BF. It suffices to encode the FD constraints in Propositional
Logic. It can then be handed to some SAT-solvers to check whether it is satisfiable. Such solvers
can efficiently check formulae of thousands of variables, and could thus be practically very helpful
here.
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TREE/DAG AND XOR OR OPT Card Requires,
Excludes

Satisfiability

DAG NP-Complete
TREE

√
NP-Complete

TREE
√

× Linear
DAG

√
× × × × × Constant

Table 9.8: Satisfiability: Complexity Results

9.1.1.2 FFD Product-Checking

Product-checking verifies whether a given product (set of primitive features) is in the product line
of a FD (see Definition 9.1.6). This is not as trivial as expected (Theorem 9.1.2).

Definition 9.1.6 (FFD Product-Checking) A product p is in the product line of a FFD d iff p ∈
MFFD[[d]].

Theorem 9.1.2 Product-checking is NP-complete.

Proof To prove this theorem, we translate the FFD to EQBF and conversely.

• For easiness: The FFD is translated into its equivalent EQBF Σ1 according to the translation
provided in Theorem 9.1.1. Then, this formula is simplified according to the known truth
value of its primitive nodes. It remains to discover a valuation for the non-primitive nodes,
that can be solved by SAT. This is why product-checking is not linear for FFD. Actually,
the Boolean values corresponding to non-primitive features will not be bound in the logical
expression and therefore all possible configurations should be computed. Therefore, product-
checking is a SAT-problem that is NP-complete.

Example 9.1.2 Once, in Figure 8.22, f0, f1 and f2 are non-primitive features and f3, f4 and
f5 are primitive ones, the Boolean values for f0, f1 and f2 are not bound while they are,
according to the product to check, for f3, f4 and f5. Therefore, checking the membership of
the product { f3, f4} consists in checking the satisfiability of the following logical expression
where f3 and f4 are bound to TRUE while f5 is bound to FALS E:
( f0 =⇒ xor( f1, f2)) ∧ ( f1 =⇒ xor( f3, f4)) ∧ ( f2 =⇒ xor( f4, f5)) ∧ f0 ∧ ( f1 =⇒

f0) ∧ ( f2 =⇒ f0) ∧ ( f3 =⇒ f1) ∧ ( f5 =⇒ f2) ∧ ( f4 =⇒ ( f1 ∨ f2))
In the end, the satisfiability result for product { f3, f4} is “no”.

• For hardness: The EQBF in CNF corresponding to the SAT problem can be translated to
an RFD as already presented in Theorem 9.1.1. Then, we need to construct the product
based on the values given for the non existentially quantified variables of the EQBF. Each
non existentially quantified variable that is set to TRUE is a primitive feature included in the
product to check.

�
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Here also, the complexity result should be mitigated. Product-checking for some specific FD
languages is easier. Indeed, in several cases, product-checking can be computed in linear time:

1. FDs where all nodes are primitive. Here, the truth values of all nodes will be set in the
propositional formula. The value of this formula is then computed in linear time.

Example 9.1.3 Once all the features in Figure 8.22 are primitive ones, their Boolean values
should be bound in the corresponding logical expression. Indeed, all the primitive features
in the product ({ f0, f1, f2, f3, f5}) to check will be set to TRUE while the others to FALS E.
Hence, f0, f1, f2, f3, f5 are bound to TRUE while f4 is bound to FALS E in the logical expres-
sion given in Example 9.1.2. In the end, the satisfiability result for product { f0, f1, f2, f3, f5}
is “yes” and is obtained in linear time.

2. FTs with and-, xor-, card-, or-, opt-nodes where all and0 and card0[0.. j] leaves are primitive.
The algorithm marks the tree with truth values, starting from the primitive leaves. Leaves that
are or0, xor0 or card0[i.. j] with i > 0 can be marked as FALSE. The other leaves are marked
with the value of their primitive features. Successively the parents of the primitive leaves are
labelled until the root is reached following these rules:

• When a primitive non-leaf node is reached, the algorithm checks whether the computed
value is the value in the product and if so, labels this node with TRUE; otherwise the
algorithm stops and answers “no”.

• When a non-primitive node is reached, the algorithm labels the node with its computed
value.

In the end, if the root is labelled TRUE, the algorithm answers “yes”; otherwise “no”.

3. FDs with only xor-nodes except the leaves that are and0-nodes. If the product contains more
than one primitive leave then the algorithm answers “no”. Otherwise, if all primitive nodes
of the product are on the same path in the DAG from the root until the primitive leave, the
algorithm answers “yes”; otherwise “no”.

4. FDs with only and-nodes. The algorithm checks that the given product is the set of primitive
nodes reachable from the root.

5. FDs in the Normal Form (Definition 9.1.5). The algorithm checks if there exists an and-son
of the root for which each sub-feature is a feature included in the product to check.

Table 9.9 summarises the complexity results obtained for product checking. We mainly notice
that when all nodes are primitive ones (P = N), product-checking complexity decreases drastically
from NP-Complete to Linear (see row 4 in Table 9.9) .
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TREE/DAG AND XOR OR OPT Card Primitive
Nodes

Requires,
Excludes

Product-
Checking

DAG P ⊂ N NP-
Complete

TREE P ⊂ N
√

NP-
Complete

TREE and0 and
card0[0.. j]

leaves
⊆ P ⊂ N

× Linear

DAG P = N Linear
DAG

√
× × × × × Linear

Table 9.9: Product-Checking: Complexity Results

9.1.1.3 FFD Equivalence

Equivalence of two FFDs is needed whenever we want to compare two versions of a product line
(for instance, after a refactoring). When they are not equivalent, the algorithm can exhibit a product
showing their difference (see Definition 9.1.7).

Definition 9.1.7 (FFD Equivalence) Two FFDs d1 and d2 are equivalent iffMFFD[[d1]] =MFFD[[d2]].

Theorem 9.1.3 Deciding whether two FFDs are equivalent is coNPNP-complete. Equivalent means
that they share the same product (Definition 9.1.7).

Proof To prove this theorem, we map it to a coNPNP problem, that is, coNPNP-SAT. This problem
checks whether a Quantified Boolean Formula with one alternation of quantifier is satisfiable.

• For easiness: FFDs d1 and d2 are translated into the EQBF Σ1 and Σ2 respectively quantified
existentially with non-primitive features (N1 and N2) that are supposed to be disjoint. Thus
equivalence is logical equivalence of two EQBFs that is solvable by coNPNP-SAT. Indeed,
the equivalence of two EQBFs corresponds to two implications:

– The first one says that for each product p we are assured that when there are non-
primitive features (N1) that satisfy Σ1, then there are non-primitive features (N2) that
satisfy Σ2. ∀p(∃N1Σ1)⇒ (∃N2Σ2).

– Conversely, the second implication says that for each product p we are assured that when
there exists non-primitive features (N2) that satisfies Σ2 then there exists non-primitive
features (N1) that satisfies Σ1. ∀p(∃N2Σ2)⇒ (∃N1Σ1).

The simplification of these two implications gives: ∀p∀N1∃N2(Σ1 ⇒ Σ2) and ∀p∀N2∃N1(Σ2 ⇒

Σ1). This formula includes one alternation of quantifier, hence its satisfiability is Π2P-
complete (Papadimitriou, 1994, p. 428) and logical equivalence of two EQBFs is Π2P-
complete or coNPNP-complete.
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• For hardness: Conversely, a coNPNP-SAT problem of the form ∀X1∃X2Σ is amenable to an
equivalence of RFDs with Σ of the form (C1 ∧ . . . ∧ Ci ∧ . . . ∧ Cn) where each Ci is a clause
(Ci = pi

1 ∨ . . . ∨ pi
j ∨ . . . ∨ pi

m) and each pi
j is a literal. First we apply on ∃X2Σ the transla-

tion TEQBF→CRFD (Figure 9.1) to obtain the corresponding CRFD. This translation introduces
auxiliary nodes Xp j ,¬p j,Ci, t, r (1 ≤ i ≤ n and 1 ≤ j ≤ m) that are non-primitive features and
should be existentially quantified. Hence, ∃X2Σ ≡ MFFD[[TEQBF→CRFD(Σ)]] with X2, Xp j ,
¬p j , t and r set as non-primitive features.
Accordingly, ∀X1∃X2Σ = ∀X1MFFD[[TEQBF→CRFD(Σ)]]. Finally, it remains to check the
equivalence between the resulting RFD (TEQBF→CRFD(Σ)) and the RFD that allows all pos-
sible combinations of X1. This last RFD corresponds to an or-root related to all literals
contained in X1, that are all optional features.

�

Here again, this complexity result should be mitigated (see Table 9.10). Equivalence for some
specific FD languages is easier. The equivalence complexity is reduced when all nodes are primitive
ones (P = N). In this situation, equivalence between FDs corresponds to equivalence of their valid
configurations instead of their products. Indeed, when P = N, equivalence is coNP-Complete
(Theorem 9.1.4).

Theorem 9.1.4 Deciding whether two FFDs d1 and d2 have the same valid configurations is coNP-
complete.

Proof To prove this theorem we translate both FFDs to BFs and conversely.

• For easiness: d1 and d2 are translated into their non quantified formula equivalents Σ1 and Σ2,
respectively, according to the translation provided in Theorem 9.1.1. However, the last step
in the translation, that existentially quantify non-prinmitive nodes, is not applied. Then, we
check their equivalence (Σ1 ≡ Σ2) that is known to be coNP-complete for BF (Papadimitriou,
1994).

• For hardness: Both BFs Σ1 and Σ2 in CNF can be translated to two RFDs (r1,r2) following
the translation presented in Theorem 9.1.1. They are equivalent iffMFFD[[r1]] =MFFD[[r2]].

�

In addition, equivalence for FDs can be checked in linear time in other cases:

1. FTs with and-, xor-, card-, or-, opt-nodes and P = N. The algorithm translates every node
into a card-node following the translation provided in Table 9.1 and eliminates the inconsis-
tent card-nodes (Definition 9.1.4). Then it checks whether the trees are the same. If they
are not sharing the same card-nodes or edges, either a card-node has a different cardinality
and we can construct different products, or it has different sons and again we can construct a
product expressing this difference.
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2. FDs with only xor-nodes except for the leaves that can be and0-nodes. The algorithm elimi-
nates xor0-nodes and unreachable primitive nodes and checks that reachable primitive nodes
are the same;

3. FDs with only and-nodes. We know that all nodes are reachable. The algorithm simply
checks that d1 and d2 have the same primitive features.

4. FDs in the Normal Form defined in Definition 9.1.5. The algorithm checks that d1 and d2 are
the same. Every product cited in the list under the root of d1 is cited in the list under the root
of d2 and conversely.

Table 9.10 summarises the complexity results obtained for equivalence of FDs. Once a FD
language distinguishes primitive and non-primitive nodes complexity increases drastically.

TREE/DAG AND XOR OR OPT Card Requires,
Excludes

Primitive
Nodes

Equivalence

DAG P ⊂ N coNPNP-
Complete

DAG P = N coNP-
Complete

TREE
√

P ⊂ N coNPNP-
Complete

TREE
√

P = N coNP-
Complete

TREE × P = N Linear
DAG

√
× × × × × Linear

Table 9.10: Equivalence: Complexity Results

9.1.1.4 FFD Inclusion

Inclusion (Definition 9.1.8) is useful to check whether a product line is included into another one.
For instance, it allows checking whether a new product line takes into account all the products
contained in the previous one.

Definition 9.1.8 (FFD Inclusion) A FFD d1 is included into a FFD d2 iffMFFD[[d1]] ⊆ MFFD[[d2]].

Theorem 9.1.5 Deciding whether a FFD d1 is included into a FFD d2 is coNPNP-complete.

Proof The proof is similar to the one provided for equivalence except that FFD inclusion is log-
ical inclusion of two EQBFs that is also solvable by coNPNP-SAT. Indeed, the inclusion of two
EQBF corresponds to one implication that says: for each product p when there are non-primitive
features (N1) that satisfy Σ1, then there are non-primitive features (N2) that satisfy Σ2. Formally:
∀p(∃N1Σ1) ⇒ (∃N2Σ2). This implication can be transformed into ∀p∀N1∃N2(Σ1 ⇒ Σ2) with only
one alternation of quantifiers. Hence its satisfiability isΠ2P-complete (Papadimitriou, 1994, p. 428)
and logical inclusion of two EQBFs (Definition 9.1.2) is Π2P-complete or coNPNP-complete.
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�

Here again, this complexity result should be mitigated. Indeed, inclusion for FDs can be checked
in linear time in other cases:

1. FTs with and-, xor-, card-, or-, opt-nodes and P = N. The algorithm translates every node
into a card-node following the translation provided in Table 9.1 and eliminates the incon-
sistent card-nodes (Definition 9.1.4). Then it checks whether d1 shares with d2 the same
card-nodes and edges, either a card-node has a different cardinality and we can construct
different products, or it has different sons and again we can construct a product expressing
this difference.

2. FDs with only xor-nodes except for the leaves that can be and0-nodes. The algorithm elimi-
nates xor0-nodes and unreachable primitive nodes and checks that reachable primitive nodes
of d1 are included in the one of d2;

3. FDs with only and-nodes. We know that all nodes are reachable and that the PL contains only
one product. The algorithm simply checks that d1 and d2 have the same primitive features.

4. FDs in the Normal Form defined in Definition 9.1.5. Every product cited in the list under the
root of d1 is cited in the list under the root of d2.

The complexity results (Table 9.10) obtained for equivalence can be transposed to inclusion.

9.1.1.5 FFD Intersection

Intersection is useful when two feature interference engineers work independently and therefore
obtain two different restrictions of the initial product line. To put their work together, we must
produce a FFD representing the intersection of two given FFDs (see Definition 9.1.9).

Definition 9.1.9 (FFD Intersection) A FFD d3 is the intersection between FFDs d1 and d2 iff
MFFD[[d3]] =MFFD[[d1]]

⋂
MFFD[[d2]]

Theorem 9.1.6 A FFD expressing the intersection of two given FFDs (d1, d2) can be computed in
linear size and time.

Proof The algorithm to compute the intersection of two given FFDs (d1, d2) is the following (see
Figure 9.4):

1. For each primitive node in d1 that is also a node in d2 ( f1, f2) prime it in d2 ( f ′1 , f ′2), so that
they are disjoint in d1, d2;

2. For each primitive node in d1 that is not in d2 ( f3, f4) create a fresh identical node but that is
primed. Join these new nodes ( f ′3 , f ′4) and the root of d2 (r2) by a fresh xor-node (x2);

3. Similarly, for each primitive node in d2 that is not in d1 ( f5, f6) create a fresh identical node
but that is primed. Join these new nodes ( f ′5 , f ′6) and the root of d1 (r1) by a fresh xor-node
(x1);
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4. Set all the prime nodes as non-primitive nodes;

5. Unify d1 and d2 (we mean the union of nodes, edges and constraints, respectively);

6. Join x1, x2 by a fresh and2-node r that is the new non-primitive root;

7. For each primitive feature p that has been primed, we add two constraints p requires p′ and
p′ requires p.

r2

f1 f2

f5 f6

r1

f1 f2

f3 f4

! =
r1

f1 f2’

f3 f4 f5 f6

r2

r"(r) = and2

f2 f1’

f1’ requires f1

f2’ requires f2

f3’ requires f3

f4’ requires f4

f5’ requires f5

f6‘ requires f6 

f1 requires f1’

f2 requires f2’

f3 requires f3’

f4 requires f4’

f5 requires f5’

f6 requires f6’ 

x1 x2

f3’ f4’f5’f6’

"(x1) = xor3 "(x2) = xor3

Figure 9.4: FFD: Intersection

�

9.1.1.6 FFD Union

Union of FDs (see Definition 9.1.10) is useful when teams validate in parallel the feature combina-
tions that lead to an acceptable product, without feature interference. Their work can be recorded in
separate FDs. The union of these FDs will represent the validated products. For FD languages based
on DAGs, this problem is solved in linear time, but the resulting FD should probably be simplified
for readability.

Definition 9.1.10 (FFD Union) A FFD d3 is the union between FFDs d1 and d2 iffMFFD[[d3]] =
MFFD[[d1]]

⋃
MFFD[[d2]]

Theorem 9.1.7 A FFD for the disjunction (or union) of two given FFDs d1 and d2 can be computed
in linear size and time.

Proof The algorithm to compute the union of two given FFDs d1, d2 is the following (see Fig-
ure 9.5):
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1. Unify d1 and d2 sharing primitive features ( f1, f2) (we mean the union of nodes, edges and
constraints, respectively);

2. Join their roots r1, r2 by a fresh xor2-node r that is the new non-primitive root.

r2

f1 f2

f5 f6

r1

f1 f2

f3 f4

!

=

"(r) = xor2

r1

f1 f2

f3 f4 f5 f6

r2

r

Figure 9.5: FFD: Union

�

This disjunction is computed on the set of products and does not generate new products. It
simply makes the union of the set of products represented by d1 and the set of products represented
by d2. One other interesting problem would be to compute disjunction on the product themselves.
This will generate new products including the primitive features of d1 and d2 and respecting the
constraints imposed by d1 and d2. This is obtained by a reduced product:

Definition 9.1.11 The reduced product of d1, d2, noted d1 × d2, is {p1 ∪ p2|p1 ∈ MFFD[[d1]], p2 ∈

MFFD[[d2]]}.

Theorem 9.1.8 A FFD for the reduced product of d1, d2 can be computed in linear size and time.

Proof The algorithm to compute the reduced product of two given FFDs d1, d2 is the following (see
Figure 9.6):

1. Unify d1 and d2 sharing primitive features ( f1, f2) (we mean the union of nodes, edges and
constraints, respectively);

2. Join their roots r1, r2 by a fresh and2-node r that is the new non-primitive root.

�
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r2

f1 f2

f5 f6

r1

f1 f2

f3 f4

=
r1

f1 f2

f3 f4 f5 f6

r2

r!(r) = and2

Figure 9.6: FFD: Reduced product

9.1.2 FFD Expressiveness Analysis

Intuitively, the expressiveness (Definition 5.2.1) of a language is the part of its semantic domain
that it can express. For FD languages expressiveness, the distinction between FD languages that
only admit trees and the ones that allow sharing of features by more than one parent turns out to
be important. In addition, it is also important to study how the expressiveness of FD languages
evolves when some constructs are removed. For instance, we will see that the expressiveness results
completely change when OFT does not include a constraint language (Compare Theorems 9.1.10
and 9.1.9). This sub-language of OFT is called Constraintless Original Feature Trees (COFT).
Other sub-languages will be used in the sequel. We gather in Table 9.11 their definitions according
to FFD where OP is a parameter for the type of Boolean operators allowed in NT (see the five last
entries in Table 9.11):

• Constraintless Feature Diagrams with NT = OP (CFD(OP)),

• Constraintless Original Feature Diagrams (COFD),

• Constraintless Feature RSEB Diagrams (CRFD),

• Constraintless Feature Trees with NT = OP (CFT(OP)),

• Constraintless Original Feature Trees (COFT),

• Constraintless Feature RSEB Trees (CRFT).

9.1.2.1 Tree variants

The main FD variants (Kang et al., 1990; Eisenecker and Czarnecki, 2000; Eriksson et al., 2005;
Batory, 2005; van Deursen and Klint, 2002; Czarnecki et al., 2005c) use trees only, instead of sin-
gle rooted DAGs. We called them “Feature Trees” (FTs). One readily observes that FTs without
constraints are not expressively complete (Theorem 9.1.9) whereas FTs with constraints are (Theo-
rem 9.1.10).

Theorem 9.1.9 COFTs are not expressively complete.
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Short Name References GT NT GCT TCL
OFT Kang et al. (1990) TREE and ∪ xor ∪ {opt1} ∅ CR
OFD Kang et al. (1998) DAG and ∪ xor ∪ {opt1} ∅ CR

RFD=VBFD Griss et al. (1998); van Gurp et al. (2001) DAG and ∪ xor ∪ or ∪ {opt1} {⇒, |} CR
EFD Riebisch et al. (2002); Riebisch (2003) DAG card ∪ {opt1} {⇒, |} CR
GPFT Eisenecker and Czarnecki (2000) TREE and ∪ xor ∪ or ∪ {opt1} ∅ CR
PFT Eriksson et al. (2005) TREE and ∪ xor ∪ or ∪ {opt1} {⇒, |} ∅

VFD Bontemps et al. (2004); Schobbens et al. (2007) DAG card ∅ ∅

CFD(OP) - DAG OP ∅ ∅

COFD - DAG and ∪ xor ∪ {opt1} ∅ ∅

CRFD - DAG and ∪ xor ∪ or ∪ {opt1} ∅ ∅

CFT(OP) - TREE OP ∅ ∅

COFT - TREE and ∪ xor ∪ {opt1} ∅ ∅

CRFT - TREE and ∪ xor ∪ or ∪ {opt1} ∅ ∅

Table 9.11: Extended Family of FD languages

Proof We will prove that COFTs cannot express disjunction, i.e. the product line {{A}, {B}, {A, B}}.
COFTs admit nodes without sons, namely the xor-node without sons xor0, whereMFFD[[xor0]] =
{}, the and-node without sons and0, whereMFFD[[and0]] = {{}}. These two product lines have no
primitive features. Let r be the root, si its sons. Any primitive feature can only occur under one si,
since it is a tree. In this proof we reduce any COFT to a COFT with only two primitive features (say
A,B) and enumerate which product lines can be expressed and which cannot (see Figure 9.7). This
reduction follows several steps:

1. Translate compound primitive nodes as illustrated in Table 9.12. Put all primitive nodes on
leaves by translating the compound primitive nodes ( f2) into a new and2-node ( f5) with two
sons: a copy of the original node ( f ′2) and the primitive node ( f2) as an and0-node without
son;

Instead of . . . write . . .

!(f5) = and2
f2

f1

f3 f4

f5

f1

f2 f2’

f2 ! P

!(f2) = and0

f5, f2’ ! P

f3 f4

!(f2) = x

!(f2’) = x

f2 ! P

!(f5) = and2
f2

f1

f3 f4

f5

f1

f2 f2’

f2 ! P

!(f2) = and0

f5, f2’ ! P

f3 f4

!(f2) = x

!(f2’) = x

f2 ! P

Table 9.12: Translation: Compound Primitive Nodes

2. Eliminate any si that do not contain A or B: si is then equivalent to either and0 when si is an
and-node or xor0 when si is an xor-node;



164 Chapter 9. Feature Diagram Languages: Quality Analysis

3. Apply simplification rules (only valid for FTs). In these simplification rules our convention
is to decorate optional node n with˚(n̊):

xork(s1, . . . , si−1, xor0, si+1, . . . , sk) = xork−1(s1, . . . , si−1, si+1, . . . , sk) (9.1)

andk(s1, . . . , si−1, xor0, si+1, . . . , sk) = xor0 (9.2)

xork(s1, . . . , si−1, and0, si+1, . . . , sk) = (xork−1(s1, . . . , si−1, si+1, . . . , sk))̊ (9.3)

andk(s1, . . . , si−1, and0, si+1, . . . , sk) = andk−1(s1, . . . , si−1, si+1, . . . , sk) (9.4)

and1(si) = si (9.5)

xor1(si) = si (9.6)

4. If the two primitive features A, B occur in the same si, we can use the last two rules to replace
the root by si;

5. We end with either:

(a) Rule 9.2: xor0 (a.k.a f the FALSE node in Figure 9.7);

(b) Rule 9.3: the root with a single optional son, itself having two sons s1, s2. In Figure 9.7,
we simplify the illustration by omitting the root and decorating the optional node by a
hollow circle;

(c) Rule 9.4: and0 (a.k.a v the empty node in Figure 9.7);

(d) Rule 9.5 and 9.6: the root is an and-node or a xor-node with two sons s1, s2, where A
occurs in s1 and B in s2.

Therefore there are only four product lines that s1 can express, because it uses only one primitive
A: and0, xor0, A, Å. The first two have already been eliminated. This leaves two product lines for
s1 (A, Å), and the same for s2 (B, B̊). There are thus 16 possibilities for this case: 2 (has the root a
single optional son, or two sons?) times 2 (is the first node with two sons a xor- or an and-node?)
times 2 (is s1 equivalent to A or Å?) times 2 (is s2 equivalent to B or B̊?). There is also and0
and xor0. Thus we have 18 simplified trees containing A, B. There are 16 possible product lines
to express (Figure 9.7). Unfortunately, several of them express the same PL: A|B = {{}, {A}, {B}},
however A ∨ B = {{A}, {B}, {A, B}} is still missing, see Figure 9.7.

�

Theorem 9.1.10 OFTs are expressively complete.

Proof Let us now consider OFT rather than COFT and therefore add requires and excludes con-
straints. Every product line can be expressed with a tree and such constraints. Indeed, similarly to
FDs (Definition 9.1.5), a normal form exist for FTs (Definition 9.1.12). The main difference is that
a product is not represented with an andn-nodes and its n sons ( its features) but by and0-nodes with
a requires constraint for each of its features. In addition, each primitive feature is linked to the root
with an opt-node.
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Figure 9.7: Product lines on two primitive features and their COFT

Definition 9.1.12 (Normal Form for a FT) A FT is in a Normal Form when

• it is a Tree;

• its root is an andm+1-node where m is the number of primitive nodes. The root is linked to m
opt-sons ( fi?) and one xorn-son (PP) that corresponds to the set of products where n is the
number of products;

• each primitive node ( fi) is a son of its respective opt-son ( fi?) and is represented by an and0-
node without son;

• each product (pi) is a son of PP and is represented with an and0-node without son. The
product with no feature is represented by a xor0 without son;

• each product is related to the primitive features that compose it with “requires” constraints
(e.g., p1 requires f1 in Figure 9.8). Conversely, each product is related to the primitive fea-
tures that are not one of its constituent with an excludes constraint (e.g., p1 excludes f2 in
Figure 9.8);

�
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r

PP

!(r) = and3

!(PP) = xor3

f1 f2 p1 p2 p3

!(pi) = and0

r

p1 p2 p3

f1 f2

!(fi) = and0

!(fi) = and0

!(p1) = and1

!(r) = xor3

!(p3) = and1

!(p2) = and2

f1?!(f2?) = opt1 f2?

!(f1?) = opt1

p4

p1 requires f1

p1 requires f2

p2 requires f1

p2 excludes f2

p3 requires f2

p3 excludes f1

p4 excludes f1

p4 excludes f2

Figure 9.8: FT Normal Form: FT of product line {{}, { f1}, { f2}, { f1, f2}}

Several proposals have attempted to improve expressiveness of FT languages. However, most
FTs are already expressively complete and the new propositions do not improve expressiveness:

• Add requires and excludes constraints. This proposal allows disjunction and leads to ex-
pressive completeness (Theorem 9.1.10). Nevertheless, the use of such constraints is prag-
matically ambiguous and reduces comprehension. An illustration is given in Figure 9.8 where
the “requires” constraints are used as decomposition relationships. Although its syntax and
semantics are both unambiguous, a requires constraint may map to two different concepts in
the “real world”: the concept of dependence between one feature and another, and the concept
of feature decomposition. Without feature sharing, constraints are misused to allow expressive
completeness. In addition, they are pragmatically ambiguous in the FT Normal Form (Fig-
ure 9.9). Indeed, we use requires to indicate which features are included in which products
that are themselves non-primitive features. However, the semantics of the decomposition and
requires relationships remain clearly different. For trees, f1 requires f2 means that f1 ⇒ f2
while f1 is decomposed into f2 means that f1 ⇔ f2 since f2 possesses only one parent ( f1).

• Add or-nodes (Griss et al., 1998). This new type of nodes allows disjunction, but remains
expressively incomplete (see theorem 9.1.11). In (Griss et al., 1998), two extensions have
been proposed: add or-nodes and consider FD as a single-rooted DAG rather than a tree.
We will see in the next section that the second extension alone guarantees expressive com-
pleteness. On the other hand, adding or-nodes only does not give expressive completeness:

Theorem 9.1.11 CRFTs (i.e., with and- xor- or- and opt-nodes but no constraints) are not
expressively complete.

Proof CRFTs cannot express card[2..2] among 3 features. We note that when using trees,
and-, xor-, or-nodes are associative. So, without loss of generality, we can assume that the
first node from the root that has more than one son, actually has two sons (s1, s2). For trees,
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Figure 9.9: Pragmatic Ambiguity in the FT Normal Form

[[s1]], [[s2]] have disjoint primitive features. We normalise CRFTs translating each and-, xor-,
or-node to respectively and2-, xor2-, or2-node that have an arity of 2 and therefore possess
two sons. For this, when the number of sons is higher than 2, normalisation rules are applied:

xork(s1, s2, . . . , sk) = xor2(s1, xork−1(s2, . . . , sk)) (9.7)

andk(s1, s2, . . . , sk) = and2(s1, andk−1(s2, . . . , sk)) (9.8)

ork(s1, s2, . . . , sk) = or2(s1, ork−1(s2, . . . , sk)) (9.9)

Now each operator imposes its “shape” on the product line, however none of them allows
multiplicities such as [[card3[2..2]]]:

1. for and2, PL = {c1 ∪ c2 | c1 ∈ [[s1]], c2 ∈ [[s2]]};

2. for or2, PL = {c1, c2, c1 ∪ c2 | c1 ∈ [[s1]], c2 ∈ [[s2]]};

3. for xor2, PL = [[s1]] ∪ [[s2]];

For trees, [[s1]], [[s2]] have disjoint primitive features, say without loss of generality {A, B,C}.
[[card3[2..2](s1, s2)]] has none of these shapes.

�

• Add “group cardinalities” (operator card) to FD languages (Riebisch et al., 2002; Czarnecki
et al., 2005b). This construct allows disjunction with card[1..n] as well as card[2..2] among
3 features. However, alone it still does not lead to expressive completeness for trees (see
Theorem 9.1.12).
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Theorem 9.1.12 CFTs (i.e., FTs with and-, xor-, or-, card- and opt-nodes but no con-
straints) are not expressively complete.

Proof Every type of nodes in a CFT can be translated into a card-node following the trans-
lation in Table 9.1. However no FTs with only card-nodes can express the product line
{{}, {A}, {B}, {C}, {A,C}, {B,C}}. The closest approximation is card3[0..2](A, B,C), but the
product {A,B} should be excluded. The solution is to allow constraints or feature sharing.

�

• Add nesting to the constraint language (Batory, 2005). If nesting of constraints is allowed,
Sheffer (Sheffer, 1913) has shown that NAND (a.k.a mutex or excludes) alone assures ex-
pressive completeness, even on primitive features only. Nesting of constraints means that a
constraint could be also expressed on constraints, for instance (A requires (B excludes C)).

One could also use Boolean (a.k.a propositional) logic or Boolean Circuits (Section 9.2) to
easily obtain expressive completeness. For instance, (Batory, 2005) uses trees with and-,
xor-, opt- and or-nodes, with constraints in Propositional Logic where nesting is allowed.
Obviously, this is expressively complete.

• Allow feature sharing. The use of DAGs rather than Trees (Griss et al., 1998) leads to
expressive completeness. As we will see in the next section Feature DAGs are expressively
complete.

9.1.2.2 DAG variants

In this section, we examine what we call “Feature Diagrams” (FDs). Unlike trees, they allow sharing
of sub-graphs. This small change provides expressive completeness, i.e. every product line can be
expressed by an optionless COFD (see Theorem 9.1.13). To prove this, we use normalisation of
FDs to the FFD Normal Form noted N1(pl) (Definition 9.1.5).

Theorem 9.1.13 Every PL pl can be expressed by a optionless COFD, e.g. by its FFD normal
form: ∀pl ∈ PL.∃N1(pl) ∈ optionless COFD.pl = [[N1(pl)]]

Proof Every product line can be expressed with an optionless COFD. Indeed, the FFD normal form
is expressively complete by definition since each product is a son of the xor-root and is represented
with an andn-node with n sons (its features).

�

Another alternative is to represent all the possible combinations of features in a FD and to put all
the information concerning the validity of these combinations in constraints. This is what we call a
FD Constraint Form (Definition 9.1.13). This requires to use a FD language that allows constraints
between nodes (primitive and non-primitive ones):

Definition 9.1.13 (FFD Constraint Form) A FFD is in a Constraint Form, noted N2(pl) when:
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1. it is a DAG;

2. its root is the only xor-node;

3. each possible combination of features (ci) is directly connected to the root and is represented
by an and-node with sons corresponding to its features;

4. each primitive feature ( fi) is an and0-node;

5. it does not possess any opt, or nor card-node;

6. excludes constraints are used to remove combinations that should not be included in pl.
Therefore the root excludes the non valid combinations (see Figure 9.10). For instance, c0 is
excluded by the root r since the combination with no feature (empty product) is not valid.

r

c1 c2 c3

f1 f2!(fi) = and0

!(c1) = and1

!(r) = xor4

!(c3) = and1

!(c2) = and2

c0

r excludes c0

!(c0) = and0

r

p1 p2 p3

f1 f2!(fi) = card0 [0..0]

!(p1) = card1 [1..1]

!(r) = card3 [1..3]

!(p3) = card1 [1..1]

!(p2) = card2 [2..2]

Figure 9.10: FFD Constraint Form: FD of product line {{ f1}, { f2}, { f1, f2}}

Theorem 9.1.14 For any set of primitive features P, there is a FD N2({P}) such that any PL pl on
P can be expressed by excludes constraints on N2({P}).

Proof The FFD constraint form is expressively complete by definition since each possible product
is a son of the xor-root and the non-valid ones are discarded by excludes constraints coming from
the root. However, the size of this constraint form grows exponentially with the number of features.

�

One might ask whether optionless COFD are the smallest expressively complete sub-language.
The answer is yes. To prove this, we show that its two operators (xor, and) cannot be removed (see
Theorems 9.1.15 and 9.1.16).

Theorem 9.1.15 CFD(and) is not expressively complete.

Proof A product p ∈ [[CFD(and)]] iff p has exactly one configuration.

�



170 Chapter 9. Feature Diagram Languages: Quality Analysis

Theorem 9.1.16 CFD(xor) is not expressively complete.

Proof A product p ∈ [[CFD(xor)]] iff each configuration of p contains exactly one path from the
root, and thus one primitive feature at most.

�

However, when card-nodes are added, both and- and xor-node can be removed. The resulting
minimal language (VFD) is expressively complete (Theorem 9.1.17).

Theorem 9.1.17 VFD is expressively complete.

Proof Every product line can be expressed with a VFD. We know that the FFD normal form is
expressively complete by definition. We know that and- and xor-nodes can be translated into card-
nodes preserving their semantics. Therefore a new FFD normal form with only card-nodes exists
(Figure 9.11) and proves the expressive completeness of VFD.

r

c1 c2 c3

f1 f2!(fi) = and0

!(c1) = and1

!(r) = xor4

!(c3) = and1

!(c2) = and2

c0

r excludes c0

!(p0) = and0

r

p1 p2 p3

f1 f2!(fi) = card0 [0..0]

!(p1) = card1 [1..1]

!(r) = card3 [1..3]

!(p3) = card1 [1..1]

!(p2) = card2 [2..2]

Figure 9.11: FD Card Form: FD of product line {{ f1}, { f2}, { f1, f2}}

�

Table 9.13 shows that feature languages that allow sharing are expressively complete, while
notations based on trees (i.e. forbidding sharing) are not, unless complemented by opt-node and
constraint language. These constraints are not only used to express dependencies between features
but also to compensate feature sharing. Therefore, complementing OFTs with a simple or a rich
constraint language leads to expressive completeness but it hinders comprehension when pragmatic
ambiguity occurs.

If we ignore the graphical and textual constraints, we have proved that tree languages (OFT (Kang
et al., 1990), GPFT (Eisenecker and Czarnecki, 2000), PFT (Eriksson et al., 2005)) are not expres-
sively complete. However, DAG languages (OFD (Kang et al., 1998), EFD (Riebisch et al., 2002;
Riebisch, 2003), RFD (Griss et al., 1998)) are expressively complete. Furthermore, we have proved
that DAGs with only card-nodes are expressively complete. More precisely, our results show that
the disjunction of features cannot be expressed in OFT. In (Griss et al., 1998), Griss et al. have pro-
posed to solve this problem by (1) adding or-nodes, and (2) considering FDs as single-rooted DAGs
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TREE/DAG AND XOR OR OPT Card Requires,
Excludes

Constraints
Nesting

Expressively
Complete

TREE
√ √

× × × ×

TREE
√ √

× × ×

TREE
√ √ √ √ √

TREE
√ √ √

TREE
√ √

DAG ×
√

× × ×

DAG
√

× × × ×

DAG
√ √ √

DAG
√ √

Table 9.13: Expressiveness Results

rather than trees. We prove that the second extension alone guarantees expressive completeness
while adding or-nodes only does not.

When languages are expressively complete, we need a finer yardstick than expressiveness to
compare them. The situation is similar for programming languages that are almost all Turing-
complete and therefore have the same expressiveness. Two finer criteria are well established: em-
beddability (a.k.a. naturalness) and succinctness. We study FFD embeddability first.

9.1.3 FFD Embeddability Analysis

Intuitively, a language L1 is embeddable into L2 iff a semantic- and structure-preserving translation
exists from L1 to L2 (Felleisen, 1990; Kleene, 1952) (Definition 5.3.3). When a language L1 is
embeddable into a sub-language L2 ⊂ L1 with the same expressiveness, L1 is said to be harmfully
redundant (Definition 5.3.12). Stated otherwise: L1 is unnecessarily complex because it contains at
least one construct that is easily definable using only a strict subset of its own constructs.

In terms of FDs, translations from one language to another and the other way around exist
between every pair of expressively complete languages. The question is: Do these translations cor-
respond to an embedding that preserves FD semantics and structure? In other words, each construct
should be embeddable. A construct is embeddable into another language when it can be replaced
by a fixed diagram. On the one hand, no embedding from FDs to FTs can be defined since the
diagram structure cannot be preserved. On the other hand, embeddings exist between FDs that are
DAGs. For instance, an embedding exists between COFD and VFD, see Table 9.14 where we use
the textual form of the graphs:

• A node bearing an opt1 operator is translated to a node bearing a card1[0..1] operator.

• A node bearing a xorm operator is translated to a node bearing a cardm[1..1] operator.

• A node bearing an ands operator is translated to a node bearing a cards[s..s] operator.

This embedding is node-controlled since each opt-, xor- and and-node is treated separately, pre-
serving the structure and the semantics of the original COFD.
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Instead of . . . write . . .
opt1( f ) card1[0..1]( f )

xorm( f1, . . . , fm) cardm[1..1]( f1, . . . , fm)
ands( f1, . . . , fs) cards[s..s]( f1, . . . , fs)

Table 9.14: Embedding: COFD into VFD

Graphically, Table. 9.7 shows how CRFD are translated into COFD, applying a translation to
or-nodes. Once again this embedding preserves semantics while being node-controlled.

9.1.3.1 Redundancy

Embeddings may also appear within the same language. This indicates that some constructs are re-
dundant. As illustrated in Tables 9.15 and 9.16, OFDs have harmfully redundant (Definition 5.3.12)
opt-nodes, requires and excludes constraints. Indeed, an opt-node, say n̊ in OFD can be translated
into a xor2-node n? with two sons: n and the empty node v that can be evaluated to TRUE or
FALSE and corresponds to an and0-node (i.e. with no son) (Table 9.15). The increase in size can be
computed: an optional node is replaced by 2 nodes and 1 edge, leading to an expansion factor of 3.

Instead of . . . write . . .

n?

n V

!(n?) = xor2

!(V ) = and0
!(n) = xn !(n) = x
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f1 fmfi
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fi fj? 
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fj 
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...

... ...... ...

...

...

¬ n

n t
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!(t) = and0
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r !(r) = andn

¬ n

n?

n V

!(n?) = xor2

!(V ) = and0
!(n) = xn !(n) = x

n? !(n?) = opt1

n !(n) = orm

f1 fmfi

n

s1 smsi

!(n) = xorm

!(si) = andm

fi fj? 

j<>i & 1<=j<=m

fj 

!(fj?) = opt1
!(fi) = x

!(fi) = x

...

... ...... ...

...

...

n?

n t

!(n?) = xor2

!(t) = and0
!(n) = x

r !(r) = andn

¬ n

Table 9.15: Redundant opt-node in OFD

The excludes constraint is also redundant in OFD (see first row in Table 9.16). The first idea
would be to translate n1 mutex n2 into an and-son of r that is a xor-node with two sons n1 and n2.
However, this translation does not preserve the excludes semantics that allows the non selection of
both features n1 and n2. The second idea is to translate a n1 excludes n2 into a xor3-node (n1 | n2)
that is an and-son of the root (r) with three sons. Each son corresponds to one of the allowed combi-
nations between n1 and n2: ¬n2 ∧ n1, ¬n1 ∧¬n2, ¬n1 ∧ n2. However, the semantics, and specifically
the justification rule, are still not respected when DAGs are considered. Indeed, the primitive nodes
(“n1”, “n2”) that participate in an excludes constraint possess new parents (“¬n2∧n1”, “¬n1∧¬n2”,
“¬n1 ∧ n2”) that may harmfully justify them. The solution is to use node negation as illustrated in
Table 9.16. The only allowed new parents of the primitive nodes (“n1”,“n2”) must be their respec-
tive negation (“¬n1”,“¬n2”). If the right branch of the xor-node “n1 | n2” is selected, then “n1” can
never be selected and the selection of n2 is free. Therefore, both cases ¬n1 ∧ ¬n2 and ¬n1 ∧ n2 are
treated. For the case ¬n2 ∧ n1, the left branch of the xor-node “n1 | n2” is selected. This branch
leads to an and-node “¬n2 ∧ n′1” with two sons “¬n2” and “n′1”. The node “n′1” corresponds to the
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double negation of n1 (¬¬n1) that avoids the justification rule problem. Indeed, the parent “¬n1”
will never justify “n1” as, by definition, “t” will be always preferred to “n1”. The increase in size
can be computed: an excludes constraint composed of 1 node and 2 edges is replaced by 7 nodes
and 12 edges, leading to an expansion factor of 7.

Along the same idea, the requires constraint is also redundant in OFD (see second row in Ta-
ble 9.16). The allowed combinations of feature between n1 and n2 are: n1∧n2, ¬n1∧¬n2, ¬n1∧n2.
The solution is to use node negation as illustrated in Table 9.16. If the right branch of the xor-node
“¬n1 ∨ n2” is selected then “n1” can never be selected, and the selection of n2 is free. Therefore,
both cases ¬n1 ∧ ¬n2 and ¬n1 ∧ n2 are treated. For the case n1 ∧ n2, the left branch of the xor-node
“¬n1 ∨ n2” is selected. This branch leads to an and-node “n′1 ∧ n′2” with two sons “n′2” and “n′1”
that are the the double negation of n1 (¬¬n1) and n2 (¬¬n2), respectively. The increase in size can
be computed: a requires constraint composed of 1 node and 2 edges is replaced by 8 nodes and 14
edges, leading to an expansion factor of 8.

Similarly, EFDs have harmfully redundant opt-nodes and textual excludes and requires con-
straint (see Table 9.17). In addition, and-, or-, xor-nodes from RFD would be also harmfully
redundant wrt. card-nodes, see Tables 9.18 and 9.19. All these constructs are embeddable into
card-nodes and therefore into the sub-language of EFD called VFD where only card-nodes are
allowed.

Riebisch et al. have also identified embeddings (Figure 9.12) for or-nodes and xor-nodes
(named alternative) from GPFT to GPFT (Riebisch, 2003).

However, the authors misuse the term “ambiguity” in place of “embedding” as it can be seen in
the original caption of Figure 9.12. Let us first recall the definition of ambiguity:

Definition 9.1.14 (Ambiguity) A diagram (or sentence) is ambiguous iff it has two different mean-
ings: [[D]] , [[D]]. A language is ambiguous iff it contains an ambiguous diagram or sentence.

Ambiguity is obviously impossible with a formal semantics, since [[.]] is a function.
Figure 9.12 actually shows that [[d1]] = [[d2]] = [[d3]] and [[d4]] = [[d5]]. This is an example

of harmless redundancy (Definition 5.3.13) where the three first diagrams are graphically different
altough they share the same meaning without using self-embeddable construct.

While adding new constructs may solve the problem of expressive incompleteness, it may
also bring ambiguity or redundancy. Riebisch et al. have proposed to add multiplicities and op-
tional edges to OFD, stating: “Such multiplicities cannot be expressed using the previous nota-
tions.” (Riebisch, 2003, p.67), thus contradicting Theorem 9.1.13. While the idea is good per se, it
obviously cannot solve any of the alleged problems:

• If a language is ambiguous, adding constructs will keep it ambiguous.

• If a language is harmlessly redundant, adding constructs will keep it harmlessly redundant.

• If a language is harmfully redundant, adding constructs will keep it harmfully redundant.

The embeddability results for FFD are summarised according to the following theorems.
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Instead of . . . write . . . Expansion
Factor

n1 excludes n2

n1 | n2
!(n1 | n2) = xor2 

!(n1) = and0

¬ n2 Æ n1 ’

¬ n1

¬ n2

n1
n2

!(n2) = and0

!(¬ n2 Æ n1’) = and2

r !(r) = andx

n1 ’

t

!(¬ n2) = xor2

!(¬ n1) = xor2

!(n1’)= xor2

!(t) = and0 7

n1 requires n2

¬ n1 Ç n2
!(¬ n1 Ç n2) = xor2 

!(n1) = and0

n1’ Æ n2’

¬ n1
¬ n2

n1
n2

!(n2) = and0

!(n1’Æ n2’) = and2

r !(r) = andx

n1’

t

!(¬ n2) = xor2 !(¬ n1) = xor2

!(n1’)= xor2n2’!(n2’)= xor2

!(t) = and0 8

Table 9.16: Embedding: OFD into COFD

Instead of . . . write . . . Expansion Factor
an opt1-node a card1[0..1] 1

n1 excludes n2 a card2[0..1](n1, n2), and-son of r 2
n1 requires n2 see Table 9.19 8

Table 9.17: Embedding: EFD into VFD
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Instead of . . . write . . . Expansion Factor
an opt1-node a card1[0..1] 1
a xors-node a cards[1..1] 1
an ors-node a cards[1..∗] 1

an ands-node a cards[s..s] 1
n1 excludes n2 a card2[0..1](n1, n2), and-son of r 2
n1 requires n2 see Table 9.19 8

Table 9.18: Embedding: RFD into EFD and VFD

Instead of . . . write . . .

n1 requires n2

!(n1) = card0 [0..0]!(n2) = card0 [0..0]

!(r) = cardx [x..x]

¬ n1 Ç n2
!(¬ n1 Ç n2) = card2 [1..1] 

n1’ Æ n2’

¬ n1
¬ n2

n1
n2

!(n1’Æ n2’) =card2 [2..2]

r

n1’

t

!(¬ n2) = card2 [1..1] !(¬ n1) = card2 [1..1]

!(n1’)= card2 [1..1]n2’
!(n2’)= card2 [1..1]

!(t) = card0 [0..0]

Table 9.19: Redundant Requires in EFD
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Fig. 1. Feature Model Example 

Grouping variable Features 

For controlling the selection of optional features FODA introduces alternatives as 
a relation between two or more features neighboring in the hierarchy. In Fig. 1 the 
features PIN check and biometric check are alternative ones; either a 
PIN check or a biometric check is provided by a product of this product 
line.  
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OR 

features

 

Fig. 2. Examples for ambiguities with OR and alternatives 

FeatuRSEB extends this by distinguishing between OR and XOR alternatives, 
where XOR shows mutual exclusion and OR enables more than one feature. Figure 9.12: “Ambiguity” example from (Riebisch, 2003)

Theorem 9.1.18 FTs are embeddable into FDs but not conversely.

Proof FTs are embeddable into FDs since the translation is simply an identity where each node is
translated to itself. The diagram will exactly correspond to the original one. Conversely, FDs are
not embeddable to FT since the translation to reach the FT Normal Form (Definition 9.1.12) is not
node-controlled.

�

Theorem 9.1.19 OFD is embeddable into COFD and conversely.

Proof OFD is embeddable into COFD since the constraints requires and excludes can be linearly
translated into COFD (see Table 9.16). Conversely COFD is embeddable into OFD since COFD is
syntactically included in OFD. We say that COFD is a sub-language of OFD.

�

Theorem 9.1.20 VFD is embeddable into EFD and conversely.

Proof VFD is embeddable into EFD since VFD is a sub-language of EFD. Conversely, EFD is
embeddable into VFD since there exists an embedding from EFD to VFD (Table 9.17).

�
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Theorem 9.1.21 OFD is embeddable into RFD but not conversely.

Proof OFD is embeddable into RFD since OFD is a sub-language of EFD. Conversely, RFD is not
embeddable into OFD since the translation of the or-node in RFD to OFD is not linear (Table 9.7).
During succinctness analysis (Section 9.1.4) we will see that the expansion factor of the translation
is quadratic (Table 9.20).

�

Theorem 9.1.22 RFD is embeddable into EFD but not conversely.

Proof RFD is embeddable into EFD since there exists an embedding from RFD to EFD (Ta-
ble 9.18). Conversely, EFD is not embeddable into RFD since the translation of the card-node
from EFD to RFD is not linear (Table 9.21). During succinctness analysis, we will see that the
expansion factor of the translation is quadratic (Table 9.21).

�

9.1.4 FFD Succinctness Analysis

Intuitively, the succinctness (Definition 5.4.1) of a language evaluates the cost of a translation from
one language to another, both languages sharing the same expressiveness. This cost is determined
by the comparison of the sizes of the FDs. The size of a FD is measured by the number of its nodes
and edges. For instance, we have seen that translating a graphical excludes constraint into COFD
increases the size of the diagram by a factor 7 (Table 9.17) while translating a graphical excludes
constraint into VFD increases it by a factor 2 (Table 9.17).

Once a complete embedding has been defined between two languages, their succinctness can be
deduced. Succinctness results highly depend on embeddings. According to our definition (Defini-
tion 5.4.1), a maximal succinctness threshold is fixed on the defined embedding. This upper limit
can be reduced if a better embedding is provided. Ideally, we should prove that this embedding is
minimal or, in other words, that its expansion factor is minimal.

Theorem 9.1.23 VFD ≤ O(8.EFD) and EFD ≤ O(VFD).

Proof An embedding between EFD and VFD has been defined in Table 9.18. The succinctness can
be analysed according to the embedding expansion factor determined in Table 9.17. In the worst
case, the embedding from one EFD to a VFD is linear and multiplies the size of the original EFD
by a factor 8. Conversely, translating a VFD to an EFD is linear since VFD is a sub-language of
EFD (VFD ⊂ EFD) and that each card-node in a VFD maps to a card-node in an EFD. Therefore,
VFD ≤ O(8.EFD) and EFD ≤ O(VFD).

�
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Theorem 9.1.24 COFD ≤ O(8.OFD) and OFD ≤ O(COFD).

Proof An embedding exists between OFD and COFD with an expansion factor of 8 (Table 9.16).
Indeed, a requires constraint contains 1 node and 2 edges while its translation contains 9 nodes
and 14 edges. Conversely, COFD is a sub-language of OFD (COFD ⊂ OFD). Therefore COFD
≤ O(7.OFD) and OFD ≤ O(COFD).

�

Theorem 9.1.25 COFD ≤ O(RFD3) and RFD ≤ O(COFD).

Proof A translation exists between RFD and COFD and this translation is cubic. Indeed, the ex-
pansion factor of the translation of an or-node is quadratic. If we assume an or-node n and its sons
ordered as f1, . . . , fm, then the node n and its m outgoing edges are translated into 2m+ 1 nodes and
2m + m2 edges (Table 9.20). The increase in size is measured as follows:

• In addition to the original node n, m si nodes and m f j? nodes have appeared. Hence, 2m + 1
nodes have appeared.

• The original edges between the node n and all fi nodes have been removed.

• The original node n is now related to m si nodes. Hence, m edges have appeared.

• Each si node is related to 1 fi node and m − 1 f j? nodes. Hence, m2 edges have appeared.

• Each f j? node is related to an f j node. Hence, m edges have appeared.

Conversely, COFD is a sub-language of RFD. Therefore, COFD ≤ O(RFD3) and RFD ≤
O(COFD). Similarly OFD ≤ O(RFD3) and RFD ≤ O(OFD) by composition with the previous
succinctness results (Theorem 9.1.24).

Instead of . . . write . . . Expansion
Factor

n?

n V

!(n?) = xor2

!(V ) = and0
!(n) = xn !(n) = x

n? !(n?) = opt1

n !(n) = orm

f1 fmfi

n

s1 smsi

!(n) = xorm

!(si) = andm

fi fj? 

j!i & 1!j ! m

fj 

!(fj?) = opt1
!(fi) = x

!(fi) = x

...

... ...... ...

...

...

¬ n

n t

!(n?) = xor2

!(t) = and0
!(n) = x

r !(r) = andz

¬ n

n?

n V

!(n?) = xor2

!(V ) = and0
!(n) = xn !(n) = x

n? !(n?) = opt1

n !(n) = orm

f1 fmfi

n

s1 smsi

!(n) = xorm

!(si) = andm

fi fj? 

j’!j!i Æ 1! j ! m

       Æ 1! j’ ! mfj 

!(fj?) = opt1
!(fj’?) = opt1

!(fi) = x

!(fi) = x

...

... ...... ...

...

...

¬ n

n t

!(n?) = xor2

!(t) = and0
!(n) = x

r !(r) = andz

¬ n

fj’? 

fj’ 

O(n2)

Table 9.20: Succinctness: RFD into COFD

�
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Theorem 9.1.26 COFD ≤ O(VFD3).

Proof A translation exists between VFD and COFD and this translation is cubic. Indeed, the ex-
pansion factor of the translation for a card-node is quadratic. If we assume a card-node n with
multiplicities µ . . . ν and its sons ordered as f1, . . . , fm, then the node n and its m edges are translated
into m2 nodes and m2 edges (Table 9.21).

Fresh xor2-nodes of the form (i, j) are introduced where i (0 ≤ i ≤ m) is the number of sons
treated, and j (0 ≤ j ≤ i) is the number of sons in the model among the sons treated. Values of j
above ν are collapsed. This new diagram starts from the node (i, j) with i = 0 and j = 0. Then each
(i, j) node is recursively translated following several rules:

• When i = m, if µ ≤ j ≤ ν then (i, j) is replaced by the TRUE node t, else (i, j) is replaced by
the FALSE node f ( f =xor0).

• When i < m, if fi is in the diagram, then two and-sons are added to (i, j):

– The first (i, j)− is an and-node with sons ¬ fi and (i+1, j). ¬ fi+1 is a xor2-node with two
sons, fi and a TRUE node (t).

– The second (i, j)+ is an and-node with sons fi+1 and (i + 1, j + 1);

Instead of . . . write . . . Expansion
Factor

n !(n) = cardm [µ..!]

f1 fm...

n = (i,j) !(n) = xor2

(i,j)- (i,j)+!((i,j)-) = and2 !((i,j)+) = and2

(i+1,j)¬ fi+1 (i+1,j+1) fi+1

0 ! i ! m

... ...

n !(n) = card2 [1..2]

f1 f2
!(f1) = x !(f2) = y

(0,0)

(0,0)- (0,0)+

(1,0)- (1,0)+

(1,0) (1,1)¬ f1 f1

(1,1)- (1,1)+

!((i,j)) = xor2

!((i,j)+) = and2

!((k,l)) = xor2

!((i,j)-) = and2

(2,2)f2

t

¬ f2(2,1)f2¬ f2 (2,0)

tf
!(f2) = y

!(f1) = x

n !(n) = cardm [µ..!]

f1 fm...

n = (i,j) !(n) = xor2

(i,j)- (i,j)+!((i,j)-) = and2 !((i,j)+) = and2

(i+1,j)¬ fi+1 (i+1,j+1) fi+1

0 ! i ! m

... ...

n !(n) = card2 [1..2]

f1 f2
!(f1) = x !(f2) = y

(0,0)

(0,0)- (0,0)+

(1,0)- (1,0)+

(1,0) (1,1)¬ f1 f1

(1,1)- (1,1)+

!((i,j)) = xor2

!((i,j)+) = and2

!((k,l)) = xor2

!((i,j)-) = and2

(2,2)f2

t

¬ f2(2,1)f2¬ f2 (2,0)

tf
!(f2) = y

!(f1) = x

O(n2)

Table 9.21: Succinctness: VFD into COFD

The card-node n in VFD and its m edges are exactly translated into 2m + 2 +
∑m+1

i=0 i + 2.
∑m

i=0 i
nodes and 3m + 2 + 6.

∑m
i=0 i edges (Table 9.21). The increase in size is measured as follows:

• The nodes FALSE and TRUE, m ¬ fi+1 and m fi+1 nodes are added. Hence, 2m+2 nodes are
added.

• The total number of nodes (i, j) is k where k =
∑m+1

i=0 i. Indeed, if m = 4 then k = 15 with 5
nodes for cardinality 4 ((4, 4), (4, 3), (4, 2), (4, 1), (4, 0)), 4 nodes for cardinality 3, 3 nodes for
cardinality 2, 2 nodes for cardinality 1 and 1 node for cardinality 0. Hence,

∑m+1
i=0 i nodes are

added.

• In addition to each (i, j) node where i < m, two new nodes are added: (i, j)+,(i, j)−. Hence,
2.
∑m

i=0 i nodes are added.
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• The original edges between the node n and all fi nodes have been removed.

• Each ¬ fi+1 node is connected to two edges when they are decomposed. One edge to relate
¬ fi+1 and fi+1, one edge to relate ¬ fi+1 and the TRUE node t. Hence, 2m edges are added.

• One edge is also added to relate the root to the TRUE node t.

• Each (i, j) node where i = m is connected to one edge to relate (i, j) and the TRUE or FALSE
node. Hence, m + 1 edges are added.

• Each (i, j) node where i < m is connected to two edges. One edge to relate (i, j) and (i, j)+

and one edge to relate (i, j) and (i, j)−. Hence, 2.
∑m

i=0 i edges are added.

• Each (i, j)− node is connected to two edges. One edge to relate (i, j)− and ¬ fi+1 and one edge
to relate (i, j)− and (i + 1, j). Hence, 2.

∑m
i=0 i edges are added.

• Each (i, j)+ node is connected to two edges. One edge to relate (i, j)+ and fi+1 and one edge
to relate (i, j)+ and (i + 1, j + 1). Hence, 2.

∑m
i=0 i edges are added.

The illustration provided in Table 9.22 shows how a card2[1..2] is translated into COFD pre-
serving its semantics following the above procedure with m = 2, µ=1 and ν=2. For simplifica-
tion, negative nodes (¬ fi) are not detailed in Table 9.22 and some shared nodes (e.g. ¬ f2) are
duplicated to avoid cluttering the figure. In the end, both diagrams share the same semantics:
{{ f1}, { f2}, { f1, f2}}. Accordingly, if µ=0 and ν=1, the diagram is similar except for nodes (2, 2)
(2, 0) that are respectively translated into the FALSE node f and the TRUE node t, leading to the
semantics: {{ f1}, { f2}, {}}. Concerning the expansion factor, the original card-node contains 3 nodes
and 2 edges. The FD resulting from the translation contains 18 non-duplicated nodes and 26 edges.
Five edges are hidden in Table 9.22: two for each negative node and one that relates the TRUE node
t to the root.

�

Theorem 9.1.27 VFD ≤ O(8.RFD) and RFD ≤ O(VFD3).

Proof An embedding between RFD and VFD has been defined in Table 9.18. The succinctness can
be analysed according to the embedding expansion factor determined in Table 9.18. In the worst
case the embedding from one RFD to a VFD is linear and multiplies the size of the original RFD by
a factor 8. Conversely translating a VFD to an RFD is cubic since the expansion factor of translation
for a card-node is quadratic. The situation is similar as the one for OFD in Table 9.21.

�

The results summarised in Figure 9.13 compose. Further, the inclusions of Theorem 8.3.1 can
be used, as well as the linear translations between a textual and the corresponding graphical variant.
Thus, at this point, we have essentially three classes of succinctness:

1. (C)OFD is the reference class of succinctness for FDs.

2. RFD is cubically-as succinct as (C)OFD, due to the use of or-nodes.

3. EFD is cubically-as succinct as RFD, due to the use of card-nodes.
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Instead of . . . write . . .

n !(n) = cardm [µ..!]

f1 fm...

n = (i,j) !(n) = xor2

(i,j)- (i,j)+!((i,j)-) = and2 !((i,j)+) = and2

(i+1,j)¬ fi+1 (i+1,j+1) fi+1

0 ! i ! m

... ...

n !(n) = card2 [1..2]

f1 f2
!(f1) = x !(f2) = y

(0,0)

(0,0)- (0,0)+

(1,0)- (1,0)+

(1,0) (1,1)¬ f1 f1

(1,1)- (1,1)+

!((i,j)) = xor2

!((i,j)+) = and2

!((k,l)) = xor2

!((i,j)-) = and2

(2,2)f2

t

¬ f2(2,1)f2¬ f2 (2,0)

tf
!(f2) = y

!(f1) = x

n !(n) = cardm [µ..!]

f1 fm...

n = (i,j) !(n) = xor2

(i,j)- (i,j)+!((i,j)-) = and2 !((i,j)+) = and2

(i+1,j)¬ fi+1 (i+1,j+1) fi+1

0 ! i ! m

... ...

n !(n) = card2 [1..2]

f1 f2
!(f1) = x !(f2) = y

(0,0)

(0,0)- (0,0)+

(1,0)- (1,0)+

(1,0) (1,1)¬ f1 f1

(1,1)- (1,1)+

!((i,j)) = xor2

!((i,j)+) = and2

!((k,l)) = xor2

!((i,j)-) = and2

(2,2)f2

t

¬ f2(2,1)f2¬ f2 (2,0)

tf
!(f2) = y

!(f1) = x

Table 9.22: Translation: card2[1..2] into COFD

(C)OFD EFD,VFD

O(n)

O(n3)

RFD

O(n) O(n3) O(n)

O(n3)

Figure 9.13: FFD Succinctness results
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9.2 Boolean Circuits (BC) Analysis

BCs are a well-known formal language defined back in 1937 in (Shannon, 1937, 1938; Vollmer,
1999). BCs represent combinatorial Boolean electronic Circuits. The BC illustrated in Figure 9.14
is composed of OR and AND gates and has three possible inputs A, B, C. This circuit corresponds to
a BF obtained by composing BF at the output of each gate until we reach the final gate, that is Q in
our example. The resulting BF of this circuit is Q = OR(AND(A, B), AND(AND(B,C),OR(B,C))
or using Boolean addition and multiplication Q = AB + BC(B + C). This formula can be easily
simplified to Q = B(A + C). BCs are exponentially-as succinct as BFs since BCs allow sharing of
their inputs.

A

B

C

AND

AND

AND

OR

OR Q

Figure 9.14: Boolean Circuit example

Syntactically, BCs are finite acyclic graphs with nodes called “gates” and edges called “wires”.
Each gate bears a Boolean operator (AND,OR,NOT,NAND). Semantically, a gate computes the
value of its operator op applied to the Boolean values ei carried by its input links: opk(e1, . . . , ek).
This output value is copied to all its output links. For instance, the concrete syntax of a NAND gate
is illustrated in the left part of Table 9.23. Its semantics is provided by the BF x = m | n, see the right
part of Table 9.23. As we will see further (Section 9.2.4), It has already been proved by (Sheffer,
1913) that BCs with only NAND gates are expressively complete. Hence all the other gates can be
expressed with NAND gates.

Since we have a first understanding on BC, we can now compare it to FFD according to the
method proposed in Chapter 7. The first step of the method consists in investigating BC’s definition.
We first need to determine whether BC’s definition is formal and whether it follows the principles
described in Chapter 4. Although, BC is formally defined in (Shannon, 1937, 1938; Vollmer, 1999),
they require minor adaptations to fit what is advocated in Chapter 4. Hence, we redefine it in
Section 9.2.1. Then, BC and FFD semantic domains are related (Section 9.2.2) and their semantics
are compared (Section 9.2.3). Finally, we study BC expressiveness (Section 9.2.4), embeddability
(Section 9.2.5) and succinctness (Section 9.2.6).
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Concrete Syntax Semantics

m

n

x

m n x = m | n
T T F
T F T
F T T
F F T

Table 9.23: NAND-gate and truth values

9.2.1 BC Formal Definition

We formally redefine BC according to the principles described in Chapter 4. As illustrated in Fig-
ure 9.15, the BC language is defined with a syntactic domain (LBC), a semantic domain (SBC) and a
semantic function (MBC) that are defined respectively in Sections 9.2.1.2, 9.2.1.3 and 9.2.1.4. One
way to define the semantics of BC is to map their syntactic domain (LBC) to Propositional Logic’s
syntactic domain (LPr) and then to simply reuse Propositional Logic semantic domain (SPr) and
function (MPr). Defining a language by a translation to another language is a common practice.
However, this definition is only valid if we map to a language that is itself formally defined. There-
fore, we first need to recall in Section 9.2.1.1 the definition of Propositional Logic according to
Harel and Rumpe’s principles. Then, we provide the translation (BF : LBC → LPr) between LBC

and LPr.

9.2.1.1 Propositional Logic (Pr) Formal Definition

Propositional Logic is a well-known formal language defined back in 1853 by Boole in his sem-
inal Book: “The Laws of Thought” (Boole, 1853). We formally recall it according to Harel and
Rumpe’s principles. Therefore, the syntactic domain, semantic domain and semantic function of
Propositional Logic are defined in the following sections.

9.2.1.1.1 Propositional Logic Syntactic Domain (LPr)

Definition 9.2.1 (Propositional Logic Syntactic Domain (LPr)) The language of Propositional Logic
LPr is defined as a tuple (V,Val,O,R) where

• V is the set of logical variables that are themselves propositional formulae;

• Val is the set of values, Val={T, F} where T and F are propositional formulae;

• O is the set of allowed logical operators between logical variables (V), O={¬,∨,∧,⊕,⇒,⇔};

• R is the set of rules to satisfy when using logical operators (O). A propositional formula φ
must be of the following form:

φ ::= a|φ1 ∨ φ2|φ1 ∧ φ2|φ1 ⊕ φ2|¬φ1|φ1 ⇔ φ2|φ2 ⇒ φ2
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MBC!d"

MPr

LBC SBC = SPr = PP(V)

d

MBC = MPr # BF

Propositional

Logic (Pr)

BF

Figure 9.15: BC Semantics

where a ∈ V and φ1, φ2 are themselves propositional formulae.

9.2.1.1.2 Propositional Logic Semantic Domain (SPr)

Definition 9.2.2 (Propositional Logic Semantic Domain (SPr)) The semantic domain of Pr is math-
ematically defined as a set of propositional interpretations, themselves sets of logical variables.
Hence, SPr = P(P(V)).

9.2.1.1.3 Propositional Logic Semantic Function (MPr)

Definition 9.2.3 (Propositional Logic Semantic function (MPr)) The semantics of a propositional
formula p f ∈ LPr is given by the functionMPr : LPr → P(P(V)). The semantics of a propositional
formula is a set of models, where a model is an interpretation that satisfies the formula, and an
interpretation (I) is a set of logical variables (that are deemed TRUE). Satisfaction (�) is defined
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by:

I � a ≡ a ∈ I (9.10)

I � φ1 ∧ φ2 ≡ I � φ1 and I � φ2 (9.11)

I � φ1 ∨ φ2 ≡ I � φ1 or I � φ2 (9.12)

I � φ1 ⊕ φ2 ≡ I � φ1 xor I � φ2 (9.13)

I � ¬φ1 ≡ I � φ1 is false (9.14)

I � φ1 ⇔ φ2 ≡ I � φ1, I � φ2 are equal (9.15)

I � φ1 ⇒ φ2 ≡ I � φ1 is false, or I � φ2 (9.16)

Satisfaction is defined according to the truth table of each logical operator. The classical truth
tables are recalled in Table 9.24.

α β ¬α α ∧ β α ∨ β α ⊕ β α⇒ β α⇔ β

T T F T T F T T
T F F F T T F F
F T T F T T T F
F F T F F F T T

Table 9.24: Propositional Logic: Truth Table

9.2.1.2 BC Syntactic Domain (LBC)

Definition 9.2.4 (Boolean Circuit Syntactic Domain (LBC)) A BC is defined as a tuple:
(N, E, V, In, Out, G, λ) where

• N is the set of Nodes where N = V ∪G;

• V is the set of Boolean Variables;

• G is the set of Gates;

• E ⊆ N×N is the multiset of edges that relate Nodes. (n, n′) ∈ E is alternatively noted n→ n′;

• In ⊂ V is the set of input Boolean Variables. ∀n ∈ In · (n′, n) < E;

• Out ∈ V is the output Boolean Variable. ∀n ∈ N · (Out, n′) < E;

• λ is a labelling function that labels (1) elements of V by a Boolean variable v (v ∈ V) or the
constant TRUE and (2) elements of G by a Boolean operator (NOT, XOR,OR, AND,NAND);

• E forms a DAG. @n1, ..., nk ∈ N.n1 → . . .→ nk → n1;

• A Boolean variable appears only once in a BC. ∀n, n′ ∈ V · λ(n) = λ(n′)⇒ n = n′;

• Only one incoming edge is accepted for non input Boolean variables. ∀n ∈ V∧\In.]{(n′, n)|(n′, n) ∈
E} = 1;
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• Only one incoming edge is accepted for gates labelled with the NOT operator. ∀n ∈ G ·λ(n) =
NOT ⇒ ]{(n′, n)|(n′, n) ∈ E} = 1.

9.2.1.3 BC Semantic Domain (SBC)

Definition 9.2.5 (BC Semantic Domain (SBC)) The semantic domain of BC is mathematically de-
fined as the semantic domain of Propositional Logic that is a set of sets of logical variables noted
P(P(V)).

9.2.1.4 BC Semantic Function (MBC)

Definition 9.2.6 (Boolean Circuit Semantic Function (MBC)) The semantics of a BC is given by
the functionMBC : LBC → P(P(V)). This function is the composition of the translation from BC
to Propositional Logic (BF ) and the semantic function of Propositional Logic (MPr), that is,MBC

=MPr ◦ BF . To translate bc (bc ∈ LBC) to Propositional Logic, each node n of bc computes a BF
according to BF where, BF (bc) = BF (Out) and

• if n ∈ In, then BF (n) = λ(n);

• if n ∈ V \ In, then BF (n) = BF (n′) where (n′, n) ∈ E;

• if n ∈ G and its incoming edges are (n1, n) . . . (nm, n), thenBF (n) = λ(n)(BF (n1), . . . ,BF (nm)).

Example 9.2.1 Figure 9.16 illustrates our BC formalisation. This BC, named bc, represents the
translation of a NOT gate into its equivalent “NAND” gate. Indeed, Sheffer has shown that NOT
p is equivalent to NAND(p, p) (Sheffer, 1913).

m

n
x

Qp g
T

Figure 9.16: BC Semantics Example

According to Definition 9.2.1.3, bc = (N, E, V, In, Out, G, λ) where

• N = {p,T, g,Q};

• E = {(p,T ), (T, g), (T, g), (g,Q)}+;

• V = {p,T,Q};

• In = {p};

• Out = Q;
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• G = {g};

• λ(p) = p, λ(T ) = TRUE, λ(g) = NAND, λ(Q) = Q.

According to Definition 9.2.1.4, BF (bc) = BF (Q) = BF (g) = NAND(BF (T ),BF (T )) =
NAND(BF (p),BF (p)) = NAND(p, p).

9.2.2 BC Abstraction Function

In Section 9.2.1, we have recalled and formalised BC’s semantics. BCs and FDs are closely related
but they do not share the same semantic domain. Hence, we cannot compare them directly.

1. On the one hand BCs are translated to propositional formulae and SBC consists of set of
sets of logical variables (P(P(V))) where logical variables may correspond to primitive or
non-primitive features.

2. On the other hand SFFD consists of a set of sets of primitive features (P(P(P))).

However, the two semantic domains are related by an obvious abstraction function (R) (Fig-
ure 9.17).

LBC

d

LFFD

d’

BC to FFD

MBC!d"

SBC = PP(V)

MFFD!d’’"

MBC

MFFD

R

SFFD = PP(P)

 MFFD !d’" = R(MvDFD !d") 

Figure 9.17: Relating BC and FFD

This abstraction function (R) consists in discarding the non-primitive features from the se-
mantic domain. The set of logical variables P(V)) ∈ SPr representing both primitive and non-
primitive features can be reduced to a set of primitive features by simply keeping the primitive
ones: R(P(V))) = {c ∩ P|c ∈ P(V))}.
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9.2.3 BC Semantic Equivalence

Once the semantic domains have been related by the abstraction function R we can check if BCs
and FFDs are semantically equivalent (Theorem 9.2.1).

Theorem 9.2.1
∀d : d ∈ LBC :MFFD[[(d′)]] = R(MBC[[d]]) where d′ is the FFD resulting from the translation of d
according to the translation defined in Table 9.26.

Proof For simplicity, we consider BC with only NAND gates since we know that they are expres-
sively complete (see Section 9.2.4). Each gate, contained in a BC, can be translated into NAND
gates (Sheffer, 1913). Once we have an embedding between NAND gates and FFD, we can extend
this result to all the other gates as NAND is expressively complete (see Section 9.2.4). This means
that each BC can be translated linearly to a BC containing only NAND gates.

Since both BC and FFD semantics are node-base semantics, it remains to provide a translation
for NAND gates that is an embedding between BC and FFD. We define this translation in Table 9.26
between BC and RFD (RFD ∈ FFD). We know that this translation is node-controlled since the
translation is provided for NAND gates. In addition, the translation should preserve the original
semantics of BC. Once the NAND gate has been translated into a RFD according to this translation
(Table 9.26), we check the equivalence between the BFs given by BC and FFD semantics.

Table 9.26 illustrates the embedding defined between a NAND gate and its corresponding RFD.
This embedding is the result of the composition of two translations.

1. The first one translates a NAND gate into BF in CNF composed of three clauses (C1,C2,C3),
see Table 9.25.

2. The second one translates this non existentially quantified formula into its corresponding RFD
according to the translation provided in Theorem 9.1.1 but with the set of primitive features
(P) limited to its input and output variables (here, { x,m, n }). The reader should keep in mind
that nodes in FFD (and in Table 9.26) are named with strings. Hence, when a node is called
“¬x′′, this simple node name should not be confused with a BF.

Instead of . . . write . . .

m

n

x

[C1] (¬x ∨ ¬m ∨ ¬n)∧
[C2] (x ∨ m)∧
[C3] (x ∨ n)

Table 9.25: Translation: NAND gate into Propositional Logic

On the left of Table 9.27, we present a NAND gate and its corresponding RFD. On the right of
the table, we provide their corresponding BFs respectively given by BC and FFD semantics. Several
points should be underlined when checking equivalence between these BFs:



9.2. Boolean Circuits (BC) Analysis 189

Instead of . . . write . . . Expansion
Factor

m

n

x

r

C1 C2 C3

¬ x ¬ m

!(r) = and4

!(C1) = or3

¬ n

x m n

t

!(C2) = or2

!(C3) = or2

!(x) = and0

!(m) = and0

!(n) = and0

!(t) = and0

!(¬ x) = xor1

!(¬ m) = xor1

!(¬ n) = xor1

6

Table 9.26: Embedding: BC into RFD

1. Non primitive features (r, t,C1,C2,C3) and generated auxiliary symbols (T1, . . . ,T6) are ex-
istentially quantified in FFD semantics. Therefore, only x,m, n are not quantified as P =
{x,m, n}.

2. Once we know that r is always TRUE and that λ(r) = and-node we know that C1,C2,C3 and
t are also TRUE. Hence, r ∧ (¬r ∨C1) ∧ (¬r ∨C2) ∧ (¬r ∨C3) ∧ (¬r ∨ t) can be eliminated.
In addition, the three next lines

• (¬C1∨ “¬x”∨ “¬m”∨ “¬n”)∧

• (¬C2 ∨ x ∨ m)∧

• (¬C3 ∨ x ∨ n)

can be reduced to

• (“¬x”∨ “¬m”∨ “¬n”)∧

• (x ∨ m)∧

• (x ∨ n)

3. Previously, we have seen that the negation of a node n written “¬n” (“¬n” is the name of the
feature not a BF) is translated into a xor2-node with two sons: the original node n and the
TRUE node t. The node t is always evaluated to TRUE and corresponds to an and0-node (i.e
with no son) that is directly related to the root. As t is always TRUE, ¬n is only TRUE when
n is FALSE. According to Table 9.2, the translation of a xor2-node g with two sons x and y
gives the following BF where T1 and T2 are auxiliary symbols generated by the encoding of
a card2[1..1] node:

• (¬x ∨ T1 ∨ ¬g)∧

• (¬y ∨ ¬T1 ∨ ¬g)∧

• (¬x ∨ T2 ∨ ¬g)∧

• (¬y ∨ ¬T2 ∨ ¬g)
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Once one of its son always evaluates to TRUE, let’s say y is the TRUE node (hence y = t
evaluates to TRUE), then we know that x, T1 and T2 evaluate to FALSE. Consequently, x
evaluates to FALSE to satisfy the negation of the node x that corresponds to the node g named
“¬x′′. Hence, “¬x”∨ “¬m”∨ “¬n” is equivalent to ¬x ∨ ¬m ∨ ¬n.

NAND BC semantics

m

n

x
(¬x ∨ ¬m ∨ ¬n)∧
(x ∨ m)∧
(x ∨ n)

NAND FFD semantics

r

C1 C2 C3

¬ x ¬ m

!(r) = and4

!(C1) = or3

¬ n

x m n

t

!(C2) = or2

!(C3) = or2

!(x) = and0

!(m) = and0

!(n) = and0

!(t) = and0

!(¬ x) = xor1

!(¬ m) = xor1

!(¬ n) = xor1

∃r, t,C1,C2,C3, “¬x”, “¬n”, “¬m”,
T1,T2,T3,T4,T5,T6
r ∧ (¬r ∨C1) ∧ (¬r ∨C2)∧
(¬r ∨C3) ∧ (¬r ∨ t)∧
(¬(C1∨ “¬x”∨ “¬m”∨ “¬n”)∧
(¬C2 ∨ x ∨ m)∧
(¬C3 ∨ x ∨ n)∧
(¬“¬x”∨¬x ∨ T1)∧
(¬ “¬x”∨¬t ∨ ¬T1)∧
(¬ “¬x”∨x ∨ T2)∧
(¬“¬x”∨t ∨ ¬T2)∧
(¬“¬m”∨¬m ∨ T3)∧
(¬“¬m”∨¬t ∨ ¬T3)∧
(¬“¬m”∨m ∨ T4)∧
(¬“¬m”∨t ∨ ¬T4)∧
(¬“¬n”∨¬n ∨ T5)∧
(¬“¬n”∨¬t ∨ ¬T5)∧
(¬“¬n”∨n ∨ T6)∧
(¬“¬n”∨t ∨ ¬T6)

Table 9.27: NAND: BC vs. FFD Semantics

�

9.2.4 BC Expressiveness Analysis

BCs are expressively complete and self-embeddable. BCs with only NAND gates are expressively
complete (Sheffer, 1913). The other gates can be embedded into NAND gates (here noted “|”) as
follows (Sheffer, 1913):

• NOT p is equivalent to p | p;
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• p AND q is equivalent to (p | q) | (p | q);

• p OR q is equivalent to (p | p) | (q | q);

• p XOR q is equivalent to (p | (p | q)) | (q | (p | q)).

9.2.5 BC Embeddability Analysis

In Section 5.3, we proposed a definition of graphical embeddability (Definition 5.3.9) that gener-
alises the definition of embeddability for context-free languages. Given this definition, we need to
look at the abstract syntaxes of FFD and BC to study their embeddability.

An embedding between BC and FFD has been already given in Table 9.26. Hence, BCs are em-
beddable into RFDs but not conversely. Indeed, the non-primitive features contained in FDs imply
that intermediate symbols should be added within the corresponding Propositional Logic formula or
BC. Therefore, the formula of the circuit should be quantified existentially. In addition, BCs are not
embeddable into Propositional Logic since variable sharing is not allowed in propositional formula.
Hence, the translation is not linear.

9.2.6 BC Succinctness Analysis

Succinctness (Definition 5.4.1) actually allows comparing the size of the diagram before and after
translation. By definition, whenever there is an embedding, there also exists a linear node-controlled
translation. As illustrated in Table 9.26, the NAND gate contains 1 nodes and 3 edges while the
corresponding RFD contains 8 nodes and 17 edges. The size of the BC with only NAND gates
is thus multiplied by a factor 6 n where n is the number of NAND gates in the BC. Hence, RFD
≤ O(6.BC). Conversely, BC should be quantified existentially to take into account non-primitive
features. Hence, BC ≤ O(2RFD).

In the end, BC is linearly-as succinct as RFD while RFD is exponentially-as succinct as BC. As
illustrated in Figure 9.18, these succinctness results compose with the previous ones.

BC

(C)OFD EFD,VFD

O(2n)

O(n)

O(n)

O(n3)

RFD

O(n) O(n3) O(n)

O(n3)

Figure 9.18: BC Succinctness results
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9.3 van Deursen et al. Language (vDFD) Analysis

9.3.1 vDFD Formal Definition

van Deursen and Klint have formalised in (van Deursen and Klint, 2002) a FD language called
vDFD according to our naming convention. The definition of vDFD is based on the Language
Specification Formalism ASF+SDF (Brand et al., 2001) and its “meta-environment” tool. ASF and
SDF formalisms are intended to describe the syntax and semantics of computer-based formal lan-
guages and therefore are in line with Harel and Rumpe’s principles (Chapter 4). Syntax Definition
Formalism (SDF) allows defining simultaneously both languages concrete and abstract syntaxes.
Algebraic Specification Formalism (ASF) allows defining language abstract syntax and semantics
based on conditional equations and rewriting rules.

The primary objective of van Deursen and Klint was to reason on FD using a textual represen-
tation rather than a graphical one. Further requirements for this representation were (van Deursen
and Klint, 2002):

1. to contain all the information contained in the graphical form,

2. to be suited for automatic reasoning.

To satisfy these requirements, the authors define the concept of feature (Definition 9.3.1) and
propose a grammar for a feature description language (vDFD) (Definition 9.3.3). Finally, they
provide rewriting rules to define vDFD semantics. Thus, they define a feature diagram algebra with
various sets of rewriting rules manipulating vDFD:

1. Normalisation rules (N) to eliminate duplicate features and degenerate cases of the various
constructs (Definition 9.3.7);

2. Variability rules to count the number of products allowed in a FD;

3. Expansion rules (E) to expand a normalised feature expression into a disjunctive normal form
(Definition 9.3.8);

4. Satisfaction rules (S) to determine which feature expressions in disjunctive normal form sat-
isfy the feature constraints (Definition 9.3.9).

These rewriting rules are used to check the consistency of the representation and to reach a
normal form (Definition 9.3.5). N and E are used to generate a normal form (syntactic consistency).
S are used to check constraints satisfaction (semantic consistency). Other rules are used to compute
variability metrics but they are not relevant in our approach since they do not influence semantics.
The application of these rewriting rules follows a specific sequence (N ,E,S) as illustrated in Figure
9.19. However, we propose an alternative sequence of transformations (N ′,E′,S′) on vDFD that
corresponds to small corrections suggested for each of them. Once these corrections have been
added, the vDFD language definition can be described according to Harel and Rumpe’s principles.
Therefore, as illustrated in Figure 9.19, the vDFD language is defined with:
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1. A syntactic domain (LvDFD) defined as a feature description language following the SDF
grammar proposed in Definition 9.3.3;

2. A semantic domain (SvDFD) defined within a normal form (Definition 9.3.5);

3. A semantic function (MvDFD) defined as a composition of rewriting rules leading to the nor-
mal form. This rewritting rules are recalled in Definitions 9.3.7, 9.3.8 and 9.3.9).

d2

d1

d3

M

M
vDFD

!d1"

S

N

E

M
vDFD 

= M # S # E # N
 

...d4

LvDFD SvDFD = OO(A)

Figure 9.19: vDFD semantics

The next sections present vDFD comparison analysis. The main difference with our preliminary
work (Trigaux et al., 2006) is that we follow a clearer method prescribed in Chapter 7. First, we
present and discuss vDFD Syntactic Domain (LvDFD) in Section 9.3.1.1. Then we present and dis-
cuss vDFD Semantic Domain (SvDFD) and revisit vDFD Semantic Function (MvDFD) respectively
in Sections 9.3.1.2 and 9.3.1.3. Finally, we compare this revisited semantics with our own by (1)
providing in Section 9.3.2 an abstraction function between SvDFD and SFFD and (2) analysing in
Section 9.3.3 the semantic equivalence between FFD and vDFD.

9.3.1.1 vDFD Syntactic Domain (LvDFD)

The vDFD Syntactic Domain (LvDFD) is based on the concept of feature (Definition 9.3.1) and on
a feature description language (Definition 9.3.3), both proposed in (van Deursen and Klint, 2002).

Definition 9.3.1 (Feature definition) A feature definition (van Deursen and Klint, 2002, p.4) is a
feature name followed by “:” and a feature expression (Definition 9.3.2)
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Definition 9.3.2 (Feature expression) A feature expression (van Deursen and Klint, 2002, p.4) can
consist of:

• an atomic feature;

• a composite feature: a named feature whose definition appears elsewhere;

• an optional feature: a feature expression followed by ?;

• mandatory features: a list of feature expressions enclosed in all( );

• alternative features: a list of feature expressions enclosed in one-of ( );

• non-exclusive selection of features: a list of feature expressions enclosed in more-of( );

• a default feature value: default = followed by an atomic feature;

• features of the form ..., indicating that a given set is not completely specified.

Definition 9.3.3 (vDFD Grammar) A vDFD Grammar (van Deursen and Klint, 2002, p.6) is de-
fined by:

[A − Z][a − zA − Z0 − 9]∗ → FeatureName
[a − z][a − zA − Z0 − 9]∗ → AtomicFeature
FeatureDefinition*
Constraint* → FeatureDiagram
FeatureName:
FeatureExpr → FeatureDefinition
{ FeatureExpr , }+ → FeatureList
all(FeatureList) → FeatureExpr
one-of (FeatureList) → FeatureExpr
more-of (FeatureList) → FeatureExpr
FeatureName → FeatureExpr
AtomicFeature → FeatureExpr
FeatureExpr ? → FeatureExpr
default = AtomicFeature → FeatureExpr
... → AtomicFeature
DiagramConstraint → Constraint
UserConstraint → Constraint
AtomicFeature requires
AtomicFeature → DiagramConstraint
AtomicFeature excludes
AtomicFeature → DiagramConstraint
include AtomicFeature → UserConstraint
exclude AtomicFeature → UserConstraint
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van Deursen and Klint have clearly defined vDFD Syntactic Domain (LvDFD) and the various
operations (all, one-of, more-of, ?) to manipulate the allowed expressions. In terms of FFD, we
understand LvDFD as an LFFD(DAG, and ∪ xor ∪ or ∪ {opt1}, ∅, CR′) where CR′ ::= p1(requires |
excludes)p2 | (include | exclude)p. Therefore, the translation from LvDFD operators to LFFD

operators is immediate (Table 9.28).

vDFD operators FFD operators
all → and
one-of → xor
more-of → or
? → opt1

Table 9.28: vDFD and FFD operators

However, vDFD is a restricted DAG since the different operators construct a tree, except for the
leaves that can be shared by several parents. In addition, specific constraints have been added such
as “include f” which means that f is common to all products. Therefore LvDFD ∈ LFFD with two
additional syntactic rules: one to allow new constraints of the form “include f” and “exclude f”
and a second to restrict feature sharing to the leaves of the tree, see Definition 9.3.4.

Definition 9.3.4 (LvDFD as LFFD) LvDFD is LFFD(DAG, and ∪ xor ∪ or ∪ {opt1}, ∅, CR′)
(N, P, r, λ,DE,CE,Φ) where:

• CR′ ::= f1(requires | excludes) f2 | (include | exclude) f

• ∀n1, n2, n3 ∈ N.n1→ n3 ∧ n2→ n3 ∧ n1 , n2 =⇒ @n4 ∈ N.n3→ n4

9.3.1.2 vDFD Semantic Domain (SvDFD)

All the reasoning proposed by the authors is based on a disjunctive normal form (Definition 9.3.5)
that explicitly lists all possible atomic feature combinations. The purpose is to reduce any vDFD
expression to a new expression in a Disjunctive Normal Form that indicates which list of atomic
features is a member of the product line. Therefore, this normal form determines SvDFD. SvDFD

is defined as ordered lists of ordered lists of atomic features where atomic features corresponds to
leaf features (Definition 9.3.6). This semantic domain suggests that the order of apparition in all()-
expressions is important. For instance, the disjunctive normal form one-of(all( f2, f1), all( f1, f2))
where f1, f2 ∈ A admits two different products all( f1, f2) and all( f2, f1). In addition only atomic
features are relevant, it means that only the leaves of the DAG are taken into account.

Definition 9.3.5 (Disjunctive Normal Form) A disjunctive normal form (van Deursen and Klint,
2002, p.9) is a one-of feature expression with only all()-expressions as arguments themselves
with only atomic features as arguments. A disjunctive normal form is an expression of the form:
one-of(all( f11, . . . , f1n1), . . . , all( fm1, . . . , fmnm))
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This Disjunctive Normal Form follows the same principles that the FFD Normal Form (Defi-
nition 9.1.5). Indeed, each product is represented within an all()-expression and all products are
included in an one-of-expression. However, their purpose is different. The Disjunctive Normal
Form is used to determine the semantics of any vDFD while the FFD Normal Form is used as a tool
to prove FD expressiveness results.

Definition 9.3.6 (vDFD Semantic Domain (SvDFD)) The semantic domain of vDFD is mathemat-
ically defined as a product line. A product line is an ordered list of products, i.e., any element of
PL = O(O(A)) where

• A is a set of atomic features.

• O(A) is an ordered list of A also called a product.

• O(O(A)) is an ordered list of ordered lists of atomic features (A).

9.3.1.3 vDFD Semantic Function (MvDFD)

The semantics of any vDFD is provided by a series of rewriting rules. These rewriting rules suc-
cessively transform the abstract syntax of the vDFD to the disjunctive normal form. Once this form
is reached, satisfaction rules (S ) are applied to eliminate products that do not satisfy the specified
constraints. Finally, the mapping (M) to SvDFD is immediate. Indeed, the leaves of the normal
form corresponds to the atomic features and these atomic features are gathered in a specific order in
an all()-expression that corresponds to a product. This leads to an ordered list of ordered lists of
atomic features, noted O(O(A)).

This Disjunctive Normal Form is obtained by applying successively normalisation (N) and
expansion rules (E). For instance, the purpose of rules (N2), (N8) and (E4) are:

• (N2) removes duplicate features;

• (N8) transforms a one-of -expression containing one optional feature into an optional one-of
-expression;

• (E4) removes more-of -expression all( )-expression by translating an all( )-expression
containing a more-of -expression into three expressions: one with the first alternative, one
with the first alternative and the remaining more-of -expression, and one with the remaining
more-of -expression.

In Figure 9.20, we translate a diagram ∈ LFFD into LvDFD and show which rules are applied
to reach the disjunctive normal form. The first rule to be applied is E1 that translates an all( )-
expression containing an optional feature ( f 7?) into two separated cases: one with (all( f6, f7, f8))
and one without (all( f6, f8)). Then the rule E3 is applied several times to translate an all( )-
expression containing a one-of -expression in two separated cases: one with the first alternative and
one with the one-of -expression with the first alternative removed. In the end, we have a disjunctive
normal form with six all( )-expressions that will determine the semantics of this vDFD.

Once the Disjunctive Normal Form is obtained, satisfaction rules (Definition 9.3.9) are applied.
If no constraint is imposed (Cs is empty) to the feature expression then (S9) is called. Otherwise,
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Figure 9.20: vDFD example

binary constraints (requires, excludes) and unary constraints (include, exclude) are respec-
tively handled by :

• (S1) and (S2) for excludes;

• (S3) and (S4) for requires;

• (S5) and (S6) for include;

• (S7) and (S8) for exclude.

For instance, the rule S6 defines that the sat function must return FALSE if the constraint
Include f is applicable and if the atomic feature f is not an element of the FeatureExpr Ft. When
the sat function returns FALSE for an all( )-expression this expression and therefore its corre-
sponding product are removed.

These rewriting rules are defined in the following. To simplify their definitions the variable
naming convention (Table 9.29) proposed in (van Deursen and Klint, 2002) and the following
functions (not explicitly defined in (van Deursen and Klint, 2002)) are used :

• isElement : AtomicFeature × FeatureExpr→B that determines whether the AtomicFeature
is contained in the FeatureExpr or not.

• sat : FeatureExpr × Constraints → B that determines whether the FeatureExpr satisfies
the Constraints or not.
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Meta-Variable Type
F FeatureExpr
Fs,Fs’,Fs” {FeatureExpr “,”}*
Ft {FeatureExpr “,”}+
fi AtomicFeature
C Constraint
Cs,Cs’ Constraint*

Table 9.29: Variable naming conventions adapted from (van Deursen and Klint, 2002, p.7)

Definition 9.3.7 (Normalization rules) The set of normalisation rules (van Deursen and Klint,
2002, p.7) is N = {N1, . . . ,N12}:

(N1) Fs, F, Fs’, F?, Fs” = Fs, F, Fs’, Fs’
(N2) Fs, F, Fs’, F, Fs” = Fs, F, Fs’, Fs”
(N3) F?? = F?
(N4) all(F) = F
(N5) all(Fs, all(Ft), Fs’) = all(Fs, Ft, Fs’)
(N6) one-of ( F ) = F
(N7) one-of (Fs, one-of (Ft), Fs’) = one-of (Fs, Ft, Fs’)
(N8) one-of (Fs, F?, Fs’) = one-of (Fs, F, Fs’)?
(N9) more-of (F) = F
(N10) more-of (Fs, more-of (Ft), Fs’) = more-of (Fs, Ft, Fs’)
(N11) more-of (Fs, F?, Fs’) = more-of (Fs, F, Fs’)?
(N12) default = A = f

Definition 9.3.8 (Expansion rules) The set of expansion rules (van Deursen and Klint, 2002, p.9)
is E = {E1, . . . ,E4}:

(E1) all(Fs, F?, Ft) = one-of (all(Fs, F, Ft), all(Fs, Ft))
(E2) all(Ft, F?, Fs) = one-of (all(Ft, F, Fs), all(Ft, Fs))
(E3) all(Fs, one-of (F, Ft), Fs’) = one-of (all(Fs, F, Fs’), all(Fs, one-of (Ft), Fs’))
(E4) all(Fs, more-of (F, Ft), Fs’) = one-of (all(Fs, F, Fs’),

all(Fs, F, more-of (Ft),Fs’), all(Fs, more-of (Ft), Fs’))

Definition 9.3.9 (Satisfaction rules) The set of satisfaction rules (van Deursen and Klint, 2002,
p.13) is S = {S1, . . . ,S9}, where | means OR:

(S1)
isElement( f2, Fs) | isElement( f2, Fs′) = true

sat(all(Fs, f1, Fs′), Cs f1 excludes f2 Cs′) = f alse

(S2)
isElement( f2, Fs) | isElement( f2, Fs′) = f alse

sat(all(Fs, f1, Fs′), Cs f1 excludes f2 Cs′) = sat(all(Fs, f1, Fs′), Cs Cs′)
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(S3)
isElement( f2, Fs) | isElement( f2, Fs′) = f alse

sat(all(Fs, f1, Fs′), Cs f1 requires f2 Cs′) = f alse

(S4)
isElement( f2, Fs) | isElement( f2, Fs′) = true

sat(all(Fs, f1, Fs′), Cs f1 requires f2 Cs′) = sat(all(Fs, f1, Fs′), Cs Cs′)

(S5)
isElement( f , Ft) = true

sat(all(Ft), Cs include f Cs′) = sat(all(Ft), Cs Cs′)

(S6)
isElement( f , Ft) = f alse

sat(all(Ft), Cs include f Cs′) = f alse

(S7)
isElement( f , Ft) = true

sat(all(Ft), Cs exclude f Cs′) = f alse

(S8)
isElement( f , Ft) = f alse

sat(all(Ft), Cs exclude f Cs′) = sat(all(Ft), Cs Cs′)

(S9) sat(all(Ft),Cs) = true

Definition 9.3.10 (vDFD Semantic function) The semantics of a d ∈ LvDFD is a functionMvDFD :
LvDFD → O(O(A)) whereMvDFD[[d]] =M(S(E(N(d)))).

Nevertheless, we have discovered undesirable semantics due to missing rules. Consequently,
we provide some additional rules and justify them (Figure 9.21):

• The rule in N1 is not sufficient to avoid feature lists that combine mandatory and optional
features. Indeed, a feature list such as Fs, F?, Fs′, F, Fs′′ (where F? and F are switched
wrt the rule N1) would be considered normalised. The set of normalisation rules should be
corrected by adding one simple rule (Definition 9.3.11);

• The set of expansion rules is not sufficient to produce a correct disjunctive normal form.
Indeed, terms of the form f or one-of(Ft) or all(Ft) are allowed. In order to respect the
intentions of the authors we extend E (Definition 9.3.12);

• The satisfaction function (sat) is never explicitly called. Consequently, we propose one rule
(Definition 9.3.13) that calls this function and eliminates invalid products (products that do
not satisfy the constraints).

Definition 9.3.11 (Normalization rules) The normalisation rules are a set of rulesN ′ =N ∪{N13}

where

(N13) Fs, F?, Fs′, F, Fs′′ = Fs, F, Fs′, Fs′′
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Figure 9.21: vDFD revisited semantics

Definition 9.3.12 (Expansion rules) The expansion rules are a set of rules E′ = E ∪{E5,E6,E7}

where

(E5) f = all( f )

(E6) one-of(F, Fs) = one-of(all(F), one-of(Fs))

(E7) all(Ft) = one-of(all(Ft))

Definition 9.3.13 (Satisfaction call rule) The satisfaction rules are a set of rules S′ = S ∪{S10}

where

(S10)
sat(all(Fs),Cs)

sat(one-of(Fs′, all(Fs), Fs′′),Cs) = sat(one-of(Fs′, Fs′′),Cs)

Having revisited van Deursen and Klint’s rewriting rules we need to redefine the semantics
function (Definition 9.3.14).

Definition 9.3.14 (Revisited vDFD Semantic function) The revisited semantic of a d ∈ LvDFD is
a functionM′vDFD : LvDFD → O(O(A)) whereM′vDFD[[d]] =M(S′(E′(N ′(d)))).
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9.3.2 vDFD Abstraction Function

The main difference between vDFD and FFD is that they work with different semantic domains:

1. On the one hand, the semantics of vDFD translates a vDFD expression into another expression
in disjunctive normal form that is an ordered list of ordered lists of atomic features O(O(A)).

2. On the other hand, the semantic domain of FFD is a set of sets of primitive features P(P(P)).

M
vDFD

!d1"M
vDFD

LvDFD SvDFD = OO(A)

LFFD

T

d1

M
FFD
!d1’’"

SFFD = PP(P)

M
FFD

d1’

d1’’

vDFD to FFD

 M
FFD 
!T(d1’)" = A(M

vDFD 
!d1") 

A

Figure 9.22: Relating vDFD and FFD

Although the semantic domains are different, they can be easily related by an abstraction func-
tion (Figure 9.22). Indeed, in (van Deursen and Klint, 2002), atomic features directly correspond
to primitive features. The succession of translations push the Atomic features to the leaves of the
tree. Hence, the remaining difference is the one between the mathematical structures list and set.
The order of atomic features is important in van Deursen and Klint’s semantics. For instance, the
textual vDFD expression one-of(all( f1, f2), all( f2, f1)) contains two products: all( f1, f2) and
all( f2, f1). In FFD’s semantics, only one product would be part of PL: { f1, f2}. Consequently, we
can define an obvious abstraction function A (Definition 9.3.15) that simply abstracts away order
from van Deursen and Klint’s semantic domain and directly maps it to FFD semantic domain. We
do not know if this notion of order between features was deliberate or not, but intuitively we con-
sider that two products with the same features should be identical. However, ordering features could
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be relevant, for example, when each feature corresponds to one transformation (on code or mod-
els) (Ryan and Schobbens, 2004) and these transformations do not produce the same result if they
are applied in a different order.

Definition 9.3.15 (Semantic Domain AbstractionA)

A : O(O(A))→ P(P(P))

A(all( fn, . . . , fm), . . . , all( fn′ , . . . , fm′)) = {{ fn, . . . , fm}, . . . , { fn′ , . . . , fm′}}

9.3.3 vDFD Semantic Equivalence

van Deursen and Klint’s semantics always gives preference to inclusion in terms (not in constraints)
and thus behaves like a semantics based on edges rather than on nodes. Therefore, this abstraction
function is not sufficient to find an equivalence between FFD’s semantics and vDFD’s semantics.
However, one solution exists to obtain semantic equivalence (∀d : d ∈ LvDFD : MFFD[[T (d)]] =
A(MvDFD[[d]])). It consists (1) in translating vDFD into FFD following the embedding in Table 9.30
and then (2) applying a preliminary transformation T to it (see Figure 9.22). This transformation
T replaces each atomic feature shared by several parents with one and-node for each incoming
edge, each of these and-nodes having only one son that corresponds to an atomic feature. In our
concrete notation, the edge-based semantics is obtained by adding one mandatory circle (and-node
with one son) for each incoming edge of a shared feature. The differences between node-based and
edge-based semantics have already been discussed in Section 8.4.1 and illustrated in Figure 8.16.

9.3.4 vDFD Expressiveness Analysis

The usual way to prove that a language L2 is at least as expressive as L1 is to provide a translation
(Definition 5.2.3) from L1 to L2.

Given that and the semantic domain abstraction functionA (Definition 9.3.15), we can consider
that the S vDFD is also a product line (PL, see Definition 8.2.2). Thus, every vDFD expresses a PL.
Now, we can ask the converse question: can every PL be expressed by a vDFD? Stated otherwise:
are vDFD expressively complete?

In vDFD, we have and, xor, or and opt-nodes but we do not have DAGs, or at least a restricted
form of DAG where only the sharing of leaf nodes is allowed. Studying the expressiveness of vDFD
thus requires specific treatment. The operators that manipulate the vDFD expressions must always
have at least one operand. Indeed, in vDFD ASF specification (Table 9.3.3) a FeatureList contains
at least one FeatureExpr. Therefore, vDFD expressions without constraints are expressively in-
complete with respect to PL as the empty PL (i.e. the PL containing no product i.e. {} ) and the base
PL (i.e. the PL containing one product in which no feature has been selected i.e. {{}}) cannot be
expressed in their disjunctive normal form. If we add vDFD textual constraints, these two products
can be expressed. The empty PL can be expressed by: a normal form one-of (all(A1)) and a
constraint “exclude A1”, where A1 is an atomic feature. A base PL can be expressed by: a normal
form one-of (all(A1?)) and a constraint “exclude A1” where A1 is an atomic feature.

The consequence of this result is that we now know that vDFD equipped with constraints (at
least exclude constraints) is expressively complete. This is interesting because vDFD are supported
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by a tool environment and so in theory all FD languages with PL semantics can also be supported
by this environment, provided that forward and backward translations between vDFD and the other
languages are implemented. We now discuss the practical feasibility of these translations with the
two remaining criteria: embeddability and succinctness.

9.3.5 vDFD Embeddability Analysis

In Section 5.3, we proposed a definition of graphical embeddability (Definition 5.3.9) that gener-
alises the definition of embeddability for context-free languages. Given this definition, we need to
look at the abstract syntaxes of FFD and vDFD to study their embeddability.

All FT languages are clearly embeddable into vDFD since the difference between node-based
and edge-based semantics vanishes for FTs. Conversely vDFD is not embeddable into FT languages
since feature sharing is not allowed in FTs.

FD languages are not embeddable into vDFD since sharing of intermediate nodes is not allowed
in vDFD. However, if we consider sub-FD languages that restrict the sharing to leaves, we have
to apply a linear translation T on the whole FD to guarantee edge-based semantics. Hence, we
have an embedding from restricted RFD to vDFD and conversely an embedding from vDFD to
RFD (Table 9.30). For instance the translation of the new constraint “exclude f ” is translated in
“r excludes f ” where r is the root of the FD and similarly for “include f ”. Therefore, vDFD is
embeddable into RFD but not conversely.

Instead of . . . write . . . Expansion Factor
F? opt1-node, and0-node named F

and an edge from opt1-node to
and0-node F

3

one-of(F1, ..., Fs) xors-node 1
more-of(F1, ..., Fs) ors-node 1
all(F1, ..., Fs) ands-node 1
f1 excludes f2 f1 excludes f2 1
f1 requires f2 f1 requires f2 1
exclude f r excludes f 1
include f r includes f 1

Table 9.30: Embedding: vDFD into RFD

Embeddings are of practical relevance because they ensure that there exists a transformation
from one language to the other that preserves the whole shape of the models. This way, traceability
between the two models is greatly facilitated and tool interoperability is made more transparent.
Embedding results must however be completed by examining the blow-up caused by the change of
notation. This is what is measured by succinctness.
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9.3.6 vDFD Succinctness Analysis

Succinctness (Definition 5.4.1) actually allows comparing the size of the diagram before and after
translation. By definition, whenever there is an embedding, there also exists a linear node-controlled
translation. In this case, a vDFD produced from a tree-shaped FD is identically-as succinct as
the tree. A vDFD produced from a restricted DAG is linearly-as succinct as the latter (because
intermediate nodes and edges need to be added). Also, the translation from a vDFD to an RFD
(Figure 9.30) is linear since there exists an embedding between them.

In all those cases, the translation engines do not face tractability issues. However, for turning
unrestricted FD into vDFD, there is no embedding and all shared cases that vDFD will treat as
independent need to be precomputed. This may cause an exponential blow-up. Accordingly, this
means that one will be able to apply such transformations only to small diagrams. Therefore, vDFD
is linearly-as succinct as RFD (RFD ≤ O(vDFD)) and RFD is exponentially-as succinct as vDFD
(vDFD ≤ O(2RFD)). As illustrated in Figure 9.23, these succinctness results compose with the
previous ones.

BC

(C)OFD EFD,VFD

O(2n)

O(n)

O(n)

O(n3)

RFD

O(n) O(n3) O(n)

O(n3)

vDFD

O(2n)O(n)

Figure 9.23: vDFD Succinctness results
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9.4 Batory Language (BFT) Analysis

9.4.1 BFT Formal Definition

Batory has formalised in (Batory, 2005) a FT language called BFT according to our naming con-
vention. In order to support FD analysis and debugging, the author has proposed to connect FDs,
grammars and propositional formulae. As illustrated in Figure 9.24, BFT language is defined by
two translations mapping BFT to languages for which a formal semantics is defined or already well-
known. The first translation connect BFTs to iterative tree grammars (ITGs) (T1) and the second
to connect ITGs to propositional formulae (T2). However, this definition does not clearly fit Harel
and Rumpe’s principles (Chapter 4). Indeed, no syntactic domain has been formally defined. In
addition, this definition contains two different semantic domains and two different semantic func-
tions corresponding to the different translations. Therefore, as illustrated in Figure 9.24, two BFT
semantics are defined with:

1. A syntactic domain (LBFT ) defined as a member of LFFD;

2. A semantic domain (SITG) defined as a set of String P(P∗) and its semantic function (MBFT1)
that translates BFT to ITGs (T1).

3. A semantic domain (SPr) defined as a set of set of logical variables PP(V) and its semantic
function (MPr) that translates BFT to ITGs and ITGs to Propositional Logic (T2 ◦ T1).

We will study these translations in details, before we compare them with FFD. As we go on, the
rest of Figure 9.24 will be explained. Therefore, we propose a formal definition for ITG language
in Section 9.4.1.1 according to the informal definition provided by Batory in (Batory, 2005). The
definition of Propositional Logic have been already recalled in Section 9.2.1.1 when studying BC.

Once these definitions are provided, we define and discuss BFT Syntactic Domain (LBFT ), BFT
Semantic Domains (SITG and SPr) and BFT Semantic Functions (MITG and MPr) respectively
in Sections 9.4.1.2, 9.4.1.3 and 9.4.1.4. Finally, we compare these semantics with FFD semantics
by (1) providing in Section 9.4.2 an abstraction functions between SITG, SPr and SFFD and (2)
analysing in Section 9.4.3 the semantic equivalence between FFD and BFT.

9.4.1.1 Iterative Tree Grammars (ITGs) Formal Definition

Batory uses a new formalism called Iterative Tree Grammars (ITGs). We formally define it accord-
ing to Harel and Rumpe’s principles and to our understanding of the informal description given in
(Batory, 2005). Therefore, the syntactic domain, semantic domain and semantic function of ITGs
are defined in the following sections.

9.4.1.1.1 ITG Syntactic Domain (LITG) Iterative Grammars (IGs) are not defined by Batory,
but we understood its syntactic domain as follows:

Definition 9.4.1 (Iterative Grammar Syntactic Domain (LIG)) An iterative grammar G is a tu-
ple (v,VT,VN,R) where
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Figure 9.24: BFT semantics

• v ∈ VN is the start symbol (variously called root production, root, start production in (Batory,
2005)),

• VT is the set of terminals or tokens,

• VN is the set of Non-Terminals; VN ∪ VT is called the symbols of G,

• R is the set of rules, one per non-terminal, that are of the form h : π1| . . . |πn; where h is the
non-terminal just mentioned, and a pattern πi is a named sequence (m) of (possibly optional
or repeating) non-terminals n and (possibly optional) terminals p : πi::=(n|[n]|n∗|n+|p|[p])∗ ::
m. Above, we have underlined the meta-symbols of our meta-grammar, while non-underlined
operators actually occur in Batory’s grammars.

Tree Grammars (TGs) are defined by Batory as follows: “A tree grammar requires every token to
appear in exactly one pattern, and the name of every production to appear in exactly one pattern. The
root production is an exception; it is not referenced in any pattern.” (Batory, 2005). Two problems
exist within this definition: (1) the same pattern could occur in several rules, and (2) a token could
appear several times in the same pattern. Our definition is thus:

Definition 9.4.2 (ITG Syntactic Domain (LITG)) An iterative tree grammar (ITG) is an iterative
grammar where the start symbol occurs in no right-hand side, and each other symbol occurs exactly
once in right-hand sides: ∀s ∈ G \ {v} : ∃!(t : l; ) ∈ R : (l = π0sπ1| . . . |πk ∨ l = π0[s]π1| . . . |πk ∨ l =
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π0s∗π1| . . . |πk ∨ l = π0s+π1| . . . |πk) ∧ ∀i ∈ {1 . . . k}, s < S ymbols(πi), where S ymbols gives the
symbols appearing in a pattern.

9.4.1.1.2 ITG Semantic Domain (SITG)

Definition 9.4.3 (ITG Semantic Domain (SITG)) The semantic domain of ITG is mathematically
defined as a set of strings, noted P(P∗).

9.4.1.1.3 ITG Semantic Function (MITG) There are two ways to give this semantics, an opera-
tional semantics where derivations eventually produce a string, and a denotational semantics where
we associate a set of strings to each symbol, and the semantics of the grammar [[G]], also noted
L(G) is the denotational semantics of its start symbol [[v]]. We use the latter in Definition 9.4.4.

Definition 9.4.4 (ITG Semantic function (MITG)) The semantics of a d ∈ LITG is a function
MITG : LITG → P(P∗) whereMITG[[d]] = [[v]] where v is its start symbol and

• [[p]] = {”p”}, a terminal just denotes the set of a single string of a single character;

• [[[s]]] = [[s]] ∪ {””}, an optional symbol adds the empty string;

• [[s∗]] =
⋃

n∈N[[s]]n, where [[s]]0 = {””} and [[s]]n = [[s]].[[s]]n−1 (where . denotes string con-
catenation), a symbol iterated by ∗ can be repeated any number of times;

• [[s+]] =
⋃

n>0[[s]]n, a symbol iterated by + must be repeated at least once;

• if π = c1 . . . ck, then [[π]] = [[c1]]. . . . .[[ck]], a pattern is the concatenation of its components;

• if n : π1| . . . |πk then [[n]] = [[π1]] ∪ . . . ∪ [[πk]], a rule is the union of its patterns.

While IGs are as expressive as context-free grammars, ITGs are less expressive than regular
expressions, see Theorem 9.4.1.

Theorem 9.4.1 ITGs are less expressive than regular expressions.

Proof Indeed, any ITG can be translated into a regular expression while any regular expression
cannot be translated into ITG:

1. The translation from ITG to regular expressions is obtained by replacing each non-terminal,
except the root, by the right side of its defining rule. Since it only occurs once, this transfor-
mation is linear. We obtain v : E, where E is a regular expression where each token occurs at
most once.

2. Any language with a finite repetition, e.g. {”aa”}, cannot be expressed by ITG. Indeed, a can
only occur in one pattern πa. There, it can only occur as such or optional. All other patterns
that do not contain πa have their semantics empty or the empty string. Thus, πa can only
express a at most once. The non-terminal having πa in the right hand of its rule can only be
repeated 0, 1 or unboundedly many times.

�
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9.4.1.2 BFT Syntactic Domain (LBFT )

Batory (Batory, 2005) borrows the FD language named GPFT and already described in Section 6.3.5.
However, GPFT’s abstract syntax is not clearly defined neither in (Batory, 2005) nor in (Eisenecker
and Czarnecki, 2000). We have already clarified it and defined it as FFD (TREE, and ∪ xor ∪ or ∪
{opt1}, ∅, CR) (see Table 8.1).

Nevertheless, BFT appears to be slightly different. We understand that BFT’s abstract syntax is
FFD (TREE, and∪ xor∪or∪{opt1}, ∅, B(V)), where B is the Propositional Logic built by taking V
as logical variables and with the restriction that the primitive features must be the leaves of the tree.
One point concerning the BFT syntactic domain is unclear in (Batory, 2005). Indeed, the author
mentions outside of the main definition that or-nodes could be given a cardinality (m, n). However,
cardinalities do not occur in BFT concrete syntax as it appears in the example given. If wanted,
FFD definition can be easily accommodated by adding card or replacing or by card in NT .

9.4.1.3 BFT Semantic Domains (SBFT )

As illustrated in Figure 9.24, each BFT semantic domains correspond to the semantic domain of the
language to which BFT is mapped. Thus, the first semantic domain is ITG semantic domain SITG

(Definition 9.4.3) and the second semantic domain is Pr semantic domain SPr (Definition 9.2.2).

9.4.1.4 BFT Semantic Functions (MBFT1 andMBFT2)

As illustrated in Figure 9.24, two different semantic functions exist for BFT. The first oneMBFT1
(Definition 9.4.5) is the composition of translationT1 and ITG semantic functionMITG. The second
one MBFT2 (Definition 9.4.6) is the composition of translations T1, T2 and Propositional Logic
semantic functionMPr.

Definition 9.4.5 (First BFT Semantic function (MBFT1)) The first semantics of a BFT d ∈ LBFT

is a functionMBFT1 : LBFT → SITG whereMBFT1[[d]] =MITG ◦ T1.

Definition 9.4.6 (Second BFT Semantic function (MBFT2)) The second semantics of a BFT d ∈
LBFT is a functionMBFT2 : LBFT → SPr whereMBFT2[[d]] =MPr ◦ T2 ◦ T1.

Every translation is defined except T1 and T2. These definitions have been provided in (Batory,
2005). Therefore we simply recall and discuss them in the two following sections.

9.4.1.4.1 From BFT to ITG (T1) The first translation (T1) defines how BFTs are translated into
ITG. We define the translation T1 sketched in (Batory, 2005), that takes a BFT in input (called there
a feature diagram) and produces an ITG in output.

Definition 9.4.7 For a BFT d, the transformation T1 gives the grammar T1(d) defined by:

1. the start production is the root of the BFT;

2. the terminals are the primitive features;
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3. the non-terminals are the internal nodes (compound features), plus non-deterministically cho-
sen auxiliary symbols (for or-nodes);

4. the rules are:

(a) for an and-node n: a single pattern n : π, where π = s1 . . . sk and where sk are the sons
of n. Remember that hollow circles are also considered as nodes in our abstract syntax;

(b) for a xor-node n: the rule n : s1| . . . |sk;

(c) for an optional node n: the rule n : [s1];

(d) for an or-node n, we choose some fresh non-terminal t and add two rules: n : t+ and
t : s1| . . . |sk.

In Figure 9.25, we illustrate how a FD ∈ LBFT is translated into LITG according to translation
T1. The main difference with the example given in (Batory, 2005) is that optional nodes in BFT
concrete syntax corresponds to two nodes in FFD abstract syntax (the original node and an opt1
node). Hence we have one more pattern corresponding to f 7? that has no influence.

T
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Figure 9.25: T1: BFT to ITG

We make two observations. First, T1 only uses a strict subset of ITG: the * is never used,
the + can only occur alone in a pattern, etc. Second, T1(or . . .) is not so intuitive: for instance,
T1(or( f1, f2)) gives a grammar whose semantics isMITG(T1(or( f1, f2))) = { f1, f2, f1 f2, f2 f1, f1 f2 f1,
f1 f1 f2, f2 f1 f2, . . .}. However, if we ignore the order and repetition of the tokens then it looks intu-
itive again: { f1, f2, f1 f2}.
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9.4.1.4.2 From ITG to Propositional Formula (T2) Although T1 already gives a semantics,
another translation is provided in (Batory, 2005). This translation (T2) transforms the ITG to Propo-
sitional LogicB(V) where V is the set of logical variables. V includes the tokens (primitive features),
the non-terminals (the compound features and the auxiliary non-terminals) and the pattern names.
Note that the latter two were chosen non-deterministically.

This second transformation, called T2, operates as follows:

1. for rules of the form r : π1| . . . |πk that are referenced without repetition (i.e. if they come
from a xor-node), we add the formula r ⇔ choose1(π1, . . . , πk). We define the abbreviation
choose1(π1, . . . , πk) as

∨
i∈{1..k} πi ∧

∧
j,i ¬π j. Its expansion factor is thus quadratic in k;

2. for rules of the form r : π1| . . . |πk that are referenced with repetition (i.e. if they come from
an or-node), we add the formula r ⇔ π1 ∨ . . . ∨ πk;

3. for rules of the form r : s1 . . . sk (i.e. those coming from an and-node), we add the formula
(r ⇔ s1) ∧ . . . ∧ (r ⇔ sk);

4. for rules of the form r : [s] (i.e. those coming from an optional node), we add a rule s⇒ r.

Finally, we add a formula stating that the start symbol is TRUE: r. We used “add” above to
mean “conjoin”: all the formulae produced above are separated by ∧.

In Figure 9.26, we illustrate how an ITG ∈ LITG is translated into LPr according to translation
T2. The main difference with the example given in (Batory, 2005) is that Batory writes the formula
“r = true” to state that the root should be always in the product, while the simple formula r is
sufficient since neither “=” nor “true” are part of Propositional Logic definition.

It seems that the detour through ITG is useless, since the cases defining T2 could be directly and
more simply defined on BFT diagrams. This gives a third transformation T3 (Figure 9.24) where:

1. for a xor-node f , we add the formula f ⇔ choose1(s1, . . . , sk);

2. for an or-node f , we add the formula f ⇔ s1 ∨ . . . ∨ sk;

3. for an and-node f , we add the formula f ⇔ s1 ∧ . . . ∧ f ⇔ sk;

4. for an optional node f , we add a rule s⇒ f .

Theorem 9.4.2 This transformation does the same work: T3 = T2 ◦ T1

Conversely, the grammar could be used directly to provide a semantics. However, it finally
proved useful to us, since it allows double-checking of the transformations. We will see that by
correcting T2 thanks to T1, we will discover the semantics probably intended in (Batory, 2005).

No clear semantic definition has been provided in (Batory, 2005). However, our interpretation
of BFT’s semantics is based on these citations from (Batory, 2005):

• “a feature model (grammar + constraints) is a propositional formula.”

• “It is possible to show that two FDs are equivalent if their propositional formulae are equiva-
lent.”
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r: f1 f2;

f1: f3 | f4 | f5;

f2: f6 f7? f8;

f7?: [f7]

LITG

T2

r Æ r ! f1 Æ r ! f2 Æ 

f1 ! choose1(f3, f4, f5) Æ

 f2 ! f6 Æ f2 ! f7? Æ

 f2 ! f8 Æ f7 " f7?

LPr

Figure 9.26: T2: ITG to Pr

For us, it means that the semantics of a FD is the semantics of the formula, i.e. a set of sets of logical
variables. However, we face an obstacle: since all auxiliary symbols become logical variables, the
equivalence is trivial. In addition, since these auxiliary symbols are generated non-deterministically,
the semantics is not a function. This is a really bad property for a semantics. The solution is to
eliminate the auxiliary symbols as we have done in FDD definition of product where only primitive
features are allowed.

9.4.2 BFT Abstraction Function

In Section 9.4.1.4, we recalled and formalised the two semantics provided by Batory for his feature
trees (that we named BFT). Since trees are diagrams (DAG), FFD semantics can also be applied
to BFT. Ideally, we should obtain the same semantics. This is clearly impossible here, since the
semantic domains are different (Figure 9.24):

1. The first semantics of Batory translates BFT to grammars. Grammars themselves have as
semantic domain a set of strings of primitive features (P(P∗)).

2. The second semantics of Batory translates BFT to propositional formulae. These formulae
themselves have as semantic domain a set of models, i.e. a set of sets of variables (P(P(V))),
not necessarily primitive features.

3. FFD semantic domain is a set of sets of primitive features (P(P(P))).

However, the three semantic domains are related by obvious abstraction functions (Figure
9.27):
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M
BFT2

!d"

SITG = P(P*)

M
BFT1

!d"

SPr = PP(V)

‘f1f2f2f4f7’

‘f2f1f2f7f4’

...

M
FFD
!d"

SFFD = PP(P)

A1

R

d

M
BFT1

M
BFT2

M
FFD

M
FFD 
!d" = A1(MBFT1 

!d"
 
)

M
FFD 
!d" <> R(M

BFT2 
!d")

LBFT = LFFD

Figure 9.27: Relating BFT and FFD

• A1: a string can be seen as a set by just forgetting about the order and repetition of the
primitive features. In this way, we can abstract a set of strings L ∈ SITG to a product line (set
of sets): A1(L) = {c ∈ PP|∃s ∈ L.∀a ∈ P, a ∈ c ⇔ a ∈ s}, where a ∈ s means that a occurs
in s: ∃i ∈ N.si = a.

• R: a set of logical variables P(V)) ∈ SPr representing both primitive and non-primitive fea-
tures can be reduced to a set of primitive features by just keeping the primitive features:
R(P(V)) = {c ∩ P|c ∈ P(V))}.

One observes that the second “semantics” of Batory is actually not one, for a semantics is
required to be a function. Batory’s translation procedure non-deterministically chooses auxiliary
symbols, and can thus yield different resulting formulae for MBFT2. However, this problem is
solved by abstracting this “semantics”, since our abstraction drops exactly those assumed faulty
symbols.

We can see that FFD semantics (Definition 8.2.2) is exactly what is needed to abstract the two
semantics of Batory: this is a further argument for its adequacy.

9.4.3 BFT Semantic Equivalence

The semantic equivalence analysis reveals that only two of the three studied semantics for BFT
(MFFD,MBFT1,MBFT2) coincide, see Theorem 9.4.3.
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Theorem 9.4.3 For any BFT d,MFFD[[d]] = A1(MBFT1[[d]])

Proof To prove this equivalence by induction on BFT, we generalise it as follows: A node n of a
BFT d is in a model of d iff it occurs in a derivation tree T of T1(d). This model M(T ) is thus just
the set of nodes occurring in the derivation tree. The base case is the root (or concept, or initial
non-terminal symbol of the grammar) that is included in any model and in any derivation.

⇒: If n is in a model M, by the justification rule its parent f is also in M. By induction hypothesis
there is a derivation tree T f including f . f can be:

1. an and-node: mapped to a rule f : s1 . . . sn, with some si that is either n or [n]. Thus we
cut the derivation at f and use the rule above, then the rule for optional productions if
n̊ ∈ M.

2. a xor-node: mapped to a rule f : P1| . . . |Pn where some Pi is either n or [n]. We select
this Pi, then the rule for optional productions if n̊ ∈ M.

3. an or-node: mapped to two rules f : t+ and t : P1| . . . |Pn where t is a new identifier and
some Pi is either n or [n]. We use the rule for repetition #{Pi|Pi ∈ M} times, then we use
the rule for t for each of these Pi.

⇐: Conversely, assume a derivation tree T and compute M(T ). It remains to prove that this M (for
short) is indeed a model of D. If n ∈ T then since the derivation leading to n necessarily goes
through f , f ∈ T and by induction hypothesis f ∈ M. Thus the justification rule is respected.
f can be:

1. an and-node: mapped to a rule f : s1 . . . sn, with some si that is either n or [n] (that we
confuse with n̊). Since n only occurs in this rule (Batory, 2005), we know this rule has
been applied and thus s1 . . . sn ∈ M. Thus the semantics of and is respected.

2. a xor-node: mapped to a rule f : P1| . . . |Pn where some Pi is either n or [n]. Since
f , P1, . . . , Pn only occur in this rule (Batory, 2005), we know that no other P j, j , i has
been applied. Thus the semantics of xor is respected.

3. an or-node: mapped to two rules f : t+ and t : P1| . . . |Pn where some Pi is either n or
[n]. We follow the expansions of t in the derivation. They must all lead to a Pi, since
t only occurs in these two rules. Thus at least one Pi, but perhaps more, occur in the
derivation. Therefore, M satisfies the semantics of or.

�

However MBFT1 and MBFT2 semantics do not coincide. We are now able to tell what the
problem is with Batory’s second semantics (MBFT2), and why does it fail to coincide with his first
semantics (MBFT1). Batory actually generalised hastily the equivalence that we can notice in the
case of or-nodes (we abbreviate f ∈ m by f , m being a model):

• the or rule gives that f ⇒ (s1 ∨ . . . ∨ sk),

• the justification rule gives that
∧

i(si ⇒ f ).
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Taken together, we thus have an equivalence: f ⇔ (s1 ∈ m ∨ . . . ∨ sk ∈ m). Unfortunately, this
equivalence does not generalise to xor. Indeed, the equivalence provided in the xor rule ( f ⇔
choose1(s1, . . . , sk)) results in undesirable behaviours. A simple example where this equivalence
fails is given in Figure 9.28 (1) where a and b are non-primitive xor-nodes while B,C,D, E, F are
primitive and0-nodes.

a

B C D

a

b F

D E

(1) (2)

Figure 9.28: BFT with a wrong semantics

FFD semantics, the grammar semantics (Batory, 2005), and common sense all indicate that
the meaning of this diagram should be {{D}, {E}, {F}}. The formula † T1(d1) is a : b|F, b : D|E and
T2(T1(d1)) is (a⇔ (b⊕F))∧(b⇔ (D⊕E)), that admits the spurious product {D, E, F} as abstracted
from the model {D, E, F, a}. Indeed if a is TRUE and F is TRUE then (a⇔ (b⊕F)) is TRUE only if
b is FALSE. On the other hand if b is FALSE and iff E and D are both TRUE or FALSE then (D⊕E)
is FALSE and (b ⇔ (D ⊕ E)) is TRUE. Hence, {D, E, F, a} is valid for d1 propositional formula:
(a⇔ (b ⊕ F)) ∧ (b⇔ (D ⊕ E)).

Another example is illustrated in Figure 9.28 (2) where a is a xor-node. T1(d2) is a : [B]|[C]|[D],
and T2(T1(d2)) is a⇒ (B∧¬C∧¬D)∨ (¬B∧C∧¬D)∨ (¬B∧¬C∧D). This propositional formula
means that no two sons of a can be TRUE at the same time. However if we study the justification
rule for a it gives: B ∨C ∨ D⇒ a that is not the converse implication, and does not entail it.

Thus, the equivalence mentioned above has been generalised beyond its limits in (Batory, 2005),
and its two semantics are different. It is clear that the first one is correct and the second false, that
comforts our definition. The tool mentioned in (Batory, 2005) remains applicable to FFD semantics
with a slightly different formula in T2. Indeed we propose to add justification rules to this formula
and to replace the wrong equivalences by implications. For rules of the form r : π1| . . . |πk, we
replace the formula r ⇔ choose1(π1, . . . , πk) by (r ⇒ (π1 ⊕ . . . ⊕ πk)) ∧ (π1 ⇒ r) ∧ . . . ∧ (πk ⇒ r).
Hence, {D, E, F, a} is not valid anymore for d1 corrected propositional formula: (a⇒ (b⊕F))∧(b⇒
(D ⊕ E)) ∧ (D⇒ b) ∧ (E ⇒ b) ∧ (b⇒ a) ∧ (F ⇒ a). The main differences are:

• When b is FALSE, the second implication b⇒ (D⊕ E) says that its right part (D⊕ E) can be
TRUE or FALSE to set this implication to TRUE;

• The justification rules (D⇒ b) ∧ (E ⇒ b) render {D, E, F, a} invalid.

†π1 ⊕ π2 is the logical equivalent of (π1 ∧ ¬π2) ∨ (¬π1 ∧ π2) , where ⊕ is called the XOR Boolean operator and
corresponds to a atmost1(π1, π2)
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Accordingly Batory has recently provided an erratum to the formula in T2. For rules of the
form r : π1| . . . |πk, he replaces the formula r ⇔ choose1(π1, . . . , πk) by (r ⇔ (π1 ∨ . . . ∨ πk))∧
atmost1(π1, . . . , πk). Hence, {D, E, F, a} is not valid anymore for d1 corrected propositional for-
mula: (a ⇔ (b ∨ F))∧ atmost1(b, F) ∧ (b ⇔ (D ∨ E))∧atmost1(D, E). This erratum is correct
although the justification rules do not appear clearly. Indeed, the two equivalences can be trans-
formed:

• (a⇔ (b ∨ F))⇔ ((a⇒ (b ∨ F)) ∧ (b⇒ a) ∧ (F ⇒ a))

• (b⇔ (D ∨ E))⇔ ((b⇒ (D ∨ E)) ∧ (D⇒ b) ∧ (E ⇒ b))

At this point a difference remains between FFD and Batory formulae and concerns the Boolean
operators used in the right part of the two implications: in FFD it is a xor while in Batory it is an
or. However this last difference vanishes when Batory uses the atmost1 operator between b and F
and between D and E.

9.4.4 BFT Expressiveness Analysis

Once we have abstracted and corrected BFT’s semantics, BFT expressiveness can be studied. Propo-
sitional Logic itself is expressively complete and thus BFT. However, BFT without Propositional
Logic or constraintless BFT (CBFT) is not expressively complete, see Theorem 9.4.4.

Theorem 9.4.4 CBFT (Batory, 2005) are not expressively complete.

Proof The proof is similar to the one provided for the expressiveness of CRFT in Theorem 9.1.11.
BFTs cannot express card[2..2] among 3 features. We note that when using trees, and, xor, or are
associative. So, without loss of generality, we can assume that the first node from the root has two
sons s1, s2: if he has more, we use associativity to break the list of sons in two. Now each operator
imposes its “shape” on the product line. For trees, [[s1]], [[s2]] have disjoint primitive features, say
without loss of generality {A, B,C}. [[card3[2..2](s1, s2)]] has none of these shapes.

�

This example of incompleteness would clearly be eliminated by adding “or with cardinality” as
suggested in (Batory, 2005) (we call it card). Even so, expressive completeness is not reached for
CBFT (see Table 9.13).

In (Batory, 2005) this lack of expressiveness is compensated by adding full Propositional Logic
as textual constraints. This logic is known to be expressively complete, so that the common part of
BFT and CBFT would actually be no longer needed.

9.4.5 BFT Embeddability Analysis

In Section 5.3, we proposed a definition of graphical embeddability (Definition 5.3.9) that gener-
alises the definition of embeddability for context-free languages. Given this definition, we need to
look at the abstract syntaxes of FFD and BFT to study their embeddability. The abstract syntax of
BFT equals that of GPFT except for textual constraints.
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FT languages without card-nodes are clearly embeddable into BFT while FT languages with
card-nodes are not. Conversely, BFT are not embeddable into FT languages where constraint nest-
ing is not allowed. However, if we consider constraintless BFT (CBFT) they are embeddable into
all constraintless FTs.

FD languages are not embeddable into BFT since sharing is not allowed in BFT. Conversely,
BFT is embeddable into EFD. Indeed, a propositional formula and thus a BFT can be linearly
translated into EFD. The idea is that every propositional formula can be translated into an equivalent
CNF formula. This translation is linear when auxiliary symbols are allowed in the CNF and is based
on logical equivalences: the Double Negative Law, the De Morgan’s laws, and the distributive Law.
Then this CNF is linearly translated into CRFD according to the translation already provided to
prove the complexity of FFD satisfiability (Theorem 9.1.1). In the end, the composition of these
translations is linear and therefore BFT is embeddable in EFD but not conversely.

Moreover, if we consider constraintless BFT (CBFT), CBFT is embeddable into RFD, see Ta-
ble 9.31.

Instead of . . . write . . . factor . . .
opt1-node opt1-node 1
xors-node xors-node 1
ors-node ors-node 1
ands-node ands-node 1

Table 9.31: Embedding: CBFT into RFD

9.4.6 BFT Succinctness Analysis

Succinctness (Definition 5.4.1) actually allows comparing the size of the diagram before and after
translation. By definition, whenever there is an embedding, there also exists a node-controlled
translation. In our case, any FT without card-nodes is identically-as succinct as CBFT while any
FT with card-nodes cannot be translated into CBFT. Conversely, CBFT is as succinct as all FT
languages without constraints. If we consider FDs, CBFT can be linearly translated to any FD, see
Table 9.31.

Once Propositional Logic is added to CBFT, every FD with only primitive feature can be trans-
lated into Propositional Logic and thus BFT. This translation from FD to Propositional Logic cor-
responds to FFD semantic implementation that is provided in Section 9.1.1. According to the CNF
Boolean cardinality encoding proposed by (Sinz, 2005), the expansion factor of the translation of a
card-node to BF is quadratic. However, once non-primitive features are allowed, the resulting BF
should be existentially quantified with non-primitive features. Therefore, the translation from FD to
Propositional Logic and thus BFT is exponential.

Conversely, an embedding between BFT (Propositional Logic) and EFD exists. Therefore, this
translation is linear and EFD is thus exponentially-as succinct as BFT ((BFT ≤O(2EFD)) while BFT
is linearly-as succinct as EFD (EFD ≤ O(BFT )). As illustrated in Figure 9.29, BFT succinctness
results compose with the previous ones.
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BC

(C)OFD EFD,VFD

O(2n)

O(n)

O(n)

O(n3)

RFD

O(n) O(n3) O(n)

O(n3)

vDFD

O(2n)O(n)

Propositional

Logic & BFT
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O(n)

O(2n)
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Figure 9.29: BFT Succinctness results
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9.5 Chapter Summary

Throughout this chapter, we have compared informal and formal FD languages according to the
comparison method proposed in Chapter 7. In the end, we suggest a new FD language called VFD
for which (1) the decomposition edges form a DAG and (2) the only allowed node type is card-
node. One could say that, like our predecessors, we define yet another FD language. However, we
argue that our approach is relatively different. Firstly, VFD is not an extension but a simple form of
EFD. Secondly, the introduction of VFD is justified since VFD obtains the best scoring according
to the comparison method and formal criteria defined previously: VFD is syntactically minimal, yet
expressively complete, included in the lowest class of succinctness and it can embed all studied FD
language variants (see Table 9.32).

We now summarise our results according to complexity, expressiveness, embeddability, suc-
cinctness and semantic equivalence analysis.

Complexity results

The complexity results show that most of the decision problems are non-trivial. Since no efficient
algorithm exists to solve them, implementations are very likely to face tractability issues in some
specific cases. For instance, worst-case execution time for Product-Checking grows exponentially
with the size of the diagrams in some FD languages. We have shown that the expressively complete
FD languages share the same complexity results:

• the Satisfiability problem for FDs is NP-Complete;

• the Product-Checking problem for FDs is NP-Complete;

• the Equivalence problem for FDs is coNPNP-Complete:

• the Inclusion problem for FDs is coNPNP-Complete;

• the Intersection and Union problems are Linear.

Once a problem is known to be complex, its associated tractability issues could be minimised or
at least circumscribed. For FDs, we follow Batory’s suggestion (Batory, 2005) to use SAT-solvers
(see Chapter 10). Those have the following advantages:

• Many practical problems from various domains reduce to SAT: logic synthesis, model check-
ing, circuit routing, software verification and, of course, FD reasoning;

• SAT-solvers made progress over the years to tackle tractability issues;

• Current SAT-solvers can handle formulae with millions of variables and clauses.

We also mitigate each complexity result according to specific cases for which we determine a
lower complexity. For instance, Product-Checking for FDs with only and-nodes becomes Linear.
Moreover, we showed that the addition or suppression of some constructs can drastically reduce or
increase complexity. As illustrated in Table 9.33, two constructs significantly affect complexity in



220 Chapter 9. Feature Diagram Languages: Quality Analysis

FDs. The first one concerns feature sharing. When FDs are restricted to trees with primitive leaves
without crosscutting constraints, FD decision problems become trivial. The second one concerns
primitive and non-primitive features. When FDs contain only primitive features (P = N), Product-
Checking complexity is reduced from NP-Complete to Linear, and Equivalence and Inclusion’s
complexity is reduced from coNPNP-Complete to coNP-Complete.

FD Satisfiability Product-
Checking

Equivalence Inclusion Intersection Union

no restric-
tion

NP-
Complete

NP-
Complete

coNPNP-
Complete

coNPNP-
Complete

Linear Linear

DAG with
P = N

NP-
Complete

Linear coNP-
Complete

coNP-
Complete

Linear Linear

TREE with
leaves ⊆ P
and without
constraints

Linear Linear Linear Linear Linear Linear

Table 9.33: Complexity Analysis

On the one hand, discarding some constructs or abstracting the semantic domain may reduce
complexity and tractability issues. On the other hand, it may also hinder the expressiveness of
the language or the adequacy of the semantic domain. The relation between expressiveness and
complexity is not trivial. Increasing the expressiveness of a language does not necessarily imply
that it will increase its complexity. Conversely, reducing the expressiveness of a language does not
necessarily imply that it will reduce its complexity. Even if it is often the case.

Expressiveness results

The expressiveness results indicate that all studied FD languages are expressively complete. They
also identify which constructs are necessary to guarantee expressive completeness and which are
not. For instance, we have seen that without constraints, tree-shaped languages are not expressively
complete. Therefore, expressiveness justifies some extensions brought to OFT (Kang et al., 1990)
but not all of them. Indeed, simple tree-shaped languages are usually expressively incomplete when
constraints are not allowed. In particular, they cannot express the choice of two features among
three. In more details, expressiveness:

• justifies the proposal by (Kang et al., 1998) (OFD) to transform tree-shaped language to DAG-
shaped language. Indeed, OFD is expressively complete with or without constraints. A for-
tiori, all further FD languages that are DAGs and allow feature sharing (RFD, EFD, VFD) are
expressively complete;

• does not justify the proposal by (Griss et al., 1998) (RFD) to add the or operator to OFT. Even
with the or operator a simple constraintless tree-shaped language does not attain expressive
completeness. RFD is still unable to express the choice of two features among three;
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• does not justify the proposal by (Riebisch et al., 2002) (EFD) to use the card operators.
However, both (Griss et al., 1998) and (Riebisch et al., 2002) allow DAGs and are therefore
expressively complete;

• justifies the proposal by (Bontemps et al., 2004) (VFD) to use only the card operators within
feature DAGs. Indeed, feature sharing and card-operators are sufficient to assure expressive
completeness;

• justifies the proposal by (Batory, 2005) (BFT) where Boolean constraints are added to bring
expressive completeness. Obviously, adding Propositional Logic to tree-shaped languages
brings expressive completeness.

Embeddability results

The embeddability results indicate which FD languages can be translated into which one while
preserving the original diagram semantics and structure. Preserving the meaning means that both
diagrams, the original and its translation will map the same element in the common semantic do-
main. Preserving the structure means that the translation generates only a linear increase in size
between the original and translated diagram. According to the definition of embedding (Defini-
tion 5.3.1), we have proved that:

• FTs are embeddable into RFD but not conversely;

• RFDs are embeddable into EFD but not conversely;

• OFDs are embeddable into RFD but not conversely;

• BCs are embeddable into EFD but not conversely;

• vDFDs are embeddable into EFD but not conversely;

• BFTs are embeddable into EFD but not conversely;

• VFDs are embeddable into EFD and conversely.

In addition, these embeddability results compose. Indeed, if FTs are embeddable into RFD and
RFDs are embeddable into EFD then FTs are embeddable into EFD. Accordingly, OFDs are embed-
dable into VFD and EFDs are not embeddable into BFT, etc. Once these compositions are applied,
it appears that all FD languages are embeddable into EFD and VFD. However, the embeddability
analysis also indicates that EFD is self-embeddable. This means that EFD is unnecessarily com-
plex because all constructs in EFD are easily definable using only one of them: card-nodes. These
constructs are said to be redundant. This justifies why we suggest to prefer VFD that contains only
card-nodes. VFD is therefore minimal and still in the same class of succinctness than EFD. Redun-
dancy and succinctness are also related: languages often contain redundant constructs to improve
their succinctness. One could question whether it is preferable to use non-redundant languages or
more succinct languages. The answer depends on the context of use of the language.
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Succinctness results

The succinctness results are summarised in Figure 9.29 and indicate the existence of essentially five
classes of succinctness for FDs:

1. Propositional Logic;

2. BCs are exponentially-as succinct as Propositional Logic due to the sharing allowed in BC
while not in Propositional Logic;

3. OFDs are exponentially-as succinct as BC due to the introduction of primitive and non-
primitive features which implies that the corresponding BF should be existentially quantified;

4. RFDs are cubically-as succinct as OFD, due to the use of or-nodes;

5. EFDs are cubically-as succinct as RFD, due to the use of card-nodes.

The succinctness results presented in Figure 9.29 compose. For instance, we know that in the
worst case the translation from vDFD to OFD increases the size of the original diagram cubically.
On the contrary, the translation from EFD to VFD causes no increase in size. The translation
from VFD to EFD multiplies in the worst case the size of the original diagram linearly. EFD
and VFD are thus included in the same class of succinctness (called EFD). We also observe that the
translation from any FD language to Propositional Logic or BC may increase the size of the diagram
exponentially since they should be existentially quantified.

Semantic Equivalence results

The comparative semantic analysis of FFD compares FFD with three formal languages: BC, vDFD
and BFT. First, we redefined these languages according Harel and Rumpe’s principles (Chapter 4).
Then we studied whether there exists a relation (abstraction function) between their respective se-
mantic domains. Finally, we determined whether they are semantically equivalent according to this
abstraction function. We conclude that:

• BC is semantically equivalent to FFD modulo an abstraction function. This abstraction func-
tion consists in discarding the non-primitive features from BC’s semantic domain.

• vDFD is not semantically equivalent to FFD although there exists an abstraction function be-
tween their semantic domains. The difference originates from the definition of their respec-
tive semantic functions. Indeed, vDFD follows an edge-based semantics while FFD follows
a node-based semantics. However, we have been able to obtain a semantic equivalence be-
tween FFD and vDFD by applying a preliminary transformation to the abstract syntax of FFD
in order to behave as an edge-based semantics.

• The two semantics of BFT provided in (Batory, 2005), namely the grammar and propositional
semantics, are not semantically equivalent. The difference originates from the definition of
their semantic functions. Indeed, the propositional semantics defined in (Batory, 2005) gener-
alised equivalence too much. However, we determined that FFD and the grammar semantics
defined in (Batory, 2005) are semantically equivalent.
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• For both BFT and vDFD, the comparative semantic analysis led to identify some minor unin-
tended errors or omissions in the original definitions.

When these results are composed, a semantic domain category is created for FDs. As illus-
trated in Figure 9.30, these semantic domains are related by abstraction functions (A1,R,A). This
category can be extended with new comparative analyses and other compositions of abstraction
functions.

SFFD = PP(P)

A1RA

SITG = P(P*)SPr = PP(V)SvDFD = OO(A)

Figure 9.30: Semantic Domains Network

In the next chapter, we will describe a reasoning tool supporting VFD and its implementation
based on a SAT-solver.
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Chapter 10

VFD: A Reasoning Tool

I
n the previous chapter, the FD language quality analysis suggests VFD as the language
currently obtaining the best ranking according to the studied criteria. VFD’s abstract
syntax has been defined in Table 8.1 and Section 8.2.2.1 while VFD’s semantics is defined

in Section 8.2.2.3. Formalisation of VFD is crucial to have a clear and concise definition of VFD,
to avoid ambiguities and to define decision problems on VFD. Since these decision problems are
formally defined and their complexity studied (Section 9.1.1), they can be automated and efficient
tool support can be provided. Accordingly, the purpose of this chapter is to describe a tool that
supports feature modelling and reasoning on FDs written in VFD.

The structure of this chapter is as follows. First, in Section 10.1 we summarise the expected
functionalities for a feature modelling and reasoning tool. Then, we present the design of our tool
(Section 10.2) with a focus on the implementation of VFD’s semantics (Section 10.3). Afterwards,
the mobile phone example is used in Section 10.4 to illustrate usage of the tool. Finally, in Sec-
tion 10.5 we present various components reused during the implementation of the tool.

10.1 Functionalities

A useful SPL modelling environment requires some tool support to facilitate feature modelling,
reasoning and interoperability. This tool support should provide five categories of functionalities:

• Visualisation of Feature Diagrams. The tool should provide a convenient visualisation for
FDs. Currently, the only one visualisation is available in the tool. VFD is not supposed to be
an end-user language. No concrete syntax has thus been defined and the tool offers to visualise
in a very basic form the VFD’s abstract syntax (Figure 10.6). However, nothing forbids to
define a concrete syntax for VFD and to use it as an end-user language. This is not a trivial
task and we strongly advice to follow guidelines when defining concrete syntaxes, such as
Moody’s principles (Moody, 2006b). Those are meant to guarantee the cognitive effectiveness
of diagrams. According to the SEQUAL framework (Section 3.1), these principles mainly
concern the empirical quality of models that is out of this thesis’ scope.

• Editing Feature Diagrams. The tool should provide functionalities that enable to edit FDs.
The manipulation of the various graphical constructs presented in the abstract syntax should

227
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be facilitated. The user should be able:

– to add, edit or remove nodes. Where nodes could be primitive or non-primitive nodes,

– to edit node names and cardinalities,

– to add, edit or remove edges between nodes,

– to add or remove constraints such as requires or excludes,

– to save FDs,

– to load FDs.

• Reasoning on Feature Diagrams. The tool should provide functionalities to reason on FDs.
Indeed, once FD semantics has been formally defined, various FD checks and transformations
are applicable:

– FD Satisfiability (Definition 7.1.1),

– FD Membership or Product checking (Definition 7.1.2),

– FD Equivalence (Definition 7.1.3),

– FD Intersection (Definition 7.1.4)

– FD Inclusion (Definition 7.1.5),

– FD Union (Definition 7.1.6),

– Product Listing: List all the valid products contained in the SPL. The valid products are
given by FFD semantic function (Definition 8.2.3),

– Dead Feature Detection: A feature is dead when no product in the PL includes it (Defi-
nition 10.1.1).

Definition 10.1.1 (Dead feature) A feature f is dead for an (O)FD d when:
@p ∈ MFD[[d]] · f ∈ p

Example 10.1.1 For instance, if we consider the OFD illustrated in Figure 8.4, its se-
mantics is composed of two products: {{ f1, f2, f3, f4, f7, f8, f9}, { f1, f2, f3, f5}}. Accord-
ing to this semantics, we notice that the feature ( f6) is not included in any product.
Hence, f6 is a dead feature.

– Common Feature Detection: A feature is common when all products in the SPL include
it (Definition 10.1.2).

Definition 10.1.2 (Common feature) A feature f is common for an (O)FD d when:
@p ∈ MFD[[d]] · f < p

Example 10.1.2 For instance, if we consider the OFD illustrated in Figure 8.4, its se-
mantics is composed of two products: {{ f1, f2, f3, f4, f7, f9}, { f1, f2, f3, f5}}. According to
this semantics, we notice that three features ( f1, f2, f3) are included in all valid products.
They are common features.
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• Persistence of Feature Diagrams. The tool should allow making FDs persistent. Both the
layout and the content of the FD should be made persistent. In addition, it should be saved
under a formal description suitable for further processing. In our case, we have selected the
XML format.

• Interoperability between Feature Diagrams. In Chapter 9 we have seen that VFD is expres-
sively complete and that embeddings (translations) between VFD and every language covered
by FFD exist. Hence, VFD may serve as a pivot language to facilitate interoperability between
FD languages. Accordingly, the next evolution of the tool will be to offer functionalities that
allow translating any FD into VFD and then translating back (if possible) this VFD into other
FD languages preserving the original semantics of the FD. These translations will be based
on the embeddings, translations and abstraction functions provided throughout this work. So-
lutions will also be needed to correctly manage the different layouts of the models. In the end,
the tool will help reasoning on FDs written with different languages.

10.2 Three-Tiers Architecture

The architecture of the tool (see Figure 10.1) is a three-tiers architecture. A three-tiers architecture
is a software architecture framework in which the user interface, the business logic and the data
management are developed and maintained as independent modules. These three modules or tiers
are called respectively: the presentation tier, the application tier and the data tier.

For the presentation tier, our tool offers two possibilities. The first alternative is to use graphviz
library (AT&T, 2007) and its DOT language (Section 10.5.2) to visualise FDs. The second alterna-
tive is to use the Graphical Modelling Framework (GMF) (IBM and Borland, 2007) to automatically
generate a FD graphical editor (Section 10.5.4).

For the application tier, FD concepts are represented in a data model and are used as inputs for
various components such as editor, translator and reasoner:

• The editor component manipulates these concepts and uses a graph component that gathers
classical graph algorithms based on matrix transformations. Hence, successors and predeces-
sors could be easily identified and research in graphs is facilitated. In addition, configuring a
FD necessitates to eliminate variation points (nodes) and thus to use graph transformations.

• The translator component translates the FD into various formats. For instance, a FD can be
translated into different FD languages or into a BF in CNF that serves as input for the reasoner
component.

• The reasoner component is based on our FD semantics and thus needs to have full access to
a SAT-solver. In our case, Sat4j (Berre and Parrain, 2007) is used (Section 10.5.1). We have
defined the architecture in order to minimise the changes if the SAT-solver’s implementation
needs to be changed.

For the data tier, the first alternative is to use the Xstream component (Section 10.5.3) that allows
serialising every object into XML. Concretely, every edge is represented by a couple of nodes and
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FD

Translator

SATSolver:
SAT4j

Object 
serialization:

XStream

GraphViz

Graph

Editor

Reasoner

DataBase

<<uses>>
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DOT

XML

CNF
<<uses>>

<<uses>>

input

input

Presentation 
Tier

Application
Tier

Data 
Tier

input

Figure 10.1: Tool Architecture

saved into an XML format that can be easily parsed to restore a copy of the original FD. The second
alternative is to use the persistence functionalities offered by the edito generated with GMF.
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10.3 Application Tier

The application tier is the core of the software since it contains its logic. All the aspects concerning
the graphical interface and the data storage are left to the other tiers. In this section, first the FD Data-
Model is presented (Section 10.3.1). Once the main concepts of the FD Data-Model are defined,
other classes are described to edit a FD (Section 10.3.2), to translate it (Section 10.3.3) and to
reason on it (Section 10.3.4). Moreover, in Section 10.3.3.1 we present and illustrate the details of
our implementation of FD’s semantics based on a translation from VFD to BF.

10.3.1 FD Data-Model

As mentioned before, a FD is represented by a DAG composed of Nodes and Edges (see Fig-
ure 10.2). A FD represents a set of Products that are composed of Nodes. A non-terminal node is
considered as a variation point to which we may associate a question. For each decomposition edge
of this variation point, we may associate an answer to the corresponding question. These questions
and answers help determining which decisions should be taken. A Decision is associated to a varia-
tion point and determines which of its sub-features are selected. This selection is constrained by the
variation point cardinalities. A Configuration is a set of Decisions that should be complete to derive
one final product from the SPL. A configuration is complete when there exists a valid decision for
each variation point.

Figure 10.2 contains a class diagram representing the main concepts of VFD. This class di-
agram is complemented in Figure 10.3 by other classes dedicated to the handling of these con-
cepts (FD Editor), their translation (FD Translator) and the reasoning support associated to them
(FD Reasoner).

10.3.2 FD Editor

The class FD Editor gathers the various functionalities that enable to create, modify or initialise a
FD. The main functionalities are to add the root, to add and remove nodes, to add and remove edges,
to add and remove excludes and requires constraints, to load a FD from a XML file.

10.3.3 FD Translator

The class FD Translator is used to translate the FD’s Structure into various formats. Mainly three
formats are used: DOT, XML and CNF. The DOT language is a plain text graph description lan-
guage. It is an intuitive and simple way for describing graphs. A Boolean logic formula is in CNF,
if it is a conjunction of clauses, where a clause is a disjunction of literals. CNF is used as input
format by most SAT-solvers. This class could also integrate translations from on FD language to
another following the translations and embeddings provided throughout the thesis.

Our choice in the implementation of the FD semantics is to provide a translation from VFD’s
abstract syntax to BF. Then, these BFs are converted to CNF which is then passed to a SAT-solver
to check its satisfiability. The SAT-solver aims to determine if the variables of a given CNF can be
assigned in such a way that they make the CNF evaluate to TRUE. Then, the SAT-solver returns
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fromXML(String)
getAllFeatures()
getRoot()
display(String)
display()
getInEdges(FNode)
getAllSucc(FNode)
getPred(FNode)
getSucc(FNode)
toString()
FD()

FDName : String
FD

removeEdge(int, int)
addEdge(int, int)
removeNode(int)
addNode()
removeSucc(int, int)
addSucc(int, int)
givePred(int)
giveSucc(int)
depthSearch()
transformAdjToPred()
transformAdjToSucc()
getSize()
Dag(int, int[][])
Dag()

Dag

equals(FNode)
toCNF(FD)
getNbClause()
toString()
isFeature()
checkCardinality()
getMaxCardinality()
getMinCardinality()
getNodeName()
FNode(String, int, int)
FNode()

Max_Cardinality : int
Min_Cardinality : int
NodeName : String

FNode

toCNF()
Includes(FNode, FNode)

Requires
toCNF()
Excludes(FNode, FNode)

Excludes

toString()
equals(Edge)
Edge(FNode, FNode)

Edge

sort(FD)
getDecision(FNode)
include(FNode)
check(FD)
complete(FD)
normalize(FD)
removeDecision(Decision)
addDecision(Decision)
contains(Decision)
equals(Configuration)
toString()
Configuration(Vector)
Configuration()

Configuration

contains(FNode)
equals(Product)
toString()
removeFeature(FNode)
addFeature(FNode)
getFeatures()
Product(Set)
Product()

ProductName : String
Product

equals(Decision)
toString()
checkCardinality()
include(FNode)
getSetofFNode()
getFNode()
Decision(VPNode, Set)
Decision()

setofFNode : Set
Decision

getQuestion()
setQuestion()
VPNode(String, String, int, int)

Question : String
VPNode

hasOrigin

hasDestination

0..*

1..*

isDeterminedBy

0..*0..*

decide

0..*

represent
0..*

isRepre-
sentedBy

0..*

0..*

{Disjoint, Incomplete}

getAnswer()
setAnswer()
Decomposition(FNode, FNode, 
String)

Answer: String
Decomposition

1..*
1

1

1

1

1

0..*

0..*

isRoot

1

1

Figure 10.2: FD Data-Model

all the possible variable assignments that make the CNF evaluate to TRUE. If no such assignment
exists then the BF is unsatisfiable. In addition, the SAT-solver can also identify contradictions in the
BF that make it unsatisfiable.

The translation from VFD’s abstract syntax to BF is not trivial especially with Boolean Cardi-
nalities. Indeed, an optimal CNF Encoding of Boolean Cardinality is necessary. The translation
presented in Section 10.3.3.1 reuses optimal encodings from (Sinz, 2005) (Section 10.3.3.2).

10.3.3.1 VFD to BF

The translation from a VFD to a BF is node controlled. each card-node is translated into a BF
according to its cardinalities, its son(s), its parent(s) and the justification rule. Constraints such as
requires and excludes between nodes can directly mapped to a BF. More complex constraints could
also be added by providing the adequate BF, therefore requiring no mapping.

As illustrated in Figure 10.4, each node in our abstract syntax corresponds to a node of type card
with a name (say g) and a minimum and maximum cardinalities (i, j). Each node can have several
sons, f1 . . . fn, and be shared by several parents, p1 . . . pm. Therefore, the node g is a card node
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toXml(FD, String)
toDOT(FD)
toCNF(FD)
FD_Translator()

graphvizpath : String
cnffile : String

FD_Translator

fromXML(String)
addExcludes(FD, Excludes)
addImplies(FD, Implies)
removeEdge(FD, Edge)
addEdge(FD, Edge)
removeNode(FD, FNode)
addNode(FD, FNode)
addRoot(FD, FNode)
FD_Editor()

FD_Editor

getSemantic(FD)
eliminateVariability(Configuration,FD)
eliminateVariability(Decision,FD)
getProduct(Configuration,FD)
checkSatisfiability(FD)
checkMembership(Product,FD)
checkEquivalence(FD,FD)
checkInclusion(FD,FD)
checkDeadFeature(FD)
FD_Reasoner()

cnffile:String
FD_Reasoner

fromXML(String)
getAllFeatures()
getRoot()
display(String)
display()
getInEdges(FNode)
getAllSucc(FNode)
getPred(FNode)
getSucc(FNode)
toString()
FD()

FDName : String
FD

translate

Reason

edit

1
0..*

1

0..*

0..*

1

Figure 10.3: FD Handling

of arity n and cardinalities (i, j), noted cardn[i.. j]. In addition, the cardinalities should respect the
constraints: 0 ≤ i ≤ j ≤ n. Based on these concepts, we can now describe the translation from VFD
to BF in Table 10.1∗. This translation is based on an optimal CNF encoding of Boolean cardinality
constraints among several encodings proposed in (Sinz, 2005). We present and justify the one we
have selected (LT n, j

S EQ) in Section 10.3.3.2.
According to the justification rule, at least one of the parents (p1 . . . pm) of each node evaluated

to TRUE should be also evaluated to TRUE, except for the root that by definition has no parent
and is always evaluated to TRUE. Hence, the final result of the translation of a card-node is the
conjunction of the corresponding BFs from Tables 10.1 and 10.2.

Finally the BF are translated into the standard input for every SAT-solver: DIMACS CNF. As
illustrated in the following CNF file, the input starts with comments (each line starts with c). The

∗Formulae in Table 10.1 are not yet in CNF. This is for readability reasons. They are converted to CNF with a standard
CNF conversion algorithming.
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p1 pm

gn (i,j)

f1 fn

...

...

Figure 10.4: A VP Node

λ(g) Conditions Conjunctive Normal Form
cardn[0..0] n ≥ 1

∧
i=1..n (¬g ∨ ¬ fi)

cardn[0..n] no output generated
cardn[0.. j] 1 ≤ j < n, n ≥ 2 ¬g ∨ LT n, j

S eq( f1, . . . , fn)
cardn[1..n] n ≥ 1 ¬g ∨ f1 ∨ . . . ∨ fn
cardn[n..n] n ≥ 2

∧
i=1..n (¬g ∨ fi)

cardn[i.. j] 1 ≤ i ≤ j < n, n ≥ 2 ¬g ∨ (GT n,i
S eq( f1, . . . , fn) ∧ LT n, j

S eq( f1, . . . , fn))
f1 requires f2 ¬ f1 ∨ f2
f1 excludes f2 ¬ f1 ∨ ¬ f2

Table 10.1: VFD to CNF

number of variables (nbvar) and the number of clauses (nbclauses) is defined by the line “p cnf
nbvar nbclauses”. Afterwards, each line specifies a disjunctive clause. In this clause, a positive
literal is denoted by indices beginning at 1 and negative literals are denoted by negative indices. A
zero indicates the end of a disjunctive clause. For instance, the BF (x1 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x1) is
translated into this CNF:

c A sample .cnf file.

p cnf 3 2

1 -3 0

2 3 -1 0

VFD Nodes Justification rule in CNF
cardn[i.. j] = root g
cardn[i.. j] , root ¬g ∨ p1 ∨ . . . ∨ pm

Table 10.2: BF for justification rule
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Checking the satisfiability of a CNF formula will provide all the possible sets of values for the
variables that evaluate this formula to TRUE. Once the values associated to the auxiliary variables
generated by the encoding are removed, each set of values corresponds to a configuration. However,
configurations should not be confused with products. Indeed, non-primitive features are not relevant
within our semantic domain and several configurations could map to the same product. To remove
these non-primitive features, one solution is to quantify existentially the resulting BF with non-
primitive features. In our implementation, we have make another choice to avoid the manipulation
of EQBF within SAT-solvers. Instead we leave the formula as it is and use it directly as input for a
classical SAT-solver. The generated output will be the set of all acceptable configurations. Then, we
apply a projection on this set to eliminate (1) all auxiliary variables generated by the CNF encoding
of Boolean Cardinality (see Section 10.3.3.2), (2) all non-primitive features and (3) all duplicate
products. The resulting set will be the valid set of products.

10.3.3.2 An Optimal CNF Encoding of Boolean Cardinality

Boolean minimal and maximal cardinality constraints (i, j) are formulae expressing that at least i
(≥ i(x1, ..., xn)) and at most j (≤ j(x1, ..., xn)) out of n propositional variables are TRUE. In (Sinz,
2005), the author proposed two CNF encodings for the (≤ j(x1, ..., xn)). He also studies the com-
plexity of these encodings according to the number of clauses and auxiliary variables generated.

Since complexity is a major issue in FD reasoning, an efficient encoding is crucial. The first
encoding proposed in (Sinz, 2005) uses a parallel counter and requires only 7n clauses and 2n
auxiliary variables. The second encoding he proposes uses a sequential counter and requires O(n. j)
clauses and O(n. j) auxiliary variables. The advantage of the first encoding is that it will generate
less clauses. The advantages of the second encoding is that (1) it is good for small values of j
and that (2) inconsistencies can be detected by the SAT-solver in linear time by unit propagation.
Therefore, the SAT-solver can detect efficiently that the cardinality constraints are violated. In VFD,
as the number of possible variants is limited, the values of j are often small. Hence, we select the
encoding that uses a sequential counter (LT n, j

S EQ) to transform our VFD nodes into CNF.
For instance, the sequential encoding of the constraint ≤ j(x1, . . . , xn) where j = 2, n = 3 and

indices of input variables are { 1, 2, 3 } will result in a CNF formula with 7 variables and 8 clauses.
The encoding generates 4 auxiliary variables { 4,5,6,7}:

p cnf 7 8

-1 4 0

-5 0

-2 6 0

-4 6 0

-2 -4 7 0

-5 7 0

-2 -5 0

-3 -7 0

Finally, to encode the minimal constraint ≥ i(x1, . . . , xn) the idea is to reuse the (LT n, j
S EQ) en-

coding noting that ≥ i(x1, . . . , xn) is equivalent to ≤ (n − i)(¬x1, . . . ,¬xn). We call this encoding
(GT n,i

S EQ).
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10.3.4 FD Reasoner

The class FD Reasoner gathers the various functionalities that allow reasoning on FDs. The main
functionalities are to get the semantics (or list all products), to eliminate variability according to a
decision or a complete configuration, to check the membership of a product, to check FD satisfia-
bility, to check equivalence between two FDs, to check inclusion of one FD into another, to check
the FD for dead and common features.

10.4 Mobile Phone example

The mobile phone example has been already detailed in Section 2.1.2. Mobile phone systems are
embedded systems that offer various features: voice communication, text messaging, phonebook,
calendar, camera, internet browsing, games, etc. These features may vary from one product to
another and dependencies between them can be modelled in a FD. In Figure 10.5, we reproduce the
FD that describes a simplified product line of mobile phone systems using OFD (Kang et al., 1998).

Mobile Phone

MessagingDial

Picture Messaging requires Camera

Imaging Connectivity

Keyboard Voice Chat MMS
Picture

Messaging

Camera Video WAP Bluetooth

WAP 1.0 WAP 2.0

Figure 10.5: FORM FD: Mobile Phone PL

This OFD (Figure 10.5) can be translated into its corresponding VFD (Figure 10.6†) accord-
ing to the embeddings defined in Tables 9.16 and 9.14. Each node is translated into card-node(s)
with the appropriate arities and cardinalities. For instance the optional and and-node Messaging
is translated into two nodes OptMessaging of arity 1 and Messaging of arity 3 with respectively
cardinalities (0, 1) and (3, 3) and one edge from OptMessaging to Messaging.

Once the FD is in VFD, the tool translates each card-node into its corresponding BF in CNF ac-
cording to the translations provided in Tables 10.1 and 10.2. For instance, the node Messaging(3, 3)
is translated into the following BF where the last disjunction corresponds to the justification rule:

†The layout for this VFD is the one provided within the tool
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Figure 10.6: VFD Abstract Syntax: Mobile Phone PL

(¬ Messaging ∨ OptChat) ∧
(¬ Messaging ∨ OptPictMessaging) ∧
(¬ Messaging ∨ OptMMS ) ∧
(¬ Messaging ∨ OptMessaging)

Once all nodes have been translated it remains to translate the crosscutting constraints. Hence,
the requires constraint between PictureMessaging and Camera is translated into one disjunction:
¬ PictureMessaging ∨ Camera.

The conjunction of these BFs in CNF is then passed to the SAT-solver. Hence, we are now able
to reason on VFD.

Once the BF‡ in CNF, corresponding to the OFD, has been solved by a SAT-solver, the tool
applies a projection on its output. This projection essentially eliminates auxiliary symbols that are
non primitive features (P). The output of this projection is the set of valid products corresponding to
the OFD. When P includes all nodes, the OFD represents a SPL with 462 valid products. When P
only includes the leaf features, the FD represents a SPL with still 288 valid products. The complete
list of 288 products can be found in Appendix I. Here are some of them, each described as a set of
primitive features:

1. {Keyboard}

2. {Keyboard,Voice}

3. {Keyboard, Picture Messaging, Camera}
‡The complete BF for this example can be found in Appendix I.
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4. {Keyboard, Voice, MMS , Picture Messaging, Chat, Camera, Video, WAP 2.0, Bluetooth}

5. ...

If we had an additional excludes constraint between the nodes Dial and Chat, the resulting
number of products would be reduced to 144 (Figure 10.7). When a common feature excludes an
optional feature, all the products containing this optional feature become invalid. Therefore, all
Mobile Phones with Chat are not allowed anymore. Hence, the total number of products is divided
by two. This constraint is purely illustrative and irrelevant in the domain.

Mobile Phone

MessagingDial

Picture Messaging requires Camera

Imaging Connectivity

Keyboard Voice Chat MMS
Picture

Messaging

Camera Video WAP Bluetooth

WAP 1.0 WAP 2.0
Dial excludes Chat

Figure 10.7: FORM FD: Mobile Phone PL with additional constraint

Once we have access to the SAT-solver, the resolution of the decision problems relative to VFD
are facilitated. For the OFDs given in Figures 10.5 and 10.7 the tool produces the following results:

1. FD Satisfiability: Both OFDs are satisfiable.

2. Product Listing: 288 products are listed for the first OFD (Figure 10.5) and 144 for the second
(Figure 10.7).

3. Product Checking: Checking the membership of the product {Mobile Phone, Dial, Keyboard,
Messaging, Chat, Picture Messaging, Imaging, Camera} reveals that it is a valid product for
the first OFD (Figure 10.5) but not for the second (Figure 10.7) since Dial excludes Chat.

4. FD Equivalence: the first OFD (Figure 10.5) is equivalent to itself but is not equivalent to the
second one (Figure 10.7).

5. FD Inclusion: the second OFD (Figure 10.7) is included into the first one (Figure 10.5) but
not conversely.
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6. Dead Features: the first OFD (Figure 10.5) contains no dead features while the second OFD
(Figure 10.7) contains one dead feature: Chat, since Dial is mandatory and excludes Chat.
Chat feature will thus never appear in any product. Hence, detecting dead features can help
debugging overconstrained FDs.

7. Common Features: the first OFD (Figure 10.5) contains three common features: MobilePhone,
Dial and Keyboard, while the second (Figure 10.7) contains only one: Keyboard.

10.5 Reused Components

In this section, we introduce the different components that have been reused in the development of
the VFD reasoning tool. The heart of the tool is based on the SAT4J library (Section 10.5.1) which
provides the adequate algorithms to solve satisfiability problems. Another library called Graphviz
(Section 10.5.2) is used to generate a graphical representation of FDs based on graph visualisation
techniques. The Xstream library (Section 10.5.3) is used to guarantee the persistence of FDs by
serialising the object representation of FDs into an XML format that can be easily exchanged.
Finally, we have used the Graphical Modelling Framework (GMF) (Section 10.5.4) to generate a
tool offering standard support for creating, saving and editing VFD diagrams.

10.5.1 SAT4J

The SAT4J (Berre and Parrain, 2007) project aims to provide an efficient library of SAT-solvers in
Java. As our FD semantics is defined in terms of BF, we translate each FD into a CNF respecting
the DIMACS CNF format. The algorithms and the global approach on which SAT4J relies are
described in (Eén and Sörensson, 2004).

10.5.2 Graphviz

Graphviz (AT&T, 2007) enables to visualise structural information as diagrams of abstract graphs
and networks. Since FDs are DAGs we use this open source software to easily visualise them. The
Graphviz layout program takes descriptions of graphs in a simple textual language, and generates
diagrams in several formats: images and SVG for web pages and postscript for inclusion in PDF
or other documents. It also allows displaying graphs in an interactive browser. In Graphviz, the
layout of the graph can be customised according to colours, fonts, tabular node layouts, line styles,
hyperlinks, and custom shapes.

To interact with Graphviz, we produce as input a FD translated in DOT and we receive as an
output a postscript that we display in a graph browser. The abstract syntax of the DOT language
is defined in Table 10.5.2. Terminals are emphasised in bold font. Literal characters are given in
single quotes. Parentheses “(” and “)” indicate grouping when needed. Square brackets “[” and “]”
enclose optional items. Vertical bars “| ”separate alternatives.

For instance, the abstract syntax of our illustrative example is generated automatically by graphviz
within a jpg (see Figure 10.8). The abstract syntax of the FD is translated into a DOT expression
that is computed by Graphviz to visualise the FD. The complete DOT expression corresponding to
the mobile phone example can be found in Appendix I.
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graph : [ strict ] ( graph — digraph) [ ID ] ’{’ stmt list ’}’
stmt list : [ stmt [ ’;’ ] [ stmt list ] ]
stmt : node stmt

| edge stmt
| attr stmt
| ID ’=’ ID
| subgraph

attr stmt : ( graph — node — edge) attr list
attr list : ’[’ [ a list ] ’]’ [ attr list ]
a list : ID [ ’=’ ID ] [ ’,’ ] [ a list ]
edge stmt : (node id — subgraph) edgeRHS [ attr list ]
edgeRHS : - - (node id — subgraph) [ edgeRHS ]
node stmt : node id [ attr list ]
node id : ID [ port ]
port : ’:’ ID [ ’:’ compass pt ]

| ’:’ compass pt
subgraph : [ subgraph [ ID ] ] ’{’ stmt list ’}’

| subgraph ID
compass pt : ( n | ne| e | se| s| sw| w | nw)

Table 10.3: The DOT Grammar

10.5.3 XStream

XStream (Walnes and Schaible, 2007) is a component that allows serialising objects to XML and
back again. The translation from FD to XML provides persistence and a formal description for FD
in a format suitable for further processing. Briefly, the XML format for a FD is the root plus the list
of edges where each edge is a couple of nodes. The complete XML version of the mobile phone
example can be found in Appendix I.

10.5.4 GMF

The visualisation of FDs with Graphviz is convenient. Nevertheless, it does not allow FD graph-
ical edition. All modelling tools usually include a graphical editor in which each concept can be
edited, resized and manipulated. A convenient solution is to use the Graphical Modelling Frame-
work (GMF) (IBM and Borland, 2007).

GMF is a model-driven framework relying on the Eclipse platform. This framework aims to fa-
cilitate the development of graphical editors in a generative manner based on the Eclipse Modelling
Framework (EMF) and Graphical Editing Framework (GEF). The editor development with GMF is
divided into six activities:

1. Develop Domain Model. This model is a meta-model the language. It is based on the FD
Data-Model illustrated in Figure 10.2 and defines the abstract syntax of the language.
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Figure 10.8: VFD Abstract Syntax: Mobile Phone PL

2. Develop Graphical Definition Model. This model contains information related to the graph-
ical elements that will appear. Later, they will be connected to the constructs of language
meta-model for which they provide representation and editing. This model defines the con-
crete syntax of the language.

3. Develop Tooling Definition Model. This model is used to design the palette and other menus,
toolbars, etc., that will enable the user to manipulate the concepts of the language.

4. Develop Mapping Model. The mapping definition links the three previous models.

5. Develop Generator Model. This model enables to set the properties for code generation,
similar to the familiar EMF Generator Model.

6. Generate Diagram Plug-in. Once the generator model is defined, a graphical editor Eclipse
Plug-in is automatically generated for free.

At the end, a VFD graphical editor is provided. GMF allows to automate with minimum effort
most of the tasks related to VFD editing and persistence. Finally, the generated tool has been
customised and the graphical editor has been related to reasoning facilities. The final result is
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an Eclipse Plug-in that associates the advantages of a SAT-solver and GMF to facilitate Feature
Modelling (see Figure 10.9) and Reasoning (see Figure 10.10).

Figure 10.9: GMF Plugin: Feature Modelling
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Figure 10.10: GMF Plugin: Feature Reasoning

10.6 Chapter Summary

In this chapter, we reported our implementation of a VFD reasoning tool mainly relying on a SAT-
solver for its semantics and on GMF technologies for its graphical representation. We have de-
scribed the expected functionalities of the tool and its basic architecture. Several crucial points have
been underlined, especially the roles played by VFD within this tool and the encoding to translate
card-nodes into BF in CNF. Finally, we have illustrated the tool with a simplified mobile phone
example. For further details on the mobile phone example, please refer to Appendix I.
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Chapter 11

Conclusion and Future Work

F
eature Diagrams (FDs) can be a precious help in mastering the complexity of vari-
ability management in the context of SPLE. They allow representing in a concise way
the commonalities and the variabilities of a whole family of products in terms of their

features. This thesis underlines that the current research on FDs is unfortunately fragmented and
thus provides principles to remedy this situation. A formal approach is presented and designed to
introduce more rigour in the motivation, definition and comparison of FD languages. Hence, exam-
ining their qualities will be more focused and productive. This quality analysis is necessary to avoid
the proliferation of languages and constructs that are an additional source of misinterpretations and
interoperability problems. In particular, the automation and formal underpinnings of FDs need more
careful attention.

Our work contributes to the resolution of this situation by providing and applying a formal eval-
uation and comparison approach for FD languages. Throughout our investigation we have examined
three central research questions for which we gave the following answers:

1. RQ.1: Which qualities could be evaluated for FD languages?

This question has already been addressed from a broader perspective in the literature. Various
language quality dimensions have been provided in SEQUAL, the global quality framework
proposed in (Krogstie, 2001a). We used SEQUAL as a road-map to improve the quality of
FD languages. The evaluation of language qualities is a complex endeavour involving many
mutually dependent qualities. In addition, such qualities depend on the context of the use of
the language. The importance of the studied qualities and criteria is mainly relative to the
companies and projects concerned. FD languages are no exception.

2. RQ.2: Which formal approaches facilitate evaluation and comparison of FD languages’ qual-
ity, and how to use them?

This question involves the formal analysis of FD language quality. The main sub-questions
to address are:

• Which quality dimensions are involved?

247
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Formal approaches do not aim at and are not able to deal with all the quality dimen-
sions covered by SEQUAL. They are mainly interested in abstract syntax and semantics
while issues concerning concrete syntax are not addressed. Hence, our approach does
not consider concrete syntax and is mainly restricted to three SEQUAL quality dimen-
sions: Domain appropriateness, Comprehensibility appropriateness and Technical actor
interpretation appropriateness.

• Which formal evaluation criteria can help to compare FD languages?

Defining FD languages formally puts us in a more comfortable position to compare and
evaluate them. It allows us to:

(a) specify decision problems related to FD languages, devise algorithms to solve these
problems and assess their potential efficiency (Computational Complexity);

(b) determine what the language is able to express (Expressiveness);
(c) determine whether the diagrams written in one language are translatable into an-

other language preserving the structure and the semantics of the original diagrams
(Embeddability);

(d) determine what is the worst possible impact on the size of the diagrams when there
is a translation from one language to another (Succinctness).

Computational Complexity, Expressiveness, Embeddability and Succinctness constitute
our selection of criteria to evaluate and compare FD languages. The correspondence
between these criteria and quality dimensions (from SEQUAL) they assess appears in
Table 11.1.

Domain appropri-
ateness

Comprehensibility
appropriateness

Technical actor in-
terpretation appro-
priateness

Computational Com-
plexity

√

Expressiveness
√

Embeddability
√ √

Succinctness
√ √

Table 11.1: Language Qualities and Formal Criteria

• How should such an analysis proceed?

Applying such criteria has a cost. On the one hand, the decision problems need to be
formally specified, so that Computational complexity can be studied. On the other hand,
to be compared according to Expressiveness, Embeddability and Succinctness, FD lan-
guages must be adapted to conform with two requirements: (1) they should be formal,
meaning that they are given formally defined syntax, semantic domain and semantic
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function and (2) they should share a common semantic domain.

The original contribution of this analysis is to suggest elegant solutions to facilitate the
applicability of such criteria. Both informal and formal FD languages can then easily
be made suitable for comparison.

– The first solution provides automatically informal languages with a formal defini-
tion. We propose a configurable formal definition for a family of FD languages
(FFD) and show how to configure it. FFD covers, but is not limited to, most of the
existing FD languages.

– The second solution allows us to compare formal languages for which semantic do-
mains differ. We relate these semantic domains with abstraction functions. In ad-
dition, we study whether a translation between their respective syntactic domains
exists that would ensure semantic equivalence between both languages. The ab-
straction function and syntax translation can thus be used to compare languages
for expressiveness, embeddability and succinctness. Yet, since abstraction func-
tions discard information from semantic domains, the relevance of this discarded
information should still be studied carefully.

• What are the main limitations to this analysis?

The investigation reported here is not without limitation. The main limitations of our ap-
proach concern (a) its scope, (b) its perspective and (c) limitations associated to formal
methods.

(a) The main limitation of our work is explicit in its scope. The proposed method and
its current results concern only formal language properties. In order not to over-
interpret our conclusions, the reader should look at this work with a comprehensive
view of model and language quality in mind. For example, with respect to the
SEQUAL framework, in order to be accurate and effective, we have deliberately
chosen to address only part of the qualities required from a “proper” modelling
language. We are conscious that our criteria cover only parts of each of the three
cited language qualities. In particular our formal approach only addresses qualities
related to abstract syntax and formal semantics. Although concrete syntax is out of
the thesis’ scope, its importance should not be underestimated since it is extensively
manipulated by language users and makes formality largely transparent for them.

(b) We have only looked at language quality, adopting a theoretical approach in an
academic environment. A complementary work would be to investigate models
empirically. We emphasised the difficulty of such an endeavour because of the lim-
ited availability of “real” FDs. Nevertheless, we do not consider it impossible and
can certainly learn a lot by observing how practitioners create and use FDs. Even,
such kinds of observations can be found in (Hubaux et al., 2008). Although we have
focused on studying theoretical properties of FD languages, we recognise that no
formal semantics, nor criteria, can ever guarantee by itself that the languages help
capture the right information (neither too little, nor too much) about the domain
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being modelled. Only empirical research can help us give a convincing answer to
this other aspect of domain appropriateness.

(c) Formal methods are extensively used in our approach. They bring many advan-
tages particularly in terms of efficient and error-free tool support, independence
from implementation, conciseness, unambiguity and completeness. Nevertheless,
they are time-consuming, error-prone, difficult to validate and to comprehend for
non-experts. In the context of FD languages, the advantages of formal methods are
however very likely to outweigh the costs for several reasons: (1) the languages are
relatively simple, (2) formality can be made largely transparent to the users (hidden
behind a graphical concrete syntax), (3) the automation possibilities are many (Be-
navides et al., 2006; Schobbens et al., 2006, 2007), and (4) the information that FDs
are used to convey is of critical importance for companies and therefore should suf-
fer no ambiguity.

Finally, even within the clearly confined scope of our research, we face some threats
to validity. Our examination of formal language properties was not supported by tools.
All the formalisation of, and reasoning (comparisons, demonstrations of theorems) on
languages were carried out by humans. Therefore, we cannot guarantee that human
errors, miss- or over-interpretations are completely absent from our results. In addition,
we need to draw the reader’s attention to the fact that our formalisations were made only
by considering published documents, without contacting the authors for clarifications
nor testing their tools. Some of our formalisation choices might therefore only be due
to the way things were phrased in the surveyed papers, or to an erroneous understanding
from our part.

3. RQ.3: How are existing FD languages evaluated according to this formal evaluation?

A first set of results has been obtained from the application of this systematic method on a
substantial part of the FD languages encountered in literature. The main conclusions are:

• Concerning complexity analysis, we have proved that most decision problems related to
FD languages are non-trivial. Since no efficient algorithm exists to solve them, imple-
mentations are very likely to face tractability issues in some specific cases. We have
shown that the expressively complete FD languages share the same complexity results:

– the Satisfiability problem is NP-Complete;

– the Product-Checking problem is NP-Complete;

– the Equivalence problem is coNPNP-Complete:

– the Inclusion problem is coNPNP-Complete;

– the Intersection and Union problems are Linear.

Once a problem is known to be complex, its associated tractability issues could be min-
imised or at least circumscribed. For FDs, we follow Batory’s suggestion (Batory, 2005)
to use SAT-solvers (see Chapter 10). In addition, we mitigate each complexity result by
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considering specific cases for which we determine a lower complexity. We also un-
derline that sharing features or distinguishing primitive and non-primitive features may
drastically increase complexity.

• Concerning expressiveness analysis, we have noticed that the studied FD languages are
all expressively complete. In general, a FD language is expressively complete when it
allows feature sharing. The simplest way to obtain feature sharing is to define FDs as
DAGs. However, when FDs are limited to trees, constraint languages bring expressive
completeness. Hence, the seminal FD language (OFT) was expressively complete and
its extensions should provide explicit arguments based on other criteria than expressive-
ness. Since expressiveness is not sufficient to compare FD languages, we also study
their embeddability and succinctness.

• Concerning embeddability analysis, we have noticed that FTs are not embeddable into
FDs while the opposite is true. We have also observed that all FD languages are em-
beddable into EFD. EFD is even embeddable into itself (self-embeddable). This means
that EFD is unnecessarily complex. Indeed, all constructs in EFD are easily definable
using only one of them: card-nodes. These results justify the introduction of a new
language called VFD that is minimal, non-redundant and still expressively complete.
However, once languages share the same expressiveness and that no embedding can be
found, succinctness is used as the finest criteria.

• Concerning succinctness analysis, we have determined five classes of succinctness and
noticed that VFD is included in the lowest one. The five classes of succinctness are:

(a) Propositional Logic;
(b) BCs are exponentially-as succinct as Propositional Logic due to the sharing allowed

in BC while not in Propositional Logic;
(c) OFDs are exponentially-as succinct as BC due to the introduction of primitive and

non-primitive features which implies that the corresponding BF should be existen-
tially quantified;

(d) RFDs are cubically-as succinct as OFD, due to the use of or-nodes;
(e) EFDs are cubically-as succinct as RFD, due to the use of card-nodes.

Embeddability and Succinctness analyses are highly interrelated. Indeed, languages
often contain redundant constructs to improve their succinctness. For instance, adding
specific constructs to represent requires and excludes constraints in OFD is redundant,
however it clarifies diagrams.

• Concerning semantic equivalence analysis we have observed that

– BC is semantically equivalent to FFD modulo an abstraction function. This abstrac-
tion function consists in discarding the non-primitive features from BC’s semantic
domain.

– vDFD is not semantically equivalent to FFD although there exists an abstraction
function between their semantic domains. The difference originates from the defi-
nition of their respective semantic functions. Indeed, vDFD follows an edge-based
semantics while FFD follows a node-based semantics. However, we have been able
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to obtain a semantic equivalence between FFD and vDFD by applying a preliminary
transformation to the abstract syntax of FFD in order to behave as an edge-based
semantics.

– We discover that two semantics were provided for BFT, namely BFT grammar and
propositional semantics. However, they were not semantically equivalent. The dif-
ference originates from the definition of their semantic functions. Indeed, BFT
propositional semantics generalised equivalence too much for xor-nodes. Finally,
we determined that FFD and the BFT grammar semantics were semantically equiv-
alent.

• In the end, our work suggests VFD as the language currently obtaining the best rank-
ing according to the studied criteria. VFD is minimal and still expressively complete.
VFD can embed all other studied FD languages and is included in the lowest class of
succinctness.

11.1 Claimed Contributions

The contributions of this thesis are essentially methodological with a strong theoretical basis and
substantial practical impacts.

11.1.1 Theoretical Contributions

A new semantics was defined and discussed for FFD. This definition is original in the sense that,
unlike the majority of other proposals, it follows the principles provided in (Harel and Rumpe,
2004) and that it is configurable. In addition, FFD is formally defined and constitutes the theoretical
basis of our analysis.

11.1.2 Methodological Contributions

The SEQUAL framework has served as a road-map and has been refined to improve the quality of
FD languages. Accordingly, a method to evaluate both formal and informal FD language quality
from a formal perspective was proposed. This method is based on three different aspects:

1. A set of principles was given to formally (re)define FD languages.

2. A set of formal criteria was proposed to partially assess specific quality dimensions of FD
languages. These criteria are expressiveness, embeddability, succinctness and complexity.

3. A comparative semantic approach was proposed to render FD languages with different se-
mantic domains comparable.

11.1.3 Practical Contributions

The aforementioned method was applied to compare and evaluate existing FD languages. The
resulting contributions were to:
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• provide a formal semantics to informal FD languages,

• compare, relate and discuss different proposals of semantics for FD languages including ours,

• determine classes of expressiveness, embeddability, succinctness and complexity of FD lan-
guages,

• fill these classes with the appropriate FD languages and

• compare and discuss FD languages and their constructs according to these classes and criteria.

In addition, a new rigorously defined and motivated FD language (VFD) was introduced. VFD
has obtained the best scoring according to our selection of formal criteria. However, VFD was not
considered as an end-user FD language. Hence, we did not provide VFD with an appropriate and
explicit concrete syntax. The purpose of this language was to serve as a pivot language facilitating
interoperability between FD languages. The translation from one FD language to another will thus
be simplified and will guarantee that the original semantics is preserved.

Finally, a reasoning tool was implemented to support VFD.

11.2 Future Work

Ultimately, our research aims at accelerating the advent of a standard FD language of an overall
excellent quality, including (1) unambiguous and appropriate syntax and semantics and (2) efficient
and proved correct reference algorithms. Although the road ahead is still quite long, we are confident
that the community can profit from our proposal. It could be used for example as part of an arsenal
to elaborate a standard FD language. This standard would suffer no ambiguity, and its formal
properties (among others) would be well known. In the end, it would enable reference algorithms
to be devised that are efficient and already proven correct. To move forward in this direction, much
work is still needed. The results should be validated (Section 11.2.1), extended (Section 11.2.2) and
applied (Section 11.2.3). Additionally, the scope of the analysis can be broadened (Section 11.2.4).

11.2.1 Validating the Results

Having made explicit the semantics of several FD languages, we need to confront them with their
proponents and, more generally, to the communities of researchers and practitioners working on
the subject. Doing so, we will be able to correct possible misinterpretations (oversimplifications,
arbitrary choices, etc.) we might have made, but also point out issues that were overlooked in
informal definitions. We expect especially lively debates on justification rule, edge-based vs. node-
based semantics (see discussion in Section 8.4.1) and on primitive feature/node (see discussion in
Section 8.4.5).

In addition, the analysis of the tools implementing reasoning algorithms for FD languages would
be a way to get a clearer understanding of their semantics.
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11.2.2 Extending the Results

Our method has been applied to informal FD languages. A generic formalisation of all of them,
FFD, was delivered and has helped gather precise results on them. Other informal languages could
similarly benefit from formalisation, for instance Orthogonal Variability Modelling (OVM) (Pohl
et al., 2005). In addition, some constructs found in the surveyed languages still have to be for-
malised, most notably, layers, generalisation and implementation links in FORM (Kang et al.,
1998), binding times in (van Gurp et al., 2001) and attributes in (Benavides et al., 2005a).

Concerning formal FD languages, the semantic comparisons between FFD and vDFD and be-
tween FFD and BFT have helped gather precise results on them. More recently, several formalisa-
tion proposals (Czarnecki et al., 2005c,b; Benavides et al., 2005a; Wang et al., 2005a; Sun et al.,
2005; Wang et al., 2005b; Asikainen et al., 2006; Janota and Kiniry, 2007) for FDs appeared in the
literature. Each of them now needs to be carefully studied according to the proposed method and
criteria. Furthermore, we claim that this comparison method could be used by the authors of any
new proposals in order to justify it.

11.2.3 Applying the Results

Two main applications of our current results can be considered:

• One of the main expected outcomes of our work is the development of efficient tool support
for FD languages. Several tools with reasoning capabilities already exist (Benavides et al.,
2006) but, for most tasks, they have to face tough tractability issues. Our results (on formal-
isation and complexity, mainly) can help (1) verify the correctness of these algorithms, and
(2) devise optimised algorithms.

• Various decision problems addressed in our work have been implemented. The next step is
extending our tool with functionalities facilitating FD languages interoperability. VFD will
play a central role here.

Of course, these applications will also be useful means to validate our results.

11.2.4 Extending the Scope

As mentioned before, the scope of our research is mainly limited to FD languages and a restricted
number of qualities and criteria. In addition, gathering knowledge over FD languages should not
be limited to definitions of FD languages found in the litterature. One alternative is to analyse FDs
themselves and how practitioners draw them. Another alternative is to analyse tools that support
FD languages and how they are used by practitioners. Accordingly, our formal approach should
be (1) applied on other families of languages, (2) extended by other qualities and criteria and (3)
complemented by an empirical approach.

1. Studying other families of languages may reveal interesting results. Our formal approach
could also be transposed to cognate areas where existing modelling techniques face similar
challenges. Particularly, we think of goal modelling techniques (van Lamsweerde, 2001;
Mylopoulos, 2006), statecharts (Harel and Politi, 1998) or formalised subsets of UML (OMG,
2008).
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2. Studying other qualities and criteria is equally important. In particular, issues related to con-
crete syntax are complementary to our current investigations. In our survey of FD languages,
we observed that there were diverging views on this issue. Despite our focus on semantics,
we do not underestimate the impact of a proper concrete syntax. In the end, this is the only
thing that most language users will actually see. Evaluation and improvement of concrete syn-
tax is an area of research that possesses an important body of knowledge which is currently
being structured (Moody, 2006b,a), and of which FDs could take advantage. An important
topic is to facilitate diagram scalability and to reduce the visual complexity of real-size mod-
els (Moody, 2006a).

3. Complementing our formal approach with an empirical approach could produce new results
and could help validate our theoretical results. For instance, complexity results, which typi-
cally give our worst-case results, should be confronted with observations of the kinds (struc-
ture, size. . . ) of models that are actually used by practitioners. If it turns out that most real
FDs are trees (instead of DAGs), then our complexity results should not be considered too
pessimistically. An empirical evaluation of the quality of their associated tools, following an
approach similar to (Beuche et al., 2006), may also reveal complementary results.
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Appendix I: Mobile Phone Systems
Example

T
his appendix gathers the main results concerning our illustrative example. First, in
Section 11.2.4 we recall the concrete syntax of the OFD representing a simplified
PL of mobile phone systems. Then, in Section 11.2.4, we translate this OFD into

VFD and present graphically its abstract syntax. Afterwards, the FD semantics is provided in Sec-
tion 11.2.4. Finally, we present the results of the translations of VFD into three different formats:
CNF (Section 11.2.4), DOT (Section 11.2.4) and XML (Section 11.2.4).

Mobile Phone Concrete Syntax

Mobile Phone

MessagingDial

Picture Messaging requires Camera

Imaging Connectivity

Keyboard Voice Chat MMS
Picture

Messaging

Camera Video WAP Bluetooth

WAP 1.0 WAP 2.0

Figure 11.1: FORM FD: Mobile Phone PL
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Figure 11.2: VFD Abstract Syntax: Mobile Phone PL

Mobile Phone Abstract Syntax

Mobile Phone Semantics

When the set of primitive features is limited to leaf features (Keyboard, Voice, Chat, Picture Mes-
saging, MMS, Camera, Video, Bluetooth, WAP 1.0, WAP 2.0) the FD (Figure 11.1) represents 288
valid different products. For each product the number of included primitive features is given be-
tween parenthesis and the set of primitive features between brackets. The set of products is sorted
according to the number of primitive features included in a valid product.

[Product (1): [Keyboard]
, Product (2): [Keyboard, Voice]
, Product (2): [Keyboard, Bluetooth]
, Product (2): [Keyboard, WAP 2.0]
, Product (2): [Keyboard, WAP 1.0]
, Product (2): [Keyboard, Video]
, Product (2): [Keyboard, Camera]
, Product (2): [Keyboard, MMS]
, Product (2): [Keyboard, Chat]
, Product (3): [Keyboard, Bluetooth, WAP 2.0]
, Product (3): [Keyboard, Bluetooth, WAP 1.0]
, Product (3): [Keyboard, Voice, Bluetooth]
, Product (3): [Keyboard, Voice, WAP 2.0]
, Product (3): [Keyboard, Voice, WAP 1.0]
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, Product (3): [Keyboard, Camera, Video]
, Product (3): [Keyboard, Voice, Video]
, Product (3): [Keyboard, Voice, Camera]
, Product (3): [Keyboard, Video, Bluetooth]
, Product (3): [Keyboard, Video, WAP 2.0]
, Product (3): [Keyboard, Video, WAP 1.0]
, Product (3): [Keyboard, Camera, Bluetooth]
, Product (3): [Keyboard, Camera, WAP 2.0]
, Product (3): [Keyboard, Camera, WAP 1.0]
, Product (3): [Keyboard, Chat, MMS]
, Product (3): [Keyboard, Voice, MMS]
, Product (3): [Keyboard, Voice, Chat]
, Product (3): [Keyboard, MMS, Bluetooth]
, Product (3): [Keyboard, MMS, WAP 2.0]
, Product (3): [Keyboard, MMS, WAP 1.0]
, Product (3): [Keyboard, Chat, Bluetooth]
, Product (3): [Keyboard, Chat, WAP 2.0]
, Product (3): [Keyboard, Chat, WAP 1.0]
, Product (3): [Keyboard, MMS, Video]
, Product (3): [Keyboard, MMS, Camera]
, Product (3): [Keyboard, Picture Messaging, Camera]
, Product (3): [Keyboard, Chat, Video]
, Product (3): [Keyboard, Chat, Camera]
, Product (4): [Keyboard, Voice, Bluetooth, WAP 1.0]
, Product (4): [Keyboard, Voice, Bluetooth, WAP 2.0]
, Product (4): [Keyboard, Voice, Camera, Video]
, Product (4): [Keyboard, Video, Bluetooth, WAP 1.0]
, Product (4): [Keyboard, Video, Bluetooth, WAP 2.0]
, Product (4): [Keyboard, Camera, Bluetooth, WAP 2.0]
, Product (4): [Keyboard, Camera, Bluetooth, WAP 1.0]
, Product (4): [Keyboard, Camera, Video, Bluetooth]
, Product (4): [Keyboard, Camera, Video, WAP 2.0]
, Product (4): [Keyboard, Camera, Video, WAP 1.0]
, Product (4): [Keyboard, Voice, Video, Bluetooth]
, Product (4): [Keyboard, Voice, Video, WAP 2.0]
, Product (4): [Keyboard, Voice, Video, WAP 1.0]
, Product (4): [Keyboard, Voice, Camera, Bluetooth]
, Product (4): [Keyboard, Voice, Camera, WAP 2.0]
, Product (4): [Keyboard, Voice, Camera, WAP 1.0]
, Product (4): [Keyboard, Voice, Chat, MMS]
, Product (4): [Keyboard, MMS, Bluetooth, WAP 1.0]
, Product (4): [Keyboard, MMS, Bluetooth, WAP 2.0]
, Product (4): [Keyboard, Chat, Bluetooth, WAP 2.0]
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, Product (4): [Keyboard, Chat, Bluetooth, WAP 1.0]
, Product (4): [Keyboard, Chat, MMS, Bluetooth]
, Product (4): [Keyboard, Chat, MMS, WAP 2.0]
, Product (4): [Keyboard, Chat, MMS, WAP 1.0]
, Product (4): [Keyboard, Voice, MMS, Bluetooth]
, Product (4): [Keyboard, Voice, MMS, WAP 2.0]
, Product (4): [Keyboard, Voice, MMS, WAP 1.0]
, Product (4): [Keyboard, Voice, Chat, Bluetooth]
, Product (4): [Keyboard, Voice, Chat, WAP 2.0]
, Product (4): [Keyboard, Voice, Chat, WAP 1.0]
, Product (4): [Keyboard, MMS, Camera, Video]
, Product (4): [Keyboard, Picture Messaging, Camera, Video]
, Product (4): [Keyboard, Picture Messaging, MMS, Camera]
, Product (4): [Keyboard, Chat, Camera, Video]
, Product (4): [Keyboard, Chat, MMS, Video]
, Product (4): [Keyboard, Chat, MMS, Camera]
, Product (4): [Keyboard, Chat, Picture Messaging, Camera]
, Product (4): [Keyboard, Voice, MMS, Video]
, Product (4): [Keyboard, Voice, MMS, Camera]
, Product (4): [Keyboard, Voice, Picture Messaging, Camera]
, Product (4): [Keyboard, Voice, Chat, Video]
, Product (4): [Keyboard, Voice, Chat, Camera]
, Product (4): [Keyboard, MMS, Video, Bluetooth]
, Product (4): [Keyboard, MMS, Video, WAP 2.0]
, Product (4): [Keyboard, MMS, Video, WAP 1.0]
, Product (4): [Keyboard, MMS, Camera, Bluetooth]
, Product (4): [Keyboard, MMS, Camera, WAP 2.0]
, Product (4): [Keyboard, MMS, Camera, WAP 1.0]
, Product (4): [Keyboard, Picture Messaging, Camera, Bluetooth]
, Product (4): [Keyboard, Picture Messaging, Camera, WAP 2.0]
, Product (4): [Keyboard, Picture Messaging, Camera, WAP 1.0]
, Product (4): [Keyboard, Chat, Video, Bluetooth]
, Product (4): [Keyboard, Chat, Video, WAP 2.0]
, Product (4): [Keyboard, Chat, Video, WAP 1.0]
, Product (4): [Keyboard, Chat, Camera, Bluetooth]
, Product (4): [Keyboard, Chat, Camera, WAP 2.0]
, Product (4): [Keyboard, Chat, Camera, WAP 1.0]
, Product (5): [Keyboard, Camera, Video, Bluetooth, WAP 1.0]
, Product (5): [Keyboard, Camera, Video, Bluetooth, WAP 2.0]
, Product (5): [Keyboard, Voice, Video, Bluetooth, WAP 1.0]
, Product (5): [Keyboard, Voice, Video, Bluetooth, WAP 2.0]
, Product (5): [Keyboard, Voice, Camera, Bluetooth, WAP 2.0]
, Product (5): [Keyboard, Voice, Camera, Bluetooth, WAP 1.0]
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, Product (5): [Keyboard, Voice, Camera, Video, Bluetooth]
, Product (5): [Keyboard, Voice, Camera, Video, WAP 2.0]
, Product (5): [Keyboard, Voice, Camera, Video, WAP 1.0]
, Product (5): [Keyboard, Chat, MMS, Bluetooth, WAP 1.0]
, Product (5): [Keyboard, Chat, MMS, Bluetooth, WAP 2.0]
, Product (5): [Keyboard, Voice, MMS, Bluetooth, WAP 1.0]
, Product (5): [Keyboard, Voice, MMS, Bluetooth, WAP 2.0]
, Product (5): [Keyboard, Voice, Chat, Bluetooth, WAP 2.0]
, Product (5): [Keyboard, Voice, Chat, Bluetooth, WAP 1.0]
, Product (5): [Keyboard, Voice, Chat, MMS, Bluetooth]
, Product (5): [Keyboard, Voice, Chat, MMS, WAP 2.0]
, Product (5): [Keyboard, Voice, Chat, MMS, WAP 1.0]
, Product (5): [Keyboard, Picture Messaging, MMS, Camera, Video]
, Product (5): [Keyboard, Chat, MMS, Camera, Video]
, Product (5): [Keyboard, Chat, Picture Messaging, Camera, Video]
, Product (5): [Keyboard, Chat, Picture Messaging, MMS, Camera]
, Product (5): [Keyboard, Voice, MMS, Camera, Video]
, Product (5): [Keyboard, Voice, Picture Messaging, Camera, Video]
, Product (5): [Keyboard, Voice, Picture Messaging, MMS, Camera]
, Product (5): [Keyboard, Voice, Chat, Camera, Video]
, Product (5): [Keyboard, Voice, Chat, MMS, Video]
, Product (5): [Keyboard, Voice, Chat, MMS, Camera]
, Product (5): [Keyboard, Voice, Chat, Picture Messaging, Camera]
, Product (5): [Keyboard, MMS, Video, Bluetooth, WAP 1.0]
, Product (5): [Keyboard, MMS, Video, Bluetooth, WAP 2.0]
, Product (5): [Keyboard, MMS, Camera, Bluetooth, WAP 2.0]
, Product (5): [Keyboard, MMS, Camera, Bluetooth, WAP 1.0]
, Product (5): [Keyboard, MMS, Camera, Video, Bluetooth]
, Product (5): [Keyboard, MMS, Camera, Video, WAP 2.0]
, Product (5): [Keyboard, MMS, Camera, Video, WAP 1.0]
, Product (5): [Keyboard, Picture Messaging, Camera, Bluetooth, WAP 2.0]
, Product (5): [Keyboard, Picture Messaging, Camera, Bluetooth, WAP 1.0]
, Product (5): [Keyboard, Picture Messaging, Camera, Video, Bluetooth]
, Product (5): [Keyboard, Picture Messaging, Camera, Video, WAP 2.0]
, Product (5): [Keyboard, Picture Messaging, Camera, Video, WAP 1.0]
, Product (5): [Keyboard, Picture Messaging, MMS, Camera, Bluetooth]
, Product (5): [Keyboard, Picture Messaging, MMS, Camera, WAP 2.0]
, Product (5): [Keyboard, Picture Messaging, MMS, Camera, WAP 1.0]
, Product (5): [Keyboard, Chat, Video, Bluetooth, WAP 1.0]
, Product (5): [Keyboard, Chat, Video, Bluetooth, WAP 2.0]
, Product (5): [Keyboard, Chat, Camera, Bluetooth, WAP 2.0]
, Product (5): [Keyboard, Chat, Camera, Bluetooth, WAP 1.0]
, Product (5): [Keyboard, Chat, Camera, Video, Bluetooth]
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, Product (5): [Keyboard, Chat, Camera, Video, WAP 2.0]
, Product (5): [Keyboard, Chat, Camera, Video, WAP 1.0]
, Product (5): [Keyboard, Chat, MMS, Video, Bluetooth]
, Product (5): [Keyboard, Chat, MMS, Video, WAP 2.0]
, Product (5): [Keyboard, Chat, MMS, Video, WAP 1.0]
, Product (5): [Keyboard, Chat, MMS, Camera, Bluetooth]
, Product (5): [Keyboard, Chat, MMS, Camera, WAP 2.0]
, Product (5): [Keyboard, Chat, MMS, Camera, WAP 1.0]
, Product (5): [Keyboard, Chat, Picture Messaging, Camera, Bluetooth]
, Product (5): [Keyboard, Chat, Picture Messaging, Camera, WAP 2.0]
, Product (5): [Keyboard, Chat, Picture Messaging, Camera, WAP 1.0]
, Product (5): [Keyboard, Voice, MMS, Video, Bluetooth]
, Product (5): [Keyboard, Voice, MMS, Video, WAP 2.0]
, Product (5): [Keyboard, Voice, MMS, Video, WAP 1.0]
, Product (5): [Keyboard, Voice, MMS, Camera, Bluetooth]
, Product (5): [Keyboard, Voice, MMS, Camera, WAP 2.0]
, Product (5): [Keyboard, Voice, MMS, Camera, WAP 1.0]
, Product (5): [Keyboard, Voice, Picture Messaging, Camera, Bluetooth]
, Product (5): [Keyboard, Voice, Picture Messaging, Camera, WAP 2.0]
, Product (5): [Keyboard, Voice, Picture Messaging, Camera, WAP 1.0]
, Product (5): [Keyboard, Voice, Chat, Video, Bluetooth]
, Product (5): [Keyboard, Voice, Chat, Video, WAP 2.0]
, Product (5): [Keyboard, Voice, Chat, Video, WAP 1.0]
, Product (5): [Keyboard, Voice, Chat, Camera, Bluetooth]
, Product (5): [Keyboard, Voice, Chat, Camera, WAP 2.0]
, Product (5): [Keyboard, Voice, Chat, Camera, WAP 1.0]
, Product (6): [Keyboard, Voice, Camera, Video, Bluetooth, WAP 2.0]
, Product (6): [Keyboard, Voice, Camera, Video, Bluetooth, WAP 1.0]
, Product (6): [Keyboard, Voice, Chat, MMS, Bluetooth, WAP 2.0]
, Product (6): [Keyboard, Voice, Chat, MMS, Bluetooth, WAP 1.0]
, Product (6): [Keyboard, Chat, Picture Messaging, MMS, Camera, Video]
, Product (6): [Keyboard, Voice, Picture Messaging, MMS, Camera, Video]
, Product (6): [Keyboard, Voice, Chat, MMS, Camera, Video]
, Product (6): [Keyboard, Voice, Chat, Picture Messaging, Camera, Video]
, Product (6): [Keyboard, Voice, Chat, Picture Messaging, MMS, Camera]
, Product (6): [Keyboard, MMS, Camera, Video, Bluetooth, WAP 2.0]
, Product (6): [Keyboard, MMS, Camera, Video, Bluetooth, WAP 1.0]
, Product (6): [Keyboard, Picture Messaging, Camera, Video, Bluetooth, WAP 1.0]
, Product (6): [Keyboard, Picture Messaging, Camera, Video, Bluetooth, WAP 2.0]
, Product (6): [Keyboard, Picture Messaging, MMS, Camera, Bluetooth, WAP 2.0]
, Product (6): [Keyboard, Picture Messaging, MMS, Camera, Bluetooth, WAP 1.0]
, Product (6): [Keyboard, Picture Messaging, MMS, Camera, Video, Bluetooth]
, Product (6): [Keyboard, Picture Messaging, MMS, Camera, Video, WAP 2.0]
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, Product (6): [Keyboard, Picture Messaging, MMS, Camera, Video, WAP 1.0]
, Product (6): [Keyboard, Chat, Camera, Video, Bluetooth, WAP 1.0]
, Product (6): [Keyboard, Chat, Camera, Video, Bluetooth, WAP 2.0]
, Product (6): [Keyboard, Chat, MMS, Video, Bluetooth, WAP 1.0]
, Product (6): [Keyboard, Chat, MMS, Video, Bluetooth, WAP 2.0]
, Product (6): [Keyboard, Chat, MMS, Camera, Bluetooth, WAP 2.0]
, Product (6): [Keyboard, Chat, MMS, Camera, Bluetooth, WAP 1.0]
, Product (6): [Keyboard, Chat, MMS, Camera, Video, Bluetooth]
, Product (6): [Keyboard, Chat, MMS, Camera, Video, WAP 2.0]
, Product (6): [Keyboard, Chat, MMS, Camera, Video, WAP 1.0]
, Product (6): [Keyboard, Chat, Picture Messaging, Camera, Bluetooth, WAP 2.0]
, Product (6): [Keyboard, Chat, Picture Messaging, Camera, Bluetooth, WAP 1.0]
, Product (6): [Keyboard, Chat, Picture Messaging, Camera, Video, Bluetooth]
, Product (6): [Keyboard, Chat, Picture Messaging, Camera, Video, WAP 2.0]
, Product (6): [Keyboard, Chat, Picture Messaging, Camera, Video, WAP 1.0]
, Product (6): [Keyboard, Chat, Picture Messaging, MMS, Camera, Bluetooth]
, Product (6): [Keyboard, Chat, Picture Messaging, MMS, Camera, WAP 2.0]
, Product (6): [Keyboard, Chat, Picture Messaging, MMS, Camera, WAP 1.0]
, Product (6): [Keyboard, Voice, MMS, Video, Bluetooth, WAP 1.0]
, Product (6): [Keyboard, Voice, MMS, Video, Bluetooth, WAP 2.0]
, Product (6): [Keyboard, Voice, MMS, Camera, Bluetooth, WAP 2.0]
, Product (6): [Keyboard, Voice, MMS, Camera, Bluetooth, WAP 1.0]
, Product (6): [Keyboard, Voice, MMS, Camera, Video, Bluetooth]
, Product (6): [Keyboard, Voice, MMS, Camera, Video, WAP 2.0]
, Product (6): [Keyboard, Voice, MMS, Camera, Video, WAP 1.0]
, Product (6): [Keyboard, Voice, Picture Messaging, Camera, Bluetooth, WAP 2.0]
, Product (6): [Keyboard, Voice, Picture Messaging, Camera, Bluetooth, WAP 1.0]
, Product (6): [Keyboard, Voice, Picture Messaging, Camera, Video, Bluetooth]
, Product (6): [Keyboard, Voice, Picture Messaging, Camera, Video, WAP 2.0]
, Product (6): [Keyboard, Voice, Picture Messaging, Camera, Video, WAP 1.0]
, Product (6): [Keyboard, Voice, Picture Messaging, MMS, Camera, Bluetooth]
, Product (6): [Keyboard, Voice, Picture Messaging, MMS, Camera, WAP 2.0]
, Product (6): [Keyboard, Voice, Picture Messaging, MMS, Camera, WAP 1.0]
, Product (6): [Keyboard, Voice, Chat, Video, Bluetooth, WAP 1.0]
, Product (6): [Keyboard, Voice, Chat, Video, Bluetooth, WAP 2.0]
, Product (6): [Keyboard, Voice, Chat, Camera, Bluetooth, WAP 2.0]
, Product (6): [Keyboard, Voice, Chat, Camera, Bluetooth, WAP 1.0]
, Product (6): [Keyboard, Voice, Chat, Camera, Video, Bluetooth]
, Product (6): [Keyboard, Voice, Chat, Camera, Video, WAP 2.0]
, Product (6): [Keyboard, Voice, Chat, Camera, Video, WAP 1.0]
, Product (6): [Keyboard, Voice, Chat, MMS, Video, Bluetooth]
, Product (6): [Keyboard, Voice, Chat, MMS, Video, WAP 2.0]
, Product (6): [Keyboard, Voice, Chat, MMS, Video, WAP 1.0]
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, Product (6): [Keyboard, Voice, Chat, MMS, Camera, Bluetooth]
, Product (6): [Keyboard, Voice, Chat, MMS, Camera, WAP 2.0]
, Product (6): [Keyboard, Voice, Chat, MMS, Camera, WAP 1.0]
, Product (6): [Keyboard, Voice, Chat, Picture Messaging, Camera, Bluetooth]
, Product (6): [Keyboard, Voice, Chat, Picture Messaging, Camera, WAP 2.0]
, Product (6): [Keyboard, Voice, Chat, Picture Messaging, Camera, WAP 1.0]
, Product (7): [Keyboard, Voice, Chat, Picture Messaging, MMS, Camera, Video]
, Product (7): [Keyboard, Picture Messaging, MMS, Camera, Video, Bluetooth, WAP 2.0]
, Product (7): [Keyboard, Picture Messaging, MMS, Camera, Video, Bluetooth, WAP 1.0]
, Product (7): [Keyboard, Chat, MMS, Camera, Video, Bluetooth, WAP 2.0]
, Product (7): [Keyboard, Chat, MMS, Camera, Video, Bluetooth, WAP 1.0]
, Product (7): [Keyboard, Chat, Picture Messaging, Camera, Video, Bluetooth, WAP 1.0]
, Product (7): [Keyboard, Chat, Picture Messaging, Camera, Video, Bluetooth, WAP 2.0]
, Product (7): [Keyboard, Chat, Picture Messaging, MMS, Camera, Bluetooth, WAP 2.0]
, Product (7): [Keyboard, Chat, Picture Messaging, MMS, Camera, Bluetooth, WAP 1.0]
, Product (7): [Keyboard, Chat, Picture Messaging, MMS, Camera, Video, Bluetooth]
, Product (7): [Keyboard, Chat, Picture Messaging, MMS, Camera, Video, WAP 2.0]
, Product (7): [Keyboard, Chat, Picture Messaging, MMS, Camera, Video, WAP 1.0]
, Product (7): [Keyboard, Voice, MMS, Camera, Video, Bluetooth, WAP 2.0]
, Product (7): [Keyboard, Voice, MMS, Camera, Video, Bluetooth, WAP 1.0]
, Product (7): [Keyboard, Voice, Picture Messaging, Camera, Video, Bluetooth, WAP 1.0]
, Product (7): [Keyboard, Voice, Picture Messaging, Camera, Video, Bluetooth, WAP 2.0]
, Product (7): [Keyboard, Voice, Picture Messaging, MMS, Camera, Bluetooth, WAP 2.0]
, Product (7): [Keyboard, Voice, Picture Messaging, MMS, Camera, Bluetooth, WAP 1.0]
, Product (7): [Keyboard, Voice, Picture Messaging, MMS, Camera, Video, Bluetooth]
, Product (7): [Keyboard, Voice, Picture Messaging, MMS, Camera, Video, WAP 2.0]
, Product (7): [Keyboard, Voice, Picture Messaging, MMS, Camera, Video, WAP 1.0]
, Product (7): [Keyboard, Voice, Chat, Camera, Video, Bluetooth, WAP 1.0]
, Product (7): [Keyboard, Voice, Chat, Camera, Video, Bluetooth, WAP 2.0]
, Product (7): [Keyboard, Voice, Chat, MMS, Video, Bluetooth, WAP 1.0]
, Product (7): [Keyboard, Voice, Chat, MMS, Video, Bluetooth, WAP 2.0]
, Product (7): [Keyboard, Voice, Chat, MMS, Camera, Bluetooth, WAP 2.0]
, Product (7): [Keyboard, Voice, Chat, MMS, Camera, Bluetooth, WAP 1.0]
, Product (7): [Keyboard, Voice, Chat, MMS, Camera, Video, Bluetooth]
, Product (7): [Keyboard, Voice, Chat, MMS, Camera, Video, WAP 2.0]
, Product (7): [Keyboard, Voice, Chat, MMS, Camera, Video, WAP 1.0]
, Product (7): [Keyboard, Voice, Chat, Picture Messaging, Camera, Bluetooth, WAP 2.0]
, Product (7): [Keyboard, Voice, Chat, Picture Messaging, Camera, Bluetooth, WAP 1.0]
, Product (7): [Keyboard, Voice, Chat, Picture Messaging, Camera, Video, Bluetooth]
, Product (7): [Keyboard, Voice, Chat, Picture Messaging, Camera, Video, WAP 2.0]
, Product (7): [Keyboard, Voice, Chat, Picture Messaging, Camera, Video, WAP 1.0]
, Product (7): [Keyboard, Voice, Chat, Picture Messaging, MMS, Camera, Bluetooth]
, Product (7): [Keyboard, Voice, Chat, Picture Messaging, MMS, Camera, WAP 2.0]
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, Product (7): [Keyboard, Voice, Chat, Picture Messaging, MMS, Camera, WAP 1.0]
, Product (8): [Keyboard, Chat, Picture Messaging, MMS, Camera, Video, Bluetooth, WAP 2.0]
, Product (8): [Keyboard, Chat, Picture Messaging, MMS, Camera, Video, Bluetooth, WAP 1.0]
, Product (8): [Keyboard, Voice, Picture Messaging, MMS, Camera, Video, Bluetooth, WAP 2.0]
, Product (8): [Keyboard, Voice, Picture Messaging, MMS, Camera, Video, Bluetooth, WAP 1.0]
, Product (8): [Keyboard, Voice, Chat, MMS, Camera, Video, Bluetooth, WAP 2.0]
, Product (8): [Keyboard, Voice, Chat, MMS, Camera, Video, Bluetooth, WAP 1.0]
, Product (8): [Keyboard, Voice, Chat, Picture Messaging, MMS, Camera, Video, WAP 2.0]
, Product (8): [Keyboard, Voice, Chat, Picture Messaging, Camera, Video, Bluetooth, WAP 1.0]
, Product (8): [Keyboard, Voice, Chat, Picture Messaging, Camera, Video, Bluetooth, WAP 2.0]
, Product (8): [Keyboard, Voice, Chat, Picture Messaging, MMS, Camera, Bluetooth, WAP 2.0]
, Product (8): [Keyboard, Voice, Chat, Picture Messaging, MMS, Camera, Bluetooth, WAP 1.0]
, Product (8): [Keyboard, Voice, Chat, Picture Messaging, MMS, Camera, Video, Bluetooth]
, Product (8): [Keyboard, Voice, Chat, Picture Messaging, MMS, Camera, Video, WAP 1.0]
, Product (9): [Keyboard, Voice, Chat, Picture Messaging, MMS, Camera, Video, Bluetooth, WAP
2.0]
, Product (9): [Keyboard, Voice, Chat, Picture Messaging, MMS, Camera, Video, Bluetooth, WAP
1.0]
]

Mobile Phone CNF

Most variables contained in this CNF map to the nodes contained in the abstract syntax of the Mobile
Phone FD (Figure 11.2). The correspondence with the concrete syntax is established in Figure 11.3
where the features and optional circles are decorated with the appropriate variable. Hence, we have
27 variables (1...27) and 2 auxiliary variables (28-29) generated by the encoding of the “WAP”
feature (with a Boolean cardinality (1,1) and two sons) into a CNF.

p cnf 29 45

\\ Mobile Phone 1

-1 2 0

-1 5 0

-1 7 0

-1 3 0

1 0

\\ Dial 2

-2 9 0

-2 10 0

-2 1 0

\\ OptMessaging 3

-3 1 0

\\ Messaging 4
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Mobile Phone
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Figure 11.3: FODA FD: Mobile Phone PL

-4 12 0

-4 14 0

-4 16 0

-4 3 0

\\ OptImaging 5

-5 1 0

\\ Imaging 6

-6 20 0

-6 18 0

-6 5 0

\\ OptConectivity 7

-7 1 0

\\ Connectivity 8

-8 22 0

-8 24 0

-8 7 0

\\ Keyboard 9

-9 2 0

\\ OptVoice 10

-10 2 0

\\ Voice 11

-11 10 0

\\ OptChat 12

-12 4 0

\\ Chat 13
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-13 12 0

\\ OptPicture Messaging 14

-14 4 0

\\ Picture Messaging 15

-15 14 0

\\ OptMMS 16

-16 4 0

\\ MMS 17

-17 16 0

\\ OptCamera 18

-18 6 0

\\ Camera 19

-19 18 0

\\ OptVideo 20

-20 6 0

\\ Video 21

-21 20 0

\\ OptWAP 22

-22 8 0

\\ WAP 23

-27 28 -23 0

-26 -28 -23 0

27 29 -23 0

26 -29 -23 0

-23 22 0

\\ OptBluetooth 24

-24 8 0

\\ Bluetooth 25

-25 24 0

\\ WAP 1.0 26

-26 23 0

\\ WAP 2.0 27

-27 23 0

\\ Picture Messaging requires Camera

-15 19 0

Mobile Phone DOT

graph FD {

node[shape=box,style=filled];

"Mobile Phone\n(4,4)" ;

"Dial\n(2,2)" [shape=rectangle];

"OptMessaging\n(0,1)" [shape=rectangle];
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"Messaging\n(3,3)" [shape=rectangle];

"OptImaging\n(0,1)" [shape=rectangle];

"Imaging\n(2,2)" [shape=rectangle];

"OptConnectivity\n(0,1)" [shape=rectangle];

"Connectivity\n(2,2)" [shape=rectangle];

"Keyboard\n(0,0)" ;

"OptVoice\n(0,1)" [shape=rectangle];

"Voice\n(0,0)" ;

"OptChat\n(0,1)" [shape=rectangle];

"Chat\n(0,0)" ;

"OptPictMessaging\n(0,1)" [shape=rectangle];

"Picture Messaging\n(0,0)" ;

"OptMMS\n(0,1)" [shape=rectangle];

"MMS\n(0,0)" ;

"OptCamera\n(0,1)" [shape=rectangle];

"Camera\n(0,0)" ;

"OptVideo\n(0,1)" [shape=rectangle];

"Video\n(0,0)" ;

"OptWAP\n(0,1)" [shape=rectangle];

"WAP\n(1,1)" [shape=rectangle];

"OptBtooth\n(0,1)" [shape=rectangle];

"Bluetooth\n(0,0)" ;

"WAP 1.0\n(0,0)" ;

"WAP 2.0\n(0,0)" ;

"Mobile Phone\n(4,4)" -- "Dial\n(2,2)";

"Mobile Phone\n(4,4)" -- "OptMessaging\n(0,1)";

"Mobile Phone\n(4,4)" -- "OptImaging\n(0,1)";

"Mobile Phone\n(4,4)" -- "OptConnectivity\n(0,1)";

"Dial\n(2,2)" -- "Keyboard\n(0,0)";

"Dial\n(2,2)" -- "OptVoice\n(0,1)";

"OptMessaging\n(0,1)" -- "Messaging\n(3,3)";

"Messaging\n(3,3)" -- "OptChat\n(0,1)";

"Messaging\n(3,3)" -- "OptPictMessaging\n(0,1)";

"Messaging\n(3,3)" -- "OptMMS\n(0,1)";

"OptImaging\n(0,1)" -- "Imaging\n(2,2)";

"Imaging\n(2,2)" -- "OptCamera\n(0,1)";

"Imaging\n(2,2)" -- "OptVideo\n(0,1)";

"OptConnectivity\n(0,1)" -- "Connectivity\n(2,2)";

"Connectivity\n(2,2)" -- "OptWAP\n(0,1)";

"Connectivity\n(2,2)" -- "OptBtooth\n(0,1)";

"OptVoice\n(0,1)" -- "Voice\n(0,0)";

"OptChat\n(0,1)" -- "Chat\n(0,0)";

"OptPictMessaging\n(0,1)" -- "Picture Messaging\n(0,0)";
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"OptMMS\n(0,1)" -- "MMS\n(0,0)";

"OptCamera\n(0,1)" -- "Camera\n(0,0)";

"OptVideo\n(0,1)" -- "Video\n(0,0)";

"OptWAP\n(0,1)" -- "WAP\n(1,1)";

"WAP\n(1,1)" -- "WAP 1.0\n(0,0)";

"WAP\n(1,1)" -- "WAP 2.0\n(0,0)";

"OptBtooth\n(0,1)" -- "Bluetooth\n(0,0)";

"Picture Messaging\n(0,0)" -- "Camera\n(0,0)" [arrowhead=normal, color=blue];

"Dial\n(2,2)" -- "Chat\n(0,0)" [arrowhead=empty, color=red];

label = "Feature Diagram Mobile Phone copy"; fontsize=20}

Mobile Phone XML

<vector>

<vfd.model.FNode>

<NodeName>Mobile Phone</NodeName>

<Min__Cardinality>4</Min__Cardinality>

<Max__Cardinality>4</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> </dotStyle>

</vfd.model.FNode>

<vfd.model.Edge>

<origin reference="../../vfd.model.FNode"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>Dial</NodeName>

<Min__Cardinality>2</Min__Cardinality>

<Max__Cardinality>2</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>Dial</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin reference="../../vfd.model.FNode"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>OptMessaging</NodeName>

<Min__Cardinality>0</Min__Cardinality>
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<Max__Cardinality>1</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>false</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>OptMessaging</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin reference="../../vfd.model.FNode"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>OptImaging</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>1</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>false</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>OptImaging</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin reference="../../vfd.model.FNode"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>OptConnectivity</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>1</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>false</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>OptConnectivity</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge/destination"/>

<destination>

<NodeName>Keyboard</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>0</Max__Cardinality>

<NbClause>0</NbClause>
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<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> </dotStyle>

</destination>

<answer>Keyboard</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge/destination"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>OptVoice</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>1</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>false</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>OptVoice</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[6]/destination"/>

<destination>

<NodeName>Voice</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>0</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> </dotStyle>

</destination>

<answer>Voice</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[2]/destination"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>Messaging</NodeName>

<Min__Cardinality>3</Min__Cardinality>

<Max__Cardinality>3</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>
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<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>Messaging</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[8]/destination"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>OptChat</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>1</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>false</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>OptChat</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[8]/destination"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>OptPictMessaging</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>1</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>false</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>OptPictMessaging</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[8]/destination"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>OptMMS</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>1</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>false</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>
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</destination>

<answer>OptMMS</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[9]/destination"/>

<destination>

<NodeName>Chat</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>0</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> </dotStyle>

</destination>

<answer>Chat</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[10]/destination"/>

<destination>

<NodeName>Picture Messaging</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>0</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> </dotStyle>

</destination>

<answer>Picture Messaging</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[11]/destination"/>

<destination>

<NodeName>MMS</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>0</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> </dotStyle>

</destination>

<answer>MMS</answer>

</vfd.model.Edge>

<vfd.model.Edge>



294 Appendix I: Mobile Phone Systems Example

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[3]/destination"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>Imaging</NodeName>

<Min__Cardinality>2</Min__Cardinality>

<Max__Cardinality>2</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>Imaging</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[15]/destination"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>OptCamera</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>1</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>false</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>OptCamera</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[15]/destination"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>OptVideo</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>1</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>false</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>OptVideo</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[16]/destination"/>
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<destination>

<NodeName>Camera</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>0</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> </dotStyle>

</destination>

<answer>Camera</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[17]/destination"/>

<destination>

<NodeName>Video</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>0</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> </dotStyle>

</destination>

<answer>Video</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[4]/destination"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>Connectivity</NodeName>

<Min__Cardinality>2</Min__Cardinality>

<Max__Cardinality>2</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>Connectivity</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[20]/destination"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>OptWAP</NodeName>
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<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>1</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>false</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>OptWAP</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[20]/destination"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>OptBtooth</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>1</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>false</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>OptBtooth</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[21]/destination"/>

<destination class="vfd.model.VPNode">

<Question></Question>

<NodeName>WAP</NodeName>

<Min__Cardinality>1</Min__Cardinality>

<Max__Cardinality>1</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> [shape=rectangle]</dotStyle>

</destination>

<answer>WAP</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[22]/destination"/>

<destination>

<NodeName>Bluetooth</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>0</Max__Cardinality>
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<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> </dotStyle>

</destination>

<answer>Bluetooth</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[23]/destination"/>

<destination>

<NodeName>WAP 1.0</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>0</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> </dotStyle>

</destination>

<answer>WAP 1.0</answer>

</vfd.model.Edge>

<vfd.model.Edge>

<origin class="vfd.model.VPNode" reference="../../vfd.model.Edge[23]/destination"/>

<destination>

<NodeName>WAP 2.0</NodeName>

<Min__Cardinality>0</Min__Cardinality>

<Max__Cardinality>0</Max__Cardinality>

<NbClause>0</NbClause>

<NbTempVar>0</NbTempVar>

<isfeature>true</isfeature>

<dotStyle> </dotStyle>

</destination>

<answer>WAP 2.0</answer>

</vfd.model.Edge>

<vfd.model.Implies>

<origin reference="../../vfd.model.Edge[13]/destination"/>

<destination reference="../../vfd.model.Edge[18]/destination"/>

<answer></answer>

</vfd.model.Implies>

</vector>
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