Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

DOCTOR OF SCIENCES

Reverse engineering: user-drawn form-based interfaces for interactive database
conceptual analysis: the rainbow approach

Ramdoyal, Ravi

Award date:
2010

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/15a8d982-168c-4079-bff7-a37588dcf40b

€5 Mo,

]
@) MoOVES 0
D 'Maodeling, Verification and Evolution of Software

A

%,
o

0 oue”

§FUNDP
NAMUR

€S Univgy
e ag
)

i,

Reverse Engineering

User-Drawn Form-Based Interfaces
for Interactive Database Conceptual Analysis

Ravi R.C. Ramdoyal

Ik

RAINBOW

A
A = =2 Z<)/ L (j—
r \ A\ \

Doctor of Philosophy Dissertation
Namur, 2010

Laboratory of Database Applications Engineering
Faculty of Computer Science @ PReCISE Research Centre e University of Namur

(©Ravi Ramdoyal

(©Presses Universitaires de Namur
Rempart de la Vierge, 13
B - 5000 Namur (Belgique)

L’acronyme et le logo RAINBOW, ainsi que le design de la couverture sont
également (©Ravi Ramdoyal.

Toute reproduction d’un extrait quelconque de ce livre, hors des limites re-
strictives prévues par la loi, par quelque procédé que ce soit, et notamment par
photocopie ou scanner, est strictement interdite pour tous pays.

Imprimé en Belgique
ISBN : 978-2-87037-696-6
Dépot légal: D/2010/1881/42

Doctoral Committee

Prof. Jean-Marie Jacquet (President)
Faculty of Computer Science
University of Namur (Belgium)

Prof. Jean-Luc Hainaut (Promotor)
Faculty of Computer Science
University of Namur (Belgium)

Prof. Patrick Heymans (Internal Reviewer)
Faculty of Computer Science
University of Namur (Belgium)

Prof. Monique Noirhomme-Fraiture (Internal Reviewer)
Faculty of Computer Science
University of Namur (Belgium)

Prof. Jean Vanderdonckt (External Reviewer)
Faculty of Economical, Social and Political Sciences
University of Louvain-la-Neuve (Belgium)

Prof. Oscar Pastor Lépez (External Reviewer)
Centro de Investigacién en Métodos de Produccién de Software (ProS)
Universidad Politécnica de Valencia (Spain)

The public PhD defence was held on the 15th of December 2010 at the Uni-
versity of Namur.

Abstract

The first step of most database design methodologies consists in eliciting part of
the user requirements from various sources such as user interviews and corpo-
rate documents. These requirements are formalised into a conceptual schema
of the application domain, that has proved difficult to validate, especially since
the graphical representations of data models have shown understandability lim-
itations from the end-users standpoint. On the other hand, electronic forms
seem to be more natural and intuitive to express data requirements for lay-
men. Besides, the necessity to associate end-users of a future system with its
specification and development steps has long been advocated.

In this doctoral research, we consequently explore the possible reverse engi-
neering of user-drawn form-based interfaces to perform an interactive database
conceptual analysis, and subsequently present the tool-supported RAINBOW
approach resulting from this investigation. This user-oriented approach relies
on the adaptation and integration of principles and techniques coming from var-
ious fields of study, ranging from Database Forward and Reverse Engineering
to Prototyping and Participatory Design.

Keywords: Software Engineering, Requirements Engineering, Data Modelling,
Database Forward Engineering, Database Reverse Engineering, Human-Com-
puter Interfaces, Prototyping, Participatory Design.

iii

Résumé

La premiere étape de la plupart des méthodologies de développement de bases
de données se concentre notamment sur I’élicitation des besoins des utilisateurs,
a partir de sources diverses telles que des interviews et de la documentation
existante. Ces besoins sont formalisés par le biais d’un schéma conceptuel
représentant le domaine d’application. En pratique, la validation de tels sché-
mas s’avere difficile, étant donné que la compréhension de leur formalisme,
méme a l'aide de représentations graphiques, est loin d’étre triviale. Paral-
lelement, il apparait que les formulaires électroniques semblent plus naturels
et intuitifs pour permettre I'expression de tels besoins par des non experts.
Par ailleurs, I'implication des utilisateurs finaux dans la spécification et le
développement d’un futur systéme fait désormais partie des bonnes pratiques
de I'Ingénierie Logicielle.

Dans cette recherche doctorale, nous explorons des lors la possible rétro-
ingénierie d’interfaces de type formulaire dessinées par des utilisateurs finaux,
afin de permettre une analyse conceptuelle interactive. Le résultat de cette in-
vestigation est ’établissement de I’approche RAINBOW et de son support logi-
ciel. Cette approche orientée utilisateur se base sur 'adaptation et I'intégration
de principes et de techniques provenant de diverses disciplines, notamment
I'Ingénierie et la Rétro-ingénierie des Bases de Données, le Prototypage et le
Design Collaboratif.

Mots-clef: Ingénierie Logicielle, Ingénierie des Besoins, Modélisation des Don-
nées, Ingénierie des Bases de Données, Rétro-ingénierie des Bases de Données,
Interfaces Homme-Machine, Prototypage, Design Collaboratif.

Acknowledgements

Let us be grateful to people who make us happy; they are
the charming gardeners who make our souls blossom.
Marcel Proust

When this adventure started a few years ago, little did I expect that leading
a doctoral research would be such a unique blend of sweet and sour paradoxes,
with its faire share of upsides and downsides. As it has already been said
elsewhere, on the one hand, being a PhD student is a lonely, laborious and
worrisome experience. But on the other hand, it offers so many positive boons
and rewards that I would rather only remember the latter. Indeed, during
this timespan, I notably got the chance to inquire about many different and
exciting topics and technologies, while meeting so many educated, interesting
and caring people, always ready to provide their help and cheer you up.

Among these persons, I would first of all like to express my gratitude and
appreciation to my supervisor, Prof. Jean-Luc Hainaut, who notably gave
me the opportunity to embrace the challenge of pursuing a PhD. Thank you
for teaching me to become more autonomous and proactive in my research
through your confidence and the latitude you granted me during these years.
Thank you for your time, your precious advices and your insight on my work.
Not forgetting the chance of being chosen as teaching assistant. Teaching and
supervising students at the Faculty of Computer Science was indeed a fulfilling
and enjoyable experience as well.

Next, I would like to thank the members of my jury, Prof. Monique
Noirhomme-Fraiture, Prof. Patrick Heymans, Prof. Jean-Marie Jacquet, Prof.
Jean Vanderdonckt and Prof. Oscar Pastor Loépez for accepting to participate
in the evaluation of my work. It was an honour and a pleasure to discuss my

vii

research with you, especially given your encouragements and valuable feedback.
I am hopefully looking forward to keep in touch and eventually collaborate with
you on future research projects.

Regarding the preliminary case studies that were led for the validation of
this research, I would like to warmly thank my anonymous participants, as
well as Patrick for his acute suggestions and recommendations. Thank you so
much for your time, your enthusiasm and your constructive input. Beyond the
great importance of your collaboration regarding my research, it was pleasure
to simply be able to get together. Besides, I also want to thank the other
people who indirectly contributed and influenced this research, either as part
of the ReQuest project or as part of the DB-Main team.

I am also very grateful to Giz, Anthony and Benjamin, my fellow doctor
predecessors, for showing me the right direction. Their perseverance and ded-
icated hard work were a true inspiration in times where I was in the darkness
and uncertainty of my doctoral journey. Thank you also for your understanding
solicitude and your cheering during my work.

Likewise, I want to thank Alain and Benoit for being the daily and support-
ive witnesses of my doctoral progress. Thank you for the humorous, relaxing
and necessary time-outs that we occasionally shared with Flora and Abdelka-
der, and which often gave me the necessary boost to resolutely go back to work.
As you are yourself nearing the end of your doctoral path, you can count on
me to root for you and wish you only the very best!

I would then like to thank my past and present colleagues of the Laboratory
of Database Application Engineering, Anne-France, Rokia, Sophea, Virginie,
Anthony, Eric, Jean-Roch, Jonathan, Julien, Vincent and Yannis. Thank you
for your concern, your support, and all these good times that undoubtedly
made us more than simple co-workers.

I would also like to thank our top-notch secretaries, Anne-Marie, Babette,
Gyselle and Isabelle for making the organisation and practical progress of my
work so much easier. Thank you also for your kindness and consideration,
beyond the mere doctoral preoccupations.

More generally, I would like to thank all the other friends, colleagues and
unsuspected strangers who rooted for me during my doctoral tenure. There
are too many of them to mention them all, but I am truly grateful for all the
consideration and support that I received. Thank you.

Last but not least, I wish to thank the members of my family for their
unconditional love and support. In particular, my parents gave and taught me
so much that I am eternally grateful to them. Dear Mataji and Pitaji, thank
you for everything. I am also grateful to my family-in-law, for their warmth,
kindness and impulse. Thank you Bernadette, Pierre, Caroline, Corentin, Jean-

Baptiste, Véronique and Elisabeth for your upbeat presence. And finally, I
would like to thank my wife, Emy for her endless love, understanding and
encouragements. Thank you for all these precious moments together, and for
giving me the strength to carry on through enduring times. Thank you for
being there no matter what, especially during this last year which has been
incredibly rich in changes and challenges. At the end of the day, when I look
at our beautiful little Louise, I guess that we made it through pretty well, and
that there are many more blessings to come. Cheers!

This dissertation is dedicated in loving memory
of Nani, my grand-mother, for always

pushing me to work hard

and stay the course.

Contents

Contents

List of Tables

List of Figures

List of Algorithms

Listings

1 Introduction

I PROBLEM STATEMENT

2 Research context

2.1

2.2

2.3

Requirements Engineering
2.1.1 Lessons learned from the Software Crises
2.1.2 An overview of Requirements Engineering
2.1.3 Main challenges of Requirements Engineering
2.1.4 End-users as major actors of Requirements Engineering?
Data Modelling o
2.2.1 Database Engineering
2.2.2 Database Reverse Engineering
2.2.3 The Generic Entity-Relationship model
2.2.4 The transformational approach
2.2.5 Making conceptual analysis accessible to end-users?
Prototyping
2.3.1 A bridge between two worlds

xiii

xiii

XX

xxi

XXV

xxvii

N o o W

11
13
13
14
16
17
22
26
26
26

xiv

3

11

Contents

2.3.2 Prototyping as the expression of formal requirements .
2.3.3 Prototyping as a two-way communication channel? . .

State of the art and Research questions
3.1 Reverse Engineering of Legacy Form-Based Artefacts
3.2 Reverse Engineering of Form-Based Prototypes
3.2.1 Existing approaches
322 Coreprinciples
3.2.3 Limitations 0oL
3.3 Research perspectives,
3.4 Encompassing Database forward engineering main activites
3.4.1 Clarifying terminological and structural ambiguities
3.4.2 Eliciting implicit constraints and dependencies
3.4.3 Handling schema integration
3.4.4 Generating applicative components
3.5 Using Database reverse engineering to extract data models from
form-based interfaceso oo L.
3.5.1 Static information based on layout and content
3.5.2 Dynamic information.
3.6 Prototyping to express and validate requirements
3.6.1 Expressing requirements through form-based interfaces
3.6.2 Validating requirements through form-based interfaces
3.7 Managing User-Involvement
3.7.1 Participatory Design Perspectives.
3.7.2 Tailoring existing techniques

THE RAINBOW APPROACH

Proposal

4.1 Claim0 e e e e e e e e e
4.2 Context ofuse
4.3 Founding principles oL
4.4 Overview of the approach

REPRESENT: Expressing concepts through form-based in-
terfaces

5.1 Concernso e
5.2 RAINBOW'’s Simplified Form Model
5.3 Managing the process

5.3.1 Preparation guidelines for the analyst

28
30

31
31
33
33
36
37
38
39
39
44
49
50

o1
ol
53
53
53
56
57
57
58

59

61
61
62
63
64

67
67
68
7
7

Contents XV

5.3.2 Execution guidelines and recommendations 78
5.3.3 Assisting the end-users through the tool support . . . 79
5.4 Output e e e 79
55 Arunningexample Lo Lo 80

6 ADAPT: Extracting data models from form-based interfaces 81

6.1 Intuitive mapping between the RSFM and the GER model . 81
6.2 Raw transformation 82
6.3 Refined transformation o000 86
6.4 Managing the process and output 87

7 INVESTIGATE: Analysing semantic and structural redun-

dancies 91
7.1 Terminological ambiguities. 92
7.1.1 Formalising the notions of similaritiy 92
7.1.2 Discovering terminological ambiguities 96

7.1.3 Submitting terminological ambiguities to end-users for
arbitration oL L L oo L 97
7.1.4 Processing the terminological decisions of the end-users 102

7.1.5 Choosing appropriate String Metrics 104
7.1.6 Choosing appropriate Ontologies 108
7.1.7 Reducing terminological redundancies 108
7.2 Structural ambiguities oL Lo 108
7.2.1 Formalising the notion of structural similarity 109
7.2.2 Discovering structural ambiguities 117

7.2.3 Submitting structural ambiguities to the end-users for
arbitration L oo 118
7.2.4 Processing the structural decisions of the end-users . . 122
7.2.5 Reducing structural redundancies 123
7.3 Output 123
8 NURTURE: Eliciting dependencies and constraints 127
8.1 Delimiting constraints and dependencies 127
8.2 Formalising data samples and tuples 129
8.3 Formalising constraints and dependencies 130
8.3.1 Technical constraints 130
8.3.2 Existence constraints 132
8.3.3 Functional dependencies 132
8.3.4 Unique constraints, 133

8.4 Managing the process 133

xvi

84.1 Overview
8.4.2 Inmitialisation

8.4.3 Analysing new data samples to suggest constraints and

dependencies

Contents

8.4.4 Acquiring constraints and dependencies

8.4.5 Editing the set of valid tuples and the sets of enforced

constraints and dependencies . .
8.4.6 Processing the end-users decisions
85 Output

9 BIND: Completing the integration of the conceptual schema

9.1 Delimiting elements to integrate
9.2 Managing the process

9.2.1 Arbitrating upward inheritance for IS-A relationships

9.2.2 Arbitrating referential components

9.2.3 Dispatching attributes from entity types to relationship

types.o oo

9.2.4 Solving constraints and dependencies for integrated com-

ponents

9.2.5 Manual modifications
9.2.6 Updating the forms

93 Output

133
134

139
149

152
152
156

159
159
160
160
164

164

164
167
167
167

10 OBJECTIFY and WANDER: Generating and testing a playable

prototype
10.1 Objectify
10.2 Wander

11 A proof-of-concept tool support
11.1 Design principles
11.1.1 Available processes
11.1.2 Implementation structure

11.2 Drawing and specifying form-based interfaces

11.2.1 Drawing environment
11.2.2 Suggesting terms on-the-fly . . .

11.2.3 Storing and adapting the interfaces

11.3 Arbitrating terminological and structural
11.3.1 Terminological similarities
11.3.2 Structural similarities

11.4 Providing data samples and constraints

similarities

171
171
174

175
175
176
176
177
177
178
180
181
181
182
183

Contents

11.5 Finalising the project L.

IIT VALIDATION

12 Validation protocol
12.1 Research questions
12.2 Types of data collection techniques
12.3 Goals and context of the experimentation
12.3.1 Assessing the effectiveness of the RAINBOW approach
12.3.2 Assessing the quality of the RAINBOW output
12.3.3 Context of the experimentation
12.4 Building our dedicated validation approach
12.4.1 OVerview o v v v i i e s e e e e e e e
12.4.2 Participants o o000
12.4.3 Preparing the experimentation
12.4.4 Applying the RAINBOW approach to each project . .
12.4.5 Debating the quality of the produced schemas

13 The experimentation
13.1 First case study: A student application form
13.1.1 Preparation L.
13.1.2 Session 1: Drawing the forms
13.1.3 Session 2: Analysing the terminology and structure of
theforms
13.1.4 Session 3: Providing examples and constraints
13.1.5 Session 4: Finalising the project
13.1.6 Discussing the schemas
13.2 Second case study: An academic event management system .
13.2.1 Preparation Lo
13.2.2 Session 1: Drawing the forms
13.2.3 Session 2: Analysing the terminology and structure of
theforms L L
13.2.4 Session 3: Providing examples and constraints
13.2.5 Session 4: Finalising the project
13.2.6 Discussing the schemas

14 Discussing the results
14.1 Assessing the effectiveness of the RAINBOW approach
14.1.1 Expressing concepts through form-based interfaces . .
14.1.2 Finding and arbitrating terminological ambiguities . .

xXvil

186

189

191
191
192
193
193
194
196
197
197
198
200
200
202

203
203
203
204

206
211
214
215
217
217
217

220
226
232
237

241
241
241
243

xviii Contents

14.1.3 Finding and arbitrating structural ambiguities
14.1.4 Eliciting constraints and dependencies
14.1.5 Transparently handling integration
14.1.6 Handling user-involvement
14.1.7 Analysing the efficiency criteria
14.1.8 Assessing the validation protocol
14.2 Assessing the quality of the RAINBOW output
14.2.1 Analysing the quality criteria
14.2.2 Assessing the validation protocol
14.3 Threats to validity,

IV DISCUSSION AND CONCLUSION

15 Specificities of the RAINBOW approach

15.1 Integrating different disciplines to overcome existing limitations
in related researches L L oL

15.2 End-users as major stakeholders of the data requirements process

15.3 Using Reverse Engineering for the purpose of Forward Engineer-
N . o o e e e e e e e e e

15.4 A modular and non standard view integration process

15.5 A transformational and evolutive approach

15.6 An interoperable model-driven approach

15.7 A rich and relevant part of a SRS

16 Possible improvements and future works

16.1 Extending the approach
16.1.1 Implementing the Objectify and Wander steps
16.1.2 Incorporating dynamic aspects
16.1.3 Improving reusability through the drawing support . .
16.1.4 Refining the terminological and structural analysis . .
16.1.5 Expanding the elicitation of constraints and dependencies

16.2 Improving the current tool support
16.2.1 General observations
16.2.2 Drawing o v it e e e e
16.2.3 Investigate
16.2.4 Nurture L
1625 Bind
16.2.6 Objectify and Wander

16.3 Pursuing the experimentation based on an improved canvas .

243
243
243
244
245
246
246
246
247
248

249

251

251
253

254
256
256
256
257

259
259
259
260
260
260
261
261
261
261
262
263
263
263
264

Contents xix

16.3.1 Preparing the experimentation 264
16.3.2 Applying the RAINBOW approach 265

16.3.3 Reviewing the experiment and comparing the approach
to existing approaches L. 268
17 Conclusion 271
V BIBLIOGRAPHY 277
VI APPENDICES 293
A Algorithmic conventions 295
B Schemas representation conventions 297

C Additional materials 301

List of Tables

3.1 Levenshtein’s and Jaro-Winkler’s distance applied to example strings.

7.1 Jaro-Winkler’s inverted similarity index (d;.;) applied to example

strings and their reversed version.

13.1 Labelling ambiguities for session 2 of the first case study.

13.2 Structural ambiguities for session 2 of the first case study.
13.3 Labelling ambiguities for session 2 of the second case study. . . .
13.4 Structural ambiguities for session 2 of the second case study.

15.1 Comparison of existing approaches in prototypical reverse engineer-
ing for forward engineering

40

107

209
209
226
230

252

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8
2.9
2.10

3.1

3.2
3.3
3.4
3.5

3.6

4.1

4.2
4.3

Ut
—

The Database Engineering process
An ER schema and its formal expression
The database reverse engineering process
Sample GER conceptual schema.
Sample GER logical schema
Sample fragment of a GER physical schema.
Schema transformation defined as a couple of structural and
instance mappings.o e e e
Structural mapping of a schema transformation.
An electronic form and its information contents.

Two (almost) semantics-preserving transformations

Tllustration of the core principles for reverse engineering form-
based interfaces

Typical cases of structural redundancies.
The representation of a Customer using the GER and relational
model.
A form-based interface with unlabelled elements and unsystem-
atic choice and placement of widgets.

Using reverse engineering in a forward engineering perspective.

Overview of the ReQuest approach.
Overview of the RAINBOW approach.

A simple form gathering information on a person.

xXxi

15
16
17
19
21
23

24
24
29
29

37
38
42
42

46

52

62
64
65

69

xxii

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

6.1
6.2
6.3

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

List of Figures

A form widget. L
A fieldset widget. oo
A table widget. o
A simple form gathering information on a person.
A mandatory input widget.o
Different representations of the selection widget.
An button widget. o
The tree-like structure of the Person form shown in Fig. 5.1.
Running example: possible user-drawn form-based interfaces
for the management of a small company that offers services
and sales products. Lo

Tustration of the intuitive mapping rules for a simple form.
Translation of the interfaces into raw entity types.
Translation of the raw entity types into independent schemas.

Highlighting different types of terminological ambiguities in the
running example oL Lo Lo
Illustration of the set of the semantically similar elements as-
sociated with {“Code”, “Zip code”} for the running example.
Illustration of the set of the semantically similar elements as-

sociated with{“Product”, “Products”} for the running example.

The updated forms of the example after the validation of the
semantic redundancies. oL
The updated schemas of the example after the validation of the
semantic redundancies. Lo
Structural similarity among the fieldsets Address, the fieldset
Location and the form Provider.
The forms Product, Special good and Service, who all share
at least the widgets Code and Description in our running ex-
ample. ..o e e e e e e e e e e
Structural similarity among the forms Customer and Order.
The structural redundancies within the schemas corresponding
to the forms illustrated in Fig. 7.6, Fig. 7.7 and Fig. 7.8.
Typical cases of structural similarity.
A few example schemas illustrating different patterns.
A stalemate situation where two entity types are equivalent,
but respectively specialises and is specialised by a third one
The updated forms of the running example after validation of
structural redundancies.o

70
71
73
73
73
75
76

80

82
87
89

93

100

102

104

106

109

110

111

112

112

114

122

125

List of Figures

7.14

8.1
8.2
8.3
8.4
8.5

9.1

10.1

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10

13.1

13.2

13.3

13.4

13.5
13.6

13.7

13.8

The pre-integrated schema of the example after validation of
structural redundancies oL,

Data samples for the forms Product and Special good.

Data samples for the form Shop.
Data samples for the form Service.
A problematic data sample for the form Shop.
The pre-integrated schema of the example after the nurturing
step. .« .. L e

The schema of the running example after the binding phase.
A possible physical schema for the running example.

The RAINBOW toolkit’s drawing environment.
Editing a widget. o oo oL
Arbitrating terminological similarities.
Arbitrating structural similarities.
Adding data samples.
Arbitrating technical constraints.
Arbitrating existence constraints.
Arbitrating functional dependencies.
Arbitrating unique constraints.

Binding concepts.o oo oo

The form drawn by end-user EU1 and analyst DB1 during the
first session, and its corresponding raw schema.
The refined schema corresponding to the raw schema of Fig.
130, e
The modified form as suggested by the analyst, and its corre-
sponding raw schema. 0. L.,
The refined schema corresponding to the modified form sug-
gested by the analyst (Fig. 13.3).
The form at the end of the second session.
The underlying schema of the form at the end of the second
SESSION. & v v v v e e e e e e e e e e e e e e e e
The underlying schema of the form at the end of the third
SESSIONL. & v v vt e e e e e e e e e e
The schema corresponding to the domain of the first case study,
as conceived by DB1 without seeing the final output schema.

xxiil

126

141
144
146
148

157

169

173

178
179
183
184
185
185
186
186
186
187

207

208

210

211
212

213

215

216

XXiv

13.9

13.10

13.11

13.12

13.13

13.14

13.15
13.16

13.17

13.18
13.19

13.20

13.21

13.22

13.23

15.1

B.1
B.2
B.3
B.4

List of Figures

The forms drawn by end-user EU2 and analyst DB1 during the
first session, and the corresponding raw schema.
The raw schema corresponding to the forms drawn by end-user
EU2 and analyst DB1 during the first session (Fig. 13.9). . .
The refined schema corresponding to the raw schema of Fig.

The modifications suggested by analyst DB1 to EU2 at the
beginning of the second session to replace the original forms
(Fig. 13.9). . o o o e e e
The reviewed raw schema corresponding to the reviewed forms
of Fig. 13.12.
The reviewed refined schema corresponding to the reviewed raw
schema of Fig. 13.13.
The forms at the end of the second session.
The underlying schema of the forms after analysing their ter-
minology during the second session.
The underlying schema of the forms after analysing their struc-
ture during the second session.
The forms at the end of the third session..
The underlying schema of the form at the end of the third
SESSION. & v v v v e e e e e e e e e e e e e e e e e
The underlying schema of the form at the end of the fourth
SESSIOIL. & v v vt e e e e e e e
The schema corresponding to the domain of the second case
study, as conceived by DB1 without seeing the final output
schema. Lo
An alternative schema corresponding to the domain of the sec-
ond case study, as conceived by DB1 without seeing the final
output schema. 0oL,
The refined schema at the end of the fourth session.

Standard database Reverse engineering methodology vs. RAIN-
BOW'’s Reverse engineering methodology

Basic GER conceptso
IS-A relations. e
Stereotypes, attributes, domains and procedural units.

Constraints. v v i v i e e e e e

218

220

221

223

224

225
227

228

229
233

234

236

238

239
240

255

298
299
300
300

List of Algorithms

6.1
6.2
6.3
6.4
6.5
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13

Adapt e
AdaptChildInto (1/3) L
AdaptChildInto (2/3)
AdaptChildInto (3/3) Lo
Unfold
BuildThesaurus o L
AddEntryToThesaurus
BuildSemanticallySimilarSubsets
GetSemanticallySimilarDataElements
TransformReferentialElement
ValidateSemanticSimilarities
BuildPatternsSeto L oo oL
ValidateStructuralSimilarities (1/2)
ValidateStructuralSimilarities (2/2)
InitTechnicalConstraints (1/2)
InitTechnicalConstraints (2/2)
InitExistenceConstraints
InitFunctionalDependencies
InitUniqueConstraints
AddDataSample oo
UpdateTechnicalConstraints
UpdateExistenceConstraints
UpdateFunctionalDependencies
GenerateAlternatives
GenerateAlternativeBranch 0oL
UpdateUniqueConstraints

GenerateProblematicTuple

XXV

83

84

85

86

88

97

98

99
100
103
105
118
124
125
136
137
137
138
139
140
142
143
145
145
146
147
148

XXVi

8.14
8.15
8.16
8.17
8.18
8.19
8.20
9.1
9.2
9.3
9.4
9.5
9.6
Al

List of Figures

EnforceOrDiscardCandidateConstraint
EnforceOrDiscardValidConstraint

RemoveTuple

ProcessTechnicalConstraints

ProcessExistenceConstraints v v v v v

ProcessFunctionalDependencies
ProcessUniqueConstraints
MovelnheritedComponents

MovelnheritedComponentsRecursive (1/2)

MovelnheritedComponentsRecursive (2/2)
MoveReferential Components
MoveAttributesToRelationship
SolveConstraints o oo

MyAlgorithm

149
150
153
154
155
155
156
161
162
163
165
166
168
295

Listings

10.1 Excerpt of the DDL code generated from the schema of Fig. 10.1 172
11.1 The DTD specification for the RSFM 180
11.2 The XML code associated with the Customer form of Fig. 5.10 182

Xxvii

Chapter 1

Introduction

In the realm of Software Engineering, there is a dark and inhospitable land,
at the crossroads of Requirements Engineering, Database Engineering and
Human-Computer Interfaces. In that mysterious place, people explore and ex-
periment ways to combine these disciplines in order to provide better methods
and means to lay the foundations of an efficient and reliable software develop-
ment cycle. This is the place where our journey begins.

Requirements Engineering is a key step of Software engineering, since it de-
fines the necessary specifications for further analysis, design and development.
Within this process, Database Engineering focuses on data modelling, where
the static data requirements are typically expressed by means of a conceptual
schema, which is an abstract view of the static objects of the application do-
main. Since long, conceptual schemas have proved to be difficult to validate by
laymen, while traditional database requirements elicitation techniques, such as
the analysis of corporate documents and interviews of stakeholders, usually do
not actively and interactively involve end-users in the overall specification and
development of the database.

Still, the necessity to associate end-users of the future system with its spec-
ification and development steps has long been advocated. In particular, the
process of eliciting static data requirements should make end-users feel more
involved and give them intuitive and expressive means to convey their require-
ments to the analysts. Conversely, analysts should also be able to capture and
validate these requirements by discussing them with the end-users. Yet, most
users are fortuitously quite able to deal with complex data structures that are
expressed through more natural and intuitive layouts such as electronic forms.

1

2 Chapter 1. Introduction

In order to facilitate this communication, we therefore investigate the pos-
sible reverse engineering of user-drawn form-based interfaces to perform an in-
teractive database conceptual analysis, and propose an approach to elicit and
validate static database requirements based on end-users involvement through
interactive prototyping and the adaptation of techniques coming from various
fields of study. Our dissertation will hence be organised as follows.

Part | presents the context of our research, and more precisely the aspects
of Requirements Engineering, Database Engineering and Prototyping that led
us to inquire about a new approach to elicit and validate database require-
ments. The challenges implied by the perspective of integrating these differ-
ent disciplines and techniques into an integrated user-oriented approach are
then exposed. Part Il subsequently presents the tool-supported RAINBOW
approach for reverse engineering user-drawn form-based interfaces in order to
perform an interactive database conceptual analysis. Part then presents
the experimentation that was led to validate this approach. Part conse-
quently discusses the specificities and merits of the approach, as well as limits
and possible improvements that could be considered, before concluding this
dissertation.

Part |

Problem Statement

In this part of the dissertation, we address the general background of this
doctoral investigation. For this purpose, Chapter 2 focuses on its research
context, and highlights different aspects of Requirements Engineering, Data
Modelling and Prototyping that that led us to inquire about a new approach
to elicit and validate database requirements, based on the reverse engineering
of user-drawn form-based artefacts. Chapter 3 then presents the state of the art
for this field of research, as well as the resulting research perspectives, before
introducing a series of essential research questions that need to be addressed
in order to formulate a comprehensive proposal.

Chapter 2

Research context

In this part of the dissertation, we present the elements that led us to inquire
about a new approach to elicit and validate database requirements.

First of all, Section recalls that forty years ago, the Software Crisis
already paved the way for more formal engineering approaches in Software De-
sign. While the overall process gained in reliability, another crisis still occurred
in the nineties, putting in light the need for a requirements analysis phase,
which should be led with collaboration of all the stakeholders.

The critical aspects and challenges of this fundamental phase, which should
lay the foundations of the remainder of any Software Engineering process, are
then presented. While trying to get a better insight of the client needs, it
appears that Requirements Engineering still calls for new approaches to in-
volve more intimately future end-users in the definition and validation of the
requirements.

Within this context, Section introduces the particular case of require-
ments elicitation in Database Engineering. We will see that various techniques
exist to acquire data requirements, but usually, they precisely do not actively
and interactively involve end-users. We then introduce Database Reverse En-
gineering, as well as the Generic Entity-Relationship model and the principles
of the transformational approach.

Section then presents the Requirements Engineering technique called
Prototyping, which can be used in order to bridge the gap between the various
stakeholders of a software engineering project.

6 Chapter 2. Research context

2.1 Requirements Engineering

In this section, we briefly recall the main crises that hit the realm of software
development these last decades, and how they respectively led to the advent
of Software Engineering and Requirements Engineering (RE). We then present
the core activities and main challenges of Requirements Engineering, as well as
the areas where improvements can still be made.

2.1.1 Lessons learned from the Software Crises
The different software crisis

If we go back in time, the difficulties of developing large software systems ap-
peared during the sixties and seventies. This is when the term of software crisis
emerged | ,]. This crisis occurred because the techniques
used to build small software systems did not scale up. This resulted in various
failures, cost overruns and long lead-times. By the time the information sys-
tems projects were completed, it was not surprising to record that the initial
organisational requirements had already changed.

Software Engineering was originally a response to this crisis, relying on the
types of theoretical foundations and practical disciplines, which are traditional
in the established branches of engineering | ,]. The main objec-
tives were to get control of the software development process and to improve
software performance and software reliability. This led to new approaches of
software engineering management and new techniques of software development.

However, using formal methods was not enough to prevent the crisis from
re-emerging during the nineties, mainly because the demands placed on the
software engineering community, such as productivity, flexibility, robustness
and quality, have increased dramatically [, |, while our
dependency on large software systems has also been rising |].

Risk factors

As a matter of fact, only a few software projects are completed on-time and on-
budget, while the majority of them are completed and operational. However,
the latter often do not come free of defect: they carry budget and/or time
overrun, missing and/or reduced functionalities |]. The Standish
Group surveyed IT executive managers for their opinion about which factor
could lead to successful, challenged or cancelled projects. The major success
criteria were user involvement, as well as executive management support and
clear statement of requirements. The major struggle criteria were the lack

2.1.2. An overview of Requirements Engineering 7

of user input, the incomplete requirements and specifications as well as the
modification of requirements and specifications. Finally, the major cancellation
criteria were incomplete requirements, the lack of user involvement and the lack
of resources. In the other cases, due to the frequent changes, the budget may
be largely exceeded.

As a result, the Standish Group identified the three biggest contributors
to project success as user involvement, clear business objectives and executive
support |]. Since then, their importance have somehow evolved,
but they still are key factors for project achievement |]. Actually,
McConnell classifies them as part of 12 best influences on software engineering
[, 2000].

It seems therefore obvious that the step in software development should
consist in acquiring reliable requirements and specifications. Since the following
analysis and design phases cannot be led rigorously if the output of this initial
phase is not complete and coherent, it appears that the requirements phase is
fundamental, and should be led with collaboration of the stakeholders.

2.1.2 An overview of Requirements Engineering
Definition

Among the various definitions of Requirements Engineering, let us put forward
the one formulated by [, |:

“Broadly speaking, software systems Requirements Engineering
(RE) is the process of discovering [the purpose for which a software
system is intended], by identifying stakeholders and their needs, and
documenting these in a form that is amenable to analysis, commu-
nication, and subsequent implementation”.

Intuitively, this collaborative effort is a multi-disciplinary human-centred
process that involves different activities producing various outputs while im-
plying a number of challenges. Though there is little uniformity in the ter-
minology and ordering of the classes of activities that make up Requirements
Engineering, there seems to be at least an agreement on the following core tasks
[,]: elicitation, analysis and documentation modelling,
validating specifications, managing the evolution of requirements.

8 Chapter 2. Research context

Eliciting requirements

This complex activity is the starting point of any requirements engineering pro-
cess, as it should lead to understanding the context of the software engineering
project, as well as the expectations that need to be answered.

Within this context, the first step consists in identifying the environment
and especially the stakeholders, which may potentially be anyone whose job or
influence will be altered within the organisation, as well as anyone involved in
the process of sharing information and participating in the elaboration and set
up of the final solution |)]. Among possible stakeholders [

,], we can therefore notably identify:

e The buyers, which are the individuals that are responsible for contracting
and/or paying for the software system. In the end, they are the ones who
decide whether to go for the proposed solution or not;

e The managers, which are members of the hierarchy whose decisional
power can be altered through the process of the software system project.
As pivotal elements of the organisation, they can influence the outcome
of the whole process;

e The domain and application experts, who provide domain knowledge and
supply a more detailed understanding of the problem, of the business
rules and conventions, as well as peculiar “modi operandi”;

e The end-users, which are the individuals who should ultimately install,
operate, and use the software. There can be different classes of users,
according to the type of tasks they are meant to perform through the
software, and their acceptance and handling of the software is crucial to
determine its success;

e The requirements engineers, which are the individuals who are responsi-
ble for the identification, formalisation and documentation of the require-
ments. In order to accomplish that, they must mediate between all the
other stakeholders;

e The software engineers and developers, which are the individuals who
provide expertise on software design techniques and technologies;

e The testers, who test the system to perform some predefined set of tasks
and compare the execution to expected results. They may (but must not
necessarily) be end-users.

In addition to these human beings, factors such as physical, organisational
and legislation environments may also be taken in account | ,].
Once the context is defined, the next step consists is determining the problem
and drawing its boundaries consequently. This implies delimiting the objectives

2.1.2. An overview of Requirements Engineering 9

of the project and the vision of the stakeholders in order to determine what
subset of the requirements should actually be addressed given the constraining
budgets and schedules. While bearing these aspects in mind, it is also necessary
to clearly identify the goals and the tasks. Delineating these elements calls for
various and combinable elicitation techniques [, ;

, ; , |, among which
the most usual are:

e traditional techniques, such as existing corporate documents analysis,
questionnaires, interviews;

e group elicitation techniques, such as brainstorming and focus groups;

e carly development techniques, such as Prototyping and Rapid and/or
Joint Application Development (RAD/JAD);

e observation techniques, typically contextual approaches such as stake-
holder observation or cognitive techniques such as protocol analysis.

If thoroughly led, this task should produce a fair amount of information
that subsequently needs to be processed.

Analysing and modelling requirements into specifications

Indeed, the extracted information must be analysed in detail by the require-
ments engineers to get a better overview of the project, understand its ins and
outs while identifying priority levels (e.g. mandatory and “measurable” needs
versus optional and “vague” wishes) and satisfiable demands. The primary
output of this cogitation is a Software Requirement Specification (SRS), which
should typically address:

e Enterprise Modelling, which presents the organisation’s structure, busi-
ness rules, tasks and goals;

e Data Modelling, which defines the application domain (possibly reusing
existing domain-specific models) and presents the information that needs
to be manipulated by the system in terms of structured data;

e Behaviour Modelling, which defines the dynamic and functional behaviour
of the users and the system;

e Non-Functional Requirements, which deal with the constraints imposed
to the system and its expected qualities, notably regarding its execution
and evolution.

Besides, the specification produced are vital to begin the design and im-
plementation phases, which implies that the complete Software Requirements

10 Chapter 2. Research context

Specification should possess the following characteristics in order to produce
high quality software | , I:
e (Correct: Every requirement stated in the SRS is one that the software
shall meet;

o Unambiguous: Every requirements stated in the SRS has one and only
one logical interpretation;

o Complete: The SRS includes all significant requirements, all realisable
classes of input data as well as the labels and references to all figures,
tables and diagrams. No requirements or necessary information should
be missing;

e (onsistent: No subset of individual requirements stated in the SRS con-
flict with other individual requirements. Disagreements among require-
ments must be resolved before development can proceed;

e Verifiable: For every requirement stated in the SRS, there exists some
finite cost-effective process with which a person or machine can check
that the software meets the requirements;

e Modifiable: The entire SRS has a style and structure such that any
changes to the requirements can be made easily, completely, and con-
sistently which retaining the structure and style;

e Traceable: For every requirement stated in the SRS, the origin is clearly
stated and it is possible to reference each requirement in future develop-
ments;

e (oncise: Unnecessary literature and redundancies should be avoided;

e Testable: Pass/fail or quantitative assessment criteria can be derived from
the specification itself and/or referenced information.

To meet such expectations, the Requirements Engineering can take advan-
tage of a wide variety of modelling approaches and languages, among which
the Unified Modelling Language (UML) |] has become a standard,
thanks to its rich set of views on software systems: use cases, class diagrams,
sequence diagrams, state charts, activity diagrams, etc.

Sharing and validating requirements

The Software Requirement Specification should also be packaged and docu-
mented in a way allowing the communication between any stakeholders, in
order to allow wvalidation and agreement. However, all the stakeholders do not
necessarily understand easily formal specifications, and in parallel, computer
analysts and developers may struggle to grasp the client’s problem and the

2.1.3. Main challenges of Requirements Engineering 11

application area. Therefore, this document should aim at bridging communi-
cation gaps in order to typically ease:

e validation: the stakeholders can evaluate if their own needs are expressed
accurately, and even perhaps reconsider them;

e correction: in particular, omissions, inconsistencies and misunderstand-
ings can be quickly and easily identified;

e forecast: a realistic estimation can be established for the performing cost,
schedule, and necessary resources relative to the developmental effort;

e cvaluation criteria: it can provide a baseline for verification and valida-
tion of the software;

e future reference: it can provide rigorous specifications and documentation
for the design and implementation phase;

e contractibility: and ultimately a safe and sound contractual agreement
can be established between the different parties.

Managing changes to requirements

Finally, since the elaboration of the Software Requirement Specification is
clearly iterative, the requirements should be traceable over time, and easy
to edit and monitor. This could for instance include modifying and adding
new requirements to clarify and better comply with the stakeholders needs, or
scrubbing requirements to meet the budget and planning.

2.1.3 Main challenges of Requirements Engineering

The overall process of Requirements Engineering must overcome several chal-
lenges, among which end-user involvement, information extraction and require-
ments validation.

Involving end-users

As already hinted, the necessity to actively involve end-users of a future IT
system during its specification and development steps has long been advocated,
most notably by the proponents of User-Centred Design, which is also known as
participatory design | , | or contextual design |

,]. Indeed, involving end-users in the expression of their
needs and in the definition of an adapted and viable solution helps to avoid
resentment and resistance towards a new information system infrastructure, as
well as to stimulate productivity | ,]

12 Chapter 2. Research context

The comprehensive survey led by the management consulting services provider
Robbins-Gioia in 2001 precisely pointed out that project failure is not only
defined by objective criteria, but also by the perception of the respondents
[]. The subjectivity of the respondent appears as a result
of whether the person took an active role in the project or not.

Besides, as a matter of fact, end-users know “how business is done” in the
environment for which software is being developed. They know the qualities
and the flaws of the information systems currently used, and therefore have the
ability to state what could be done to improve it | , ; ,].

Extracting information

The main challenges when extracting requirements from stakeholders are all
about who should be involved, what can be considered relevant information
and how can it be extracted.

Indeed, each class of stakeholders provides different classes of requirements,
although the latter often overlap. The knowledge and vital information can be
distributed among various sources, which can have contradictory visions and
interpretations. Therefore, selecting representatives for each class of stakehold-
ers is very important.

Once the panel of intervenors is selected, articulation problems may appear
since the stakeholders providing information are usually experts in their appli-
cation domain but not in the process of engineering software. Therefore, this
may lead to:

e confusion: they may not know what they want or misunderstand the
issues;

e improper expectations: they may know what they want but it is inappro-
priate or unrealistic; or they may even not be aware of their real needs;

e difficult articulation: they may be aware of their needs but unable to
express them in a coherent form; they may unintentionally hold back
critical information because it has become part of their tacit knowledge;

e unclear articulation: they may express their needs with ease, but still
face shortcomings of the natural language, such as ambiguity, inaccuracy
or inconsistency [,]; nevertheless, a general statement of
objectives is not sufficient to start a relevant requirements analysis phase
[» 2000];

e inappropriate prioritisation: they may struggle to identify precedences,
and even be unwilling to prioritise and make trade-offs.

2.1.4. End-users as major actors of Requirements Engineering? 13

Beyond these issues lays the possible alteration of the information, typically
because of biases. The latter can occur because of the previously mentioned
resentment and resistance factors, which can lead to “lies” and/or “omissions”.
Moreover, the fact of being “studied” may also lead to a change of behaviour
from the selected intervenors, which is known as the Hawthorne effect | ,

]

The intrinsic nature of requirements is itself an important factor to manage.
Indeed, during the Requirements Engineering process, the requirements are led
to change and migrate as the users learn and grow. And since the extracted
requirements are diverse and conflicting, they might be difficult to integrate
and evaluate.

Validating requirements

As we have seen, the specification must be formal enough for the analysts and
developers, but also understandable enough to be validated by the other stake-
holders. Parallel articulation problems may appear, since the software engi-
neers are experts in development and not in the users application domain. This
problem is increased by the users and developers having different vocabulary,
terms, and concepts. Bridging the communication gap between all parties is
one of the most difficult problems of requirement engineering, but is absolutely
indispensable in practice | ,].

2.1.4 How could end-users become major actors of Requirements
Engineering?

It appears quite clearly that the requirements analysis phase is necessary to
define the stakes of a software engineering project within an organisation. The
main challenges lie in finding ways to involve actively the stakeholders (espe-
cially the end-users) and to help them express as clearly as possible their true
and priority needs, while bridging the communication gaps to manage valida-
tion and agreement among all parties. Achieving this enables to produce a
sound Software Requirements Specification that will be crucial for the subse-
quent conception and implementation phases.

2.2 Data Modelling

In this section, we investigate the particular case of Data Modelling, which
plays a pivotal role in the realm of Requirements Engineering. Indeed, accu-
rately eliciting and validating data user requirements is vital to build a reliable

14 Chapter 2. Research context

documentation of the application domain, and therefore a reliable informa-
tion system. Database Engineering precisely focuses on data modelling, where
these requirements are typically expressed by means of a conceptual schema (or
model), that is, an abstract view of the application domain. We therefore in-
troduce basic notions of Database Engineering, as well as its specific challenges
regarding requirements elicitation and validation.

2.2.1 Database Engineering

Defining the application domain of a software engineering project and struc-
turing the information that needs to be manipulated by the system are the
first steps of Database Engineering. This process of designing and implement-
ing a database that has to meet specific user requirements has been described
extensively in the literature | ,] and has been available for sev-
eral decades in CASE tools. It consists of four main subprocesses depicted in
Fig.

(a) Conceptual design which aims at expressing user requirements into a con-
ceptual schema, that is, a technology-independent abstract specification
of the future database. Such a schema is also known as a PIM (Platform-
Independent Model) in the UML (Object Management Group) commu-
nity;

(b) Logical design, which produces an operational logical schema (Platform-
Specific Model or PSM) that translates the constructs of the conceptual
schema according to a specific technology family without loss of seman-
tics (e.g. Relational, XML, Object-Oriented). The transformational ap-
proach to Database Engineering | , | allows this process to be
automated;

(¢) Physical design, which augments the logical schema with performance-
oriented constructs and parameters, such as indexes, buffer management
strategies or lock management policies;

(d) Coding, which translates the physical schema (and some other artefacts)
into the DDL (Data Definition Language) of the database management
system.

The transformational approach | , | allows database engineers to
automate the production of logical and physical schemas from their conceptual
counterpart. Afterwards, from these schemas, well-mastered (semi) automated
techniques, that have long been studied in the database research community
and applied in industry, allow to produce the artefacts of the final application:
interfaces, programs, database code, etc. | ,].

2.2.1. Database Engineering 15

User R
(a) Conceptual design

| (b) Logical design

Figure 2.1: The Database Engineering process

| (c) Physical design

| (d) Coding

The process leading to the production of the conceptual schema representing
the requirements is therefore the most complex step of Database Engineering.
We will hence focus on this process, that is Conceptual design, and more, we are
interested in elaborating an approach allowing to reduce the potential gap be-
tween actual user requirements and their translation in the conceptual schema.
Various techniques exist to elicit data requirements | ,], such
as the analysis of corporate documents and interviews of stakeholders. How-
ever, they usually do not actively and interactively involve end-users. Still, as
we have seen in Section , the necessity to actively involve end-users of a
future IT system during its specification and development steps has proven to
be necessary.

Before going any further, let us mention that, in the Database community,
the term model denotes what the UML community commonly calls a meta-
model (e.g. the relational model). A database schema is hence an instance of a
definite database model, that is, a UML model, represented by a class diagram.
Among database models, the Entity-Relationship (ER) model has long been
considered one of best mediums to express conceptual requirements |

,]. Its simplicity, its graphical representation, the availability
of numerous CASE tools that include an ER schema editor (should) make it
the ideal communication medium between designers and users.

However, this statement has proved over-optimistic in many situations. It
appears that the ER formalism, despite its merits, often fails to meet its ob-
jectives as an intuitive and reliable communication medium in which end-users
are involved. The reason is easy to grasp: a conceptual schema is just a graph-
ical presentation of a large and complex set of 1st and 2nd order predicates.
Fig. shows a small conceptual schema and its formal expression according
to the GER formalism | ,]. The intrinsic complexity of the require-
ments has been concealed by the apparent intuitiveness of the ER graphical

16 Chapter 2. Research context

notation but it has not disappeared”. An in-depth comprehension of an ER
schema implies the understanding of such non trivial concepts as sets, non-1st
normal form relations, algebraic operators (projection, join, etc.), candidate
keys and functional dependencies.

DEPARTMENT EMPLOYEE DEPARTMENT, EMPLOYEE: enlities

DeptNbr L1-N 114 AdminNbr CLERK, WORKER : EMPLOYEE

Location - M Name descr-DEPARTMENT(DEPARTMENT, DeptNbr, Location)
- e : descr-EMPLOYEE(EMPLOYEE, AdminNbr, Name)

id: DeptNor id: AdminNor descr-CLERK(CLERK, Function, DateHired)

descr-WORKER(WORKER, Specialty, Status)
in(EMPLOYEE, DEPARTMENT)
descr- DEPARTMENT [DEPARTMENT] = DEPARTMENT
descr- EMPLOYEE [EMPLOYEE] = EMPLOYEE

CLERK WORKER descr- CLERK [CLERK] = CLERK

: - descr- WORKER [WORKER] = WORKER

Function Specialty in[EMPLOYEE] = EMPLOYEE
DateHired Status

Figure 2.2: An ER schema and its formal expression

2.2.2 Database Reverse Engineering

Reverse engineering a piece of software consists, among other things, in recov-
ering or reconstructing its functional specifications, starting mainly from the
source code of the programs | , ; , ; ,
]. When applied to databases, reverse engineering typically aims at re-
covering the database requirements (i.e. the conceptual schema) from multiple
system artefacts that are usually obtained through schema transformation:

e documentation (when available);
e DDL code of the database;

data instances;

screens, reports and forms;

source code of application programs.

Database reverse engineering traditionally consists of four main processes,
which are illustrated in Fig.

(a) Data structure extraction, which aims at extracting the raw physical
schema of the database, including explicit and implicit constructs. A
construct (structures or properties) is called explicit when it has been
declared in the DDL code, while implicit constructs are implemented

*For instance, the example schema conveys the following statements: DEPARTMENT and
EMPLOYEE are entity types; CLERK and WORKER are subtypes of EMPLOYEE, for which they form
a partition; A DEPARTMENT can be described by Location and DeptNumber, the latter being
an identifier for that entity type; An EMPLOYEE is in a DEPARTMENT; and so on.

2.2.3. The Generic Entity-Relationship model 17

through artefacts external to the database, such as code sections in ap-
plication programs;

(b) Refinement enriches the raw physical schema with additional constructs
and constraints elicited through the analysis of the application programs
and other sources;

(¢) Cleaning removes the physical constructs (such as indexes) for producing
the logical schema;

(d) Data structure conceptualisation, in which a plausible conceptual schema
is derived from the logical schema.

(a) Extraction

Code, data,

screens,
forms, DDL, ...

Figure 2.3: The database reverse engineering process

(b) Refinement

| (c) Cleaning

| (d) Conceptualisation

Database Reverse Engineering mainly focus on legacy systems, but is ex-
tensible to other problems. One can therefore already sense the opportunity of
applying its principles on artefacts that are well-defined and under our control.
Among those artefacts, the most meaningful for end-users is undoubtedly the
user interface.

2.2.3 The Generic Entity-Relationship model

For the purpose of our research, let us introduce the Generic Entity-Relationship
(GER) model | ,], which is an extended Entity-Relationship model
including, among others, the concepts of schema, entity type, domain, attribute,
relationship type, key, as well as various constraints. The GER model encom-
passes the three main levels of abstractions for database schemas, namely con-
ceptual, logical and physical, and serves as a generic pivot model between the
major database paradigms including ER, relational, object-oriented, object-
relational, files structures, network, hierarchical and XML. Let us now present
and illustrate this model according to its different levels of abstraction.

18 Chapter 2. Research context

Conceptual schemas

First of all, a conceptual schema mainly specifies entity types, relationship types
and attributes. Entity types represent the main concepts of the application
domain, which can be organised into IS-A hierarchies defining supertypes and
subtypes. Such hierarchies can be total and/or disjoint. Total (T) means that
a supertype must be specialised in at least one subtype. Disjoint (D) means
that a supertype can be specialised in at most one subtype. A partition (noted
P) corresponds to an IS-A hierarchy that is both total and disjoint.

Relationship types represent relationships between entity types. A rela-
tionship type has two or more roles. A role has a cardinality constraint [i-]],
that specifies in how many relationships an entity can appear with this role.
A relationship type with exactly two roles is called binary, while a relationship
type with more than two roles is generally called n-ary.

Entity types and relationship types can have attributes, which can be either
atomic (a.k.a. simple) or compound. A compound attribute is an attribute that
is made of at least one sub-level attribute (simple or compound).

Attributes are also characterised by a cardinality constraint [i-j] specifying
how many values can be associated with a parent instance. The minimum
cardinality i states how many attribute values must be associated, while the
mazimum cardinality j corresponds to maximum number of values that can be
associated, knowing that 0 <17 < j.

A mandatory (respectively optional) attribute is an attribute for which the
minimum cardinality is equal 1 (respectively 0). A single-valued (respectively
multivalued) attribute is an attribute for which the maximum cardinality is 1
(respectively >1). By default, the cardinality constraint of an attribute is [1-1].

Entity types and relationship types may also be given possibly complex
constraints, which are expressed through the concept of group. A group is
a logical set of elements (attributes, roles and/or other groups) attached to
a parent object (entity type, relationship type or compound attribute). The
most common types of constraints that can be defined on a group include:

e primary identifier (id) : the elements of the group form the main identi-
fier of the parent object. A parent object can have at most one primary
identifier. All components of an id group must be mandatory;

e sccondary identifier (id’) : the elements of the group make up a sec-
ondary identifier of the parent object. A parent object can have several
secondary identifiers;

e coezistence (coex): either all elements of the group have a value or none
for any instance of the parent object;

2.2.3. The Generic Entity-Relationship model 19

e cxclusive (excl): among the elements of the group, at most one can have
a value for any instance of the parent object;

e at-least-one (at-1st-1): Among the elements of the group, at least one
must have a value for any instance of the parent object;

e czactly-one (exact-1) Among the elements of the group, one and only one
can have a value for any instance of the parent object. This corresponds
to the combination of the exclusive and at-least-one constraints.

Figure 2.4 depicts an example of GER conceptual schema. We can observe
that this schema includes entity types PERSON, CUSTOMER, SUPPLIER, ORDER and
PRODUCT. The entity type PERSON has two disjoint subtypes, namely CUSTOMER
and SUPPLIER.

/ Entity type
PERSON <

D / Atomic attribute
Name<— .
Addres . ——————— Compound attribute
Num[0-1]< Optional, atomic attribute
Street
City . .
Phone[0-5j¢ Multivalued attribute
id:PID< Primary identifier
D\ 1S-A hierarchy (disjoint)
CUSTOMER SUPPLIER |« Sub-type
Category Account Role

T
0-N

D-INA// Binary relationship type
/ N-ary relationship type

-
- PRODUCT, PRODUCT]
ONum ONy PNum
Date Name
id: from.CUSTOMER Price
ONum id: PNum

Figure 2.4: Sample GER conceptual schema.

The relationship type from is binary while detail is ternary. Besides,
there cannot exist more than one detail relationship with the same ORDER and
PRODUCT entities. Each ORDER entity appears in exactly one from relationship
(cardinality [1-1]), and in at least one detail relationship (cardinality [1-N]).

For the entity type PERSON, the attribute Name is atomic, single-valued and
mandatory. Among the components of the compound attribute Address, the
Num is atomic, single-valued and optional (cardinality [0-1]). Phone is multival-
ued and optional, with 0 to 5 values per entity.

20 Chapter 2. Research context

Finally, PID is the identifier of PERSON, while the identifier of ORDER is made
of external entity type from.CUSTOMER and of local attribute ONum.
In the scope of this thesis, we will mainly focus on this level of abstraction.

Logical schemas

The second level of abstraction concerns logical schemas, which are platform-
dependent data structure definitions, that must comply with a given data
model. The most commonly used families of models include the relational
model, the network model (CODASYL DBTG), the hierarchical model (IMS),
the standard file model (COBOL, C, RPG, BASIC), the shallow model (TO-
TAL, IMAGE), the object-oriented model and the object-relational model
(SQL3), as well as models expressed though XML schemas.

A logical schema basically uses the same schema constructs as the ones
presented in Section for conceptual schemas, but depending on the logical
model the same schema constructs are called differently. For instance, a GER
entity type (respectively attribute) is called a table (respectively column) in
the relational terminology, and record type (respectively field) in a CODASYL
schema.

Each logical model has its own set of allowed schema constructs. For in-
stance, a relational schema may not comprise relationship types, compound
attributes, multivalued attributes and IS-A hierarchies. Such illegal constructs
must be expressed by equivalent constructs of the target logical model, when
such alternatives are available. It can happen that some fragments of a con-
ceptual schema cannot be fully translated into the logical schema.

In addition to the ones described above, new schema constructs may also
appear at the logical level, including:

e Referential constraint (ref) : An inter-group constraint between an ori-
gin group (ref group) and a target group, stating that each instance of
the origin group must correspond to an instance of the target group.
The target group must represent an identifier (id or id’). A referential
constraint is called a foreign key in the relational model.

e Inclusion constraint (incl) : An inter-group constraint where each in-
stance of the origin group must be an instance of the target group. Here,
the target group does not need to be an identifier (generalisation of the
referential constraint).

o Fquality constraint (equ) : A referential constraint between an origin
group r and a target group 4, combined with an inclusion constraint
defined from the 7 to r.

2.2.3. The Generic Entity-Relationship model 21

e Typed multivalued attribute: In a conceptual schema, multivalued at-
tributes represent sets of values, i.e. unstructured collections of distinct
values. At the logical level, we can distinguish six possible implementa-
tions of such attributes:

— Set: unstructured collection of distinct elements (default);

— Bag: unstructured collection of (not necessarily distinct) elements;

Unique list: sequenced collection of distinct elements;

— List: sequenced collection of (not necessarily distinct) elements;

— Unique array: indexed sequence of cells that can each contain an
element. The elements are distinct;

— Array: indexed sequence of cells that can each contain an element.

An example fragment of logical schema is given in Figure 2.5. This relational
schema, corresponds to an approximate translation of the conceptual schema
depicted in Figure , based on seven tables. Table PERSON has mandatory
columns (PID, NAME, ADD_STREET and ADD_CITY) and one optional (nullable)
column, ADD_NUM. Its primary identifier is {PID}. Column {PID} of ORDER is
a foreign key to CUSTOMER (targeting its primary id). The group {PID, ONUM}
of DETAIL is a multicomponent foreign key. In addition, there is an inclusion
constraint from {PID, ONUM} of ORDER to {PID, ONUM} of DETAIL. Combining
these two constraints translates into an equality constraint (equ). {PID} of
CUSTOMER is both a primary id and a foreign key to PERSON.

PERSON PHONE [«—— Tabhle
PID PID
NAME PHONE< Column
Nullable column ——ADD_NUM[0-1] id:PID
ADD_STREET PHONH]
ADD_CITY ref:P|D<—| Referential constraint
id: PID
CUSTOMER
PID
CATEGORY suppLIE]
DETAIL
id: PID) PID
ref ShUM ACCOUNT
PRODUGT id: rF;I;Z) Equality constraint
QUANTITY
P?;DER SUPPLIER
aUM id: PID
ONUM
DATE PRODUCT PRODUCT]
id: PID ref:SUPPLIER PNUM
ONUM ref:PRODU NAME
ref:PID equPID \ PRICE
ONUM id: PNUM

Figure 2.5: Sample GER logical schema, approximate relational translation of the
conceptual schema of Figure

22 Chapter 2. Research context

Physical schemas

Finally, a physical schema is a logical schema enriched with all the information
needed to implement efficiently the database on top of a given data management
system. This includes DMS-dependent technical specifications such as indexes,
physical device and site assignment, page size, file size, buffer management or
access right policies. Due to their large variety, it is not easy to propose a
general model covering all possible physical constructs, but we should at least
mention the two following concepts:

e record collection, which is an abstraction of file, data set, tablespace,
dbspace and any record repository in which data is permanently stored;

e access key (acc), which represents any path providing a fast and selec-
tive access to records that satisfy a definite criterion; indexes, indexed
set (DBTG), access path, hash files, inverted files, indexed sequential
organisations all are concrete instances of the concept of access key.

Figure depicts a physical GER schema that derives from the logical
schema of Figure 2.5. This schema is made up of seven tables and three collec-
tions. Collection PERS_FILE stores instances of tables PERSON, CUSTOMER, SUP-
PLIER and PHONE. The primary identifiers and some foreign keys are supported
by an access key (groups denoted by acc). Access keys are also associated with
two regular columns (PERSON.NAME and PRODUCT . NAME).

2.2.4 The transformational approach

Any process that consists in deriving artefacts from other artefacts relies on
such techniques as renaming, translating, restructuring, replacing, refining and
abstracting, which basically are transformations. Most Database Engineering
processes can be therefore formalised as chains of elementary schema and data
transformations that preserve some of their aspects, such as its information
contents | ,].

Schema transformation

Roughly speaking, an elementary schema transformation consists in deriving a
target schema S’ from a source schema S by replacing construct C' (possibly
empty) in S with a new construct C’ (possibly empty). C (respectively C’)
is empty when the transformation consists in adding (respectively removing) a
construct. Adding an attribute to an entity type, replacing a relationship type
by an equivalent entity type or by a foreign key and replacing an attribute by
an entity type (Figure 2.8) are some examples of schema transformations.

2.2.4. The transformational approach 23

PERSON
PID PHONE
NAME PID
ADD_NUMI[0-1] PHONE
ADD_STREET id: PID
ADD_CITY PHONE]
id: PID acc « Access key
acc ref:PID
CUSTOMER accNAME Collection
PID i
CATEGORY DETAIL suppLIER @
id: PID PID PID
refacc ONUM {ACCOUNT PERSON
PRODUCT id: PID CUSTOMER
QUANTITY refacc SUPPLIER
ORDER
PID SUPPLIER PHONE
e id: PID
ONUM ONUM
PRODUCT PROD_FILE
id:PID PNUM
ONUM e NAME PRODUCT
ref:SUPPLIER PRICE
i acc id: PNUM
ref:PID X Ic
ref.:chDUCT_/D ace @
equPID accNAME ORDER
ONUM DETAIL

Figure 2.6: Sample fragment of a GER physical schema.

More formally, we can define a transformation as follows:

Definition 2.1. A transformation ¥ is a couple of mappings (T, t) such that,
C' =T(C) and ¢’ = t(c), where ¢ is any instance of C' and ¢’ the corresponding
instance of C”. a

Figure illustrates how schema transformation can be defined as a couple
of structural and instance mappings. A structural mapping T is a rewriting rule
that specifies how to modify the schema while an instance mapping t states how
to compute the instance set of C’ from the instances of C.

There are several ways to express a structural mapping 7. For example,
T can be defined (1) as a couple of predicates defining the minimal source
precondition and the maximal target postcondition, (2) as a couple of source
and target patterns or (3) through a procedure made up of removing, adding,
and renaming operators acting on elementary schema objects. Mapping ¢ will
be specified by an algebraic formula, a calculus expression or even through an
explicit procedure.

Any transformation ¥ can be given an inverse transformation ¥’ = (77, t'),
such that T"(T(C)) = C. Furthermore, a transformation ¥ and its inverse

24 Chapter 2. Research context

T
C —— C=T(C)

instance-of instance-of

c —bt ¢ =1(c)

Figure 2.7: Schema transformation defined as a couple of structural and instance
mappings.

transformation ') are called semantics-preserving if they verify ' (t(c)) = c.

Figure shows a popular way to convert an attribute into an entity type
(structural mapping T'), and back (structural mapping 7"). The instance map-
ping, that is not shown, would describe how each instance of source attribute
A2 is converted into an entity type EA2 and a relationship type R. Let us notice
that the concept of semantics (or information contents) preservation is more
complex, but this definition is sufficient in this context. A more comprehensive
definition can be found in [,].

A T ~ EA2
" [Fon< R 12
A2[0-N . i
[0-N] — A3 id: RA
A3 T A2
Figure 2.8: Pattern-based representation of the structural mapping of

ATTRIBUTE-to-ET transformation that replaces a multivalued attribute (A2) by
an entity type (EA2) and a relationship type (R).

Practically, the application of a transformation will be specified by its sig-
nature, that identifies the source objects and provides the names of the new
target objects. For example, the signatures of the transformations of Figure

are:
T : (EA2,R) <« ATTRIBUTE-to-ET(A, A2)
T : (A2) + ET-to-ATTRIBUTE(EA2)
Transformations such as those in Figure include names (A, A1, R, EA2,

etc.) that actually are variable names. Substituting names of objects of an
actual schema for these abstract names provides fully or partially instantiated
transformations. For example:

(*PHONE’, *has’) < ATTRIBUT E-to-ET(’CUSTOMER’,” Phone’)

2.2.4. The transformational approach 25

specifies the transformation of attribute Phone of entity type CUSTOMER. Simi-
larly,

(EA2, R) < ATTRIBUTE-to-ET(’> CUSTOMER’ ,A2)

specifies the family of transformations of any attribute of CUSTOMER entity type.

The concept of transformation is valid whatever the granularity of the object
it applies to. For instance, transforming a conceptual schema CS into an
equivalent physical schema PS can be modelled as a (complex) semantics-
preserving transformation CS-to-PS = (CS-to-PS, cs-to-ps) in such a way
that PS = CS-to-PS(CS). This transformation has an inverse, PS-to-C'S =
(PS-to-CS, ps-to-cs), so that C'S = PS-to-CS(PS).

Compound schema transformation

A compound transformation 3 = Y5 o 3; is obtained by applying 35 on the
database (schema and data) that results from the application of ¥ | ,

]. Most complex Database Engineering processes, particularly database de-
sign and reverse engineering, can be modelled as compound semantics-preserving
transformations. For instance, transformation C'S-to-P.S referred to here above
actually is a compound transformation, since it comprises logical design, that
transforms a conceptual schema into a logical schema, followed by physical de-
sign, that transforms the logical schema into a physical schema | ,

]. So, the database design process can be modelled by transformation
CS-to-PS = LS-to-PS o CS-to-LS, while the reverse engineering process is
modelled by PS-to-C'S = LS-to-C'S o PS-to-LS.

Transformation history and schema mapping

The history of an engineering process is the formal trace of the transformations
that were carried out during its execution. Each transformation is entirely
specified by its signature, while the sequence of these signatures reflects the
order in which the transformations were carried out. The history of a process
provides the basis for such operations as undoing and replaying parts of the
process, which guarantees the traceability of the source and target artefacts.
In particular, it formally and completely defines the mapping between a
source schema and its target counterpart when the latter was produced by
means of a transformational process. Indeed, the chain of transformations that
originates from any definite source object precisely designates the resulting ob-
jects in the target schema, as well as the way they were produced. However, the
history approach to mapping specification has proved complex, mostly for the

26 Chapter 2. Research context

three following reasons | , |. First, a history includes infor-
mation that is useless for schema migration, especially when considering that
the signatures often include additional information for undoing and inverting
transformations. Second, making histories evolve consistently over time is far
from trivial. Finally, the exploratory nature of engineering processes causes
“real” histories not to be linear.

Therefore, simpler mappings are often preferred, even though they are
less powerful. For instance, | , | proposed the use of a
lightweight technique based on stamp propagation. Each source object re-
ceives a unique stamp that is propagated to all objects resulting from the
successive transformations. When comparing the source and target schemas,
the objects that have the same stamp exhibit a pattern that uniquely identifies
the transformation that was applied on the source object. This approach is
valid provided that (1) only a limited set of transformations is used and (2) the
transformation chain from each source object is short (one or two operations).
Fortunately, these conditions are almost always met in real database design.

2.2.5 How could conceptual analysis become accessible to end-
users?

In this discussion, we focus on the production of the conceptual schema repre-
senting the requirements, which is the most complex step of Database Engineer-
ing. As we have seen, various techniques exist to elicit data requirements, but
do not actively and interactively involve end-users. The GER model, which
is a powerful mean of formalising requirements (most notably thanks to the
transformational approach), suffers from its lack of expressiveness for the lay-
men. The question that therefore arises is how could we take advantage of
that model and data modelling techniques to elicit data requirements, while
bridging the gap with stakeholders that are not computer specialists?

2.3 Prototyping

2.3.1 A bridge between two worlds

Prototyping (also know as Rapid Prototyping (RP) or User Interface Rapid
Prototyping (UIRP)) is a well-known software engineering technique | ,

; ,] that was introduced to deal with the main problems in
the popularly used sequential approach to software development, especially the
fact that errors and problems in the requirements definition frequently did not
emerge until after the final product was used by the client.

2.3.1. A bridge between two worlds 27

Based on | ,] and [,], we can
therefore define a prototype as a dynamic and interactive visual working model
of user requirements, which should be easily modifiable and extensible while
not necessarily being representative of the complete system. It is rather a
communication tool for developers, customers and future end-users by provid-
ing the latter with a physical representation of key parts of the system before
implementation.

This artefact can be used for non exclusive purposes, namely requirements
validation (exploratory prototyping), design validation (experimental prototyp-
ing) or incremental software development (evolutionary prototyping). Accord-
ing to its purpose, the prototype may range from low (paper sketches for in-
stance) to high (such as functional applications) fidelity, can be more or less
detailed, and be conceived to be reused or not. Anyhow, as explained by
[,], such an artefact carries a tremendously valuable knowledge
that should be documented and maintained throughout any software engineer-
ing process.

One of the major assets of prototyping lies in the fact that from the user’s
perspective, forms, and more specifically electronic forms, are more natural
and intuitive than usual text-based descriptions, paper models and conceptual
formalisms to express data requirements | ,], while making
the semantics of the underlying data understandable [,]

The comprehension of user interfaces has improved in organisations thanks
to the increasing use and training level in the field of information technologies.
As explained by Illich, by providing the users with convivial tools, we allow
them “to invest the world with their meaning, to enrich the environment with
the fruits of their vision and to use them for the accomplishment of a purpose
they have chosen” | ,]. Indeed, convivial tools encourage users to
be active and generate themselves extensions to the artefacts given to them,
which can potentially break down the barriers between consumers and designers
[, 2000].

Moreover, as observed by | ,], many computer users and design-
ers today are henceforth domain professionals, competent practitioners, and
discretionary users. They should not be considered naive or incompetent users:
they worry about tasks, they are motivated to contribute and to create quality
products, they care about personal growth, and they want to have convivial
tools that make them independent of tools created by an “elite” of designers
and to which the non designer users (that is, the majority of computer users)
must subjugate.

In parallel, a form contains data structures that can be seen as the physical
implementation of a particular view of the conceptual schema of the database,

28 Chapter 2. Research context

since the transition from forms to a semantic model has been shown to be
tractable | ,]. Consequently, a prototype can be
analysed (for instance using database reverse engineering techniques) to recover
requirements such as its underlying conceptual schema [,]. In this
spirit, Ravid and Berry suggested a general method for fine-tuning any rapid
prototyping method [,]. They identified the categories
of requirements information that a prototype user interface may contain. One
of these categories concerns “the application’s data model, data dictionary, and
data-processing capabilities”, which is our main concern.

In conclusion, prototyping is a joint design activity characterised as a meet-
ing between two languages, that of the developer and that of the user’s work
world.

2.3.2 Prototyping as the expression of formal requirements

Let us now demonstrate that the form-based interfaces of a prototype can
indeed express the requirements of a formal schema. Fig. (left) shows
an electronic form of a complex data structure derived from the conceptual
schema of Fig. 2.2. Its information contents is represented at the right side as
a hierarchical record type, each field of which represents either an elementary
form field or a possibly multivalued grouping of such fields. From the theoretical
point of view, there is no formal guarantee that both schemas are equivalent,
that is, that the record type of Fig. provides the same information as the
schema of Fig. 2.2. Though they are not exactly equivalent, we can show that
the record type captures most of the information of the conceptual schema.

For this, we will use a demonstration approach based on transformational
techniques. According to the latter, every engineering process can be modelled
as a chain of schema transformations | ,]. A transformation opera-
tor is defined by a rewriting rule that substitutes a target schema construct for
a source construct. The most interesting operators are semantics-preserving, in
that the source and target constructs convey the same semantics (they have the
same meaning though presented differently). Fig. illustrates two impor-
tant semantics-preserving operators, namely attribute to entity type mutation
and upward inheritance. The first one (T1) transforms an entity type into
an equivalent attribute (and conversely). The second transformation (T2) in-
tegrates the subtypes of an entity type as complex attributes of the latter
(and conversely). They lack some necessary pre- and post-conditions to be
fully semantics-preserving, but there are sufficient considering the scope of this
study.

2.3.2. Prototyping as the expression of formal requirements

EMPLOYEE

=10l x|

EMPLOYEE

AdminMbr.

Hame: I

D

DeptMbr:

Location: I

 Cleick ® Worker

i Clerck

Function: I

DateHired:

— Worker

AdminNbr
Name
Department
DeptNbr
Location
Type: {Clerk, Worker}
Clerk[0-1]
Function
DateHired
Worker[0-1]
Speciality
Status

Specialty: I

Status:

0K

Cancel

id: Department.DeptNbr
AdminNbr
exact-1: Clerk
Worker

Figure 2.9: An electronic form and its information contents.

Now, we can apply transformation T'1 on entity type DEPARTMENT of Fig.
which yields the compound attribute Department in Fig.
transformation T2 on the subtypes CLERK and WORKER of the schema of Fig.

29

)

. Then, we apply

They are transformed into attributes Clerk, Worker and Type of the schema

of Fig. . Since the transformations are semantics-preserving, they can be
applied in the reverse way, in such a way that the schema of Fig.
transformed in that of Fig.

A2

A21
A22

id: A21
A22

A]
—1 —NO1 -1— A1

A1

A2
A21
A22

A

attA
Type: {B,C}
B[0-1]

attB
C[0-1]

attC
exact-1: B

C

can be

Figure 2.10: T1 (top) and T2 (bottom), two (almost) semantics-preserving trans-

formations.

30 Chapter 2. Research context

As a conclusion, we can consider that the electronic form of Fig. ex-
presses in an intuitive way the information requirements formally expressed in
Fig. 2.2. Let us now see how this principle can be put in motion.

2.3.3 How could Prototyping be used as a two-way communication
channel?

Prototyping has proven to be an efficient technique to elicit and validate re-
quirements. In particular, form-based interfaces appear to be a powerful means
of communication between all the stakeholders of an Software Engineering
project, since they can be used to express formal data requirements. More-
over, reverse engineering techniques can be applied to a form-based prototype
to derive valuable data user requirements. However, prototypes are still mainly
used as a one-way communication channel, since they are designed by analysts
rather than the end-users. From this observation, we can wonder if it could
not be possible to make prototyping accessible to any of the stakeholders, in
order to let them transparently express formal requirements on which could be
applied transformational techniques.

Chapter 3

State of the art
and Research questions

Whereas creating form-based user interfaces from existing databases is a well
mastered and common design process, several research projects have also been
focusing on applying reverse engineering techniques to form-based artefacts. In
particular, such approaches, applied to legacy form-based mediums in order to
recover existing database schemas, are presented in Section 3.1, while similar
approaches, applied to prototypical form-based mediums in order to define new
database schemas, are presented in Section

Examining these approaches offers a certain number of perspectives, which
are presented in Section 3.3. In particular, overcoming the limitations of the
existing approaches implies managing several key problems inherent to the
different disciplines that would need to interoperate in order to perform an
interactive conceptual analysis based on the reverse engineering of prototypical
user-drawn form-based interfaces.

We notably address the main activities of Database Forward Engineering

in Section 3.4, the use of Database Reverse Engineering to extract data models
from form-based interfaces in Section 3.5, the use of Prototyping to express
and validate requirements in Section 3.6, and User-involvement in Section

3.1 Reverse Engineering of Legacy Form-Based Artefacts

Back in 1984, Batini et al. studied paper forms as a widely used mean to
collect and communicate data in the office environment. Since forms are a very

31

32 Chapter 3. State of the art and Research questions

natural type of user requirements and an effective starting point in data base
design of office application, they developed a methodology to integrate them
into a non redundant semantic data model | ,]. The method
relies on 4 manual steps. During the form analysis, each form is decomposed
into areas of related fields which are recorded in a glossary. The area design
stage then extracts an EER schema for each area of a form. Finally, the form
design and interschema integration phases deal with the integration of each
schema into a single application schema. The possible integration conflicts
must by solved using analyst expertise, which makes this approach unsuitable
for regular end-users.

Mfourga presented a framework for extracting an entity-relationship schema
from a set of form model schemas of an operational relational database | ,

]. The first core activity consists in acquiring the set of forms (structures
and instances) of the legacy database to define form model schemas that gath-
ers structural information and constraints among data. A static analysis is
then performed to elicit the structural components and their interrelationships
based on the logical and physical composition of the forms. Subsequently, a
dynamic analysis leads to discover constraints as well as functional and ex-
istence dependencies. The process of extracting Entity-Relationship schemas
then relies on the form model schemas as input, and goes through six steps,
namely entity derivation, relationship derivation, attribute attachment, cardi-
nality determination, conceptual normalisation and incremental binary schema
integration. The overall process requires user interaction.

In order to understand the information and process logic embodied in a
given legacy system, Stroulia et al. developed the twofold CELLEST method
for reverse engineering its interfaces | ,]. First, a map of
the system interface is built based on the traces of interaction and navigation
between end-users and the system. During this interface mapping, snapshots
of the system screens are taken and their associated keystrokes are recorded,
before being analysed and clustered to build an interface graph. Secondly,
an abstract model of the user’s task is constructed using the interface map
and task-specific traces during the task and domain modelling. The exchanged
information is classified based on two orthogonal dimensions: their type of
triggering action (tell or ask) and their scope (system constants, user variables,
task constants or problem variables). Based on this classification, a screen
transition diagram and the associated flow of information are specified for each
task. This task model is subsequently used to generate graphical interfaces
that can be used as a reference to improve the legacy interfaces associated with
the elicited tasks.

Heeseok and Cheonsoo explored the links between form-based user inter-

3.2. Reverse Engineering of Form-Based Prototypes 33

faces and the conceptual schema of the application domain from a reverse
engineering perspective, and developed a method to extract the semantic of
legacy applications from forms | ,]. They developed the form
driven object-oriented reverse engineering method (FORE), which uses elec-
tronic screen forms as original input source and assumes that a form process
consists of a task using a single form. The method consists of five differ-
ent phases. (1) The form usage analysis captures the form structure and the
user interaction within the legacy application, using an agent program to store
them into a form knowledge store. (2) The form object slicing slices the form
knowledge store into semantic units based on the input structure. (3) The
object structure modelling creates a structure model from of the objects and
their structural relations, which are identified from the previous semantic units.
(4) The scenario design elaborates an object process action scenario diagram,
based on target scenarios of the business processes. (5) The model integration
integrates the structure models into a single one and resolves the structural
conflicts, based on common objects and the collaboration of objects operation.

Astrova and Stantic developed an approach to migrate the Deep Web to the
Semantic Web, using reverse engineering of relational databases to ontologies
[,]. Their approach uses HTML pages as the main
input and goes through three basic steps: (1) Form Model Schema extraction,
which consists in analysing the HTML pages (analysis of the structure, analy-
sis of the data, integration of the individual schemas) to extract a form model
schema; (2) Schema transformation, where the form model schema is trans-
formed into an ontology formulated in Frame-Logic using mapping rules; (3)
Data migration, whose goal is to create ontological instances from data con-
tained in the pages using table understanding techniques, in order to form a
knowledge base whose schema is defined by the ontology.

3.2 Reverse Engineering of Form-Based Prototypes

3.2.1 Existing approaches

These principles have also been used on form-based prototypes, in order to
specify new databases schemas. Let us review the main contributions in this
area.

Choobineh et al. explored a form-based approach for database analysis and
design [,]. Their initial standing point was that end-users
could communicate many requirements through the forms they use, thanks to
familiarity. Moreover, the most widely used data are gathered or reported in
forms. Indeed, as they stated, a form is a structured collection of variables

34 Chapter 3. State of the art and Research questions

(form fields) that are appropriately formatted for data entry and display. A
form type defines the structure, constraints, and presentation of the form fields.
Static properties of form fields include their type (primitive or user-defined),
presentation (template), structure, origin (provided by the user or the sys-
tem, computed from form fields, transferred from another form, depending on
another field in the current form, depending on fields in other forms) and con-
straints (optionality, default values, value domain). From these observations,
they developed the Form Definition System and the Expert Database Design
System. The Form Definition System (FDS) provides an editor to create forms.
The form layout component enables to enter form fields caption and example
values. The interface component provided various interface widgets. The com-
mand component provides input/output functions and form properties. The
inference component makes inferences on the grouping of form fields, dependen-
cies among the form fields, etc., to generate positive and negative examples that
end-users could validate or reject. Finally, the form abstraction base stores all
the created forms. The FDS turned out to be most useful in providing a com-
mon vocabulary and goals among end-users and data processing professionals,
rather than in providing exhaustive requirements collection by end-users. The
Expert Database Design System incrementally produces an Entity-Relationship
Diagram (ERD) based on the successive analysis of a set of forms (typically
obtained from the form abstraction base). The process relies upon the follow-
ing phases. (1) The form selection phase automatically selects the next form
to analyse, based on fields linked from one form to another. (2) The entity
identification phase identifies the possible entities within a form, using identi-
fiers, dependencies, grouped fields, etc. (3) Once the entities are identified, the
attribute attachment phase identifies their attributes using functional depen-
dencies between fields of a single form. (4) The relation identification phase
then creates the connections between the entities using functional dependencies
between fields of different forms. (5) Afterwards, the cardinality identification
phase makes decisions on the cardinalities of entities in a relationship. (6) Fi-
nally, the consistency phase ensures the consistency and integrity of the schema
diagram throughout its incremental construction, by checking properties such
as the completeness and uniqueness of the concepts, the preservation of the ex-
isting mappings between form fields, etc. To assure completeness of the whole
database design, the authors suggested the approach to be combined into a
methodology using other sources, such as natural language descriptions.
Kosters et al. introduced a requirements analysis method called FLUID
which combines user interface and domain requirements analysis | ,
]. The first stage of the method develops an initial domain model (com-
prising classes, attributes and relationships) and a task model which describes

3.2.1. Existing approaches 35

the activities the user can accomplish with the help of the system. During a
second step, the task model serves as a basis for the completion of the domain
model as well as for the development of a user interface model. The initial
domain model is developed through standard elicitation techniques.

Rollinson and Roberts studied the problem of non-expert customisation of
database user interfaces in |)]. To do so, they ex-
amined graphical form interfaces to identify which and how controls were used.
They then examined how they were combined to represent information, and
how they were mapped to an underlying data model. Finally, they identified
and classified the conflicts that may occur among graphical form interfaces.
They also described a hypothetical form modification system that would allow
end-users to create and modify forms. The system would use a drag-and-drop
Graphical User Interface (GUI) builder to create the form-based interfaces.
An information extraction component would analyse the information conveyed
by the interface and produce a semantic data model. A comparison compo-
nent would compare the semantic data model of each interface. And finally, a
storage component would hold copies of editable interfaces. This form modifi-
cation system would however be restricted as it would not be fill-in, and would
not allow changes implying a modification of the underlying database system.
They developed the Form Interface Schema (FIS) as a mean to represent user
interfaces, which consists of a directed graph where each node represents an in-
stance of an Abstract Interaction Object with different properties (name, label,
constraints and so on). From this Form Interface Schema, they developed a set
of graph-oriented transformations to extract an Extended Entity-Relationship
schema describing an interface’s information content, based on graph rewriting
rules as well as a classification of interschema relationships and conflicts.

More recently, Terwilliger et al. defined the formal GUAVA (GUi As View)
framework to use the user interface directly as a conceptual model, by exploit-
ing the hierarchical nature of forms-based user interfaces to provide a simple
representation of their informational content, including the relationships be-
tween forms | ,]. First, the complete structure of the
user interface is automatically represented in a hierarchical structure called a
GUAVA-tree (g-tree) based on the user interface controls. Then the g-trees are
translated into simple relational table structures with a natural schema against
which querying is simple. Finally, a database designer can transform the nat-
ural schema into the underlying physical database schema using a collection of
database operators.

Regarding web-based applications, Rode et al. investigated the feasibility
of end-user web engineering for webmasters without programming experience
[,]. Since most of the existing CASE/RAD tools are designed for

36 Chapter 3. State of the art and Research questions

experienced developers, they developed Click, a prototypical tool for the end-
user development of web application involving non professional programmers.
The end-users develop their application by building pages from scratch or using
predefined templates, then placing components (static layout elements, input
and output elements, ...) or directly defining the database structure. The
underlying layout code (HTML representation) and behaviour code (high-level
functions implemented on top of PHP, such as send mail, save to database, go to
page) are updated on the fly so that the application can be previewed instantly,
following a design-at-runtime paradigm. A to-do list warns the end-user of
undesirable or incoherent states (inexpressive default labels, missing links or
pages, ...). Click provides several layers of programming support ranging from
the mere customisation of existing templates to the edition of the PHP code
itself, making it accessible for different levels of designing and programming

knowledge.
Yang et al. also inquired about the WYSIWYG development of Data Driven
Web Applications [,]. They developed the AppForge system

to helps end-users to graphically specify the components of a form-based web
application (such as a Yahoo! Group application), while transparently generat-
ing the underlying application model (specification of page views, application
logic and database schema) on the fly. The users are provided with a GUIT that
allows them to create applications, user roles, pages (which contains forms and
views), forms (data input), views (data view and update) and containers. Be-
hind the GUI, the back-end system consists of an Application Creation System
which maintains the application model based on the developers action , and an
Application Runtime System which puts the model in action and connects it
to a relational database. While being primarily destined to profane end-users,
AppForge proved to be challenging for less experienced user, in particular be-
cause of the multiple levels of abstraction and parametrisation that they had to
switch between while developing their application (creators, user, specific user,
...), which may suggest that regular end-users are not made to be complex
application developers.

3.2.2 Core principles

The main lessons from this review are that reverse engineering form-based
prototypes is a well-known problem, and the existing approaches all rely on
the same core principles, which can be illustrated by Fig.

e build a set of form-based interfaces;
e extract the underlying form model;

e translate the form model into a working data model;

3.2.3. Limitations 37

e progressively build an integrated data model by looking for structural
redundancies as well as constraints and dependencies.

= =[Ol
EMPLOYEE
EMPLOYEE AdminNbr
P — Name
Hane Department DEPARTMENT EMPLOYEE

i DeptNbr DeptNbr N 11| AdminNbr

Deper [Location Location [“"IName

. Type: {Clerk, Worker] id: id: i
- | ype: {Clerk, } id: DeptNbr id: AdminNbr
—> | Clerk[0-1] —>
e O Function

[Cleck ———— | 4— | DateHired <

- Workerto-1l CLERK WORKER
Oaetied [Speciality

Status Function Specialty

woker —————————————————— i

sy [id: Department.DeptNbr Datetiired Status

v AdminNbr
exact-1: Clerk
ok | Cancel | Worker

Figure 3.1: Illustration of the core principles for reverse engineering form-based in-
terfaces: each interface is transformed into a “raw” data model, then it is progressively
refined and integrated.

3.2.3 Limitations

However, we observe that the number of studies on the subject is limited (es-
pecially recently), and several limitations must be underlined in most of these
approaches:

e the end-users are not involved intimately in the overall process;

e it is assumed that the labels are used consistently through out the differ-
ent forms, and little care is given to possible lexical variation (paronymy,
feminine, plural, spelling mistakes, ...) and ontological ambiguity (poly-
semy, homography, synonymy);

e the output schema often lacks refinement, such as hierarchies, existence
constraints or functional dependencies;

e the use of examples (either through static statements or dynamic inter-
action) is not systematically used to elicit constraints and dependencies
(when the latter are available);

e the underlying form model of the interfaces must often be constructed
by analysing the physical composition (layout) before the informational
composition (content) of the form;

e the tools provided for the drawing of the interfaces are either not ded-

icated to this purpose (e.g. Xfig), or de facto destined to professional
designers or analysts rather than end-users;

38 Chapter 3. State of the art and Research questions

e the prototypical form-based interfaces do not use a generic language that
would enable GUI generation of an application on any target platform;

e the final version of the integrated data model is not systematically sub-
mitted to the end-users for a final validation;

e the possible evolution of the data model is not considered.

3.3 Research perspectives

Overcoming these limitations implies managing several key problems inherent
to the different disciplines that would need to interoperate in order to perform
an interactive conceptual analysis based on the reverse engineering of proto-
typical user-drawn form-based interfaces. In particular, we need to focus on
managing and unifying the terminology and structure of the intended data
model, its enrichment to include hierarchies, constraints and dependencies, as
well as the generation of applicative components. Since we also want to involve
intimately the end-users, we must also provide them with adequate means to
express requirements through prototyping, and map these requirements to their
database engineering counterparts.

Reverse Engineering
User-Drawn Form-Based Interfaces
for Interactive Database Conceptual Analysis

Database Database
Forward Reverse
Engineering Engineering
Prototyping Pag‘g;?g:]ow

Figure 3.2: The overlay of different disciplines to perform an interactive concep-
tual analysis based on the reverse engineering of prototypical user-drawn form-based
interfaces.

As suggested by Fig. , these challenges are dealt by specific disciplines,
but their concerns and subsequent processing overlay in the context of our
inquiry. Regarding Database forward engineering, we notably need to clarify
terminological and structural ambiguities, elicit constraints and dependencies,
handle schema integration and generate applicative components. For our pur-
pose, Database reverse engineering mainly addresses the extraction of data

3.4. Encompassing Database forward engineering main activites 39

models from form-based interfaces. As for Prototyping, we must allow users
to express concepts and requirements through form-based interfaces, then vali-
date them through a playable lightweight application. Finally, since we want to
emphasise user-involvement, we need to find ways to involve them and possibly
tailor and integrate existing techniques. For each of these issues, let us now
present the problem and its context, as well as existing methods to tackle it.

3.4 Encompassing Database forward engineering main activites

Among the various activities of Database forward engineering, we notably need
to clarify terminological and structural ambiguities, elicit constraints and de-
pendencies, handle schema integration and generate applicative components.

3.4.1 Clarifying terminological and structural ambiguities

One of the main challenges of realising a sound conceptual schema concerns
the standardisation of the terminology and structures used to express similar
and different concepts, so that elements representing the same notion bear the
same name and elements representing different notions bear different names.
The first step of this process consists in identifying and mapping elements that
may correspond semantically to each other, which is known as schema matching
[,]. How can we therefore investigate a collection of
existing heterogeneous schemas to find and solve possible ambiguities among
their elements?

Terminological ambiguity

The first type of problems is the terminological ambiguity (also known as syn-
tactic heterogeneity) between elements, which can occur because elements seem
to bear similar names. Naming variabilities mostly result from the richness of
written natural language (paronymy, polysemy, homography, synonymy, gen-
der, singular and plural forms, ...) and possible spelling mistakes. Besides, a
schema can be designed by possibly multiple analysts, based on possibly multi-
ple sources of information using a non consistent vocabulary, which potentially
increases this phenomenon. In order to standardise the terminology used in
a given schema, the first step therefore consists in discovering and grouping
elements that are similar either by their spelling or their meaning, which can
precisely cause ambiguity. Note that though we here focus on the naming of
schemas elements, these observations also apply to other properties such as the
cardinalities, value types and value sizes of attributes.

40 Chapter 3. State of the art and Research questions

First of all, the orthographic similarity between two elements relies on the
spelling of these elements names, that is, the strings of characters composing
them. Identifying orthographically similar strings is a well-known problem,
usually dealt by using String Metrics | ,]. Such metrics calcu-
lates a similarity or dissimilarity score between two strings for matching and/or
comparison. Other kinds of metrics can also be used, for instance based on the
phonetic distance. For this purpose, one can mention Soundez, which is a
phonetic algorithm for indexing names by sound | ,]

Among the wide variety of reliable string metrics, we can mention Leven-
shtein’s [)] and Jaro-Winkler’s metrics | ,], which are
the most popular for dealing with word comparison. Levenshtein’s metrics is
defined as the minimum number of edits needed to transform a source string
into a target string, based on the number of necessary insertion, deletion, or
substitution of a single character. The greater the Levenshtein distance, the
more different the strings are. Jaro-Winkler’s metrics is based on the number
of matching characters and transpositions between a source string into a target
string, adjusted by the comparison of the initial characters of both strings. The
distance ranges from 0 (different) to 1 (equal). For instance, the Levenshtein’s
and Jaro-Winkler’s metrics yield the results showed in Table when compar-
ing the strings “Name”, “First Name”, “Last Name” and “Family Name’. Note
that the metrics were used through different existing Java libraries that are
presented in Section *

String 1 String 2 Levenshtein | Jaro Winkler
Name Name 0 1.0
Name First Name 6 0.0*
Name Last Name) 0.45
Name Family Name 7 0.56

First Name Last Name 3 0.83
First Name | Family Name 5 0.80
Last Name | Family Name) 0.75

Table 3.1: Levenshtein’s and Jaro-Winkler’s distance applied to example strings.

Secondly, the ontological similarity between two elements relies on the
meaning of these elements names. An ontology is a formal specification of the
conceptualisation of a given knowledge, usually within a given domain |

,]. It defines a vocabulary that explicitly expresses the concepts of that
domain, their classification and properties, as well as the relationships between

*Strangely enough, all these reference libraries implementing the Jaro Winkler metrics
yield the unexpected result 0.0 when comparing “Name” and “First Name”.

3.4.1. Clarifying terminological and structural ambiguities 41

them. Ontologies are used in various fields and applications of software en-
gineering, such as artificial intelligence, semantic web, biomedical informatics
and so on. Several languages have been developed to support the encoding of
ontologies. One of the most prominent ones is Web Ontology Language (OWL)
and its family of languages, which are endorsed by the World Wide Web Con-
sortium. Using such languages, a wide variety of domain-specific ontologies
has been developed, most notably for scientific (biology, medicine, computer
science, ...) and business fields.

Ontologies can therefore be useful to track down similarities of meaning
among a set of words. Consider for instance the strings “Primary provider” and
“Alternative supplier”. They are not orthographically close (Levenshtein finds
them similar at 16 and Jaro-Winkler at 0.52), but one may notice the nearness
of meaning of the words “provider” and “supplier”. Besides, the adjectives
“primary” and “alternative” suggest that a classification may exist between
these possible synonyms. Thesaurus and Dictionaries can also be useful to
track down similarities of meaning among a set of words, and may also target
specific domains, e.g. UMLS for the medical field | ,]

To clarify the terminological ambiguities between the elements of a given
schema, it is therefore possible to combine String Metrics, Ontologies, The-
saurus and Dictionaries in order to compare these elements. Elements that are
orthographically and/or ontologically similar would therefore be considered se-
mantically similar, and would need to be arbitrated with the help of domain
experts.

Structural redundancy

The second type of similarity that may occur is the structural redundancy. Typ-
ically, we can observe that attribute owners (such as entity types, relationship
types and compound attributes) can share attributes bearing the same names.
Take for instance the schema of Fig. : the entity type Person, the entity
type Reservation and the compound attribute Manager all have attributes
named First Name and Last Name. Note that although we here focus on the
naming of schema elements, these observations also apply to other properties
such as cardinalities, value types and value sizes of attributes.

The observation of entity types sharing attribute with the same name sug-
gest that these elements may represent different degrees of similarity. Let
us consider two entity types E1 and E2 sharing two attributes A and B
(Fig. 3.4(a)), and review the most common cases of structural redundancies:

e cquality: The two entity types represent the same concept, but were
assigned different names, for instance because of one of the reasons men-

42 Chapter 3. State of the art and Research questions

PERSON R!ESERVATION SHOP
First Name First Name Name
Last Name Last Name Manager
Event First Name
Gender
: Date Last Name
Date of birth
Category Telephone

Figure 3.3: A simple schema with structural redundancies

tioned about terminological ambiguities (recall for instance “Provider”
and “Supplier”). Such entity types should be merged into a single con-
cept (Fig. 3.1(b));

e union: The two entity types partially represent the same concept, and
could be seen as specialising a higher concept non explicitly expressed
(Fig. 3.4(c)). For instance, within a same company, a Clerk and a Sales
Representative are specialisations of the concept of Employee;

e specialisation: One of the two elements is a specialisation of the other
(Fig. 3.4(d)). For instance, one could argue that a Sales Representa-
tive is an enhanced Shop Assistant;

e complementarity: One of the two entity types actually refers to the other
(Fig. 3.4(e)). For instance, Reservation refers to Person in Fig. 3.3;

e difference: Finally, two entity types can also fortuitously share a same set
of attributes, while being intrinsically different. For instance, a Subcon-
tractor and a Supplier may share properties such as Name and Address,
but still represent different concepts.

y 8
E2
01— R S E
VAN F

E1 | 7 > | E2
c E
D F

(a) (b) () (d) (e)

Figure 3.4: Typical cases of structural redundancies.

UOW>

UOUJ>

UO:UZDT
ﬂm
N
TMOOW>

Besides, two entity types can also be considered structurally redundant if
one of them contains components that can be obtain by derivation from com-
ponents of the other one. This is often the case in form-based interfaces, when
the content of a field is automatically computed from the values of fields com-
ing from other forms. In order to standardise the terminology of the attributes

3.4.1. Clarifying terminological and structural ambiguities 43

owners of a given schema, the first step therefore consists in discovering and
grouping elements that share structural redundancies.

Given the tree-like structure of the GER model, the problem of mining
structural redundancies is actually alike the problem of tree mining [,

], and more precisely frequent embedded subtrees mining in rooted unordered
trees | ,]. A rooted unordered tree is a particular connected,
directed and acyclic graph G = (V, E)) comprising a set V' of vertices (or nodes)
together with a set E of edges (or lines). Such a tree has a node (called root)
from which it is possible to reach all the other vertices (descendants) in the
tree, and does not provide any order among siblings. Each other node has one
and only one parent node. Given such a tree, a bottom-up subtree is obtained
by taking one vertex from G and all its descendants. An induced subtree is
a bottom-up subtree from which leaf nodes (i.e. nodes with no descendant)
have been repeatedly removed, while an embedded subtree is another particular
bottom-up subtree from which nodes have been removed without breaking the
ancestor relationship between the vertices of G.

In this context, entity types can be seen as root nodes, compound attributes
as intermediary nodes, simple attributes and roles as leaves, and the order of the
attributes is precisely irrelevant, as we explored in [,]. Several
well known tree mining algorithms have been developed to tackle this issue,
such as Zaki’s SLEUTH [Zaki,], Asai et al.’s UNOT |) 1,
Termier et al.’s TreeFinder | ,] or Chehreghani et al.’s TDU
[,]. Tree based approaches are suitable for complex and
deep graphs, however we observe that the structure of user-drawn interfaces is
usually quite simple (the path from the root to the deepest node in the tree
rarely uses more than a few edges), if only for legibility and usability. Indeed,
Choobineh et al. noticed that “most forms have a shallow (i.e. few levels) and
narrow (few nodes per level) structure because of human information processing
limitations” | ,]. This might imply that simpler algorithms
may be more appropriate.

For the purpose of discovering structural redundancies, Formal concept
analysis (FCA) is also a popular approach [,]. Tt relies on the defini-
tion of a formal context K = (G, M, I), where G is a set of formal objects, M a
set of formal attributes, and I a binary relationship defining which attributes
of M can be associated to which objects of G. Consequently, a formal concept
of K is a pair (4, B) with A C G and B C M, so that the set of all attributes
shared by the objects of A is identical with B, and on the other hand A is also
the set of all objects that have all attributes in B.

Thus, FCA can therefore be seen as a conceptual clustering technique pro-
viding descriptions and hierarchisation for the abstract concepts or data units

44 Chapter 3. State of the art and Research questions

it produces. In this context and for a given schema, entity types, relationship
types and compound attributes can be seen as formal objects, while attributes
and roles can be seen as formal attributes. Searching the different formal con-
cepts contained in the schema, and hierarchically grouping them according to
their shared attributes could consequently highlight structural redundancies in
a given schema.

To clarify the structural ambiguities between the attribute owners of a given
schema, it is therefore possible to use tree mining and/or FCA in order to com-
pare these elements. Elements that share embedded subtrees would therefore
be considered structurally similar, and would need to be arbitrated with the
help of domain experts.

3.4.2 Eliciting implicit constraints and dependencies

When conceiving a conceptual schema, it is important to define a set of pred-
icates that will guarantee that once the subsequent database is implemented
and operational, any changes made to its content by authorised users will main-
tain its consistency. Typically, inserting, modifying or deleting values from the
database should not result into data anomalies or unnecessary redundancies.
Among the different constraints usually considered to obtain such a reliable
database, let us recall the most common ones:

e domains of values, which may restrict the possible values of given at-
tributes, for instance using domain types, sets or ranges of (un)authorised
values, rule-based formulas for the values, ...;

e cardinality constraints, which define the minimal (typically zero or one)
and maximal numbers (typically one or infinite) of occurrence(s) of given
attributes and roles;

e cxistence constraints, which define how optional components (attributes
and roles) may influence each other. For two components A and B, these
constraints may be:

— coexistence, which implies that A and B must always be not null
simultaneously;

— at-most-one, which implies that A and B cannot be not null simul-
taneously;

— at-least-one, which implies that A and B cannot be null simultane-
ously;

— exactly-one, which implies that if A is not null, then B should be
null, and vice-versa;

— implication, where A implies B means that A can be not null only
if B is not null itself;

3.4.2. Eliciting implicit constraints and dependencies 45

e identifiers, which are a set of components which, taken collectively, allow
to identify uniquely the given instance of a given entity type;

e functional dependencies, which express constraints between sets of at-
tributes;

The challenge here is more about uncovering possible undetected constraints
than expressing them directly. Indeed, while traditional database elicitation
techniques usually may yield most of the relevant constraints during the design
of the conceptual schema, analysing the content of the subsequent database
(or at least, a set of relevant data samples) may highlight constraints that
remained unmentioned, maybe because the domain experts were not aware of
them, or (more probably) because they are part of some tacit knowledge. How
can we therefore nurture an existing schema to elicit and express constraints
and dependencies based on data samples?

The relational model of a database

Since we need to consider our set of schemas not as a “rigid skeleton”, but as
a “living being” (i.e. an operational and populated database), let us introduce
the relational model of a database according to the First normal form (INF),
which is a database model based on first-order predicate logic, first formulated
and proposed by | ,]

In the relational model, all the data is represented through relations (also
know as tables). A relation is structured using atiributes (a.k.a. fields or
columns), each of which is defined on a domain, which is a given set of values.
A tuple (a.k.a. row) contains all the data of a single instance, that is a value for
each attribute of the relation with respect to its domain. Intuitively, relations
and attributes of the relational model correspond to entity types and attributes
in the GER model, as illustrated in Figure

For a relation, an identifier (a.k.a. candidate key) is a set of attributes so
that when considering all the possible tuples of the relation, there cannot be
more than one tuple having the same combination of domain values for these
attributes. Let us note t[A] the restriction of a tuple ¢ to the set of attributes
A (called projection of t onto A). For instance, from the tuples visible in
Figure , we could assume that Customer Number and Last Name form an
identifier for the relation Customer, since there are no tuples having the same
combination of values. More formally, we therefore have:

*Most of these customers are fictional characters from the acclaimed TV show BAT-
TLESTAR GALACTICA.

46 Chapter 3. State of the art and Research questions

CUSTOMER
Customer First Last
CUSTOMER tuples Number Name Name Gender
Customer Number t1 23 Bill Adama Male
First Name t2 25 Lee Adama Male
Last Name t3 35 Bill Dog Male
Gender t4 46 Caprica Six Female
[£9) 52 Kara Thrace Female
t6 53 Sharon Valerii Female

Figure 3.5: The representation of a Customer using the GER and relational model.

Definition 3.1. Given a relation R, its associated sets of attributes A =
{ai,...,a,} and possible tuples T = {t1,...,t,}, A C A is identifier for R iff:
Bi,jel,m]:t;[A =t;[A] Ni#j

An identifier is minimal if none of its members can be removed without
jeopardising the identifying property. For instance, from the tuples visible in
Figure 3.5, we could assume that Customer Number and Last Name is not a
minimal identifier for the relation Customer, since we can remove Last Name
and still identify each tuple using uniquely Customer Number.

In a database, each relation contains an implicit identifier that can is ob-
tained by construction. However, it is preferable to define an explicit identifier
for each relation. Since there can be several explicit identifiers, it is common
to choose a minimal identifier as the sole primary identifier. Identifiers other
than the primary one are said to be secondary. When it is impossible to define
a primary identifier, a virtual attribute is added to the relation to play the role
of technical identifier.

A similar notion is the concept of functional dependencies, which are ma-
terialised by the explicit or implicit constraints between two sets of attributes
in a relation from a database. Given a relation R, a set of attributes X € R is
said to functionally determine another set of attributes Y € R, if and only if
through all the possible tuples extending R, each value of X is associated with
precisely one value of Y. This functional dependency is written R : X — Y,
with X called the determinant set of attributes and Y the dependent set of
attributes. For instance, from the tuples visible in Figure 3.5, it seems that the
functional dependency Customer:First Name — Last Name does not stand,
since there are two persons named “Bill” but with a different family name.
On the other hand, the functional dependency Customer:First Name, Last
Name — Gender could be legit, but would need to be validated.

Armstrong’s axioms are a set of inference rules used to infer all the func-
tional dependencies on a relational database | ,]. The axioms

3.4.2. Eliciting implicit constraints and dependencies 47

are sound in that they generate only functional dependencies in the closure
of a set of functional dependencies (denoted as F*) when applied to that set
(denoted as F'). They are also complete in that repeated application of these
rules will generate all functional dependencies in the closure F'T.

o Reflexivity: If Y C X, then X — Y
e Augmentation: If X — Y, then XZ — Y Z for any Z
e Transitivity: If X =Y and Y — Z | then X — Z

In addition to these rules, the following derivate rules are also taken in
account.

e Union: If X - Y and X — Z then X - YZ
e Decomposition: If X - Y Z, then X - Y and X — Z
e Pseudo Transitivity: If A - B and CB — D then AC — D

For instance, If A — B is an FD, then, (A, C — B) is considered redundant.

Mining constraints and functional dependencies

Analysing the content of a database or a subset of data samples can intuitively
lead to make possible assumptions on, e.g., the domains of values, the cardinal-
ities of the attributes, their existence constraints and possibly their identifiers.
Consider for instance an optional textual attribute A. If for any tuple ¢;, we
observe that ¢;[A] is never null and always composed of a number, we could
easily wonder if A is not actually a mandatory numeric attribute. Moreover, if
all the ¢;[A] have different values, this could suggest that A is in fact a primary
or secondary identifier. The same kind of induction could be led on optional
attributes to assess their possible existence constraints. However, mining func-
tional dependencies is far less trivial.

Back in 1995, Ram presented four categories of heuristics to derive func-
tional dependencies from an existing conceptual ER schema [,]. The
first category consists in using keyword analysis to identify intra-entity func-
tional dependencies: typically, attributes bearing a suffix or prefix such as
“id” or “number” should be considered potential determinants, while attributes
bearing a suffix or prefix such as “maximum”, “minimum”, “average” or “to-
tal” should be considered potential dependent attributes. The second category
consists in analysing the cardinalities of binary relationships to identity inter-
entity functional dependencies, typically between their identifiers. The third
category is similar, but concerns N-ary relationships. And finally, the fourth
category consists in analysing sample data to elicit undiscovered functional
dependencies. These heuristics were supported by the FDExpert tool.

48 Chapter 3. State of the art and Research questions

The first three categories rely on the analysis of the schema itself, while
the latter category, known as the dependency discovery problem, focuses on the
content of the database itself. This is a well-know issue, especially in data
mining, database archiving, data warehouses and Online Analytical Processing
(OLAP). The most prominent existing algorithms dealing with this issue can
be classified in three types of approach, which are so different that it is difficult
to compare them qualitatively [,].

The candidate generate-and-test approach is based on the partitioning of
the database combined with a levelwise exploration and pruning of the search
space, as in Huhtala et al.’s TANE | ,], Novelli and Cic-
chetti’s FUN | ,], or Yao and Hamilton’s FD_Mine
[,]. The modus operandi of these algorithms is sensibly
the same, and they mainly differ by the pruning rules that they use. First of all,
the stripped partition database 7 of the relation r is calculated by partitioning
the tuples into maximal equivalence classes based on their values. Then, the
dependencies are computed level by level, starting with the singleton sets of at-
tributes of r, and continuing with the combinations of non discarded attributes
to test the dependencies of the form X\{A} — A with A € X for each set X
of the level.

The minimal cover approach relies on searching the minimal cover of the
set of FDs for a given database, i.e. the minimal set of FDs from which the en-
tire set of FDs can be generated using the Armstrong axioms, as in DepMiner,
proposed by Lopes et al. | , | and FastFDs, proposed by Wyss
et al. | , |. They also rely on the extraction of a stripped parti-
tion database from the initial relation, before computing agree sets of tuples.
Maximal sets are then generated, which allows to define a minimum FD cover
according to these maximal sets, based on hypergraph theory. DepMiner uses
a levelwise search, while FastFDs uses a depth-first, heuristic-driven (DFHD)
search.

Finally, Formal concept analysis (FCA) has also been used recently to find
and represent logical implications in datasets | ,], mainly through a
closure operator from which concepts (closed sets) can be derived. For in-
stance, Baixeries uses Galois connections and concept lattices as a framework
to find functional dependencies |)], while Rancz et al. optimise an
existing method introduced by | , |, which provides a direct trans-
lation from relational databases into the language of power context families,
in order to build inverted index files to optimise the elicitation the functional
dependencies in a relational table through the construction of their formal
context [,]. The latter authors also developed the sub-
sequent FCAFuncDepMine software to detect functional dependencies in rela-

3.4.3. Handling schema integration 49

tional database tables [,]. Similar principles were also used
in Flory’s method, which was based on the definition and analysis of a matriz
and its associated graph of functional dependencies | ,].

To elicit the implicit possible constraints and dependencies of a given schema,
it is therefore possible to use induction, dependency discovery algorithms and
FCA on data samples. Such constraints evidently need to be arbitrated with
the help of domain experts. However, existing approaches rely on massive
pre-existing data sets, which could be problematic.

3.4.3 Handling schema integration
View integration

The ultimate objective of the Conceptual Design is to produce a single, inte-
grated conceptual schema describing the future database. The final step of this
database design process is therefore to handle view integration, which is a typ-
ical case of database schema integration | ,]. View integration
may be required because the stakeholders have different perspectives on the
modelling of the information, which can induce different representations of the
same concepts (different names, different constructs, different properties, etc.)
that may turn out to be incompatible. It is therefore crucial to resolve these
discrepancies and integrate the involved elements in order to obtain a sound
and consistent conceptual schema.

View integration consists in identifying and comparing elements to inte-
grate, unifying them before merging and restructuring them. The elements
to consider are those involved in issues such as naming conflicts (typically
homonyms and synonyms) and structural conflicts (such as construct mis-
matches, identifiers conflicts, cardinality conflicts, constraints conflicts, ...).
The difficulty actually lies in conflict identification rather than in conflict reso-
lution. Managing this process can therefore be simplified if we take in account
the elements that we discussed for the previously mentioned challenges. How
can we therefore bind elements of an existing schema?

Transformational techniques

First of all, as we just pointed out, the identification and subsequent unification
of the elements depends on the problems previously discussed in Section

If the semantic and structural ambiguities are solved, we can here focus on
merging and restructuring the necessary elements. Transformational techniques
have proved to be particularly powerful to carry out this process and enable to

50 Chapter 3. State of the art and Research questions

integrate similar objects into a unique, non-redundant structure, without any
loss of semantics.

When dealing with multiple (sub)schemas, three main strategies naturally
appear, as explained by Hainaut | ,):

e n-ary integration, which is suitable when several concepts appear in mul-
tiple (sub)schemas;

e hierarchical integration, which is suitable when the application domain
is naturally decomposed into hierarchical subsystems;

e incremental integration, which is suitable for large and numerous schemas
who do not prevail upon each other.

Hierarchical and incremental integration rely on a progressive binary inte-
gration of schemas, where corresponding elements are pairwisely merged. For
the sake of simplification, we consider that two elements correspond to the
same concept if they are semantically and/or structurally similar. Typically,
two corresponding entity types A and B should be replaced with a merged
entity type C, for which each attribute and role would find at least one corre-
spondent in A and/or B. Merging attributes and roles implies arbitrating their
differing properties, including cardinalities, domain of values and value types,
and so on. Integrity constraints must also be propagated.

However, there is not always a strict identity between two concepts, other
integration techniques must then be used to resolve redundancies |

,]. For instance, if two objects are not of the same type, such
as an entity type and a compound attribute corresponding to the same con-
cept, transformational techniques are used to set them in conformity before
integration, by typically extracting the compound attribute as an entity type.

3.4.4 Generating applicative components
From the conceptual schema to the prototype

Once the integrated conceptual schema representing the application domain
has been produced, and in the perspective of integrating prototyping for the
purpose of database forward engineering, it might be interesting to generate the
database and interfaces to which it could be connected. Handing a playable
prototype to domain experts could serve indeed as a valuable validation of
the data specifications, since it would allow them to test various aspects of
their requirements. How can we therefore objectify an existing schema into
applicative components such as a database?

3.5. Extracting data models from form-based interfaces 51

Transformations and CASE tools

As exposed in Chapter 2.2, producing the conceptual schema representing the
requirements is the most complex step of Database Engineering. Once it is
elaborated, the database engineers can subsequently automate the production
of the platform-specific logical schema and the performance-oriented physi-
cal schema from their conceptual counterpart, using dedicated transformations
plans, i.e. specifically defined sequences of standard transformations. After-
wards, from these schemas, well-mastered (semi) automated techniques, that
have long been studied in the database research community and applied in in-
dustry, allow the artefacts of the final application to be produced: interfaces,
programs, database code, etc.

These transformations and techniques are usually handled by dedicated
CASE tools that allow to customise the necessary sequence of transformations
to meet specific needs and target technologies. For instance, DB-MAIN is
a data-oriented modelling CASE-tool dedicated to Database Application En-
gineering | ,]. Tt is designed to help developers and analysts
in the development, reverse-engineering, reengineering, migration, integration,
maintenance and evolution of data-centred applications, mainly based on the
Entity-Relationship model. DB-MAIN includes meta-model components that
allow the users to develop transformational scripts, new functions and methods,
as well as a Java library to interact with its internal repository.

3.5 Using Database reverse engineering to extract data mod-
els from form-based interfaces

In the Chapter 3.4, we discussed the challenges surrounding the definition of the
conceptual schema, and more particularly the aspects that should be managed
on an ongoing schema. To begin these refining processes, we could start from a
raw schema obtained from the transformation of a set of form-based interfaces
into a set of data schemas, as suggested by the principles of Database reverse
engineering that have been exposed in Section , and the applications of
these principles which were presented in Section 3. How can we therefore
adapt a set form-based interfaces into data models to which we could apply the
previously discussed processes of Database forward engineering?

3.56.1 Static information based on layout and content

First of all, the appearance of form-based interfaces contains a lot of information
regarding the underlying data models. Indeed, a set of forms can be considered

52 Chapter 3. State of the art and Research questions

a set of derived views of the data. To extract each view from the forms, the
approaches of Section 3 usually start by analysing the layout of the forms to
detect the labels of each widget and how they are logically and hierarchically
structured. This step is not trivial, since the labels may not systematically be
visible, and the choice and placement of the objects and their label may not
always be intuitive and systematic, as illustrated in Fig. . In this example,
we can for instance observe that:

e some elements do not bear any label, such as the group boxes for the
product and the payment, as well as the radio buttons for the title of the
customer;

e the placement of the label is not always the same, as it is sometimes at
the left of the widgets, and sometimes on the top;

e the placement of the radio buttons is not always the same either: they
are on the same line for the title of the customer, but not for the balance
of the payment;

e and so on...

oo]
Ref: [: Salesperson: [] Date: []

— Customer
Name: ()| Productno: []
O Mrs O Mr Quantity: L]

Address:
Down payment: [:
Balance:

O Cash O Credit card

Bliche; :] O Bank transfer

[Ok] [Cancel

Figure 3.6: A form-based interface with unlabelled elements and unsystematic
choice and placement of widgets.

Once the structure and labels of the forms are clarified, each given form F;
is translated into a data model M; using injection-based mapping rules between
elements of the chosen form model and data model, so that each widget of F;
has a deterministic counterpart in M;. These mapping rules depend on the
languages used to model and/or implement the source interfaces, as well as the
target destination model. As it appears, the output data models will be more
precise and detailed if it is possible to access the detailed specifications of the
interfaces, which is not always possible with legacy interfaces.

3.5.2. Dynamic information 53

3.5.2 Dynamic information

Besides, it is also possible to observe the execution of programmes to analyse
the actions and inputs that must be processed, and how the programmes re-
spond to these actions and inputs. If the database is accessible, one can also
observe how the data evolves according to this execution. Investigating pro-
gram behaviour using information gathered as the program is running is a well
known problematic. For instance, Program profiling (also known as Software
profiling) mainly focuses on determining which sections of a program could be
optimised (typically in terms of overall speed and memory requirement), while
Program comprehension focuses on acquiring knowledge about computer pro-
grams in order to facilitate reuse, inspection, maintenance, reverse engineering,
reengineering, migration, and extension of existing software systems.

The data obtained typically through interpretation (for instance using the
Virtual Machine in Java) or instrumentation of system’s execution is used for
such purposes as reverse engineering and debugging. Numerous dynamic anal-
ysis approaches have been proposed for this purpose, with a broad spectrum
of different techniques and tools as a result, as presented by | ,

]. According to the main objectives of the programme comprehension
and the target programming platforms and languages, different methods can
be combined, among which visualisation, program slicing, filtering, metrics,

querying, ...

3.6 Prototyping to express and validate requirements

Among the various challenges of Prototyping, we notably need to allow end-
users to express concepts through form-based interfaces, and conversely, to
validate concepts through form-based interfaces.

3.6.1 Expressing requirements through form-based interfaces

How can users represent concepts and requirements by building themselves
form-based interfaces?

Modelling form-based interfaces

In their most general definition, forms are a structured mean of displaying and
collecting information for further processing. Originally, forms were materi-
alised as paper documents sharing common parts and including blank fields to
fill in the necessary information, typically for orders, requests, checks, ...

54 Chapter 3. State of the art and Research questions

The introduction of electronic forms allowed for conveniently typing in the
variable parts by providing a set of widgets accordingly to the type of expected
data input (constrained or unconstrained, mono or multivalued, ...). These
interactive forms, which have become a natural part of GUIs through a wide
variety of applications and websites, usually use the following common input
widgets:

o textual input fields, that allow input of a single or several lines of text;

e radio buttons, which usually allow to choose one value among several
ones;

e check boxes, which usually allow to choose zero, one or several values
among several ones;

e push buttons (to call a specific function or another screen, for instance to
search a file or reset the whole form);

e combo-boxes (drop-down list that displays a list of items a user can select
from).

On top of these simple widgets exist more specific or complex widgets, such
as spin boxes (to adjust a value in an adjoining text box by either clicking on
an up or down arrow), tree views (to display hierarchical information) or colour
pickers.

Input widgets are usually combined with output (display) widgets, such as
labels or images. Both categories of widgets can be structured using group
bozes and tables within a given top level window.

Existing User Interface Description Languages

In the last decade, new classes of IT devices have emerged in conjunction with
new interaction styles such as 3D interaction, virtual/mixed reality, tangible
user interfaces, context-aware interfaces and recognition-based interfaces. Since
there is a large variety of programming languages each offering its own model
of GUI, there has been many research on User Interface Description Languages
(UIDL).

Such languages enable designers to specify user interfaces using high-level
constructs, and without worrying about implementation details. From the de-
scription of these abstract user interfaces, concrete user interfaces can then be
(semi) automatically generated according to the chosen platforms and tech-
nologies. As described by | ,], the goals of UIDLs are to:

e capture the requirements for a user interface as an abstract definition
that remains stable across a variety of platforms;

3.6.1. Expressing requirements through form-based interfaces 55

e enable the creation of a single user interface design for multiple devices
and platforms;

e improve the reusability of a user interface;

e support evolution, extensibility and adaptability of a user interface;

enable automated generation of user interface code.

Let us therefore briefly review a few recent UIDLs, which are mostly based
on the eXtensible Markup Language (XML), which is a standard markup lan-
guage that has notably become a standard recommendation of the World Wide
Web Consortium (W3C) to model and carry structured data |]. The
tree-like structure of XML documents perfectly with the hierarchical structure
of traditional form-based interfaces.

The User Interface Markup Language (UIML) is an XML-based language
that allows the canonical description of user interfaces for different platforms
[,]. A UIML document is structured in three different parts: a Ul
description, a peers section that defines mappings from the UIML document to
external entities (target platform’s rendering and application logic), and finally
a template section that allows the reuse of already written elements. The UI
is described as a set of interface interaction elements for which a presentation
style (such as position, font style or colour), the content (text, images, etc.)
and the possible user input events and resulting actions are specified. The
interface is built using a rendered that interprets UIML on the client device
(similar to the way a web browser renders an HTML file) or compiles it to
another language (for instance HTML). However, the UI description is bound
to the target language and device, which implies that a same interface may
need separate Ul descriptions if it has different targets.

The eXtensible Interface Markup Language (XIML) [,

] is a representation language for interaction data that supports design, op-
eration, organisation, and evaluation functions. It is able to relate the abstract
and concrete data elements of an interface, while enabling knowledge-based
systems to exploit the captured data. XIML is a hierarchically organised set
of interface elements that are distributed into one or more of the different in-
terface components. XIML predefines five basic interface components, namely
task (the business process and user tasks), domain (the hierarchical set of
all the objects and classes used), user (the hierarchical tree of the target end-
users), dialog (the structured collection of elements that determine the possible
interactions), and presentation (the hierarchy of concrete interaction objects
used in the interface). The interaction data elements captured by the various
XIML components can be linked together using relations, and be enriched by
attributes (i.e. features or properties).

56 Chapter 3. State of the art and Research questions

Teresa XML is the XML-compliant language that was developed inside the
Teresa project, which is intended to be a transformation-based environment
supporting the design and the generation of a concrete user interface for a spe-
cific type of platform | ,]. The Teresa XML language is
composed of a XML-description of the CTT notation |)] which
was the first XML language for task models, as well as a language for describ-
ing user interfaces. Teresa XML specifies how the various Abstract Interaction
Objects (ATIO) composing the UT are organised, along with the specification of
the UI dialog.

The USer Interface eXtensible Markup Language (UsiXML) is a XML-
compliant markup language that describes the UI for multiple contexts of use
such as Character User Interfaces (CUIs), Graphical User Interfaces, Auditory
User Interfaces, and Multi-modal User Interfaces | , ;

,]. This language allows interactive applications
with different types of interaction techniques, modalities of use, and computing
platforms to be described in a way that preserves the design independently from
peculiar characteristics of physical computing platform. It was initiated by the
exhaustive review of XML-compliant User Interface Description Languages led

by [:].

Mapping UIDLs to Data Models

As we have seen in the Chapter , it is possible to define mapping rules
between UIDLs and Data Models, which would transparently associate spe-
cific widgets to specific types of concepts. However, a major concern about
these various UIDLs comes from the structure of the languages itself. Indeed,
since they must express complex interfaces, layouts and behaviours, their XML
structure becomes complex and difficult to read, which in turn may lead to very
complex mappings to given data models.

Besides, such complex languages may scare laymen users that need to ex-
press simple concepts, because they would have to choose among too many wid-
gets and would be challenged by the definition of appropriate layouts. These
concerns may prevent them to focus on the content of the forms rather than
the appearance. The users should therefore be given adequate tools to manage
the drawing of accessible form-based interfaces.

3.6.2 Validating requirements through form-based interfaces

As we have seen in Chapter , prototypical interfaces can also be used to
validate requirements. If applicative components can be generated from the

3.7. Managing User-Involvement 57

integrated conceptual schema that results of the analysis of the raw schema
obtained from prototypical form-based interfaces, a prototypical application
could be generated and testing as a final validation step. How can users there-
fore wander through a playable prototype to validate their requirements?

As we have seen in Section , the generation of applicative components
can be relatively straightforward using transformations and CASE tools. The
challenge here is to interconnect form-based interfaces with their underlying
database and applicative components.

3.7 Managing User-Involvement

In the previous chapters, we presented challenges inherent to the disciplines
that would need to interoperate in order to perform an interactive conceptual
analysis based on the reverse engineering of prototypical user-drawn form-based
interfaces. Still, one of our major concerns resides in the involvement of end-
users, so that they can effectively and efficiently participate in the resolution
of these challenges. How can we therefore handle user-involvement in this
context?

3.7.1 Participatory Design Perspectives

[,] address different recommendations regarding the appli-
cation of Participatory Design. Among these recommendations, it appears
that the design process should be situated within the users work but guided
and arbitrated by the designers. It should encourage creativity and draw out
tacit and shared knowledge, while simulating the future to aid in prediction
and evaluation of design. Kensing and Blomberg also insist that end-users
should participate in the analysis of needs and possibilities, the evaluation and
selection of technology components, the design and prototyping of new tech-
nologies, organisational implementation, and ultimately, in decision making
[, 1998

In this context, the roles of the designer include coordination, facilitation,
material preparation and managing the social interactions (which can be re-
ferred to as “Social Engineering”). Since it is not systematically possible for all
those affected by the design effort to fully participate in the process, the choice
of user participants, their responsibilities and accountabilities as well as their
form of participation must be carefully considered and negotiated.

Besides, | ,] explains that to access the end-users experience and
knowledge, the analysts can observe them under three perspectives: what they
say, what they do, and what they make. Listening to people tells us what they

58 Chapter 3. State of the art and Research questions

are able and willing to express in words (i.e., explicit knowledge) and watching
people in their activities provides us with observable information, which may
help us to understand their perceptions of experience. To grasp their tacit
knowledge, we also need to understand how they feel in order to empathize
with them. Observing end-users on the long run can also reveal unsuspected
needs (latent knowledge).

Furthermore, Muller et al. drew a taxonomy of Participatory Design prac-
tices according to “who participates with whom in what” and at what stage
of the development cycle this activity occurs in | ,]. As it
appears, we would like end-users to participate in the early database design
activities, which would rather call for co-development settings.

In this context, | ,] precisely advocated users and de-
signers to collectively explore the form, functionalities and context of applica-
tions through cooperative prototyping. Using adequate prototyping tools and
the users actual work materials to allow case-based prototyping, they can ap-
ply their knowledge and experience as competent professionals in the design
process. Besides, |)] and [,] also noted that pro-
totypes can act as “catalysts” and “triggers” for discussions, which may lead to
mutual learning, since it provokes concrete experience.

3.7.2 Tailoring existing techniques

Arguably, using cooperative prototyping as a means to express, capture and
validate data requirements implies tailoring and integrating the processes and
existing techniques in order to suit the context of use, support the users skills
and keep them focused and dedicated to the overall process.

Typically, since conceptual schemas are difficult to comprehend, we should
find a way to transparently use form-based interfaces instead for the various
steps of analysis and arbitration of the design process. The design and in-
teraction with the prototype should be simple, intuitive and enjoyable, which
could be threatened by the fact that existing UIDLs are complex and that
we might require the acquisition of numerous data samples (which would be
(too) demanding) for further analysis. Also, the available algorithms for mining
structural dependencies and possible constraints are quite complex, which im-
plies that their execution could be time-consuming and therefore interfere with
the flow of the process. All these observations urge us to consider adapting or
redefining the existing strategies to improve the experience of the end-users, so
that their interactions with the data modelling process become more intuitive
and transparent.

Part Il

The RAINBOW Approach

In this part of the dissertation, we present the integrated RAINBOW ap-
proach to reverse engineer user-drawn form-based interfaces in order to perform
an interactive database conceptual analysis. First, Chapter 4 introduces the
approach and formalises its principles into a semi-automatic process. Each
of its seven steps is subsequently detailed in a separate chapter and a proof-
of-concept tool support is then presented. The principles and results of this
proposal have notably been presented in international conferences |

, , ; , ; ,] and workshops

[; ; , ; : J.

59

Chapter 4

Proposal

4.1 Claim

As we have seen, providing a better requirements acquisition process for Database
Engineering implies bridging the gap between end-users and analysts. Since
the traditional ER schema has shown understandability limitations, this issue
clearly calls for a better medium, which should be common to all the stake-
holders and rich enough to convey relevant meaning and interactivity. For
this purpose, we propose to use user-drawn form-based interfaces as a
two-way channel to express, capture and validate static data require-
ments with end-users by taking advantage of reverse engineering
techniques. More precisely, we claim that:

e Given:
— An environment for which forms are a privileged way to exchange
information;

— Stakeholders familiar with form-based (computer) interaction and
the application domain;

e We can:

— Exploit the expressiveness of form-based user interfaces and proto-

types;
— Specialise and integrate standard techniques to help acquire and
validate data specifications from existing artefacts;

61

62 Chapter 4. Proposal

e In order to:

— Use form-based user interfaces as a two-way channel to communicate
static data requirements between end-users and analysts;

— And therefore transparently produce a conceptual schema of the
application domain, including integrity constraints, existence con-
straints and functional dependencies.

Indeed, since existing artefacts can be used to recover the underlying re-
quirements through well-mastered reverse engineering techniques, we advocate
to use such tailored techniques in forward engineering by working with the
virtual artefacts produced by the end-users (Fig. 4.1). This approach benefits
from the advantages of rapid prototyping, while making the user a central actor
of the process, and designing a set of simple semantic interfaces rather than a

X

complete application.

Stakeholders
| Requirements elicitation
| Prototyping

interfaces

| Requirements recovery

Figure 4.1: Using reverse engineering in a forward engineering perspective.

4.2 Context of use

The RAINBOW approach targets a certain type of context, which can be char-
acterised by the following aspects:

o Application type: the modelled software engineering projects should be
related to form-based data intensive applications; this is typically the
case for business applications that need to frequently encode, share and
access specific data;

e Target companies: the expected enterprises should be small to medium
sized, such as a self-employed entrepreneur or a local chain of stores;

4.3. Founding principles 63

e FEnd-users profile: the participating end-users should be at least familiar
with form-based human-computer interactions, typically through office
suites or form-based websites. Data modelling experience is not required,
so that a regular white-collar or secretary would be an archetype of the
expected kind of end-user. Still, the approach should also be accessible for
to other types of users, such as database engineers, analysts or developers.

4.3 Founding principles

In order to formalise this approach, we need to take in account several speci-
ficities, among which:
e a high level of interaction with the end-users;
e the possibility to involve different levels of participants, ranging from
laymen to experts, through a modular process;
e the need for a tool support accessible to end-users and useful to the
analysts;

e the necessity to tailor existing techniques.

We indeed want to provide end-users with adequate tools to draw and spec-
ify by themselves the interfaces describing the underlying key concepts of their
application domain, without having to worry about any application logic. Pro-
vided a little training and as previously explained, involving end-users in such
processes may have a very positive impact. This is especially true in the Re-
quirements Engineering process, for which it is essential to avoid mismatches
between the actual needs of end-users and the way they are formalised.

By allowing end-users to build themselves a “light” prototype of the future
application (in terms of command screens and information exchanges), we avoid
the development of a “heavy” prototype, which is obviously an expensive task
(it includes the development of a limited but operational application, whose
components cannot usually be reused in the implementation of the final system)
and reduces the costly presence of computer designers during the specification
phase. In this context, the computer analysts rather appear as guides, whose
roles are oriented towards the validation of requirements and the generation of
complex code.

These principles are at the foundation of broader approaches, such as the
ReQuest framework | ,], which provides a complete methodol-
ogy and a set of tools to deal with the analysis, development and maintenance
of web-based data-intensive applications. Regarding data modelling, that ap-
proach consists of four main steps: (a) inviting the end-users to draw the
interfaces of the future application, (b) extracting of data structures from each

64 Chapter 4. Proposal

interface fragment into a logical model, (c¢) analysing the logical models to iden-
tify and resolve redundancies, (d) integrating and conceptualising the logical
models. During the whole process, traceability is ensured, so that the con-
ceptual structure corresponding to an interface component can be retrieved
and conversely. The ReQuest framework also deals with dynamic aspects of
the future application (such as task analysis, behaviour of the application, ...),
while providing generators for several components of the future application

(database, framework skeleton, ...), as illustrated in Fig.4.2.

User Requirements '
Logical 2
Userinterface Faeeeeeessssssesrcl Scenarios &
Model g
S
3
v
Conceptual Level
Conceptual Normallized
Model Scenarios
Legacy
Conceptual
Model
% .
% 7 "o
. 7 7
Logical Leve[,' » Global v
£ Object Model
tsgf’c‘/‘ Relational 7 5 | A
ogica Model 4 Statecharts ooy
Model
Local Local
A <L Object Model A Object Model
-
e - ;
- P4 X K4
Physital Level ,# e ,
/
» "' X4 Application
DAC Mapping "/ Server Tools
—1_Object /Rel “/
Transfert e
New Objects o
DB % v
%
ot v
o 5 l—>| MVC
Services
. Data Access [¢—*| Controllers
‘/ Object Mediator 2
e Y S [M P =
u DA ’
- = Wrapper / Transfert I I * g
l«—|— p 3
Objects
Legacy Transfert > G hical g
DB Objects Views —> raphica g
Composer 2
o
A
1

Database development

J
Figure 4.2: Overview of the ReQuest approach.

4.4 Overview of the approach

In the alternative RAINBOW approach, we want to keep the same overall
philosophy while focusing on the specification of static data requirements as
part of a greater Requirements Engineering process. The specificities of this
approach lead us to specialise the techniques presented in Part | and integrate

4.4. Overview of the approach 65

R =

Fierarchised
User-drawn and unified
form-based CENBCENE] pre-integrated -
schemas
interfaces schema__ dta
— L _— — L ////

samples
_—

1 }RA}NBOW

AT — T — T

: validated
database integrated constraints and
queries schema dependencies
prototype i —

Figure 4.3: Overview of the RAINBOW approach.

them into a semi-automatic seven-step process (see Fig. 4.3) that does not aim
to provide a ready-to-use application, but a set of specification documents and
tools, in order to support the development of future applications and overcome
the limitations synthesized in Part I:

1.

Represent: the end-users are invited to draw and specify a set of form-
based interfaces to perform usual tasks of their application domain;

. Adapt: the forms are “translated” into data models, which basically con-

sists in extracting a data model from each interface using mapping rules;
Investigate: the data models are cross-analysed to highlight and arbitrate
semantic and structural similarities and produce a pre-integrated schema;
Nurture: using the interfaces that they drew, the end-users are invited to
provide data examples that are analysed to infer and arbitrate possible
constraints and dependencies;

Bind: the pre-integrated schema is completed and refined into a non
redundant integrated conceptual schema;

Objectify: from the integrated conceptual schema, the artefacts of a pro-
totypical data manager application are generated;

Wander: finally, the end-users are invited to play with the prototype in
order to refine and ultimately validate the integrated conceptual schema.

In this context, the development of an appropriate tool support is therefore
a crucial and integral part of the approach. Besides, as one may notice, these
seven steps address the various challenges regarding Database forward engi-
neering, Database reverse engineering and Prototyping, which were presented
in Part . Indeed:

66

Chapter 4. Proposal

Chapter 5 addresses the expression of requirements through user-drawn
form-based interfaces (Represent).

Chapter 6 explains how to translate these interfaces into data models
(Adapt).

Chapter 7 deals with the analysis of these data models to clarify termi-
nological and structural ambiguities before performing a pre-integration
of the models (Investigate).

Chapter & engages in the elicitation of additional constraints and depen-
dencies within the pre-integrated model (Nurture).

Chapter 9 addresses the final schema integration and refinement of the
pre-integrated data model (Bind).

Chapter presents the generation, integration and testing of applica-
tive components based on the integrated data models, for the purpose of
ultimately validating the elicited requirements (Objectify and Wander).

Subsequently, Chapter 11 discusses the dedicated tool support. In this doc-

toral research, we mainly focus on the five first steps of the approach, since the

generation of the components is relatively straightforward and the manipula-
tion of a reactive prototype mainly adds another level of validation.

Chapter 5

REPRESENT

Expressing concepts through form-based interfaces

In this chapter, we address the expression of requirements through form-based
interfaces by end-users. Firstly, we recall the concerns regarding the existing
UIDLs and how they lead us to define our own simplified form model. We then
detail this simplified form model and how to use it in order to specify a set of
form-based interfaces.

5.1 Concerns

The main concern about existing UIDLs comes from the structure of the lan-
guage itself. Indeed, since they must express complex interfaces, layouts and
behaviours, their XML structure becomes complex and difficult to read, and
furthermore, the end-users may be overwhelmed by this superabundance of
available widgets and compositions.

In the RAINBOW approach, we really want to focus on simple interface
widgets that can allow end-users to simply express concepts, while casting
away the technical aspects of layout. By defining a simple XML language to
express the structure of our interfaces, the latter can be rendered later on in a
more stylish way using templates, style sheets, eXtensible Stylesheet Language
Transformations (XSLT) transformers and so on.

This should therefore help the analysts to draw the attention of end-users to
the semantics of the used vocabulary (ambiguous terms, synonyms, recurring
structures, ...) in order to build a clean and clear set of interfaces.

67

68 Chapter 5. Represent

5.2 RAINBOW'’s Simplified Form Model

For this purpose, we propose the RAINBOW's Simplified Form Model (RSFM),
based on the most usual form widgets, which can intuitively be mapped to the
GER model. This model is intended to be transparently used by the end-
users to express concepts, and includes information for designers and CASE
developers that would like to instantiate or extend it. The RSFM foremost lays
the foundation for an exploratory type of prototyping, though its definition also
provides possible evolutionary perspectives.

To build the interface corresponding to each concept, we suggest to use a
limited set of primitive widgets, which are simple but usual high-level form
widgets through which any other widget can be expressed. They are classified
as follows:

e containers: forms, fieldsets and tables;

e simple widgets: inputs, selections and buttons.

Consequently, the RFSM could be seen as a model halfway between UsiXML’s
Abstract User Interface (AUI) and Concrete User Interface (CUI) models
[|. Indeed, the RFSM actually defines a set of abstract containers
and individual components having direct concrete widgets counterparts, which
is usually not the case for UIDLs.

All these widgets may have specific properties, but they share the following
properties:

e a unique and mandatory identifier;

e a mandatory label, which is the visible name of the widget. It may only

be composed of letters, white spaces, dashes (’-’) and numbers;

e an optional term, which is the semantic name of the widget, i.e. the non
plural concept conveyed by the widget. If null, the term and the label
are considered to be equivalent, but when analysing and unifying the
terminology of the labels, it may be useful to differentiate them (e.g. the
label of a table may be “Products”, but its term would be “Product”).
The term may only be composed of letters, white spaces, dashes (’-’) and
numbers;

e a qualifier, which is an optional additional piece of labelling used to pre-
vent two widgets to have the exact same name when they have the same
parent (e.g. in a fieldset, we may have two inputs labelled “Address”,
but respectively qualified as “Primary” and “Secondary”). The qualifier
may only be composed of letters, white spaces, dashes (*-’) and num-
bers. If it is not empty, the visible name of the widget will be “Label
(qualifier)”;

5.2. RAINBOW's Simplified Form Model 69

e an optional description, which can hold any relevant description, expla-
nation or additional information regarding this element, its behaviour
and/or the concept it conveys.

Besides, their layout is constrained, as will be exposed for each of them.
In order to illustrate the elements and their properties, Fig. 5.1 provides an
example of a simple form intended to gather information on a person.

FERGON [

Mational registry number 3

First name *
Last name *

Gender Miss Mz Mr

Date of birth 01/01/1900 -
Place of birth

Sodial security number 3
Contact

Address (primary)

Address (secondary)

Telephone

Fax

Caretaker

Mational registry number =
First name *
Last name *
Family ties

Mon family ties

Diependants

National registry number | First name Last name

[asd |[e || Dok || Resm |

Figure 5.1: A simple form gathering information on a person.

For a given software engineering project using the RAINBOW approach, a
set of forms containing other widgets will therefore be built according to the
RSEFM. A given form F' will contain a set of widgets that can be filled with any
content that does not contradict the various properties defined for the form and

70 Chapter 5. Represent

its widgets. Each of these unique combinations of filling is called an instance
of the form F.

Forms

A form is a top level container representing the concept of window (Fig. 5.2).
It may contain any of the other elements and has the following properties:

e a mandatory identifier;
e a mandatory label;

e an optional term;

e an optional qualifier;

e an optional description.

Figure 5.2: A form widget.

Besides, additional information may be provided regarding the content of
the elements the form contains when it is accepted:
e the unique constraints specify the different (sets of) mandatory widgets
whose content form an identifier for the all the possible instances of the
given form. Each identifier may be:

— primary, which means that this set of widgets will be used as the
main and preferred identifier for the concept conveyed by the form.
For instance, the input labelled National Registry Number could
be a primary identifier for the form Person;

— secondary, which means that this set of widgets should not be re-
garded as the main or preferred way to identify the instances of the
given form. For instance, the input labelled Social Security Num-
ber could be a secondary identifier for the same Person form, but
would be less interesting than the National Registry Number;

5.2. RAINBOW's Simplified Form Model 71

e the existence constraints specify which restrictions should be imposed to
the instances of (sets of) optional widgets of the form. These restrictions
can be:

— coexistence, which implies that all the widgets must be either empty

Fieldsets

or filled together. For instance, the inputs labelled Date of birth
and Place of birth could be specified as coexistent;

at-most-one, which implies that there can be, at most, only one of
the widgets that is filled. For instance, one could require a Person
to fill exclusively the fieldset Caretaker or the table Dependants or
none of them.;

at-least-one, which implies that at least one of the widgets should
not be empty. For instance, in the fieldset Contact, one could re-
quire to fill at least one widget among “Address (primary)”, “Address
(secondary)”, Telephone and Fax;

ezactly-one, which implies that there must be one and only one
of the widgets that is not be empty. For instance, in the fieldset
Caretaker, one could require to specify either the Family ties or
the Non family ties.

A fieldset is a container used to group any other elements except forms (Fig. 5.3),
like Contact and Caretaker in Fig.

Fieldset

Figure 5.3: A fieldset widget.

A fieldset has the following properties:

e a mandatory identifier;

e a mandatory label;

e an optional term;

e an optional qualifier;

e an optional description;

e a mandatory cardinality, which defines if the widget if optional or manda-
tory. A mandatory fieldset requires to have at least one of its children

72

Chapter 5. Represent

widgets that is not empty. For instance, if the fieldset Contact was
mandatory, it would require at least one of the widgets among Address
(primary), Address (secondary), Telephone and Fax to be filled;

a mandatory distinctiveness, which defines if a given combination of chil-
dren values must correspond to one and only one instance of the parent
widget (true) or not (false). For instance, the fieldset Contact is not dis-
tinctive, because a given combination of Address (primary), Address
(secondary), Telephone and Fax may correspond to several different
Persons.

optional unique constraints, as defined for the form widget;
optional ezistence constraints, as defined for the form widget;

an optional prerequisite constraint, which may specify, if the fieldset is
optional, the identifiers of other widgets owned by the parent form. The
specified widgets must be filled before the given widget can also be filled.

Tables

A table is a container used to structure elements sharing the same characteris-
tics (Fig. 5.4), like Dependants in Fig. 5.1. It has the following properties:

a mandatory identifier;

a mandatory label;

an optional term;

an optional qualifier;

an optional description;

a mandatory cardinality, as defined for the fieldset widget;

a mandatory distinctiveness, which defines if a given combination of chil-
dren values for a given row must correspond to one and only one instance
of the parent widget (true) or not (false);

optional unique constraints, which specifies the different (sets of) manda-
tory widgets whose content form an identifier for the all the possible
instances of rows for the given table, as defined for the form widget;
optional eristence constraints, which specifies which restrictions should
be imposed to the instances of (sets of) optional widgets of rows for the
given table, as defined for the form widget;

an optional prerequisite constraint, as defined for the fieldset widget.

Among the widgets, the table is clearly the most complex one. Its columns

can only host simple widgets, i.e. inputs, selections and buttons. In addition,

5.2. RAINBOW's Simplified Form Model 73

it is bundled with four buttons to add, edit, delete and reset the entries of
the table. When adding or editing an entry, a form is automatically generated
using the same graphical chart as the rest of widgets (Fig. 5.5). The motivation
is to keep the table as a way to handle multiple occurrence of simple data
structures, or as a “view” on more complex data structures that would require
drawing additional forms to specify all their details.

—Tahle

Column 1 Column 2 Column 3

| mdd || Ede || Delee || Reser |

Figure 5.4: A table widget.

21

Colurnn 1 | |

Column 2

Column 3

(@[= |[X==

Figure 5.5: A simple form gathering information on a person.

Inputs

An input is a widget designed to receive simple textual input (Fig. 5.6).

Inpuk *

Figure 5.6: A mandatory input widget.

An input has the following properties:
e a mandatory identifier;
e a mandatory label;

e an optional term;

74

Chapter 5. Represent

an optional qualifier;
an optional description;
a mandatory cardinality, as defined for the fieldset widget;

a mandatory wvalue type, which indicates the expected type of the field.
The value types are text, integer, real, boolean and date. For in-
stance, the First Name would be a text, the Social Security Number
would be an integer and the Date of birth would be a date. Setting
the value type will restrict accordingly the characters that can be typed
into the field;

an optional wvalue size, which indicates the expected size of the field, if
relevant;

an optional formula, which explains how the content of this widget should
automatically be computed according to other variables. For instance,
an input labelled Age could be automatically computed from another an
input labelled Date of birth;

an optional prerequisite constraint.

Selections

A selection is a widget designed to let the user choose zero, one or several
values among a non empty set of predefined values (Fig. 5.7). This field can
correspond to various combinations of widgets in GUIs, such as a group of
radio buttons or checkboxes, a list of a combobox. If needed, users should be
able to provide additional values to the predefined ones. It has the following

properties:

a mandatory identifier;
a mandatory label;

an optional term;

an optional qualifier;
an optional description;

a mandatory cardinality, which defines if the minimum and maximum of
items that may be selected. We restrict the possible cardinalities to the
most common one, i.e. at most one, exactly one, at least one, zero to
many. This cardinality must of course be consistent with the available
number of selectable values.

a mandatory editability, that specifies if the users can provide additional
values to the predefined ones (true) or not (false);

5.2. RAINBOW's Simplified Form Model 75

a mandatory value type, which indicates the expected type of the field
when the selection is editable. The value types are text, integer, real,
boolean and date;

e an optional value size, which indicates the expected size of the field, if
the selection is editable;

an optional formula;

an optional prerequisite constraint.

Selection (radiobuttonsy (' Optionl Cpkionz Cphion3

Selection (checkboxes) Optionl Option2 Option3

Optionz -~
Selection (list) Cption3

Option

Figure 5.7: Different representations of the selection widget.

The selectable values are known as options, and have the following proper-
ties:

e a mandatory identifier;

e a mandatory label;

e an optional term;

e an optional qualifier;

e an optional description;

To simplify the use of the widget, we chose to make it automatically adapt
its rendering according to the number of available options and the minimal and
maximal cardinalities:

e a set of radio buttons, for 3 options or less, and a cardinality of at most

one or exactly one;

e a set of checkboxes, for 3 options or less, and a cardinality of at least one
or zero to many;

e a list for all other cases.

Buttons

A button is a widget that allows to specify a set of actions that must be
triggered when the widget is pressed (Fig. 5.8).
A button has the following properties:

e a mandatory identifier;

e a mandatory label;

76 Chapter 5. Represent

Cilick fo = Button

Figure 5.8: An button widget.

e an optional term;
e an optional qualifier;
e an optional description;

e an optional prerequisite constraint.

Each action attached to a given button must explain through a description
what happens when the button is pressed.

Getting and setting the properties of the widgets

For further processing by eventual analysts and developers, all the properties
expressed for the different types of widgets must be accessible in read and write
mode. For a given widget w, one can get and set a property using the following
functions;

e get<PropertyName>(w)

e set<PropertyName>(w, value)

For instance, we can get the label of a table ¢t using getLabel(t), and set it
to “Dependants” using setLabel(t,“Contact”).

We call Fg¢ the set of all the possible functions available for the different
types of widgets. A function f € Fg¢ should return f(w) =null if it is not
defined for the type of widget w.

Tree structure

Similarly, analysts and developers can take advantage of the inherent tree-like
structure of the RSFM, which enables us to the direct parent and children of
each widget, as well as their ancestors and descendants. For a given widget w,
they are accessible using:

e getDirectParent(w), which returns null if w is a form and the parent
widget otherwise;

e getDirectChildren(w), which returns () if w is a simple widget (i.e. an
input, a selection or a button) or the set of direct children if w is a
container (i.e. an form, a fieldset or a table).

Fig illustrates the tree-like structure of the Person form shown in

Fig.

5.3. Managing the process 7

Person

National
registry First name
number Last name
Gender

Date of birth

Place of birth

Social
security
rumber Contact
Caretaker
Address Dependants
(primary) Address
(secondary)
Telephone Fax e
First name
National
registry
National number

registry First name
number Last name
Family ties

Nen family ties

Figure 5.9: The tree-like structure of the Person form shown in Fig.

5.3 Managing the process

During the Represent step, the end-users are invited to draw and specify a set
of form-based interfaces to perform usual tasks of their application domain. In
this section, we present a series of recommendations to efficiently prepare and
execute this process.

5.3.1 Preparation guidelines for the analyst

The first step in the process is twofold. On the one hand, the participants must
get together and discuss the objectives and organisation of their project. On
the other hand, the analysts need to understand the application domain, and
the subject of the software engineering for which the RAINBOW approach will
be used. Since the approach is not intended to replace any existing approach,
but rather complement them, traditional elicitation techniques can be used for
this purpose.

Meeting and choosing the participants

From the start, the analysts therefore need to meet with as many stakeholders
as possible, and carefully negotiate the choice of user participants (as explained
in Chapter 3.7), since it is not systematically possible for all those affected by

78 Chapter 5. Represent

the design effort to fully participate in the process. Preferably, one will choose
among experienced volunteer users.

Planning the project

Once the participant end-users are selected, the planning for the execution
of the RAINBOW approach should be defined. This planning may evidently
evolve later on, but an overall estimation of the duration of the tasks should
be done, and the appointments should be set for the training sessions.

Training the end-users

The last step before starting the drawing is to train the participant end-users.
This involves explaining the overall philosophy of the approach and familiaris-
ing them with the available widgets, their specification and the tool-support
that they will use to draw relevant form-based interfaces.

Getting a preliminary insight of the application domain

In parallel, using interviews, the analysts should be able to draw a first out-
line of the project and have a basic understanding of the subject, its main
objectives and possible challenges and conflicts. Any existing documentation
on the application domain and its process, as well as possible paper forms and
existing applications should be studied and made available for further refer-
ence. Similarly, listing the expected tasks the future system should support,
and defining their associated use cases |], is helpful to direct the
end-users during their drawing.

5.3.2 Execution guidelines and recommendations

Once the preparation step is over, the drawing step may begin. The end-users
are invited to draw form-based interfaces to describe the key concepts of their
application domain and enabling them too perform simple and usual tasks,
such as a window to introduce a new registered customer into an hypothetical
system. They must provide details on the concepts through the previously
defined properties of the widgets. Based on the preliminary analysis led during
the preparation step, the analysts can advantageously guide the end-users by
precisely suggesting them key concepts and tasks, and assist them to use the
RFSM in their drawing work.

Let us keep in mind that the objective here is not to lead the end-users to
draw the interfaces of a future application, but to express requirements through

5.3.3. Assisting the end-users through the tool support 79

a medium that is familiar to them. To produce a set of form-based interfaces
T = {inter facey, ..., inter face, } agreeing with the RAINBOW approach, we
recommend to respect the following recommendations:

e Respect the structure of the RSFM;

e Whenever possible, provide the maximum information for each interface
element, even if the latter is optional;

e Regarding the labelling the interface elements, in order to ensure expres-
siveness (and to ease the Investigation phase):

— one should use a structured concatenation of words, numbers and
separators (such as white spaces, commas, ...) rather than just any
series of characters;

— abbreviations and acronyms should be avoided;

— labels should be wisely and consistently chosen, typically to limit
the risks of synonymy and polysemy;

— two elements at the root of the same container (form, fieldset or
table) should not have the exactly same label: if necessary, use a
qualifier to differentiate the elements.

In Chapter 7, we will introduce mechanisms to particularly help unifying
the terminology of the widgets from the start, during this drawing phase.

5.3.3 Assisting the end-users through the tool support

The drawing phase should be performed using a dedicated drawing tool. For
this purpose, a proof-of-concept tool-support will be presented in Chapter
Besides, we already mentioned that the analyst should assist the end-users
throughout this representation phase, in order to limit the risk of ambiguities
and inconsistencies.

5.4 Output

The output of the Represent phase is therefore a set of form-based interfaces
T = {inter facey, ..., inter face, } using elements of the RSFM, and representing
various concepts that need to be analysed. We call £z the set of all the widgets
used in 7.

80 Chapter 5. Represent

5.5 A running example

Let us consider a simple running example to illustrate the process: the context
is the development of a tailored IT solution to manage a small company that
offers Services and sales Products, including Special goods, through differ-
ent Shops. They wish to store information on their Providers and Customers,
including the Orders that they submitted. Fig. 5.10 illustrates forms that the
end-users might draw for this purpose. For instance, for each customer, per-
sonal information including his main and alternative addresses are stored, as
well as the list of orders that he issued. Each of these orders mention informa-
tion on the context of its creation, and list the associated list of products, and
so on. For the sake of further discussion, we consider that the forms do not
mention any unique, existence or prerequisite constraint.

= | CUSTOMER x = | ORDER x = | PROYIDER x
Customer number & Mumber i Mame [
First name & Date l 0140141300 9 ‘ Yat number
Last name & First name * Street
Title Mrs Miss Mr Last name #* Zip code
—Address e City
Street Products Telephone
Number
Code Quantity Fax
Zip code
City
Telephone
—Address (alternative)
o | A || Ed Delete || Reser
Number
Zip code PRODUCT
Cit:
i Code &
[Orders Description
*
Number = Date Brand &b
Description
Price.
Hourly rate
Provider {primary) [
Supplier (secondary)
Add Edit || Delete || Resmt

~ | SPECIAL GOOD Name e

Code fod

Description

Price

Conditions

Telephone

Figure 5.10: Possible user-drawn form-based interfaces for the management of a
small company that offers services and sales products.

Chapter 6

ADAPT

Extracting data models from form-based interfaces

In this chapter, we address the automatic twofold translation of the previously
drawn form-based interfaces into their corresponding logical data model that
expresses its underlying data structure using the GER model, which paves
the way to using the transformational power of conceptual modelling later
on. For this purpose, we introduce the intuitive mapping rules that we use,
then formalise them into two consecutive algorithms to first perform a raw
transformation, then a refined transformation.

6.1 Intuitive mapping between the RSFM and the GER model

As explored in | ,] or [)], it is
possible to translate a form based-interface into a logical user interface model
that expresses its underlying data structure in an abstract way. We choose
to use the GER model, which was presented in Section and is a wide-
spectrum variant of the popular Entity-relationship model that encompasses
logical and conceptual structures | ,]. We can intuitively present
the mapping rules that we want to define as follows, and illustrate them for a
simple form in Fig.

e we create one schema per form, then, within this schema:

e cach form is mapped to an entity type;

e each fieldset is mapped to a single-valued compound attribute;

e cach table is mapped to a multi-valued compound attribute;

81

82 Chapter 6. Adapt

e cach input is mapped to a single-valued simple attribute;
e each selection is mapped to a simple attribute with a predefined domain
of values;

e cach button is mapped to an procedural unit.

= (I)
Name *
Additional info
Address
Level Mational Regional Casual * Club
Indoor - Nam_e_ .
Installations | Qutdoor Additional info[0-1]
Showers M Address[0-1]
<> Level
Members Installations[0-N]
First name Last name Members[0-N]
First name[0-1]
Last name[0-1]

[add || Edt || Delee |[Resm |

Figure 6.1: Illustration of the intuitive mapping rules for a simple form.

The resulting raw schemas contains only monolithic entity types, with pos-
sibly several levels of compound attributes. However, we would like to work
with refined schemas containing “flat” entity types (i.e. entity types having only
simple attributes), in order to ease the handling of the next steps of the ap-
proach. To obtain these simple “refined” entity types, the idea is to recursively
transform the compound attributes into entity types. Let us now formalise
both the raw and refined transformation process.

6.2 Raw transformation

The intuitive raw mapping rules of the previous section can be formalised as
follows. Given a set of form-based interfaces Z = {inter facey, ..., inter face, },
using a set £z of interface elements, we create a corresponding set of schemas
S = {schemay, ..., schema, } containing the data objects &s.

To achieve this, Algorithm 6.1 creates a schema; for each inter face;, then
creates an entityType; within this schema. Then, it uses Algorithm 6.2 to cre-
ate its structure by creating the logical counterpart of each interface element €
&7 into its logical parentdataobject.

6.2. Raw transformation 83

Algorithm 6.1 Adapt : extract the data model of each interface contained in

the set 7

Require: Z = {inter facex, ..., inter facen} An >0
Ensure: S = {schemax, ..., scheman} A Vi € [1,n] : JentityType; € schema;

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:
26:
27:

28:
29:
30:
31:
32:
33:
34:

35:

procedure REPRESENT(Z)
S+ 10
for all interface; € I do

schema; < createSchema(S)
id; < getld(inter face;)
label; <+ getLabel(inter face;)
term; < getTerm(inter face;)
if term # null then
term < label
end if
quali fier; < getQualifier(inter face;)
description; < getDescription(inter face;)
name; < label;
if qualifier; # null then
name; < name; +' ('+qualifier;+")’
end if
entityType; < createEntity Type(schema;, name;)
directChildren; < getDirectChildren(inter face;)
for all widget; € directChildren; do
representChild (widget;, entityType;) ee Algorithm on page
end for

uniqueconstraints; < getUniqueConstraints(inter face;)

for all uniqueconstraintij € uniqueconstraints; do
uniquetype;; < getUm'queType(uniqueconstraintij)
uniqueids;; <+ getUniquelds(uniqueconstraint;;)
addUniqueConstraint (entityT ype;, uniquetype; ; , uniqueids;,)

end for

existenceconstraints; < getExistenceConstraints(interface,')

for all existenceconstraint;; € I do
existencetype;, < get ExistenceType(existenceconstraint;;)
existenceids;; < getExistencelds(existenceconstraint;;)
addExistenceConstraint (entityType;, existencetype;, , existenceids;,)

end for

storeMetaProperties(entityType;, id;, label;, terms;, qualifier;,

description;)
end for

36: end procedure

84 Chapter 6. Adapt

Algorithm 6.2 AdaptChildInto : extract the data object corresponding to a
given widget into the given parent data object (1/3)
Require: widget # OA widget € Ez A parentdataobject # DA parentdataobject € Es
A getType(parentdataobject) € {ENTITYTYPE, COMPOUNDATTRIBUTE}
Ensure: dataobject #)
A getParent(dataobject) = parentdataobject

1: procedure REPRESENTCHILD(widget, parentdataobject)
2: id < getld(widget)

3 label + getLabel(widget)

4: term < getTerm(widget)

5: if term # null then

6: term < label

7 end if

8 qualifier <+ getQualifier(widget)

9: description < getDescription(widget)

10: cardinality + getCardinality (widget)

11: name < label
12: if qualifier # null then
13: name < name +' ('+qualifier+")’

14: end if
15: if widgetType = FIELDSET V widgetType = TABLE then

16: if cardinality = optional then

17: minCard < 0

18: else

19: minCard < 1

20: end if

21: if widgetType = FIELDSET then

22: mazCard < 1

23: else

24: mazxCard < N

25: end if

26: dataobject + createCompoundAttribute(parentdataobject, name,
minCard, mazxCard)

27: directChildren < getDirectChildren(widget)

28: for all widget; € directChildren do

29: representChild (widget;, dataobject)

30: end for

31: distinctiveness < getDistinctiveness(widget)

32: uniqueconstraints < getUniqueConstraints(widget)

33: for all uniqueconstraint; € uniqueconstraints do

34: uniquetype; < getUniqueType(uniqueconstraint;)

35: uniqueids; < getUniquelds(uniqueconstraint;)

36: addUniqueConstraint(dataobject, uniquetype;, uniqueids;)

37: end for

6.2. Raw transformation 85

Algorithm 6.3 AdaptChildInto (2/3)

38:
39:
40:
41:
42:
43:
44:
45:

46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:

72:
73:
74:
75:

existenceconstraints < getExistenceConstraints(widget)
for all existenceconstraint; € existenceconstraints do
existencetype; < get ExistenceType(existenceconstraint;)
existenceids; < get Existencelds(existenceconstraint;)
addExistenceConstraint(dataobject, existencetype;, existenceids;)
end for
prerequisiteids < getPrerequisiteConstraint(widget)
storeMetaProperties(dataobject, id, label, term, qualifier, description,
distinctiveness, prerequisiteids)
else if widgetType = INPUT V widgetType = SELECT then
if widgetType = INPUT then
if cardinality = optional then
minCard < 0
else
minCard < 1
end if
maxCard < 1
else
if cardinality = at most one then
minCard < 0
mazCard < 1
else if cardinality = exactly one, then
minCard < 1
mazCard < 1
else if cardinality = at least one then
minCard < 0
mazxCard < N
else
minCard < 1
mazCard < N
end if
end if
valueType < getValueType(widget)
valueSize < getValueSize(widget)
dataobject < createSimpleAttribute(parentdataobject, name, minCard,
maxzCard, valueType, valueSize)
formula +getFormula(widget)
prerequisiteids < getPrerequisiteConstraint(widget)
if widgetType = INPUT then
storeMetaProperties(dataobject, id, label, term, qualifier,
description, formula, prerequisiteids)

86 Chapter 6. Adapt

Algorithm 6.4 AdaptChildInto (3/3)

76: else

e editability <getEditability (widget)

78: options <—getOptions(widget)

79: for all option € options do

80: value <getValue(option)

81: addValueConstraint(dataobject, value)

82: end for

83: storeMetaProperties(dataobject, id, label, term, qualifier,
description, editability, formula, prerequisiteids)

84: end if

85: else

86: proceduralunit <—createProceduralUnit(parentdataobject, name)

87: actionDescriptions < ()

88: actions <getActions(widget)

89: for all action € actions do

90: actionDescription <+ getDescription(action)

91: actionDescriptions < actionDescriptions U actionDescription

92: end for

93: storeMetaProperties(dataobject, id, label, term, qualifier, description,
actionDescriptions)

94: end if
95: end procedure

For this purpose, it uses the functions of Fg, as defined in Section 5.2. It
also stores several meta properties into the logical elements, in order not to
lose any semantic information and to ensure traceability.

When applied to the form-based interfaces of Fig. , we obtain the
schemas and entity types depicted in Fig. . As we can for instance see,
the form Customer is mapped to an entity with the same name, while the
input First name is mapped to an atomic attribute First name, the fieldset
Address is mapped to a compound attribute Address, and so on.

6.3 Refined transformation

At this point, each interface of Z is mapped to an entity type of one of the raw
schemas of §. Given the tree-like structure of the interfaces, the correspond-
ing entity types may contain compound attributes. However, in this doctoral
research, we want to work with a sub-model of the GER restricted to “flat”
entity types (i.e. entity types having only atomic attributes), binary relation-
ship types (i.e. relationship types having exactly two roles) and IS-A hierar-
chies. This restriction does not reduce the impact of the approach, since more

6.4. Managing the process and output

87

Customer Order Provider Product

Customer number Number Name Code

First name Date[0-1] Vat number[0-1] Description[0-1]

Last name First name Street[0-1] Brand[0-1]

Title[0-1] Last name Zip code[0-1] Price[0-1]

Address[0-1] Shop[0-1] City[0-1] Provider (primary)
Street[0-1] Products[0-N] Telephone[0-1] Supplier (secondary)[0-1]
Number[0-1] Code Fax[0-1]

Zip code[0-1] Quantity
City[0-1]
Telephone[0-1]

Address (altemative)[0-1] Shop
Street[0-1] Senvice Special good Name_
Number[0-1] Cod Code Location[0-1]
Zip code[0-1] D° " ion0.1 Description[0-1] Street[0-1]
City[0-1] o 'f”lo]] Price[0-1] Zip code[0-1]

Orders[0-N] [Hourly rate(0-11] | oo ditions[0-1] City[0-1]
Number Telephone[0-1]
Date[0-1]

Figure 6.2: Translation of the interfaces into raw entity types.

complex structures can be converted into the latter using semantic-preserving
transformations.

In order to “flatten” the entity types, we use Algorithm
extract each compound attribute from each individual entity type into another

to recursively

entity type, which is an equivalence preserving transformation. The original
compound attributes are therefore “replaced” by a role referencing the newly
created entity type using the metaproperty targetEntityType.

We call €p the set of entity types corresponding to a given form F. The
complete data structure extraction of Fig. therefore leads to the schemas

and entity types illustrated in Fig.

6.4 Managing the process and output

This automatic process requires no input from the end-users, and produces a
set of schemas & = {schemay, ..., schema,} based on Z = {inter facey, ...,
inter face,}. Given the nature of the process, there is a injection between
&7 and &g, so that any interface widget can be mapped to a unique logical
counterpart that is an entity type or a simple attribute, and conversely, any
entity type or simple attribute of the schemas can be mapped to a unique
widget.

88 Chapter 6. Adapt

Algorithm 6.5 Unfold : Adapt the schema by recursively transforming each
compound attributes

Require: entityType # 0
A entityT'ype € schema
Ensure: 7 e € schema : getType(e) = COMPOUNDATTRIBUTE

1: procedure UNFOLD(entityType)

2 for all element e; € entityType do

3 if getType(e;) = COMPOUNDATTRIBUTE then

4: minCardl < getMinimumCardinality(e;)

5: mazCardl + getMaximumCardinality(e;)

6 isDistinctive < getMetaProperty(e;,distinctiveness)
7 if thenisDistinctive = true

8 minCard2 < 1

9: mazCard2 + 1
10: else

11: minCard2 < 0

12: mazCard2 < N

13: end if

14: id; <+ getMetaProperty(e;, id)

15: label; <+ getMetaProperty(e;, label)

16: term; < getMetaProperty(e;, term)

17: qualifier; < getMetaProperty(e;, qualifier)

18: description; < getMetaProperty(e;, description)

19: name; < getName(e;)

20: entityType; <+ create EntityType(schema, name;)

21: storeMetaProperties(entityType;, 1id;, label;, term;, qualifier;,
description;)

22: removeAttribute(entityType, €;)

23: relType; < createRelationshipType(entityType, entityType;)

24: setCardinalities(relType;, minCardl, maxCardl, minCard2,
mazCard2)

25: role; <— getRole(entityType, relType;)

26: setMetaProperty(role;, entityType;, targetEntityType)

27: unfold(entityType;)

28: end if

29: end for
30: end procedure

31: procedure ADAPTSCHEMA (schema)
32: for all entityT'ype € schema do
33: unfold(entityType)

34: markAsRoot (entityType)

35: end for

36: end procedure

6.4. Managing the process and output

89

Customer Order Provider Product
Customer number Number Name Code
First name Date[0-1] Vat number{0-1] Description[0-1]
Last name First name Street[0-1] Brand[0-1]
Title[0-1] Last name Zip code[0-1] Price[0-1]
\ Shop[0-1] City[0-1] Provider (primary)
01 01 ON I Telephone[0-1] Supplier (secondary)[0-1]
O-N Fax[0-1] —
i Sho
oN 0‘4“ 1-1 oN Senvice Name :
Address Address (altemative)| | Orders Products SOde - Telephone{0-1]
escription[0-1] T
Street[0-1] Street[0-1] Number Code Hourly rate[0-1] 0-1
Number[0-1] Number{0-1] Date[0-1] Quantity
Zip code[0-1] Zip code[0-1] <>
City[0-1] City[0-1] Special good 0-‘N
Telephone[0-1] Code o Location
Description[0-1] Strest[0-1]
Price[0-1]

Conditions[0-1]

Zip code[0-1]
City[0-1]

Figure 6.3: Translation of the raw entity types into independent schemas.

Chapter 7

INVESTIGATE

Analysing semantic and structural redundancies to manage commonality

Human-computer interfaces offer several levels of communication. For instance,
Nielsen identifies seven layers, among which analysing the static appearance of
a set of interfaces notably involves the semantics (the meaning of the expected
interactions), syntax (the anticipated sequence of necessary actions to perform
a task), lexical (the interaction tokens, such as labels and icons) and alpha-
betic (the primitive information units, such as letters, digits and colours) layers
[,]. So many levels may obviously induce equivocal interfaces open
to interpretation.

In particular, cross-analysing the individual schemas obtained by adapt-
ing the user-drawn forms usually brings to light possible ambiguities as well
as redundant information contained in each interface. If these redundancies
can be automatically identified and manually validated, they can be resolved
afterwards in order to synthesize and refine an integrated conceptual schema.
Typically, whereas we can observe that the constructs used by a single user are
relatively (though not necessarily) consistent among the interfaces he draws,
when considering multiple users, we notice that typical variabilities, ambigui-
ties and redundancies may occur. These phenomena may concern the various
properties of the widgets, such as the labels, qualifiers, descriptions, minimal
cardinality, maximal cardinality, value type, value size, or domain of values.

In the scope of this doctoral research, we focus on the widgets labels to
track down semantic and structural ambiguities, but the definitions and strate-
gies that we propose could intuitively be extended to take in account other

91

92 Chapter 7. Investigate

properties. In this chapter, we therefore formalise the definition of semantic
and structural similarity based on the labels of the widgets, then explain how
to discover and present them for end-user arbitration and further processing.

7.1 Terminological ambiguities

As explained in Section , terminological ambiguities occur when elements
of the schema are semantically similar, i.e. their name appear to be ortho-
graphically and/or ontologically similar. In our running example, the labels
“Orders” and “Order” are orthographically similar, while the labels “Provider”
and “Supplier” are ontologically similar, as illustrated in Fig.

In this section, we therefore formalise these notions of semantic, ortho-
graphic and ontological similarities, then provide a strategy to discover such
similarities among the elements of the underlying schema of the forms before
presenting them to the end-users for validation.

7.1.1 Formalising the notions of similaritiy
Orthographic and ontological similarity for two strings

As explained in Section , String Metrics can be used to compare strings
according to their spelling. We can therefore define the orthographic similarity
of two strings as follows:

Definition 7.1. Given a String distance metric sdm and threshold ¢, we define
two strings [y and ly as orthographically similar with respect to sdm and ¢, iff
sdm(ll, lg) S t. |

Besides, we also explained that Ontologies can be useful to track down
similarities of meaning among a set of words. They offer many information on
the concepts and their relations within a given domain, but in our research we
focus mainly on the proximity of meaning. In particular, for a given ontology
O, we consider the synonyms function sp that associates a given string [to its
set of synonyms in O, if any. For any I’ € s (1), we naturally have | € sp(l).

Definition 7.2. Given an ontology O and a synonyms function so, we define
two strings [; and Iy as ontologically similar with respect to O and se, iff :
l; € So(lg) a

7.1.1. Formalising the notions of similaritiy 93

[~ | CUSTOMER x [~ | ORDER x
Customer number [Number &
First name g Date 01/01/1900 v
Last name . First name: *
Title Mrs Miss Mr Last name *
—Address
Shop
el Products
MNumber
Code Quantity
Zip code
City
Telephone
—Address (alkernative)
Stregt Add ‘ ‘ Edit Delete Reset
Mumber
Zip code
City PRODUCT
Orders Code s
Mumber Date Description
Brand
Price
Provider (primary) | @
Supplier {secondary) |
Add Edit Delete Reset

Figure 7.1: Highlighting of the terminological ambiguities for the labels “Orders” and
“Order” (which are orthographically similar), and the labels “Provider” and “Supplier”
(which are ontologically similar).

Semantic similarity for two word-based terms

Though interface widgets are associated with visible labels, we are truly inter-
ested in the terms hiding behind the labels, since they represent the semantic
concepts conveyed by the widgets. Besides, if we recall the mapping rules of
Chapter 6, we know that if no specific term has been used to describe a widget,
the label is used as the default term. Let us therefore focus on the seman-
tic similarity of the terms used in the set Z of form-based interfaces, and by
extension, their underlying set S of schemas.

Given the recommendations of the Represent phase (see Section), we
can reasonably assume that the terms (and labels) used by end-users in T
are not just arbitrary series of characters, but a systematic and structured
concatenation of words, numbers and separators (such as white spaces, commas,
...). This implies that two terms may not be orthographically or ontologically
similar as such, but that the words composing them could be.

Recall for instance the strings “Primary provider” and “Alternative sup-
plier” (see Section), that could be used as realistic terms in form-based

94 Chapter 7. Investigate

interfaces. They are not orthographically similar as such, and since they each
consist of the combination of an adjective and a noun, they can’t be found
as such in an ontology. This means that they won’t produce any synonyms,
and consequently, they can’t be be ontologically similar either. However, if we
consider the words composing them, we can find that “provider” and “supplier”
are synonyms, which should lead us to conclude that “Primary provider” and
“Alternative supplier” do seem semantically similar.

In order to improve the analysis of orthographic and ontological similarities
among the terms of Z, we therefore need to break these terms into words in
order to consider them too. For this purpose, we consider the function w which
returns the set of words contained by a given string, typically by using the space
character as a separator. For instance, we have w(“product”) = {“product”}
and w(“first name”) = {“first” “name”}.

Intuitively, we will therefore consider two terms t; and ¢, as semantically
similar if:

e t1 and ty are orthographically or ontologically similar as such, or

e {1 is orthographically or ontologically similar to at least one of the words

of tg, or

e {5 is orthographically or ontologically similar to at least one of the words

of tl

e at least one of the words of ¢; is orthographically or ontologically similar

to at least one of the words of ts.

In other words:

Definition 7.3. Given a string distance metric sdm and its associated thresh-
old ts4m, an ontology O and its synonyms function s, we define two terms

t1 and to as semantically similar with respect to sdm, tsgm, O and sp (noted
sdm,tsam,O0,s0

t, == 1t;), iff:
t1 and to are orthographically similar with respect to sdm and tsg,
V t1 and ty are ontologically similar with respect to O and s
V Jws, € w(ta) : t1 and way, are orthographically similar with respect to sdm
and tegm
V Jwsg, € w(tz) : t; and way, are ontologically similar with respect to O and sp
V 3wy, € w(ty) : to and wy, are orthographically similar with respect to sdm

and tsgm

7.1.1. Formalising the notions of similaritiy 95

V 3wy, € w(ty) : to and wy, are ontologically similar with respect to O and sp

V 3wy, € w(ty),ws, € w(ta) : wi, and we, are orthographically similar with
respect to sdm and tsqm,

V 3wy, € w(ty),ws, € w(ta) : wi, and we, are ontologically similar with respect

to O and sp

Semantic similarity for a set of word-based terms

The definition of semantic similarity for two terms leads in turn to the definition
of equivalence classes within a given set of terms .7, which we callsemantically
similar subsets of 7. In such a subset 7;, each term is close enough from at
least one of the other terms, while being far enough from any term of another
subset 7;. More formally:

Definition 7.4. Given a string distance metric sdm and its associated thresh-
old tsgm, an ontology O and its synonym function s, the set T; = {t;,, tip, ..., ti., }
C 7 ={t1,ta,...,tn} is a subset of semantically similar terms of 7, with re-
spect to sdm, tsgm, O and sp, iff:

sdm,tsam 0,80

(n:1 Vvtij€ﬂ73tik7étij€7; :tij<:>tik)
d Vs 777/707
AV ti, € To, Pty € T\T; g, Smtedm DG 4y

The set T that contains all the 7; forms a partition of .7, so that:
e Vit j:TiNT; =0
° U Ti=9
i
Consider for instance the set of terms 7 = {“First Name”, “Last Name”,
“Primary provider”, “Alternative supplier”, “Address” }. The subsets 77 =
{“First Name”, “Last Name” }, T = {“Primary provider”, “Alternative supplier”}

and T3 = { “Address” } are semantically similar subsets of .7 and form a par-
tition for it.

96 Chapter 7. Investigate

7.1.2 Discovering terminological ambiguities
Building a thesaurus

In order to identify the semantically similar subsets of all the terms used in
the set of schemas S obtained through the Adapt phase, we start by building
a thesaurus. A thesaurus holds the mappings between terms, labels, qualifiers
and identifiers within a set of schemas. More formally:

Definition 7.5. For a given set of schemas S = {schemay, ..., schema,}, a
thesaurus Ts contains mappings l,; and g.¢ so that:

o Is(term) = {(label;, {id;, }) | Vi,j 3 element; ;1 € schemay:

getld(element; ;) — =id;,
getTerm(element; ; i)=term

getLabel(element; ; 1) =label; }

o I, (term,label) = {id; | V i 3 element; ; € schema;:

getld(element, ;) =id;
getTerm(element; ;)=term

getLabel (element; ;) =label}

o qrs(term) = {(qualifier;, {id;;}) | Vi,j 3 element; j € schemay:

getld(element; ;i) =idy,

getTerm(element; ; i) =term

getQualifier(element; ; p)=qualifier;}

o ¢.s(term, qualifier) = {id; | ¥V i 3 element; ; € schema,:

getld(element; ;) =id;
getTerm(element; ;) =term

getQualifier(element; ;)=quali fier}

To build the thesaurus 75, we use the procedure buildThesaurus of Algo-
rithm on the set of schemas S obtained through the Adapt phase.

7.1.3. Submitting terminological ambiguities to end-users for arbitration 97

Algorithm 7.1 BuildThesaurus : Build the thesaurus of a given set of schemas

Require: § = {schemay, ..., schemayn} A Vi € [1,n] : JentityType; € schema;
Ensure: 7s is a thesaurus for S

1: procedure BUILDTHESAURUS(S, Ts)

2 reset(7s)

3: for all schema; € S do

4 for all entityType; ; € schema; do

5 addEntryToThesaurus(7s, entityType;,)

end for
end for
end procedure

Building the subsets of semantically similar terms

The thesaurus 75 holds the set .7 of terms used in the user-drawn interfaces,
which we want to partition into subsets of semantically similar terms. To build
T, the set of semantically similar subsets of .7, we apply Algorithm on
Ts, using the string distance metric sdm, the threshold t44,,, the ontology O
and the synonyms function se.

Applying this algorithm on the schemas of Fig. would typically yield the
following relevant (i.e. containing more than one term) semantically similar
subsets :

o 71 = {“Code”, “Zip code”}

e 75 = {“Customer”, “Customer number”, “Vat number”, “Number”}

e T3 = {“Date”, “Hourly rate”}

e T, = {“Name”, “First name”, “Last name”}

e 75 = {“Order”, “Orders”}

e 75 = {“Product”, “Products”}

e 77 = {“Provider (primary)”, “Supplier (secondary)”}

7.1.3 Submitting terminological ambiguities to end-users for arbi-
tration

Defining the subsets of semantically equivalent elements

Once the set T = {71, Tz, ...} has been built from 75, we can use the latter to
map any term ¢;; € 7; to its corresponding data elements, and furthermore,
to their interface widget counterparts. We can therefore visually point out the

98 Chapter 7. Investigate

Algorithm 7.2 AddEntryToThesaurus : Add an entry to a given thesaurus

Require: 0
Ensure: 7 contains the mappings I and ¢, for the new element and its descendants,
if any.

1: procedure ADDENTRYTOTHESAURUS(T, element)
2 id < getld(element)

3 label < getLabel(element)

4: term < getTerm(element)

5: quali fier < getQualifier(element)

6

7

8

9

A« - (term)
L < l-(term,label)

10: A M\{(label,)}
11: if : =0 then

12: v = {id}
13: else
14: L= 1U{id}

15: end if
16: A+ AU{(label,)}

17:

18: ASk> define: I, (term,label) — ¢
19: ASk> define: I, (term) — XA

20:

21: A g-(term)

22: L 4+ q-(term, qualifier)

23:

24: A M\ {(qualifier,.)}
25: if . =0 then

26: v = {id}
27: else
28: v=1U{id}

29: end if
30: A AU {(qualifier,.)}

31:

32: Ask> define: q,(term, qualifier) — ¢

33: ASk> define: g¢r(term) — lambda

34: if getType(element) € {ENTITYTYPE, COMPOUNDATTRIBUTE} then
35: children < get Attributes(element)

36: for all child; € children do

37: addEntryToThesaurus(7, child;)

38: end for

39: end if

40: end procedure

7.1.3. Submitting terminological ambiguities to end-users for arbitration 99

Algorithm 7.3 BuildSemanticallySimilarSubsets : Build the set T of seman-

tically similar subsets for a given thesaurus 7

Require: 7, sdm, tsim, O and so

Ensure: 7 contains the set of semantically similar subsets of 7 with respect to sdm,
tsam, O and s

1: procedure BUILDSEMANTICALLYSIMILARSUBSETS(T ,7,sdm, tsam, O, so)
2 T« {terms; | Vi € [0,n] : terms; € T}
3 T+ 0

4 for i =1 ton do

5: if 37, €T :t; €T then

6: Ti Tk

7 else

8 Ti {tl}

9: T« TU{T:}
10: end if
11: for j =i+ 1tondo
12: if 37, €T :t; €7, then
13: T+ T
14: else
15: T < {t;}
16: end if
17: T+ T\T:
18: T+ T\T;
19: if ¢; 220ladm0°0 - then
20: T+ TiUT;
21: T« T U{T:}
22: else
23: T« TU{T:}U{T;}
24: end if
25: end for

26: end for
27: end procedure

discovered similarities between concepts in the user-drawn interfaces, in order
to ask end-users to validate or reject them.

Indeed, each set of terms 7; € T2 has a corresponding set of logical elements
Es, C Es, which can be obtained using Algorithm 7.4. For our running example,
we can for instance highlight the elements associated with 77 as illustrated in
Fig. 7.2.
This task consists in deciding which semantic similarities are actually gen-
uine semantic equivalences, which we can define as follows.

100 Chapter 7. Investigate

Algorithm 7.4 GetSemanticallySimilarDataElements : Get the data elements
associated with a given a term contained in the given set of semantically similar
terms

Require: 0

Ensure: &s; contains the set of logical elements associated with a given set of terms

1: procedure GETSEMANTICALLY SIMILARDATAELEMENTS(7;, Es;)
2: Es; +{ei; € Es| getTerm(e;;) € T;}
3: end procedure

[l ORDER x
Number =
Date 01/01/1900 v Code
PRODUCT
First name = Description
Last name * Eode Hourly rate
Description
Shop a
Produc] Brand
)] SPECIAL GOOD X
Code — Quantity Rrice)
*
Provider (primary) Code
Supplier (secondary) Description
Price
Conditions
Add || Edt || Delete Reset
[~ | CUSTOMER x ™ | CUSTOMER x
Customer number i Customer number &
First name i First name &
Last name & Last name 5 o PROYIDER x
Title Mrs Miss Mr Title Mrs Miss Mr Name: [
~Address Address AT TEer
Street Street Street
Number Number ‘”17
Zip code
Zip code Zip code .
City
Cit: Cit:
! i Telephone
Telephone Telephone
Fax
Address (alternative) Address (alternative)
. . I)
Number wi5s Number "
Zip code Zip code Name
a . Location
it it
Y i Street wis
~Orders ~Orders -
Zip code
Number Date Number Date City
Telephone
Add || Edt || Delete Reset | Add Edit Delete Reset |

Figure 7.2: Illustration of the set s, of the semantically similar elements, which
are associated with T3 = {“Code”, “Zip code”} for the running example.

7.1.3. Submitting terminological ambiguities to end-users for arbitration 101

Definition 7.6. Two widgets w; and we (and by extension, their logical
counterpart elements e; and eq) are said to be semantically equivalent (noted
w1 = wy and e; = ey respectively) when it is agreed by the end-users and the
analysts that they represent the same concept. J

The validation therefore first consists in examining each 7; and its associated
Es, in order to define the subsets of semantically equivalent data elements.
More formally, we want to define 5:9 = {E:gil , 5‘/% , ...} SO that :

Vi,jok:Es, NEs, =0
Vi :U&% =&,
J
Vi g,k eip e, € Es, ey = e, (7.1)

The widgets associated with 73 = {“Code”, “Zip code”} in Fig. could
for instance be grouped into:

o s, ={e1,,e1,,¢€1,,¢1,} (corresponding to the widgets {w1,, w1,, w1y, w1, })

e &s,, = {e1,,€14,€1;, €1, } (corresponding to the widgets {w1,, w1, w1,, w1, })

This would illustrate that the widgets of s, represent a same concept
different from the one of the widgets of s,,. Coincidentally, the widgets of
&s,, and &s,, each bear the same terms, respectively “Code” and “Zip code”.
However, this is not necessarily always the case.

Consider for instance the subset 7 = {“Product”, “Products”} and its as-
sociated elements illustrated in Fig. . The arbitration could here lead to
a single subset s, = {eq,,¢€6,} of semantically equivalent elements bearing
different labels.

Defining unifying terms for semantically equivalent elements

Consequently, since each of these Séb may be associated to several non exclu-
J

sive terms, we want to unify the terminology of these semantically equivalent
subsets by define a new unique term for each of them, so that we can partition
Es into T = {(£;,&;)} so that :

Vij ot t; # ¢

Vij : & NE =0

e =és (7.2)

i

This distinctive term may be a new one or can be chosen among the terms
of 7g. A new qualifier can also be assigned individually to put the elements of

102 Chapter 7. Investigate

= ORDER x
Number i
w61 Date 01/01/1900 v
=} PRODUCT x
First name &
Code N
Last name: i
Description
Shop
w62
Brand Products -
ED Code Quantity
Provider {primary) &
Supplier (secondary)
‘ Add ‘ [Edit ‘ [Delete J { Reszet]

Figure 7.3: Illustration of the set £s; of the semantically similar elements, which
are associated with Tg = {“Product”, “Products”} for the running example.

a same 5:3 back into context. The labels may also be updated to reflect the
new terms,J but according to the circumstances (for instance, to indicate the
plurality), it might be preferable to keep the same label.
For our example, this could typically include unifying the terminology of
the widgets initially associated with the following terms:
e Order and Orders (75) into Order, while keeping the label of Orders
unchanged;

e Product and Products (7g) into Product, while keeping the label of
Products unchanged;

e Provider and Supplier (77) into Provider, while propagating the mod-
ification to the labels.

7.1.4 Processing the terminological decisions of the end-users

The final step of this update consists in updating the widgets, the schemas and
the mappings of thesaurus 75 based on the new terminology I' = {(t;, 5;)}

Each previously defined set 8:5 may involve logical elements of different
natures, typically entity types and simple attributes. Given two non necessarily
distinct entity types e; and eq, saying that a simple attribute ai, of e; is
semantically similar to e; implies that a;, is actually a reference to the entity
type es. This is typically the case for the term “Provider”, which is associated
with a form and two fieldsets, as illustrated in Fig.

We therefore need to update the form w; associated to e;, as well as its
underlying data model to acknowledge this information. This implies removing

7.1.4. Processing the terminological decisions of the end-users 103

the widget w;, associated with a;, from w;, replacing it with a container w'li
associated with a same term, then inserting wj, into wll after giving it a new
term, which ideally should be the term of one of the widgets of the form wy
associated to eg. This procedure can be formalised into Algorithm

Algorithm 7.5 TransformReferentialElement : Transform a referential ele-
ment into an entity type
Require: getType(e; = ATTRIBUTE)AgetType(e2 = ENTITYTYPE)
AJw1, w2 corresponding to e;, ez
Ensure: ()

1: procedure TRANSFORMREFERENTIALELEMENT(e1, €2, w1, w2)

2 w1, < getParent(w:)

3 removeChild (w1, , w1)

4: w; <—null

5. while w; = null V getType(w; ¢ [FIELDSET,TABLE]) do

6 ASk> define: (w/l)

7 setTerm(u)ll7 getTerm(ws))

8 setLabel(w;, getLabel(w2))

9: setQualiﬁer(wll, getQualifier(ws2))

10: end while

11: while Jw € getDirectChildren(wi,) : ((getTerm(w) = getTerm(wll) A
getQualifier(w) = getQualifier(w;)) V (getLabel(w) = getLabel(w/l) A
getQualifier(w) = getQualifier(w/l))) do

12: ASK> define: (q;)

13: setQualiﬁer(w;, qi)
14: end while
15: Ask> define: (tl, l1, q1)

16: setTerm(wi, t1)

17: setLabel(w1, l1)

18: setQualifier(w1, q1)
19: addChild(w},w1)
20: addChild(wy,,w))
21: UNFOLD(w1,,)

22: end procedure

In our case, this would imply replacing the inputs Provider (primary) and
Provider (secondary) of the form Product by two fieldsets, each containing
an input named Name.

The whole validation process can hence be described by Algorithm 7.6, and
as can be observed, it implies that all the semantically equivalent elements of the
schemas now bear the same term, and vice-versa. Moreover, logical elements

104 Chapter 7. Investigate

can now only be semantically equivalent to elements of the same nature (simple
attributes with simple attributes and entity types with entity types).

Fig. 7.4 illustrates the update of the forms, while Fig. 7.5 illustrates the
update of the schemas for our running example.

™ | CUSTOMER x - | ORDER x | PROVIDER x
Customer number i Order number i Name [
First name N Date |01/0141900 v ¥at number
Last name i First name * Street
Title Mrs Miss Mr Last name * Zip code
—Address ~Shop City
Street Shop name [Telephone
Street number Rl Ex
Zip code
D Code Quantity
Telephone
Shop name i
—#Address (alternative) —M————————— Location ——
Street Strest
e Add || Edt || Delete Reset .
Zip code City
City
™ | PRODUCT x Telephone
—Orders
Code [
Order number | Date . = SPECIAL GOOD
Description
Brand Code *
Price Description
Provider (primary) Price
Add Edt || Delete Reset ’7Name * Conditions
Provider {secondary)
’7Name &
Code o
Description
Haurly rate

Figure 7.4: The updated forms of the example after the validation of the semantic
redundancies.

7.1.5 Choosing appropriate String Metrics

The principles of our approach are generic and need to be instantiated using
appropriate Strings Metrics and Ontologies.

Among available String metrics, we choose to work around Jaro-Winkler’s
metrics [Winkler, 1990], which has proven to be a good fit for short strings.
Jaro-Winkler’s metrics uses a prefix scale p which gives more favourable ratings
to strings that match from the beginning for a set prefix length ¢. Given two
strings {1 and [z, their Jaro-Winkler’s similarity index dj,, , is calculated as

7.1.5. Choosing appropriate String Metrics 105

Algorithm 7.6 ValidateSemanticSimilarities : Validate the semantically sim-
ilar subsets of a given thesaurus

Require: 0
Ensure:

1: procedure VALIDATESEMANTICSIMILARITIES(7,sdm, tsqm, O, so)
2 BUILDTHESAURUS(S, T)

3: BUILDSEMANTICALLY SIMILARSUBSETS (7T, 7, sdm, tsam, O, s0)
4: for all 7, € T do

5: GETSEMANTICALLY SIMILARDATAELEMENTS(7;, Es;)

6 Ask> define: (5:5L)

7: en/d for
8: T 0
9: T+<20

100 forall &, €| J{€s,} do
J -

11: ti, + null
12: while t;, =mll V t;, € 7 do
13: ASK> define: (t;j)
14: end while
15: for alle;; €&s, do
k ij ,
16: setMetaproperty(eijk iy term)
17: setTerm(wi , t;j)
18: if relevant then ,
19: Ask> define: (;,)
20: setMetaproperty(eijk , l;j ,label)
21: setLabel(wi, , l;i)
22: end if
23: if necessary then ,
24: Ask> define: (g;;)
25: setMetaproperty(e; ik qgj ,qualifier)
26: setQualiﬁer(wijk_ , q;j)
27: end if ,
28: if getType(e;;, = ATTRIBUTE) A (Jei;, € Es, [getType(e;,)
J
ENTITYTYPE) then
29: TRANSFORMREFERENTIALELEMENT (€5, €i; , Wi, ,Wi;,)
30: end if
31: end for
32: T T U{ty}
33: F:FU{(tZJ,851])}
34: end for
35: BUILDTHESAURUS(S, T)

36: end procedure

106

Chapter 7. Investigate

Customer Order Provider
Customer number Order number| Name
First name Date[0-1] Vat number{0-1]
Last name First name Street[0-1]
Title[0-1] Last name Zp code[0-1]
w ; City[0-1]
o1 01 oN 01 ON Telephone[0-1]
Q Q <:> {} Fax[0-1]
O-N O-‘N 11 O-N 0-N
i
Address Address (altemative) Orders Shop | |Products Shop
Street[0-1] Street[0-1] Order number| [Shop name| | Code Shop name
Street number{0-1]| | Street number0-1] | |Date[0-1] Quantity | | Telephone[0-1]
Zip code[0-1] Zip code[0-1] - 01
City[0-1] City[0-1]
Telephone[0-1] <>
Product ON
Code Location
Description[0-1] Street[0-1]
Brand[0-1] ip code[0-1]
Price[0-1] City[0-1]
0-1 0-1
Hourly rate[0-1] Special good
Code
O-N oN Description[0-1]
Provider (primary)| |Provider (secondary) Price[0-1]
Name Name Conditions[0-1]

Figure 7.5: The updated schemas of the example after the validation of the semantic
redundancies.

follows:

djw(l1,12) = d;(l1,12) + (p(1 — d;(l1,12))) (7.3)
where:
e d;, , is the Jaro similarity index for strings I; and [3:
1 /mio mi2 m12—t12)
d;i(l1,ls) == =+ =+ : ’ 7.4
J(1 2) 3 (‘l1| |l2| M. ()
where:

— my 2 is the number of matching characters between /; and ly;
— t1,2 is the number of transpositions between [, and [5.

e /isthelength of common prefix at the start of the string up to a maximum
of 4 characters;

e p is a constant scaling factor for how much the score is adjusted upwards
for having common prefixes.
Winkler’s work is p = 0.1

The standard value for this constant in

7.1.5. Choosing appropriate String Metrics 107

Since Jaro-Winkler’s metrics is actually a similarity index ranging from 0
(different) to 1 (equal) and that we want to agree with Definition 7.1, we need
to adapt this metrics so that its smaller scores correspond to higher similarities.
For this purpose, we define the Jaro- Winkler’s inverted similarity index dj.;
for two strings [y and [y as follows:

Since the longest common prefix impacts the similarity index, we observe
that comparing reversed strings may yield better results in certain cases. For
instance, Table shows Jaro-Winkler’s inverted similarity index applied to
the strings “Name”, “First Name”, “Last Name”, “Family Name” and their re-
versed version. We can notably see that that “Name” and “Last Name” are much
closer (0.19) in their reversed versions that in their normal versions (0.55).

Label 1 Label 2 djwi Label 1 bis | Label 2 bis | djw:
Name Name 0 Eman Eman 0
Name First Name 1 Eman Eman tsrif 0.2
Name Last Name 0.55 Eman Eman tsal 0.19
Name Family Name | 0.44 Eman Eman ylimaf | 0.21

First Name Last Name 0.17 Eman tsrif Eman tsal 0.17
First Name | Family Name | 0.2 Eman tsrif | Eman ylimaf | 0.22
Last Name | Family Name | 0.25 Eman tsal Eman ylimaf | 0.25

Table 7.1: Jaro-Winkler’s inverted similarity index (d;wi) applied to example strings

and their reversed version.

In order to take in account these observations, we therefore define the Jaro-

Winkler-based similarity index dj.p for two labels [y and [y, as follows:

djup(l1,12) = Minimum(dju (11, 1), djp (h, 1))

/
where d;,,;

version of the labels [} and I5.

is Jaro-Winkler’s inverted similarity index applied to the reversed

And since we observed that ¢;,, = 0.2 was a reasonable threshold, we
define two labels s; and sg as orthographically similar with respect to Jaro-
Winkler-based similarity index, iff d;.5(s1, 89) < T jwb-

108 Chapter 7. Investigate

7.1.6 Choosing appropriate Ontologies

Besides, to investigate the ontological aspect, and more precisely the synonymy
issue, we choose to take advantage of WordNet| ,], which is not
precisely an ontological tool, but nevertheless an English non domain-specific
orthographical reference system, handling nouns, verbs, adjectives and adverbs,
and providing definitions, synonyms and hypernyms (i.e. generalisation of
words).

7.1.7 Reducing terminological redundancies

In order to reduce the semantic redundancies upstream, i.e. during the drawing
phase, we can take advantage of our definition of semantic similarity to provide
an on-the-fly terminology suggester and analyser. When inserting a new widget
or editing an existing one, the suggester automatically proposes possible terms,
labels and qualifiers based on the existing terminology. If the user chooses to
provide his own term, label and qualifier, the analyser compares them to the
existing terminology to detect possible similarities and ask the user for direct
arbitration. This can help to reduce typing mistakes and the use of synonyms
in order to unify the terminology from the start.

7.2 Structural ambiguities

The second type of similarity that may occur is the structural similarity. Typ-
ically, we can observe that interface containers (i.e. forms, fieldsets or tables)
bearing different labels may contain interface elements who share semantically
similar labels. This is for instance the case for:

e the fieldsets Address, the fieldset Location and the form Provider, who
all share at least Street, Zip Code and City (Fig. 7.6);

e the forms Customer and Order, who share First Name and Last Name
(Fig. 7.7);

e the forms Product, Special good and Service, who all share at least
Code and Description (Fig. 7.8).

Intuitively, given the chain of transformations that we went through, one
may sense that at the logical level, such redundancies involve entity types as-
sociated to interface containers (i.e. interfaces, fieldsets and tables) and having
semantically similar attributes, as well as relationships with other semantically
similar entity types (Fig. 7.9). This implies looking for patterns across the
schemas of S, which could lead to merging or connecting different concepts.

7.2.1.

[~ | CUSTOMER

Customer number
First name
Last name

Title: Mrs Miss Mr
—address

Street

Street number

Formalising the notion of structural similarity

[~ | CUSTOMER

Customer number
First name
Last name

Title Mrs Miss Mr
—Address

Street

Street number

Street

Street number

Zip code Zip code
City City
Telephone Telephone
—Address {alternative) —Address (alternative)

Street

Street number

Order number ~ Date

Zip code Zip code
City City
—Orders —Orders

Order number ~ Date

l Add ‘ [Edit ‘ Delete ‘ ‘ Reset ‘ Add ‘ ‘ Edit ‘ ‘ Delete Reset
—— T)
MName B

Shop name g
Vat number .

Location

Street Street
Zip code Zip code
City City
Telephone

Telephone
Fax

109

Figure 7.6: The fieldsets Address, the fieldset Location and the form Provider,
who all share at least the widgets Street, Zip Code and City in our running example.

7.2.1 Formalising the notion of structural similarity

Most common cases of structural similarity

Intuitively, two entity types are said to be structurally similar if they have
attributes bearing the same name and/or roles in relationship types involving
the same target entity types. Consider for instance the two entity types Ej
and Es of Fig. 7.10(a), which share the attributes A and B (the following
principles are the same for shared roles). Let us recall that, as mentioned in

110 Chapter 7. Investigate

Section , the signification of their structural similarity can be classified
among the following most common cases:

e cquality : The two entity types represent the same concept, but went
undetected during the semantic analysis. This is typically the case of
Address and Location. Such entity types should be merged into a single
concept (Fig. (b)).

e specialisation : One of the two elements is a specialisation of the other
(Fig. (d)), such as a Seasonal good that can be seen as a specialised
Product.

e union : The two entity types partially represent the same concept, and
could be seen as specialising a higher concept non explicitly expressed
(Fig. (¢)). For instance, one could argue that a Product and a Ser-
vice are specialisations of the concept of Solution.

o complementarity : One of the two entity types actually refers to the
other (Fig. (e)). This is typically the case of Order which refers to
Customer, or Provider which refers to Address.

o difference : Finally, two entity types can also fortuitously share a same
of attributes, while being intrinsically different. For instance, a Subcon-
tractor and a Supplier may share properties such as Name and Address,
but they represent different concepts.

= | PRODUCT x
Code *
Description [~ | SPECIAL GOOD
Brand Code *
Code *
Price Description
i i Description
—Provider {primary) —— Price
w2 Hourly rate
ame Conditions
—Provider {secondary)
Narme *

Figure 7.7: The forms Product, Special good and Service, who all share at least
the widgets Code and Description in our running example.

Attribute and role pattern for two entity types

As we have seen, the structural similarity of two entity types actually relies
on the semantically equivalent attributes that they have in common, as well as
the semantically equivalent entity types with which they have a relationship.

7.2.1.

Formalising the notion of structural similarity

111

~ | CUSTOMER x
Customer number &
First name &
Last name &
Title Mrs Miss Mr o ORDER %
—Address
*

Street Order number

Street number Date ‘ 01011900 v
Zip code First name ¥
City Last name ¥
Telephone Shop

Shop name &

—address (alternative) ——M8M8M ——

Street Products

Street number Code Quantity

Zip code

City
—Orders

Order number Date Add ‘ ‘ Edit ‘ ‘ Delete ‘ ‘ Reset
‘ Add ‘ Edit ‘ ‘ Delete ‘ Reset ‘

Figure 7.8: The forms Customer and Order, who share the widgets First Name and
Last Name in our running example.

Regarding the attributes, a pattern can be defined as a bijection between two
sets of attributes belonging to a different entity type. More formally:

Definition 7.7. Given two entity types e; and ez, and their associated sets of
attributes A; and Ag, p = {(A1,, Az,), ..., (A1, Az,)} is an attribute pattern

of n for e; and eq iff:
Vi e |
Vi€ |
Vie|
Vi e |
Vi e [l,n]

l,j €l,n]
l,4,k € [1,n]
B

B

b

)

1
L,
1,2],5 € [1,n]
1

2
2
2
2],7 € [1,n]

b

Laq

c A CA;
: .Al] O.Aik_ =
Dy, Qg S -Az'j = ai;, = Giy,

g, € .Aij ANa; € .Az\AZ] = Qi Zaq

. E.Alj /\agjl E.Agj = a1, = ag

J

|

Until now, we only considered the semantic equivalence of entity types and
attributes. Let us now define it for roles as well.

112 Chapter 7. Investigate

Custormer Order Provider
Customer number Order number MName
First name Date[0-1] “at number[0-1]
Last name First name Street[0-1]
Title[O-1] Last name Zip code[0-1]
_ ! _ K ' City[0-1]
b1 iy - o1 o Telephone[0-1]
Q Q Q Fax[0-1]
0-M D—‘N 1-1 o-M D—N
Address Address {alternative) Orders ‘ Shop | Products Shaop
Street[0-1] Street[0-1] COrder number| |Shop name| |Code Shap narne
Street number[0-1]| [Street number[0-1] Date[D-1] Quantity| |Telephone[0-1]
Zip code[0-1] Zip code[0-1] - 0-1
City[0-1] City[0-1]
Telephone[0-1] g,
Location
Street[0-1]
Product Zip code[D-1]
Code City[0-1]
Description[0-1]
Brand[0-1]
Price[0-1] Special good -
Service
0-1 0-1 Code
Description[0-1] Cog .
X Description[0-1]
0-M a-M Price[0-1] Hourly rate[0-1]
Conditions[0-1] [rourty rateth” 1]

|Pr0vider (primary)‘ |Pr0vider (secondary)|
|Name ‘ |Name

Figure 7.9: The structural redundancies within the schemas corresponding to the

forms illustrated in Fig. 7.6, Fig. and Fig.
E12 .
E1 A B
E1 E2 A B ° E1
A A B 5 A P E2
B B c B 01— R —11—E
c E D) c — F
b F E E1 | B2/ D
F c E EEZ
L | F F
(a) (b) (c) (d) (e)

Figure 7.10: Typical cases of structural similarity.

Definition 7.8. Two roles r; and ry, respectively played by entity types e;
and €2, are said to be semantically equivalent (noted r1 = ry) iff e,, = e,.,, with

er;, being the entity type associated to e; through the relationship involving the

role r; g

In the scope of our research, we will actually consider that:
er, = getMetaproperty(r;, targetEntityType)

in order to focus on the logical counterparts of referential widgets. We can
therefore have e,, = null if that metaproperty has not been set for r;.

7.2.1. Formalising the notion of structural similarity 113

As for the attributes, a role pattern can therefore be defined as a bijection
between sets of semantically equivalent roles being played by different entity
types. More formally:

Definition 7.9. Given two entity types e; and ey, and their associated sets
of roles Ry and Rz, p = {(R1,,R2,), .., (R1,,Ra,)} is a role pattern of size n
for e; and ey iff:

Vie[l,2],je[l,n] Ry CR;

[1,2],
Vie[l,2],j,k€[l,n]: Ry, N Ry, =0
Vi€ [1,2],5 € [1,n] Ty s Tiy, € Riy = iy =1y
Vie([l,2,j€[lin] i1y €Ri; A€ Ri\Ry; =1y #11
Vi € [1,n] iry, € Ri; Arey € Roy =11y, =12

_l

Coincidentally, semantically equivalent attributes and entity types can be
asserted easily, thanks to the previous terminological investigation. Indeed,
thanks to the partition I' of the elements of £s, all the equivalent elements
bear the same term.

Consider for instance the schemas depicted in Figure , with the entity
types e1, ea, ez and ey, respectively named “Clerk”, “Shop Assistant”, “Direc-
tor” and “Sales Representative”. The entity types e; and ey have the sets of
attributes Ay = {a1,,a1,,a01,} and Ay = {az,,as,,a2,}, as well as the sets of
roles Rl = {7’11,7’12,7’13,7’14,7’15} and RQ = {T21,T22,T23}.

These two entity types therefore share the following attribute and role pat-
terns:

e p1 = {({a1,},{az2,})}, which involves the term “First Name”;
e po = {({a1,},{a2,})}, which involves the term “Last Name”;

e p3 = {({a1,},{a2}),{a1,},{a2,})}, which involves the terms “First
Name” and “Last Name”;

o py = {({r1,},{r2,})}, which involves the entity type named “Branch”;
o ps = {({r1,},{re,})}, which involves the entity type named “Status”;
o ps = {({r1,},{r2,}), {r1,}, {r2, })}, which involves the entity types named

“Branch” and “Status”.
Component pattern and structural similarity for two entity types

Based on the definitions of attribute and role patterns, we can now define the
notion of component pattern for two entity types.

114

Chapter 7. Investigate

CLERK |@ SHOP ASSISTANT (@
@ First Name @ First Name
@ |Last Name €@ |LastName
/@/ Office €@ |Department
D1 ‘ oNGD '
11 2 0N ON @ -1@ON D
g/ 2 @Q ®§> \? >
0-|N 0-|N 111 111 1i1 0-‘N O-lN 111
‘BRANCH| |STATUS‘ ‘RECORD‘ ‘FILE‘ |ACCOUNT‘ ‘BRANCH‘ |STATUS| |ORDER‘
o SALES REPRESENTATIVE @
DIRECTOR |@® @ [First Name
@ [First Name @ |Last Name
€ Last Name € | Department
/ \ Area
DoN 11D 4
D17 @11 @oNDo-1
1 ON ON 0-N 1-1 ON
| |
\BRANCH| \STATUS| |BRANCH| \STATUS| \ORDER| \CAR|

Figure 7.11: A few example schemas illustrating different patterns.

Definition 7.10. Given two entity types e; and es, their associated sets of
components C; = A1 URq and Ca = Ay URq, p = {(C1,,C2,),...,(C1,,,Ca,)} is
a component pattern of size n for e; and es iff:

Viell,2],j€[l,n]
Vi e [1,2],5,k €[1,n]
Vi e [1,2],5 € [1,n]
Vi e [1,2],

Vj € [1,n]

j€[l,n]

)

i C

:Ciy; C€C
: Clj n Cik = (Z)
P Cij, Gy, € Ci, = Ci;, = Ci,

1Ciy, € Cij Nc € CZ\C% = Cij, Z

i € Clj A C2;, € CQJ‘ = €1y, = C2y,

|

We also define the components of a pattern and the pattern components of

an entity type as follows.

Definition 7.11. Given a component pattern p = {(C1,,Cs,), ..., (C1,,C2,)}
for two entity types e; and ey and their associated sets of components C; and
Cs, the set of the components of the pattern p is defined as:

CP={c|Jiell,2,je[l,n]:ceC}

7.2.1. Formalising the notion of structural similarity 115

Definition 7.12. Given a component pattern p for two entity types e; and e;
and their associated sets of components C?, C; and C;, the set of the pattern’s
components for the entity type e; is defined as:

Cr={c|ceC;nCr}

In the example of Fig. , the pattern pr = {({aa, }, {a4, }), ({a2,}, {a4, }),

({azs}, {aa ({ra, }s {ran })s ({re. 35 {ras 3)s ({res), {ra;})} is @ component pat-

tern of size 6 for the entity types e; (Shop assistant) and ey (Sales repre-
sentative).

Subsequently, we can define the mazimal pattern for two entity types ey
and ey as the largest pattern for these entity types, which is unique since
the definition of a component pattern relies on semantic equivalence. More
formally:

Definition 7.13. Given two entity types e; and es, their associated sets of
components C; and Cy, and P; 2 the set of all the components patterns for e;
and eg, p12 € P12 is said to be the mazimal component pattern for e; and ey
iff:

Vp # p12 € Pi2: [pl <|p12]

In our example, p7 is therefore the maximal component pattern for the
entity types es (Shop assistant) and e4 (Sales representative).

Intuitively, we will therefore consider two entity types e; and e; as struc-
turally similar if their component maximal pattern is not null. More formally:

Definition 7.14. Two entity types e; and ey are said to be structurally similar
to the degree n (noted ey «%s e5), iff [p1.2] = n. a

Structural similarity for a set of entity types

By extension, we can also define the notion of a pattern for a set of entity
types, which is basically a pattern that occurs between any pair of these entity
types. More formally:

116 Chapter 7. Investigate

Definition 7.15. Given a set of entity types € = {e1, ..., e}, and their asso-
ciated sets of components Cy, ...,Cp, p = {(C1y,---,Cmy)s - (C1,,5--,Cim,) } IS &
component pattern of size n for € iff:

Vi e [1am]7j € [1,71] :C'i_j cG
Vi € [1,m],j,/<: S [l,n] :Cij ﬁCik =0
ip=

Vi,j € [Lm] {(Cil’c.h))) (Cin’cjn)} € Pi;j

_I

Similarly to pairs of entity types, we also define the components of a pattern
and the pattern components of an entity type as follow.

Definition 7.16. Given a component pattern p = {(C1,,...,Cm,), -, (C1,,--sCm,) }
for a set of entity types € = {eq, ..., &, } and their associated sets of components
Ci, ...,Cm, the set of the components of the pattern p is defined as:

CP={c|Jie[l,m],jecl,n]:ceCy}
]

Definition 7.17. Given a component pattern p (with the components CP) for
a set of entity types € containing e; (with the components C;), the set of the
pattern’s components for the entity type e; is defined as:

CP={c|cel;nCP}
|

In our example, p = {({a1, }, {az, }, {as, }, {a4,}), {01, }, {02, }, {as, }, {a4,}),
({r1i, } {ra, }s {rs, },{ra, })}, which is based on the attributes named “First
Name” and “Last Name” and the roles involved with the entity types named
“Branch”, is a component pattern of size 3 for € = {e;, eq,e3,¢e4}.

Subsequently, we can also define the maximal pattern for a set of entity
types €&, as the largest pattern for this set of entity types. More formally:

Definition 7.18. Given a set of entity types &, and Pg the set of all the
component patterns for &, pe € Pg is said to be the mazimal component
pattern for € iff:

Vp # pe € Pe : |p| < |pe

7.2.2. Discovering structural ambiguities 117

In our example, p = {({a11}7 {a21}7 {a’31}7 {a41})’ ({a12}7 {a22}7 {a32}7
{a42})v ({T11}7 {7“21}, {T31}7 {T41})a ({T12}, {7“22}, {’)"32}, {T42})}7 which is based

on the attributes named “First Name” and “Last Name” and the roles involved
with the entity types named “Branch” and “Status”, is the maximal component
pattern for € = {e1,e2,€3,€4}.

The definition of structural similarity for a set of entity types leads in turn
to the definition of structurally similar subsets within a given set of entity types.
In such a subset &;, all the entity types are structurally close enough from at
least another entity type of the set, while being structurally different from any
other entity type. More formally:

Definition 7.19. Given a set of entity types €, &; = {e;,,...,e;,} C €isa
subset of structurally similar entity types of &, iff:

(m=1V Ve €&, Eeik;«éeijeé”i:eij«llweik/\n>0)

/\(Veijeéé,ﬂeket‘f\é”i tep «s e An > 0)

J

The set &¢ that contains all the &; forms a partition of &, so that:

eVi£j:&ENE =0

° U & =¢

Consider for instance the set & containing the entity types highlighted in
Fig. 7.9. The following sets &1, & and &3 form a partition of &:

e & = { Customer, Order }
e & = { Address, Address (alternative), Location, Provider }

e &3 = { Product, Special good, Service }

7.2.2 Discovering structural ambiguities

In order to build the subset of structurally similar entity types of a given set
¢ while storing the maximal pattern between each entity types, we need to
analyse the structure of these entity types.

As explained in Section , the structure of user-drawn interfaces is usu-
ally quite simple, which implies that traditional tree mining algorithms prove
inappropriate. Instead of putting in motion such heavy algorithms, we there-
fore propose to adopt a simpler approach that consists in comparing one by
one each entity types in terms of attributes and directly related entity types.

For this purpose, we use Algorithm to build the set of maximal patterns
®e = {p;,;} for each pair of e;, e; and the set &g of structurally similar subsets
of €.

118 Chapter 7. Investigate

Algorithm 7.7 BuildPatternsSet : Mine maximal patterns

Require: € = {ei,...,en}
Ensure: ¢ is the set of all the maximal component patterns of &
Aé&e is the set of the structurally similar subsets of &

1: procedure BUILDPATTERNSSET(E, D¢, &¢)

2: P — 1]

3: S 0

4: for i = 1 ton do

5: if 3 &, € & : e; € & then
6: & — &

7: else

8: & +— {ez}

9: Ee — e U{SE;}
10: end if
11: for j =i+ 1tondo
12: if 38 € &:e; €& then
13: é‘; — &

14: else

15: &« {ej}

16: end if

17: éa@ < g@\g)l

18: S — g@\éa]

19: if ei«%ej An >0 then
20: & < & U &
21: be + Ee U{&}
22: else
23: S FgQU{gL}U{@@J}
24: end if
25: P +— P U {ﬁi,j}
26: end for

27: end for
28: end procedure

7.2.3 Submitting structural ambiguities to the end-users for arbi-
tration

Once the sets ¢ = {p; ;} and &¢ have been built from all the entity types
contained in S, we can visually point out the discovered similarities in the user-
drawn interfaces, in order ask the end-users to to validate or reject them, as in
Fig. 7.6, Fig. and Fig.

The validation process therefore consists in examining each maximal pattern
pi; i, discovered and its associated pair of entity types e;; and e;, with regards
to the structurally similar subset & C &g to which they belong, in order to

7.2.3. Submitting structural ambiguities to the end-users for arbitration 119

specify the nature of their relation, as defined in Section
e ¢;, equals e;, (noted e;; = €ir.)
e ¢;, specialises e;, (noted e;; :6§ e;,, or conversely e;, éﬁ ei;)
e ¢;, unites with e;, (noted e, é €ir)

C C
e ¢;; complements e;, (noted e;; = e;,, or conversely e;, = e;;)

J

e
o difference : e;; # e,

Defining semantically equivalent subsets of entity types

For this purpose, we first need to ask the end-users to elicit the semantically
equivalent subsets of &; and assigning them a unifying term. By doing so, we
actually define the subsets of entity types that are equal, as well as the concepts
they represent. More formally, we want the end-users to specify éai/ so that it
concurs with the following definition:

Definition 7.20. Given a set &; of structurally equivalent entity types, the set
EFT={&,657, ...} is the set of the semantically equivalent subsets of &; iff;

11 7 Tig Y

Vi, j ko éaijq N cfiiq =0
Vi e =&
J

e
4 [y . €q 2 e i . = e
Vi, gk, le; e € 5” ey = e (i.e. ey, = em)

|

Note that these & and their associated term t;! defines a partition of &
into T4 = {(t;, &)}, so that :

Vi, g koot #]

Vi, koo ETNES =0

Uei=¢ (7.7)
i,J

If we consider again the set & containing the entity types highlighted in
Fig. 7.9, we could for instance obtain the following subsets:

o &7 ={ {Customer}, {Order} }

o &% ={ {Address, Address (alternative), Location}, {Provider} }

o &7 ={ {Product}, {Special good}, {Service} }

with 57 = “Address”.

120 Chapter 7. Investigate

Defining union of subsets of entity types

Once these concepts are defined, we proceed with the specification of the pos-
sible unions between pairs of concepts conveyed by any é‘;;, é"i/k € 5;/, and we
assign a term to their underlying parent concept. More formally, we want the
end-users to specify &*" so that it concurs with the following definition:

Definition 7.21. Given a set &; of structurally equivalent entity types and its

associated set &7 of semantically equivalent subsets, the set & = {&"", &, ...

is the set of the unions of semantically equivalent subsets of &; iff;

Vi k i &mNEm =0
Vi e &
J

u
Vi, g, k1 €ij, 1 €ij, € éij ey, ey

Note that these &*" and their associated term #;™ defines a partition of €
into Y = {(t}'™, &)}, so that :

Vi, gk oo i £t
Vij koo &S =0
Usm=e (7.8)

9

For the set & of the entity types highlighted in Fig. 7.9, we could for instance
obtain the following subsets:

o &' = {{{Customer}}, {{Order}}}
o &3 = {{{Address, Address(alternative),Location}}, {{Provider}}}
o & = {{{Product}, {Service}}, {{Special good}}}

with 57 = “Solution”.

Defining specialisation among subsets or unions of entity types

Then, we carry on by eliciting the possible specialisations between pairs of
concepts conveyed by any é"z;, é"i,k € é"i/ or their parent concept. More formally,
we want the end-users to specify &7 so that it concurs with the following
definition:

7.2.3. Submitting structural ambiguities to the end-users for arbitration 121

Definition 7.22. Given a set &; of structurally equivalent entity types, its
associated sets &1 and &, the set &7 = {(w,,Bi,), (tiy, Bi,), .-} is the set
of the specialisations of &; iff;

Vi, j o, € EXV g, € EMYN (B, € LTV By, € EMM)
S
Vi, g, k1 €i;, € Qi €45 € ﬁi]‘ = €, = €ij,
J

For the set & of the entity types highlighted in Fig. 7.9, we could for instance
obtain the following subsets:

e & =10
o &P =10
o &7 = {({Special good},{Product})}

Defining complementarity among subsets or unions of entity types

And finally, we end by specifying the possible complementarities between pairs
of concepts conveyed by any cg;;, £;Ik € 6”;/ or their parent concept. More
formally, we want the end-users to specify &7 so that it concurs with the
following definition:

Definition 7.23. Given a set &; of structurally equivalent entity types, its
associated sets &7 and &, the set &7 = {(v,,5i,), (i, Biy), .-} s the set
of the complementarities of &; iff;
Vi, j o, € 85V ay, € EMYN (B, € TV By, € &)
c
Vi,j,k,lleijk € oy, €ij, Gﬁij <:>€ijk :;61'”
|

For the set & of the entity types highlighted in Fig. 7.9, we could for instance
obtain the following subsets:

o &7 = {({0Order}, {Customer})}
o &7 = {({Provider}, {Address, Address(alternative),Location})}
o &7 =1

P =

Preventing stalemates

One of the major risks during this process is to gather conflictual or prob-
lematic decisions that would lead to a stalemate. Consider for instance three

122 Chapter 7. Investigate

entity types e1, eo and es. Declaring that e; and ey are equivalent, but that
ey specialises e3 while e is specialised by es intuitively creates a puzzling sit-
uation with a hierarchical cycle. Fig. illustrates such a situation, with
Individual and Person being equivalent, while respectively specialising and
being specialised by Customer.

CUSTOMER PERSON

A\ A

[nowibuaL] [ENTREPRISE] [cusTOMER] [EMPLOYEE]

Figure 7.12: A problematic situation where two entity types are equivalent
(Individual and Person), but respectively specialises and is specialised by a third
one (Customer).

Detection mechanisms can obviously be set to detect these kinds of situa-
tion. However, this also highlights once again the primordial role of the analyst
in our approach, as he is the most suited person to notice and prevent such
cases. He should therefore help the end-users to avoid them by guiding him
into structuring their decisions in the most consistent fashion.

7.2.4 Processing the structural decisions of the end-users

Similarly to the semantic analysis, the final step of this validation consists in
updating the widgets, the schemas and the mappings of thesaurus 7g for each
type of validated similarity. The main aspect concerns the pre-integration of
each individual schema into a single schema based on these validated redun-
dancies.

First of all, we process the sets éi-iq of equal entity types. Whenever these
sets contain more that one element, a supertype is created and assigned the
unifying term. If a set contains only one entity type, this entity type is con-
sidered the supertype of éaflq and is also assigned the unifying term if it defers
from its original term.

Then, we process the sets &" of united entity types. Whenever these
sets contain more that one element, a supertype is also created and assigned
the unifying term. If a set contains only one entity type, this entity type is
considered the supertype of &%" and is also assigned the unifying term if it
differs from its original term.

Afterwards, the (o, 3;;) € &7 are processed. An IS-A relationship is
created between the supertype of «;; and the supertype of 3;, .

7.2.5. Reducing structural redundancies 123

Subsequently, the (a;,, f;;) € &7 are processed. A stereotyped relationship
type is created between the supertype of ;; and the supertype of 3;,. Alterna-
tively, this step can be replaced by looping back and modifying the container
holding the referential elements, so that the latter are moved into a new sub
container associated with a given term of the referred element.

Finally, thesaurus 7 is updated. The label of each container associated to
an entity type involved in a validated structural similarity may also be updated
if relevant, such as the label “Location” that may be updated to Address.

The whole validation process can hence be described by Algorithm ,
and as can be observed, it implies that all the semantically equivalent entity
types of the schemas now have a super type, and that the entity types are now
hierarchically structured. If cycles should appear in the schemas in spite of the
analysts attention, they redundancies between the involved entity types should
be re-examined to prevent these cycles.

Fig. illustrates the update of the forms, while Fig. illustrates the
update of the schemas for our running example. As one can notice, at this
point of the process, the appearance of the forms hasn’t changed much, unlike
their underlying schemas that have been pre-integrated. As we can also see,
the components still need to be properly integrated and “transferred” to the
appropriate supertypes.

7.2.5 Reducing structural redundancies

As for semantic analysis, structural redundancies can be reduced upstream.
This can be managed in the drawing phase by providing common predefined
and standardised reusable patterns (typically, such as an Address or a Person),
having a direct RSFM representation and an associated GER counterpart. Such
reusable constructs could for instance be inferred from existing ontologies or
patterns classifications (such as Coad’s object-oriented patterns [, D,
or defined from our own elicited patterns.

7.3 Output

At the end of this interactive process, we obtain a pre-integrated schema s
resulting from the terminological and structural analysis of the set of schemas
S obtained through the Adapt phase. In this schema, the terminology has
been unified so that every element associated with a given term now represent
the same concept. Also, the sub schemas originally associated with each form
are now connected through the relationship types and IS-A hierarchies of their

124 Chapter 7. Investigate

Algorithm 7.8 ValidateStructuralSimilarities : Validate the semantically sim-
ilar subsets of a given thesaurus (1/2)

Require: S
Ensure: s is the pre-integrated schema of all the schemas of S, and 7 is his thesaurus

1: procedure VALIDATESTRUCTURALSIMILARITIES(S, s, T)

2: € <+ {ei|l(3s; € S : e; € s5) A (getType(e;) = ENTITYTYPE) }
3 BUILDPATTERNSSET(€E, ®¢, &¢)

4: s < createSchemal)

5: for all s; € S do

6 copy s; in s

7
8
9

end for
T+ 0

: for all & € & do
10: Ask> define: &7
11: for all é"qu € &% do
12: t;! null
13: while ¢{? = null Vv #? € 7 do
14: Ask> define: tff
15: end while
16: T+ T U{tl}
17: end for '
18: Ask> define: &*"
19: for all &" € & do
20: £ ¢ null
21: while ;" =null Vv ;" € 7 do
22: ASk> define: ¢
23: end while
24: T« Tu{ti"}
25: end for
26: Ask> define: &7
27: Ask> define: &
28: for all 6’:1 € &% do
29: entityType; < create EntityType(s, t?jq)
30: for all ei;, € éaij_q do
31: createlsA(entityTypei, ei;,)
32: end for
33: end for
34: for all é"qu € &' do
35: entityType; « createEntityType(s, i)
36: for all e;;, € &" do
37: createl sA(entityTypei, ei;,)
38: end for

39: end for

7.3. Output 125

Algorithm 7.9 ValidateStructuralSimilarities (2/2)

40: for all (a;,f:;) € &7 do

41: €i;, < superType(ai;)

42: ei;, < superType(Bi;)

43: CT@at@ISA(eijQ,eijl) > e;;, is a supertype for e;;
44: end for

45: for all (a;;,f:;) € &P do

46: ei;, + superType(a;)

47 €, < superType(fBi;)

48: relType; < createRelatz’onshz‘pType(eij1 , eijz)
49: setCardinalities(relT'ype;, 1,1,0, N)

50: setStereotype(relType;, refersTo)

51: end for

52: end for

53: BUILDTHESAURUS({s}, 7)

54: end procedure

™ | CUSTOMER x Fi ORDER x ~ | PROVIDER x
Customer number * Order number [Name N
First name g Date Ioumnguo v Yat number
Last name * First name * Street
Title Mrs Miss Mr e g * Zip code
—hAddress shop City
SIS Shop name [Telephone
Street number Froducts Fax
Zip code
2 Code Quantity
Telephone
& Shop name o
—Address (alternative) ——M——————————— Address
Street Street
S Add Edt || Delete || Reset o
Zip code City
it
’ ™ | PRODUCT x EEED
~Orders
Order number Date o i [~ | SPECIAL GOOD x
Description
Code &
Brand
Description
Price
pri
Pravider {primary) rice
add || Edt || Delete Reset ’7Name * Conditions
Provider (secondary)
SERVICE x
’7Name [L
Code: N
Description
Hourly rate

Figure 7.13: The updated forms of the running example after validation of structural
redundancies.

126 Chapter 7. Investigate

Provider

«Equals»
PROVIDER|
Name

Vat number{0-1]
|F'ro\.ider (primary) ‘Pro\.ider (secondary)|

ey on
[Name | [Name | |Zp codel0-1]

«Equals»
ADDRESS

City[0-1]
Telephone[0-1]
«Unites with», Address - - -
Address (alternative)
SOLUTION Street[0-1] Stresto-1] | Address |
S_treet number{0-1] Street number0-1] S_treet[o-ﬂ
™ serice | Zip code[0-1] Zip code[0-1] Zip code[0-1]
«Equals» enice City[0-1] Gitylo-1 City[0-1]
Code ’ ity[0-1]
PRODUCT Telephone[0-1]
01 04 Description[e-1]] —— o
‘ Hourly rate[0-1] o-N
Product Special good 0-1 0-1
Code Products Code
Description[0-1] Code Description[0-1] Cusgr'::r’r:j:nber
Brand[0-1] Quantity Price[0-1] I L
Price[0-1] T Conditions[0-1] 0-N-|First name oN
0-N Last name
Title[0-1]
b «Equals» 141
ON ‘ ORDER
Order
Shop Order number Orders
Shop name 0-N—<_>—0-1— Date[0-1] Order number
Telephone[0-1] First name Date[0-1]
Last name
0-1 O-N

Figure 7.14: The pre-integrated schema of the example after validation of structural
redundancies. The newly created supertypes and relationship types are marked with a
stereotype expressing their meaning: “Equals” stands for equality, “Unites with” for
union, “Refers to” for complementarity. There is no stereotype for the specialisation,
as it is implicit.

entity types. Besides, the maximal component pattern between each pair of
entity type is stored for further processing.

The newly created “parent” entity types still need to be complemented by
the appropriate attributes shared by their “children” entity types, and the
stereotyped relationship types must also be supplemented with the relevant
referential attributes. This process, whose responsibility rests with the Bind
step, could typically lead to merging the components of the entity types in-
volved in the same IS-A relation.

Chapter 8

NURTURE

Eliciting dependencies and constraints

The previous chapter dealt with the analysis of terminological and structural
ambiguities within a set of schemas in order to pre-integrate the latter into a
single schema with a unified terminology. In order to enrich this schema, we
now need to discover additional constraints and dependencies on its elements.

Though these constraints can be provided directly, it appears that the ac-
quisition and use of data samples may also be useful and more natural in this
process. Indeed, not only do data samples test the ability of the user-drawn
form-based interfaces to gather the necessary information, but it also helps to
visualise the implications of existing constraints. Moreover, their analysis may
in turn reveal possible unsuspected constraints.

In this chapter, we therefore formalise the notions of data samples, con-
straints and dependencies, then present an interactive process inspired by the
principles of Armstrong relations, in order to acquire data samples that will
restrict the possible “hidden” constraints, and to arbitrate constraints that will
in turn restrict the tuples that can be encoded.

8.1 Delimiting constraints and dependencies

There are numerous types of constraints and dependencies that can be es-
tablished for a given schema. They can concern individual elements, their
components, or even how (the components of) an element can affect (the com-
ponents of) other elements. In this doctoral research, we focus on constraints

127

128 Chapter 8. Nurture

that can be expressed for entity types and their components, developing an
approach that could be intuitively extended to constraints and dependencies
among (components of) multiple elements.

More specifically, for each entity type of the pre-integrated schema s, we
want to elicit the constraints and dependencies presented in Section , which
we group as follows:

e technical constraints, which define the following restrictions on the indi-

vidual components of each entity type:

— the minimal and mazimal cardinalities;

the value type;
— the value size;
— the prerequisite optional components, if the component is optional;

e cxistence constraints, which define how the optional components should
coincide for each entity type;

e functional dependencies, which define the implications between sets of
components (we do not treat multivalued dependencies);

e identifiers, which define the sets of components that uniquely identify a
given instance of a given entity type.

Some of these properties can be trivial and may be expressed directly, or
have been expressed during the drawing step or subsequent modifications of
the original form-based interfaces. For instance, in the forms of Fig. , the
Title of a Customer appears to be optional and single-valued, and the Zip
Code of a Provider may have been encoded as a textual value.

However, the specified properties may need to be refined, and there may
be some unsuspected constraints and dependencies among the elements of the
schema. As we have seen, we can take advantage of data samples to induce
possible implicit constraints and mine functional dependencies. For instance,
we could observe that though optional, the Title is systematically filled for
each encoded Customer, or that the Zip Code of a Provider is always encoded
using only numerical characters. We could also observe, for example, that
there is always at least a Zip Code or a City for each encoded Provider.
These observations must be submitted to end-users form arbitration, in order
to eventually enrich the pre-integrated schema.

Unfortunately, we observed that the existing approaches rely on massive
pre-existing data sets, which is here problematic. Indeed given our context,
there is possibly no available data samples, or their re-encoding would be too
expensive. It is anyway unrealistic to ask end-users to willingly provide numer-
ous data samples. This naturally calls for new ways to discover and suggest

8.2. Formalising data samples and tuples 129

constraints and dependencies on-the-fly, based on the incremental input of data
samples by the end-users.

Before introducing our approach to suggest constraints and dependencies,
let us start by formalising the notions of data samples and tuples, as well as
these constraints and dependencies.

8.2 Formalising data samples and tuples

First of all, the easiest way to ask end-users to provide data samples is to
let them use the very form-based interfaces they drew as an encoding means,
knowing that each form is associated with several entity types. Now recall that
we presented the relational model of a database in Section , and let us
adapt it for our purpose.

A relation (or table) is the natural equivalent of an entity type in the re-
lational realm, while its attributes (or columns) can be associated to the com-
ponents of the entity type. Since a tuple (or row) contains a value for each
attribute of the relation with respect to its domain, we can likewise define a
tuple for an entity type.

Let A and R respectively be the set of simple attributes and roles of a given
entity type e, and let T, be the set of tuples associated with it. Recall also that
ec; represents the entity type associated to e through the relationship involving
the role C; (see Section).

Definition 8.1. Given an entity type e and its set of components C = AUTR,
t is a tuple for e iff:

t= {(C’z,vl) | (U C; = C) A\ ((CZ € ANv; € DO’/TL(C,)) V (Cz e RAvi € 7;01))}

|
Furthermore:

Definition 8.2. The tuple ¢’ is the projection of the tuple ¢ on the set of
components C (noted t[C]) iff: ¢/ = {(C;,v;) €t | C; € C} 3

The projection of a tuple ¢ on a single component C' (noted ¢[C]) is therefore
the pair (Cy,v;) verifying C; = C, and it can be null (which is noted @ and
implies that the component C' is optional and that no value has been provided
for it) or multivalued.

Whenever an end-user provides a data sample, he actually transparently
provides a tuple for each entity type associated with the form-based interface.
In this doctoral research, we focus and reason on walid user-provided data

130 Chapter 8. Nurture

samples, i.e. data samples that are realistic and consistent with the current
state of the requirements acquired using the RAINBOW approach. However,
it would also be possible to reason on invalid data samples, which would also
imply detailing the criteria for invalidity.

Recalling that € is the set of entity types corresponding to a given form
(see Section 6.3), we can hence formally define a data sample as follows:

Definition 8.3. A set d = {(e;,t;)} is a data sample for the form F iff:

(U e; = €p) A (Vi:t; is a tuple for e;)

_l

Consider for instance the form Product illustrated in Fig. . A data
sample for this form would actually provide tuples for the entity types Product,
Provider (primary) and Provider (secondary) of Fig.

Let us now formalise the notions of constraints and dependencies for an
entity type and its associated set of tuples.

8.3 Formalising constraints and dependencies

8.3.1 Technical constraints

Let us consider a given entity type e, having the set of components C = AUR,
the set of optional components C’ C C and the set of tuples 7.. For a given
component C' € C, the different types of technical constraints that we inquire
about can be grouped in the set T = {cardinality, value type, value size,
prerequisite components}.

The domains of values for each type of these technical constraints can be
derived from the specification of the Simplified Form Model as follows:

Dom(cardinality) = {(0,1),(1,1), (0, N), (1, N)}
e Dom(value type) = {text,integer,real,boolean,date} if C' € A
m(value type) =0ifCeR

Dom(

o Dom(value size) =Nif C e A
Dom(value size) =0 if C € R
Dom(prerequisite) = {C" CcC' | C ¢ ('}

We can therefore formally define a technical constraint as follows:

Definition 8.4. Given an entity type e and its set of components C, 6; =
(Ci, piyv;) is a technical constraint for e iff : C; € C Ap; € T Av; € Dom(p;) 4

8.3.1. Technical constraints 131

Furthermore:

Definition 8.5. A tuple t € T, agrees with a technical constraint 8 = (C,p, v)
(noted ¢ x 0), iff the projection ¢[C] respects the value v for the property p. 4

Generally speaking, a tuple agrees with a technical constraint if the latter
isn’t too restrictive regarding the value(s) of the tuple for the given component.
Typically, the tuple must provide at least a value if the constraints specifies a
mandatory cardinality, and at most a value if the constraint specifies a single-
valued cardinality.

Similarly, if the component is an attribute, the value(s) associated with the
component can either be of any type if the constraint specifies a textual value
type, or integer if the constraint specifies a real value type. In any other cases,
the value type of the value(s) associated with the component must absolutely
concur with the constraint.

Also, the size of the value(s) associated with the component must be smaller
or equal that the value size constraint, given that the component is an attribute.

And finally, if the value(s) associated with the component is not null, the
values associated with the prerequisite components cannot be null. More for-
mally, a tuple ¢ therefore agrees with a technical constraints = (C, p,v) when:

e C is a component, p = cardinality, v = (mincard, maxcard) and

mincard < t[C] < mazcard

C is an attribute, p = value type, and :

— v = text and the value type of t[C] is in Dom(value type)

— v = real and the value type of ¢[C] is in {integer,real}

v € Dom(value type)\{text,real} and the value type of ¢[C] is
equal to v

e (' is arole, p = value type, and v = &

e (' is an attribute, p = value size, and the size of ¢[C] is < wv

e (C is arole, p=value size,and v =0

e C is a component, p = prerequisite and ¢[C] # & = VC; € v : t[{C;] #
%]

Consequently:

Definition 8.6. A technical constraint 6 is satisfied by a set of tuples 7 (noted
TEOI: Vi, €T t; x6. o

We call O, the set of all the technical constraints defined on a given entity
type e and satisfied on its set of tuples 7¢, so that:

VC; € C,pj eT : ANo= (C’i,pj,vk) €0, (81)

132 Chapter 8. Nurture

8.3.2 Existence constraints

Let us consider a given entity type e, having the set of optional components C’
and the set of tuples 7. For a given set of optional components X C C’; the
different types of existence constraints that it may support can be grouped in
the set E = {coexistence7 exactly one, at most one, at least one}.

We can therefore formally define an existence constraint as follows:

Definition 8.7. Given an entity type e and its set of optional components C’,
& = (X, p;) is a existence constraint for e iff: X; CC' A p; € E. J

Furthermore:

Definition 8.8. A tuple ¢t € 7. agrees with a existence constraint £ = (X, p)
(noted t x &), iff the projection t[X] respects the constraint p. J

Practically, a tuple ¢ will agree with an existence constraint £ = (X, p) if:
e p = coexistence and (V C; € X : t[C;] = @)V (V C; € X : t[C;] # @)
e p=exactly one and 3! C; € X : t[C;] # @

e p=at least oneand 3C; € X : t[C;] # &

e p=at most one and (V C; € X : t[{C;] = @) vV (3IC; € X : t[C] # D)

Consequently:

Definition 8.9. A existence constraint £ is satisfied by a set of tuples T (noted
TEEIM VE,, eT :txé&. J

We call Z, the set of all the existence constraints defined on a given entity
type e and satisfied on its set of tuples 7.

8.3.3 Functional dependencies

Let us consider a given entity type e, having the set of components C and the
set of tuples T.. We can formally define a functional dependency as follows:

Definition 8.10. Given an entity type e and its set of components C, a func-
tional dependency over e is an expression f : L — R, with £, R C C, restricting
the possible tuples of e. N

We respectively call £ and R the left-hand side and right-hand side of the
functional dependency f. Furthermore:

Definition 8.11. A functional dependency f : £L — R, is satisfied for a set of
tuples 7 (noted T = f), iff: Vt;,t; € T @ t,[L] = t;[L] = t:[R] =¢;[R] J

8.3.4. Unique constraints 133

We call §. the set of all the functional dependencies defined on a given
entity type e and satisfied on its set of tuples 7.. Besides, recall that func-
tional dependencies can be compared using Armstrong’s axioms, which were
introduced in Section

8.3.4 Unique constraints

Let us consider a given entity type e, having the set of components C, the set
of mandatory components C* C C and the set of tuples 7.. We can formally
define a unique constraint as follows:

Definition 8.12. Given an entity type e, its set of components C, its set of
mandatory components C* C C and its set of tuples 7., the set of components
X C C* is an identifier for e iff: Vt; € Te, ﬂtj #t €T o t[X] =t;[X] 3

Besides, the different types of unique constraints can be grouped in the set
U = {primary, secondary}, so that:

Definition 8.13. Given an entity type e, its set of components C, its set of
mandatory components C* C C and its set of tuples Te, v; = (X;, p;) is a unique
constraint for e iff: X; CC* Ap; € U. g

Furthermore:

Definition 8.14. A unique constraint v = (X, p) is satisfied by a set of tuples
Te (noted T = v) iff X is an identifier for the entity type e. a

We call T, the set of all the unique constraints defined on a given entity
type e and satisfied on its set of tuples 7.

8.4 Managing the process

8.4.1 Overview

Now that we have formalised the notions of data samples, constraints and
dependencies, let us expose our nurturing process, considering that we initially
have no available tuples at all. Recall that our objective is to involve then end-
users in the elicitation of constraints and dependencies, while ensuring that
none of them are forgotten. We therefore propose to start by envisaging initial
possible constraints and dependencies. Then, using user input, we progressively
enforce (i.e. validate) or discarded (i.e. refute) them, and generate alternatives
until they are all arbitrated. This process hence relies on several sub processes:

e the initialisation of all initial valid constraints and dependencies;

134 Chapter 8. Nurture

e the acquisition and analysis of new valid data samples in order to auto-
matically discard the invalid constraints and dependencies, and possibly
generate alternatives;

e the arbitration of currently valid constraints and dependencies through
user input, and the subsequent generation of alternatives;

e the processing of the enforced constraints and dependencies, once there
are no other valid constraints or dependencies left.

Note that the acquisition of data samples will progressively restrict the set
of possibly valid constraints, and that conversely, enforcing constraints will also
restrict the future data samples that will be encodable. Let us now examine
each of the sub processes.

8.4.2 Initialisation

Before beginning the interaction with the end-users, we start by initialising an
empty set of tuples and defining the initial sets of enforced, valid and discarded
constraints and dependencies for each entity type e. The valid sets will be used
to provide suggestions to the users, while the discarded sets will be used to
collect all the rejected constraints and dependencies.

Note that in the algorithms of this section, we use simplified methods of
the form get<PropertyName>(c) and set<PropertyName>(c,value) to access
the different components properties for the sake of simplicity. These methods
transparently access the necessary (meta) properties for these components.

Technical constraints

Let ©,, O, and O, respectively be the enforced, valid and discarded technical
constraints for e. The enforced technical constraints are the constraints im-
plicitly or explicitly expressed during the drawing phase. The valid technical
constraints regroup all the other technical constraints that could be valid at
this point, given the restrictions of the enforced technical constraints that were
presented in Section

If a given component is mandatory, we cannot suggest it to be optional,
and if it is single-valued, we cannot suggest it to be multivalued. Similarly,
a textual attribute could be of any other type, while a real attribute could
only also be of the type integer. Finally, if the component is optional, it could
require every other optional components of the entity type.

Algorithm formalises this initialisation process for the technical con-
straints. For the entity type Product associated with its homographic form,
this could yield the following enforced constraints:

8.4.2. Initialisation 135

e for the attribute Code : (Code, cardinality, (1,1)), (Code, value type,
text), (Code, value type, 50), (Code, prerequisite, &)

e for the attribute Price : (Price, cardinality, (0,1)), (Price, value type,
real), (Price, value type, 50), (Price, prerequisite, &)

e for the role whose associated entity type is Provider (primary) : (Provider
(primary), cardinality, (0,1)), (Provider (primary), value type, @), (Provider
(primary), value type, &), (Provider (primary), prerequisite, o)

I

e for the attribute Code : (Code, value type, integer), (Code, value type,
real), (Code, value type, boolean), (Code, value type, date), (Code, value size,
0)

e for the attribute Price : (Price, cardinality, (1,1)), (Price, value type,

-+

would also yield the following valid constraints suggestions:

integer), (Price, value size, 0), (Price, prerequisite, {Brand, Description,
Provider (primary), Provider (secondary)})

e for the role whose associated entity type is Provider (primary) : (Provider
(primary), cardinality, (1, 1)), (Provider (primary), prerequisite, {Brand,
Description, Price, Provider (secondary)})

Existence constraints

Let 2., 2., =, respectively be the enforced, valid and discarded existence con-
straints for e. The enforced constraints are the constraints implicitly or explic-
itly expressed during the drawing phase, while the valid constraints regroup
all the other constraints that could be valid at this point. This implies that
any subset of optional components that isn’t enforced and has more than one
element could be subject to a existence constraint.

Algorithm hence formalises the initialisation process for the existence
constraints. For instance, if entity type Special Good of Fig. had no ini-
tially enforced existence constraints, this could yield the following valid coex-
istence ones: ({Conditions, Description, Price}, coexistence), ({Conditions,
Description}, coexistence), ({Conditions, Price}, coexistence), ({Description,
Price}, coexistence).

Functional dependencies and Armstrong relations

Let §e, 38, §. respectively be the enforced, valid and discarded functional de-
pendencies for e. The ideal process should lead us to build a set of data samples
and dependencies so that each entity type of the underlying conceptual schema
becomes an Armstrong relation (i.e. a relation that satisfies each FD implied
by a given set of functional dependencies, but no functional dependency that
is not implied by that set). Reaching such a state is obviously not trivial per

136 Chapter 8. Nurture

Algorithm 8.1 InitTechnicalConstraints : Initialise the technical constraints
for the components of a given entity type (1/2)

Require: e is an entity type

Ensure: O., ©., O, are respectively the initially enforced, valid and discarded tech-
nical constraints for e

1: procedure INITTECHNICALCONSTRAINTS(e, O, O, ©.)

2 Oc, O, O, 0

3 C « getComponents(e)

4 C' + getOptionalComponents(e)

5: for all C' € C do

6: mincard + get MinimumCardinality(C)

7 mazcard < getMazimumCardinality(C)

8 O + ©. U {(C, cardinality, (mincard, mazcard)}

9

: V< I
10: s§< I
11: if getT'ype(C) = SIMPLEATTRIBUTE then
12: v <« getValueType(C)
13: s« getValueSize(C)
14: end if
15: O + ©. U {(C, value type, v)}
16: Oc + ©. U {(C, value size, s)}
17: o
18: if mincard = 0 then
19: r < get PrerequisiteComponents(C')
20: end if
21: Oc + ©. U {(C, prerequisite, r)}
22: pC < Dom(cardinality)\{(mincard, mazcard)}
23: if mincard > 0 then
24: pC « pC\{(0, 1), (0, N)}
25: end if
26: if mazcard =1 then
27: pC < pC\{(0, N), (1, N)}
28: end if
29: for all ¢; € pC do
30: O, + 6. U{(C, cardinality, &)}
31: end for
32: pV 0
33: if getType(C) = SIMPLEATTRIBUTE then
34: if v = text then
35: pV <+ Dom(value type)\{text}
36: else if v = real then
37: pV « {integer}
38: end if
39: O, + 6. U{(C, value size, 0)}

40: end if

8.4.2. Initialisation 137

Algorithm 8.2 InitTechnicalConstraints (2/2)

41: for all v; € pV do

42: O, + 6. U{(C, value type, ¥;)}
43: end for

44: 70

45: if mincard = 0 then

46: 7+ {Ci£Ce(l'}

47: end if

48: O, < 6. U{(C, prerequisite, 7)}

49: end for
50: end procedure

Algorithm 8.3 InitExistenceConstraints : Initialise the existence constraints

for a given entity type

Require: e is an entity type

Ensure: E., =, =, are respectively the initially enforced, valid and discarded exis-
tence constraints for e

1: procedure INITEXISTENCECONSTRAINTS(e, Ee, Ee, Ee)

2 Ee, e, Be < 0

3 C' + getOptionalComponents(e)

4 existenceconstraints « getExistenceConstraints(e)

5: for all existenceconstraint; € existenceconstraints do

6 X getEmistenceComponents(ewistenceconstrainti)
7 pi < getExistenceType(existenceconstraint;)

8 EE (*EEU{(XZ,pl)}

9

: end for
10: for all X; C C' with || > 1 do
11: for all p;, € E do
12: Ee — Ee U {(XZ, pz)}
13: end for
14: end for
150 He B \Ee

16: end procedure

se, and these principles are here inapplicable as a side effect of user involve-
ment. However, we can try to near it by progressively narrowing the functional
dependencies.

Since the number of possible functional dependencies for each entity types
can be very high, we prefer to initialise a set of high-level possible dependen-
cies, which would be the most general yet restrictive ones. These high-level
dependencies claim that any component of a given entity type could determine
the combined values of the other components. From these dependencies, we
will be able to recursively generate weaker functional dependencies to cover all

138 Chapter 8. Nurture

the existing ones, by progressively reducing the right-hand sides and enlarging
the left-hand sides. The objective is to favour functional dependencies with
minimal left-hand sides and maximal right-hand sides.

Algorithm formalises the initialisation process for the technical con-
straints. For the entity type Shop associated with its homographic form in
Fig. , this would yield the following top-level functional dependencies (con-

sidering that Address is the target entity type of the role played by Shop):
e for Shop: {Shop Name} — {Telephone, Address}, {Telephone} — {Shop Name,
Address}, {Address} — {Telephone, Shop Name}.

e for the associated Address: {Street} — {Zip code, City}, {Zip code} —
{Street, City}, {City} — {Zip code, Street}.

One might notice that we also consider optional components as possible
members of the left-hand of functional dependencies. Indeed, we actually con-
sider the null value (also noted &) as a value as such.

Algorithm 8.4 InitFunctionalDependencies : Initialise the functional depen-

dencies for a given entity type

Require: e is an entity type

Ensure: ., §e, e are respectively the initially enforced, valid and discarded func-
tional dependencies for e

1: procedure INITFUNCTIONALDEPENDENCIES(€e, Fe, Fe, @e)
2 3; + get Functional Dependencies(e)
3. if 5. # 0 then
ot 5o« 3.
5: else
6 e 0

7 end if

8 C + getComponents(e)

9: Se e {f:{C} = C\{C} | CeC}
10: Fe 0
11: end procedure

Unique constraints

Let Y., T. and Y. respectively be the enforced, valid and discarded unique
constraints for e. The enforced constraints are the constraints implicitly or ex-
plicitly expressed during the drawing phase, while the valid constraints should
regroup all the other constraints that could be valid at this point. However,
similarly to the functional dependencies, we prefer to start with high-level pos-

8.4.3. Analysing new data samples to suggest constraints & dependencies139

sible identifiers, i.e. single attributes that could identify the entity type by
themselves.

Algorithm 8.5 formalises the initialisation process for the unique constraints.
This would yield the following unique sets for entity type labelled Service in
Fig. : {Code}, {Description}, {Hourly rate}.

For unique constraints, we also consider optional components as possible
members of the valid identifiers. Indeed, we actually consider the null value
(also noted @) as a value as such. We will discuss the implications of enforcing
such a constraint later on.

Algorithm 8.5 InitUniqueConstraints : Initialise the unique constraints for a

given entity type

Require: e is an entity type

Ensure: Y., T., T. are respectively the initially enforced, valid and discarded
unique constraints for e

1: procedure INITUNIQUECONSTRAINTS(e, Te, Te, Te)

2 Ye,Te,Te 0

3 C < getComponents(e)

4 uniqueconstraints < getUniqueConstraints(e)

5: for all uniqueconstraint; € uniqueconstraints do
6 X; + getUniqueComponents(uniqueconstraint;)
7 pi < getUniqueType(uniqueconstraint;)

8 T, (*TGU{(XZ',;DZ‘)}

9

: end for
10: for all C; € C do
11: for all p, € U do
12 To T U{{C},p0)}
13: end for

14: end for
15: Te + Te\Te
16: end procedure

8.4.3 Analysing new data samples to suggest constraints and de-
pendencies

Once the sets of constraints and dependencies have been initialised, we can
take advantage of user input to acquire data samples that will progressively
reduce the set of valid but unenforced constraints and dependencies. To be
consistent with the previously enforced constraints and dependencies, any new
tuple must respect the latter to be accepted.

Once a new tuple is acceptable, we can proceed with its analysis to deter-
mine which previously valid constraints and dependencies do not stand any

140 Chapter 8. Nurture

more. The invalidated constraints are discarded, while the invalidated func-
tional dependencies are replaced by alternative dependencies.

Algorithm formalises this process for the acquisition of a data sample
for a form F and its associated set of entity types €r. The updating process
for each of the sets of constraints and dependencies are detailed subsequently.

Algorithm 8.6 AddDataSample : Add a data sample
Require: Fis a form A € is the set of entity types associated with F’
Ensure: ()

1: procedure ADDDATASAMPLE(F, €F)

2 d<+—o

3 while d = @ do

4 Ask> define: d = {(es,t:)|(es € €r) A (t: is a tuple for e;)}

5: if d is a data sample for e then

6 dataSamplel sV alid < true

7 for all (e;, ;) € d do

8: if(30€0., T, U{ti}EOHVEEEE., T, U{t:i} EEV(3Sfe
e, » Te, U{tit FE f)V (Fv e T, : Te, U{ti} = v) then

9 dataSamplelsValid < false

10: end if

11: end for

12: if dataSamplelsV alid = true then

13: for all (e;,t;) € d do

14: UPDATETECHNICALCONSTRAINTS(e;, Te; , ti, 9€, ; € @ J)

15: UPDATEEXISTENCECONSTRAINTS (€5, Te,, ti, Ze; , e,)

16: UPDATEFUNCTIONALDEPENDENCIEb(e,, 7; R tl, Seb R SeL R Se)
17: UPDATEUNIQUECONSTRAINTS (€5, Te;, ti, Te,, Te,; e, Te)
18: 7;1. — 7;1. U {tz}

19: end for

20: else

21: d+— o

22: end if

23: else

24: d+ o

25: end if

26: end while
27: end procedure

Technical constraints

Once we add a new tuple to the set of tuples associated with a given entity
type, discarding the valid technical constraints that do not stand any more

8.4.3. Analysing new data samples to suggest constraints & dependencies141

is relatively straightforward, since it consists in removing the constraints with
which the tuple does not agree.

Regarding the cardinalities, we remove the possible mandatory constraints
for components that are empty, and possible single-valued constraints for com-
ponents that are multivalued. For the attributes, we remove the value type
constraints that are not compatible with the value provided for each attribute
and replace the value size if the provided value is longer. Finally, we remove
all the require constraints for optional components if the suggested prerequisite
components are not part of the non empty components of the tuple.

Algorithm formalises this process. Consider for instance the initial con-
straints of Section and the data sample of Fig. . The tuple associated
with the entity type Product invalidates the following constraints:

e for the attribute Code : (Code, value type, integer), (Code, value type,
real), (Code, value type, boolean), (Code, value type, date), (Code, value size,
0)

e for the attribute Price: (Price, value size, 0), (Price, prerequisite, {Brand,
Description, Provider (primary), Provider (secondary)})

e for the role whose associated entity type is Provider (primary) : (Provider (primary),
prerequisite, {Brand, Description, Price, Provider (secondary)})

In return, it generated these alternative valid constraints:

e for the attribute Code : (Code, value size, 7)

e for the attribute Price: (Price, value size, 3), (Price, prerequisite, {Brand,
Description, Provider (primary)})

e for the role whose associated entity type is Provider (primary) : (Provider (primary),
prerequisite, {Brand, Description, Price})

P FRODIGI)

Code FRD0207 -

Description | Fridae s SHECTAL G001 D
Brand KUHLER Code CcM268 =
Price 499 Description

Provider (primary) Price 74,99

Name i . =
Kuhier Beldum Conditions | During sales only!

Provider (secondary)

Name -

Figure 8.1: Data samples for the forms Product and Special good.

142 Chapter 8. Nurture

Algorithm 8.7 UpdateTechnicalConstraints : Update the technical con-
straints for a given entity type
Require: e is an entity type
A Te is the current set of tuples associated with e
A t is a tuple to be added to 7.
A (;)e, O, are the currently valid and discarded technical constraints for e
Ensure: ©., O, are the updated valid and discarded technical constraints for e and
the set of tuples 7. U {t}

1: procedure UPDATETECHNICALCONSTRAINTS(e, 7e, t, 6., 06.)

2: C «+ getComponents(e)

3: C' + getOptionalComponents(e)

4: C" {CL c C’\t[CZ] 75 @}

5: @/e — 0

6: for all C; € C do

7 if ¢t[{C;] = @ then

8: 0.+ .U {(Cy, cardinality, v;;) € Oc|vi; € {(1,1),(1,N)}}
9: else if |¢t[C;]| > 1 then

10: . + O, U{(Cy, cardinality,v;,) € Oclvi, € {(0,1),(1,1)}}
11: end if

12: if getType(C;) = SIMPLEATTRIBUTE then

13: V + getPossibleV alueTypes(t[C;])

14: 0.+ .U {(Ci,value type,v;;) € Oclvi, ¢ V}

15: s « getValueSize(t|C}])

16: S < {vi;|3(Cs, value size,v;;) € 6.}

17: if s > Max(S) then

18: 0.+ O, U {(Ci,value size,v;;) € @e\wj €S}

19: O, + 6. U {(C;,value size,s)}
20: end if

21: end if

22: if t[C;] # @ then

23: O, + O, U{(C;,prerequisite,v;,) € Oclvi, Z C"\{C;}}
24: end if

25: end for

2: 0.+ 0.,\0,

27 0.+ 6.U6,
28: end procedure

Existence constraints

Once we add a new tuple to the set of tuples associated with a given entity
type, discarding the valid existence constraints that do not stand any more also
consists in removing the constraints with which the tuple does not agree.

Consequently, coexistence constraints are removed if their set of components

8.4.3. Analysing new data samples to suggest constraints & dependencies143

is different from the set of non empty optional components of the tuple. Exactly
one, at most one and at least one constraints are respectively removed if there
is not one and only one, more than one or less than one of their components
that is not null among the set of non empty optional components of the tuple.
Algorithm formalises this process. Consider for instance the initial con-
straints of Section and the data sample of Fig. 8.1. The tuple associated
with the entity type Special good invalidates:

e the following coexistence constraints: ({Conditions, Description, Price},
coexistence), ({Conditions, Description}, coexistence), ({ Description, Price},
coexistence)

e the following exactly one constraints: ({Conditions, Description, Price},
exactly one), ({Conditions, Price}, exactly one)

e the following at most one constraints: ({Conditions, Description, Price},

at most omne), ({Conditions, Price}, at most one)

e no least one constraints.

Algorithm 8.8 UpdateExistenceConstraints : Update the existence con-
straints for a given entity type
Require: e is an entity type
A Te is the current set of tuples associated with e
A t is a tuple to be added to Te
A Ze, Ee are the currently valid and discarded existence constraints for e
Ensure: Ee, =, are the updated valid and discarded existence constraints for e and
the set of tuples 7. U {t}

1: procedure UPDATEEXISTENCECONSTRAINTS (¢, Te, t, Ze, Z)
2: C' + getOptionalComponents(e)
3: C" {CZ S C’\t[Cl] 75 @}
4: for all & = (X, p;) € Ze do
5: if (v; = coexistence AC” # C'AC" # Q) V (v; = exactly oneA|C'NX;| #
1)V (v; = at most one A |C”" N A;| > 1)V (v; = at least one A |C" NX;| < 1)
then

Ee Z\{&:}

e +— Z U {fl}

end if

9: end for
10: end procedure

Functional dependencies

When a new tuple is added, we analyse each valid functional dependency to
check if there is an existing tuple of the tuple base that is conflictual, i.e. if an

144 Chapter 8. Nurture

existing tuple has the same left-hand side but a different right-hand side when
considering the components of the functional dependency. If such a conflict-
ual tuple exists, the functional dependency is discarded and alternatives are
recursively generated.

First of all, this implies that the right-hand side is too large with respect to
left-hand side, and we therefore consider smaller right-hand sides by removing
a component. The removed component may be purely dismissed, or added to
the left-hand side to consequently generate two alternatives per component.

Algorithm formalises this process. Consider for instance the initial func-
tional dependencies of Section and the data samples of Fig. 8.2. If the set
of tuples was initially empty, adding the first tuple doesn’t jeopardise these
dependencies. However, adding the second tuple invalidates the following de-
pendencies:

o for Shop: {Telephone} — {Shop Name, Address}.

e for the associated Address: {Zip code} — {Street, City}, {City} — {Zip code,

Street}.

In return, it yields the following alternative valid dependencies:

e for Shop:

— {Telephone, Shop Name} — {Address}
— {Telephone, Address} — {Shop Name}

e for the associated Address:

— {Street,Zip code} — {City}
— {Street,City} — {Zip code}
— {Zip code} — {City}
— {City} — {Zip code}

= SHOP [= SHOP =]

=

Shop name | Full Metal = Shop name | Wing's

Address

Street |Iron Street
Zip code | 5000

City Namur

Telephone

Address

Street | Angel Street
Zip code | 5000

City Namur

Telephone

Figure 8.2: Data samples for the form Shop.

8.4.3. Analysing new data samples to suggest constraints & dependencies145

Algorithm 8.9 UpdateFunctionalDependencies : Update the functional de-
pendencies for a given entity type
Require: e is an entity type
A Te is the current set of tuples associated with e
A t is a tuple to be added to 7.
A Fe, §e, e are respectively the currently enforced, valid and discarded functional
dependencies for e
Ensure: §., 3. are the updated valid and discarded functional dependencies for e
and the set of tuples 7. U {t}

1: procedure UPDATEFUNCTIONALDEPENDENCIES(e, Te, t, §e, Fe, §e)
2 for all f; : £L; - R; € §. do

3: if Htj cTe: t; [El} = t[ﬁl] Atj [Rl} ;é t[RL] then

" Se — SMA

5: e S U{fi} o

6 GENERATEALTERNATIVES(fi, §e, Ses e, Te U {t})

7 end if
8: end for
9: end procedure

Algorithm 8.10 GenerateAlternatives : Recursively generate alternatives
“weaker” functional dependencies from the given one

Require: f is an unsatisfied functional dependency for a given entity type e
A T is a set of tuples for e
A F, §, § are respectively the currently enforced, valid and discarded functional
dependencies for e

Ensure: §, §, § are respectively the enforced, valid and discarded functional depen-
dencies for e that have been updated to include the alternatives for f

1: procedure GENERATEALTERNATIVES(f : £ = R, 5,5, & T)

2 if |R| > 1 then

3 for all C' € R do

4: GENERATEALTERNATIVEBRANCH(f1 : £ — R\{C}, %, 5,5, T)
5: GENERATEALTERNATIVEBRANCH(f2 : LU {C} — R\{C},5,5,5.T)
6:

7 end for

8 end if

9: end procedure

Unique constraints

When adding a new tuple, that valid unique constraints can be easily verified
by checking if an existing tuple already has the same values for the set of
identifying components. Another option consists in taking advantage of the

146 Chapter 8. Nurture

Algorithm 8.11 GenerateAlternativeBranch : Tests a candidate functional
dependency and generates alternatives if necessary
Require: f is a candidate functional dependency for a given entity type e

A T is a set of tuples for e
A §, §, § are respectively the currently enforced, valid and discarded functional
dependencies for e

Ensure: §, §, § are respectively the enforced, valid and discarded functional depen-
dencies for e that have been updated to include f and, if relevant, its alternatives

1: procedure GENERATEALTERNATIVEBRANCH(f,§, &, 5, T)
2 if f¢ (FUSUF) then

3 if (7 |= f)A(f ¢ 3) then

4 S« sU{f}

5: else

6 T SU{f} o

7 GENERATEALTERNATIVE(f, §, 5,5, T)

8: end if

9: end if

10: end procedure

fact that an enforced or valid functional dependency may induce an identifier
for an entity type, if all the components of this entity type are mentioned in
the left-hand or right-hand side of the functional dependency.

Algorithm formalises this observation to update the sets of unique
constraints. Consider for instance the initial constraints of Section and the
data samples of Fig. for the entity type Special good. If the set of tuples
was initially empty, adding the first tuple doesn’t jeopardise these dependencies.
However, adding the second tuple invalidates the unique constraints associated
with {Description}. In return, it yields the following alternative possible sets
of identifiers: {Code,Description}, {Description,Hourly rate}.

= SERVIGE [= SERVIGE [
Code TECHASSIST * Code HELPDESK =
Description | Assistance Description | Assistance

Hourly rate | 25 Hourly rate | 0

Figure 8.3: Data samples for the form Service.

Generating problematic tuples to help manage constraints and dependencies

Understanding the implications of a functional dependency is not always trivial
and easy to grasp. Presenting the end-users with automatically generated data

8.4.3. Analysing new data samples to suggest constraints & dependencies147

Algorithm 8.12 UpdateUniqueConstraints : Update the unique constraints
for a given entity type

Require: e is an entity type
A Te is the current set of tuples associated with e
A t is a tuple to be added to 7.
A T, T. are respectively the currently valid and discarded unique constraints
for e

Ensure: T., Y. are respectively the updated valid and discarded unique constraints
for e and the set of tuples 7. U {t}

1: procedure UPDATEUNIQUECONSTRAINTS(e, 7o, t, Te, Te, Fe, Se)
C < getComponents(e)
C* + getMandatoryComponents(e)
T, « 0
for all f; : £; = R; € (§e UT.) do
if (£; UR; =C) then
Y.+ Y. U {(Li,primary), (L;, secondary)}

— =
= O
o

12:
13: end procedure

samples that would jeopardize the validity of existing functional dependencies
could therefore help them to visualise the relevance of these dependencies, while
reducing the number of tuples that they would need to provide by themselves.

As we can observe, a tuple t is actually problematic for the functional
dependency f : £L — R and the existing set of tuples 7 if: 3’ € T : t'[L] =
t[L] A [R] # t[R].

If we already have several tuples in the tuples set of a given entity type,

we can therefore generate problematic tuples using Algorithm . For in-
stance, the set of tuples built from the two data samples of Fig. could
yield the problematic data sample of Fig. for the functional dependency

{Shop Name} — {Telephone, Address}.

Accepting the problematic data sample would imply discarding this func-
tional dependency, but also consequently discard the following dependencies,
for which alternatives must be generated:

e {Address} — {Shop Name,Telephone}
e {Telephone, Shop Name} — {Address}
e {Telephone, Address} — {Shop Name}

148 Chapter 8. Nurture

Algorithm 8.13 GenerateProblematicTuple : Tests a candidate functional
dependency and generates alternatives if necessary
Require: f is functional dependency for a given entity type e
AT = {t1,t2,...} is a set of tuples for e
Ensure: t is a problematic tuple for f or is @ it is was impossible to create it

1: procedure GENERATEPROBLEMATICTUPLE(f, T, §, & T)
2 t+— g

3 141

4 while i <|T|At=@ do

5: j+1

6: while j <|T|At=@ do
7 if i # j then

8 t<t;

9: t[R] « t;[R]
10: end if
11: if t € T then
12: t+— g
13: end if
14: j—j+1
15: end while
16: if t € T then
17: t— O
18: end if
19: 14 1+1

20: end while
21: end procedure

SHOE]
Shop name | Full Metal *
Address

Street | Angel Street
Zip code | 5000
City Mamur

Telephone

Figure 8.4: A problematic data sample for the form Shop.

Besides, this would impacts on the possible identifiers of Shop, and could
have also impacted the existence constraints if the problematic tuple had been
generated from other tuples (this would have obviously required a more popu-
lated set of tuples).

In order to propose original problematic tuples, it is appropriate to store

8.4.4. Acquiring constraints and dependencies 149

the discarded problematic tuples into a set 7T, for each entity type e.

8.4.4 Acquiring constraints and dependencies

Another way to take advantage of user input is to directly acquire enforced
or discarded constraints and dependencies, whenever they are trivial and easy
to express for the participants. An alternative is to invite the end-users to
arbitrate the valid constraints and dependencies that could be suggested after
the acquisition of multiple data samples.

Directly providing constraints and dependencies

The end-users should be able to directly specify enforced or discarded con-
straints and dependencies, even without looking at possible suggestions. To be
accepted as enforced, a given constraint or dependency must be satisfied by
the existing set of tuples associated with the considered entity type. On the
other hand, it can be discarded as long as it still qualifies as a constraint or
dependency for the given entity type.

Let § be a candidate constraint or a dependency for the entity type e with
the set of tuples 7.. Let A, and A, respectively be the sets of enforced and
discarded constraints or dependencies of the same type than . Algorithm
formalises this acquisition process.

Algorithm 8.14 EnforceOrDiscardCandidateConstraint : Enforce or discard
a candidate constraint or dependency
Require: § is a constraint or dependency for a given entity type e
A Te is a set of tuples for e
A Ae, A, are the sets of currently enforced and discarded constraints or depen-
dencies of the same type than ¢ for e
A « is true if the constraint should be enforced, and false if it should be dis-
carded
Ensure: A. contains ¢ if it is satisfied by 7e, and A. contains it otherwise

1: procedure ENFORCEORDISCARDCANDIDATECONSTRAINT(S, T, Ae, Ac, a)

2: if 0 is a technical, existence, functional or unique constraint or dependency
for e then

3: if 7. E 0 A a = true then

4: A +— A U{0}

5: else

6: Ae — Ae U {5}

7 end if

8: end if

9: end procedure

150 Chapter 8. Nurture

Arbitrating valid constraints and dependencies

Alternatively, the participants can also take advantage of the valid constraints
and dependencies to arbitrate them, i.e. to enforce or discard them. The
advantages of this approach are that the participants do not have to imagine
all the possible constraints and dependencies for each entity type, and that we
directly know that each candidate constraint or dependency is currently valid
for the given entity type. Algorithm formalises this acquisition process.

Algorithm 8.15 EnforceOrDiscardValidConstraint : Enforce or discard a can-
didate constraint or dependency

Require: § € A, is a valid and unenforced constraint or dependency for a given
entity type e
A Ae, A. are the sets of currently enforced and discarded constraints or depen-
dencies of the same type than ¢ for e
A « is true if the constraint should be enforced, and false if it should be dis-
carded

Ensure: A, contains § if it is satisfied by 7, and A, contains it otherwise
A Ae does not contain § anymore

procedure ENFORCEORDISCARDVALIDCONSTRAINT(J, Te, Ae, A, @)
if a = true then
Ao+ A, U {5}
else
A+ A U {6}
end if
end procedure

One can suspect that enforcing or discarding a constraint or a dependency
may impact on the constraints or dependencies of other types. Such a syn-
ergy actually exists between functional dependencies and unique constraints.
Indeed, discarding a valid functional dependency may change the valid unique
constraints, whereas enforcing a unique constraints automatically enforces its
underlying functional dependency. When these cases occur, the relevant sets
must therefore be updated.

Besides, it obviously appears that the number of suggested constraints and
dependencies can eventually become very high. It is therefore crucial to or-
ganise these suggestions in an approachable fashion, so that the end-users do
not feel overwhelmed. Besides, this underlines the importance of the analyst
to guide the end-users through this process, by assessing the relevance of these
suggestions.

This observation is especially true regarding the elicitation of the functional
dependencies, since the number of suggestions can increase dramatically. We

8.4.4. Acquiring constraints and dependencies 151

therefore propose to filter the valid functional dependencies in order to limit
the number of relevant suggestions, while privileging the “stronger” functional
dependencies (i.e. the dependencies with smaller left-hand side and larger
right-hand side, as previously explained).

For this purpose, we therefore propose to “hide” dependencies that can
be obtained from other valid dependencies using Armstrong’s axioms (recall
Section). For a given entity type e, let us consider two different functional
dependencies of §., namely f; : £; — R; and fi + L; = R;. In particular, we
will hide f; if one of the following situations occurs:

1. .; Cﬁj AR; :Rj

2. L; :Ej AR; DRj

3. E'W?é@ﬁlUW:E]/\RZUW:RJ

4. HW#(Z)ZﬂZ‘UWZEj/\Ri:RjUW

In the first case, the left-hand side of f; is smaller than the one of f; and their
right-hand sides are equal, which makes f; redundant and gives f; more weight
in the balance. In the second case, f; can be obtained from f; by decomposition,
which makes it redundant. In the third case, f; can be obtained from f; by
augmentation. We can indeed observe that the left-hand sides and right-hand
sides only differ by the same set of components. Finally, in the fourth case, we
can decompose f; into £; =+ W and £; — R;, from which f; : L, UW — R;
can be deduced.

Hiding these functional dependencies does not mean discarding them. In-
deed, they are still valid, and may eventually become visible again with the
progressive arbitration of the other dependencies. Still, this filtering should
help keeping the focus of the end-users.

Preventing stalemates

One of the major risks during this process is to gather conflictual or problem-
atic constraints or dependencies that would lead to a stalemate. Consider for
instance a set of component X'. Declaring that the components of X should
coexist and simultaneously that there should be at least one of them creates
a puzzling situation since one constraint cannot be satisfied without infringing
the other.

Detection mechanisms can obviously be set to detect these kinds of situa-
tion. However, this also highlights once again the primordial role of the analyst
in our approach, as he is the most suited person to notice and prevent such
cases. He should therefore help the end-users to avoid them by guiding him
into structuring their decisions in the most consistent fashion.

152 Chapter 8. Nurture

8.4.5 Editing the set of valid tuples and the sets of enforced con-
straints and dependencies

During this phase, the necessity to delete or edit a tuple t € T, for a given
entity type e may occur. Similarly, an enforced FD may need to be edited
or dismissed. Modifying these sets can be problematic, since they can create
different types of conflicts.

Deleting and/or editing valid tuples

Deleting a tuple does not jeopardize the currently enforced and valid constraints
and dependencies, but it could render previously discarded constraints and
dependencies valid again. It is therefore important to recheck the latter, as
formalised by Algorithm

In contrast, editing a tuple can not contradict the currently enforced con-
straints and dependencies, and it can impact on the valid and discarded depen-
dencies. Simply put, editing a tuple is actually similar to deleting and existing
tuple then adding a new one.

Dismissing and/or editing enforced constraints and dependencies

Dismissing an enforced constraint or dependency d for an entity type e simply
comes down to moving it from its set A, to A, since it is still satisfied by the
current set of tuples 7.

However, editing an enforced constraint is more problematic, as it must still
be satisfied by 7T.. This actually implies that editing a constraint or dependency
is equivalent to discarding it, then choosing its replacement among the set of
valid constraints or dependencies of the same type. The sole exception concerns
the value size constraint for attributes, which can be edited as long as it
doesn’t conflict with the existing set of valid tuples.

8.4.6 Processing the end-users decisions

Whenever the participants are satisfied with their sets of tuples and enforced
constraints and dependencies, we can proceed with the processing of their de-
cisions to update the components of the pre-integrated schema s, as well as the
form-based interfaces. This process should ideally occur once there is not more
valid constraints or dependencies, i.e. they are all either enforced or discarded,
but this is not mandatory. Let us now detail how each enforced type of con-
straints and dependencies are treated. Note that we only present the processes

8.4.6. Processing the end-users decisions 153

Algorithm 8.16 RemoveTuple : Remove a valid tuple from the given set of
tuples and update the constraints and dependencies accordingly.
Require: t is a valid tuple of 7.
A Te is a set of tuples for a given entity type e
Ensure: O., 0., E., Z¢, §e, Se, Te, Te are updated to take in account the previously
discarded constraints and dependencies that are now valid again

1: procedure REMOVETUPLE(Z, 7e)
2 Te + Te\t

3 for all € ©. do

4 if 7. = 0 then

5: .+ 6.U {6}
6 O, + 6.\{0}
7 end if

8 end for

9: for all £ € =. do
10: if 7. = ¢ then
11: Ze «— Z.U{E}
12: Ze + EN\{¢}
13: end if

14: end for

15: for all f € 5. do

16: if 7. = f then
17: Fe < T U{f}
18: Fe — F\{S}
19: end if
20: end for
21: for all v € Y. do
22: if 7. = v then
23: T, T.U{v}
24: Te + T\ {v}
25: end if

26: end for
27: end procedure

for the entity types for the sake of brevity, but also because the updating of
the forms is intuitively similar.

Technical constraints

Since the set of enhanced technical constraints contains one constraint per com-
ponent and type of technical constraint, the easiest way to process the users
decision is to treat them one by one to update the underlying data model
accordingly. Algorithm formalises this processing for the technical con-
straints.

154 Chapter 8. Nurture

Algorithm 8.17 ProcessTechnicalConstraints : Process the technical con-
straints for the components of a given entity type

Require: e is an entity type
A ©. is the set of enforced technical constraints for e
Ensure: e is updated to take into account the enforced constraints

1: procedure PROCESSTECHNICALCONSTRAINTS(e, ©.)

2: C « getComponents(e)

3: A getAttributes(e)

4: for all C € C do

5: (mincard, mazcard) < v;|(C, cardinality, (mincard, mazcard)) € O,
6: set MinimumCardinality(C, mincard)
7 set M azimumCardinality(C, mazcard)
8: r < v;](C, cardinality, v;) € ©,

9: setPrerequisiteComponents(C,r)
10: if C € A then
11: v < v;|(C, value type,v;) € O,
12: setValueType(C,v)
13: s < v;|(C,value size,v;) € O,
14: setValueSize(C, s)
15: end if

16: end for
17: end procedure

Consider for instance that the technical constraints ; = (Customer Number,
value type, integer) for the entity type Customer and 03 = (Vat Number,
cardinality, (1, 1)) for the entity type Provider (see Fig.7.14) are enforced.
Processing them will practically modify the value type of the Customer Number
and set Provider as a mandatory component.

Existence constraints

Let 2, be the set of existence constraints that were defined before the nurturing
process, and that can be obtained using Algorithm &.3. The first step consists in
removing all the constraints of E; that do not stand any more, then adding the
constraints that were not included yet. Algorithm formalises this process.

Consider for instance that the existence constraint £ = ({Zip Code, City},
at least one) for the entity type Address (associated with a Customer, as
shown in Fig.) is enforced. Processing them will practically create an group
containing the attributes Zip Code and City in the entity type Address, then
constraint this group with an at least one predicate.

8.4.6. Processing the end-users decisions 155

Algorithm 8.18 ProcessExistenceConstraints : Process the existence con-
straints for a given entity type
Require: e is an entity type
A E,e is the current set of enforced existence constraints for e
A Z, is the initial set of enforced existence constraints for e
Ensure: e is updated to take into account the enforced constraints

1: procedure PROCESSEXISTENCECONSTRAINTS(e, =, E;)
2 =« E.NE,

3 for all & = (X, pi) € E;\E;/ do

4: removeExistenceConstraint(e, p;, X;)

5: end for

6 for all & = (X, pi) € Ee\E;/ do

7 addExistenceConstraint(e, p:, X;)

8 end for

9: end procedure

Functional dependencies

Let F, be the set of functional dependencies that were defined before the nur-
turing process, and that can be obtained using Algorithm 8.4. The first step
consists in removing all the dependencies of }"é that do not stand any more,
then adding the dependencies that were not included yet. Algorithm for-
malises this process.

Algorithm 8.19 ProcessFunctionalDependencies : Process the functional de-
pendencies for a given entity type

Require: e is an entity type

A Fe is the set of enforced functional dependencies for e

A .7:(; is the initial set of enforced functional dependencies for e
Ensure: e is updated to take into account the enforced dependencies

1: procedure PROCESSEXISTENCECONSTRAINTS(e, Fe, f;)
2 F. « F.NF,

3 for all f; = (X, p;) € f;\f! do

4: removeFunctional Dependency(e, f;)

5: end for

6 for all f; = (X;,p;) € fe\f: do

7 addFunctional Dependency(e, f;)

8 end for

9: end procedure

156 Chapter 8. Nurture

Unique constraints

Let T; be the set of unique constraints that were defined before the nurturing

process, and that can be obtained using Algorithm 8.5. The first step consists in
removing all the constraints of T; that do not stand any more, then adding the
constraints that were not included yet. Algorithm formalises this process.

Algorithm 8.20 ProcessUniqueConstraints : Process the unique constraints
for a given entity type
Require: e is an entity type
A Y. is the current set of enforced unique constraints for e
A T,e is the initial set of enforced unique constraints for e
Ensure: e is updated to take into account the enforced constraints

1: procedure PROCESSUNIQUECONSTRAINTS(e, Y, T’e)
2 Y.« Y.NY.

3 for all v; = (X;,p;) € T;\T/e/ do

4: removeUniqueConstraint(e, p;, X;)

5: end for

6 for all v; = (X, pi) € TE\T;/ do

7 addUniqueConstraint(e, pi, X;)

8 end for

9: end procedure

Consider for instance that the unique constraint v = ({Vat number}, primary)
for the entity type Provider is enforced. Processing them will practically cre-
ate an group containing the attribute Vat number in the entity type Provider,
then set this group as a primary identifier for the entity type.

8.5 Output

At the end of this interactive process, the pre-integrated schema s has been
augmented by all the constraints and dependencies that were enforced using the
end-users input. At this point, it is necessary to observe that the constraints
and dependencies that were not explicitly enforced have not been implicitly
added. This underlines once again the importance of the analysts to guide the
end-users appropriately.

After this process, the appearance of the forms is overall the same, the
only visible modifications concerning the cardinality of the fields, and possible
value type and size restrictions when inputting through the forms. The main
modifications therefore concerns the underlying schema. Fig. illustrates
how our running example could have been nurtured. As we can see, there was

8.5. Output 157

no trivial identifier for the different Address entity types, and that no one was
mentioned for the entity type labelled Orders either.

Provder
Name
Vat number

‘ Provider (primary) ‘ Provider (secondary) Street[0-1]

i A1 1= «Refers to» R
Name | Name Zip code[0-1] (—1-1— “Refers ooy

City[0-1]
Telephone[0-1]
Fax[0-1] Address
0-N 0-N id: Vat number| |Street[0-1] "
T |Street number{o-1] g;‘;ﬁfgﬁ”amm"e) Address
Zip code[0-1] Street ber0-1 Street[0-1]
City[o-1] reet rumbar(G-1] |\ odefo-1
. v ZIp code[0-1] p code[0-1]
Senice Telephone[0-1] C'F': o City[0-1]
«Equals» Code atist-1: Zipcods | oW1 ll
= Product Description[0-1] City
o1 o Hourly rate[0-1] O-N
‘ id: Code o-N
Product Special goed 0-; 1 0-1
Code Products Code {
Description[0-1] Code Description[0-1] Customer
Brand[0-1] Quantity Price[0-1] Customer number
Price[0-1] T Conditions[0-1] Refers ooy Firstname oN
id: Code 0-N id: Code - “|Last name [
«Equals» _'I'rtle[0-1]
Shop id: Customer number
1-1 -
«Equals» 1-1
eN ‘ Orders
Order
Order number Orders
Shop name _ |Date[0-1]
Telephone[0-1] O-N——0-1 First name gar?:r 0r}lxmber
id: Shop name Last name {0-1]
id: Order number
1-1 O-N

Figure 8.5: The pre-integrated schema of the example after the nurturing step.

Chapter 9

BIND

Completing the integration of the conceptual schema

In this chapter, we take advantage of the previous steps to complete the integra-
tion process of the different pieces of specification. Based on the pre-integrated
schema obtained during the Investigate phase and the constraints and depen-
dencies obtained through the Nurture phase, the semantically equivalent struc-
tures are arbitrated and integrated into a a non-redundant conceptual schema
representing the data model conveyed by the user-drawn form-based interfaces.

We therefore first expose the elements that need to be arbitrated, then
present our integration strategy. We subsequently explain how to manage the
process, and present the resulting output.

9.1 Delimiting elements to integrate

As can be observed in Fig. , there are still different types of challenges to
arbitrate at this point of the RAINBOW process. They notably concern the
appropriate moving and integration of:

e the components of entity types involved in IS-A hierarchies that can be
upwardly inherited;

e the components of entity types that are actually references to other entity
types;

e the attributes of entity types would be better placed in relationship types
involving these entity types;

e the constraints and dependencies involving these components.

159

160 Chapter 9. Bind

As we have seen in Section , different transformational techniques ex-
ist to handle the integration of similar objects into non-redundant structures.
Among these techniques, we choose to work with:

e n-ary integration for handling upward inheritance and solving the con-
straints, because of the potential multiple occurrences of key concepts;

e binary integration for referential components and attributes that need to
be moved from entity types into relationship types.

All these transformations on the schema must maintain the traceability of
elements, so that any widget of the user-drawn form-based interfaces can still
found its counterpart in the data model.

9.2 Managing the process

One of the main challenges inherent to this process is to manage simultaneously
all these transformation, since one does not really prevail on the others. We
will hence present independently each type of sub process that needs to be led
by the participants, and that could be interrupted to start another one. These
sub processes all work around the same elements.

Let us consider &, the set of data elements of the schema s, and £ € &, the
set of entity types of s, which we want to integrate. Since we want to integrate
elements of &, some of them will be removed. We call £%, the set that will
receive those elements, so that we can still access their properties.

Let us also introduce the function ¢ : X — Y, that will contain the mapping
between removed components of entity types and their associated “integrated”
components, i.e. the component by which they are replaced. The set X C 83
is the domain of ¢ (noted Dom(¢)), and the set Y C & is the codomain of ¢
(noted Codomain(¢)).

9.2.1 Arbitrating upward inheritance for IS-A relationships

In this step, we analyse the hierarchical organisation of entity types (declared
as equal, specialised or united during the Investigate step) to discover and
arbitrate components that could be upwardly inherited by supertypes. For
this purpose, let us note e; > e; the fact that e; has e; as supertype.

Since we ensured that there is no hierarchical cycles in schema s, each IS-A
tree has a root supertype, possibly intermediary entity types, and leaf entity
types. The idea is therefore to start by the leaves and recursively arbitrate
their components to decide which ones can be moved to the supertypes.

9.2.1. Arbitrating upward inheritance for IS-A relationships 161

This process can be handled as a discussion between the end-users and the
analysts regarding the definition of a “super” form containing all the information
concerning a given concept.

Practically, for each level of a given hierarchy, the end-users must trans-
parently define the sets of equivalent components that can be replaced by a
single component into the supertype. Typically, this would concern attributes
bearing the same terminology, or roles for relationship types involving the same
entity type.

Consequently, a new component is created and the equivalent components
are removed from the schema but stored in order to arbitrate their properties
and constraints later on. Algorithm formalises this process.

Algorithm 9.1 MovelnheritedComponents : arbitrate and move the relevant
components from entity types to their supertypes

Require: € is the set of entity types to be arbitrated

A ¢ is the mapping function between components and their integrated counterpart
Ensure: € is updated

A ¢ is updated

1: procedure MOVEINHERITEDCOMPONENTS(E)

2 C{e;c€(TejeCiej>e)A(Per € €:eii>ep)}
3: for all e € ¢ do

4 MOVEINHERITEDCOMPONENTSRECURSIVE(e, &, ¢)

end for
end procedure

Take for instance the hierarchy with Solution as root in Fig. . We
start by confronting Product, Products and Solution, for which the user
may decide to move and integrate the following components into the supertype
Product:

e Code from Product, Products and Special Good

e Description from Product and Special Good

e Brand from Product

e Price from Product and Special Good

e the role leading to Provider (primary) from Product

e the role leading to Provider (secondary) from Product

e the role leading to Order from Products

Then, the supertype Product is confronted to Service, for which the user
may decide to move and integrate the following components into the supertype
Solution:

162 Chapter 9. Bind

Algorithm 9.2 MovelnheritedComponentsRecursive : Recursively arbitrate
and move the relevant components to the given entity type from its subtypes
(1/2)
Require: e is the supertype for which the components must be arbitrated

A € is a set of entity types containing the subtypes of e

A ¢ is the mapping function between components and their integrated counterpart
Ensure: e is updated with new components that represent the integration of arbi-

trated components from the subtypes

A ¢ is updated accordingly

1: procedure MOVEINHERITEDCOMPONENTSRECURSIVE(e, €, ¢)

2: E—{eic€|e>e}

3: for all e; € £ do

4: if Je; € £ | ¢ > e; then

5: MOVEINHERITEDCOMPONENTSRECURSIVE(e;, €, ¢)

6: end if

7 end for

8: for all e; € £ do

9: Ce,; + getComponents(e;)

10: for all C; € Ce,; do

11:

12: Ci+ ({Ci3u{C; £Ci | (Fe; € £: Cj € getComponents(e;)) A (Cj =
Ci) N (getType(C;) = getType(Ci))})

13:

14: Ask> define: C! C ¢ | VC;,C, € C Fejen € € @ C) €
getComponents(e;) A C, € getComponents(er) A e; # ek

15: if C! # 0 then

16: Ce < getComponents(e)

17:

18: Ask> define: C; CC. | (Ci =0) v (3'C € C|C; = {C})

19:

20: if getType(C;) = SIMPLEATTRIBUTE then

21: T {ty [3Cx € C} UC; : getTerm(Cy) = tx}

22: if A1t | T = {t} then

23: Ask> choose/redefine: t

24: end if

25: C*? « createSimpleAttribute(e, t)

26: else

27: ec; < getTarget(C;)

28: R <+ createRelationshipType(e, ec,)

29: C* « getRole(e, R)

30: end if

31:

9.2.1. Arbitrating upward inheritance for IS-A relationships 163

Algorithm 9.3 MovelnheritedComponentsRecursive (2/2)

32: Cf «{C; € Dom(¢) | $(C;) € (C}UCi)}
33: for all C; € (C*UC;UCY) do

34: (re)define: ¢(C;) — C*

35: removeComponent(C})

36: end for

37 end if

38: end for

39: end for
40: end procedure

e Code from Product and Service
e Description from Product and Service

e the role leading to Order from Product

Another example is the Order hierarchy. When Order is confronted with
Orders, the user may decide to move and integrate the following components
into the supertype:

e Order number from Order and Orders
e Date from Order and Orders

e the roles leading to Customer from Order and Orders

Once the analysis of a hierarchy is completed, it may appear (possibly after
leading other sub processes) that some entity types of the hierarchy are left
with one or less components. The analyst should therefore decide if such entity
types should be maintained, for instance for the legibility of the schema, or if
it could be transformed, for instance, into a boolean attribute in the subtype.

In our example, we could end up with an empty subtype Product and a
Seasonal good containing only the attribute Conditions. The entity type
Product could therefore be simply deleted (after updating ¢ so that ¢(Product)
produces its supertype), while Seasonal good containing could be main-
tained, or integrated with its supertype.

Since there are multiple ways to handle these transformations and refine,
this process should be left at the discretion of the analyst. However, he should
ensure to maintain the traceability of the elements by updating ¢ appropriately.

Another element that must be handled once the hierarchy is “stabilised” is
the definition of its type: disjunction, totality or partition. Once again, this
process is left at the discretion of the analyst.

164 Chapter 9. Bind

9.2.2 Arbitrating referential components

In this step, we analyse the entity types that were declared as referencing others
during the Investigate phase. For this purpose, we examine each of these entity
types and select which components may be moved their referred counterpart.
If the referential role was inherited, the selectable components may be chosen
from the subtypes as well.

Once these components are selected, they are moved and integrated with
their possible counterpart components in the destination entity type. Algo-
rithm formalises this process.

For instance, we observe that Provider refers to Address. The arbitration
could imply moving and integrating Street, Zip Code, City, Telephone and
Fax from Provider into Address. Similarly, First Name and Last Name could
be moved and integrated from Order into Customer.

9.2.3 Dispatching attributes from entity types to relationship types

In this step, we analyse the entity types involved into relationship types, and
for which attributes (or attributes of the subtypes) actually describe a property
of the relationship between these entity types rather than a property of their
current owner.

These attributes are therefore misplaced and should be moved to these
relationship types. This can typically be the case for entity types originally
associated with fieldsets or tables that aggregate information on a given concept
as well as additional details on the relation between that concept and the
concept associated with the parent widget.

Once these attributes are identified, they must be moved into the appropri-
ate relationship type. Algorithm formalises this process.

For instance, an order actually mentions a certain quantity for each prod-
uct that it contains. This implies that Quantity is rather an attribute for
the relationship type existing between a Product and an Order than solely a
Product’s property, and should therefore be moved accordingly.

9.2.4 Solving constraints and dependencies for integrated compo-
nents

Moving and integrating components also implies managing the constraints and
dependencies in which they were involved, and hence completing their spec-
ification. The integrated objects may carry conflictual constraints, or even
invalidate the constraints that were previously defined for (one of) their source
components. We specifically consider two types of conflicts.

9.2.4. Solving constraints and dependencies for integrated components 165

Algorithm 9.4 MoveReferential Components
Require: € is a set of entity types to analyse
A ¢ is the mapping function between components and their integrated counterpart
Ensure: the referential components for each entity type of € are moved and inte-
grated in the referred entity types
A ¢ is updated accordingly

1: procedure MOVEREFERENTIALCOMPONENTS(E&, ¢)
for all e; € € do
Ce, + getComponents(e;) U{C; |Je; € € : C; € getComponents(e;) A
ej > ei}
c
Ei+{e;€€:e; e}

4:
5: for all e; € & do
6: Ce; < getComponents(e;)
7 for all C; € Ce, do
8: Ci+— ({Ciyu{C; #CieC., | C; =C4})
9:
10: ASKk> define: C! C C; | YOk, C, € C!, Jep,er € € : Oy €
getComponents(ex) A Cy € getComponents(e;) A ex # e
11: if C! # 0 then
12: Ce; < getComponents(e;)
13:
14: Ask> define: C; C Ce, | (C; =0) V (3IC € C.,|C; = {C})
15:
16: if getType(C;) = SIMPLEATTRIBUTE then
17: T {t |3Cx, € CPUCi : getTerm(Cr) =t}
18: if 1t | T = {t} then
19: Ask> choose/redefine: ¢
20: end if
21: C! « createSimple Attribute(e;, t)
22: else
23: ec; < getTarget(C;)
24: R <+ createRelationshipType(e;, ec;)
25: C’f < getRole(e;, R)
26: end if
27:
28: Ci +{C; € Dom(g) | $(Cy) € (CEUCi)}
29: for all C; € (C*UC;UCY) do
30: (re)define: ¢(C;) — C?
31: removeComponent(Cy)
32: end for
33: end if
34: end for
35: end for

36: end for
37: end procedure

166 Chapter 9. Bind

Algorithm 9.5 MoveAttributesToRelationship
Require: € is the set of entity types to be analysed
A ¢ is the mapping function between components and their integrated counterpart
Ensure: the components of € that needed to be moved into a relationship type were
effectively moved
A ¢ is updated accordingly

1: procedure MOVEATTRIBUTESTORELATIONSHIP (&, ¢)
for all ¢; € € do
Ae, <+ getSimpleAttributes(e;) U {A;|Fe; € € : A; €
getSimpleAttributes(e;) Aej > e; }

4: Re; < getRoles(e;)

5: for all r; € Re, do

6: R; + getRelationshipType(r;)

7

8: Ask> define: A% C A,

9: if A§ # () then

10: Agr; + getSimpleAttributes(R;)

11:

12: Ask> define: A; C Ag, | (A; =0) v (314 € Ag,|A; = {A})
13:

14: T {tx |FA, € ALU A, : getTerm(Ax) = ti}
15: if §1t | T= {t} then

16: ASK> choose/redefine: ¢

17: end if

18: Ag + createSimple Attribute(R;,t)

19:

20 Al {Ax € Dom() | ¢(Ar) € (AU A;)}
21: for all A, € (Aii U A, UAE) do

22: (re)define: ¢(Ax) — A?-

23: removeComponent(Ay)

24: end for

25: end if

26: end for

27: end for
28: end procedure

First of all, for technical constraints, a constraint becomes problematic if
for the a given component, there are different values associated with the given
property p € T. For instance, the value type could be either real or integer.
In such a case, a unifying value must be chosen.

Secondly, for other types of constraints and dependencies, let X’ be the set
of components originally associated with a constraint or dependency 6. The

9.2.5. Manual modifications 167

set X' can be partitioned into X; C &, the subset of components that were not
updated, and Xo C Dom(¢), the set of updated components. The constraint
d will therefore become problematic if the components of X; U ¢(Xs) do not
belong to the same entity type, or if ¢(X3) has less elements that Xy . There
is no trivial solution for “repairing” such a problem, and the original constraint
must therefore be reconsidered.

Mechanisms for detecting potential conflicts could obviously be set up to
to prevent problematic transformations on-the-fly. However, we rather focus
on integrating non-problematic constraints and dependencies, and to detecting
problematic ones for further manual analysis. Algorithm formalises this
process.

9.2.5 Manual modifications

In addition to these transformations, additional analysis and manipulations
can naturally be performed on the schema s to improve it according to the
subjectivity of the analyst. However, as long as the subsequent transforma-
tions do not jeopardize the semantics of the schema and the previously defined
specifications, they do not require the input of the end-users. In such cases, the
analysts should ensure to maintain the traceability of the elements by updating

¢ appropriately.

9.2.6 Updating the forms

The final step of this process concerns the update process of the form. We
won’t detail the process, but intuitively, for this purpose, we need to propagate
the technical constraints of integrated components to their source widgets.
The invalidated constraints and dependencies need to be removed, while the
constraints and dependencies that were replaced remain valid and consistent
with the current schema.

9.3 Output

At the end of this interactive process, the pre-integrated schema s has been
progressively transformed into an integrated schema, where the constraints and
dependencies previously defined for each entity type, as well as the relationships
specified between entity types have been processed.

Accordingly to the user input, all the redundant elements and structure have
been integrated, misplaced components moved to the appropriate owner, and
the constraints and dependencies have been adapted accordingly. Traceability

168 Chapter 9. Bind

Algorithm 9.6 SolveConstraints : Solves the constraints for which elements
have been transformed
Require: € is the set of entity types to be analysed
A ¢ is the mapping function between components and their integrated counterpart
Ensure: A? is the set of constraints for which updated copies were made
1: A A is the set of constraints that could not be properly integrated

2: procedure SOLVECONSTRAINTS(&, ¢, A! A)
3 AYA
4 for all e € € do
5: Ce + getComponents(e)
6 for all C; € (C. N Codomain(¢)) do
7 © « {0; | Jej € €,0; = (Cj,pj,v;) € Oc, : ¢(C;) = Ci}\A*
8 for all p; € T do
9: YV {vx | 30 = (C1, pj,vk) € O}
10: if v | V = {v} then
11: ASkK> choose/redefine: v
12: end if
13: 0+~ (Ci,pj,v)
14: addConstraint(e;,)
15: end for
16: AP ATUB
17: E{& | 3ej € €€ = (X, p)) € B, : Ci € p(X))P\AF
18: S {fil3e; €€ fi:L; = R; €Fe, : Ci € B(L; UR,)F\A!
19: Y« {v; | Je; € € v; = (X},p;) € e, : Ci € G(X;)F\A!
20: foralld c ZUFUTY do
21: X + getComponents(d)
22: X+ {Ci| (AC; € X : ¢(Cj) =Ci) V (Ci ¢ Dom(p) ANC; € X)}
23: &+ {e € €| 3C € getComponents(e) : C € X'}
24: if (|X]=1X'|)A (e | € ={e}) then
25: R
26: replaceComponents(d’, X, X")
27: addConstraint(e,§’)
28: deleteConstraint(0)
29: AF — APU {5}
30: else
31 A+ AU {6}
32: end if
33: end for
34: end for

35: end for
36: end procedure

9.3. Output 169

between the elements of the form-based interfaces and the elements of the
underlying schema is ensured thanks the mapping function ¢.

After this process, the appearance of the forms is overall the same, the
only visible modifications concerning the cardinality of the fields, and possible
value type and size restrictions when inputting through the forms. The main

modifications therefore concerns the underlying schema. Fig. illustrates
how the running example could have been updated.
Address
Street[0-1]
Street number[0-1]
Zip code[0-1] .
<> oN City[0-1] oN-— < >
1T1 Telephone[0-1]
\ Faxf0-1] |
Provider atst-1: Zip code
Vat number City
Name / \
id: Vat number O/'N 0'{" 11
Solution / \ N
main { alternative
Code Q'N O-N <J N /
O-N— Description[0-1] - | A
A rimary . 0-1 0-1
id Code pnme\ary) kkk\\secondary) \ y
B . 0 1/ Customer
\ 7 Customer number Shop
NS First name Shop name
Senice ~~| Product Last name Telephone[0-1]
Brand[0-1] Title[0-1] id: Shop name |
Hourly rate[0-1] : el : P
Price[0-1] id: Customer number
Al
/\ 0-N
/A P
< >
ad 0-N
Special good 1"1
Conditions[0-1] Order
SN Order number A
\ Quantity y O-N Date[0-1] 0-1—_>
id: Order number|

Figure 9.1: The schema of the running example after the binding phase.

Chapter 10

OBJECTIFY and WANDER

Generating and testing a playable prototype

In this chapter, we address the two last steps of the RAINBOW approach, which
occur after the production of an integrated conceptual schema representing the
underlying data model of the form-based interfaces that were drawn by the
end-users. In order to ultimately validate the requirements conveyed by this
schema, a prototypical application is generated and submitted to the end-users
so they can test it.

Section therefore presents the principles behind the generation and
integration of applicative components, while Section explains how to take
advantage of the generated prototypical application as a means for validation.
However, in this doctoral research, we mainly focused on the previous steps of
the approach and only briefly expose these two steps, since the generation of
the components is straightforward and the manipulation of a reactive prototype
mainly adds another level of validation.

10.1 Objectify

The first stage of this ultimate validation consists in generating and integrating
applicative components from the integrated conceptual schema. As we have
seen, this process is relatively straightforward.

First of all, a database can be automatically generated using the transforma-
tional approach: the integrated conceptual schema is sequentially transformed
into a logical schema, then a physical schema, and finally DDL code, from which

171

172

Chapter 10. Objectify and Wander

an operational database can be created using a compatible Database Manage-
ment System (DBMS). CASE tools have proven very effective in supporting

such

a process.

Given the restrictions that were imposed in the RAINBOW approach, the

automatic transformations that can be recursively applied on its conceptual
structures are the following:

entity types are transformed into tables
monovalued simple attributes are transformed into columns

multivalued simple attributes are transformed into entity types (repre-
sentation by instance)

relationship types with no attributes and that are not N to N are trans-
formed into foreign keys

other relationship types are transformed into entity types

primary identifiers are transformed into primary keys

secondary identifiers are transformed into uniques

entity types with no identifiers receive a technical identifier

domain, requires and existence constraints, as well as functional depen-
dencies are transformed into check predicates

IS-A relationships are transformed into relationship types with existence
constraints, with respect to their type

Subsequently, access keys, spaces and clusters can be generated. After-
wards, if judged relevant by the participants, the database can be populated

with

the data samples provided by the end-users. Fig. illustrates the phys-

ical schema that can be automatically obtained from the schema of Fig. ,
and Listing shows an excerpt of the associated DDL code.

Listing 10.1: Excerpt of the DDL code generated from the schema of Fig.

create table Address (

ID_address char(10) not null,

Street varchar (50),

Street_number varchar (50),

Zip_code varchar (50),

City varchar (50),

Telephone varchar (50),

Fax varchar (50),

constraint ID_ID primary key (ID_address));

create table Customer (

Customer_number numeric (50) not null,

First_name varchar (50) not null,

Last_name varchar (50) not null,

Title varchar (50),

ID_address_main char (10),

ID_address_alternative char (10),

constraint ID_Customer primary key (Customer_number));

10.1.

Objectify

alter table Address add constraint LSTONE_Address
check(Zip_code is not null or City is not null);

alter table Customer add constraint FKmain
foreign key (ID_address_main)
references Address;

alter table Customer add constraint FKalternative
foreign key (ID_address_alternative)
references Address;

create unique index ID_IND on Address (ID_address);

create unique index ID_Customer on Customer (Customer_number);

create index FKmain on Customer (ID_address_main);

create index FKalternative on Customer (ID_address_alternative);

Address
ID_address
Street[0-1]
Street_number{0-1]
Zp_code[0-1]
Gity[0-1]
Telephone[0-1]
Fax[0-1]

id: ID_address
acc
at-st-1: Zp_code
City

Customer

acc

ref. Vat_number_secondary

Provider
Solution Vat_number
Code Name
Description[0-1] ID_address
«subt» Senice[0-1] id: Vat_number
«subt» Product[0-1] acc
id: Code ref. ID_address
ace acc
exact-1: Product
Senice Product
Code
Brand[0-1]
Senice Price[0-1]
Code Vat_number_primary[0-1]
Hourly_rate[0-1] yat_number_secondaw[o—1] Special_good
id: Code id: Code Code
ref acc Conditions[0-1
ref. :’:;t:_number_primary id: Code 10-1]
ref acc

Order_Solution

Order_number
Code
Quantity

Order

id: Code
Order_number

L acc

ref: Code

ref: Orcder_number
acc

Order_number
Date[0-1]
Shop_name[0-1]
Customer_number

/

id: Order_number
acc

ref. Shop_name
acc

ref. Customer_number|
acc

Customer_number
First_name

Last_name

Title[0-1]
ID_address_main[0-1]
ID_address_altemative[0-1]

173

Shop

id: Customer_number
ace
ref. ID_address_main
acc
ref ID_address_alternative
acc

Shop_name
Telephone[0-1]
ID_address

id: Shop_name
acc

ref. ID_address
acc

Figure 10.1: A possible physical schema for the running example.

Once the database has been set up in the DBMS, simple queries SQL to
select, insert, update and delete rows of each table can be automatically gener-
ated. These queries can subsequently be connected to the form-based interfaces
drawn by the end-users in order to make them reactive and report the messages
of the database. The issue of querying through user interfaces has notably been
studied in the Natural Forms Query Language (NFQL) |
Guava framework [

, 2006].

| and the

174 Chapter 10. Objectify and Wander

The final step consists in grouping the user-drawn interfaces in an oper-
ational environment. This implies creating the mechanisms for a central ap-
plication granting navigational access to the forms and between them. The
prototypical application thus created should enable to perform simple consult-
ing and editing actions the database though the form-based interfaces, which
would qualify it as a lightweight data manager for the database.

10.2 Wander

Finally, the last stage consists in confronting the end-users with the prototyp-
ical application to see if the static data requirements that were materialised
correspond to their needs, which should ultimately validate the integrated con-
ceptual schema.

The role of the analyst during this process is therefore to assist the users in
the validation of the model through the use of the prototype, and to record their
positive and negative remarks. Reporting mechanisms could also be integrated
to the reactive form-based interfaces to gather these comments.

The evaluation of the elicited requirements through the manipulation of
the associated lightweight data manager should eventually lead to end the
requirements elicitation process or to loop back to the previous steps to add,
delete or modify the specifications that were expressed.

Chapter 11

The RAINBOW Toolkit

A proof-of-concept tool support for the RAINBOW approach

In this chapter, we introduce the proof-of-concept CASE tool that was de-
veloped in order to support and experiment the RAINBOW approach. We
consequently present the RAINBOW Toolkit that handles most of the pro-
cesses developed in the five first steps of the approach. First, we present the
overall design principles and the technologies that were used, then for each of
the five steps, we present how the theoretical principles are instantiated.

11.1 Design principles

The RAINBOW Toolkit has been designed to support the processes of the
five first steps of our approach, which are the most crucial ones. We therefore
needed to develop an integrated environment that would allow to draw form-
based interfaces and transparently manage their underlying data models.

For this purpose, we chose to use Java [, |, which is one of the most
widely used multi-platform object-oriented programming languages, because it
gave access to rich libraries serving our purpose.

Among them, we notably used the Qt Jambi library to develop the graphical
interface of the application and manage the drawing of the forms. This library
is the Java version of the Qt toolkit [Ot,], which is a free and open-source
cross-platform application development framework using C++.

Java also enables us to interact with the previously mentioned DB-Main
CASE tool | , |, through their Java API which gives access to

175

176 Chapter 11. A proof-of-concept tool support

the DB-Main repository and GER constructs.

11.1.1 Available processes

To simplify the development, we organised the RAINBOW steps into exclusive
and sequential objectives:

1. Represent: the end-users can draw and specify a set of form-based in-
terfaces to perform usual tasks of their application domain. Once they
are satisfied with their interfaces, the set of interfaces are automatically
adapted into their underlying conceptual counterparts;

2. Investigate: the sets of terminological and structural ambiguities are con-
secutively computed and presented for arbitration. Based on the provided
decisions, the pre-integrated schema is automatically built;

3. Nurture: using the interfaces that they drew, the end-users are invited to
provide data examples as well as constraints and dependencies for each
form. Each new data sample is analysed to adapt the suggested con-
straints and dependencies, and conversely, each new enforced constraint
or dependency directly restricts the new data samples that can be en-
coded. The pre-integrated schema is updated accordingly;

4. Bind: the elements to integrate are computed and presented to the
users for arbitration. Based on the provided decisions, the pre-integrated
schema is transformed into a non redundant integrated conceptual schema.

The decisions made during each step are stored so that if required, the users
can loop back to change a given decision then replay the other steps without
requiring any re-arbitration for decisions that are still valid.

11.1.2 Implementation structure

The toolkit was implemented around the following main packages:

e The main rainbow package contains the main application, as well as the
definitions of transversal constants and settings;

e The rainbow.graphical.components package (re)defines graphical com-
ponents and widgets for the rendering the main application, such as ded-
icated dialog or message boxes;

e The rainbow.graphical.rendering package implements all the widgets
for the rendering and manipulation of the form-based user interfaces that
can be drawn;

11.2. Drawing and specifying form-based interfaces 177

e The rainbow.project.components package defines the main compo-
nents of a RAINBOW project (such as a centralised Project manager,
a Thesaurus, an XML handler), as well as utility classes;

e The rainbow.toolboxes package defines a set of classes to interact with
the DB-Main repository, including a centralised class to manipulate DB-
Main schemas (one per main process of the RAINBOW approach), the
implementation of standard “black box” transformations, the definition
of “virtual” elements to emulate DB-Main elements, as well as a converter
between elements of the form-based interfaces and the DB-Main elements;

e The rainbow.represent package implements all the necessary classes to
convey the specifications of the form-based interfaces, as well as dialogs
to edit them;

e The rainbow.adapt package provides the mechanisms to transform a set
of form-based interfaces into consecutive raw and refined schemas;

e The rainbow.investigate.semantics package provides term analysis
on a schema based on orthographical and ontological comparison, the
interactive arbitration of terminological similarities, as well as the pro-
cessing of subsequent decisions;

e The rainbow.investigate.syntax package provides structural analysis
on a schema based on patterns, the interactive arbitration of structural
similarities, as well as the processing of subsequent decisions;

e The rainbow.nurture package enables to provide data samples, con-
straints and dependencies and to update the associated schema accord-
ingly;

e The rainbow.bind package manages the integration process of the ele-
ments of a schema.

See Appendix C for the Java source code of the toolkit and its associated
documentation.

11.2 Drawing and specifying form-based interfaces

11.2.1 Drawing environment

The toolkit provides access to all the elements specified in Chapter 5, as illus-
trated in Fig. . For beginners, the environment is voluntarily pared down in
order not to be overwhelming. However, advanced users may access additional
docking windows with the interfaces list, the thesaurus, and the properties of
the currently selected element.

178 Chapter 11. A proof-of-concept tool support

File Edit Terminology Examples Finalize View Help

i™ CJ MEm = By

giedmms 3]z zz2| Bld o=

(]
wtrumber
B

PROVIDER

Number [

——
e —

=0 ORDER []
-
J

oate [01/01/1900 -

. — RECCT) (—
i m— L —
Number [: Copy Cirl+C | Quantity
gl — v [

S —

i '

WE Delete Del

S — el ™
R

. & Finish Editing

Figure 11.1: The RAINBOW toolkit’s drawing environment.

The user starts by creating a form, before progressively inserting more ele-
ments into it. The layout of forms is voluntarily limited to a vertical sequence
of elements, in order to keep the end-users focused on the content rather than
the form. Each new widget is initialised with default values, so that the end-
users can focus on the main properties (see Fig. 11.2), which are the label, the
qualifier, the description and the cardinality for simple widgets, as well as the
distinctiveness for containers. Advanced users may directly specify alternative
terms, as well as technical or existence constraints.

Note that the toolkit restrict the edition of the form-based interfaces only
to this drawing step. The next steps allow to update the terminology of the
forms indirectly, but does not allow to change their structure. However, it is
possible to loop back in the process at any time to edit the interfaces and replay
the following steps without losing any of the intermediary decisions.

11.2.2 Suggesting terms on-the-fly

In order to reduce the semantic redundancies upstream, we provide an on-
the-fly terminology suggester and analyser. When inserting a new widget or
editing an existing one, the suggester automatically proposes possible terms,

11.2.2. Suggesting terms on-the-fly 179

I Eciit select (9]
Properties | Advanced Options Requires]
Label [title| l
Qualifier
Description

Cardinality | At most one (0-1) s l

Figure 11.2: Editing a widget.

labels and qualifiers based on the existing terminology. If the user chooses
to provide his own term, label and qualifier, the analyser compares them to
the existing terminology to detect possible orthographical and/or ontological
similarities, then asks the user for direct arbitration.

The conflictual siblings and non siblings are therefore presented, and the
user may choose:

e to keep his own terminology, and possibly impose it to a selected set of
other similar elements;

e to unify his own terminology, based on one of the similar elements;

e use a completely different terminology, which could in turn generate other
similarities.

As we mentioned, we use Jaro- Winkler’s distance [Winkler, 1990] for lex-
ical comparison, and the WordNet orthographical reference system|[Fellbaum,
1998] for this purpose. Several java libraries have been developed to imple-
ment and manage string distance metrics, among which SimMetrics [Chapman,
2007], LingPipe [LingPipe, 2010] and SecondString [Carnegie Mellon Univer-
sity, 2006]. For our purpose, they are relatively equivalent, so we chose to work
with the latter. Similarly, several java libraries have also been developed to
interact with the WordNet database, among which JAWS [Spell, 2009], JWNL
[Walenz and Didion, 2008] and MIT’s JWI [Finlayson, 2009]. For our purpose,
they are also relatively equivalent, so we chose to work with the latter.

180 Chapter 11. A proof-of-concept tool support

11.2.3 Storing and adapting the interfaces

Once the users are satisfied with their set of form-based interfaces, the latter
are stored and automatically adapted. We use XML |] to store the
initial interface drawings. Based on the specifications of Section 5.2, we defined
a Document Type Definition (DTD) for our Simplified Form Model, as shown
in Listing . Listing shows an excerpt of the XML file associated with
our running example.

Listing 11.1: The DTD specification for the RSFM

<!'ELEMENT rtk (forms, dbmain?) >
<!'ATTLIST rtk label CDATA #IMPLIED >
<!'ATTLIST rtk description CDATA #IMPLIED >
<!ELEMENT forms (form+) >
<!'ATTLIST forms id CDATA #REQUIRED >
<IELEMENT form ((fieldset|table|input|select|button)*, unique*, existencex) >
<V'ATTLIST form id CDATA #REQUIRED >
<!'ATTLIST form label CDATA #REQUIRED >
<!'ATTLIST form qualifier CDATA #IMPLIED >
<V'ATTLIST form description CDATA #IMPLIED >
<!'ATTLIST form term CDATA #IMPLIED >
<!ELEMENT fieldset ((fieldset|tablelinput|select|button)#*, unique*, existence*, requires
?) >
<!'ATTLIST fieldset id CDATA #REQUIRED >
<!'ATTLIST fieldset label CDATA #REQUIRED >
<!'ATTLIST fieldset qualifier CDATA #IMPLIED >
<!ATTLIST fieldset description CDATA #IMPLIED >
<!'ATTLIST fieldset term CDATA #IMPLIED >
<VATTLIST fieldset maxcard CDATA #FIXED "1" >
<!ATTLIST fieldset mincard (0|1) "O" >
<!ATTLIST fieldset transformbyinstance (falsel|true) #IMPLIED >
<!ELEMENT table ((input|select|button)*, unique*, existence*, requires?)>
<!'ATTLIST table id CDATA #REQUIRED >
<!ATTLIST table label CDATA #REQUIRED >
<!'ATTLIST table qualifier CDATA #IMPLIED >
<!'ATTLIST table description CDATA #IMPLIED >
<!'ATTLIST table term CDATA #IMPLIED >
<!'ATTLIST table maxcard CDATA #FIXED "infinite" >
<!ATTLIST table mincard (0|1) "O" >
<!ATTLIST table transformbyinstance (false|true) #IMPLIED >
<!ELEMENT input (requires?) >
<!'ATTLIST input id CDATA #REQUIRED >
<!'ATTLIST input label CDATA #REQUIRED >
<!'ATTLIST input qualifier CDATA #IMPLIED >
<!'ATTLIST input description CDATA #IMPLIED >
<!'ATTLIST input term CDATA #IMPLIED >
<!ATTLIST input mincard (0|1) "O" >
<!'ATTLIST input maxcard CDATA #FIXED "1" >
<!ATTLIST input valuetype (boolean|date|datetime|integer|realltext) "text" >
<!ATTLIST input valuesize CDATA "50" >
<!'ATTLIST input formula CDATA #IMPLIED >
<!ELEMENT select (option+, requires?) >
<!'ATTLIST select id CDATA #REQUIRED >
<!ATTLIST select label CDATA #REQUIRED >
<!'ATTLIST select qualifier CDATA #IMPLIED >
<!'ATTLIST select description CDATA #IMPLIED >
<!'ATTLIST select term CDATA #IMPLIED >
<!ATTLIST select mincard (0[1) "O" >
<!IATTLIST select maxcard (1|infinite) "1" >
<!ATTLIST select valuetype (boolean|datel|integer|real|text) "text" >
<!'ATTLIST select valuesize CDATA "50" >
<!ATTLIST select iseditable (false|true) "false" >

11.3. Arbitrating terminological and structural similarities 181

<!'ATTLIST select formula CDATA #IMPLIED >
<!ELEMENT option EMPTY >
<!'ATTLIST option id CDATA #REQUIRED >
<!'ATTLIST option label CDATA #REQUIRED >
<!'ATTLIST option qualifier CDATA #IMPLIED >
<!'ATTLIST option description CDATA #IMPLIED >
<!ELEMENT button (action+, requires?) >
<!'ATTLIST button id CDATA #REQUIRED >
<!'ATTLIST button label CDATA #REQUIRED >
<!'ATTLIST button qualifier CDATA #IMPLIED >
<!'ATTLIST button description CDATA #IMPLIED >
<!ATTLIST button term CDATA #IMPLIED >
<!ATTLIST button label CDATA #REQUIRED >
<!ELEMENT action (itemx*) >
<!ATTLIST action label CDATA #REQUIRED >
<!'ATTLIST action description CDATA #REQUIRED >
<!ELEMENT unique (item+) >
<!ATTLIST unique type (primary|secondary) "secondary" >
<!ELEMENT existence (item+) >
<!ATTLIST existence type (coex|atmostl|atleastl|exactlyl) "coex" >
<!ELEMENT requires (item+) >
<!ELEMENT item EMPTY>
<!'ATTLIST item refid CDATA #REQUIRED >
<!ELEMENT dbmain (schemas) >
<!'ATTLIST dbmain filename CDATA #REQUIRED >
<!ELEMENT schemas (schemax) >
<!ELEMENT schema EMPTY >
<!ATTLIST schema class (AdaptRaw|AdaptRefined|InvestigateSemantics|InvestigateSyntax|
Nurture|Bind|Objectify|Wander) "AdaptRaw" >
<!'ATTLIST schema iddbm CDATA #REQUIRED >

As can be observed, the DTD maintains a mapping between each step of the
approach and a schema of the DB-Main repository. Therefore, when the edition
of the forms is finished, a raw schema and a refined schema are consecutively
created in the DB-Main repository using the mapping rules of Chapter 6, and
the mapping is updated accordingly.

11.3 Arbitrating terminological and structural similarities

11.3.1 Terminological similarities

Once the refined schema has been produced, it is copied into a new schema to
perform the terminological analysis. The schema is analysed to compute the
sets of terminologically similar elements, using the principles of Section

As for the on-the-fly term suggester, we use the SecondString library to handle
orthographical comparison with Jaro- Winkler’s distance, and JWI to interact
with WordNet.

The sets that are discovered are compared with the previously arbitrated
similar subsets, which are stored in the DB-Main repository using meta prop-
erties, so that valid pre-existing decisions are maintained. The sets are subse-
quently presented for arbitration, as illustrated in Fig.

The elements bearing conflictual terms are grouped separately from the
elements that bear non conflictual identical terms. For each set, subsets can be

182 Chapter 11. A proof-of-concept tool support

Listing 11.2: The XML code associated with the Customer form of Fig.

<form description="" id="1" label="CUSTOMER" maxcard="1" mincard="1" qualifier="" term="
CUSTOMER" >

<input description="" id="2" label="Customer Number" maxcard="1" mincard="1" qualifier="
" valuesize="" valuetype="integer"/>

<input description="" id="3" label="first name" maxcard="1" mincard="1" qualifier=""
valuesize="" valuetype="text"/>

<input description="" id="4" label="Last Name" maxcard="1" mincard="1" qualifier=""
valuesize="" valuetype="text"/>

<select description="" formula="" id="5" iseditable="false" label="title" maxcard="1"
mincard="0" qualifier="" term="title" valuesize="50" valuetype="text">

<option description="" id="6" label="Mrs" qualifier=""/>

<option description="" id="7" label="Miss" qualifier=""/>

<option description="" id="8" label="Mr" qualifier=""/>

</select>

<fieldset description="" id="9" label="address" maxcard="1" mincard="0" qualifier=""

term="address" transformbyinstance="false">
<input id="10" label="street" maxcard="1" mincard="0" valuesize="50" valuetype="text"/>
<input id="11" label="Number" maxcard="1" mincard="0" valuesize="50" valuetype="text"/>
<input id="12" label="Zip Code" maxcard="1" mincard="0" valuesize="50" valuetype="text"/

>

<input id="13" label="city" maxcard="1" mincard="0" qualifier="" valuesize="50"
valuetype="text"/>

<input description="" formula="" id="14" label="Telephone" maxcard="1" mincard="0"
qualifier="" valuesize="50" valuetype="text"/>

</fieldset>

<fieldset description="" id="15" label="address" maxcard="1" mincard="0" qualifier="
alternative" term="address" transformbyinstance="false">

<input id="16" label="street" maxcard="1" mincard="0" qualifier="" valuesize="50"
valuetype="text"/>

<input id="17" label="number" maxcard="1" mincard="0" qualifier="" valuesize="50"

valuetype="text"/>
<input id="18" label="Zip Code" maxcard="1" mincard="0" valuesize="50" valuetype="text"/

>

<input id="19" label="city" maxcard="1" mincard="0" qualifier="" valuesize="50"
valuetype="text"/>

</fieldset>

<table description="" id="20" label="orders" maxcard="infinite" mincard="0" qualifier=""
transformbyinstance="true">

<input description="" formula="" id="21" label="number" maxcard="1" mincard="1"
qualifier="" valuesize="50" valuetype="text"/>

<input description="" formula="" id="22" label="date" maxcard="1" mincard="0" qualifier=
"" valuesize="" valuetype="date"/>

</table>

</form>

created and assign a unifying term. The conflictual elements are highlighted
in form that contains them, thanks to the mapping between the data elements
and the interface widgets.

Based on the provided decisions, the schema and the forms are updated
with the new terminology, and the new decisions are stored in the DB-Main
repository using meta properties.

11.3.2 Structural similarities

The terminologically updated schema is then copied into a new schema to
perform the structural analysis. The schema is analysed to compute the sets
of structurally similar elements, using the principles of Section

11.4. Providing data samples and constraints 183

EreE— . T W W

List of similarities to be validated Specific similarity View in context
Similar Terms v | Lexical Ontological Identical AT. Label v | Term | Qualifier| dentifier | Check?

1 [code zip code] - N - 1 code code il e [
[customer, customer 2 code code u besciton
number, first name, last

 me rame order .. L 3l |cose 2 bd [
order number, shop, |code code 55

Price:
shop name, street, street
number, vat number] 5 zipcode zip code 12 Provider (primary)

3 [dste, hourly rate] B B 6 zipcode zip code 18 Neme |*

4 [price, provide service] . 7 zipcode zip code 51 Provider (secondary)

8 zipeode zip code & L
List of simiarities assumed valid Define as different

Similar Terms ¥ Lexical Ontolegical Identical A.T.

[address] -

validated (sub)simiarities
[brand] . B Term v | Identifiers

[city] " N

[conditions] * *

1
2

3

4

5 | [description]
6 | [fax] - -
7

E

9

[product] - N
[quantity] - -
[special good] - -

10 | [telephone] - N

11 | [itle] - -

Undefine as same

Figure 11.3: Arbitrating terminological similarities.

The sets that are discovered are compared with the previously arbitrated
similar subsets, which are stored in the DB-Main repository using meta prop-
erties, so that valid pre-existing decisions are maintained. The sets are subse-
quently presented for arbitration, as illustrated in Fig. 11.4.

For each entity type, the set of structurally similar entity types are pre-
sented through their associated form-based interfaces. The structurally similar
containers and the shared patterns are highlighted, thanks to the mapping be-
tween the data elements and the interface widgets. For entity types that are
equal or that unites, a unifying term can be provided.

Based on the provided decisions, the schema is subsequently pre-integrated
to reflect them, and the new decisions are stored in the DB-Main repository
using meta properties. The terminology of the forms is updated accordingly.

11.4 Providing data samples and constraints

The structurally updated schema is then copied into a new schema to perform
the constraint analysis. The previously provided data samples and constraints
are loaded from the DB-Main repository, and the valid constraints and depen-

184 Chapter 11. A proof-of-concept tool support

(Errr s s
Confictual form st nssocisted forms
label v Term Rtkid Dbmld #Conflicts Decided 3 Decision label ¥ Term Rekid Dbmld Sharedpattern Decide
3 [customer customer |1 1 1 1 [Equals s |products | product |30 942 [code]
4 locaion address |49 29 3 3 z@sewl(e service |54 960 [code, description]
5 order order B 9@ 2 2 3[Isspecialised by 3 | specialg... specialg.. 42 981 [code description,p.. *
6 |orders order » 9u 1 1
7 lproduct product 33 w8 3 3 - .

View in context View in context

Brand

Price

Provider (primary)

Provider (secondary)

Figure 11.4: Arbitrating structural similarities.

dencies are initialised accordingly, using the principles exposed in Section 8.4.2.

The toolkit enables to handle the entity types associated with one form
at a time, as illustrated in Fig. 11.5. For each entity type of each form, the
end-users may provide several data samples, that must respect the previously
enforced constraints and that will restrict the valid constraints that can be en-
forced, which notably provides an interactive means to approximate Armstrong
relations. At any time, the user can switch from the list of valid data samples
to one of the constraints panel.

For the technical constraints, he can visualise the enforced and valid car-
dinality and prerequisite components for every components of a given entity
type, as well as value types for attributes, as illustrated in Fig. 11.6. Any valid
constraint can be enforced, and any modified constraint can be reinitialised as
long as the set of data samples is compatible. On the contrary, the value sizes
are not handled.

Similarly, for the existence constraints, he can visualise the enforced and
valid constraints for a given entity type as illustrated in Fig. 11.7. Any valid
constraint can be enforced, while any enforced constraint can be unenforced.

The functional dependencies panel contains the enforced, valid and dis-
carded dependencies for a given entity type, as illustrated in Fig. 11.8. The
valid dependencies can be enforced or manually discarded, and the enforced
dependencies can be unenforced. Discarded dependencies can be reinitialised
to recalculate the dependencies that are still valid after all. The dependencies

11.4. Providing data samples and constraints 185

[l Nurture Shop [47] — e - - —— (= [|
et Dats Samples | Technical Constraints | Existence Constraints | Functional Dependencies | Identifiers | yiew in context
=} Shop [47] Valid Data Samples E SROF

- Address [49]
Shop name [48] % Telephone [53] Location [49]

1 Full eta (51=[5000], 50=[Iron Street], 52=[Namur]}

Shop name [wind's =

Street [Angel Street]

Zip code [5000)

Gty [Namurl]

Telephone |)

View /Edit data sample

=

[& I &= |

Add (Edit Il Delete Jil Reset

Pox X conel

Figure 11.5: Adding data samples.

Valid Constraints

Shop name [48] Telephone [53] Location [49]

Cardinality Exactly one (1-1) At most one (0-1) At most one (0-1)
Cardinality could be / ! Exactly one (1-1)
Value Type is text text !
boolean
date
Value Type could be datetime
integer
real
Requires ! / /
Could require / / /

Figure 11.6: Arbitrating technical constraints.

are filtered according to the principles exposed in Section 8.4.4, and set visible
(they are formatted using strike-out in the figure) or hidden.

Finally, the identifiers panel contains the enforced (primary and secondary)
and valid unique constraints for a given entity type, as illustrated in Fig. 11.8.
The constraints can be enforced and unenforced, and set to primary or sec-
ondary.

Based on the provided decisions, the pre-integrated schema is updated with
the new constraints and dependencies, while the new decisions and constraints
are stored in the DB-Main repository using meta properties. The constraints
of the forms are updated accordingly.

186 Chapter 11. A proof-of-concept tool support

Valid Constraints

Valid but unconfirmed Enforced
Coexistence
[49, 53]
AtMost One
[49, 53]
Exactly One
[49, 53]
At Least One
Figure 11.7: Arbitrating existence constraints.
Current dependencies
Discarded valid but unconfirmed Enforced
[53] -= [48, 49] [48] -» [49, 53]
[49] -= [48, 53]
(531404
853148t
Figure 11.8: Arbitrating functional dependencies.
Identifiers
Valid but unconfirmed Enforced Primary
[48]
[49]

Figure 11.9: Arbitrating unique constraints.

11.5 Finalising the project

The final process handled by the toolkit is the binding process, which is partially
supported. The nurtured pre-integrated schema is copied into a new schema to
perform this integration process. Using the principles exposed in Section ,
the IS-A hierarchies are identified are presented for upward integration and
subsequent constraints and dependencies handling, as illustrated in Fig.

11.5. Finalising the project 187

TEr L e s
Elements Elements ‘ Technical Constraints] Existence Constraints I Functional Dependencies I Identifiers]
= Address[-1] Valid Data Samples
Address [49]
Address [9] City[-1] = Street[-2] Street number[-3] Telephone [-4] Zip code [-5]
Address (alternative) [15] ||| » yyrece (alternative) [15] 119] [16] 7] 18]
Address [49] [52] [50] [51]
Address [9] [13] [10] [11] [14] [12]
I Address [-1] pending pending pending pending pending
Confirm l [Unconfirm Dispatch Merge

Figure 11.10: Binding concepts.

For each level of the hierarchy, the components that could be inherited
from the subtypes are grouped and proposed for integration. Once integrated,
the associated constraints and dependencies can also be confirmed or rejected.
The schema is subsequently transformed to reflect the provided decisions and
represent an integrated conceptual schema of the application domain. The
terminology of the forms is updated accordingly.

In contrast, the handling of referential components and dispatching of at-
tributes into relationship types must be handled manually in the DB-Main
toolkit, while ensuring the mapping between the widgets and the integrated
elements of the data model. However, the issue of referential components can
be circumvented upstream. If an entity type is found to complement another
during the analysis of structural ambiguities, the users can loop back to edit
the drawing step to change the structure of the form and add a container to
hold the appropriate referential components, as explained in Section 7.2.4.

Part |11

Validation

In this part of the discussion, we address the validation of the RAINBOW
approach. Chapter 12 presents the two main research questions underlying the
RAINBOW approach, which are (1) its ability to help end-users and analysts
to communicate static data requirements to each other, and (2) the quality
of the conceptual schemas produced using it. Both questions raise number of
issues, and such problems are not easy to experiment, measure and validate,
especially given the immanent difficulty of evaluating methodologies for the de-
velopment of large systems. Since an extensive experimentation is not feasible
at our level, an experimentation and validation canvas is define instead and
applied to two preliminary case studies, in order to validate the said canvas
and coincidentally get a first insight on the implementation of the RAINBOW
approach. Chapter 13 subsequently describes the experimentation process, and
Chapter 14 discusses its results.

189

Chapter 12

Validation protocol

In this chapter, we present the two main research questions underlying the
RAINBOW approach, and define an experimentation and validation protocol
to address them. For this purpose, we briefly review different types of data
collection techniques, then formalise the goals and context of the expected
experimentation before defining and detailing the protocol itself.

12.1 Research questions

One of the most critical aspect of this doctoral research concerns its validation.
The transversal nature of our approach, as well as the interdependence between
the methodology and the tool support, naturally lead to two critical research
questions. First of all, does the RAINBOW approach and tool support help
end-users and analysts to communicate static data requirements to each other?
Or in other words, do they give the means to express, capture, discuss and
validate conceptual schemas, knowing that the stakeholders may have such dif-
ferent backgrounds? This question inherently raises methodological, practical
and sociological issues: were our design decisions strategic, or should we have
used alternative techniques? Does our approach carry a real added value for
stakeholders? Is the current tool support usable and efficient? How does our
approach influences the communication between the end-users and the analysts
and their behaviour during the whole process?

The second research question concerns the quality of the conceptual schemas
produced using the RAINBOW approach. How can we define the quality of a
schema in general, and the acceptability of these schemas in particular? What

191

192 Chapter 12. Validation protocol

are their flaws and merits, and what could and should be done to improve
them? This issue addresses the predicament of quality assessment, which is
itself intrinsically complex as well.

Indeed, such problems are not easy to experiment, measure and validate,
especially given the immanent difficulty of evaluating methodologies for the
development of large systems. To obtain relevant results and draw valuable
conclusions, we would need to compare the RAINBOW approach to existing
ones, based on multiple experimentations led on numerous and different case
studies over an extensive time span. Such an effort is not feasible at our level,
and would easily make for a significant research subject per se.

However, one of the contributions of this research is instead to define an
experimentation canvas, based on preliminary studies that could in turn lead
to a more realistic experimentation endeavour. The objective of the experi-
mentation is therefore to analyse the use of the RAINBOW Toolkit for the
purpose of evaluating and improving the RAINBOW approach, with respect
to its usability and effectiveness as a two-way communication channel from
the viewpoint of potential end-users and analysts in the context of static data
requirements elicitation within a process of software engineering.

12.2 Types of data collection techniques

The first concern regarding the validation of the RAINBOW approach was to
choose appropriate techniques to lead the preliminary field studies. As pre-
sented by [,], there are various types of data collection tech-
niques for software engineering, which can be classified into three categories,
namely direct, indirect and independent.

Direct techniques make the researchers interact more or less directly with
the participants. Among these techniques, inquisitive techniques (such as brain-
storming, focus groups, interviews, questionnaires, ...) are useful to obtain a
better understanding of processes by getting to debate with their very actors.
This can also lead to discuss the tools and conditions in which the processes
are performed and how they are experienced by these actors. Observational
techniques (such as shadowing and participant-observer) rather focus on mon-
itoring the studied phenomena to describe and analyse them as accurately as
possible. Both categories of techniques are quite time-consuming for all persons
involved, and their output must be handled with caution, since they can be
subjective and modified by the previously mentioned Hawthorne effect | ,

].

Indirect techniques focuses on the working environment and equipment of

processes, which implies that the researchers do not interact with any partici-

12.3. Goals and context of the experimentation 193

pants. The actors of the processes continue their work while data is collected
either transparently (through instrumentation systems) or voluntarily (“fly on
the wall” technique, where the participants record their own work), so that it
can be analysed afterwards. These techniques are appropriate for longitudinal
studies and require little to no additional time from the participants.

Finally, independent techniques are suitable for processes that can be seen as
black boxes from which the products can be analysed. With these techniques,
the researchers only access work artefacts related to the participants (such as
change logs, tool logs, bug trackers, documentation, code, execution traces, ...),
in order to uncover information on how these participants get their work done.

Selecting the appropriate techniques depends on the research questions, as
well as the available participants and artefacts for the study. Let us therefore
review the goals and the context of our experimentation.

12.3 Goals and context of the experimentation

As explained, the main validation concerns relate to the ability of the RAIN-
BOW approach to enable the communication of static data requirements be-
tween stakeholders of a software engineering project, and the quality of the
requirements produced using our approach. The experiment should therefore
focus on two primary goals that can be refined as follows.

12.3.1 Goal 1: Assessing the effectiveness of the RAINBOW ap-
proach

The first goal concerns the effectiveness of the RAINBOW approach as a means
to transparently communicate static data requirements between end-users and
analysts. In other words, we want to:
e Analyse the use of the RAINBOW Toolkit as tool support of the RAIN-
BOW approach

e For the purpose of assessing their effectiveness to express, capture and
validate static data requirements

o With respect to their usability and potency to generate discussions
e From the viewpoint of end-users and analysts

e In the context of static data requirements elicitation within a process of
software engineering.

Basically, we will consider the approach effective if the end-users consider
that they were easily able to express all their static data requirements using
it, and if the analysts consider that the approach helped them to get a good

194 Chapter 12. Validation protocol

understanding of the application domain and the subsequent database that
will need to be developed. The analysts appreciation of the elements generated
through the approach rather regards the quality of the approach’s output,
which we will discuss afterwards. More precisely, we need to be attentive to
the following efficiency-related elements:

e the possible articulation problems that were presented in Section ,
namely: confusion, improper expectations, difficult or unclear articula-
tion, inappropriate prioritisation;

e the attitude and satisfaction of the participants regarding the methodol-
ogy (and how they can possibly compare them to other approaches);

e the information that could and could not be expressed using the toolkit;

e the discussions that were induced by the approach and toolkit for the
requirements that could and could not be expressed using the toolkit;

e the ease of use and reliability of the toolkit;

e the relevance of the elements presented by the toolkit (similar labels and
structures, possible constraints and dependencies) for end-users arbitra-
tion.

12.3.2 Goal 2: Assessing the quality of the RAINBOW output

The second goal concerns the quality of the schemas produced using the RAIN-
BOW, to understand if these schemas are relevant, usable and useful. In other
words, we want to:

e Analyse the output of the RAINBOW Toolkit as tool support of the
RAINBOW approach
For the purpose of assessing their effectiveness to produce static data
requirements

e With respect to their quality

From the viewpoint of analysts

In the context of static data requirements elicitation within a process of
software engineering.

Defining the quality in Software Engineering in general, and in Data mod-
elling in particular, is an old, complex and never-ending issue, though standards
such as the ISO/IEC 9126 have been established [,]. The notion
of quality can focus on various elements, such as the form and the content of
various artefacts (data models, code, applicative components, ...) or specific
characteristics of these artefacts (such as maintainability, evolvability, perfor-
mance, ...). According to the peculiar aspects that need to be studied, four

12.3.2. Assessing the quality of the RAINBOW output 195

main trends have appeared to address this topic. Let us present very briefly
present these approaches and provide a few references for further investigation:

e Frameworks allow their authors to tackle quality of models based on
theoretical methods (see for instance [, I, 1 ,
I , 1994], [, 1998], [Kesh, 1995], [:

[; 2000] or | , 2003; :

). These frameworks can typically be (non exclusively) classified as:

— semiotic, which addresses the quality of models and/or modelling
languages based on how their syntactics (syntax), semantics (ex-
pected meaning) and pragmatics (actual interpretation) combines
with different elements of context of use;

— methodological, which relies on practical methodologies and pro-
cesses for evaluating quality;

— relational, which focuses on the interactions between quality factors;

— model-based, where the quality is analysed through structured di-
mensions that can themselves be structured through attributes and
properties;

e Metrics enable quality to be evaluated based on mathematical functions,
typically involving different object counts (number of associations, num-
ber of entity-types, ...) constrained by specific coefficients (see for in-
stance | ,] or | , D;

e Best practises are built on empirical evidence to usually suggest visual
and structural improvement for models (see for instance | , 1,

[» 2005] or | » 1996]);

e Analytical approaches focus on specific quality problems such as normal-
isation, minimality or structural consistency, and resolve them through
theoretical reasoning (see for instance |) ,a] or | , B

Obviously, systematically reviewing all the approaches in that domain and
defining an extensive canvas to evaluate the quality of the schemas produced
using the RAINBOW would be a tremendous endeavour that could make for
a whole research topic in itself. However, if we recall the expected charac-
teristics of a Software Requirement Specification (as detailed in Section 2.1),
we can nevertheless observe that they coincide with most of the criteria often
mentioned in quality-related researches.

Simply speaking, we will therefore consider that the output of the RAIN-
BOW approach is of quality if the analysts consider that they gathered all
the static data requirements necessary to build an appropriate and reliable

196 Chapter 12. Validation protocol

database. We hence need to be attentive to the following quality-related crite-
Tia:

e correctness: does the schema use appropriate constructs?
e consistency: is the schema free of contradictions?

e completeness: does the schema cover (exactly) all the aspects necessary to
conceive the future database of the software engineering project (scope),
and is it detailed enough (level of details)?

e conciseness: is the schema free of redundancies?

o unambiguity: are there elements of the schema that are still unclear or
disputable?

e modifiability: can the schema be updated easily ?

o traceability: can each element of the schema be retraced to the original
requirements expressed by the end-users?

e verifiability: can the schema be used to verify that the software meets
the requirements?

o testability: can pass/fail or quantitative assessment criteria can be derived
from the schema?

Besides, we also want to analyse the following practical issues:

e Does the approach help the analyst to understand the application domain,
whether he was part of the experimentation or not?

e What could and should be done to improve the output schemas?

12.3.3 Context of the experimentation

To answer these questions, the use of the RAINBOW approach and toolkit
during the experimentation should be as faithful as possible to their expected
context of use in the real life and in a wider experimentation context, which
implies that we ought to be careful to the following aspects, some of which are
mentioned in Section
o Application type: the modelled software engineering projects should be
related to form-based data intensive applications;
e Type of company: the projects should involve few people to reflect that
the expected companies are small to medium sized;
o FEzxperience of the participants: the end-users should be familiar with
form-based human-computer interactions and the analysts should be fa-
miliar with (static) data modelling;

12.4. Building our dedicated validation approach 197

e Analysed Process: the experimentation should focus on Data Require-
ments Engineering within any Software Engineering process (Waterfall
model, Iterative and Incremental Development, Agile Development, ...);

e Tools: we use the RAINBOW Toolkit.

To understand more precisely the context of the experimentation, let us also
recall that this research focuses on Database conceptual modelling | ,
: ,] (as part of Requirements Engineering), in conjunction
with Database reverse engineering | , ; , 1,
Prototyping | , ; , | and Participatory Design

[» 1993].

12.4 Building our dedicated validation approach

12.4.1 Overview

As already hinted, evaluating the RAINBOW approach it is not a trivial mat-
ter. First of all, evaluating methodologies for the development of large systems
requires methodological comparisons on a significant amount of case studies
among lengthy periods of time, which we cannot afford. Secondly, comparing
methodologies on the same or a limited number of case studies is also problem-
atic. If we apply the RAINBOW approach and another approach on the same
case study, there will be inevitably interferences and biases, depending on the
sequence of the possible (inter)actions of each approach. Leading two instances
of the same case study in parallel is also questionable, since we would have to
separate the end-users into two groups which could influence their behaviour
as subgroups. As for leading different case studies with different approaches,
there would be little left for relevant comparison and analysis. Finally, it is in-
trinsically difficult to precisely define and objectively measure the effectiveness
of such a transversal method and the quality of the schemas it produces.

Since we wanted to draw guidelines for a wider experimentation and since
there is no indisputable experimentation solution, we therefore chose to observe
and assess real-life implementations of our approach. To do so, we defined two
independent studies S1 and S2, based on real-life issues concerning two end-
user participants EU1 and EU2, and decided to use the Participant-Observer
principles to monitor the use of the RAINBOW toolkit and approach, and
the Brainstorming/Focus group principles to analyse the resulting conceptual
schemas.

Therefore, for each preliminary study, a pair of observers (including a main
observer MO and a different assistant observer in each case, namely AO1 and

198 Chapter 12. Validation protocol

AO2) observed the interaction of one of the end-users with an analyst DB1 (the
same in each case), jointly designing the conceptual schema of their dedicated
project using solely the RAINBOW methodology and toolkit. The role of the
observers was to follow the process and take note of all the situations where
the usage of the methodology and toolkit were efficient or not.

Then, each resulting conceptual schema was discussed by three database
analysts (DB1, DB2 and MO) to determine their qualities and flaws, as well
as the delta between the “automatically” produced schemas and a likely “im-
proved” version.

12.4.2 Participants

Seven participants were therefore involved, namely two end-users (EU1 and
EU2), two analysts specialised in Database Engineering (DB1, DB2), and three
analysts playing the role of observers (OB1, OB2 and MO), the latter being
also specialised in Database Engineering. All participants are employed at the
Faculty of Computer Science of the University of Namur, Belgium, and were
chosen because of their profile:

e EUI is the secretary notably responsible for promoting the teaching pro-
grammes of the Faculty of Computer Science and handling the registra-
tion of applicant students since 16 years. After obtaining her Bachelor
Degree in Computer Science, she previously worked during 25 years as
a researcher is process engineering. She is therefore aware and used to
human-computer interaction, though most of the current applicant files
are still received through postal mail. Her motivation lies is that she
would be interested in improving the registration process of the appli-
cant students.

e EU2 is the executive secretary of the Faculty of Computer Science since 7
years, and carries other tasks such as the organisation of seminars, sympo-
siums and other events for the Faculty. Previously, she worked five years
as a secretary for a non-profit-making organisation, before becoming the
secretary for the Teaching Units of the Faculty of Computer Science for
16 years. She never received any proper computer training, but masters
usual office tools such as Word, Excel, PowerPoint or FileMaker, which
gives her substantial knowledge in (form-based) human-computer inter-
action. Her motivation lies is that she would be interested by a tool
facilitating the organisation of events for the Faculty.

e DB is a researcher and PhD student of the Laboratory of Database Ap-
plication Engineering (LIBD) of the Faculty of Computer Science since 3

12.4.2. Participants 199

years. He has a Master Degree in Computer Science and his doctoral re-
search focuses on Database Quality, with a peculiar interest in the quality
of conceptual schemas.

e DB2 is a researcher and lecturer of the Laboratory of Database Appli-
cation Engineering (LIBD) of the Faculty of Computer Science since 12
years, after obtaining her Master Degrees in History and Computer Sci-
ence. During her tenure, she participated in several projects for which
she handled the database administration, and was notably a member of
the previously mentioned ReQuest project. In addition to her involve-
ment in the latter project, she has a special interest for integration and
normalisation issues.

e OBl is a teaching assistant and PhD student of the Faculty of Computer
Science since 5 years, after obtaining his Master Degree in Computer
Science. During his tenure, he has been the leading assistant for the
course of Software Engineering of the Faculty of Computer Science and
is leading a PhD related to the quality of the information flow within the
Software Engineering process.

e OB2 is a teaching assistant and PhD student of the Faculty of Computer
Science since 2 years. He has a Master Degree in Computer Science and
previously worked as a researcher for the Tokyo University of Agriculture
and Technology during 3 years. His is specialised in the Computer Net-
works, but he has a special interest in human-computer interaction and
software engineering.

e MO is actually yours truly, and the initiator of this validation process. He
is a teaching assistant and PhD student of the Laboratory of Database
Application Engineering (LIBD) of the Faculty of Computer Science since
3 years. After obtaining his Master Degree in Computer Science, he was
a member of the previously mentioned ReQuest project for four years and
is currently the main assistant for the Database courses and one of the
assistants for the Software Engineering course of the Faculty of Computer
Science.

We deliberately chose to assign DB1 to carry both studies in order to prevent
possible biases and variations. On the one hand, he had no prejudice on the
RAINBOW approach, on contrary of MO, and on the other hand, he was
neutral towards EU1 and EU2, while DB2 is personally closer to EU1 than
EU2. In the contrary, we chose two different neutral observers to support the
main observer MO in order to possible notice different types of phenomena.
Each of these participants were assigned different types of tasks, that we will
now detail.

200 Chapter 12. Validation protocol

12.4.3 Task 1: Preparing the experimentation

Before beginning the evaluation, a different software engineering project was
defined with each end-user. Before starting the study, a separate half-hour
meeting was therefore organised with each end-user to define the overview and
goals of their project. From that point on, the following rules were established
and agreed upon to avoid biases and interferences between the studies, but also
to to keep the focus on the sessions and canalise the efforts during those laps
of time:

e Rule 1: Seal of Secret. The two studies are anonymous and independent,
and the participants are not supposed to talk to each other about the
experiment if the main observer (MO) is not present, even if they are
part of the same study. However, a mail can be sent within the members
of a same study to discuss it, as long as MO is put in carbon copy.

e Rule 2: Only there and then. The participants are not supposed to use
the RAINBOW toolkit outside the sessions, for instance to modify what
they produced during the previous session. To prevent this to occur, the
application will only be available on the laptop of MO.

e Rule 8: The observers do not exist. As far as possible, the end-user and
the analyst must act as if the main observer and his assistant observer
are not present.

Before starting the observation, EU1, EU2, DB1, OB1 and OB2 received
a short training on the tool support and methodology based on 2 screencast
tutorials explaining how to draw form-based interfaces using the RAINBOW
toolkit (see Appendix (). DB2 was not involved in this process in order to
preserve her neutrality for the last task.

12.4.4 Task 2: Applying the RAINBOW approach to each project

For each study, the pair of end-user and analyst were asked to jointly design the
conceptual schema of their application project using the RAINBOW method-
ology and toolkit, while the observers took notes. This process was organised
in four sequential steps:

1. Drawing the forms (REPRESENT): first of all, the end-users had to draw
and edit forms that would allow them to accomplish usual tasks of their
future application project. They were asked to focus on the terminology
and data aspect of this application rather than the layout and general
appearance of the forms. In particular, they had to pay special attention
to the consistency of the labels/terms and the specification of the widgets

12.4.4. Applying the RAINBOW approach to each project 201

they needed, typically to input data. During this process, they were
expected to control the RAINBOW toolkit, while the analyst assisted
and guided them whenever necessary.

Analysing the terminology and structure of the forms (INVESTIGATE):
(1) the end-user and the analyst first had to analyse the terminology of
all the form elements to clarify any remaining ambiguities; (2) then, they
had to analyse the terminology of the containers to explain the relations
existing between these containers. If necessary, the pair could go back
and edit their forms. During this process, the end-user could still operate
the RAINBOW toolkit or give the control to the analyst. Whenever
necessary, the pair could go back and edit their forms.

Provide examples and constraints (NURTURE): for each form, the pair
first had to provide a set of examples, then examine the technical con-
straints, the existence constraints, the functional dependencies and the
possible identifiers associated with the form and its elements. If necessary,
the pair could go back and replay the previous steps.

Finalize the project (BIND): from the previous steps, a set of “high level”
concepts were materialised. For each of these concepts, the pair had to
arbitrate the properties that were to be associated with the concept, then
examine the associated technical constraints, the existence constraints,
the functional dependencies and the possible identifiers. If necessary, the
pair could go back and replay the previous steps.

For each study, one session of two hours per step per week was planned.

Each session was organised as follows:

Introduction: the main observer (MO) recalled the previous steps and
presented the main objectives of the current session;

Recapitulation: the participants discussed the previous steps and the pos-
sible elements that remained unclear or that should be reworked;

Ezecution: the end-user and the analyst executed the tasks associated
with the current session using the RAINBOW toolkit while the observers
took notes;

Individual debriefing: afterwards, the main observer discussed separately
with each other participant to take their impressions and remarks.

Recall that the ADAPT step is automatic, and that we deliberately left
aside the OBJECTIFY and WANDER steps, since the generation of the com-
ponents is straightforward and the manipulation of a reactive prototype mainly
adds another level of validation. Throughout these steps, DB1 never saw the

202 Chapter 12. Validation protocol

conceptual schemas that were produced and DB2 was not involved in this pro-
cess in order to preserve her neutrality for the last task.

During those sessions, the observers were asked to be attentive to the
efficiency-related elements that were introduced in Section , as well as
any other element that they felt relevant to the efficiency of the approach and
tool-support.

12.4.5 Task 3: Debating the quality of the produced schemas

At this point, the RAINBOW toolkit had produced a pre-integrated schema for
each study, while DB1 drew the conceptual schemas he felt the most appropri-
ate for each study before without at the output schemas. An additional step
was subsequently held between DB1, DB2 and MO to discuss the qualities and
the flaws of these schemas obtained using the RAINBOW approach.

During those sessions, the analysts were asked to be attentive to the quality-
related criteria and issues that were introduced in Section , as well as any
other element that they felt relevant to the quality of the schemas produced
using the approach and tool-support.

Chapter 13

The experimentation

In this chapter, we present the execution of the two preliminary studies that
were led. The first one concerns the electronic support of students wanting to
apply for studies at the Faculty of Computer Science of the Namur University,
while the second one deals with the definition of an academic event management
system. After preparing the experiment by defining the subject and training
the participants, we present how each pair of end-user and analyst managed
to jointly design the conceptual schema of their application project using the
RAINBOW methodology and toolkit, while observers took notes about the
efficiency of the process. We then expose the subsequent discussions on the
quality of the schemas produced using the approach and tool support for each
study. Both case study were led in French, but for the sake of this dissertation,
we translated the resulting forms and schemas. See Appendix C for the original
materials.

13.1 First case study: A student application form

13.1.1 Preparation
Defining the subject

During the preparation of the experiment, EU1 explained that, at the time
being, students (and in particular foreign students) who would like to apply
for studies at the Faculty of Computer Science of the Namur University needed
to fill then fax a paper form with various personal information and details
about their educational and professional curriculum. Moving this form to an

203

204 Chapter 13. The experimentation

electronic medium would enable for instance to handle a web application for
the registration of such demands. We therefore agreed to carry this case study
in order to define the conceptual schema supporting such a project.

Training

Before the beginning of the sessions, EU1 received the two screencast tutorials
explaining how to use the RAINBOW toolkit to draw relevant form-based
interfaces. She did not have many remarks, except that she found the notion of
“parent-dependent” unclear and possibly conflicting with the one of cardinality.
She also suggested the tutorial to be provided with a locale translation and more
navigational buttons (for instance to go back and skip sections).

13.1.2 Session 1: Drawing the forms

The first session focused on drawing the necessary forms to encode all the data
relative to a new application for a computer science student applicant, and was
organised as follows:

e Introduction: the main observer (MO) introduced the participants and
their roles, as well as the objectives (drawing the forms supporting the
encoding of information for the subject defined by EU1) and the proce-
dure (EU1 and DB1 draw jointly while OB1 and MO observe) for the
current session (10 minutes);

e Recapitulation: the participants recapped and discussed the subject of
the study, and discussed the tutorials (10 minutes);

e Fxecution: the end-user and the analyst executed the tasks associated
with the current session using the RAINBOW toolkit while the observers
took notes (90 minutes); Note that a paper form existed before our vali-
dation process, and the end-user had beforehand sketched a paper form
to collect her ideas regarding what should appear in the drawings;

e Individual debriefing: afterwards, the main observer discussed separately
with each other participant to take their impressions and remarks (15
minutes per participant).

In the following, we expose the remarks made by the observers and the
participants through the debriefing.
General observations

The execution of the drawing took 90 minutes altogether. However, the end-
user and the analyst started showed sign of fatigue after 65 minutes, which

13.1.2. First case study - Session 1 205

suggests that the duration of the session was too long.

The RAINBOW toolkit was installed on MO’s laptop, with which EU1 and
DB1 were not accustomed. EU1 acknowledge that she would have preferred
working on her own desktop computer.

When the drawing started, the end-user naturally gave the commands to
the analyst and was initially reluctant to manipulate the rainbow toolkit, but
she eventually took up the reins of the prototype. On the other hand, the
analyst did not find this configuration gratifying, because he did not feel very
useful or required for the process.

Still, the end-user acknowledged that the presence of the analyst was helpful,
because of the advices and explanations that he regularly provided. Rather
than being a user-driven design session, the drawing of the interfaces turned to
be a joint development, and using the tool led to discussions on the form and
substance of the interfaces.

Observations on the tool support

It appeared that the automatic suggestions of the integrated label analyser
actually annoyed the end-user, who found them too intrusive and most of the
times irrelevant. She found that her flow was interrupted, and would have
preferred clarifying the labels subsequently.

The automatic graphical rendering of the widgets according to its properties
surprised the end-user, especially the selection widget. The analyst had to insist
that one of the motivations behind this tool behaviour was to lead the end-user
to focus on the content of the forms rather than their appearance.

The available widgets are restricted to forms, fieldsets, tables, inputs, selec-
tions and buttons, and for the given problem, these widgets seemed sufficient,
though we can observe that no button was used. We also observe that the
though the problem could have been reduced to smaller sub problems (typically
encode a student, then encode an application for this student), the end-user
drew a single form to collect all the data.

We observed that the end-user drew 3 different tables for the same type
of issue (Academic Year), instead of merging them into a single table while
providing explanations in the “description” property of the table. This could
indicate that different possible uses and combinations of widgets may need to
be more explicitly explicated.

As previously mentioned, widgets have a cardinality specifying how many
values could and should at least and at most be provided. We observed that
the end-user often specified widgets as “mandatory”, even if she acknowledged
that “it would not be that problematic if this field was not filled”.

206 Chapter 13. The experimentation

Finally, there was few manipulation mistakes observed during this session.
They were mainly relation to the insertion process (widgets inserted after rather
and before, and vice-versa). The end-user drew only 3 of the 5 previous Aca-
demic Years, because she found it repetitive.

Output of the session

During this first session, EUl and DB1 produced the single form at the left
side of Fig. . This form was automatically adapted into the schema at the
right side of Fig. , before being transformed into the schema of Fig.
using the previously defined mapping rules.

As we can see, this single form represents the inscription request made by a
candidate. Each request has a year of submission and a requested programme,
and various information must be provided regarding the applicant, notably
regarding his/her identity, his/her means of contact and his/her education and
training. We observe that this form is quite big, which makes it less pleasant
to manipulate.

EU1 enjoyed drawing the form and seeing the interface developing little
by little. Though DB1 did not feel very useful, the pair actually discussed
throughout the whole session to appropriately define each component of the
form.

13.1.3 Session 2: Analysing the terminology and structure of the
forms

This session focused on analysing the terminology and structure of the form, in
order to detect any possible ambiguity. The session was organised as follows:

e Recap of the objectives of this session

e Discussion on the previously drawn form, with suggestions of modifica-
tion.

e Analysis of all the labels: the similar labels have been group in lexi-
cally or ontologically similar label clusters; in these cluster, any element
that represent the same king of information must be grouped and jointly
relabelled (30 minutes).

e Analysis of the similar structures: the forms, tables and fieldsets con-
taining widgets with the same labels are presented for comparison and
arbitration; the end-user must explain why such situation occurs (equal-
ity, specialisation, union, complementarity or accident).

13.1.3. First case study - Session 2

" | INSCRIPTION REQUEST x
Technical detail
’ilear (of submission) *
Bachelor -
Requested programme | Preparatory year *
Master 120 -

r~Candidate informati

INSCRIPTION REQUEST

Identity
Last name *
First name
Gender Male Female *
Nationality =
Date (of birth) | 0170171300 v *
Place of birth 2
[~Contact
Street =
Street number *

Maibox number

Postal code 2
City «
Country ~
Telephane
E-mail
—Spoken lanquags
Excellent j
French level Good i
Average <
~Secondary educati
Certificate denomination &
Country i
Date i

[~Certificate equivalence

Obtained) No. Yes 2

‘Year 01j01§1900 v

~Curriculum {professionnal and academic)
~Academic year (-5)

Beginning «
Ending *
Desaripti

Location Occupation Details

add [Ed || Delere || Reset
~Academic year (-4)
Beginring *
Ending *

Description

Location Occupation Details

[Ak [Ed || Delete || Reser
~hcademic year (-3)
Beginning i
Ending *

Deseripti

Location Occupation Details

Technical Details[0-1]

Year (of submission)
Requested programme
Candidate information[0-1]

Identity[0-1]

Last name
First name[0-1]
Gender
Nationality
Date (of birth)
Place of birth
Contact[0-1]
Street
Street number
Mailbox number{0-1]
Postal code
City
Country
Telephone[0-1]
E-mail[0-1]
Spoken languages[0-1]
French level
Secondary Education[0-1]
Certificate denomination
Country
Date
Certificate equivalence[0-1]
Obtained
Year[0-1]
Curriculum (professional and academic)[0-1]
Academic Year (-5)[0-1]
Beginning
Ending
Description[0-N]
Location
Occupation[0-1]
Details
Academic Year (-4)[0-1]
Beginning
Ending
Description[0-N]
Location
Occupation[0-1]
Details
Academic Year (-3)[0-1]
Beginning
Ending
Description[0-N]
Location
Occupation[0-1]

Details

Add Edit

|| Delere

| Resmt

207

Figure 13.1: The form drawn by end-user EUl and analyst DB1 during the first
session, and its corresponding raw schema.

208 Chapter 13. The experimentation
INSCRIPTION REQUEST|
Requested programme
e N
01 01
— o
(\T/) AN
ON ON
L
TECHNICAL Details | |CANDIDATE INFORMATION|
Year (of submission)] _— -~ N —~—_
o o 04 T
P - N T
< > ~
T T I
O-N ON 0-‘N
1 |
IDENTITY Contact SPOKEN LANGUAGES Secondary Education
Last name Street French level [Certificate denomination|
First name[0-1] Street number Country
Gender Mailbox number{0-1] Date
Nationality Postal code - =~
Date (of birth) City 01 041
Place of birth Country (m,\/ P
Telephone[0-1] ~ d
E-mail[0-1] ON 0N
1
CERTIFICATE EQUIVALENCE CURRICULUM (PROFESSIONAL AND ACADEMIC)
Obtained o 0\1 —
Yearfo-1] Y i M
< <> >
ON ON oN
Academic Year (-3) Academic Year (-5) Academic Year (-4)
Beginning Beginning Beginning
Ending Ending Ending
T T T
O-N O-N 0N
/’J\\ TN ,/J‘\
S~ S e
l}‘N Of‘N O-N
!
DESCRIPTION DESCRIPTION DESCRIPTION
Location Location Location
Occupation[0-1] Occupation[0-1] Occupation[0-1]
Details Details Details

Figure 13.2: The refined schema corresponding to the raw schema of Fig.

o Individual debriefing: afterwards, the main observer discussed separately
with each other participant to take their impressions and remarks (15
minutes per participant).

In the following, we expose the remarks made by the observers and the
participants through the debriefing.

Reviewing the interfaces

Based on the notes and discussion from the first session, the analyst suggested

and Fig.):

e Synthesize the different Academic Years of the Curriculum into a single
table labelled Experience to make the form lighter and more generic.
The description property explained that this table refers to the experience
of the candidate during the five years prior to the application.

modifying the previously drawn form as follows (Fig.

e Remove the Experience from the Secondary Education, since they were
inadvertently mixed up.

13.1.3. First case study - Session 2 209

These suggestions were agreed by the end-user. In addition to these mod-
ifications, the end-user also suggested to relabel Experience to Curriculum,
as show further on. Subsequently, the updated form was “adapted” using the
mapping rules, then EU1 and DB1 proceeded with the execution of their task.

Observations on the terminological analysis

The original labelling ambiguities that were detected are presented in Table

. After reviewing these ambiguities, it appeared that there were no labels
that still needed to be clarified thanks to the labelling suggestions and the
discussions that occurred during the drawing phase. The conflicting elements
were therefore different and did not need to be relabelled.

Similar sub

Ambiguities
groups

Coordonnees-candidat, Donnees-candidat, Donnees-
techniques, Identité- candidat /
Date, detail, e-mail, equivalence de diplome, intituled-du-

diplome /
Lieu /
Nom, prénom /
Numero-boite, numero-rue, numero-telephone, rue /

Table 13.1: Labelling ambiguities for session 2 of the first case study.

Observations on the structural analysis

The structural ambiguities that were detected are presented in Table
After reviewing these ambiguities, it also appeared that the structural ambi-
guities were purely accidental. Though they shared similarly labelled widgets,
the involved containers were actually different.

Ambiguities Pattern | Decision
Contact - Secondary education Country | Different
Technical details - Certificate equivalence | Year Different
Secondary education - Identity Date Different

Table 13.2: Structural ambiguities for session 2 of the first case study.

210

Figure 13.3: The modified form as suggested by the analyst, and its corresponding

Chapter 13. The experimentation

i INSCRIPTION REQUEST
—Technical details
‘fear (of submission)
Bachelor =
Requested programme | Preparatory year *
Master 120 -
—Candidate infarmation INSCRIPTION REQUEST
~Identit - -
i . Technical Details[0-1]
Last name Year (of submission)
First name Requested programme
Gender Male Female * Candidate information[0-1]
Mationality * Identlty[0-1]
Last name
Date {of birth)| 01)01/1900 w ¥ First name[0-1]
Place of birth * Gender
“contadt Nationality
. Date (of birth)
atreet Place of birth
Street number * Contact[0-1]
Mailbasx number Street
el e * Str(.eet number
. . Mailbox number{0-1]
ke Postal code
Country & City
Telephone Country
Bt Telephone[0-1]
E-mail[0-1]
Spoken languages Spoken languages[0-1]
ol EXCPE:'B"t =1, French level
French lewvel | 00 .
fverage - Secondary education[0-1]
= Certificate denomination
—Secondary education Count[y
Certificate denomination & Date
Country * Certiﬁc_ate equivalence[0-1]
— " Obtained
-) Year{0-1]
Certificate equivalence N
) Experience[0-N]
Obtained) Mo Yes = -
Beginning date
‘fear IDI,I'UIIIQDD v Ending date
: Location
TR Occupation[0-1]
Beginning date Ending date Location Qoo Details
| | i
l Add] l Edit ‘ | Delete ‘ ‘ Reset ‘

raw schema.

13.1.4. First case study - Session 3 211

INSCRIPTION REQUEST
Requested programme

e
TECHNICAL DETAILS
Year (of submission)

017

0N

N

0-N

|
CANDIDATE INFORMATI

ION

g

=

0 047 0-1 01 0N
7 <> S T
~ T - T
0-‘N 0N 0—‘N 0N ON
1
IDENTITY CONTACT SPOKEN LANGUAGES| | SECONDARY EDUCATION| | EXPERIENCE
Last name Street French level Certificate denomination Beginning date
First name[0-1] | Street number Country Ending date
Gender Mailbox number{0-1] Date Location
Nationality Postal code 04 Occupation[0-1]
Date (of birth) | | City N Details
Place of bith | | Country <>
Telephone[0-1] 0-N
E-mail[0-1]
CERTIFICATE EQUIVALENCE
Obtained
Year[0-1]

Figure 13.4: The refined schema corresponding to the modified form suggested by
the analyst (Fig.).

Output of the session

The form resulting of this session can be seen in Fig. , while its underlying
schema can be seen in Fig.
This session did not provide any modification on the core of the project.

However, it led to discuss the general structure and labelling of the form again.

13.1.4 Session 3: Providing examples and constraints

This session focused on providing and analysing examples to discover explicit

and implicit properties of the form. The session was organised as follows:
e Recap of the objectives of this session

Discussion on the previously drawn form, to see if other modifications
should be brought.

Example input and discussion on the properties of the form.

Individual debriefing: afterwards, the main observer discussed separately
with each other participant to take their impressions and remarks (15
minutes per participant).

212

Chapter 13. The experimentation

INSCRIPTION REQUEST x

Technical details
’iﬂaar {of submission)

Bachelor
Masker 120

—Candidate information

Requested programme | Preparatary year #

—Identity

Last name
First name
Gender Male

Mationality

Female *

Date (of birth) | 017011900

Place {of birth)

—Conkack

Skrest

Street number
Mailbaz number
Postal code
City

Country
Telephone

E-mail

—Spoken languages

Excellent

French level Good
Average

—aecondary education

Certificate denomination
Counkry

Date {of obtainment)

Certificate equivalence

Obtained (| Mo

Year 0101715900

Date (beginning)

Jl |

—Curriculum (professionnal and academic)

Date {ending) Location

2

I

][Dalate][Feasat]

Figure 13.5: The form at the end of the second session.

13.1.4. First case study - Session 3 213

INSCRIPTION REQUEST]|
Requested programme

017 0-1__
ST \{;F>
O-N O-N
0-1 I ER CTTTON
1 ~ —
<> R T
T) T T g
0-‘N 0-‘N 0-‘N 0-‘N 0-‘N
IDENTITY CONTACT ‘SPOKEN LANGUAGES ‘SECONDARY EDUCATION| | CURRICULUM (PROFESSIONAL AND ACADEMIC)|
Last name Street ‘French level Certificate denomination Date (beginning)
First name[0-1]| | Street number Country Date (ending)
Gender Mailbox number[0-1] Date (of obtainment) Location
Nationality Postal code Occupation[0-1]
Date (of birth) | |City 01 Details
Place of bith Country <>
Telephone[0-1] 0-5\‘
E-mail[0-1]

.
CERTIFICATE EQUIVALENCE
Obtained
Year[0-1]

Figure 13.6: The underlying schema of the form at the end of the second session.

In the following, we expose the remarks made by the observers and the
participants through the debriefing.

Reviewing the interfaces

At this point of the process, EU1 and DB1 did not feel that the form needed
to be updated.

General observations

EU1 took the control of the application to input the examples, based on real
paper applications, and during the experimentation, DBA1 eventually took
over. EU1 provided 3 examples in more or less 75 minutes, including:

e 15 minutes for example 1;

e 10 minutes for example 2 (which was lost because of a bad manipulation,
then recreated by DBA1 in 5 minutes);

e 10 minutes for example 3.

It actually appeared that the encoding of examples was more efficient (quicker
and more gratifying) when DBA1 was encoding the data samples under the
supervision of EU1, which was reading him the necessary paper forms and
documents. The examples were encoded before analysing the constraints and
dependencies.

214 Chapter 13. The experimentation

The only interesting constraint that was added was setting French level
as the identifier of the Spoken Languages. Besides, complex constraints could
not easily be expressed through the tool:

e complex identifiers: all the Inscription request should have be identi-
fied by the Year (of submission) and the Identity of the candidate;

e transversal dependencies: the Identity of the candidate determines his
Secondary education;

e multiple coexisting elements: there should have been at least be a contact
means (an address, a telephone number or an e-mail) for each Inscrip-
tion request;

e conditional elements: another dependency that could not be expressed
concerned the fact that Certificate equivalence should be completed
only if the Country of Secondary education is not European.

Since working with the tool raised these issues, the analyst was at least able
to note them for further notice, which implies that those information were not
lost. Further discussion between EU1 and DB1 confirmed that there should
not be any other “hidden” constraint among the given elements.

Output of the session

At this point, the appearance of the form has not changed, but the underly-
ing schema has (Fig.). It now includes the specified identifier and has
been annotated with the known domain of values and additional information
provided by the end-user.

During this session, EU1 hence provided a set of examples in order to elicit
constraints and dependencies. However, the application domain was such that
it was difficult to point out any major constraint or dependency.

13.1.5 Session 4: Finalising the project

This last session should have focused on discussing the main concepts emerging
from the forms, especially the one highlighted during the structural analysis.
However, no major concept was detected, and therefore this last session became
obsolete.

13.1.6. First case study - Discussin,

A request is identified by the
identity of the candidate and
the year of submission.

There should be at least one
- contact address: postal
address, telephone or e-mail.

INSCRIPTION REQUEST
AN
01 01

s

-

ON

TECHNICAL DETAILS
Year (of submission)

01— "

< s

e
\T'

ON

Master 60

CANDII ION
—— —

DATE INFORMAT
VAN
// \\\
0-1

g the schemas 215

DOMAIN OF VALUES
Bachelor

Preparatory year
Master 120

01

0—‘N ON
IDENTITY ~ CONTACT SPOKEN LANGUAGES ‘SECONDARY EDUCAT\ON‘ CURRICULUM (PROFESSIONAL AND ACADEMIC)
Last name Street French level Certificate denomination Date (beginning)
First name[0-1] Street number ilid: French level Country -.|Date (ending)
Gender Mailbox number[0-1]| i Date (of obtainment) Location
Nationality i |Postal code Occupation[0-1]
Date (of birth) |} |City Details
Place of birth Country ; 1
Telephone[0-1] {|DOMAIN OF VALUES .
E-mail[0-1] i Ezgzl\ent /L\ The equivalence is necessary only
i i Average 7 |when the certificate was not -
' IDOMAIN OF VALUES | Poor ‘ delivered by a european country.
HFemale Null oN
Male ‘

CERTIFICATE EQUIVALENCE

U

The identity of the candidate determine:
his secondary education

]

Obtained
Year[0-1]

" | DOMAIN OF \/ALUES
- Yes
No

Figure 13.7: The underlying schema of the form at the end of the third session.

13.1.6 Discussing the schemas

Characteristics of the subject

This case study was highly interesting because it dealt with a simple case study
that could be represented by a single monolithic form. There was very little
redundancies and ambiguities, yet there were some interesting constraints to

be expressed.

The subjected reviewed by the ana

Based on the form-based interfaces a

lyst

nd the knowledge he gathered during the

different steps of the approach, the analyst DB1 drew his own schema of the

application domain before analysing
toolkit. The result of his modelling ¢

Analysing the generated schemas

the schema generated by the RAINBOW
an be seen in Fig.

As we can see, the final generated schema is basically a tree of entity types,
reflecting the tree-like structure of the form. The content is fundamentally the

216 Chapter 13. The experimentation

CANDIDATE

CandidateNumber

Last Name

First Name[0-1]

Gender

Nationality “-._ |DOMAIN OF VALUES

Date of birth[0-1] “{Male

Place of birth[0-1] Female

Contact
Address[0-1]

INSCRIPTION REQUEST| Street

D [_ | Street Number
Year of Submission 11—de)—oN Mailbox Number{0-1]

id. ID Gity .
Country DOMAIN OF VALUES
Telephone[0-1] Excellent
E-Mail[0-1]
French lewel -
id: CanclidateNumber
coex: Date of birth
BACHELOR| [PREPARATORY YEAR| [MASTER 120] [MASTER 60 Place of birth
at-st-1: Contact.Address
Contact. Telephone
Contact. E-Mail

Date (beginning) <= Date (ending)
and both must be within the last five years

0-1 O-N

1-1 1-1

Ifthe Certificate equivalence is not null,
then the Country is not "Belgium" S

—
SECONDARY EDUCATION QCCUPATION
Certificate Denomination Date début g
Country Ending date
;, | Date of obtainment Location
{Certificate Equivalence[0-1] Détail

Obtained
Year{0-1]

If Obtained e E
then Y.
Eniieaisin [PROFESSIONAL| [ACADEMIC]

Figure 13.8: The schema corresponding to the domain of the first case study, as
conceived by DB1 without seeing the final output schema.

same as the one modelled by DB1, but there is obviously room for technical
identifiers and integration between the entity types. Which entity types could
therefore be transformed into compound attributes of other entity types, and
under which conditions? Could it be when the entity type has no identifier,
or no other roles? For instance, Identity, Contact and Spoken Languages
could be transformed into compound attributes of Candidate Information,
and the attribute Year of submission could simply be moved into Inscrip-
tion request. In the contrary, Curriculum and Secondary education are
relevant enough to be maintained as entity types. This illustrates the semantic
arbitration that an analyst can provide, on the contrary of a machine.

13.2. Second case study: An academic event management system 217

13.2 Second case study: An academic event management
system

13.2.1 Preparation
Defining the subject

With the future restructuring of responsibilities within the Faculty of Computer
Science, EU2 will be fully in charge of the organisation of seminars, sympo-
siums, conferences and other kinds of meetings. The study will therefore focus
in designing the preliminary forms that could be used to facilitate the encoding
and reuse of information, to handle the various reservations, the planning and
SO on.

Training

Before the beginning of the sessions, EU2 received the two screencast tutorials
explaining how to use the RAINBOW toolkit to draw relevant form-based
interfaces. Because of her full agenda, she did not have much time to spend
on the tutorial. She mainly suggested the tutorial to be provided with a locale
translation.

13.2.2 Session 1: Drawing the forms

The first session focused on drawing the necessary forms to encode new meet-
ings and registration for those meetings, and was organised as follows:

o Introduction: the main observer (MO) introduced the participants and
their roles, as well as the objectives (drawing the forms supporting the
encoding of information for the subject defined by EU2) and the proce-
dure (EU2 and DB1 draw jointly while OB2 and MO observe) for the
current session (10 minutes);

e Recapitulation: the participants recapped and discussed the subject of
the study, and discussed the tutorials (10 minutes);

o FEzecution: the end-user and the analyst executed the tasks associated
with the current session using the RAINBOW toolkit while the observers
took notes (100 minutes);

e Individual debriefing: afterwards, the main observer discussed separately
with each other participant to take their impressions and remarks (15
minutes per participant).

In the following, we expose the remarks made by the observers and the
participants through the debriefing.

218 Chapter 13. The experimentation

— (. ~Contact Title (-
" e
Main organizer (= (= . Meetng | |=
e ; . e
Location (= First name | Abstract | -
o i] =
Opening date 01/01/1800 vl|= Speaker
Address (organisation) | i
) O — Person Role
S~ e e Pen k)
- 101 A Address (mai) =
Target
Telephone (=
T ——
e Fax]
Date of birth 01/01/1900 v
——— it |[e |[ooe |[Rem |
Place of birth
——— —— an>
[as [Esm |[e |[Rem | Parking reservation () Yes O No = Parentevent |
- Equipment
e — R |
- iption Comment
Website] “Registered evens

#d_J(_ex [o J[Re
Student
Category Enterprise
University
Amount |
e — ‘ ClEreen)
Daen») Last name [
gvent [| sub-category| | First name [J=
Descripton | | i [|
Address (organisaton)| |*
Address (mail) | =
Telephone [J*
Composition e ‘ ‘
Movement type Expensetype Clickto > Amount .
Place of birth ——
Vat number (I
Food restriction]
ad][ex J[o J[e) =) o) =

Person| Person Person
[aee [e |[osee |[R | [aee [e J[osee || mem | [ae J[e][osee |[mem |
ﬁ:ﬁm)[Add person] mﬂn[Add person] m:kn»[Add person]

Figure 13.9: The forms drawn by end-user EU2 and analyst DB1 during the first
session, and the corresponding raw schema.

General observations

The end-user naturally gave the commands to the analyst and was reluctant to
manipulate the rainbow toolkit. It was therefore the analyst who manipulated
the toolkit, and he felt more involved and useful this time, while concealing
specification difficulties, such as the “parent-dependent” property.

The end-user appreciated that the analyst operated the toolkit, as she was

13.2.2. Second case study - Session 1 219

able to gather her thoughts while he drew the forms. Although she had thought
about the problem, she would have appreciated an additional preliminary meet-
ing in order to roughly sketch a first set of forms.

The end-user would have appreciated a projector to view the forms on a
large screen rather than watching the little screen of the laptop. The resolution
could also be larger, so that all the forms can be visible at once.

Observations on the tool support

There was no particular problem regarding the tool support, as it was operated
by the analyst. There were no manipulation mistakes, and the analyst arbi-
trated the labelling suggestions as they presented themselves. However, the
end-user and the analyst did brought to light the following elements:
e the toolkit should support graves, acutes and circumflexes in labels. This
coincides with the necessity to have locale versions of the tool support;
e regarding the widgets, it could be interesting to be able to order the
options of selections; one can also question the relevance of providing
labels for actions, since the buttons already have a label and the actions
themselves already have a description;
e regarding the rendering of the widgets, tables could adapt to their content
(in terms of columns) and the geometry of the widgets should be preserved
whenever they are redrawn;
e it would be nice if the toolkit supported drag-and-drop, to insert new
widgets, or to move them from a container to another.

Output of the session

During this first session, EU2 and DB1 produced the forms shown in Fig.
These forms were automatically adapted into the raw schema of Fig. ,
before being transformed into the schema of Fig. using the previously
defined mapping rules.

From the discussion and drawings of this first session, it appears that a
Meeting is organised by an organisational and a scientific Committee and con-
sists of different Events. For each meeting, a Programme is defined and a
Budget is established base on the different possible Expense types. The Lec-
turers that attend a meeting need to fill a Registration, and may benefit
from a Rate Type corresponding to their status. Information regarding the
different Persons involved in meetings should also be stored for possible fur-
ther reuse. As we can see, there are several main concepts that are already
apparent and there seems to be several connections between these concepts.

220 Chapter 13. The experimentation

MEETING REGISTRATION EVENT
Name Contact[0-1] Title
Main organizer Last Name Meeting
Location First Name Abstract
Opening date Organisation[0-1] Speaker{0-N]
Ending date Address (organisation) Person
Target audience[0-N] Address (mail) Role[0-1]

Type Telephone «R» Add Speaker{0-N]|
Expected number of participants Fax[0-1] Parent event[0-1]
Website[0-1] Date of birth[0-1] Equipment[0-N]

Place of birth[0-1] Description
Special diet[0-1] Comment[0-1]
Parking resenation
«R» Add participant[0-N]
Registered events[0-N]
RATE TYPE PERSON
Category Last Name
Amount [P ———— First Name
Meeting EXPENSE TYPES Organisation[0-1]
«R» Search Meeting[0-N] Category Address (organisation)
Event[0-1] SUb'C_at_egory[o"” Address (mail)
- Description[0-1] Telephone
Fax[0-1]
Date of birth[0-1]
PROGRAMME Place of birth[0-1]
Meetin VAT number{0-1]
- .BUDGEI' Desc[O?N] Food restriction[0-1]
Composition[0-N] Event
'I\E”fp‘gnm;rﬁ;gge «R» Add Evert[0-N]
«R» Add expense type[0-N] Ope_nlng[0—1]
Amount Ending[0-1]
Location[0-1]
Room([0-1]
LECTURERS COMMITTEE (ORGANISATION) COMMITTEE (SCIENTIFIC)
Composition[0-N] Composition[0-N] Composition[0-N]
Person Person Person
«R» Add Person[0-N] «R» Add Person[0-N] «R» Add Person[0-N]

Figure 13.10: The raw schema corresponding to the forms drawn by end-user EU2
and analyst DB1 during the first session (Fig.).

DBI1 and EU2 both felt comfortable with DB1 operating the toolkit under
EU2’s command. The former felt more useful and handled the building of
the forms, while the latter did not feel clumsy with the toolkit and could
concentrate on the content. Besides, EU2 appreciated seeing the interface
being developing little by little, since it gave her a good overview of the whole
project.

13.2.3 Session 2: Analysing the terminology and structure of the
forms

This session focused on analysing the terminology and structure of the form, in
order to detect any possible ambiguity. The session was organised as follows:

e Recap of the objectives of this session

13.2.3. Second case study - Session 2 221

MEETING REGISTRATION| EVENT
Name Title
Main organizer o1 o Meeting
Location <> Q Abstract
Opening date o-N O-N Parent event[0-1]
Ending date [PU] Add Speaker
Expected number of participants CONTACT REGISTERED EVENTS T
Website[0-1] Last Name O-N ON
! First Name <>
O-N Organisation[0-1]
Address (organisation) o-N O-N
o-N ﬁdrehss (mail) SPEAKER| [EQUIPMENT
FZ:[%_:’]HE Person Description
Type Date of birth[0-1] Role[0-1] Comment[0-1]
Place of birth[0-1]
Special diet[0-1] PERSON
Parking resenation Last Name
[PU] Add participant First Name
Organisation[0-1]
RATE TYPE Address (organisation)
Category EXPENSE TYPES Address (mail)
Amount Telephene
Meeting ng;e%:?egory[ou Fax[0-1]
Event[0-1] Description[o.1] Date of birth[0-1]
[PU] Search Meeting Place of birth[0-1]
PROGRAMME| VAT number0-1]
Meeting Food restriction[0-1]
0-N T
O-N
<
COMPOSITION ON
Movement type DESC
Expense type Ewent
Amount Opening[0-1]
[PU] Add expense type Ending[0-1]
Location[0-1]
Room[0-1]
[PU] Add Event

LECTURERS [COMMITTEE (ORGANISATION) COMMITTEE (SCIENTIFIC)
[PU] Add Person| |[PU] Add Person [PU] Add Person |
| : |

0-N 0-N 0-N
0-N 0-N 0-N
COMPOSITION COMPOSITION COMPOSITION

Figure 13.11: The refined schema corresponding to the raw schema of Fig.

e Discussion on the previously drawn form, with suggestions of modifica-
tion.

e Analysis of all the labels: the similar labels have been group in lexi-
cally or ontologically similar label clusters; in these cluster, any element
that represent the same king of information must be grouped and jointly
relabelled (30 minutes).

e Analysis of the similar structures: the forms, tables and fieldsets con-
taining widgets with the same labels are presented for comparison and
arbitration; the end-user must explain why such situation occurs (equal-
ity, specialisation, union, complementarity or accident).

222 Chapter 13. The experimentation

e Individual debriefing: afterwards, the main observer discussed separately
with each other participant to take their impressions and remarks (15
minutes per participant).

In the following, we expose the remarks made by the observers and the
participants through the debriefing.

Reviewing the interfaces

Based on the notes and discussion from the first session, the analyst suggested
modifying the previously drawn form as shown in Fig. , hence implying
the raw schema of Fig. and the refined schema of Fig.

e Move and restructure the Committees and Lecturers into their associ-
ated Meeting;

e Mention the Meeting to be associated with each Event, Registration,
Budget, Programme and Rate Type;

e Replace the column Person by the columns Last Name and First Name
in the tables, i.e. use elements that could be detected as referential (Last
Name and First Name can be found in the form Person) instead of using
an input to refer to a complex form;

e Remove the unnecessary buttons Add Person and Add Speaker, since
they are provided by the table widget.

These suggestions were agreed by the end-user. Subsequently, the updated
form was “adapted” using the mapping rules, then EU2 and DB1 proceeded
with the execution of their task.

General observations

EU2 had print the forms on paper before the session, and it appeared that it
was an efficient way to discuss the forms and annotate them.

Observations on the terminological analysis

The original labelling ambiguities that were detected are presented in Table
. After reviewing these ambiguities, it appeared that there were no labels
that still needed to be clarified thanks to the labelling suggestions and the
discussions that occurred during the drawing phase. The conflicting elements
were therefore different and did not need to be relabelled.
However, this step did lead to loop back to update the forms, especially for
the following elements:

13.2.3. Second case study - Session 2

223

= WEEING 3 o REGISI RATION: x B EVE; %
Name * C= Meeting
Main organizer = Name = Name =
o e B G B L T E——r—
Opening date 01/01/1900 vl|® [~Contact Title =
Last name =
N (oo [v)* N e i —
) =
~Comittee st pame;] e
e) iy ———
Last name First name Click to > o - o=
Address (organisator) | Lastname First name Role Click o >
Address (mail) i
Telephone e
Fax 3
[J[e J[esee J[re= J] || ooeotn e e =
~Committee (scientific) Place of birth) -
Last name First name | Click to > e .) [
parking aton O Yes ONo . Description Comment
x>
Add Edit Delete:
J(I e Title| Clickfo >
= === s |[e || e |[Res
Last name First name Click to >
sl |[B |[Dok |[Res
aa][e [oo][= | | PERSON L]
Torget Lastname 7
o Firstname &
o]
] RATEIVIE e o=
= Address (mail) =
Name =
Telephone J*
[e o e o> sexcrnee | . |
x]
Expected number of partpants || Bt [Date of birth
e I Student = Place of birth (I
Category | Enterprise P —
University - Vat number
SO N e E—
Category J*
Sub-category
Description
—] HULGET 3 [~} PROGRANME 3
Mesting o
Name | |= Name | |*
Gick to >[Search meeting] Cick to >[Search meeting]
~Expense type: Events

Movement type Category Sub-category Clickto > Amount

Title Clickto > Opening Ending Location Room

Deee][Rem |

Figure 13.12: The modifications suggested by analyst DB1 to EU2 at the beginning
of the second session to replace the original forms (Fig. 13.9).

224 Chapter 13. The experimentation

MEETING REGISTRATION EVENT
Name Meeting[0-1] Meeting[0-1]
Main erganizer Name Name
Location «R» Search meeting[0-N] «R» Search meeting[0-N]
Opening date Contact[0-1] Title
Ending date Last name Abstract
Committee (crganisation)[0-N] First name Parent event[0-1]
Last name Organisation[0-1] Speaker[0-N]
First name Address (organisation) Last name
«R» Add person[0-N] Address (mail) First name
Committee (scientific)[0-N] Telephene Role[0-1]
Last name Fax[0-1] «R» Add person[0-N]
First name Date of birth[0-1] Equipment[0-N]
«R» Add person[0-N] Place of birth[0-1] Description
Lecturers[0-N] Special diet[0-1] Comment[0-1]
Last name Parking resenation
First name «R» Add participant[0-N]
«R» Add person[0-N] Registered events[0-N] PERSON
Target audience[0-N] Title :;?;EE ::Ir:ee
Type «R» Choose an event[0-N] B
Expected number of participants Organisation[0-1]
Website[0-1] Address (org_anlsatlon)
\ RATE TYPE Address (mail)
Meeting[0-1] Telephone
EXPENSE TYPE Name Fax[0-1]
Category «R» Search meeting[0-N] Date of birth[0-1]
Sub-category[0-1] Event[0-1] Place of bith[0-1]
Description[0-1] Category Vat number[0-1]
Amount Food restriction[0-1]
PROGRAMME
BUDGET -
Mesting[0-1] Mseinglo-1]
Name) «R» Search meeting[0-N]
«R» Search mesating[0-N] Events[O-N]
Expense types[0-N] Title
“C”:t“:;;";f;‘t typs «R» Add event[0-N]
Opening[C-1]
Sub-categoery[0-1] Ending[0-1]
;Rm);ﬁ:td expense type[0-N] Location[0-1]
Room[0-1]

Figure 13.13: The reviewed raw schema corresponding to the reviewed forms of
Fig.

Redefinition of the field Address into a fieldset;
Improving the definition of Event (by adding a fieldset Parent event);

Improving the definition of Rate type (by adding a fieldset Event);

Unifying Food restriction and Special Diet (under the latter term);

Improving the order of the elements of the form Meeting into a more

logical sequence for a better encoding

Observations on the structural analysis

For the sake of conciseness, the original structural ambiguities that were de-
tected and that were not arbitrated as different are presented in Table

225

13.2.3. Second case study - Session 2

1usas ppy [Nd]

[1-0lwooy 2dAy asuadxe ppv [Nd]
[1-0luopeso nowy|
[1-0lBuipus [1-0lkoBaea-ans
[1-0lBuado| [Bunssw yaess Ind] Buyesw yasess [Ndl AioBsyes | [Bunssw yasess Indl
TR 7 SweN aweN ad A} Jus wanopy sweN
SLN3AZ i ONL33IN ONLI3IN S3dAL 3SN3JX3 ONLI3IN
T
¥ - N-0 H
[1-0luonousal pooy N9 o N0 NO
[1-okequinu Je mu,v ﬂw AV NN wuw
[1-0luia s0 82810 N-0 10 H0 NO 10
[1-0lup1q o 2129 Junoury Ti-oluonduossq
[1-0]xe4 FNNvEDOoNd KioBsjen [L30an8 [1-0lkioBeies-ang
__mc._mv:momsh_ww ﬂ [1-0lwenzg fuoboizo
(uonesiueblo) ssaippy SdAL 3LV 3dAL ISNIIXT
l1-oluonesiuetio wediopied ppy [Nl
s Uonevssal Buped uosiad ppy [Nl uosiad ppy [ndl uosiad ppy Ing]
Sweu jse .__\.o_u.m__u _m_wmam aleu 1sil4 Slweu }sli4 SlWeu 1sil4
NOS¥=d :.o_:t_fo wum_u adAL| sueu jse slueU jse sweu jse
[1-0lyHiq J0 31eQ [3ON3IaNY 1398vL| | S¥ZuNLOT1 | [(0I5IN3I0S) 3ALLWWOD| |INOILYSINYOHO) FALLIWNOD
[1-olve
uosiad ™
ﬂm%ﬂ ﬂ w:o:%_m._. N0 N0 N0 N-O
1ewW) ss2UppY|
[1-0huswiion sweu jsus| [Buneew yarees Indl (UoneSUVE) Ssppy MU/ NM AV \AW
uopduossg sweu jse sweN [1-0luonesiueio N0 NO NO NO
f.ZmEn_ij HINVILS ONLLIIN sne ue asooyd [Ndl sweu 15114 | [Bunssw yaess [ndl
NO NoO N0 ShL SUEBY j5eT SUEN swedioned jo ._wo_Erﬂo MM%%%VB
Q A__V wmv SINSAS a¥ILSIO ._.u<._.,zou ONLLIIN h s1ep BulpUS
N-O N-O 10 N-0 N-O N-O a1ep Buusdo
f uone07]
[L-0lwans usied NW AV n Jszueio uiepy
Joelsqy NO -0 10 SWEN
oL ONLLEW
AIN3A3 NOLLVAL SI93d

The reviewed refined schema corresponding to the reviewed raw

Figure 13.14

schema of Fig.

226 Chapter 13. The experimentation

Table 13.3: Labelling ambiguities for session 2 of the second case study.

Similar sub

Ambiguities

groups
Adresse, Adresse web /
Catégorie, matériel, sous-categorie /

Code postal, date de naissance, date debut, date fin, de-
but, description, evenement, evenements, fin, inscription
participant, lieu, lieu de naissance, nom, nombre de partici-
pants attendus, organisateur principal, organisme, prenom, /
regime particulier, role, type, type de frais, type de mouve-
ment, type de tarif, types de frais

Comite, localite /
Num tva, numero telephone /

In addition, all the Meeting containers were equal, and so were all the Event
containers.

We observed that there was a missing type of relationship, namely “is com-
posed of” that should be added to “equals”, “specialises”,

, “unites with”, “refers
to” and “differs”, because of the table widgets.

Output of the session

The form resulting of this session can be seen in Fig. . After the termino-
logical analysis, the underlying schema was the one of in Fig. , while after
the structural analysis, the underlying schema was the one of in Fig.

As we can see, the main redundant concepts that stand out of the schema
are the notions of Meeting, Event, Person, Committee, Address and Expense
Type. These are the elements that will have to be integrated further on.

As we can see, during this session, there was a major shake-up of the original
forms, first because of the suggestions made by the analyst, then accordingly
to the discussion raised during the analysis of the terminology. The structural
analysis confirmed the intuition that there is a lot of redundancy between the
forms of the project.

13.2.4 Session 3: Providing examples and constraints

This session focused on providing and analysing examples to discover explicit
and implicit properties of the forms. The session was organised as follows:

e Recap of the objectives of this session (10 minutes);

13.2.4. Second case study - Session 3 227

MEE NG x =] REGISTRATION x =] BVENT %
= [Meeting Meeting
e) Name (=
Main organizer = e | — I —

- e B e T T —
Opening date 01/01/1900 v | [Contact Tite | =
Last. 2
Ening date ooy v setreme — Abstract I

. e B i S—) o
li\ o ’VTNE[|
Expected number of participants =
7mm:E e Address (organisation) I Speaker
Last name| First name | Click to > god 2@ ;]‘ Last name First name Role Clickto >
—_— Telephone =
Fax
pueator (oo v]
Place of birth
Cl= I | | [—rto2 || | | &EOE0G=0=
Special diet]
st Parking reservation () Yes) No = [Epment
Last name Firstname Click to > s il et iption Comment
Title Click to >
[[=&][osee J[rex] (A][ex J[osen J[Ree]
Lect
Last name Firstname Click to >) = [) = -] PERSON
Last name =
First name =
 Oramicati —
Name
[ae J[e [Do J[e] P ——
~Target Address [=
= L R
oy)
Country >
] Lusilz X atmumber[]
(s) (oo [ree) m——
Name J* Telephone (I
x> _sewermeers | - —
Event [-Address (private)
L L I
Postal code.
o> _smroen| S—
o EPEHSEIVPE Gty]
Category) . 2;:::;:5 . j L Country
sbaategory | University d —
Description Amount M
Place of birth
Belgian OYes (O No
Socaseantyrumber[|
Secdder []
S S
Meeting Meeting
Name | J+ Name | |*
ik to >[Search meeting l Click to)[Search meeting]
~Expense type: Events.
Movement type Category Sub-category Clickto > Amount Title Clickto > Opening Ending Location Room
[[e [peee || ke | [aee [e || oeee |[Rem |

Figure 13.15: The forms at the end of the second session.

The experimentation

Chapter 13.

228

Aunog
Ao
op02 [BISod
ssaIppy
Ss3uaav
N0
olAuune: <> wen3 ppv [ndl
[o“v.%b_w o Ti-olwoox [ed3 esusdxe ppv [ndl
[1-0lepos pisod| [I-okequnurwp| | [h-olioneson nowy
[1-0lssaippy [1-oloweN [1-0l6upuz [1-0lki0Bsie0-ans
(3LVAd) 55=:0av| [NOLVSNVOHO| [1-0lBuisdo| [Bunesiy yuess [Ndl] |weng yuess [Ngl| [Bunesy yaess [Ndl fiobeen| [Bunes youess [ndl
B sweN [L-oleniL aweN adA} uswanopy BweN
SINIAT ONLLTIN IN3A3 ONILIIN S3dAL 3SNIK3 ONILIIN
NO N0 N0 N0 NO N-0
10 10 -
N0 10 N0 10 TroTondiossg
e pros Frwasond == [Esond) Irolictsocns
[1-oluvia 1o s€Ig Y 091D
[1-0lumia jo e1eg 3dAL 3ISNEdX3
[1-0lxed
suoyds el juedioped ppy [Nd]
(jlew) ssalppy uoljenissal Buiyed
auweN jsild [1-081p [e12eds uosied ppv [ndl uosiad ppv [Nd] uossad ppY [ndl
sweN)se] [1-0lumiq o @2eid ENCENED SWeN Jsild SueN 1sil4
Nosuad [1-0lumia Jo sleq adfL sweN jse sueN jse sue jse
li-ohey [3oN3KNv130uvL| | S¥=3anLoz1 | [(OIFLNII0S) SALLINNOO| [(NOLLYSINVERO) FELLINNOD)
uosied ppv [Ndl suoydsjsr ot
TL-0lel0d (lew) ssaippy| N0 NO NO
[L-Ohuswwod suweN jsiiy Bunesiy yaees [Nd] es| SSaIPPY/| NN O AV M%
uonduoseq ouweN jse|| T-olem] | aueN li-oluoresiebio| NO NO NO NG
INSWJINO3 || u3ivads | [[N3ASINZavd| [oNLzan ars e 850040 [ndl] ouweN jsid| Bugseiy yoress [ndl
Bl SleN]se BSWEeN sjued)diped jo Jsquinu psydadx3
N0 N NO NO SIN3AS gALSIOTY LOVINOO ONLIIN :d_mmﬂm\s
T ajep Buipuz
Z > O va i Q N-O N0 N-0 ajep Bujuado|
o N0 L0 10 NN AV n oneooT
Joe)sqy| I 19z)uebio uep
g N0 1-0 10 wen
EER NOLLWNLSIOZY ONLLTEW

logy

mo

termi

11

hema of the forms after analysing the

The underlying sc

Figure 13.16

session.

during the second

229

13.2.4. Second case study - Session 3

< «0) siajey

ediopred ppy [nd]

uoneniasal Bunjieq
[1-0letp eroads
[1-0lupiq o 20eld
[1-0lymig jo 23eq
[1-0lxed
L— auoydajeL
(Irew) ssaippy
(uonesiueBio) sseippy
[1-0luonesiuebio
swe jsi14

auwen jseq

FON3IANY 1394VL
N-O

[1-Oluewwod
uonduosag

ae ue asooyd [ndl

[1-0lwiooy
[L-0luoneso

3L
SINIAZ a3yALSIOT
T
o
<P
NO

LOVINOO

N-O
sjuedioied jo Jequinu pajoadx3
[1-0lousaam
ajep Buipug
ajep Bulusdo
uojeoo]
Jazueblo uepy

owe -

Buneapy yosess [nd)

[NowvuLsiozy

Bunsap yoseas [ndl

|
[avwwaooua|
|

Bunsapy yosess [ndl

N-0

Bunea Y212 Indl

Bunespy yoress [ndl

- aweN

aweN

aweN

aweN

aweN

ONLLIIN

ONLLIIN

- ONLLIIN

ONLLIIN

N

IILUANOD
«spenbz»

(3LVAIMd) SS3¥aav

[1-0luyig o 21eq

[1-olxed

auoydojel

(1rew) ssasppy

sleN jsiq

awey jse7
NOS¥3d

10

[1-0lepoo [essod

NO
/ No uosiad ppy [Nd]
uossad ppv [Nd] uosiad ppy [Ndl |uosiad ppY [nd] [1-0le10y
awen jsid BweN 1sii4 awen isig awen isig
e jse suey jse e jse awen jseq
(OIHILNTIOS) IILUINWOD| |(NOLLYSINVONO) FILUWWOD | SHIANLOTT yINVIdS
NN 7 4
[1-0lAnunoo
[1-0l40

[1-olssaippy

ONLIIN

ONLLIIN
«sfenbz»

Ss3¥aav

Phiti L

[1-okequinu 1 yA
-olawieN
NOILVSINVOIO

S3dAL ISNIAX3

T1-0luopduosaq
[1-0)Ai060120-ans
fuobored
3dAL 3SN3dX3

tructure

ir s

The underlying schema of the forms after analysing the

Figure 13.17

during the second session.

230 Chapter 13. The experimentation
Table 13.4: Structural ambiguities for session 2 of the second case study.
l Ambiguities Pattern ‘ Decision ‘
Person > Address (private) Address, Postal Code, Bauals
Person > Organisation > Address City, Country quass
Meeting > Committee (scientific) Last Name, First Name Equals

Meeting > Committee (organisa-
tion)

Meeting > Committee (scientific)

Person

Last Name, First Name

Specialises (is
composed of)

Meeting > Committee (organisa-
tion)

Person

Last Name, First Name

Specialises (is
composed of)

Meeting > Lecturers

Person

Last Name, First Name

Specialises (is
composed of)

Registration > Contact

Last Name, First Name,

Address, Date of birth, Refers to
Person Fax, Place of birfch, .

Telephone, Special Diet
Event]
Parent event Title Equals
Event Title Equals
Programme > Events (composes)
Event Title Equals
Registration > Registered events (composes)

Event > Speaker

Person

Last Name, First Name

Specialises (is
composed)

Expense type

Budget > Expense types

Category, Sub-category

Is specialised
(composes)

e Discussion on the previously drawn form, to see if other modifications

should be brought(10 minutes);

e Example input and discussion on the properties of the form (165 minutes);

e Individual debriefing: afterwards, the main observer discussed separately
with each other participant to take their impressions and remarks (15

minutes per participant).

Note that the execution had to be split into two sessions: the first lasted
75 minutes and focused on encoding the examples, and the second lasted 90
minutes to discuss the properties.

In the following, we expose the remarks

made by the observers and the participants through the debriefing.

13.2.4. Second case study - Session 3 231

Reviewing the interfaces

At this point of the process, EU2 and DB1 did not feel that the form needed
to be updated.

General observations

The discussions generated by the examples input led to reconsider the forms
Registration and Budget. In the former, the possibility to specify a funding
was added, while in the latter, details on the registration type and the invoice
number were added.
During the providing of the examples, it appeared that it would be conve-
nient to be able to copy and paste values from an existing example to another.
The most interesting findings during this session were that:

e If an Organisation is mentioned for a Person, its Name is mandatory;

e A Person must systematically provide if he/she is Belgian or not (the
latter is hence mandatory);

e It is mandatory to specify the Meeting associated to an Event; moreover,
the latter can be identified by the association of the former and its own
Title;

e A Meeting can be identified by its Name;

e A Expense type has a secondary identifier in the combination of Cate-
gory, Sub-category and Description;

e A Rate type has a secondary identifier in the combination of Category
and its roles towards Meeting and Event;

It appeared difficult to express relevant functional dependencies for the
other entity types of the schema. Typically, there was no satisfying identifier
for a Person. It was also difficult to express complex constraints such as the
fact that a Belgian Person should have a Social Security Number while a
foreigner should have a Birth date.

Since working with the tool raised these issues, the analyst was at least able
to note them for further notice, which implies that those information were not
lost. Further discussion between EU1 and DBI1 confirmed that there should
not be any other “hidden” constraint among the given elements.

The discussions also suggested possible improvements that were not consid-
ered in our study, but still worthy of interest for eventual further developments:

e How could we handle multiple Main organizes?

e For the Budget, the Amount could be optional and list of usual destina-
tions for trips and travels could be provided;

232 Chapter 13. The experimentation

e It could be interesting to specify if a Lecturer should be remunerated or
not (through a checkbox for instance);

e Instead of encoding a Rate type for each Category and for each Event
of a Meeting, a table synthesising the combinations of Categories and
Amounts could prove more appropriate;

e Expense type should be encoded before budget;

e A separate Organisation form could be useful, with an identifying VAT
number (when available) and an optional Department if relevant, as well
as different possible addresses.

e It should be easy to switch from a Person to a Committee (and vice-
versa) so that a user could visualize one and complete the other (or even
copy-paste);

e The email and telephone of a Person are optional, but there should be
at least one contact address.

e In order to allow one Person to invite guests, it could be interesting
to add a table to Registration, enabling additional inscriptions with
number of persons, the events, the categories...

We also observed that the existing mechanism for eliciting functional de-
pendencies (FDs) could be improved. The progressive generation of FDs was
tedious, because the end-user and the analyst had to discard numerous FDs
before getting to the ones they wanted. Instead, it could be interesting to
provide a tool to directly define the left and right hand sides of FDs that are
trivial.

Output of the session

At this point, the appearance of the forms has slightly changed to reflect the
modified cardinalities (Fig.), but the most visible modifications are visi-
ble in underlying schema (Fig.). It now includes the specified identifiers
and has been annotated with the known domain of values and additional in-
formation provided by the end-user.

13.2.5 Session 4: Finalising the project

This session focused on discussing the main concepts emerging from the forms,
in other words, the ones highlighted during the structural analysis. The session
was organised as follows:

e Recap of the objectives of this session;

13.2.5. Second case study - Session 4 233

=] (6} 3 =] REGIST RATION, = S G B
Name - — =
Main organizer — Neme [Name -
o e A = Ll B A R ——a—
Opening date 01/01/1900 v |* el Tite | =
Last -
e e i) - o -
— First name —— Parent event
Website
isat Tite)
Expected number of participants =
~Committee (organisation) Address (organisaton) |*® o, .
Last name | First name | Click o > b)) Last name First name | Role Click to >
-_— Telephone [&
e]
O
Place of birth]
[e J[= [ook |[Res [[em |[peee |[Rem
Specal dit C—— 3 =
~Committee (scientific) Parking reservation () Yes O No = -~
| Loz G| e | akeo > i prpant | Descpion | Comrmert|
Student -
Registration type Enterprise -
University M
e |[e | oeme |[Rem | mwocenumber) [[ex | osee |[Re= |
—Lect
Title Clickto > iR
Last name =
First name -
T
Coa)) oo) e (e L= o= Il = - ¢
Address
[Address |*
Type Postal code P
City =
Country =
= RATETYPE | x| Vat number
HATEIVEE x
— nddess@al) [)
Neme [Telephone [—
cxtto | _saxies | - E—
CEvent——————— Address (private)
Title [:] Address
Postlcode |
cxtto | _semnove| ———
=1 BXPENSETYPE city
Country

Sub-category

J
Desription

weatoet (oo)
Place of birth

Belgian OYes (ONo =
e
N
= S %
Meeting Meeting
Name [J* Neme [)
Gk to 5 Search meeting] ik to 3 Search meeting]
e oy
Movement type Title (funding) Clickto > Category Sub-category Clickto> Amount Title Clickto> Opening| Ending Location Room
(Add J(&) Dekre) Reset) [pa J[e J[peee J[res

Figure 13.18: The forms at the end of the third session.

Chapter 13. The experimentation

234

[1-0Jwswiwiog
uopduoseq

A3 ppY [nd]

NO 10
g
ONLIIW P!
oNo pensqy
oL
1ana [SNEIENENETEREN

uen3 yoess [Nd]

juedidpied ppy [Nd]
Uopevssal Bupjied

[
‘ NO

-liep [eroads
__ _Eoﬁm_a
L-0JuyK jo 8jeq
:.wwm"_ [1-0liequinu a0
1 suoydeje). N ness g
(1ew) ssaippy N NOILVLSIOZY
swep pl
Syuedionied Jo Jequinu peoedxg
[1-oleusaemn
awep jse7 oep Bupus
10VINOO sp Buiusdo j
&S_ﬁoo._ [pusesi yoress [nd]] [Bunesi yoess Indl| [Bunsei yosess Ind]| [Pusesi yoress [nd]| [Bunesin yoess Indl|
hia _oaﬁmﬁ | suwen| | swen| | swen| swen| | suwen |
PYTEET] on13aw | [enumaw | [owuIam | EXTEENI | EITEET] |

I NO

NO NO N-0 Av
xNK £ 05 | ;

No uosied pRY Ind] E
uosied PpY [Nd] uosied ppY [nd]] [uosied ppy INd] [-0kIod}-... No
swieN 514 swen 1514 ETCE swen >
swe jse suwe jse] sweN ise swen jse S3NVA 40 NYWOd -
(OI41LN310S) FALINWOD| | (NOLLYSINVONO) SILLWWOD| | SY3dNLO3T 4Ivads N
[sdfy ssusde ppy [Nd]
Buipuny esooyd [nd]
[1-0]Aunog)| Anunod Junoury
[0l Ao [1-0lAwbseoang
[1-0lspoo fessod 89P0 [e350d f10Bayed
[1-0lsseppy| sseppYy| (Buipuny) s,
(3LYN¥d) SS34aay| Ssaav E adfy Juswanopy

S3dAL ISNIdX3

N0 H

Vo we ;

F3LLINNOD
«senb3y i

ss3uaav Uondusseq
b3y

foBajenqng
KioBeye) :p1
[1-0lequinu LA
swen

[L-0hep eredg

[i-oluondudssq
[1-0]foBere-ang
[§3MwA 40 NIvIoa fioBejen

3dAL 3SN3dE

(rew) sseppy | |
awey Jsiig
swep jseq| -

NosaEd

S3NTVYA 40 NIYNOA

)

The underlying schema of the form at the end of the third session.

roles) and their properties, as well as the constraints and dependencies

of the main concepts;

should be brought;
e Finalising the project, that is, defining the components (attributes and

e Discussion on the previously drawn form, to see if other modifications

Figure 13.19

13.2.5. Second case study - Session 4 235

e Individual debriefing: afterwards, the main observer discussed separately
with each other participant to take their impressions and remarks (15
minutes per participant).

In the following, we expose the remarks made by the observers and the
participants through the debriefing.

General observations

Here were the observations for each “main” concept:

e Address: the discussion on the cardinality of the attributes finally led to
defining them all as optional;

e Meeting: it was confirmed that the Name is identifying and that there
should be a mandatory Main organizer;

e Committee: a Committee is indeed composed of Persouns;

e Event: it was confirmed that the Meeting was mandatory and part of
the identifier with Title;

e Person: there was no trivial identifier for this concept; besides, similarly
to a Speaker, the member of a Committee has a role (although it is here
implicit);

e Rate type: it was confirmed that the combination of Category and its
roles towards Meeting and Event formed a secondary identifier;

This step was a little confusing for the end-user since it was unclear on what
level they were working: the interfaces, their underlying data structures or even
the future tables of the database. This implies that special attention should
be given to improve this step, for instance by rendering the “main concepts”
through form-based interfaces so that the end-user and analyst could see them.

Output of the session

During this session, EU2 and DB1 discussed of the main concepts that were
elicited through the investigation step and enriched through the nurture step,
leading to the generation of a raw integrated schema of the domain.

At this point, the appearance of the form has not changed, but the under-
lying schema has (Fig.). It now includes the specified identifiers and has
been annotated with the known domain of values and additional information
provided by the end-user. As we can see, there are several “empty” entity types
that could be transformed, which will be discussed in the following section.

The experimentation

Chapter 13.

236

juediopred ppy [Nd]
Uopeusse: Bupped
[1-0lwp eeds
[L-0lyuia jo @veid
[1-0lupig jo syeq
[1-0lxed

suoydsje).

Juane ue 8s00YD Sn_:

[wena Py I [uen3 yoress Indl

|sinana azwaisiony) | | sinana | inana
NO g
ONLIIN P!
NO [1 plwiooy

N0

5 [1-0Jwoneso]
—— loBupuz

[1-0JBuiuedo
[1-olwensay
oL

ELE]

. T
Tolequina sony| N

odfy

(rew) sseippy

(uonesiuebio) ssaippy|

[1-0]uonesiuebio

suweN 3siig

owey 3587
1OVINOD

NOLLVHLSIOIY
0
NO

s

NO

10

NO

|
| [Buneen yoreas Indl| [Bunesi yoress Indl| [Funesin yorees [ndl|

[unesiy yoress _:AH_A [Bunee yores [ndl

[uosied ppY [nd]| |

uosied ppy [nd]
|@11uN108) 33LUMNO] [(NOILYSINVONO) 33LUNNOD

auwe 3ty
swey jse
33LLINNOD

[onuzan] | [onuzan [owumaw | [omzaw [onuzaw oNLIIN |
I
NO
NO 10
No 130ang|
| uosied PPV [Nd] NO
uosied PPV [ndl| Ti-okoy
suzwoa1 | [¥ddivads SWEN Pl M
sjuedpiped Jo lequuinu peyedxg z,.o
[1-0lsusqem
S3NTVA 40 NIvWOa b Bupuy oA esusdxe ppy [nd]
Bulpuny esooy [nd]
syep Buusdo ooty
ponesol (Buipury) oL
(GLvAd) ss3uaav] [ss34aav] sezebio uie odfy e
steN
e 7 SYTEETT S3dALISNI3
T
NO o
[i-0lknunco &V
1-0 [1-0lfu0 NO hdiioseq
[1-01po3 fe3sod fioBeyeo-ng
[1-0hep [eroeds [1-0lsseippy KioBoye) pi
[1-0}equinN unoeg eros ssawaavy | ° 30N3IANY 139uvL Ti-oluondusseq
uesjs osusca| | |[j-0lkuoberenans
[1-0lysi jo soey swoou KioBoje
[1-0lusi jo eveq [1-0lequinu LyA S3NTVA 40 NIVINOa EFVETETE]
[1-olxeq ouieN
suoydeppL NOLLVSINVOHO
(rew) sseppy
swen 18114
swep jse
NOSuad S3NTVA 40 NIYWOd

101.

The underlying schema of the form at the end of the fourth sessi

Figure 13.20

13.2.6. Second case study - Discussing the schemas 237

13.2.6 Discussing the schemas
Characteristics of the subject

This case study was highly interesting because it dealt with a more complex case
study requiring complex and multiple forms. There was a lot of redundancies
and ambiguities, as well as several interesting constraints to be expressed.

The subjected reviewed by the analyst

Based on the form-based interfaces and the knowledge he gathered during the
different steps of the approach, the analyst DB1 drew his own two alternative
schemas of the application domain before analysing the schema generated by
the RAINBOW toolkit. The result of his modelling can be seen in Fig.

and Fig.

Analysing the generated schemas

We can observe that in this case, the output schema does not have a tree-
like structure. It is actually quite complex, with multiples relationship types
existing between the different entity types and their hierarchies.

We can also notice that the schema is rather “interface-oriented”, with sev-
eral empty entity types that are subtypes of higher concepts (typically with
Meeting, Event, Person and Address), while the procedural units might not
be relevant at this point.

As previously mentioned, the notion of “composition” could be expressed
in a more expressive manner. Indeed, it would have been semantically more
appropriate to obtain a Meeting having two Committees, each of which being
composed of Persons, while in the current output, a Committee is actually a
specialised Person.

The representation of Expense Type and Expense Types is also problem-
atic, since the latter could have preferably been labelled as Movement and be
associated to the former. However, this results from disputable choices during
the drawing and structural analysis of the forms. Indeed, the label was prob-
ably ill-chosen to begin with, and a posteriori, the pattern {Category, Sub
Category} that was shared by both entity types rather suggested a comple-
mentarity then a specialisation or composition.

Besides, the handling of the “refers to” structural similarity has been left
aside, while there are clearly elements that could be integrated, typically for
Person, Contact and Address. This kind of structural similarity should also
be easily manageable, without forcing the end-user and the analyst to jump
back to the drawing step to correct the involved elements.

Chapter 13. The experimentation

238

KioBeyen
LN3IAT 104 :p!
sal4 unowy
U0 o KiobBaye)
Aysianun o EINE]
asudieug
wepnis a4
S3NTVYA 40 NIVINOd N0 /\,,.,_E N
N N-O |
&
< sauaniel » N-O
, ! N-L

==

N-O

ONILITIN 'SUI80U0d

NOS¥3Id 10} P!
uonentasal Bupyied
Jaquinu eoloAy|

s uelBjag usyj [N jou s
JaquinN Ajunosg [eroog §j| -

< spusdep —|-0—
ND

ssalppy
awep ise p!
[1-0kequinu 1 YA
Aiuno)
Ao
9po9 |BI1sodq
[1-olequinu xoqiiely

(23eAud) ssaippy

llew-3

xed

suoydeje]
NOILYSINYOYO spuadap :|-is|-je
1aquinN AjLnoag [e1oog :pi

[1-0luuig Jo e |~

Aunop
Ao
8pood |ejsod
[1-ohequunu xoqjiely
Jaquinu Jeang
e
[1-0](e1eAnd) ssaippy
[1-olreu-3
[1-0lxeq
[1-0lsuoydejar.
[1-0lenL
SweN Jsli4
SweN jseq

2 1l

N

N0 — < sesiuebio > N0~
NGO e
o ableyo :_/\

Jaquinu jeans
ans

SSaIpPY

SWEN 1581
NOILYSINYOHO

NOSd3d

N-O
jussed
S R
L
ONLLITIN" JO Sisisuod ‘pl
wooy
Buipug
Buuedo
[1-0leInpayos
[1-oluswwon
0saQ
[N-Ohuawdinbg
JoRIISqQY
3L

1IN3IAT

_ papnjour ;

3
/

1O S)SIsSu0o >

; S
y < >
O\ . Suiaouod

NO N-0
< syssaid >
o . awey iseT pl
N0 N N0 [IN-Oleousipne jo adAL
3 «\\A, smenal > “~ syuedioiped jo Jsquinn
L—NO NO—_| [1-0lewsgem
uoneoo

ajep Buipuzy

osl

eyep Buuado |

ajep Bulpuz => ejep Buado

swoou| -
|S3NTVA 40 NIVNOA

|

.mc_vcm_, =
aq pinoys Buuedp ‘enpeyos e o4

10 3|npayos ay
JSNW JUAS PIIYo & Jo S|Npayos sy

ualed
10 PIIYS UMO SIY 8] JU.D JUsAT Uy

N\
10— op ~1- Tfm_oo:m_
|
N0
R D

[adAyuswanop
/ 139ang |
/ 3dAL ISNIXT P! Y
i wnouly

adf) wawanop |
= T
O s)SIsSuoo /

KioBajed-qng
KioBaie) :p1
[1-0luonduoseg
[1-0lf10B93e0-0ng
KioBaje)

IdAL ISNIIX3

usdx3 | |

“Jusne Jualed syl |
I papnjoul &

The schema corresponding to the domain of the second case study,

as conceived by DB1 without seeing the final output schema.

Figure 13.21

These observations could be dealt with semi-automatically and combined
with the implementation of the binding principles that are not provided by the

). The output of the final session of this case study

could therefore be the one illustrated at Fig.

toolkit yet (see Section

239

ng the schemas

1SCUSS1

13.2.6. Second case study - D

fioBeyeD
LNINT 0 -p!

| _um_us_o:_v

“anu}

s1 ueiBleg usyy [INu Jou sI -
JequunN A3noeg (e100G y | ¢

< spusdep »—1-0—
N-0
ssalppy

swep 3seq :pl
[1-oliequinu 1 vA

Aiunod

Ao

8poo |E})SOd

[1-oliequinu xoqjtejy

junowy jusied
“““““ KioBayen
ERY B
S3NTVA 40 NIviNoa R ONLLITNYO S)sisuod pi
R wooy
A9 2 Buipug
\uw/v — NO Buiuedo
N e T [1-0leinpayos| -0
< sousnel N0 | [1-0huswwion JugjUe
N-1 uonduosaq
7 [N-Oluswidinb3
Joensqy
NO ozpm_m_\,_.wc_moc.oo . spiL
NOS¥3d % P! IN3AT i
uonenissal Buned ; Bupuz =>
Jequinu solonu| -1 i| ®q pinoys Buiuedo ‘ejnpsyos e Jo4
(eyenud) ssaippy NOILYYLSIOFY / ‘Juene jueled sy
llew-3 - F\ N 40 3NPAYIS By} UIYpM papnjoul &q i
xedq -l ST ISNW JUAS P|IYo € Jo 8Npayos ay|
suoydeje) Caap > i N— (Jo sisisuoo » ‘aled
NOILVSINYOYO spuadep :|-isiie| 7 < sWweduod » 10 P|IYo UMO SIY &g JUBD JUaAT Uy
JequinN Aunoeg jeioog ;pi|N0 —
[1-0heip [etoeds N0 N-0
[1-0lequinN Aunoes feoog hN
ueibleg sweN jse] pl
[1-0]umq o s0eld ; [N-0Jeouaipne jo adA |] .
[1-0luHig jo e3eq / _w_Eoo._/ sjuedioed jo Jequiny \ od £y Juswisnopy /
Anunog Jamenay | [1-olewsaep / AdAL ISNIdX3T P! |
Ao ‘z.o\/\ Josiueblo - N-0— uoneoo] z.o\A unowy
8poo |ejsod \ Jeswebio utepy / A ayep Buipug ad £y Juswanopy /
[1-0beqwinu xoqjrepy A seusnisul \ 4 oyep Buiusdo i 10 S)SISU0D \
Jaguinu 3eang e : SWEN 1SE] i {ﬂ‘

pEENIEN
[1-0l(eerud) ssaippy
[1-olrew-3
[1-0lxeq
[1-0Jeuoydejer
[1-0lemL
swey isil4
swe jse’

ONLLIIN

< a1ep Bupu3z => sjep Buusdo
A

“Jesjueblo
ule|\ suUo jsow je eq ued

a1ay} ‘Bundsy Yyoes Jo4

Jequinu }eens
10015
SSaIppY

Sue 358

NOILVSINVOHO

NOSsd3d

KioBeren-gng
fioBeye) :pI

osuadxy
awioou|
S3NTVYA 40 NIVINOd

[1-0luonduosaq
[1-0lA10Be1e0-0NnS
fioBeyen

IdAL ISNIXT

An alternative schema corresponding to the domain of the second

case study, as conceived by DB1 without seeing the final output schema.

Figure 13.22

The experimentation

Chapter 13.

240

z.
FALINWOO [\

uewilieyd
uosied ﬂw,m_%ﬂ IaInosT
e SINTVA 40 NIVINOA

BYylo

N-O" |

N-0
[1-0]Anunco
[1-0lA0
N0
S N0r1-0Jepoo fessod iy
\ 10 [L-olssaippy
[L-0herp feroeds Ss=¥aavy

[L-0liequinN Apinoes ejoog
ueibleg .

[L-0lymiq Jo soe|d
[1-0lunia Jo =3eq

i i

10

\

@Em@o > NW

N-O \AY 1-0
NIHATHO IN3dvd
opL
ONLIIN' P!
[1-0]wooy
[1-0luoneso
N-0 [1-0l6uipuz
N0 _:.o__m:_cwgo
<> L-oloensay
:é?m&c_oo N0 L
uonauossq N-O|
IN3AT
INFNINOT O
N0
N-0
uonenssal mc_v_‘_mn_
[L-0l1equinu so10Au|
JOBJUOD L0 =d/y uonensifey |-
NOILYHLSIOIY
1-0

N-0 0

sweN p!
sjuedionped Jo Jaquinu pajoadxg
IRSECE

ayep Bupug

ajep Buuedo

N-O
1-0

Jeziueblio urejy
EmEN

ONILFIN
T

L E—

FONIIANY 139dvL

[1-olequinu 1YA

NOILYSINYOHO asuadxg

awoou| -

[1-0lxe4 auweN
auoyds
(Itew) ssaippy
ON
awe 3sii4
swen jse SOA
NOS¥3d S3INTVA 40 NIYINOA

S3INTYA 40 NIVINOGA

1-0. AioBeyen
SR e
N-0 J
AioBeyen
10 1-0
WN N0 w% MW
7 N-0 N

S3ANTVYA 40 NIVINOA

ONLLIIN"
ANIAT" ‘P!
Junowy | ;

L
ad Ay esuad xe ppy [Nd]
Buipuny esooyd [Nd]

junowy
(Butpuny) s

B adAL

ANINIAOW
T
b
o
uonduosaq
AlobBeienqns
AioBeye) :pi
[1-0luondtiosaq
[1-0]A10Be3e0-ans
AloBayen
IdAL3ISNII3T

The refined schema at the end of the fourth session.

Figure 13.23

Chapter 14

Discussing the results

In this chapter, we elaborate on the results and observations of this experimen-
tation in the perspective of our two main research questions. Let us recall that
the goals of these preliminary case studies were to assess (1) the effectiveness of
the RAINBOW approach to express, capture and validate static data require-
ments, as well as (2) the quality of the conceptual schemas produced using this
approach.

14.1 Assessing the effectiveness of the RAINBOW approach

To assess the effectiveness of the RAINBOW approach to express, capture and
validate static data requirements from the preliminary case studies, let us first
analyse the critical challenges of the approach, then see how they relate to the
chosen efficiency criteria.

14.1.1 Expressing concepts through form-based interfaces

Through the drawing step, we wanted then end-users to be able to express
concepts by specifying simple encoding screens carrying the data they would
need to manipulate in their future form-based application.

The first observation was that the end-users were able to express all their
requirements using the drawing tool and the underlying RAINBOW Simpli-
fied Form Model (RSFM). For the two studies, the available widgets (forms,
fieldsets, tables, inputs, selections and buttons) seemed sufficient, although
the elaboration of the forms sometimes called for creativity in the combina-

241

242 Chapter 14. Discussing the results

tion of the available widgets, and occasionally required detailed descriptions to
precisely explain the widgets. Still, we also observed phenomena that raised
several questions that we will now detail.

For instance, we observed that the end-users often drew single forms to
collect multiple informations instead of drawing smaller, simpler forms (i.e.
breaking the problem into smaller sub problems). Do the available widgets
therefore lead the end-users to draw of single oversized forms, or to create com-
plex structures? It also appeared that the end-users were sometimes challenged
by the use of tables, because the latter could only contain simple widgets (i.e.
inputs, selections and buttons). Are the tables hence too synthetic? Wouldn’t
it be problematic, at least visually, to allow them to contain fieldsets and other
tables? It is interesting to note that the lack of prior experience in modelling
was obviously not a factor in these behaviours.

Besides, we wanted to lead the end-user to focus on the content of the forms
rather than their appearance, and subsequently chose an adaptative rendering
for the widgets. For instance, selection widgets would automatically switch
from radio buttons to checkboxes or a selectable list according to the number
of options and the cardinality of the field. However, this behaviour surprised
the end-users, and more generally they would have enjoyed at least a minimum
of customisation for the rendering of the widgets. Though the forms could
be rendered afterwards in more stylish fashions (e.g. with HTML and CSS),
could aesthetic considerations lead to a “bad” modelling, just because the end-
users want the forms to be prettier? Can the analyst convince them that
“it’s ok if it is ugly”, and can the end-users really agree on that? Or should
there therefore be at least a minimum of customisation for the rendering of the
widgets? Should the available widgets be presented in an exhaustive manner
regarding their cardinality (typically the different combinations of selections)?

Speaking about cardinalities, as previously mentioned, the users must spec-
ify how many values could and should at least and at most be provided for each
widget. We observed that the end-users often specified widgets as “mandatory”,
even if they sometimes acknowledged that it would not really be problematic
if the given fields were not filled. Could the end-users therefore abusively use
this type of cardinality while it is not really necessary? Do they understand the
difference between a paper form, which can be submitted even if it is incorrect,
and an electronic form which offers immediate acceptance or rejection?

The integration of the “on-the-fly” labelling suggestions in the drawing phase
was originally intended to reduce the labelling ambiguities up stream, while be-
ing reused during the phase of “Investigation” to ensure the clarification of the
labels. However, the end-user and the analyst found that these suggestions
were annoying and interfered with the execution of their task. Should it there-

14.1.2. Finding and arbitrating terminological ambiguities 243

fore become an optional tool for the drawing phase? Should the similarity
parameters be adapted to detect fewer ambiguities? Could/should other tools
also be parametrised?

14.1.2 Finding and arbitrating terminological ambiguities

The analysis of terminological ambiguities did not yield any significant result.
The integration of the labelling suggestions in the drawing phase seemed to be
efficient in unifying the terminology of the forms, but in return, it basically
made this analysis step useless. It would therefore be interesting to observe
what would be the situation if there was no labelling suggestions in the drawing
phase.

14.1.3 Finding and arbitrating structural ambiguities

The analysis of structural ambiguities revealed that the notion of “composition”
RRENN13 PP ENA3

that should be added to the ones of “equality”, “specialisation”, “unity”, “refer-
ence” and “difference”. Other than that, this step did not cause any concern.

14.1.4 Eliciting constraints and dependencies

As could be expected, this step was the most tedious one of the evaluation.
Providing examples was a long task, and it became obvious that it would
become difficult to ask for more than 3 to 5 data samples per complex form
during the same session without losing the motivation of the participants.

The role of the analyst was critical to filter the interesting technical and
existence constraints, as the available amount of possibilities may be high. Elic-
iting the functional dependencies (FDs) was also challenging, mostly because
of the tool support itself. The functionality allowing to generate problematic
data samples was never used. However, manipulating the toolkit did lead the
end-users and the analysts to discuss thoroughly the possible dependencies and
identifiers, including those that could not be expressed using the tool support.

Still, it seems that this step could take advantage of a better tool-supported
interaction to order the constraints and dependencies to arbitrate in terms of
criticality and likelihood.

14.1.5 Transparently handling integration

This step was only handled in one of the case studies. This step was a little
confusing for the end-user since it was unclear on what level they were working:
the interfaces, their underlying data structures or even the future tables of

244 Chapter 14. Discussing the results

the database. This implies that special attention should be given to improve
this step, for instance by rendering the “main concepts” through form-based
interfaces so that the end-user and analyst could see them.

14.1.6 Handling user-involvement

Throughout the experimentation, then end-users were receptive to our ap-
proach, and embraced the organisation of the experiment. They did not sys-
tematically apprehend the underlying objective of each step, but they did un-
derstand each task of the process, and thanks to the progressive modifications
of their forms, they sensed the developing evolution of their project. We may
want to take these positive reactions with caution, because all the participants
were willing volunteers and in particular, the end-users were able to define their
own subject, which is not often the case in small to medium enterprises that
set up a new IT project.

Regarding the assignment of the tasks during the experimentation, we ex-
pected the end-users to be more autonomous, especially during the drawing
phase. However, during that phase, the end-users were reluctant to operate
the toolkit, for various reasons, among which:

e they were afraid not to be able to manipulate it correctly, and therefore
give a less-than flattering portrait of themselves to the analyst;

e they felt that the analyst would be swifter and more efficient;

e they needed time to gather their thoughts before drawing each form.

Besides, when the end-users did take the drawing in charge, they recurrently
turned to the analyst for advices and explanations. On the other hand, the
analyst did not feel very helpful or required for the process when he was not
in charge of the drawing, though the end-users felt their presence reassuring.
Who should therefore be drawing and who should be assisting? Is the drawing
really a job for the end-user? We’ve been essentially focusing on the end-users
involvement, but what about the analyst’s own involvement and gratification?

In the end, instead of being a process where the involvement progressively
shifted from the end-users to the analyst, the execution of our approach turned
out to be a joint development effort. The participants collaborated intimately
during each steps, with the analyst serving as an intermediary between the
end-users and the toolkit.

To improve this collaboration and make the end-users feel more confidant,
a special care should be given to making the environment of the execution
reassuring and pleasant. Choosing appropriate settings, such as the location
and the equipment, may contribute to securing the adhesion of the participants.

14.1.7. Analysing the efficiency criteria 245

14.1.7 Analysing the efficiency criteria

How do theses observations relate to our efficiency criteria introduced in Sec-
tion ? First of all, there was no major articulation problem. The end-
users did not seem confused about their task, and their expectations were rea-
sonable. Whenever their demands exceed the scope of the current validation
process (typically in terms of graphical rendering or navigation), notes were
taken in order to be provided to the persons in charge of the further steps of
the project. The end-users did not seem to retain critical information, and
were able to express their needs bearing the necessary time to get the grip on
the toolkit. They were open to the suggestions made by the analyst, and able
to put priorities in their requirements.

The attitude of the participants was positive towards the overall process.
The end-users were intrigued by this unconventional approach, and enjoyed
being intimately involved in the database design course. Seeing the forms
progressively evolve made them feel the progression in the elicitation process.
The analyst was also rather favourable to this approach, though he felt that he
could have been more involved at times, and that some elements were difficult
to express using the toolkit.

Most of the static data requirements of the end-users were ezpressed using
the toolkit. The information that could not be expressed concerned complex
identifiers, transversal dependencies, existence constraints concerning multiple
groups of elements, conditional elements and finally, the notion of composition
for table elements.

The toolkit induced discussions during each step of the process, either for
requirements that could or could not be expressed using the toolkit. For the
latter, since working with the tool raised these issues, the analyst was at least
able to note them for further notice, which implies that those information were
not lost.

Regarding the usability and reliability of the toolkit, various improvements
could be brought, for instance for the overall customisability of the toolkit
(parametrizability of tools), the editing of the forms (which could benefit from
drag-and-drop features), the elicitation of constraints and dependencies, and
so on. Similarly, the relevance of the elements presented by the toolkit (similar
labels and structures, possible constraints and dependencies) for end-users ar-
bitration may need to be refined in order to present them with more interesting
questions.

246 Chapter 14. Discussing the results

14.1.8 Assessing the validation protocol

By analysing the results and observations of these experimentations, it appears
that the experimentation canvas proved to be valid and relevant, though im-
provable. Indeed, it notably highlighted that the RAINBOW approach and tool
support did help end-users and analysts to communicate static data require-
ments to each other, while generating a positive response from the participants.
Though all the requirements could not be expressed through the toolkit, the
latter did serve as a basis for discussion and modifications.

These early results are therefore encouraging, though special care should
be given to improve critical aspects such as the assignment of responsibilities,
the drawing behaviours, the customisation of the tools and relevance of the ele-
ments they highlight. This preliminary validation process also stressed several
sensible and interesting phenomenons, such as the emergence of different design
styles during the drawing phase, typically regarding the grouping of elements
in containers. Such phenomenons will need to be monitored and analysed on
a larger scale experimentation

14.2 Assessing the quality of the RAINBOW output

To assess the quality of of the RAINBOW output, we essentially want to anal-
yse whether the analysts were able to gather all the static data requirements
necessary to build an appropriate and reliable database. Let us therefore assess
how the output schemas compare to the criteria introduced in Section

14.2.1 Analysing the quality criteria

First of all, the correctness of the output schemas was ensured from the be-
ginning, since the mapping rules used in the ADAPT step and the various
transformation used in following steps were chosen in order to use only appro-
priate constructs.

The output schemas did not carry structural and terminological contra-
dictions, which seems to support their consistency. This could also be partly
expected from the deterministic use of the mapping rules and transformation.
However, although it did not occur in the preliminary studies, there could still
be structural and terminological variations for what should actually represent
the same type of information. Such a phenomenon is difficult to prevent, be-
cause of the “Garbage In, Garbage Out” adage, which essentially means that
providing incorrect input(s) in a systematic process cannot result in producing
correct output(s).

14.2.2. Assessing the validation protocol 247

The completeness of the schemas was satisfying, since the scope covered the
elements that the end-users felt critical, and that they provided themselves the
level of detail. However, there were still elements to be added manually, such
as technical identifiers or the constraints and dependencies that could not be
expressed using the toolkit. Ensuring the completeness is obviously difficult,
as in any mono-source approach with the view of a single (or restricted number
of) user(s). However, the preliminary analysis of the application domain (as
presented in Section) should limit the range of possible omissions in the
elicitation process.

The conciseness of the schemas could definitely be improved. As observed,
there are negligible empty entity types remaining from the integration process,
as well as the unresolved “refers to” structural redundancy. These flaws were
however expected, since the appropriate mechanisms were not implemented,
but as reported, they could be resolved semi-automatically.

The unambiguity could also be improved, by handling the conciseness is-
sue, and incorporating the “composition” relation. The remaining ambiguities
essentially came from the same “Garbage In, Garbage Out” problem.

The modifiability of the schema is not problematic, as long as the toolkit is
used to edit it. Advanced mechanisms should however be added if the output
schema was to be edited manually before being edited by the toolkit.

The traceability of the elements of the schema is ensured, thanks to the
unique identifier that is associated with each original form widget and perpet-
uated in each step of the process. Each element of the schema be therefore be
retraced to the original requirements expressed by the end-users.

Regarding the verifiability and testability of the schema, it obviously can
be used to verify if the future application meets the specified static data re-
quirements. Moreover, the original forms can also be used to check if all the
necessary fields are present, and if they obey the specified constraints and de-
pendencies.

The understandability of the output schemas was also satisfying. The ana-
lyst participating to the sessions with the end-users (DB1) felt that they were
representative and reasonably similar to the schemas that he had in mind him-
self. The analyst that did not participate in the sessions (DB2) felt that they
were rather comprehensible and expressive. Both agreed that managing the
previously mentioned issues would definitely improve the output schemas.

14.2.2 Assessing the validation protocol

It appears that the conceptual schemas produced using the RAINBOW ap-
proach are of good quality, notably because their content is sensibly the same

248 Chapter 14. Discussing the results

as the ones produced by DBI1, and that DB2 was able to easily understand
them. There are too few examples to assess the representativity of these out-
puts, yet the validation protocol seems to provide an adequate canvas to ob-
serve and assess the quality of the RAINBOW output. These early results are
therefore encouraging, though it could be improved semi-automatically with
minimal effort to make it less “form-oriented” and redundant.

14.3 Threats to validity

The results of the preliminary studies were promising and tend to give confi-
dence in the feasibility and pertinence of the RAINBOW approach. However,
we cannot ignore the numerous threats to validity that surround this evalua-
tion work. First of all, as mentioned earlier, the validation of such a transversal
research is intrinsically complex, and would ideally require this approach to be
compared to existing ones, based on multiple experimentations led on numer-
ous and different case studies over an extensive time span. We did manage two
very different case studies, with different subjects, different representations,
different constraints and dependencies... But we only had one end-user in each
case, and the same analyst for both projects, which inevitably reduced the po-
tential divergent uses of the approach and toolkit. Studying their use over time
with different and multiple participants could in all likelihood reveal different
behaviours and other results.

Moreover, we dealt with willing participants who could accommodate their
schedule to participate in the experimentation. They were genuinely interested
by the project and inclined to provide constructive feedback, probably given
that they were able to participate in a project for which they had defined the
subject themselves. Real-life projects may not have such favourable settings,
and would probably involve more than one end-user and analyst in the process,
which may result in less receptive participants. Also, the case studies were led
on their own, though they could have served as the starting point of complete
software engineering projects (the second case study may actually turn in time
into such a project). There was therefore no problematic interference with other
requirement engineering or software engineering processes that could normally
occur at the same time. This is why, in the next chapters, we will focus on
improving the approach and proposing guidelines for a better experimentation
canvas, so that one could study the real impact of the RAINBOW approach
and compare it to existing approaches.

Part IV

Discussion and Conclusion

In this last part of the dissertation, we discuss the RAINBOW approach
and envision possible future works. In particular, Chapter addresses the
specificities and merits of the approach and Chapter 16 conversely discusses its
limits and improvements that could be considered. Chapter 17 finally concludes
this dissertation.

249

Chapter 15

Specificities of the RAINBOW
approach

In this chapter, we present the main specificities of the RAINBOW approach,
as a methodology to acquire static data requirements. First of all, we re-
call that this approach aims at integrating different disciplines in a resolutely
user-oriented manner, in order to overcome existing limitations in related re-
searches. Then, we explain how Reverse engineering principles were deviated
to perform requirements elicitation. We also expose how this modular and non
standard process relies on the transformational paradigm and supports evolu-
tion. Finally, after explaining how this model-driven approach can be used in
conjunction with other approaches, we argue on the relevance of its output as
part of a rich and relevant Software Requirement Specification.

15.1 Integrating different disciplines to overcome existing lim-
itations in related researches

As emerges from this doctoral dissertation, the RAINBOW approach is at
the crossroads of different disciplines, each of which deals with specific issues
using dedicated methods and techniques. However, as introduced in Part | and
developed in Part [, their concerns and subsequent processing can concur for
the purpose of bridging the gap between end-users and analysts in order to
elicit static data requirements.

251

Chapter 15. Specificities of the RAINBOW approach

252

*DI3S1I930RIRYD UAAIS o1} 10] papiaoid A3oI[dxe orom S[Ie}dpP OU Jel) sueowW /, [oquiks oy, ‘gN

waojjerd
pajorIysaIu) PojuULLIO-gqOAN poajorIysaIun) POJUDLIO-IAN pojorIysaIu) pojorIysaru) pojorIysarun) yoBrel,
o1104> Teaur| Teaury Teour| Teoury Teaury Teoury EﬁO“%MSmeM
(ewoyps (TOSAN)
qao ud [eanjeyN) [ppow PPOIN (4ad) +09d VOO Reict [epowt Bleq
[euonyedy [euonyeray
pojerouad pojerouald
io/pue / / / / popraord-iasn Io/pue sisA[eue
popraoxd-iasn ‘orureudp popraoid-iasn sojdurexy
‘o19R9S ‘o19R9S
Spured3suoo sorouspuadeap
9oUISIXS SIoyrjuapr SIoyrjuapr SIayIjuapr SIoyIjuapr SIoyIjuapr sdd ue
‘s slagruept slaguept siaygljuspl sIagruspt sIagrjuept ‘s1oyIIUOpI P
. A : sjureajsuo)
SI9YIJuapr
Ajrrejuowrajdurod Suryojews
‘uorun .
‘worgesirerdads Aqirenba / / Aqirenba Aqirenba Aqirenba Mh”..wwwom
‘Ky1yenbo I *H s
Suryojewr
Teo180[03U0 :
‘ondeigoysio / / / srean(d / / Q.M_MW::MM
s[opouwr)
WASH TNLH on-yAVAD | dHJ/TNLH il wummmwﬁw o ¢ / o Rt rom
INAAIYL (VIn) siskreuy Surkprepun
90vJIaju] J9S)
sIasn-pus SI9Sn-pus sIasn-pus sIasn-pue saou3isep
‘syshreuy ‘spsAreuy ssdreny ‘syshreuy sshreny ssdreny ‘syshreuy adAj030ag
(Lreuoriniond) Areuorinjoas . Areuorinjoas Ayreuy
‘Lrogerordxs] Areuornjoay A1ogerordxyg Areuorpnjoay Kroyesordxg Areuorinjoasy Kroyesordxg Surd£3030ag
wo9sAs welsAg udisog
I 100 oMol DOAX + juewroSeuRI aseqeIe(q (s1sA1eue pue
ww ! @H o8104ddy g J pelife) woqwmo ’ 19lqo I1.Dd prodxy + Surmeap)
qureyd vAVOD [«N% + popuolxy + woasAg jaoddns [oo7,
vX VMIAd uonyiuge Wioq
3 3 ¢
[eLopurey [] [] . [] [] . [] [] saoyny
MOEINIVYH e8104ddy VAVOD PUD / ainida saga/sad POYIeIN

SULIGPUIZUS PIemIo] 10 SULIeUISUs osioaal edrdAjojord ur seypreordde Jurysixe jo uostredwo) :1°GT 9[qel,

15.2. End-users as major stakeholders of the data requirements process 253

One of the main achievements of this research was therefore to identify, tai-
lor and integrate principles and techniques coming from the fields of Database
Forward Engineering, Database Reverse Engineering, Prototyping and Partic-
ipatory Design in order to provide this interactive and user-oriented Database
Conceptual Analysis approach, and overcome the limitations that were high-
lighted in Section

The following sections naturally follow from the decisions that were made to
support this integration into a consistent and comprehensive approach. They
also detail the contributions of this research with respect to the limitations of
existing approaches, which are synthesized in Table

15.2 End-users as major stakeholders of the data require-
ments process

As we have seen, the RAINBOW approach relies on the same principles as the
ReQuest framework, which deals with data modelling and the dynamic aspects
of the future application, and proved that it is possible to efficiently and swiftly
involve end-users in the definition of their needs. However, most laymen end-
users were challenged by the task of designing dynamic and rich front-end
interfaces supporting the business logic of their future application. Here, we
therefore decided to focus specifically on simplifying and improving the static
data requirements process, leading the interfaces to appear as a means rather
than an end product. In particular, we wanted form-based interfaces to serve
as a basis for discussion and joint development, hence using prototyping in an
exploratory fashion, though it could be used in an evolutionary approach.

We therefore managed several challenges inherent to this user-centred ap-
proach. First of all, to make the development of the interfaces more accessible
and to focus the drawing on the substance rather than (ironically) the form,
we restricted the available graphical elements to the most commonly used ones,
which incidentally also simplifies the mapping rules between the form model
and the ER model, and proposed a dedicated tool to support this process.

We also took in account the possible lexical variations that could occur in
such an interactive process, which is simply ignored by other similar researches.
We therefore offer the possibility to detect and correct on-the-fly many mistakes
or deviations in the terminology, or to deal with them later on.

Besides, the interfaces are systematically used to visualise similarities, to
input constraints and data samples, so that they can be the referent for the

*It should come as no surprise that the approach overcomes all the identified limitations,
as it was precisely designed to do so!

254 Chapter 15. Specificities of the RAINBOW approach

end-users, and their favourite communication means. The end-users therefore
interact with the form-based interfaces, while the analyst can also access and
edit the underlying data models at any time, as long as he ensures the mainte-
nance of the mapping.

The will to involve intimately end-users into the definition of their needs
and the specification of the static data requirements, while managing the sat-
isfaction of all the stakeholders, also places the approach as more suitable for
software engineering projects in small to medium size enterprises. Besides, the
projects should be themselves small to medium sized, in order to maintain a
manageable set of form-based interfaces.

It is interesting to note that though the approach is oriented towards the
end-users, the real corner-stone of the RAINBOW processes is the analyst.
Indeed, his social and technical skills and knowledge are crucial to manage,
assist and guide the end-users in order to perform an enjoyable and effective
elicitation process for all the parties involved.

15.3 Using Reverse Engineering for the purpose of Forward
Engineering

As exposed in Section , Reverse engineering consists, among other things,
in recovering or reconstructing the functional specifications from a piece of
software, starting mainly from the source code of the programs. However, using
controlled artefacts and monitored processes, our objective is here to “build the
truth” rather than “find the truth”. In particular, the form-based interfaces are
used as a well-defined specification language, as opposed to the usual reverse
engineering approach, where the existing screens are obscure artefacts that
need to be decrypted. This requires to significantly adapt the usual database
Reverse engineering (DBRE) methodology | ,].

Indeed, as recalled in Figure (a), DBRE typically comprises the fol-
lowing four sub-processes: (1) Physical extraction, which consists in parsing
the DDL code in order to extract the raw physical schema of the database; (2)
Refinement, which enriches the raw physical schema with additional constructs
and constraints elicited through the analysis of the application programs and
other sources; (3) Cleaning, which removes the physical constructs (such as
indexes) for producing the logical schema; (4) Conceptualisation, which aims
at deriving the conceptual schema that the logical schema implements.

Such a methodology is not applicable as is in the context of the of RAIN-
BOW approach, as shown in Figure (b). Starting from a set of user
interfaces (UI,Uls, - ,Uly), the physical extraction does not allow one to

15.3. Using Reverse Engineering for the purpose of Forward Engineering 255

Conceptual schema Conceptual schema

Conceptualization Integration

F
T
| Conceptualization

® :

T

'

~@
~@

Logical schema

~@-

Cleaning

~@ r@-
~@

Physical schema

«

~@- @~

| Refinement }4— | Refinement
?
Physical schema
?
| Physical extraction | | Physical extraction |
f -t 1

DDL code

OF

Programs

Database content L -
Positive and negative
Other sources data samples
(a) (b)

Figure 15.1: (a) Standard database Reverse engineering methodology. (b) Reverse
engineering methodology of the RAINBOW approach.

i

derive a complete physical schema, but a set of partial views of this schema
(PS1,PSy,---,PSy). Similarly, the refinement process may not rely on ad-
ditional available artefacts such as application programs or database contents.
However, it can take benefit from data samples provided by the users through
the interfaces they have drawn, leading to the identification, among others, of
candidate dependency constraints and attribute domains. The recovered con-
straints, once validated, are used to enrich the physical schemas P.S; in order
to obtain a set of logical schemas LS;. The cleaning phase, as defined above,
does not make sense in the absence of an initial DDL code.

Instead, the conceptualisation step allows one to derive a set of partial
conceptual schemas (CS;) from the logical schemas obtained so far. In par-
ticular, the logical schemas are normalised in order to ease the identification
of similarities between them. This important process relies on transformation
techniques. During the integration phase, the partial conceptual schemas are
merged, based on structural and semantic similarity criteria, in order to pro-
duce a single complete conceptual schema.

256 Chapter 15. Specificities of the RAINBOW approach

15.4 A modular and non standard view integration process

One of the key assets of the RAINBOW approach is its flexibility, especially
regarding the enrichment of the data models. As we have seen, proficient end-
users can already provide constraints during the drawing phase. Otherwise,
such properties can be directly provided later on, or discovered from a set of
data samples provided by end-users. Similarly, the unification of the terminol-
ogy and structures can also be led during the drawing phase, or during further
steps.

This modularity makes the approach suitable for different types of users,
ranging from the layman end-user to the advanced database engineer, or from
the analyst to the developer. The progressive gathering of elements of integra-
tion for further resolution also differs from the standard integration processes.

15.5 A transformational and evolutive approach

The approach also heavily relies on the transformational engineering paradigm,
according to which most (if not all) Database Engineering processes can be
modelled as a chain of schema transformations. Recall that a transformation
operator is defined by a rewrite rule that substitutes a target schema construct
for a source construct (see Section). The transformations that we use
are incremental and preserve the semantics of source constructs in their target
counterpart, which ensures the consistency, traceability and reversibility of the
specified elements through out the whole approach.

This also favours the evolvability of the specifications produced via the
approach. Indeed, our approach is designed to loop if necessary, while storing
all the previously provided specifications and decisions. Combined with the
traceability of the elements, we can ensure the propagation of any modification
in the different steps of our approach.

15.6 An interoperable model-driven approach

The transformational aspect of the approach also highlights that it foremost
focuses on developing two main types of models (interface and data), by taking
advantage of their connexion while benefiting from the possible use of other
types of models (such as tasks models), which places it at the very heart of
Model-Driven Engineering (MDE) | ,]. Furthermore, this approach
is interoperable with other MDE approaches, which we can illustrate with two
likely circumstances by way of example.

15.7. A rich and relevant part of a SRS 257

It is notably noteworthy to mention the CAMELEON framework |

, |, which is a unifying reference framework for developing multi-
target user interfaces based on three main steps. First, ontological models are
defined to describe the problem regarding its application domain (concepts
and tasks), its expected context of use (user, platform, environment) and its
possible adaptation (evolution and transition). From these models, the design
phase produces a set of executable user interfaces each targeting specific con-
texts of use, based on the successive definition of task-oriented specifications,
abstract user interfaces, concrete user interfaces (platform-independent)and fi-
nal user interfaces (platform-dependent). Finally, a run-time configuration is
built from a run-time infrastructure and the user interfaces produced in the
design phase, which cooperate to support run-time adaptation. In this con-
text, the RAINBOW approach could be used as part of (or in conjunction
with) CAMELEON-compliant approaches, since it addresses the definition of
the application domain (the focus being on the concepts) and provides a simple
Abstract User Interface model with direct Concrete User Interface counterparts.

As a second illustration, let us consider the OO-Method approach [

,], which is built on the basis of OASIS | ,], an object-
oriented formal specification language for Information Systems, and is notably
used by OLIVA NOVA, a software system that generates complete applications
from software models | ,]. The OO-Method basically re-
lies on two main modelling components, which are the conceptual model and
the execution model. The conceptual model is divided into four complementary
views, namely the object view (expressed through UML base diagrams), the dy-
namic view (described through state transition and interaction diagrams), the
functional view (which classifies the different classes attributes among differ-
ent types of information patterns) and the presentation view (which specifies,
through presentation patterns, how the users will interact with the system).
The execution model then defines the implementation-dependent features as-
sociated with the software representations corresponding to these conceptual
modelling constructs. In this context, the RAINBOW approach could notably
be used during the definition of the object view to ease the expression of classes
and attributes, while reusable interface components could typically be associ-
ated to specific presentation patterns.

15.7 A rich and relevant part of a SRS

The output of this process is a set of annotated form-based interfaces and their
underlying integrated conceptual schema, as well as their associated playable
prototype and ready-to-use database. Compared to other existing approaches,

258 Chapter 15. Specificities of the RAINBOW approach

the resulting conceptual schema is rather rich, since it includes hierarchies, as
well as constraints and dependencies. It can also be analysed to generate a
thesaurus of the application domain.

Besides, as corroborated by our experimentation (see Section), this
schema constitutes a relevant part of a Software Requirement Specification (see
Section), since it is consistent, complete, concise, unambiguous, modifi-
able, traceable, verifiable and testable, bearing an appropriate tool support.

Moreover, the produced elements can effectively be used to share and val-
idate requirements. Indeed, the RAINBOW approach ensures their validation
and correction, and these artefacts can be used for further evaluation and ref-
erence, while contributing to the forecast of future design and implementation,
as well as contractibility.

Although our approach addresses a significant subset of data requirements,
it does not cover all of its aspects, typically the dynamic ones. Therefore,
our approach does not replace more traditional task and information analysis
approaches, but rather complements them. For instance, the form-based graph-
ical representation of the underlying data model can be used during interviews
to stimulate the discussion.

As for the generated prototype, it can be used during the task analysis to
capture real-time use cases and define the expected behaviour of the system.
In addition, analysing how the tasks are performed using the prototype in
comparison to the legacy information system (if any), can help to support
the Reverse engineering of existing artefacts and even induce more general
considerations on the definition of the target information system.

Chapter 16

Possible improvements and future
works

In this chapter, we discuss the limits of the RAINBOW approach and its pos-
sible subsequent improvements. First, we focus on the current theoretical prin-
ciples of the approach, and consider possible extensions. Then, we assess the
existing tool support and the enhancements that would be welcome step by
step. Finally, we recall that the approach would require a wider experimenta-
tion scheme, which consequently calls for an improved experimentation canvas.

16.1 Extending the approach

In this chapter, we propose a non exhaustive list of theoretical extensions that
could be made to improve the RAINBOW approach, notably based on the
narrowing decisions that we took in this doctoral research, as well as the ob-
servations and discussions that took place during the experimentation.

16.1.1 Implementing the Objectify and Wander steps

In the scope of this research, we mainly focused on the five first steps of the
approach, which were the most challenging given that the generation of ap-
plicative components is known to be relatively straightforward, and that the
manipulation of a reactive prototype mainly added another level of validation.
However, taking the time to formalise these steps would undoubtedly give even
more weight to the approach as an integrated end-to-end process.

259

260 Chapter 16. Possible improvements and future works

16.1.2 Incorporating dynamic aspects

We also focused mainly on static data requirements, whereas the analysis of
dynamic elements also provides a rich set of specifications that could extend
and complement them.

First of all, behavioural modelling could for instance be integrated in the
approach by formalising the notion of formula that was introduced in the sim-
plified form models in general, and the notion of action for buttons in particu-
lar. A simple formula language resembling OCL (Object Constraint Language,
associated to UML) or the ones of spreadsheet programs could for instance be
defined, while the most common types of form actions could be classified and
made available in the drawing of forms.

Besides, program profiling and comprehension could also be integrated in
the Wander step to analyse how the end-users effectively use the generated
lightweight data manager.

16.1.3 Improving reusability through the drawing support

We concentrated on the use of the RAINBOW approach for independent soft-
ware engineering projects. However, since the approach is preferably suitable
for small to medium size enterprises, the requirements that need to be specified
may recurrently be somehow related. Typically, concepts such as “customer” (or
“person”) and “address” may occur almost systematically from a project to an-
other. Besides, a enterprise could decide to develop other applications reusing
an existing database that was developed using the RAINBOW approach. It
would therefore be highly recommended to allow the definition and reuse of pre-
defined and reusable structural components, and possibly dedicated ontologies
and thesaurus. Such components could also integrate constraints suggestions,
example data samples, alternatives terms, etc. Assistance to the end-users
could be extended accordingly, e.g. by suggesting such structures on-the-fly.

16.1.4 Refining the terminological and structural analysis

The terminological analysis could also be refined, to avoid reporting irrelevant
similarities. This issue remains intrinsically complex, but it would still be pos-
sible to improve the results, typically by extending the comparison algorithms.
For instance, terms could be compared using multiple string distances, and
possibly include alternative string comparison based on the phonetic distance.
The term analysis could also detect possible relationship between similar terms
based on adjectives, such as order (“first”, “second”,; ...) or prevalence (“main”,
“alternative”). Regarding the structural analysis, the handling of compositions

16.1.5. Expanding the elicitation of constraints and dependencies 261

should be integrated, and mechanisms for characterising components as refer-
ential could also be explored.

16.1.5 Expanding the analysis of data samples, constraints and de-
pendencies

During this research, we mainly focused on technical, existence and unique con-
straints, as well as functional dependencies within single entity types. However,
it could be valuable to diversify our scope, for instance to also handle multival-
ued dependencies. Besides, as we mentioned, we reasoned on valid (or positive)
user-provided data samples to highlight possible constraints and dependencies,
but it is also possible to consider invalid (or negative) data samples for that
purpose. By exploring and detailing the criteria for invalidity, we could possi-
bly highlight additional constraints or dependencies. Using typical predefined
or reusable data samples could also ease the encoding of data samples.

16.2 Improving the current tool support

In this chapter, we propose various adjustments that could be made to im-
prove the execution of the RAINBOW approach through its dedicated toolkit,
notably based on the observations and discussions that took place during the
experimentation. Let us recall that the toolkit is currently an exploratory and
prototypical tool support, and that its limitations result from this stance.

16.2.1 General observations

A transversal improvement concerns the configurability of the tool support, in
order to support the participants in a relevant and non intrusive fashion (which
we will specify on a case by case basis). Another concern that appears in each
step is the possibility to edit the interfaces and display their widgets properties
without necessarily looping back and replaying each previous step. Finally, the
toolkit should be adaptable to different languages, which would imply, among
others, to extend the authorised character set in labels.

16.2.2 Drawing

Here are some possible improvements for the drawing step, which could be
implemented and tested:

e the toolkit could provide a drag-and-drop feature to insert and move
widgets;

262 Chapter 16. Possible improvements and future works

e widgets could be “transformable” into another one, e.g. an input into a
selection;

e the integrated label analyser should be parametrisable and easy to turn
on and off, since it unnecessarily triggered too often;

e the integrated label analyser could be integrated as a silent dockable
element of the toolkit instead of popping up whenever there is a lexical
or ontological ambiguity;

e the available widgets could be presented in an exhaustive manner regard-
ing their cardinality (typically the different combinations of selections);

e a dedicated widget for referential elements could be introduced;
e tables should have the (manual) possibility to adapt to their content;
e the options of a selection should be orderable;

e the actions of a button could be connectable to a set of simple but effec-
tive actions (such as navigating between forms, choosing an existing data
sample, ...);

16.2.3 Investigate

The layout of the terminological and structural tools should be improved. To
do so, alternative arrangements could be submitted to end-users in order to get
their feedback: for instance, groups of similar labels could be presented one by
one, instead of being shown all at the same time.

The label analyser produced large groups of similar labels, which was rather
gruelling to process. The elicitation and grouping of lexically or ontologically
similar labels could therefore be tested with other parameters and/or strategies.
For instance, we could handle similar labels as a graph of interconnected labels
instead of independent terminologically similar subsets. Each label would be
a node, and would be connected to other nodes through edges characterising
their computed terminological similarity, the latter having to be validated by
the end-users.

Besides, the handling of the “composition” and “complementarity” structural
similarities should also be easily manageable, without forcing the end-user and
the analyst to jump back to the drawing step to correct the involved elements:
the toolkit should instead include transformation tools to process/update the
forms and their underlying data model. Also, the toolkit should include tools
to add the “missing” form for containers that share a “union” similarity.

16.2.4. Nurture 263

16.2.4 Nurture

The nurturing step seems to be the most fastidious one of the process, in great
part because providing examples demands a great effort and arbitrating the
constraints is challenging. In order to facilitate the encoding of examples, the
end-users could rely on existing data samples and (if they want) ask the analyst
to encode them under their supervision. Also, it should be possible to easily
copy/paste values from existing data samples

Regarding the arbitration of constraints and dependencies, it might be prof-
itable to order them in terms of criticality and likelihood. Instead of using
summary tables for the constraints, the information could be structured dif-
ferently, for instance by generating “readable” questions (e.g. “Is this element
mandatory?”) and hiding the unquestionable elements.

For existence constraints and functional dependencies, it would be nice to
be able to directly define their components, instead of having to go through
example input and/or manual discard. Besides, complex identifiers, transversal
dependencies and conditional elements should also be handled.

16.2.5 Bind

This step is currently quite abstract, since we do not directly work with the
existing forms. To stay consistent with the approach, we could precisely render
the “main concepts” through form-based interfaces so that the end-users and
analysts could see them and compare them with the other forms they drew. The
generated form could be added to the project, and the related existing forms
could be annotated to specify this reference. Also, an integration assistant
should be provided to semi-automatically process the remaining elements, such
as empty entity types.

16.2.6 Objectify and Wander

As previously explained, the generation and integration of applicative com-
ponents into a “playable” prototype and the testing of that prototype by the
end-users have been deliberately left aside in the context of this doctoral re-
search, but it would definitely be interesting to implement them once they are
theoretically explored in depth.

264 Chapter 16. Possible improvements and future works

16.3 Pursuing the experimentation based on an improved can-
vas

We believe that the protocol that we presented in Section was appropriate
to assess the efficiency of the RAINBOW approach and the quality of its output.
In this chapter, we therefore suggest to extend this experimentation canvas so
that it could be used in a wider experimentation endeavour, bearing in mind
the Participant-Observer and Brainstorming/Focus group principles. In the
following, we will hence explain how to prepare further case studies and how
to apply and review the RAINBOW approach, before comparing it to other
approaches.

16.3.1 Preparing the experimentation

The inevitable restriction is that the chosen software engineering projects must
target form-based applications for small to medium sized companies, though it
could also be interesting to study how relevant the RAINBOW approach could
prove for other types of applications. Additionally, it would be interesting to
have a wide range of application domains, to maximize the possible modelling
challenges.

All the participants should be familiar with form-based human-computer in-
teractions, such as web forms, and the analysts should be familiar with (static)
data modelling. Before starting the apply the RAINBOW approach, the ana-
lysts in charge of the (static) data modelling, as well as the observers, should
meet with as many of the stakeholders as possible, in order to get the big
picture and start thinking about the subject. If there are too many potential
end-users, the selection of the participants should be done carefully in order to
preserve their sensibility.

All the participants should subsequently receive a general explanation on
the RAINBOW approach, the organisation of the sessions and a special train-
ing to use the toolkit. In addition to the screencasts, training sessions could
be organised, and a sandbox version of the toolkit, including tutorials and
examples, should be available for individual testing.

Once the participants are properly trained, the analysts need to define the
experimentation settings with the end-users in other to maximise their com-
fort and willingness. This includes choosing the schedule and location of the
sessions, the equipment that will be used, and how multiple end-users will
participate (jointly, separately, alternatively, ...).

16.3.2. Applying the RAINBOW approach 265

16.3.2 Applying the RAINBOW approach

The implementation of the RAINBOW approach relies on the joint develop-
ment of the conceptual schema of the application domain, which will in turn
lead the implementation of the database. To perform this process, we advocate
to keep the four main interactive steps of the approach, namely Represent,
Investigate, Nurture and Bind, by planing one assignment for each of them.
Each assignment should be organised in sessions of 60 minutes at most, in or-
der to keep the focus and interest of the participants. If the future evolution
of the toolkit supports the Objectify step, the interactive Wander step could
be included in the experimentation as a fifth session.
Each session should be organised as follows:

e Introduction: recall the previous steps and present the main objectives
of the current session;

e Recapitulation: discuss the previous steps and the possible elements that
remained unclear or that should be reworked;

e FEzxecution: execute the tasks associated with the current session using
the RAINBOW toolkit while the observers took notes;

e Individual debriefing: discuss separately with each other participant to
take their impressions and remarks.

In this first assignment, the end-users and the analysts must draw and edit
forms that would allow them to accomplish usual tasks of the future application
project, with a special attention to encoding forms. They need to focus on the
terminology and specification of the forms rather than their layout and general
appearance. It could be interesting to push forward the use of labels, for
instance by asking end-users to provide the singular and plural variations of
the labels they use, typically when using tables.

In order to study how the end-users react to the tool support and handle
the responsibility of the drawing, they should initially be asked to operate the
toolkit to draw the forms. However, if they feel uncomfortable with this task,
they could agree to delegate it to the analysts.

During that assignment, the observers should be attentive to the following
elements:

e the drawing behaviour, that is, how the participants use the available
widgets to represent different types of information and requirements;

e the articulation problems that occur (as presented in Section 2.1), and in
which circumstances;

e the information that could and could not be expressed using the toolkit;

e the discussions that were induced by the approach and toolkit;

266 Chapter 16. Possible improvements and future works

e the usability and the reliability of the toolkit;

e the behaviour of the label analyser and the relevance of its suggestions,
if it was activated.

At the end of each session, a screenshot of the forms should be taken (and
possibly printed) and provided to the participants, so that they can continue to
think about the project until the next session. In particular, the analyst should
analyse the labels and structure of the widgets to detect possible alternative
representations. At the beginning of the next session, the participants can then
discuss the possible improvements of the current forms.

In the second assignment, the participants must analyse and arbitrate the
terminology terminological and structural ambiguities remaining in their forms.
At this point, it appears that the analyst should operate the toolkit in order
to serve as an intermediary with the end-users.

It is important for the end-users to understand that, ideally, widgets refer-
ring to the same concept should bear the same label, and that widgets referring
to different concepts should bear different labels. Likewise, the similarity be-
tween two containers should be appropriately chosen among:

equality for containers representing the same concept;
e specialisation when one of the concepts specialises the other;

e union for containers representing specialisation of a more generic concept
that is not explicitly expressed through the forms;

e complementarity when one of the concepts actually refers to the other;

e composition when one of the concepts (expressed through a table) consists
of multiple instance of the other;

e difference for different concepts.

During that assignment, the observers should be attentive to the following
elements:

e the relevance of the generated sets of similar labels;

e the impact of the possible use of the label analyser during the drawing
on the elements arbitrated during this assignment;

e the possible trends in the automatically generated structural ambiguities;
e the behaviour during the arbitration of structural ambiguities;

e the articulation problems that occur, and in which circumstances;

e the information that could and could not be expressed using the toolkit;
e the discussions that were induced by the approach and toolkit;

e the usability and the reliability of the toolkit.

16.3.2. Applying the RAINBOW approach 267

In the third assignment, the participants must provide a set of examples,
then examine the technical constraints, the existence constraints, the functional
dependencies and the possible identifiers associated with each form and its
elements. Since this assignment can be extremely time-consuming, multiple
sessions may have to be planned to encode examples and elicit constraints and
dependencies.

However, though gathering examples is important to generate possible con-
straints and dependencies, the analysts should cut directly to what he feels to
be the most likely relevant ones. Discussing with the end-users based on the
submitted forms and data samples may speed up the validation process.

During that assignment, the observers should be attentive to the following
elements:

e the variety and relevance of the submitted examples;

e the number of examples that seem to be necessary to obtain valuable
suggestions, according to the structure of a given form;

e the number of corrections that had to be made regarding technical con-
straints (typically regarding the cardinality);

e the articulation problems that occur, and in which circumstances;
e the information that could and could not be expressed using the toolkit;
e the discussions that were induced by the approach and toolkit;

e the usability and the reliability of the toolkit.

In the fourth assignment, the participants must arbitrate the properties
of the top-level concepts that were elicited through the previous steps, that
is, their attributes and associated technical constraints, existence constraints,
functional dependencies and possible identifiers.

It is important for the end-users to understand that they should treat these
top-level concepts as forms that should aggregate all the information shared by
their “sub forms”.

During that assignment, the observers should be attentive to the following
elements:

e the articulation problems that occur, and in which circumstances;
e the information that could and could not be expressed using the toolkit;
e the discussions that were induced by the approach and toolkit;

e the usability and the reliability of the toolkit.

268

Chapter 16. Possible improvements and future works

16.3.3 Reviewing the experiment and comparing the approach to

existing approaches

To assess the effectiveness of the RAINBOW approach, the observers and an-
alysts should analyse the observations taken during the different assignments
and sessions. Let us recall the efficiency-related elements they need to be at-

tentive to:

the possible articulation problems that were presented in Section ,
namely: confusion, improper expectations, difficult or unclear articula-
tion, inappropriate prioritisation;

the attitude and satisfaction of the participants regarding the methodol-
ogy (and how they can possibly compare them to other approaches);
the information that could and could not be expressed using the toolkit;
the discussions that were induced by the approach and toolkit for the
requirements that could and could not be expressed using the toolkit;
the ease of use and reliability of the toolkit;

the relevance of the elements presented by the toolkit (similar labels and
structures, possible constraints and dependencies) for end-users arbitra-
tion.

To assess the quality of the RAINBOW output, let us recall the quality-
related criteria that the analysts need to analyse:

correctness: does the schema use appropriate constructs?
consistency: is the schema free of contradictions?

completeness: does the schema cover (exactly) all the aspects necessary to
conceive the future database of the software engineering project (scope),
and is it detailed enough (level of details)?

conciseness: is the schema free of redundancies?

unambiguity: are there elements of the schema that are still unclear or
disputable?

modifiability: can the schema be updated easily ?

traceability: can each element of the schema be retraced to the original
requirements expressed by the end-users?

verifiability: can the schema be used to verify that the software meets
the requirements?

testability: can pass/fail or quantitative assessment criteria can be derived
from the schema?

Besides, they also need to analyse the following practical issues:

16.3.3. Analysing and discussing the execution 269

e Does the approach help the analyst to understand the application domain,
whether he was part of the experimentation or not?

e What could and should be done to improve the output schemas?

However, as we have seen, an additional effort could be made to define a
more systematic evaluation of the experiments. This would imply reviewing
evaluation techniques used in comparable existing approaches over time, as
well as Requirements Engineering in general. Synthesising the main evaluation
criteria and comparing the values and results for each of them could enable
at least a theoretical comparison of these approaches. By moreover asking
analysts to participate in different projects using the RAINBOW approach or
not, we could get more practical feedback on the flaws, advantages and possible
improvements of the approach.

Besides, it would also be interesting to study the evolution aspects of the
approach. While we already consider the possibility to “loop” during the steps
of the approach as long as we are in the conceptual design, what would be the
situation if we needed to edit a working database produced using the approach?

Chapter 17

Conclusion

As this dissertation comes to an end, let us take the time to recall the different
stages we went through during this endeavour. All started at the carrefour of
Requirements Engineering, Database Engineering and Human-Computer Inter-
faces, where we wondered how we could combine these disciplines to support
the elicitation of static database requirements in the context of Software Engi-
neering.

From this initial existential questioning, we started by examining the con-
text of this research area. We notably investigated how the Software Crisis
progressively led to the emergence of Requirements Engineering as a corner-
stone of Software Engineering, and presented different aspects of this field. We
then focused on Data Engineering, which aims at accurately eliciting and val-
idating data user requirements to help build a reliable documentation of the
application domain. In particular, we took a special interest in the phase of
conceptual design, which seeks to express user requirements into a conceptual
schema, based on data models such as the GER, which are not easily accessi-
ble to the laymen, but offers the advantages of transformational approaches. It
also appeared that several techniques to acquire data requirements do exist, but
that they do not involve actively end-users. Providing a better requirements
acquisition process for Database Engineering hence implied bridging this com-
munication gap between end-users and analysts.

Incidentally, we realised that Prototyping was precisely a technique that
had proved efficient to elicit and validate requirements, though prototypes are
still mainly designed by analysts rather than the end-users, and therefore ap-
pear as a one-way communication channel. Nevertheless, form-based interfaces

271

272 Chapter 17. Conclusion

especially fitted the purpose of transparently expressing formal requirements,
which could be used in combination with the principles of data reverse engi-
neering. The few related researches on this domain were reviewed and their
limitations exposed, among which the lack of user involvement and adequate
tool support to help them focus on the information content of the forms, the as-
sumption that labels are used consistently through out a set of different forms,
the non systematic use of data samples to elicit constraints (when the latter
are available), the lack of validation on final integrated data models, and the
absence of evolutionary perspectives.

We hence naturally wondered about the perspective of designing our own
approach to reverse engineer prototypical user-drawn form-based interfaces in
order to perform an interactive conceptual analysis. We consequently presented
several key problems inherent to the different disciplines that would need to
interoperate in order to perform such a process. Regarding Database forward
engineering, the main challenges concerned the elicitation of ambiguous ele-
ments needing arbitration, in order to prepare the integration of multiple data
models and the subsequent generation of applicative components. In partic-
ular, we presented String Metrics and Ontologies to discover terminological
ambiguities, Tree mining algorithms and Formal concept analysis (FCA) to
elicit structural redundancies, and the application of induction, dependency
discovery algorithms and FCA on data samples to uncover constraints and
dependencies.

We also mentioned traditional view integration strategies to manage schema
integration, as well as transformations and CASE tools to generate applica-
tive components. Regarding Database reverse engineering, we pointed out
that static and dynamic analysis of forms could be used to extract a set of
raw data models from a set of form-based interfaces. As for Prototyping, we
addressed the importance of choosing an appropriate User Interface Descrip-
tion Language and an adequate tool-support to express and validate concepts
through form-based interfaces, then generate a playable form-based prototype
from an existing conceptual schema. We furthermore insisted that the pro-
posed techniques and strategies needed to be tailored in order to promote user-
involvement through interactivity, and lead to an integrated and consistent
elicitation process.

Subsequently, we presented and detailed the principles and processes of the
RAINBOW approach to perform an interactive conceptual analysis, based on
the reverse engineering of prototypical user-drawn form-based interfaces, es-
pecially for environments where forms are a privileged way to exchange infor-
mation and stakeholders are familiar with form-based (computer) interaction
and the application domain. In order to overcome the observed limitations

273

of related approaches and transparently produce a conceptual schema of the
application domain that includes hierarchies, constraints and dependencies, we
formalised the approach into a semi-automatic seven-step process specialising
and integrating standard techniques to help acquire data specifications from
existing artefacts.

The Represent step first focused on the drawing and specification of a set
of simple form-based interfaces that would enable end-users to perform usual
tasks of their application domain. For this purpose, we notably explained
how the richness and inherent complexity of existing UIDLs led us to define
RAINBOW?’s simplified form model, based on the most common form widgets
that are forms, fieldsets, tables, inputs, selections and buttons. We
then exposed how to manage the drawing step, by preparing and planning the
project, training the end-users, and finally providing them with a tool-support
consistent with our form model.

We then explained how to translate the produced set of form-based inter-
faces into a corresponding set of data models through the Adapt step. For this
purpose, we presented then formalised intuitive mapping rules to support this
extraction and obtain simple but semantically equivalent data structures of the
GER model.

The Investigate step subsequently addressed the analysis of these data mod-
els to highlight semantic and structural similarities, which were formalised
based on the definition of orthographic and ontological similarities, as well
as the use of patterns. We also presented how to process the arbitrated sim-
ilarities in order to produce a pre-integrated schema with unified terminology
and structures, and containing the materialisation of the relationships between
the concepts conveyed by the form containers.

The Nurture step then addressed the elicitation of technical, existence and
unique constraints, as well as functional dependencies and the parallel acquisi-
tion of data samples. We formalised these notions and presented the principles
of an interactive process, inspired by Armstrong relations, in order to suggest
them, collect them and consequently reflect them on the pre-integrated schema.

The Bind step afterwards handled and formalised the arbitration and pro-
cessing of the previously defined constraints and dependencies, as well as the
relationships specified between entity types, in order to produce an integrated
conceptual schema representing the application domain for which the form-
based interfaces were originally drawn.

Finally, the Objectify step addressed the generation of a lightweight pro-
totypical data manager application from this integrated conceptual schema,
and the Wander step exposed how to submit this prototype to the end-users
in order to transparently refine and ultimately validate the integrated con-

274 Chapter 17. Conclusion

ceptual schema. We then presented the prototypical RAINBOW Toolkit that
was developed in order to support and experiment the approach and provide a
sequential access and support to the five first crucial steps.

As could be expected, we then addressed the intrinsically complex valida-
tion of the RAINBOW approach. In particular, we focused on its effectiveness
(i.e. its ability to help end-users and analysts to communicate static data re-
quirements to each other), and the quality of the conceptual schemas produced
using it. The issues raised by these quintessential questions are not easy to
experiment, measure and validate, especially given the immanent difficulty of
evaluating methodologies for the development of large systems, which primar-
ily requires to spread the experimentations over time. Therefore, we defined
an experimentation canvas that we applied to two preliminary studies, in order
to get a first insight on the validation method and the implementation of the
RAINBOW approach.

We subsequently exposed our validation protocol based on the Participant-
Observer principles to monitor the use of the RAINBOW toolkit and approach,
and the Brainstorming/Focus group principles to analyse the resulting concep-
tual schemas. We consequently proposed to structure each experimentation
into a preparation phase, an execution phase and finally a review phase, then
detailed how the participating end-users, analysts and observers were involved
in each of these phases. We then introduced the two case studies, which were
each rich and relevant in their own way, and described how each pair of end-
user and analyst managed to jointly design the conceptual schema of their
application project using the RAINBOW methodology and toolkit, while the
observers took notes about the efficiency of the process. We followed with the
resulting discussions on the quality of the schemas produced using the approach
and tool support for each study.

The analysis of these preliminary experimentations led us to conclude that
the experimentation canvas proved to be valid and relevant. Besides, the RAIN-
BOW approach and tool support did effectively help end-users and analysts to
communicate static data requirements to each other and that the quality of
the produced conceptual schemas was good with respect to the given case
studies. This encouraging preliminary validation process also highlighted sev-
eral sensible phenomenons that will need to be monitored on a larger scale
experimentation, such as the drawing behaviour of the participants.

Finally, we retrospected on the RAINBOW approach to assess its specifici-
ties and merits, as well as its flaws and possible future works. We particularly
recalled some of the challenges that were overcame in order to intimately in-
volve end-users in the data elicitation processes, and underlined the importance
of the analyst in that matter. We also explained how principles of Reverse En-

275

gineering were applied on controlled artefacts and through monitored processes
to elicit requirements for the purpose of Forward Engineering. We discussed
the modularity and transformation-based reliability of the overall process, as
well as the diversity of potential users, before arguing that the output of the
approach was a rich and relevant part of a valid Software Requirement Specifi-
cation that could be used in conjunction with other elicitation methodologies.

Among the possible improvements, we recalled that the last two steps of
the RAINBOW approach could also be formalised, though they are relatively
straightforward. We also mentioned that the approach could take advantage
of dynamic aspects of form-based interfaces, reusability mechanisms for the
elaboration of the interfaces, refinements of the terminological and structural
analysis, as well as the expansion of constraints elicitation and the study of
data samples. The tool support could also be improved by notably working on
its ergonomy and usability, which could progressively turn it into a true CASE
tool. Finally, we drew the main lines of an improved experimentation canvas
for a wider experimentation endeavour over time that could give us a better
understanding of the real impact of the RAINBOW approach. In order to get
the most of these futures experiments, we advocated to carefully pave the way
for the procedure, and set guidelines for the execution as well as the reviewing
and comparison of the approach with similar existing approaches.

In the end, we can finally conclude that the RAINBOW approach qualifies
as an original and realistic contribution to elicit static database requirements
in the context of Software Engineering. As expected, the expressiveness of
form-based interfaces and prototypes, combined with the specialisation and in-
tegration of standard technique to help acquire and validate specifications from
existing artefacts, enabled to use form-based interfaces as a two-way communi-
cation channel to communicate static data requirements between end-users and
analysts. This approach can evidently be extended and optimised, but never-
theless, it overcomes the main concerns raised by similar researches, while be-
ing interoperable with other approaches and extensible for further analysis and
elicitation processes. Besides, the experimentation results of the preliminary
studies comforts us in believing that this approach is viable, worthy, and de-
serves to be improved and tested over time, by continuously looking for better
ways to involve stakeholders in an efficient and satisfying fashion.

Part V

Bibliography

Give back to Caesar what is Caesar’s and to God what is God’s.
Matthew, XXII, 21

277

References

Ali, M. F., Pérez-Quinones, M. A.; Abrams, M., and Shell, E. (2002). Building multi-
platform user interfaces with uiml. In [|, pages
255-266. [cited at p. 55]

Andriole, S. J. (1994). Fast, cheap requirements: Prototype, or else! IEEE Software,
11(2):85-87. [cited at p. 13]

Armstrong, W. W. (1974). Dependency structures of data base relationships. In IFIP
Congress, pages 580-583. [cited at p. 46]

Asai, T., Arimura, H., Uno, T., ichi Nakano, S., and Satoh, K. (2003). Efficient tree
mining using reverse search. In International Symposium on Information Science
and Electrical Engineering 20038 (ISEE 2003), Kyushu University, pages 401-404.
[cited at p. 43]

Astrova, I. and Stantic, B. (2005). An html-form-driven approach to reverse engineer-
ing of relational databases to ontologies. In Proceedings of IASTED International
Conference on Databases and Applications, pages 246-251. [cited at p. 33]

Baixeries, J. (2004). A formal concept analysis framework to mine functional depen-
dencies. In Proceeding of Mathematical Methods for Learning 2004 : Advances in
data mining and knowledge discovery. [cited at p. 48]

Batini, C., Ceri, S., and Navathe, S. B. (1992). Conceptual database design: an
Entity-relationship approach. Benjamin-Cummings Publishing Co., Inc., Redwood
City, CA, USA. [cited at p. 14, 15, 25, 197]

Batini, C., Demo, G. B., and Leva, A. D. (1984). A methodology for conceptual
design of office data bases. Information Systems, 9(3/4):251-263. [cited at p. 32]

Batini, C., Lenzerini, M., and Navathe, S. B. (1986). A comparative analysis
of methodologies for database schema integration. ACM Computing Surveys,
18(4):323*364. [cited at p. 49]

279

280 References

Bgdker, S., Grgnbaek, K., and Kyng, M. (1993). Cooperative design: Techniques and
experience from the scandinavian scene. In Schuler, D. and Namioka, A., editors,
Participatory design: Principles and practices. Hillsdale, New Jersey: Lawrence
Erlbaum Associates. [cited at p. 57]

Beyer, H. and Holtzblatt, K. (1998). Contextual design: defining customer-centered
systems. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. [cited at
p. 11]

Briand, L. C., Morasca, S., and Basili, V. R. (1996). Property-based software engi-
neering measurement. IEEE Transactions on Software Engineering, 22(1):68-86.
[cited at p. 195]

Brogneaux, A.-F., Ramdoyal, R., Vilz, J., and Hainaut, J.-L. (2005a). Deriving user-
requirements from human-computer interfaces. In Proceedings of 23rd IASTED
International Conference, Innsbruck, Austria, pages 7T7—82. [cited at p. 59]

Brogneaux, A.-F., Ramdoyal, R., Vilz, J., and Hainaut, J.-L. (2005b). Deriving user-
requirements from human-computer interfaces. In TC13 Workshop on Human-
Computer Interaction (Design and Visualisation), Namur, Belgium. [cited at p. 59]

Brown, J. S. and Duguid, P. (2000). The Social Life of Information. Harvard Business
School Press, Boston, MA, USA. [cited at p. 27]

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdon-
ckt, J. (2003). A unifying reference framework for multi-target user interfaces.
Interacting with Computers, 15(3):289-308. [cited at p. 257]

Carnegie Mellon University (2006). The SecondString project, the open-source java-
based package of approximate string-matching techniques.
. [cited at p. 179]

Chapman, S. (2007). SimMetrics, the open source extensible library of similarity or
distance metrics. . [cited at p. 179]

Chehreghani, M. H., Rahgozar, M., Lucas, C., and Chehreghani, M. H. (2007). Min-
ing maximal embedded unordered tree patterns. In Proceedings of the IEEE Sym-
posium on Computational Intelligence and Data Mining, CIDM 2007, Honolulu,
Hawaii, USA, pages 437-443. [cited at p. 43]

Cherfi, S. S.-S., Akoka, J., and Comyn-Wattiau, I. (2002). Conceptual modeling
quality - from eer to uml schemas evaluation. In ER ’02: Proceedings of the 21st
International Conference on Conceptual Modeling, pages 414-428, London, UK.
Springer-Verlag. [cited at p. 195]

Chi, Y., Muntz, R. R., Nijssen, S., and Kok, J. N. (2005). Frequent subtree mining -
an overview. Fundamenta Informatica, 66(1-2):161-198. [cited at p. 43]

http://secondstring.sourceforge.net
http://secondstring.sourceforge.net
http://simmetrics.sourceforge.net

References 281

Chikofsky, E. J. and Cross, J. H. (1990). Reverse engineering and design recovery: A
taxonomy. IEEE Software, 7(1):13-17. [cited at p. 16, 197]

Choobineh, J., Mannino, M. V., and Tseng, V. P. (1992). A form-based approach for
database analysis and design. Communications of the ACM, Vol. 35, N¥2:108-120.
[cited at p. 27, 33, 43, 81, 252]

Coad, P. (1992). Object-oriented patterns. Communications of the ACM, 35(9):152—
159. [cited at p. 123]

Codd, E. F. (1970). A relational model of data for large shared data banks. Commu-
nications of the ACM, 13(6):377-387. [cited at p. 45]

Codd, E. F. (1971a). Further normalization of the data base relational model. IBM
Research Report, San Jose, California, RJ909. [cited at p. 195]

Codd, E. F. (1971b). Normalized data structure: A brief tutorial. In Codd, E. F.
and Dean, A. L., editors, SIGFIDET Workshop, pages 1-17. ACM. [cited at p. 195]

Cohen, W. W., Ravikumar, P., and Fienberg, S. E. (2003). A comparison of string
distance metrics for name-matching tasks. In Proceedings of IJCAI-03 Workshop
on Information Integration on the Web (IIWeb-03), Acapulco, Mezico, pages 73-78.
[cited at p. 40]

Connell, J. and Shafer, L. I. (1995). Object-oriented rapid prototyping. Yourdon Press,
Upper Saddle River, NJ, USA. [cited at p. 27

Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., and Koschke, R. (2009).
A systematic survey of program comprehension through dynamic analysis. I[EEE
Transactions on Software Engineering, 35(5):684-702. [cited at p. 53]

Correia, J. H. (2002). Relational scaling and databases. In Proceedings of the 10th In-
ternational Conference on Conceptual Structures (ICCS 2002), Borovets, Bulgaria,
July 15-19, 2002, pages 62-76. [cited at p. 48]

Daly, J., Brooks, A., Miller, J., Roper, M., and Wood, M. (1996). Evaluating inheri-
tance depth on the maintainability of object-oriented software. Empirical Software
Engineering, 1(2):109-132. [cited at p. 195]

Davis, A. M. and Zowghi, D. (2006). Good requirements practices are neither neces-
sary nor sufficient. Requirements Engineering, 11(1):1-3. [cited at p. 7]

DB-MAIN (2010). The DB-MAIN CASE Tool. . [cited at
p. 51, 175]

Dix, A., Finley, J., Abowd, G., and Beale, R. (1998). Human-computer interaction
(2nd ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA. [cited at p. 8]

http://www.db-main.be

282 References

Embley, D. W. (1989). NFQL: The natural forms query language. ACM Transactions
on Database Systems, 14(2):168-211. [cited at p. 173]

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. MIT Press. [cited at
p. 108, 179

Finlayson, M. A. (2009). The MIT Java Wordnet Interface (JWI).
. [cited at p. 179]

Fischer, G. (2002). Beyond “couch potatoes”: From consumers to designers and active
contributors. First Monday, 7(12). [cited at p. 12, 27]

Flory, A. (1982). Bases de données : conception et réalisation. ECONOMICA, Paris.
[cited at p. 49]

Gemino, A. and Wand, Y. (2005). Complexity and clarity in conceptual modeling:
Comparison of mandatory and optional properties. Data € Knowledge Engineering,
55(3)2301*326. [cited at p. 195]

Genero, M., Jiménez, L., and Piattini, M. (2000). Measuring the quality of entity
relationship diagrams. In ER’00: Proceedings of the 19th international conference
on Conceptual modeling, pages 513-526, Berlin, Heidelberg. Springer-Verlag. [cited
at p. 195]

Goguen, J. A. and Linde, C. (1993). Techniques for requirements elimination. In
Proceedings of IEEE International Symposium on Requirements Engineering, pages
152-164, Los Alamitos, California. IEEE CS Press. [cited at p. 9]

Gomaa, H. (1983). The impact of rapid prototyping on specifying user requirements.
SIGSOFT Software Engineering Notes, 8(2):17-27. [cited at p. 26]

Gomaa, H. and Scott, D. B. (1981). Prototyping as a tool in the specification of
user requirements. In Proceedings of the 5th International Conference on Software
Engineering (ICSE’81), pages 333-342. IEEE Press. [cited at p. 197

Gronbak, K., Kyng, M., and Mogensen, P. (1997). Toward a cooperative experimental
system development approach. In Kyng, M. and Mathiassen, L., editors, Computers
and design in context, pages 201-238. MIT Press, Cambridge, MA, USA. [cited at
p. 58]

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowl-
edge sharing? International Journal of Human-Computer Studies, 43(5-6):907 —
928. [cited at p. 40]

Habra, N., Abran, A., Lopez, M., and Sellami, A. (2008). A framework for the
design and verification of software measurement methods. Journal of Systems and
Software, 81(5):633-648. [cited at p. 195]

http://projects.csail.mit.edu/jwi/
http://projects.csail.mit.edu/jwi/

References 283

Hainaut, J.-L. (1989). A generic entity-relationship model. In Proceedings of the IFIP
WG 8.1 Conference on Information System Concepts: an in-depth analysis, pages
109-138. North-Holland. [cited at p. 17]

Hainaut, J.-L. (1996). Specification preservation in schema transformations - appli-
cation to semantics and statistics. Data & Knowledge Engineering, 19(2):99-134.
[cited at p. 25]

Hainaut, J.-L. (2002). Introduction to Database Reverse Engineering, 3rd Edition.
LIBD Publish., Namur.
. [cited at p. 16, 28, 254]

Hainaut, J.-L. (2005). Transformation-based database engineering. In van Bommel,
P., editor, Transformation of Knowledge, Information and Data: Theory and Ap-
plications, chapter 1. IDEA Group. [cited at p. 81]

Hainaut, J.-L. (2006). The transformational approach to database engineering. In
Lammel, R., Saraiva, J., and Visser, J., editors, Generative and Transformational
Techniques in Software Engineering, volume 4143 of LNCS, pages 95-143. Springer.
[cited at p. 14, 15, 22, 24, 28, 197]

Hainaut, J.-L. (2009). Bases de données - Concepts, utilisation et développement, 3rd
FEdition. Dunod. [cited at p. 50]

Hainaut, J.-L., Henrard, J., Hick, J.-M., Roland, D., and Englebert, V. (1996).
Database design recovery. In Proceedings of International Conference on Advances
Information System Engineering (CAiSE), volume 1080 of LNCS, pages 272-300.
Springer. [cited at p. 26]

Hall, P. A. V. (1992). Software Reuse and Reverse Engineering in Practice. Chapman
& Hall, Ltd., London, UK, UK. [cited at p. 16, 197

Hersh, W., Price, S., and Donohoe, L. (2000). Assessing thesaurus-based query expan-
sion using the umls metathesaurus. In Proceedings of the 2000 American Medical
Informatics Association (AMIA) Symposium, pages 344-348. [cited at p. 41]

Hick, J.-M. and Hainaut, J.-L. (2006). Database application evolution: A transfor-
mational approach. Data & Knowledge Engineering, 59:534—558. [cited at p. 26]

Hoxmeier, J. A. (1998). Typology of database quality factors. Software Quality
Control, 7(3/4):179*193. [cited at p. 195]

Huhtala, Y., Kéarkkéinen, J., Porkka, P., and Toivonen, H. (1999). TANE: An efficient
algorithm for discovering functional and approximate dependencies. Computer
Journal, 42(2):100-111. [cited at p. 48]

IEEE (1998). IEEE recommended practice for software requirements specifications.
Technical report, IEEE. [cited at p. 10]

http://www.info.fundp.ac.be/dbm/publication/2002/DBRE-2002.pdf
http://www.info.fundp.ac.be/dbm/publication/2002/DBRE-2002.pdf

284 References

Ilich, 1. (1973). Tools for Conviviality. Harper & Row Publishers, New York. [cited
at p. 12, 27]

ISO/IEC (2001). ISO/IEC 9126. Software engineering — Product quality. ISO/IEC.
[cited at p. 194]

Jacobs, J. (1982). Finding words that sound alike. the soundex algorithm. Byte 7,
pages 473-474. [cited at p. 40]

Java (2010). The Java official website. . [cited at p. 175

Jiménez, A., Berzal, F., and Cubero, J. C. (2008). Mining induced and embed-
ded subtrees in ordered, unordered, and partially-ordered trees. In Proceedings of
Foundations of Intelligent Systems, 17th International Symposium, ISMIS 2008,
Toronto, Canada, pages 111-120. [cited at p. 43]

Kensing, F. and Blomberg, J. (1998). Participatory design: Issues and concerns.
Computer Supported Cooperative Work, 7(3/4):167-185. [cited at p. 57]

Kesh, S. (1995). Evaluating the quality of entity relationship models. Information
and Software Technology, 37(12):681 — 689. [cited at p. 195]

Kolski, C. and Vanderdonckt, J., editors (2002). Computer-Aided Design of User
Interfaces III, Proceedings of the Fourth International Conference on Computer-
Aided Design of User Interfaces, May, 15-17, 2002, Valenciennes, France. Kluwer.
[cited at p. 279, 287]

Kosters, G., Six, H.-W., and Voss, J. (1996). Combined analysis of user interface
and domain requirements. In ICRE ’96: Proceedings of the 2nd International
Conference on Requirements Engineering (ICRE ’96), page 199, Washington, DC,
USA. IEEE Computer Society. [cited at p. 34, 252]

Krogstie, J. (1998). Integrating the understanding of quality in requirements specifica-
tion and conceptual modeling. SIGSOFT Software Engineering Notes, 23(1):86-91.
[cited at p. 195]

Lantz, K. E. (1986). The prototyping methodology. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA. [cited at p. 26, 197]

Lee, H. and Yoo, C. (2000). A form-driven object-oriented reverse engineering
methodology. Information Systems, Vol. 25, No. 3. [cited at p. 33]

Limbourg, Q. and Vanderdonckt, J. (2004). Usixml: A user interface description
language supporting multiple levels of independence. In Proceedings of Workshops
in connection with the 4th International Conference on Web Engineering (ICWE
2004), Munich, Germany, pages 325-338. [cited at p. 56]

http://www.java.com

References 285

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and Lépez-Jaquero, V.
(2004). Usixml: A language supporting multi-path development of user interfaces.
In Bastide, R., Palanque, P. A., and Roth, J., editors, EHCI/DS-VIS, volume 3425
of Lecture Notes in Computer Science, pages 200—220. Springer. [cited at p. 56]

Lindland, O. L., Sindre, G., and Sglvberg, A. (1994). Understanding quality in con-
ceptual modeling. IEEFE Software, 11(2):42—49. [cited at p. 195

LingPipe (2010). The LingPipe tool kit for processing text using computational
linguistics. . [cited at p. 179]

Lopes, S., Petit, J.-M., and Lakhal, L. (2000). Efficient discovery of functional depen-
dencies and armstrong relations. In Proceedings of Advances in Database Technol-
ogy - EDBT 2000, 7th International Conference on Extending Database Technology,
Konstanz, Germany, pages 350-364. [cited at p. 48]

Lopes, S., Petit, J.-M., and Lakhal, L. (2002). Functional and approximate depen-
dency mining: database and fca points of view. Journal of Exzperimental and
Theoretical Artificial Intelligence (JETAI), 14(2-3):93-114. [cited at p. 48]

Luyten, K., Abrams, M., Vanderdonckt, J., and Limbourg, Q. (2004). Developing
user interfaces with xml: Advances on user interface description languages. In Pro-
ceedings of the Satellite Workshop of Advanced Visual Interfaces, Gallipoli, Italy.
[cited at p. 54]

Maes, A. and Poels, G. (2006). Evaluating quality of conceptual models based on
user perceptions. In Proceedings of ER 2006, 25th International Conference on
Conceptual Modeling, Tucson, AZ, USA, November 6-9, 2006, pages 54—67. [cited
at p. 195]

Mayo, E. (1933). The Human Problems of an Industrial Civilization. Mac Millan,
New York. [cited at p. 13, 192]

McConnell, S. (2000). From the editor - the best influences on software engineering.
IEEE Software, 17(1). [cited at p. 7]

Mehandjiev, N.; Layzell, P., Brereton, P., Lewis, G., Mannion, M., and cois Coallier,
F. (2002). Thirteen knights and the seven-headed dragon: an interdisciplinary soft-
ware engineering framework. In STEP ’02: Proceedings of the 10th International
Workshop on Software Technology and Engineering Practice, page 46, Washington,
DC, USA. IEEE Computer Society. [cited at p. 6]

Mfourga, N. (1997). Extracting entity-relationship schemas from relational databases:
A form-driven approach. Reverse Engineering, Working Conference on, 0:184. [cited
at p. 32]

Mogensen, P. (1992). Towards a provotyping approach in systems development. Scan-
dinavian Journal of Information Systems, 4:31-53. [cited at p. 58]

http://alias-i.com/lingpipe/

286 References

Moody, D. (2006). What makes a good diagram? improving the cognitive effective-
ness of diagrams in is development. In Knapp and Magyar, editors, Intl Conf on
Information Systems Development. Springer. [cited at p. 195]

Moody, D. L. and Shanks, G. G. (2003). Improving the quality of data models:
empirical validation of a quality management framework. Information Systems,
28(6)2619*650. [cited at p. 195]

Moody, D. L., Sindre, G., Brasethvik, T., and Sglvberg, A. (2003). Evaluating the
quality of information models: empirical testing of a conceptual model quality
framework. In ICSE ’03: Proceedings of the 25th International Conference on
Software Engineering, pages 295-305, Washington, DC, USA. IEEE Computer
Society. [cited at p. 195]

Mori, G., Paterno, F., and Santoro, C. (2002). Ctte: support for developing and an-
alyzing task models for interactive system design. IEFE Transactions on Software
Engineering, 28(8):797-813. [cited at p. 56]

Muller, M. J., Wildman, D. M., and White, E. A. (1993). Taxonomy of pd practices:
A brief practitioner’s guide. Communications of the ACM, 36(6):26-28. [cited at
p. 58]

Naur, P., Randell, B., and Buxton, J. (1976). Software Engineering: Concepts and
Techniques. Petrocelli/Carter, New York, USA. [cited at p. 6]

Navarro, G. (2001). A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31-88. [cited at p. 40]

Nielsen, J. (1986). A virtual protocol model for computer-human interaction. Inter-
national Journal of Man-Machine Studies, 24(3):301-312. [cited at p. 91]

Novelli, N. and Cicchetti, R. (2001). FUN: An efficient algorithm for mining func-
tional and embedded dependencies. In Proceedings of Database Theory - ICDT
2001, 8th International Conference, London, UK, pages 189-203. [cited at p. 48]

Nuseibeh, B. and Easterbrook, S. (2000). Requirements engineering: a roadmap. In
ICSE ’00: Proceedings of the Conference on The Future of Software Engineering,
pages 35—46, New York, NY, USA. ACM Press. [cited at p. 7, 9]

Object Management Group (OMG) (2007). Introduction to omg’s unified modeling
language. . [cited at p. 10,
78]

Osmundson, J. S., Michael, J. B., Machniak, M. J., and Grossman, M. A. (2003).
Quality management metrics for software development. Information and Manage-
ment, 40(8):799*812. [cited at p. 6]

http://www.omg.org/gettingstarted/what_is_uml.htm

References 287

Pastor, O., Gémez, J., Insfrdn, E., and Pelechano, V. (2001). The oo-method ap-
proach for information systems modeling: from object-oriented conceptual mod-
eling to automated programming. Information Systems, 26(7):507-534. [cited at
p. 257

Pastor, O., Hayes, F., and Bear, S. (1992). Oasis: An object-oriented specifica-
tion language. In Proceedings of the Advanced Information Systems Engineering,
CAiSE’92, Manchester, UK, pages 348-363. [cited at p. 257

Pastor, O. and Insfrdn, E. (2003). Oo-method, the methodological support for oliva
nova model execution system. White paper, CARE Technologies S.A.
. [cited at p. 257]

Paterno, F. and Santoro, C. (2002). One model, many interfaces. In
[|, pages 143-154. [cited at p. 56]

Pomberger, G., Bischofberger, W. R., Kolb, D., Pree, W., and Schlemm, H. (1991).
Prototyping-oriented software development - concepts and tools. Structured Pro-
gramming, 12(1):43-60. [cited at p. 27]

President’s Information Technology Advisory Committee (PITAC) (1999). Infor-
mation technology research: Investing in our future, report to the president.
. [cited at p. 6]

Pressman, R. S. (2000). Software Engineering: A Practitioner’s Approach. McGraw-
Hill Higher Education. [cited at p. 12]

Priss, U. (2005). Establishing connections between formal concept analysis and rela-
tional databases. In Common Semantics for Sharing Knowledge: Contributions to
ICCS 2005, pages 132—145. [cited at p. 48]

Puerta, A. R. and Eisenstein, J. (2002). Ximl: a common representation for interac-
tion data. In IUI, pages 216-217. [cited at p. 55]

Qt (2010). The QT official website. . [cited at p. 175]

Rahm, E. and Bernstein, P. A. (2001). A survey of approaches to automatic schema
matching. VLDB Journal, 10(4):334-350. [cited at p. 39]

Ram, S. (1995). Deriving functional dependencies from the entity-relationship model.
Communications of the ACM, 38(9):95—-107. [cited at p. 47]

Ramdoyal, R. (2010). Reverse engineering user-drawn form-based interfaces for inter-
active database conceptual analysis. In Proceedings of CAiSE Doctoral Consortium
2010, Hammamet, Tunisia. [cited at p. 59]

Ramdoyal, R., Brogneaux, A.-F., Vilz, J., and Hainaut, J.-L. (2007). Recherche de
recouvrements dans une collection de schémas de base de données. In Proceedings
of the DECOR Workshop, EGC 2007, Namur, Belgium. [cited at p. 59]

http://www.care-t.com/technology/whitepapers.asp
http://www.care-t.com/technology/whitepapers.asp
http://www.nitrd.gov/pitac/report/
http://qt.nokia.com

288 References

Ramdoyal, R., Cleve, A., Brogneaux, A.-F., and Hainaut, J.-L. (2009). Rétro-
ingénierie dSinterfaces utilisateur pour 1Sanalyse conceptuelle de bases de données.
In Proceedings of the 25émes Journées en Bases de Données Avancées (BDA 2009),
Namur, Belgium. [cited at p. 59]

Ramdoyal, R., Cleve, A., and Hainaut, J.-L. (2010). Reverse engineering user inter-
faces for interactive database conceptual analysis. In Proceedings of CAiSE 2010,
Hammamet, Tunisia, volume 6051 of LNCS, pages 332—-347. [cited at p. 59]

Rancz, K. T. J. and Varga, V. (2008). A method for mining functional dependencies
in relational database design using fca. Studia Universitatis “Babes-Bolyait’t’ Cluj-
Napoca, Informatica, Volume LHI(l):l?UQS. [cited at p. 48]

Rancz, K. T. J., Varga, V., and Puskas, J. (2008). A software tool for data analy-
sis based on formal concept analysis. Studia Universitatis "Babes-Bolyait’t’ Cluj-
Napoca, Informatica, Volume LIII(2):67-78. [cited at p. 49

Ravid, A. and Berry, D. M. (2000). A method for extracting and stating software
requirements that a user interface prototype contains. Requirements Engineering,
5(4):225*241. [cited at p. 28]

Robbins-Gioia LLC (2002). ERP survey.
. [cited at p. 12]

Rode, J., Bhardwaj, Y., Pérez-Quinones, M. A., Rosson, M. B., and Howarth, J.
(2005). As easy as ”click”: End-user web engineering. In Lowe, D. and Gaedke,
M., editors, Proceedings of the 5th International Conference on Web Engineering,
ICWE 2005, Sydney, Australia, July 27-29, 2005, volume 3579 of Lecture Notes in
Computer Science, pages 478-488. Springer. [cited at p. 35, 252]

Rollinson, S. R. and Roberts, S. A. (1998). Formalizing the informational content of
database user interfaces. In FR’98: Proc. of the 17th International Conference on
Conceptual Modeling, pages 65-77. Springer-Verlag. [cited at p. 28, 35, 81, 252]

Sanders, E. B.-N. (2002). From user-centered to participatory design approaches.
In Frascara, J., editor, Design and the Social Sciences. Taylor & Francis Books
Limited. [cited at p. 57]

Schewe, K. D. and Thalheim, B. (2005). Conceptual modelling of web information
systems. Data & Knowledge Engineering, 54(2):147-188. [cited at p. 14]

Schmidt, D. C. (2006). Model-driven engineering. IEEE Computer, 39(2):25-31. [cited
at p. 256]

Schneider, K. (1996). Prototypes as assets, not toys: why and how to extract knowl-
edge from prototypes. In ICSE ’96: Proceedings of the 18th international conference
on Software engineering, pages 522-531, Washington, DC, USA. IEEE Computer
Society. [cited at p. 27]

http://www.robbinsgioia.com/news%5Fevents/012802%5Ferp.aspx
http://www.robbinsgioia.com/news%5Fevents/012802%5Ferp.aspx

References 289

Schuler, D. and Namioka, A., editors (1993). Participatory Design: Principles and
Practices. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA. [cited at p. 11,
197]

Sharp, H., Finkelstein, A., and Galal, G. (1999). Stakeholder identification in the
requirements engineering process. In DEXA ’99: Proceedings of the 10th Interna-
tional Workshop on Database & FExpert Systems Applications, page 387, Washing-
ton, DC, USA. IEEE Computer Society. [cited at p. 8]

Shoval, P. and Shiran, S. (1997). Entity-relationship and object-oriented data
modeling-an experimental comparison of design quality. Data & Knowledge Engi-
neering, 21(3):297-315. [cited at p. 15]

Singer, J., Sim, S. E., and Lethbridge, T. C. (2008). Software engineering data
collection for field studies. In Shull, F., Singer, J., and Sjgberg, D. 1., editors,
Guide to Advanced Empirical Software Engineering, pages 9-34. Springer. [cited at
p. 192]

Sommerville, I. and Kotonya, G. (1998). Requirements Engineering: Processes and
Techniques. John Wiley & Sons, Inc., New York, NY, USA. [cited at p. 9]

Souchon, N. and Vanderdonckt, J. (2003). A review of xml-compliant user interface
description languages. In Jorge, J. A., Nunes, N. J., and e Cunha, J. F.; edi-
tors, DSV-IS, volume 2844 of Lecture Notes in Computer Science, pages 377—391.
Springer. [cited at p. 56]

Spaccapietra, S., Parent, C., and Dupont, Y. (1992). Model independent assertions
for integration of heterogeneous schemas. The VLDB Journal, 1(1):81-126. [cited
at p. 50]

Spell, B. (2009). Java API for WordNet Searching (JAWS).
. [cited at p. 179]

Standish Group International Inc. (1995). Chaos report.
. [cited at p. 6]

Standish Group International Inc. (1999). Chaos : A recipe for success.
. [cited at p. 7]

Standish Group International Inc. (2001). Extreme chaos.
. [cited at p. 7]

Stroulia, E., El-Ramly, M., Kong, L., Sorenson, P. G., and Matichuk, B. (1999).
Reverse engineering legacy interfaces: An interaction-driven approach. In Proceed-
ings of the 6th Working Conference on Reverse Engineering (WCRE’99), Atlanta,
USA, pages 292-302. [cited at p. 32]

http://lyle.smu.edu/~tspell/jaws
http://lyle.smu.edu/~tspell/jaws
http://www.standishgroup.com/chaos
http://www.standishgroup.com/chaos
http://www.standishgroup.com/chaos
http://www.standishgroup.com/chaos
http://www.standishgroup.com/chaos
http://www.standishgroup.com/chaos

290 References

Termier, A., Rousset, M.-C., and Sebag, M. (2002). Treefinder: a first step to-
wards xml data mining. In Second IEEFE International Conference on Data Mining
(ICDM’02), pages 450-457. [cited at p. 43]

Terwilliger, J. F., Delcambre, L. M. L., and Logan, J. (2006). The user interface is the
conceptual model. In Proceedings of 25th International Conference on Conceptual
Modeling (ER’06), volume 4215 of LNCS, pages 424-436. Springer. [cited at p. 27,
35, 173, 252

Trigg, R. H., Bpdker, S., and Grgnbak, K. (1991). Open-ended interaction in coop-
erative prototyping a video-based analysis. Scandinavian Journal of Information
Systems, 3:63-86. [cited at p. 58]

UsiXML Consortium (2007). Usixml v1.8 reference manual.
[cited at p. 68]

Vilz, J., Brogneaux, A.-F., Ramdoyal, R., Englebert, V., and Hainaut, J.-L. (2006).
Data conceptualisation for web-based data-centred application design. In Proceed-
ings of the Advanced Information Systems Engineering, 18th International Confer-
ence, CAiSE 2006, Luxembourg, LNCS, pages 205-219. [cited at p. 43, 59, 63]

Vosburgh, J., Curtis, B., Wolverton, R., Albert, B., Malec, H., Hoben, S., and Liu,
Y. (1984). Productivity factors and programming environments. In ICSE, pages
143-152. [cited at p. 11]

Vries, H. D., Verheul, H., and Willemse, H. (2003). Stakeholder identification in it
standardisation processes. In MIS Quarterly Special Issue Workshop on Standard
Making: A Critical Research Frontier for Information Systems, pages 92—-107. [cited
at p. 8]

Wabhler, M. (2008). Using Patterns to Develop Consistent Design Constraints. PhD
thesis, ETH Zurich, Switzerland. [cited at p. 195]

Walenz, B. and Didion, J. (2008). The Java WordNet Library (JWNL).
. [cited at p. 179]

Wille, R. (2005). Formal concept analysis as mathematical theory of concepts and
concept hierarchies. In Formal Concept Analysis, Foundations and Applications,
volume 3626 of Lecture Notes in Computer Science, pages 1-33. Springer. [cited at
p. 43]

Wilson, W. M., Rosenberg, L. H., and Hyatt, L. E. (1997). Automated analysis
of requirement specifications. In ICSE ’97: Proceedings of the 19th international
conference on Software engineering, pages 161-171, New York, NY, USA. ACM.
[cited at p. 12]

http://www.usixml.org
http://jwordnet.sourceforge.net
http://jwordnet.sourceforge.net

References 291

Winkler, W. E. (1990). String comparator metrics and enhanced decision rules in
the fellegi-sunter model of record linkage. In Proceedings of the Section on Survey
Research Methods, American Statistical Association, pages 472—477. [cited at p. 40,
104, 179]

World Wide Web Consortium (W3C) (2010). The Extensible Markup Language
(XML). . [cited at p. 55, 180]

Wyss, C. M., Giannella, C., and Robertson, E. L. (2001). Fastfds: A heuristic-driven,
depth-first algorithm for mining functional dependencies from relation instances.
In Proceedings of Data Warehousing and Knowledge Discovery, Third International
Conference, DaWaK 2001, Munich, Germany, pages 101-110. [cited at p. 48]

Yang, F., Gupta, N., Botev, C., Churchill, E. F., Levchenko, G., and Shanmugasun-
daram, J. (2008). Wysiwyg development of data driven web applications. Proceed-
ings of the VLDB Endowment, 1(1):163-175. [cited at p. 36, 252]

Yao, H. and Hamilton, H. J. (2008). Mining functional dependencies from data. Data
Mining and Knowledge Discovery, 16(2):197-219. [cited at p. 48]

Zaki, M. J. (2005). Efficiently mining frequent embedded unordered trees. Funda-
menta Informatica, 66(1-2):33-52. [cited at p. 43]

http://www.w3.org/XML

Part VI

Appendices

Among the appendices, Chapters A and B respectively provide explana-
tions for the conventions used in the algorithms and the schemas presented in
this dissertation, while Chapter C supplies information to obtain additional
materials related to this doctoral research.

293

Appendix A

Algorithmic conventions

In this chapter, we present the conventions used to express the algorithms
of this dissertation. These high level algorithms rely on basic conditional
(if/then/else) and iterative (for all/do and while/do) structures, assign-
ments (x < y), user input (Ask) and calls to existing or predefined methods or
algorithms, as illustrated by Algorithm

Algorithm A.1 MyAlgorithm : A sample algorithm to illustrate the conven-

tions

Require: the necessary preconditions

Ensure: the resulting postconditions

1: procedure MYALGORITHM(p1, P2, P3, -..)
: Ty

Ask> define: x
Ask> choose/redefine: x
ANOTHERALGORITHM(p] , ph, P, -..)

else if condition2 then

3
4
5
6: if conditionl then
7
8
9

10: else

11:

12: end if

13: for all x verifying a condition do
14:

15: end for

16: while condition do

17:

18: end while

19:

20: end procedure

295

Appendix B

Schemas representation
conventions

In this chapter, we present the conventions used to graphically represent the
schemas of this dissertation. Recall, as exposed in Section , that in the
scope of this research, we work with a sub-model of the GER model which is
restricted to “flat” entity types (i.e. entity types having only atomic attributes),
binary relationship types (i.e. relationship types having exactly two roles) and
IS-A hierarchies. This sub-model encompasses part of concepts illustrated in
the following figures.

297

298

Appendix B. Schemas representation conventions

Figure B.1 illustrates basic GER concepts, which include:

0-1
1-1

schemas;

entity type

S;

attributes, atomic or compound, optional or mandatory;

binary relationship types;

roles;

cyclic relationship types;

primary and secondary identifiers, either attribute-based or hybrid.

ET-3

Attribute1

Attribute2 <€
Attribute3[0-1]
Attribute4[0-1]

id: Attribute1 <
id": Attribute4 <

—

ET-2
Attribute1
Attribute2
Attribute3
id: r1.ET-3

Attribute1
Attribute2

0-N

&

-N
11

id: Attribute1
O-N%O-N Attribute2
A .

b 7

0-1 o-

ET-1

Attribute1
Attribute2
Attribute3

0-N

>
Attribute1

id: r5.ET-2

entity type

mandatory attribute
optional attribute
primary identifier
secondary identifiant
role (unnamed)
relationship type (1:N)
relationship type (1:1)

relationship type (N:N)

"0°|’\1‘ <— role (named)

rol2 \
0-N
cyclic relationship type

attribute-based identifier

Attribute2 » / cardinality (constraint)

r6.ET-1 |=
Attribute1

- identifiants hybrides

Figure B.1: Basic GER concepts.

299

Figure B.2 illustrates IS-A relations, which involve entity types with unique
or multiple supertypes, as well as disjunction, totality and partition constraints.

/ IS-A relation

ET-2

disjonction constraint
4— totality constraint

partition constraint

entity type with
multiple supertypes

entity type with

‘ ET-7 :
unique supertypes

‘ET-GI(—

Figure B.2: IS-A relations.

Figure B.3 illustrates advanced GER constructs, among which:
e stereotypes;

e compound and/or multivalued attributes;

e user defined domains (UDD);

e multivalued identifiers for entity types;

e attribute identifiers;

e procedural units.

300

App

endix B. Schemas representation conventions

stereotype

attribute cardinality

«UDD » «virtual » <€ |
Domains ET-1
Dom1 Attr1
Dom2 Atr2[0-5] < |
Dom3 Attr21
Attr31 Attr22 «— |
Attr32 Attr221: Dom3
Attr222
Attr3[0-N] <=
id: Attr1
id": Attr3[*] <
id(Attr2): <«— |
Attr21
punit1
punit2

compound attribute

user-defined domain (UDD)

multivalued attribute

multivalued identifier

| attribute identifier

procedural unit

<
<

Figure B.3: Stereotypes, attributes, domains and procedural units.

Figure B.4 illustrates different types of constraints, among which we can
notably mention existence constraints (coexistence, at least one, at most one,

exactly one).

ET-0

ET-1

0-N

Attr1

Attr2[0-1]
Attr3[0-1]
Attr4[0-1]
Attr5[0-1]
Attr6[0-1]

01—

D
0 <Attr2 <10 |« additional constraint

coex: r1.ET-0
Attr2
excl: Attr2

coexistence constraint

Attr3
at-Ist-1: Attr3

at-most-one constraint

Attrd
exact-1: Attr4

at-least-one constraint

Attr5

Figure B.4:

exactly-one constraint

Different types of constraints

Appendix C

Additional materials

The electronic version of this doctoral dissertation, as well as additional mate-
rials, such as the original forms drawn during the experimentation (in French),
the source code and documentation of the RAINBOW Toolkit and its screen-
cast tutorials, can be found on the web site of the Laboratory of Database Ap-
plications Engineering () or on the author’s
dedicated website ().

301

http://info.fundp.ac.be/libd
http://www.ramdoyal.be/rainbow

