
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Reverse engineering: user-drawn form-based interfaces for interactive database
conceptual analysis: the rainbow approach

Ramdoyal, Ravi

Award date:
2010

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/15a8d982-168c-4079-bff7-a37588dcf40b

Reverse Engineering
User-Drawn Form-Based Interfaces

for Interactive Database Conceptual Analysis

Ravi R.C. Ramdoyal

Doctor of Philosophy Dissertation

Namur, 2010

Laboratory of Database Applications Engineering
Faculty of Computer Science • PReCISE Research Centre • University of Namur

c©Ravi Ramdoyal

c©Presses Universitaires de Namur

Rempart de la Vierge, 13

B - 5000 Namur (Belgique)

L’acronyme et le logo RAINBOW, ainsi que le design de la couverture sont

également c©Ravi Ramdoyal.

Toute reproduction d’un extrait quelconque de ce livre, hors des limites re-

strictives prévues par la loi, par quelque procédé que ce soit, et notamment par

photocopie ou scanner, est strictement interdite pour tous pays.

Imprimé en Belgique

ISBN : 978-2-87037-696-6

Dépôt légal: D/2010/1881/42

Doctoral Committee

Prof. Jean-Marie Jacquet (President)

Faculty of Computer Science

University of Namur (Belgium)

Prof. Jean-Luc Hainaut (Promotor)

Faculty of Computer Science

University of Namur (Belgium)

Prof. Patrick Heymans (Internal Reviewer)

Faculty of Computer Science

University of Namur (Belgium)

Prof. Monique Noirhomme-Fraiture (Internal Reviewer)

Faculty of Computer Science

University of Namur (Belgium)

Prof. Jean Vanderdonckt (External Reviewer)

Faculty of Economical, Social and Political Sciences

University of Louvain-la-Neuve (Belgium)

Prof. Óscar Pastor López (External Reviewer)

Centro de Investigación en Métodos de Producción de Software (ProS)

Universidad Politécnica de Valencia (Spain)

The public PhD defence was held on the 15th of December 2010 at the Uni-

versity of Namur.

i

Abstract

The first step of most database design methodologies consists in eliciting part of

the user requirements from various sources such as user interviews and corpo-

rate documents. These requirements are formalised into a conceptual schema

of the application domain, that has proved difficult to validate, especially since

the graphical representations of data models have shown understandability lim-

itations from the end-users standpoint. On the other hand, electronic forms

seem to be more natural and intuitive to express data requirements for lay-

men. Besides, the necessity to associate end-users of a future system with its

specification and development steps has long been advocated.

In this doctoral research, we consequently explore the possible reverse engi-

neering of user-drawn form-based interfaces to perform an interactive database

conceptual analysis, and subsequently present the tool-supported RAINBOW

approach resulting from this investigation. This user-oriented approach relies

on the adaptation and integration of principles and techniques coming from var-

ious fields of study, ranging from Database Forward and Reverse Engineering

to Prototyping and Participatory Design.

Keywords: Software Engineering, Requirements Engineering, Data Modelling,

Database Forward Engineering, Database Reverse Engineering, Human-Com-

puter Interfaces, Prototyping, Participatory Design.

iii

Résumé

La première étape de la plupart des méthodologies de développement de bases

de données se concentre notamment sur l’élicitation des besoins des utilisateurs,

à partir de sources diverses telles que des interviews et de la documentation

existante. Ces besoins sont formalisés par le biais d’un schéma conceptuel

représentant le domaine d’application. En pratique, la validation de tels sché-

mas s’avère difficile, étant donné que la compréhension de leur formalisme,

même à l’aide de représentations graphiques, est loin d’être triviale. Paral-

lèlement, il apparait que les formulaires électroniques semblent plus naturels

et intuitifs pour permettre l’expression de tels besoins par des non experts.

Par ailleurs, l’implication des utilisateurs finaux dans la spécification et le

développement d’un futur système fait désormais partie des bonnes pratiques

de l’Ingénierie Logicielle.

Dans cette recherche doctorale, nous explorons dès lors la possible rétro-

ingénierie d’interfaces de type formulaire dessinées par des utilisateurs finaux,

afin de permettre une analyse conceptuelle interactive. Le résultat de cette in-

vestigation est l’établissement de l’approche RAINBOW et de son support logi-

ciel. Cette approche orientée utilisateur se base sur l’adaptation et l’intégration

de principes et de techniques provenant de diverses disciplines, notamment

l’Ingénierie et la Rétro-ingénierie des Bases de Données, le Prototypage et le

Design Collaboratif.

Mots-clef : Ingénierie Logicielle, Ingénierie des Besoins, Modélisation des Don-

nées, Ingénierie des Bases de Données, Rétro-ingénierie des Bases de Données,

Interfaces Homme-Machine, Prototypage, Design Collaboratif.

v

Acknowledgements

Let us be grateful to people who make us happy; they are

the charming gardeners who make our souls blossom.

Marcel Proust

When this adventure started a few years ago, little did I expect that leading

a doctoral research would be such a unique blend of sweet and sour paradoxes,

with its faire share of upsides and downsides. As it has already been said

elsewhere, on the one hand, being a PhD student is a lonely, laborious and

worrisome experience. But on the other hand, it offers so many positive boons

and rewards that I would rather only remember the latter. Indeed, during

this timespan, I notably got the chance to inquire about many different and

exciting topics and technologies, while meeting so many educated, interesting

and caring people, always ready to provide their help and cheer you up.

Among these persons, I would first of all like to express my gratitude and

appreciation to my supervisor, Prof. Jean-Luc Hainaut, who notably gave

me the opportunity to embrace the challenge of pursuing a PhD. Thank you

for teaching me to become more autonomous and proactive in my research

through your confidence and the latitude you granted me during these years.

Thank you for your time, your precious advices and your insight on my work.

Not forgetting the chance of being chosen as teaching assistant. Teaching and

supervising students at the Faculty of Computer Science was indeed a fulfilling

and enjoyable experience as well.

Next, I would like to thank the members of my jury, Prof. Monique

Noirhomme-Fraiture, Prof. Patrick Heymans, Prof. Jean-Marie Jacquet, Prof.

Jean Vanderdonckt and Prof. Óscar Pastor López for accepting to participate

in the evaluation of my work. It was an honour and a pleasure to discuss my

vii

research with you, especially given your encouragements and valuable feedback.

I am hopefully looking forward to keep in touch and eventually collaborate with

you on future research projects.

Regarding the preliminary case studies that were led for the validation of

this research, I would like to warmly thank my anonymous participants, as

well as Patrick for his acute suggestions and recommendations. Thank you so

much for your time, your enthusiasm and your constructive input. Beyond the

great importance of your collaboration regarding my research, it was pleasure

to simply be able to get together. Besides, I also want to thank the other

people who indirectly contributed and influenced this research, either as part

of the ReQuest project or as part of the DB-Main team.

I am also very grateful to Giz, Anthony and Benjamin, my fellow doctor

predecessors, for showing me the right direction. Their perseverance and ded-

icated hard work were a true inspiration in times where I was in the darkness

and uncertainty of my doctoral journey. Thank you also for your understanding

solicitude and your cheering during my work.

Likewise, I want to thank Alain and Benoit for being the daily and support-

ive witnesses of my doctoral progress. Thank you for the humorous, relaxing

and necessary time-outs that we occasionally shared with Flora and Abdelka-

der, and which often gave me the necessary boost to resolutely go back to work.

As you are yourself nearing the end of your doctoral path, you can count on

me to root for you and wish you only the very best!

I would then like to thank my past and present colleagues of the Laboratory

of Database Application Engineering, Anne-France, Rokia, Sophea, Virginie,

Anthony, Eric, Jean-Roch, Jonathan, Julien, Vincent and Yannis. Thank you

for your concern, your support, and all these good times that undoubtedly

made us more than simple co-workers.

I would also like to thank our top-notch secretaries, Anne-Marie, Babette,

Gyselle and Isabelle for making the organisation and practical progress of my

work so much easier. Thank you also for your kindness and consideration,

beyond the mere doctoral preoccupations.

More generally, I would like to thank all the other friends, colleagues and

unsuspected strangers who rooted for me during my doctoral tenure. There

are too many of them to mention them all, but I am truly grateful for all the

consideration and support that I received. Thank you.

Last but not least, I wish to thank the members of my family for their

unconditional love and support. In particular, my parents gave and taught me

so much that I am eternally grateful to them. Dear Mataji and Pitaji, thank

you for everything. I am also grateful to my family-in-law, for their warmth,

kindness and impulse. Thank you Bernadette, Pierre, Caroline, Corentin, Jean-

Baptiste, Véronique and Elisabeth for your upbeat presence. And finally, I

would like to thank my wife, Emy for her endless love, understanding and

encouragements. Thank you for all these precious moments together, and for

giving me the strength to carry on through enduring times. Thank you for

being there no matter what, especially during this last year which has been

incredibly rich in changes and challenges. At the end of the day, when I look

at our beautiful little Louise, I guess that we made it through pretty well, and

that there are many more blessings to come. Cheers!

This dissertation is dedicated in loving memory

of Nani, my grand-mother, for always

pushing me to work hard

and stay the course.

Contents

Contents xiii

List of Tables xx

List of Figures xxi

List of Algorithms xxv

Listings xxvii

1 Introduction 1

I PROBLEM STATEMENT 3

2 Research context 5

2.1 Requirements Engineering . 6

2.1.1 Lessons learned from the Software Crises 6

2.1.2 An overview of Requirements Engineering 7

2.1.3 Main challenges of Requirements Engineering 11

2.1.4 End-users as major actors of Requirements Engineering? 13

2.2 Data Modelling . 13

2.2.1 Database Engineering 14

2.2.2 Database Reverse Engineering 16

2.2.3 The Generic Entity-Relationship model 17

2.2.4 The transformational approach 22

2.2.5 Making conceptual analysis accessible to end-users? . 26

2.3 Prototyping . 26

2.3.1 A bridge between two worlds 26

xiii

xiv Contents

2.3.2 Prototyping as the expression of formal requirements . 28

2.3.3 Prototyping as a two-way communication channel? . . 30

3 State of the art and Research questions 31

3.1 Reverse Engineering of Legacy Form-Based Artefacts 31

3.2 Reverse Engineering of Form-Based Prototypes 33

3.2.1 Existing approaches 33

3.2.2 Core principles . 36

3.2.3 Limitations . 37

3.3 Research perspectives . 38

3.4 Encompassing Database forward engineering main activites . 39

3.4.1 Clarifying terminological and structural ambiguities . 39

3.4.2 Eliciting implicit constraints and dependencies 44

3.4.3 Handling schema integration 49

3.4.4 Generating applicative components 50

3.5 Using Database reverse engineering to extract data models from

form-based interfaces . 51

3.5.1 Static information based on layout and content 51

3.5.2 Dynamic information 53

3.6 Prototyping to express and validate requirements 53

3.6.1 Expressing requirements through form-based interfaces 53

3.6.2 Validating requirements through form-based interfaces 56

3.7 Managing User-Involvement 57

3.7.1 Participatory Design Perspectives 57

3.7.2 Tailoring existing techniques 58

II THE RAINBOW APPROACH 59

4 Proposal 61

4.1 Claim . 61

4.2 Context of use . 62

4.3 Founding principles . 63

4.4 Overview of the approach . 64

5 REPRESENT: Expressing concepts through form-based in-

terfaces 67

5.1 Concerns . 67

5.2 RAINBOW’s Simplified Form Model 68

5.3 Managing the process . 77

5.3.1 Preparation guidelines for the analyst 77

Contents xv

5.3.2 Execution guidelines and recommendations 78

5.3.3 Assisting the end-users through the tool support . . . 79

5.4 Output . 79

5.5 A running example . 80

6 ADAPT: Extracting data models from form-based interfaces 81

6.1 Intuitive mapping between the RSFM and the GER model . 81

6.2 Raw transformation . 82

6.3 Refined transformation . 86

6.4 Managing the process and output 87

7 INVESTIGATE: Analysing semantic and structural redun-

dancies 91

7.1 Terminological ambiguities . 92

7.1.1 Formalising the notions of similaritiy 92

7.1.2 Discovering terminological ambiguities 96

7.1.3 Submitting terminological ambiguities to end-users for

arbitration . 97

7.1.4 Processing the terminological decisions of the end-users 102

7.1.5 Choosing appropriate String Metrics 104

7.1.6 Choosing appropriate Ontologies 108

7.1.7 Reducing terminological redundancies 108

7.2 Structural ambiguities . 108

7.2.1 Formalising the notion of structural similarity 109

7.2.2 Discovering structural ambiguities 117

7.2.3 Submitting structural ambiguities to the end-users for

arbitration . 118

7.2.4 Processing the structural decisions of the end-users . . 122

7.2.5 Reducing structural redundancies 123

7.3 Output . 123

8 NURTURE: Eliciting dependencies and constraints 127

8.1 Delimiting constraints and dependencies 127

8.2 Formalising data samples and tuples 129

8.3 Formalising constraints and dependencies 130

8.3.1 Technical constraints 130

8.3.2 Existence constraints 132

8.3.3 Functional dependencies 132

8.3.4 Unique constraints . 133

8.4 Managing the process . 133

xvi Contents

8.4.1 Overview . 133

8.4.2 Initialisation . 134

8.4.3 Analysing new data samples to suggest constraints and

dependencies . 139

8.4.4 Acquiring constraints and dependencies 149

8.4.5 Editing the set of valid tuples and the sets of enforced

constraints and dependencies 152

8.4.6 Processing the end-users decisions 152

8.5 Output . 156

9 BIND: Completing the integration of the conceptual schema 159

9.1 Delimiting elements to integrate 159

9.2 Managing the process . 160

9.2.1 Arbitrating upward inheritance for IS-A relationships 160

9.2.2 Arbitrating referential components 164

9.2.3 Dispatching attributes from entity types to relationship

types . 164

9.2.4 Solving constraints and dependencies for integrated com-

ponents . 164

9.2.5 Manual modifications 167

9.2.6 Updating the forms 167

9.3 Output . 167

10 OBJECTIFY and WANDER: Generating and testing a playable

prototype 171

10.1 Objectify . 171

10.2 Wander . 174

11 A proof-of-concept tool support 175

11.1 Design principles . 175

11.1.1 Available processes . 176

11.1.2 Implementation structure 176

11.2 Drawing and specifying form-based interfaces 177

11.2.1 Drawing environment 177

11.2.2 Suggesting terms on-the-fly 178

11.2.3 Storing and adapting the interfaces 180

11.3 Arbitrating terminological and structural similarities 181

11.3.1 Terminological similarities 181

11.3.2 Structural similarities 182

11.4 Providing data samples and constraints 183

Contents xvii

11.5 Finalising the project . 186

III VALIDATION 189

12 Validation protocol 191

12.1 Research questions . 191

12.2 Types of data collection techniques 192

12.3 Goals and context of the experimentation 193

12.3.1 Assessing the effectiveness of the RAINBOW approach 193

12.3.2 Assessing the quality of the RAINBOW output 194

12.3.3 Context of the experimentation 196

12.4 Building our dedicated validation approach 197

12.4.1 Overview . 197

12.4.2 Participants . 198

12.4.3 Preparing the experimentation 200

12.4.4 Applying the RAINBOW approach to each project . . 200

12.4.5 Debating the quality of the produced schemas 202

13 The experimentation 203

13.1 First case study: A student application form 203

13.1.1 Preparation . 203

13.1.2 Session 1: Drawing the forms 204

13.1.3 Session 2: Analysing the terminology and structure of

the forms . 206

13.1.4 Session 3: Providing examples and constraints 211

13.1.5 Session 4: Finalising the project 214

13.1.6 Discussing the schemas 215

13.2 Second case study: An academic event management system . 217

13.2.1 Preparation . 217

13.2.2 Session 1: Drawing the forms 217

13.2.3 Session 2: Analysing the terminology and structure of

the forms . 220

13.2.4 Session 3: Providing examples and constraints 226

13.2.5 Session 4: Finalising the project 232

13.2.6 Discussing the schemas 237

14 Discussing the results 241

14.1 Assessing the effectiveness of the RAINBOW approach 241

14.1.1 Expressing concepts through form-based interfaces . . 241

14.1.2 Finding and arbitrating terminological ambiguities . . 243

xviii Contents

14.1.3 Finding and arbitrating structural ambiguities 243

14.1.4 Eliciting constraints and dependencies 243

14.1.5 Transparently handling integration 243

14.1.6 Handling user-involvement 244

14.1.7 Analysing the efficiency criteria 245

14.1.8 Assessing the validation protocol 246

14.2 Assessing the quality of the RAINBOW output 246

14.2.1 Analysing the quality criteria 246

14.2.2 Assessing the validation protocol 247

14.3 Threats to validity . 248

IV DISCUSSION AND CONCLUSION 249

15 Specificities of the RAINBOW approach 251

15.1 Integrating different disciplines to overcome existing limitations

in related researches . 251

15.2 End-users as major stakeholders of the data requirements process 253

15.3 Using Reverse Engineering for the purpose of Forward Engineer-

ing . 254

15.4 A modular and non standard view integration process 256

15.5 A transformational and evolutive approach 256

15.6 An interoperable model-driven approach 256

15.7 A rich and relevant part of a SRS 257

16 Possible improvements and future works 259

16.1 Extending the approach . 259

16.1.1 Implementing the Objectify and Wander steps 259

16.1.2 Incorporating dynamic aspects 260

16.1.3 Improving reusability through the drawing support . . 260

16.1.4 Refining the terminological and structural analysis . . 260

16.1.5 Expanding the elicitation of constraints and dependencies 261

16.2 Improving the current tool support 261

16.2.1 General observations 261

16.2.2 Drawing . 261

16.2.3 Investigate . 262

16.2.4 Nurture . 263

16.2.5 Bind . 263

16.2.6 Objectify and Wander 263

16.3 Pursuing the experimentation based on an improved canvas . 264

Contents xix

16.3.1 Preparing the experimentation 264

16.3.2 Applying the RAINBOW approach 265

16.3.3 Reviewing the experiment and comparing the approach

to existing approaches 268

17 Conclusion 271

V BIBLIOGRAPHY 277

VI APPENDICES 293

A Algorithmic conventions 295

B Schemas representation conventions 297

C Additional materials 301

List of Tables

3.1 Levenshtein’s and Jaro-Winkler’s distance applied to example strings. 40

7.1 Jaro-Winkler’s inverted similarity index (djwi) applied to example

strings and their reversed version. 107

13.1 Labelling ambiguities for session 2 of the first case study. 209

13.2 Structural ambiguities for session 2 of the first case study. 209

13.3 Labelling ambiguities for session 2 of the second case study. . . . 226

13.4 Structural ambiguities for session 2 of the second case study. . . 230

15.1 Comparison of existing approaches in prototypical reverse engineer-

ing for forward engineering . 252

xx

List of Figures

2.1 The Database Engineering process 15

2.2 An ER schema and its formal expression 16

2.3 The database reverse engineering process 17

2.4 Sample GER conceptual schema. 19

2.5 Sample GER logical schema 21

2.6 Sample fragment of a GER physical schema. 23

2.7 Schema transformation defined as a couple of structural and

instance mappings. 24

2.8 Structural mapping of a schema transformation. 24

2.9 An electronic form and its information contents. 29

2.10 Two (almost) semantics-preserving transformations 29

3.1 Illustration of the core principles for reverse engineering form-

based interfaces . 37

3.2 The overlay of different disciplines 38

3.3 A simple schema with structural redundancies 42

3.4 Typical cases of structural redundancies. 42

3.5 The representation of a Customer using the GER and relational

model. 46

3.6 A form-based interface with unlabelled elements and unsystem-

atic choice and placement of widgets. 52

4.1 Using reverse engineering in a forward engineering perspective. 62

4.2 Overview of the ReQuest approach. 64

4.3 Overview of the RAINBOW approach. 65

5.1 A simple form gathering information on a person. 69

xxi

xxii List of Figures

5.2 A form widget. 70

5.3 A fieldset widget. 71

5.4 A table widget. 73

5.5 A simple form gathering information on a person. 73

5.6 A mandatory input widget. 73

5.7 Different representations of the selection widget. 75

5.8 An button widget. 76

5.9 The tree-like structure of the Person form shown in Fig. 5.1. 77

5.10 Running example: possible user-drawn form-based interfaces

for the management of a small company that offers services

and sales products. 80

6.1 Illustration of the intuitive mapping rules for a simple form. 82

6.2 Translation of the interfaces into raw entity types. 87

6.3 Translation of the raw entity types into independent schemas. 89

7.1 Highlighting different types of terminological ambiguities in the

running example . 93

7.2 Illustration of the set of the semantically similar elements as-

sociated with {“Code”, “Zip code”} for the running example. 100

7.3 Illustration of the set of the semantically similar elements as-

sociated with{“Product”, “Products”} for the running example. 102

7.4 The updated forms of the example after the validation of the

semantic redundancies. 104

7.5 The updated schemas of the example after the validation of the

semantic redundancies. 106

7.6 Structural similarity among the fieldsets Address, the fieldset

Location and the form Provider. 109

7.7 The forms Product, Special good and Service, who all share

at least the widgets Code and Description in our running ex-

ample. 110

7.8 Structural similarity among the forms Customer and Order. 111

7.9 The structural redundancies within the schemas corresponding

to the forms illustrated in Fig. 7.6, Fig. 7.7 and Fig. 7.8. . . 112

7.10 Typical cases of structural similarity. 112

7.11 A few example schemas illustrating different patterns. 114

7.12 A stalemate situation where two entity types are equivalent,

but respectively specialises and is specialised by a third one 122

7.13 The updated forms of the running example after validation of

structural redundancies. 125

List of Figures xxiii

7.14 The pre-integrated schema of the example after validation of

structural redundancies . 126

8.1 Data samples for the forms Product and Special good. . . 141

8.2 Data samples for the form Shop. 144

8.3 Data samples for the form Service. 146

8.4 A problematic data sample for the form Shop. 148

8.5 The pre-integrated schema of the example after the nurturing

step. 157

9.1 The schema of the running example after the binding phase. 169

10.1 A possible physical schema for the running example. 173

11.1 The RAINBOW toolkit’s drawing environment. 178

11.2 Editing a widget. 179

11.3 Arbitrating terminological similarities. 183

11.4 Arbitrating structural similarities. 184

11.5 Adding data samples. 185

11.6 Arbitrating technical constraints. 185

11.7 Arbitrating existence constraints. 186

11.8 Arbitrating functional dependencies. 186

11.9 Arbitrating unique constraints. 186

11.10 Binding concepts. 187

13.1 The form drawn by end-user EU1 and analyst DB1 during the

first session, and its corresponding raw schema. 207

13.2 The refined schema corresponding to the raw schema of Fig.

13.1. 208

13.3 The modified form as suggested by the analyst, and its corre-

sponding raw schema. 210

13.4 The refined schema corresponding to the modified form sug-

gested by the analyst (Fig. 13.3). 211

13.5 The form at the end of the second session. 212

13.6 The underlying schema of the form at the end of the second

session. 213

13.7 The underlying schema of the form at the end of the third

session. 215

13.8 The schema corresponding to the domain of the first case study,

as conceived by DB1 without seeing the final output schema. 216

xxiv List of Figures

13.9 The forms drawn by end-user EU2 and analyst DB1 during the

first session, and the corresponding raw schema. 218

13.10 The raw schema corresponding to the forms drawn by end-user

EU2 and analyst DB1 during the first session (Fig. 13.9). . . 220

13.11 The refined schema corresponding to the raw schema of Fig.

13.10. 221

13.12 The modifications suggested by analyst DB1 to EU2 at the

beginning of the second session to replace the original forms

(Fig. 13.9). 223

13.13 The reviewed raw schema corresponding to the reviewed forms

of Fig. 13.12. 224

13.14 The reviewed refined schema corresponding to the reviewed raw

schema of Fig. 13.13. 225

13.15 The forms at the end of the second session. 227

13.16 The underlying schema of the forms after analysing their ter-

minology during the second session. 228

13.17 The underlying schema of the forms after analysing their struc-

ture during the second session. 229

13.18 The forms at the end of the third session. 233

13.19 The underlying schema of the form at the end of the third

session. 234

13.20 The underlying schema of the form at the end of the fourth

session. 236

13.21 The schema corresponding to the domain of the second case

study, as conceived by DB1 without seeing the final output

schema. 238

13.22 An alternative schema corresponding to the domain of the sec-

ond case study, as conceived by DB1 without seeing the final

output schema. 239

13.23 The refined schema at the end of the fourth session. 240

15.1 Standard database Reverse engineering methodology vs. RAIN-

BOW’s Reverse engineering methodology 255

B.1 Basic GER concepts . 298

B.2 IS-A relations. 299

B.3 Stereotypes, attributes, domains and procedural units. . . . 300

B.4 Constraints. 300

List of Algorithms

6.1 Adapt . 83

6.2 AdaptChildInto (1/3) . 84

6.3 AdaptChildInto (2/3) . 85

6.4 AdaptChildInto (3/3) . 86

6.5 Unfold . 88

7.1 BuildThesaurus . 97

7.2 AddEntryToThesaurus . 98

7.3 BuildSemanticallySimilarSubsets 99

7.4 GetSemanticallySimilarDataElements 100

7.5 TransformReferentialElement 103

7.6 ValidateSemanticSimilarities 105

7.7 BuildPatternsSet . 118

7.8 ValidateStructuralSimilarities (1/2) 124

7.9 ValidateStructuralSimilarities (2/2) 125

8.1 InitTechnicalConstraints (1/2) 136

8.2 InitTechnicalConstraints (2/2) 137

8.3 InitExistenceConstraints . 137

8.4 InitFunctionalDependencies 138

8.5 InitUniqueConstraints . 139

8.6 AddDataSample . 140

8.7 UpdateTechnicalConstraints 142

8.8 UpdateExistenceConstraints 143

8.9 UpdateFunctionalDependencies 145

8.10 GenerateAlternatives . 145

8.11 GenerateAlternativeBranch 146

8.12 UpdateUniqueConstraints . 147

8.13 GenerateProblematicTuple 148

xxv

xxvi List of Figures

8.14 EnforceOrDiscardCandidateConstraint 149

8.15 EnforceOrDiscardValidConstraint 150

8.16 RemoveTuple . 153

8.17 ProcessTechnicalConstraints 154

8.18 ProcessExistenceConstraints 155

8.19 ProcessFunctionalDependencies 155

8.20 ProcessUniqueConstraints 156

9.1 MoveInheritedComponents 161

9.2 MoveInheritedComponentsRecursive (1/2) 162

9.3 MoveInheritedComponentsRecursive (2/2) 163

9.4 MoveReferentialComponents 165

9.5 MoveAttributesToRelationship 166

9.6 SolveConstraints . 168

A.1 MyAlgorithm . 295

Listings

10.1 Excerpt of the DDL code generated from the schema of Fig. 10.1 172

11.1 The DTD specification for the RSFM 180

11.2 The XML code associated with the Customer form of Fig. 5.10 182

xxvii

Chapter 1

Introduction

In the realm of Software Engineering, there is a dark and inhospitable land,

at the crossroads of Requirements Engineering, Database Engineering and

Human-Computer Interfaces. In that mysterious place, people explore and ex-

periment ways to combine these disciplines in order to provide better methods

and means to lay the foundations of an efficient and reliable software develop-

ment cycle. This is the place where our journey begins.

Requirements Engineering is a key step of Software engineering, since it de-

fines the necessary specifications for further analysis, design and development.

Within this process, Database Engineering focuses on data modelling, where

the static data requirements are typically expressed by means of a conceptual

schema, which is an abstract view of the static objects of the application do-

main. Since long, conceptual schemas have proved to be difficult to validate by

laymen, while traditional database requirements elicitation techniques, such as

the analysis of corporate documents and interviews of stakeholders, usually do

not actively and interactively involve end-users in the overall specification and

development of the database.

Still, the necessity to associate end-users of the future system with its spec-

ification and development steps has long been advocated. In particular, the

process of eliciting static data requirements should make end-users feel more

involved and give them intuitive and expressive means to convey their require-

ments to the analysts. Conversely, analysts should also be able to capture and

validate these requirements by discussing them with the end-users. Yet, most

users are fortuitously quite able to deal with complex data structures that are

expressed through more natural and intuitive layouts such as electronic forms.

1

2 Chapter 1. Introduction

In order to facilitate this communication, we therefore investigate the pos-

sible reverse engineering of user-drawn form-based interfaces to perform an in-

teractive database conceptual analysis, and propose an approach to elicit and

validate static database requirements based on end-users involvement through

interactive prototyping and the adaptation of techniques coming from various

fields of study. Our dissertation will hence be organised as follows.

Part I presents the context of our research, and more precisely the aspects

of Requirements Engineering, Database Engineering and Prototyping that led

us to inquire about a new approach to elicit and validate database require-

ments. The challenges implied by the perspective of integrating these differ-

ent disciplines and techniques into an integrated user-oriented approach are

then exposed. Part II subsequently presents the tool-supported RAINBOW

approach for reverse engineering user-drawn form-based interfaces in order to

perform an interactive database conceptual analysis. Part III then presents

the experimentation that was led to validate this approach. Part IV conse-

quently discusses the specificities and merits of the approach, as well as limits

and possible improvements that could be considered, before concluding this

dissertation.

Part I

Problem Statement

In this part of the dissertation, we address the general background of this

doctoral investigation. For this purpose, Chapter 2 focuses on its research

context, and highlights different aspects of Requirements Engineering, Data

Modelling and Prototyping that that led us to inquire about a new approach

to elicit and validate database requirements, based on the reverse engineering

of user-drawn form-based artefacts. Chapter 3 then presents the state of the art

for this field of research, as well as the resulting research perspectives, before

introducing a series of essential research questions that need to be addressed

in order to formulate a comprehensive proposal.

3

Chapter 2

Research context

In this part of the dissertation, we present the elements that led us to inquire

about a new approach to elicit and validate database requirements.

First of all, Section 2.1 recalls that forty years ago, the Software Crisis

already paved the way for more formal engineering approaches in Software De-

sign. While the overall process gained in reliability, another crisis still occurred

in the nineties, putting in light the need for a requirements analysis phase,

which should be led with collaboration of all the stakeholders.

The critical aspects and challenges of this fundamental phase, which should

lay the foundations of the remainder of any Software Engineering process, are

then presented. While trying to get a better insight of the client needs, it

appears that Requirements Engineering still calls for new approaches to in-

volve more intimately future end-users in the definition and validation of the

requirements.

Within this context, Section 2.2 introduces the particular case of require-

ments elicitation in Database Engineering. We will see that various techniques

exist to acquire data requirements, but usually, they precisely do not actively

and interactively involve end-users. We then introduce Database Reverse En-

gineering, as well as the Generic Entity-Relationship model and the principles

of the transformational approach.

Section 2.3 then presents the Requirements Engineering technique called

Prototyping, which can be used in order to bridge the gap between the various

stakeholders of a software engineering project.

5

6 Chapter 2. Research context

2.1 Requirements Engineering

In this section, we briefly recall the main crises that hit the realm of software

development these last decades, and how they respectively led to the advent

of Software Engineering and Requirements Engineering (RE). We then present

the core activities and main challenges of Requirements Engineering, as well as

the areas where improvements can still be made.

2.1.1 Lessons learned from the Software Crises

The different software crisis

If we go back in time, the difficulties of developing large software systems ap-

peared during the sixties and seventies. This is when the term of software crisis

emerged [Osmundson et al., 2003]. This crisis occurred because the techniques

used to build small software systems did not scale up. This resulted in various

failures, cost overruns and long lead-times. By the time the information sys-

tems projects were completed, it was not surprising to record that the initial

organisational requirements had already changed.

Software Engineering was originally a response to this crisis, relying on the

types of theoretical foundations and practical disciplines, which are traditional

in the established branches of engineering [Naur et al., 1976]. The main objec-

tives were to get control of the software development process and to improve

software performance and software reliability. This led to new approaches of

software engineering management and new techniques of software development.

However, using formal methods was not enough to prevent the crisis from

re-emerging during the nineties, mainly because the demands placed on the

software engineering community, such as productivity, flexibility, robustness

and quality, have increased dramatically [Mehandjiev et al., 2002], while our

dependency on large software systems has also been rising [PITAC, 1999].

Risk factors

As a matter of fact, only a few software projects are completed on-time and on-

budget, while the majority of them are completed and operational. However,

the latter often do not come free of defect: they carry budget and/or time

overrun, missing and/or reduced functionalities [Standish, 1995]. The Standish

Group surveyed IT executive managers for their opinion about which factor

could lead to successful, challenged or cancelled projects. The major success

criteria were user involvement, as well as executive management support and

clear statement of requirements. The major struggle criteria were the lack

2.1.2. An overview of Requirements Engineering 7

of user input, the incomplete requirements and specifications as well as the

modification of requirements and specifications. Finally, the major cancellation

criteria were incomplete requirements, the lack of user involvement and the lack

of resources. In the other cases, due to the frequent changes, the budget may

be largely exceeded.

As a result, the Standish Group identified the three biggest contributors

to project success as user involvement, clear business objectives and executive

support [Standish, 1999]. Since then, their importance have somehow evolved,

but they still are key factors for project achievement [Standish, 2001]. Actually,

McConnell classifies them as part of 12 best influences on software engineering

[McConnell, 2000].

It seems therefore obvious that the step in software development should

consist in acquiring reliable requirements and specifications. Since the following

analysis and design phases cannot be led rigorously if the output of this initial

phase is not complete and coherent, it appears that the requirements phase is

fundamental, and should be led with collaboration of the stakeholders.

2.1.2 An overview of Requirements Engineering

Definition

Among the various definitions of Requirements Engineering, let us put forward

the one formulated by [Nuseibeh and Easterbrook, 2000]:

“Broadly speaking, software systems Requirements Engineering

(RE) is the process of discovering [the purpose for which a software

system is intended], by identifying stakeholders and their needs, and

documenting these in a form that is amenable to analysis, commu-

nication, and subsequent implementation”.

Intuitively, this collaborative effort is a multi-disciplinary human-centred

process that involves different activities producing various outputs while im-

plying a number of challenges. Though there is little uniformity in the ter-

minology and ordering of the classes of activities that make up Requirements

Engineering, there seems to be at least an agreement on the following core tasks

[Davis and Zowghi, 2006]: elicitation, analysis and documentation modelling,

validating specifications, managing the evolution of requirements.

8 Chapter 2. Research context

Eliciting requirements

This complex activity is the starting point of any requirements engineering pro-

cess, as it should lead to understanding the context of the software engineering

project, as well as the expectations that need to be answered.

Within this context, the first step consists in identifying the environment

and especially the stakeholders, which may potentially be anyone whose job or

influence will be altered within the organisation, as well as anyone involved in

the process of sharing information and participating in the elaboration and set

up of the final solution [Dix et al., 1998]. Among possible stakeholders [Sharp

et al., 1999], we can therefore notably identify:

• The buyers, which are the individuals that are responsible for contracting

and/or paying for the software system. In the end, they are the ones who

decide whether to go for the proposed solution or not;

• The managers, which are members of the hierarchy whose decisional

power can be altered through the process of the software system project.

As pivotal elements of the organisation, they can influence the outcome

of the whole process;

• The domain and application experts, who provide domain knowledge and

supply a more detailed understanding of the problem, of the business

rules and conventions, as well as peculiar “modi operandi”;

• The end-users, which are the individuals who should ultimately install,

operate, and use the software. There can be different classes of users,

according to the type of tasks they are meant to perform through the

software, and their acceptance and handling of the software is crucial to

determine its success;

• The requirements engineers, which are the individuals who are responsi-

ble for the identification, formalisation and documentation of the require-

ments. In order to accomplish that, they must mediate between all the

other stakeholders;

• The software engineers and developers, which are the individuals who

provide expertise on software design techniques and technologies;

• The testers, who test the system to perform some predefined set of tasks

and compare the execution to expected results. They may (but must not

necessarily) be end-users.

In addition to these human beings, factors such as physical, organisational

and legislation environments may also be taken in account [Vries et al., 2003].

Once the context is defined, the next step consists is determining the problem

and drawing its boundaries consequently. This implies delimiting the objectives

2.1.2. An overview of Requirements Engineering 9

of the project and the vision of the stakeholders in order to determine what

subset of the requirements should actually be addressed given the constraining

budgets and schedules. While bearing these aspects in mind, it is also necessary

to clearly identify the goals and the tasks. Delineating these elements calls for

various and combinable elicitation techniques [Goguen and Linde, 1993; Som-

merville and Kotonya, 1998; Nuseibeh and Easterbrook, 2000], among which

the most usual are:

• traditional techniques, such as existing corporate documents analysis,

questionnaires, interviews;

• group elicitation techniques, such as brainstorming and focus groups;

• early development techniques, such as Prototyping and Rapid and/or

Joint Application Development (RAD/JAD);

• observation techniques, typically contextual approaches such as stake-

holder observation or cognitive techniques such as protocol analysis.

If thoroughly led, this task should produce a fair amount of information

that subsequently needs to be processed.

Analysing and modelling requirements into specifications

Indeed, the extracted information must be analysed in detail by the require-

ments engineers to get a better overview of the project, understand its ins and

outs while identifying priority levels (e.g. mandatory and “measurable” needs

versus optional and “vague” wishes) and satisfiable demands. The primary

output of this cogitation is a Software Requirement Specification (SRS), which

should typically address:

• Enterprise Modelling, which presents the organisation’s structure, busi-

ness rules, tasks and goals;

• Data Modelling, which defines the application domain (possibly reusing

existing domain-specific models) and presents the information that needs

to be manipulated by the system in terms of structured data;

• Behaviour Modelling, which defines the dynamic and functional behaviour

of the users and the system;

• Non-Functional Requirements, which deal with the constraints imposed

to the system and its expected qualities, notably regarding its execution

and evolution.

Besides, the specification produced are vital to begin the design and im-

plementation phases, which implies that the complete Software Requirements

10 Chapter 2. Research context

Specification should possess the following characteristics in order to produce

high quality software [IEEE, 1998]:

• Correct : Every requirement stated in the SRS is one that the software

shall meet;

• Unambiguous: Every requirements stated in the SRS has one and only

one logical interpretation;

• Complete: The SRS includes all significant requirements, all realisable

classes of input data as well as the labels and references to all figures,

tables and diagrams. No requirements or necessary information should

be missing;

• Consistent : No subset of individual requirements stated in the SRS con-

flict with other individual requirements. Disagreements among require-

ments must be resolved before development can proceed;

• Verifiable: For every requirement stated in the SRS, there exists some

finite cost-effective process with which a person or machine can check

that the software meets the requirements;

• Modifiable: The entire SRS has a style and structure such that any

changes to the requirements can be made easily, completely, and con-

sistently which retaining the structure and style;

• Traceable: For every requirement stated in the SRS, the origin is clearly

stated and it is possible to reference each requirement in future develop-

ments;

• Concise: Unnecessary literature and redundancies should be avoided;

• Testable: Pass/fail or quantitative assessment criteria can be derived from

the specification itself and/or referenced information.

To meet such expectations, the Requirements Engineering can take advan-

tage of a wide variety of modelling approaches and languages, among which

the Unified Modelling Language (UML) [OMG, 2007] has become a standard,

thanks to its rich set of views on software systems: use cases, class diagrams,

sequence diagrams, state charts, activity diagrams, etc.

Sharing and validating requirements

The Software Requirement Specification should also be packaged and docu-

mented in a way allowing the communication between any stakeholders, in

order to allow validation and agreement. However, all the stakeholders do not

necessarily understand easily formal specifications, and in parallel, computer

analysts and developers may struggle to grasp the client’s problem and the

2.1.3. Main challenges of Requirements Engineering 11

application area. Therefore, this document should aim at bridging communi-

cation gaps in order to typically ease:

• validation: the stakeholders can evaluate if their own needs are expressed

accurately, and even perhaps reconsider them;

• correction: in particular, omissions, inconsistencies and misunderstand-

ings can be quickly and easily identified;

• forecast : a realistic estimation can be established for the performing cost,

schedule, and necessary resources relative to the developmental effort;

• evaluation criteria: it can provide a baseline for verification and valida-

tion of the software;

• future reference: it can provide rigorous specifications and documentation

for the design and implementation phase;

• contractibility : and ultimately a safe and sound contractual agreement

can be established between the different parties.

Managing changes to requirements

Finally, since the elaboration of the Software Requirement Specification is

clearly iterative, the requirements should be traceable over time, and easy

to edit and monitor. This could for instance include modifying and adding

new requirements to clarify and better comply with the stakeholders needs, or

scrubbing requirements to meet the budget and planning.

2.1.3 Main challenges of Requirements Engineering

The overall process of Requirements Engineering must overcome several chal-

lenges, among which end-user involvement, information extraction and require-

ments validation.

Involving end-users

As already hinted, the necessity to actively involve end-users of a future IT

system during its specification and development steps has long been advocated,

most notably by the proponents of User-Centred Design, which is also known as

participatory design [Schuler and Namioka, 1993] or contextual design [Beyer

and Holtzblatt, 1998]. Indeed, involving end-users in the expression of their

needs and in the definition of an adapted and viable solution helps to avoid

resentment and resistance towards a new information system infrastructure, as

well as to stimulate productivity [Vosburgh et al., 1984].

12 Chapter 2. Research context

The comprehensive survey led by the management consulting services provider

Robbins-Gioia in 2001 precisely pointed out that project failure is not only

defined by objective criteria, but also by the perception of the respondents

[Robbins-Gioia, 2002]. The subjectivity of the respondent appears as a result

of whether the person took an active role in the project or not.

Besides, as a matter of fact, end-users know “how business is done” in the

environment for which software is being developed. They know the qualities

and the flaws of the information systems currently used, and therefore have the

ability to state what could be done to improve it [Fischer, 2002; Illich, 1973].

Extracting information

The main challenges when extracting requirements from stakeholders are all

about who should be involved, what can be considered relevant information

and how can it be extracted.

Indeed, each class of stakeholders provides different classes of requirements,

although the latter often overlap. The knowledge and vital information can be

distributed among various sources, which can have contradictory visions and

interpretations. Therefore, selecting representatives for each class of stakehold-

ers is very important.

Once the panel of intervenors is selected, articulation problems may appear

since the stakeholders providing information are usually experts in their appli-

cation domain but not in the process of engineering software. Therefore, this

may lead to:

• confusion: they may not know what they want or misunderstand the

issues;

• improper expectations: they may know what they want but it is inappro-

priate or unrealistic; or they may even not be aware of their real needs;

• difficult articulation: they may be aware of their needs but unable to

express them in a coherent form; they may unintentionally hold back

critical information because it has become part of their tacit knowledge;

• unclear articulation: they may express their needs with ease, but still

face shortcomings of the natural language, such as ambiguity, inaccuracy

or inconsistency [Wilson et al., 1997]; nevertheless, a general statement of

objectives is not sufficient to start a relevant requirements analysis phase

[Pressman, 2000];

• inappropriate prioritisation: they may struggle to identify precedences,

and even be unwilling to prioritise and make trade-offs.

2.1.4. End-users as major actors of Requirements Engineering? 13

Beyond these issues lays the possible alteration of the information, typically

because of biases. The latter can occur because of the previously mentioned

resentment and resistance factors, which can lead to “lies” and/or “omissions”.

Moreover, the fact of being “studied” may also lead to a change of behaviour

from the selected intervenors, which is known as the Hawthorne effect [Mayo,

1933].

The intrinsic nature of requirements is itself an important factor to manage.

Indeed, during the Requirements Engineering process, the requirements are led

to change and migrate as the users learn and grow. And since the extracted

requirements are diverse and conflicting, they might be difficult to integrate

and evaluate.

Validating requirements

As we have seen, the specification must be formal enough for the analysts and

developers, but also understandable enough to be validated by the other stake-

holders. Parallel articulation problems may appear, since the software engi-

neers are experts in development and not in the users application domain. This

problem is increased by the users and developers having different vocabulary,

terms, and concepts. Bridging the communication gap between all parties is

one of the most difficult problems of requirement engineering, but is absolutely

indispensable in practice [Andriole, 1994].

2.1.4 How could end-users become major actors of Requirements

Engineering?

It appears quite clearly that the requirements analysis phase is necessary to

define the stakes of a software engineering project within an organisation. The

main challenges lie in finding ways to involve actively the stakeholders (espe-

cially the end-users) and to help them express as clearly as possible their true

and priority needs, while bridging the communication gaps to manage valida-

tion and agreement among all parties. Achieving this enables to produce a

sound Software Requirements Specification that will be crucial for the subse-

quent conception and implementation phases.

2.2 Data Modelling

In this section, we investigate the particular case of Data Modelling, which

plays a pivotal role in the realm of Requirements Engineering. Indeed, accu-

rately eliciting and validating data user requirements is vital to build a reliable

14 Chapter 2. Research context

documentation of the application domain, and therefore a reliable informa-

tion system. Database Engineering precisely focuses on data modelling, where

these requirements are typically expressed by means of a conceptual schema (or

model), that is, an abstract view of the application domain. We therefore in-

troduce basic notions of Database Engineering, as well as its specific challenges

regarding requirements elicitation and validation.

2.2.1 Database Engineering

Defining the application domain of a software engineering project and struc-

turing the information that needs to be manipulated by the system are the

first steps of Database Engineering. This process of designing and implement-

ing a database that has to meet specific user requirements has been described

extensively in the literature [Batini et al., 1992] and has been available for sev-

eral decades in CASE tools. It consists of four main subprocesses depicted in

Fig. 2.1:

(a) Conceptual design which aims at expressing user requirements into a con-

ceptual schema, that is, a technology-independent abstract specification

of the future database. Such a schema is also known as a PIM (Platform-

Independent Model) in the UML (Object Management Group) commu-

nity;

(b) Logical design, which produces an operational logical schema (Platform-

Specific Model or PSM) that translates the constructs of the conceptual

schema according to a specific technology family without loss of seman-

tics (e.g. Relational, XML, Object-Oriented). The transformational ap-

proach to Database Engineering [Hainaut, 2006] allows this process to be

automated;

(c) Physical design, which augments the logical schema with performance-

oriented constructs and parameters, such as indexes, buffer management

strategies or lock management policies;

(d) Coding, which translates the physical schema (and some other artefacts)

into the DDL (Data Definition Language) of the database management

system.

The transformational approach [Hainaut, 2006] allows database engineers to

automate the production of logical and physical schemas from their conceptual

counterpart. Afterwards, from these schemas, well-mastered (semi) automated

techniques, that have long been studied in the database research community

and applied in industry, allow to produce the artefacts of the final application:

interfaces, programs, database code, etc. [Schewe and Thalheim, 2005].

2.2.1. Database Engineering 15

Figure 2.1: The Database Engineering process

The process leading to the production of the conceptual schema representing

the requirements is therefore the most complex step of Database Engineering.

We will hence focus on this process, that is Conceptual design, and more, we are

interested in elaborating an approach allowing to reduce the potential gap be-

tween actual user requirements and their translation in the conceptual schema.

Various techniques exist to elicit data requirements [Batini et al., 1992], such

as the analysis of corporate documents and interviews of stakeholders. How-

ever, they usually do not actively and interactively involve end-users. Still, as

we have seen in Section 2.1.3, the necessity to actively involve end-users of a

future IT system during its specification and development steps has proven to

be necessary.

Before going any further, let us mention that, in the Database community,

the term model denotes what the UML community commonly calls a meta-

model (e.g. the relational model). A database schema is hence an instance of a

definite database model, that is, a UML model, represented by a class diagram.

Among database models, the Entity-Relationship (ER) model has long been

considered one of best mediums to express conceptual requirements [Shoval

and Shiran, 1997]. Its simplicity, its graphical representation, the availability

of numerous CASE tools that include an ER schema editor (should) make it

the ideal communication medium between designers and users.

However, this statement has proved over-optimistic in many situations. It

appears that the ER formalism, despite its merits, often fails to meet its ob-

jectives as an intuitive and reliable communication medium in which end-users

are involved. The reason is easy to grasp: a conceptual schema is just a graph-

ical presentation of a large and complex set of 1st and 2nd order predicates.

Fig. 2.2 shows a small conceptual schema and its formal expression according

to the GER formalism [Hainaut, 2006]. The intrinsic complexity of the require-

ments has been concealed by the apparent intuitiveness of the ER graphical

16 Chapter 2. Research context

notation but it has not disappeared*. An in-depth comprehension of an ER

schema implies the understanding of such non trivial concepts as sets, non-1st

normal form relations, algebraic operators (projection, join, etc.), candidate

keys and functional dependencies.

Figure 2.2: An ER schema and its formal expression

2.2.2 Database Reverse Engineering

Reverse engineering a piece of software consists, among other things, in recov-

ering or reconstructing its functional specifications, starting mainly from the

source code of the programs [Chikofsky and Cross, 1990; Hall, 1992; Hainaut,

2002]. When applied to databases, reverse engineering typically aims at re-

covering the database requirements (i.e. the conceptual schema) from multiple

system artefacts that are usually obtained through schema transformation:

• documentation (when available);

• DDL code of the database;

• data instances;

• screens, reports and forms;

• source code of application programs.

Database reverse engineering traditionally consists of four main processes,

which are illustrated in Fig. 2.3:

(a) Data structure extraction, which aims at extracting the raw physical

schema of the database, including explicit and implicit constructs. A

construct (structures or properties) is called explicit when it has been

declared in the DDL code, while implicit constructs are implemented

*For instance, the example schema conveys the following statements: DEPARTMENT and
EMPLOYEE are entity types; CLERK and WORKER are subtypes of EMPLOYEE, for which they form
a partition; A DEPARTMENT can be described by Location and DeptNumber, the latter being
an identifier for that entity type; An EMPLOYEE is in a DEPARTMENT; and so on.

2.2.3. The Generic Entity-Relationship model 17

through artefacts external to the database, such as code sections in ap-

plication programs;

(b) Refinement enriches the raw physical schema with additional constructs

and constraints elicited through the analysis of the application programs

and other sources;

(c) Cleaning removes the physical constructs (such as indexes) for producing

the logical schema;

(d) Data structure conceptualisation, in which a plausible conceptual schema

is derived from the logical schema.

Figure 2.3: The database reverse engineering process

Database Reverse Engineering mainly focus on legacy systems, but is ex-

tensible to other problems. One can therefore already sense the opportunity of

applying its principles on artefacts that are well-defined and under our control.

Among those artefacts, the most meaningful for end-users is undoubtedly the

user interface.

2.2.3 The Generic Entity-Relationship model

For the purpose of our research, let us introduce the Generic Entity-Relationship

(GER) model [Hainaut, 1989], which is an extended Entity-Relationship model

including, among others, the concepts of schema, entity type, domain, attribute,

relationship type, key, as well as various constraints. The GER model encom-

passes the three main levels of abstractions for database schemas, namely con-

ceptual, logical and physical, and serves as a generic pivot model between the

major database paradigms including ER, relational, object-oriented, object-

relational, files structures, network, hierarchical and XML. Let us now present

and illustrate this model according to its different levels of abstraction.

18 Chapter 2. Research context

Conceptual schemas

First of all, a conceptual schema mainly specifies entity types, relationship types

and attributes. Entity types represent the main concepts of the application

domain, which can be organised into IS-A hierarchies defining supertypes and

subtypes. Such hierarchies can be total and/or disjoint. Total (T) means that

a supertype must be specialised in at least one subtype. Disjoint (D) means

that a supertype can be specialised in at most one subtype. A partition (noted

P) corresponds to an IS-A hierarchy that is both total and disjoint.

Relationship types represent relationships between entity types. A rela-

tionship type has two or more roles. A role has a cardinality constraint [i-j],

that specifies in how many relationships an entity can appear with this role.

A relationship type with exactly two roles is called binary, while a relationship

type with more than two roles is generally called n-ary.

Entity types and relationship types can have attributes, which can be either

atomic (a.k.a. simple) or compound. A compound attribute is an attribute that

is made of at least one sub-level attribute (simple or compound).

Attributes are also characterised by a cardinality constraint [i-j] specifying

how many values can be associated with a parent instance. The minimum

cardinality i states how many attribute values must be associated, while the

maximum cardinality j corresponds to maximum number of values that can be

associated, knowing that 0 ≤ i ≤ j.
A mandatory (respectively optional) attribute is an attribute for which the

minimum cardinality is equal 1 (respectively 0). A single-valued (respectively

multivalued) attribute is an attribute for which the maximum cardinality is 1

(respectively >1). By default, the cardinality constraint of an attribute is [1-1].

Entity types and relationship types may also be given possibly complex

constraints, which are expressed through the concept of group. A group is

a logical set of elements (attributes, roles and/or other groups) attached to

a parent object (entity type, relationship type or compound attribute). The

most common types of constraints that can be defined on a group include:

• primary identifier (id) : the elements of the group form the main identi-

fier of the parent object. A parent object can have at most one primary

identifier. All components of an id group must be mandatory;

• secondary identifier (id’) : the elements of the group make up a sec-

ondary identifier of the parent object. A parent object can have several

secondary identifiers;

• coexistence (coex): either all elements of the group have a value or none

for any instance of the parent object;

2.2.3. The Generic Entity-Relationship model 19

• exclusive (excl): among the elements of the group, at most one can have

a value for any instance of the parent object;

• at-least-one (at-lst-1): Among the elements of the group, at least one

must have a value for any instance of the parent object;

• exactly-one (exact-1) Among the elements of the group, one and only one

can have a value for any instance of the parent object. This corresponds

to the combination of the exclusive and at-least-one constraints.

Figure 2.4 depicts an example of GER conceptual schema. We can observe

that this schema includes entity types PERSON, CUSTOMER, SUPPLIER, ORDER and

PRODUCT. The entity type PERSON has two disjoint subtypes, namely CUSTOMER

and SUPPLIER.

Figure 2.4: Sample GER conceptual schema.

The relationship type from is binary while detail is ternary. Besides,

there cannot exist more than one detail relationship with the same ORDER and

PRODUCT entities. Each ORDER entity appears in exactly one from relationship

(cardinality [1-1]), and in at least one detail relationship (cardinality [1-N]).

For the entity type PERSON, the attribute Name is atomic, single-valued and

mandatory. Among the components of the compound attribute Address, the

Num is atomic, single-valued and optional (cardinality [0-1]). Phone is multival-

ued and optional, with 0 to 5 values per entity.

20 Chapter 2. Research context

Finally, PID is the identifier of PERSON, while the identifier of ORDER is made

of external entity type from.CUSTOMER and of local attribute ONum.

In the scope of this thesis, we will mainly focus on this level of abstraction.

Logical schemas

The second level of abstraction concerns logical schemas, which are platform-

dependent data structure definitions, that must comply with a given data

model. The most commonly used families of models include the relational

model, the network model (CODASYL DBTG), the hierarchical model (IMS),

the standard file model (COBOL, C, RPG, BASIC), the shallow model (TO-

TAL, IMAGE), the object-oriented model and the object-relational model

(SQL3), as well as models expressed though XML schemas.

A logical schema basically uses the same schema constructs as the ones

presented in Section 2.2.3 for conceptual schemas, but depending on the logical

model the same schema constructs are called differently. For instance, a GER

entity type (respectively attribute) is called a table (respectively column) in

the relational terminology, and record type (respectively field) in a CODASYL

schema.

Each logical model has its own set of allowed schema constructs. For in-

stance, a relational schema may not comprise relationship types, compound

attributes, multivalued attributes and IS-A hierarchies. Such illegal constructs

must be expressed by equivalent constructs of the target logical model, when

such alternatives are available. It can happen that some fragments of a con-

ceptual schema cannot be fully translated into the logical schema.

In addition to the ones described above, new schema constructs may also

appear at the logical level, including:

• Referential constraint (ref) : An inter-group constraint between an ori-

gin group (ref group) and a target group, stating that each instance of

the origin group must correspond to an instance of the target group.

The target group must represent an identifier (id or id’). A referential

constraint is called a foreign key in the relational model.

• Inclusion constraint (incl) : An inter-group constraint where each in-

stance of the origin group must be an instance of the target group. Here,

the target group does not need to be an identifier (generalisation of the

referential constraint).

• Equality constraint (equ) : A referential constraint between an origin

group r and a target group i, combined with an inclusion constraint

defined from the i to r.

2.2.3. The Generic Entity-Relationship model 21

• Typed multivalued attribute: In a conceptual schema, multivalued at-

tributes represent sets of values, i.e. unstructured collections of distinct

values. At the logical level, we can distinguish six possible implementa-

tions of such attributes:

– Set : unstructured collection of distinct elements (default);

– Bag : unstructured collection of (not necessarily distinct) elements;

– Unique list : sequenced collection of distinct elements;

– List : sequenced collection of (not necessarily distinct) elements;

– Unique array : indexed sequence of cells that can each contain an

element. The elements are distinct;

– Array : indexed sequence of cells that can each contain an element.

An example fragment of logical schema is given in Figure 2.5. This relational

schema corresponds to an approximate translation of the conceptual schema

depicted in Figure 2.2.3, based on seven tables. Table PERSON has mandatory

columns (PID, NAME, ADD_STREET and ADD_CITY) and one optional (nullable)

column, ADD_NUM. Its primary identifier is {PID}. Column {PID} of ORDER is

a foreign key to CUSTOMER (targeting its primary id). The group {PID, ONUM}
of DETAIL is a multicomponent foreign key. In addition, there is an inclusion

constraint from {PID, ONUM} of ORDER to {PID, ONUM} of DETAIL. Combining

these two constraints translates into an equality constraint (equ). {PID} of

CUSTOMER is both a primary id and a foreign key to PERSON.

Figure 2.5: Sample GER logical schema, approximate relational translation of the
conceptual schema of Figure 2.4.

22 Chapter 2. Research context

Physical schemas

Finally, a physical schema is a logical schema enriched with all the information

needed to implement efficiently the database on top of a given data management

system. This includes DMS-dependent technical specifications such as indexes,

physical device and site assignment, page size, file size, buffer management or

access right policies. Due to their large variety, it is not easy to propose a

general model covering all possible physical constructs, but we should at least

mention the two following concepts:

• record collection, which is an abstraction of file, data set, tablespace,

dbspace and any record repository in which data is permanently stored;

• access key (acc), which represents any path providing a fast and selec-

tive access to records that satisfy a definite criterion; indexes, indexed

set (DBTG), access path, hash files, inverted files, indexed sequential

organisations all are concrete instances of the concept of access key.

Figure 2.6 depicts a physical GER schema that derives from the logical

schema of Figure 2.5. This schema is made up of seven tables and three collec-

tions. Collection PERS FILE stores instances of tables PERSON, CUSTOMER, SUP-

PLIER and PHONE. The primary identifiers and some foreign keys are supported

by an access key (groups denoted by acc). Access keys are also associated with

two regular columns (PERSON.NAME and PRODUCT.NAME).

2.2.4 The transformational approach

Any process that consists in deriving artefacts from other artefacts relies on

such techniques as renaming, translating, restructuring, replacing, refining and

abstracting, which basically are transformations. Most Database Engineering

processes can be therefore formalised as chains of elementary schema and data

transformations that preserve some of their aspects, such as its information

contents [Hainaut, 2006].

Schema transformation

Roughly speaking, an elementary schema transformation consists in deriving a

target schema S′ from a source schema S by replacing construct C (possibly

empty) in S with a new construct C ′ (possibly empty). C (respectively C ′)

is empty when the transformation consists in adding (respectively removing) a

construct. Adding an attribute to an entity type, replacing a relationship type

by an equivalent entity type or by a foreign key and replacing an attribute by

an entity type (Figure 2.8) are some examples of schema transformations.

2.2.4. The transformational approach 23

Figure 2.6: Sample fragment of a GER physical schema.

More formally, we can define a transformation as follows:

Definition 2.1. A transformation Σ is a couple of mappings 〈T, t〉 such that,

C ′ = T (C) and c′ = t(c), where c is any instance of C and c′ the corresponding

instance of C ′. y

Figure 2.7 illustrates how schema transformation can be defined as a couple

of structural and instance mappings. A structural mapping T is a rewriting rule

that specifies how to modify the schema while an instance mapping t states how

to compute the instance set of C ′ from the instances of C.

There are several ways to express a structural mapping T . For example,

T can be defined (1) as a couple of predicates defining the minimal source

precondition and the maximal target postcondition, (2) as a couple of source

and target patterns or (3) through a procedure made up of removing, adding,

and renaming operators acting on elementary schema objects. Mapping t will

be specified by an algebraic formula, a calculus expression or even through an

explicit procedure.

Any transformation Σ can be given an inverse transformation Σ′ = 〈T ′, t′〉,
such that T ′(T (C)) = C. Furthermore, a transformation Σ and its inverse

24 Chapter 2. Research context

Figure 2.7: Schema transformation defined as a couple of structural and instance
mappings.

transformation Σ′) are called semantics-preserving if they verify t′(t(c)) = c.

Figure 2.8 shows a popular way to convert an attribute into an entity type

(structural mapping T), and back (structural mapping T ′). The instance map-

ping, that is not shown, would describe how each instance of source attribute

A2 is converted into an entity type EA2 and a relationship type R. Let us notice

that the concept of semantics (or information contents) preservation is more

complex, but this definition is sufficient in this context. A more comprehensive

definition can be found in [Hainaut, 2006].

Figure 2.8: Pattern-based representation of the structural mapping of
ATTRIBUTE-to-ET transformation that replaces a multivalued attribute (A2) by
an entity type (EA2) and a relationship type (R).

Practically, the application of a transformation will be specified by its sig-

nature, that identifies the source objects and provides the names of the new

target objects. For example, the signatures of the transformations of Figure 2.8

are:

T : (EA2, R) ← ATTRIBUTE-to-ET (A, A2)

T ′ : (A2) ← ET -to-ATTRIBUTE(EA2)

Transformations such as those in Figure 2.8 include names (A, A1, R, EA2,

etc.) that actually are variable names. Substituting names of objects of an

actual schema for these abstract names provides fully or partially instantiated

transformations. For example:

(’PHONE’, ’has’) ← ATTRIBUTE-to-ET (’CUSTOMER’,’ Phone’)

2.2.4. The transformational approach 25

specifies the transformation of attribute Phone of entity type CUSTOMER. Simi-

larly,

(EA2, R) ← ATTRIBUTE-to-ET (’CUSTOMER’,A2)

specifies the family of transformations of any attribute of CUSTOMER entity type.

The concept of transformation is valid whatever the granularity of the object

it applies to. For instance, transforming a conceptual schema CS into an

equivalent physical schema PS can be modelled as a (complex) semantics-

preserving transformation CS-to-PS = 〈CS-to-PS, cs-to-ps〉 in such a way

that PS = CS-to-PS(CS). This transformation has an inverse, PS-to-CS =

〈PS-to-CS, ps-to-cs〉, so that CS = PS-to-CS(PS).

Compound schema transformation

A compound transformation Σ = Σ2 ◦ Σ1 is obtained by applying Σ2 on the

database (schema and data) that results from the application of Σ1 [Hainaut,

1996]. Most complex Database Engineering processes, particularly database de-

sign and reverse engineering, can be modelled as compound semantics-preserving

transformations. For instance, transformation CS-to-PS referred to here above

actually is a compound transformation, since it comprises logical design, that

transforms a conceptual schema into a logical schema, followed by physical de-

sign, that transforms the logical schema into a physical schema [Batini et al.,

1992]. So, the database design process can be modelled by transformation

CS-to-PS = LS-to-PS ◦ CS-to-LS, while the reverse engineering process is

modelled by PS-to-CS = LS-to-CS ◦ PS-to-LS.

Transformation history and schema mapping

The history of an engineering process is the formal trace of the transformations

that were carried out during its execution. Each transformation is entirely

specified by its signature, while the sequence of these signatures reflects the

order in which the transformations were carried out. The history of a process

provides the basis for such operations as undoing and replaying parts of the

process, which guarantees the traceability of the source and target artefacts.

In particular, it formally and completely defines the mapping between a

source schema and its target counterpart when the latter was produced by

means of a transformational process. Indeed, the chain of transformations that

originates from any definite source object precisely designates the resulting ob-

jects in the target schema, as well as the way they were produced. However, the

history approach to mapping specification has proved complex, mostly for the

26 Chapter 2. Research context

three following reasons [Hainaut et al., 1996]. First, a history includes infor-

mation that is useless for schema migration, especially when considering that

the signatures often include additional information for undoing and inverting

transformations. Second, making histories evolve consistently over time is far

from trivial. Finally, the exploratory nature of engineering processes causes

“real” histories not to be linear.

Therefore, simpler mappings are often preferred, even though they are

less powerful. For instance, [Hick and Hainaut, 2006] proposed the use of a

lightweight technique based on stamp propagation. Each source object re-

ceives a unique stamp that is propagated to all objects resulting from the

successive transformations. When comparing the source and target schemas,

the objects that have the same stamp exhibit a pattern that uniquely identifies

the transformation that was applied on the source object. This approach is

valid provided that (1) only a limited set of transformations is used and (2) the

transformation chain from each source object is short (one or two operations).

Fortunately, these conditions are almost always met in real database design.

2.2.5 How could conceptual analysis become accessible to end-

users?

In this discussion, we focus on the production of the conceptual schema repre-

senting the requirements, which is the most complex step of Database Engineer-

ing. As we have seen, various techniques exist to elicit data requirements, but

do not actively and interactively involve end-users. The GER model, which

is a powerful mean of formalising requirements (most notably thanks to the

transformational approach), suffers from its lack of expressiveness for the lay-

men. The question that therefore arises is how could we take advantage of

that model and data modelling techniques to elicit data requirements, while

bridging the gap with stakeholders that are not computer specialists?

2.3 Prototyping

2.3.1 A bridge between two worlds

Prototyping (also know as Rapid Prototyping (RP) or User Interface Rapid

Prototyping (UIRP)) is a well-known software engineering technique [Gomaa,

1983; Lantz, 1986] that was introduced to deal with the main problems in

the popularly used sequential approach to software development, especially the

fact that errors and problems in the requirements definition frequently did not

emerge until after the final product was used by the client.

2.3.1. A bridge between two worlds 27

Based on [Connell and Shafer, 1995] and [Pomberger et al., 1991], we can

therefore define a prototype as a dynamic and interactive visual working model

of user requirements, which should be easily modifiable and extensible while

not necessarily being representative of the complete system. It is rather a

communication tool for developers, customers and future end-users by provid-

ing the latter with a physical representation of key parts of the system before

implementation.

This artefact can be used for non exclusive purposes, namely requirements

validation (exploratory prototyping), design validation (experimental prototyp-

ing) or incremental software development (evolutionary prototyping). Accord-

ing to its purpose, the prototype may range from low (paper sketches for in-

stance) to high (such as functional applications) fidelity, can be more or less

detailed, and be conceived to be reused or not. Anyhow, as explained by

[Schneider, 1996], such an artefact carries a tremendously valuable knowledge

that should be documented and maintained throughout any software engineer-

ing process.

One of the major assets of prototyping lies in the fact that from the user’s

perspective, forms, and more specifically electronic forms, are more natural

and intuitive than usual text-based descriptions, paper models and conceptual

formalisms to express data requirements [Choobineh et al., 1992], while making

the semantics of the underlying data understandable [Terwilliger et al., 2006].

The comprehension of user interfaces has improved in organisations thanks

to the increasing use and training level in the field of information technologies.

As explained by Illich, by providing the users with convivial tools, we allow

them “to invest the world with their meaning, to enrich the environment with

the fruits of their vision and to use them for the accomplishment of a purpose

they have chosen” [Illich, 1973]. Indeed, convivial tools encourage users to

be active and generate themselves extensions to the artefacts given to them,

which can potentially break down the barriers between consumers and designers

[Brown and Duguid, 2000].

Moreover, as observed by [Fischer, 2002], many computer users and design-

ers today are henceforth domain professionals, competent practitioners, and

discretionary users. They should not be considered naive or incompetent users:

they worry about tasks, they are motivated to contribute and to create quality

products, they care about personal growth, and they want to have convivial

tools that make them independent of tools created by an “elite” of designers

and to which the non designer users (that is, the majority of computer users)

must subjugate.

In parallel, a form contains data structures that can be seen as the physical

implementation of a particular view of the conceptual schema of the database,

28 Chapter 2. Research context

since the transition from forms to a semantic model has been shown to be

tractable [Rollinson and Roberts, 1998]. Consequently, a prototype can be

analysed (for instance using database reverse engineering techniques) to recover

requirements such as its underlying conceptual schema [Hainaut, 2002]. In this

spirit, Ravid and Berry suggested a general method for fine-tuning any rapid

prototyping method [Ravid and Berry, 2000]. They identified the categories

of requirements information that a prototype user interface may contain. One

of these categories concerns “the application’s data model, data dictionary, and

data-processing capabilities”, which is our main concern.

In conclusion, prototyping is a joint design activity characterised as a meet-

ing between two languages, that of the developer and that of the user’s work

world.

2.3.2 Prototyping as the expression of formal requirements

Let us now demonstrate that the form-based interfaces of a prototype can

indeed express the requirements of a formal schema. Fig. 2.9 (left) shows

an electronic form of a complex data structure derived from the conceptual

schema of Fig. 2.2. Its information contents is represented at the right side as

a hierarchical record type, each field of which represents either an elementary

form field or a possibly multivalued grouping of such fields. From the theoretical

point of view, there is no formal guarantee that both schemas are equivalent,

that is, that the record type of Fig. 2.9 provides the same information as the

schema of Fig. 2.2. Though they are not exactly equivalent, we can show that

the record type captures most of the information of the conceptual schema.

For this, we will use a demonstration approach based on transformational

techniques. According to the latter, every engineering process can be modelled

as a chain of schema transformations [Hainaut, 2006]. A transformation opera-

tor is defined by a rewriting rule that substitutes a target schema construct for

a source construct. The most interesting operators are semantics-preserving, in

that the source and target constructs convey the same semantics (they have the

same meaning though presented differently). Fig. 2.10 illustrates two impor-

tant semantics-preserving operators, namely attribute to entity type mutation

and upward inheritance. The first one (T1) transforms an entity type into

an equivalent attribute (and conversely). The second transformation (T2) in-

tegrates the subtypes of an entity type as complex attributes of the latter

(and conversely). They lack some necessary pre- and post-conditions to be

fully semantics-preserving, but there are sufficient considering the scope of this

study.

2.3.2. Prototyping as the expression of formal requirements 29

Figure 2.9: An electronic form and its information contents.

Now, we can apply transformation T1 on entity type DEPARTMENT of Fig. 2.2,

which yields the compound attribute Department in Fig. 2.9. Then, we apply

transformation T2 on the subtypes CLERK and WORKER of the schema of Fig. 2.2.

They are transformed into attributes Clerk, Worker and Type of the schema

of Fig. 2.9. Since the transformations are semantics-preserving, they can be

applied in the reverse way, in such a way that the schema of Fig. 2.9 can be

transformed in that of Fig. 2.2.

Figure 2.10: T1 (top) and T2 (bottom), two (almost) semantics-preserving trans-
formations.

30 Chapter 2. Research context

As a conclusion, we can consider that the electronic form of Fig. 2.9 ex-

presses in an intuitive way the information requirements formally expressed in

Fig. 2.2. Let us now see how this principle can be put in motion.

2.3.3 How could Prototyping be used as a two-way communication

channel?

Prototyping has proven to be an efficient technique to elicit and validate re-

quirements. In particular, form-based interfaces appear to be a powerful means

of communication between all the stakeholders of an Software Engineering

project, since they can be used to express formal data requirements. More-

over, reverse engineering techniques can be applied to a form-based prototype

to derive valuable data user requirements. However, prototypes are still mainly

used as a one-way communication channel, since they are designed by analysts

rather than the end-users. From this observation, we can wonder if it could

not be possible to make prototyping accessible to any of the stakeholders, in

order to let them transparently express formal requirements on which could be

applied transformational techniques.

Chapter 3

State of the art

and Research questions

Whereas creating form-based user interfaces from existing databases is a well

mastered and common design process, several research projects have also been

focusing on applying reverse engineering techniques to form-based artefacts. In

particular, such approaches, applied to legacy form-based mediums in order to

recover existing database schemas, are presented in Section 3.1, while similar

approaches, applied to prototypical form-based mediums in order to define new

database schemas, are presented in Section 3.2.

Examining these approaches offers a certain number of perspectives, which

are presented in Section 3.3. In particular, overcoming the limitations of the

existing approaches implies managing several key problems inherent to the

different disciplines that would need to interoperate in order to perform an

interactive conceptual analysis based on the reverse engineering of prototypical

user-drawn form-based interfaces.

We notably address the main activities of Database Forward Engineering

in Section 3.4, the use of Database Reverse Engineering to extract data models

from form-based interfaces in Section 3.5, the use of Prototyping to express

and validate requirements in Section 3.6, and User-involvement in Section 3.7.

3.1 Reverse Engineering of Legacy Form-Based Artefacts

Back in 1984, Batini et al. studied paper forms as a widely used mean to

collect and communicate data in the office environment. Since forms are a very

31

32 Chapter 3. State of the art and Research questions

natural type of user requirements and an effective starting point in data base

design of office application, they developed a methodology to integrate them

into a non redundant semantic data model [Batini et al., 1984]. The method

relies on 4 manual steps. During the form analysis, each form is decomposed

into areas of related fields which are recorded in a glossary. The area design

stage then extracts an EER schema for each area of a form. Finally, the form

design and interschema integration phases deal with the integration of each

schema into a single application schema. The possible integration conflicts

must by solved using analyst expertise, which makes this approach unsuitable

for regular end-users.

Mfourga presented a framework for extracting an entity-relationship schema

from a set of form model schemas of an operational relational database [Mfourga,

1997]. The first core activity consists in acquiring the set of forms (structures

and instances) of the legacy database to define form model schemas that gath-

ers structural information and constraints among data. A static analysis is

then performed to elicit the structural components and their interrelationships

based on the logical and physical composition of the forms. Subsequently, a

dynamic analysis leads to discover constraints as well as functional and ex-

istence dependencies. The process of extracting Entity-Relationship schemas

then relies on the form model schemas as input, and goes through six steps,

namely entity derivation, relationship derivation, attribute attachment, cardi-

nality determination, conceptual normalisation and incremental binary schema

integration. The overall process requires user interaction.

In order to understand the information and process logic embodied in a

given legacy system, Stroulia et al. developed the twofold CELlest method

for reverse engineering its interfaces [Stroulia et al., 1999]. First, a map of

the system interface is built based on the traces of interaction and navigation

between end-users and the system. During this interface mapping, snapshots

of the system screens are taken and their associated keystrokes are recorded,

before being analysed and clustered to build an interface graph. Secondly,

an abstract model of the user’s task is constructed using the interface map

and task-specific traces during the task and domain modelling. The exchanged

information is classified based on two orthogonal dimensions: their type of

triggering action (tell or ask) and their scope (system constants, user variables,

task constants or problem variables). Based on this classification, a screen

transition diagram and the associated flow of information are specified for each

task. This task model is subsequently used to generate graphical interfaces

that can be used as a reference to improve the legacy interfaces associated with

the elicited tasks.

Heeseok and Cheonsoo explored the links between form-based user inter-

3.2. Reverse Engineering of Form-Based Prototypes 33

faces and the conceptual schema of the application domain from a reverse

engineering perspective, and developed a method to extract the semantic of

legacy applications from forms [Lee and Yoo, 2000]. They developed the form

driven object-oriented reverse engineering method (FORE), which uses elec-

tronic screen forms as original input source and assumes that a form process

consists of a task using a single form. The method consists of five differ-

ent phases. (1) The form usage analysis captures the form structure and the

user interaction within the legacy application, using an agent program to store

them into a form knowledge store. (2) The form object slicing slices the form

knowledge store into semantic units based on the input structure. (3) The

object structure modelling creates a structure model from of the objects and

their structural relations, which are identified from the previous semantic units.

(4) The scenario design elaborates an object process action scenario diagram,

based on target scenarios of the business processes. (5) The model integration

integrates the structure models into a single one and resolves the structural

conflicts, based on common objects and the collaboration of objects operation.

Astrova and Stantic developed an approach to migrate the Deep Web to the

Semantic Web, using reverse engineering of relational databases to ontologies

[Astrova and Stantic, 2005]. Their approach uses HTML pages as the main

input and goes through three basic steps: (1) Form Model Schema extraction,

which consists in analysing the HTML pages (analysis of the structure, analy-

sis of the data, integration of the individual schemas) to extract a form model

schema; (2) Schema transformation, where the form model schema is trans-

formed into an ontology formulated in Frame-Logic using mapping rules; (3)

Data migration, whose goal is to create ontological instances from data con-

tained in the pages using table understanding techniques, in order to form a

knowledge base whose schema is defined by the ontology.

3.2 Reverse Engineering of Form-Based Prototypes

3.2.1 Existing approaches

These principles have also been used on form-based prototypes, in order to

specify new databases schemas. Let us review the main contributions in this

area.

Choobineh et al. explored a form-based approach for database analysis and

design [Choobineh et al., 1992]. Their initial standing point was that end-users

could communicate many requirements through the forms they use, thanks to

familiarity. Moreover, the most widely used data are gathered or reported in

forms. Indeed, as they stated, a form is a structured collection of variables

34 Chapter 3. State of the art and Research questions

(form fields) that are appropriately formatted for data entry and display. A

form type defines the structure, constraints, and presentation of the form fields.

Static properties of form fields include their type (primitive or user-defined),

presentation (template), structure, origin (provided by the user or the sys-

tem, computed from form fields, transferred from another form, depending on

another field in the current form, depending on fields in other forms) and con-

straints (optionality, default values, value domain). From these observations,

they developed the Form Definition System and the Expert Database Design

System. The Form Definition System (FDS) provides an editor to create forms.

The form layout component enables to enter form fields caption and example

values. The interface component provided various interface widgets. The com-

mand component provides input/output functions and form properties. The

inference component makes inferences on the grouping of form fields, dependen-

cies among the form fields, etc., to generate positive and negative examples that

end-users could validate or reject. Finally, the form abstraction base stores all

the created forms. The FDS turned out to be most useful in providing a com-

mon vocabulary and goals among end-users and data processing professionals,

rather than in providing exhaustive requirements collection by end-users. The

Expert Database Design System incrementally produces an Entity-Relationship

Diagram (ERD) based on the successive analysis of a set of forms (typically

obtained from the form abstraction base). The process relies upon the follow-

ing phases. (1) The form selection phase automatically selects the next form

to analyse, based on fields linked from one form to another. (2) The entity

identification phase identifies the possible entities within a form, using identi-

fiers, dependencies, grouped fields, etc. (3) Once the entities are identified, the

attribute attachment phase identifies their attributes using functional depen-

dencies between fields of a single form. (4) The relation identification phase

then creates the connections between the entities using functional dependencies

between fields of different forms. (5) Afterwards, the cardinality identification

phase makes decisions on the cardinalities of entities in a relationship. (6) Fi-

nally, the consistency phase ensures the consistency and integrity of the schema

diagram throughout its incremental construction, by checking properties such

as the completeness and uniqueness of the concepts, the preservation of the ex-

isting mappings between form fields, etc. To assure completeness of the whole

database design, the authors suggested the approach to be combined into a

methodology using other sources, such as natural language descriptions.

Kösters et al. introduced a requirements analysis method called FLUID

which combines user interface and domain requirements analysis [Kösters et al.,

1996]. The first stage of the method develops an initial domain model (com-

prising classes, attributes and relationships) and a task model which describes

3.2.1. Existing approaches 35

the activities the user can accomplish with the help of the system. During a

second step, the task model serves as a basis for the completion of the domain

model as well as for the development of a user interface model. The initial

domain model is developed through standard elicitation techniques.

Rollinson and Roberts studied the problem of non-expert customisation of

database user interfaces in [Rollinson and Roberts, 1998]. To do so, they ex-

amined graphical form interfaces to identify which and how controls were used.

They then examined how they were combined to represent information, and

how they were mapped to an underlying data model. Finally, they identified

and classified the conflicts that may occur among graphical form interfaces.

They also described a hypothetical form modification system that would allow

end-users to create and modify forms. The system would use a drag-and-drop

Graphical User Interface (GUI) builder to create the form-based interfaces.

An information extraction component would analyse the information conveyed

by the interface and produce a semantic data model. A comparison compo-

nent would compare the semantic data model of each interface. And finally, a

storage component would hold copies of editable interfaces. This form modifi-

cation system would however be restricted as it would not be fill-in, and would

not allow changes implying a modification of the underlying database system.

They developed the Form Interface Schema (FIS) as a mean to represent user

interfaces, which consists of a directed graph where each node represents an in-

stance of an Abstract Interaction Object with different properties (name, label,

constraints and so on). From this Form Interface Schema, they developed a set

of graph-oriented transformations to extract an Extended Entity-Relationship

schema describing an interface’s information content, based on graph rewriting

rules as well as a classification of interschema relationships and conflicts.

More recently, Terwilliger et al. defined the formal GUAVA (GUi As View)

framework to use the user interface directly as a conceptual model, by exploit-

ing the hierarchical nature of forms-based user interfaces to provide a simple

representation of their informational content, including the relationships be-

tween forms [Terwilliger et al., 2006]. First, the complete structure of the

user interface is automatically represented in a hierarchical structure called a

GUAVA-tree (g-tree) based on the user interface controls. Then the g-trees are

translated into simple relational table structures with a natural schema against

which querying is simple. Finally, a database designer can transform the nat-

ural schema into the underlying physical database schema using a collection of

database operators.

Regarding web-based applications, Rode et al. investigated the feasibility

of end-user web engineering for webmasters without programming experience

[Rode et al., 2005]. Since most of the existing CASE/RAD tools are designed for

36 Chapter 3. State of the art and Research questions

experienced developers, they developed Click, a prototypical tool for the end-

user development of web application involving non professional programmers.

The end-users develop their application by building pages from scratch or using

predefined templates, then placing components (static layout elements, input

and output elements, ...) or directly defining the database structure. The

underlying layout code (HTML representation) and behaviour code (high-level

functions implemented on top of PHP, such as send mail, save to database, go to

page) are updated on the fly so that the application can be previewed instantly,

following a design-at-runtime paradigm. A to-do list warns the end-user of

undesirable or incoherent states (inexpressive default labels, missing links or

pages, ...). Click provides several layers of programming support ranging from

the mere customisation of existing templates to the edition of the PHP code

itself, making it accessible for different levels of designing and programming

knowledge.

Yang et al. also inquired about the WYSIWYG development of Data Driven

Web Applications [Yang et al., 2008]. They developed the AppForge system

to helps end-users to graphically specify the components of a form-based web

application (such as a Yahoo! Group application), while transparently generat-

ing the underlying application model (specification of page views, application

logic and database schema) on the fly. The users are provided with a GUI that

allows them to create applications, user roles, pages (which contains forms and

views), forms (data input), views (data view and update) and containers. Be-

hind the GUI, the back-end system consists of an Application Creation System

which maintains the application model based on the developers action , and an

Application Runtime System which puts the model in action and connects it

to a relational database. While being primarily destined to profane end-users,

AppForge proved to be challenging for less experienced user, in particular be-

cause of the multiple levels of abstraction and parametrisation that they had to

switch between while developing their application (creators, user, specific user,

...), which may suggest that regular end-users are not made to be complex

application developers.

3.2.2 Core principles

The main lessons from this review are that reverse engineering form-based

prototypes is a well-known problem, and the existing approaches all rely on

the same core principles, which can be illustrated by Fig. 3.1:

• build a set of form-based interfaces;

• extract the underlying form model;

• translate the form model into a working data model;

3.2.3. Limitations 37

• progressively build an integrated data model by looking for structural

redundancies as well as constraints and dependencies.

Figure 3.1: Illustration of the core principles for reverse engineering form-based in-
terfaces: each interface is transformed into a“raw”data model, then it is progressively
refined and integrated.

3.2.3 Limitations

However, we observe that the number of studies on the subject is limited (es-

pecially recently), and several limitations must be underlined in most of these

approaches:

• the end-users are not involved intimately in the overall process;

• it is assumed that the labels are used consistently through out the differ-

ent forms, and little care is given to possible lexical variation (paronymy,

feminine, plural, spelling mistakes, ...) and ontological ambiguity (poly-

semy, homography, synonymy);

• the output schema often lacks refinement, such as hierarchies, existence

constraints or functional dependencies;

• the use of examples (either through static statements or dynamic inter-

action) is not systematically used to elicit constraints and dependencies

(when the latter are available);

• the underlying form model of the interfaces must often be constructed

by analysing the physical composition (layout) before the informational

composition (content) of the form;

• the tools provided for the drawing of the interfaces are either not ded-

icated to this purpose (e.g. Xfig), or de facto destined to professional

designers or analysts rather than end-users;

38 Chapter 3. State of the art and Research questions

• the prototypical form-based interfaces do not use a generic language that

would enable GUI generation of an application on any target platform;

• the final version of the integrated data model is not systematically sub-

mitted to the end-users for a final validation;

• the possible evolution of the data model is not considered.

3.3 Research perspectives

Overcoming these limitations implies managing several key problems inherent

to the different disciplines that would need to interoperate in order to perform

an interactive conceptual analysis based on the reverse engineering of proto-

typical user-drawn form-based interfaces. In particular, we need to focus on

managing and unifying the terminology and structure of the intended data

model, its enrichment to include hierarchies, constraints and dependencies, as

well as the generation of applicative components. Since we also want to involve

intimately the end-users, we must also provide them with adequate means to

express requirements through prototyping, and map these requirements to their

database engineering counterparts.

Figure 3.2: The overlay of different disciplines to perform an interactive concep-
tual analysis based on the reverse engineering of prototypical user-drawn form-based
interfaces.

As suggested by Fig. 3.2, these challenges are dealt by specific disciplines,

but their concerns and subsequent processing overlay in the context of our

inquiry. Regarding Database forward engineering, we notably need to clarify

terminological and structural ambiguities, elicit constraints and dependencies,

handle schema integration and generate applicative components. For our pur-

pose, Database reverse engineering mainly addresses the extraction of data

3.4. Encompassing Database forward engineering main activites 39

models from form-based interfaces. As for Prototyping, we must allow users

to express concepts and requirements through form-based interfaces, then vali-

date them through a playable lightweight application. Finally, since we want to

emphasise user-involvement, we need to find ways to involve them and possibly

tailor and integrate existing techniques. For each of these issues, let us now

present the problem and its context, as well as existing methods to tackle it.

3.4 Encompassing Database forward engineering main activites

Among the various activities of Database forward engineering, we notably need

to clarify terminological and structural ambiguities, elicit constraints and de-

pendencies, handle schema integration and generate applicative components.

3.4.1 Clarifying terminological and structural ambiguities

One of the main challenges of realising a sound conceptual schema concerns

the standardisation of the terminology and structures used to express similar

and different concepts, so that elements representing the same notion bear the

same name and elements representing different notions bear different names.

The first step of this process consists in identifying and mapping elements that

may correspond semantically to each other, which is known as schema matching

[Rahm and Bernstein, 2001]. How can we therefore investigate a collection of

existing heterogeneous schemas to find and solve possible ambiguities among

their elements?

Terminological ambiguity

The first type of problems is the terminological ambiguity (also known as syn-

tactic heterogeneity) between elements, which can occur because elements seem

to bear similar names. Naming variabilities mostly result from the richness of

written natural language (paronymy, polysemy, homography, synonymy, gen-

der, singular and plural forms, ...) and possible spelling mistakes. Besides, a

schema can be designed by possibly multiple analysts, based on possibly multi-

ple sources of information using a non consistent vocabulary, which potentially

increases this phenomenon. In order to standardise the terminology used in

a given schema, the first step therefore consists in discovering and grouping

elements that are similar either by their spelling or their meaning, which can

precisely cause ambiguity. Note that though we here focus on the naming of

schemas elements, these observations also apply to other properties such as the

cardinalities, value types and value sizes of attributes.

40 Chapter 3. State of the art and Research questions

First of all, the orthographic similarity between two elements relies on the

spelling of these elements names, that is, the strings of characters composing

them. Identifying orthographically similar strings is a well-known problem,

usually dealt by using String Metrics [Cohen et al., 2003]. Such metrics calcu-

lates a similarity or dissimilarity score between two strings for matching and/or

comparison. Other kinds of metrics can also be used, for instance based on the

phonetic distance. For this purpose, one can mention Soundex, which is a

phonetic algorithm for indexing names by sound [Jacobs, 1982].

Among the wide variety of reliable string metrics, we can mention Leven-

shtein’s [Navarro, 2001] and Jaro-Winkler’s metrics [Winkler, 1990], which are

the most popular for dealing with word comparison. Levenshtein’s metrics is

defined as the minimum number of edits needed to transform a source string

into a target string, based on the number of necessary insertion, deletion, or

substitution of a single character. The greater the Levenshtein distance, the

more different the strings are. Jaro-Winkler’s metrics is based on the number

of matching characters and transpositions between a source string into a target

string, adjusted by the comparison of the initial characters of both strings. The

distance ranges from 0 (different) to 1 (equal). For instance, the Levenshtein’s

and Jaro-Winkler’s metrics yield the results showed in Table 3.1 when compar-

ing the strings “Name”, “First Name”, “Last Name” and “Family Name’. Note

that the metrics were used through different existing Java libraries that are

presented in Section 11.3.1 *.

String 1 String 2 Levenshtein Jaro Winkler
Name Name 0 1.0
Name First Name 6 0.0∗

Name Last Name 5 0.45
Name Family Name 7 0.56

First Name Last Name 3 0.83
First Name Family Name 5 0.80
Last Name Family Name 5 0.75

Table 3.1: Levenshtein’s and Jaro-Winkler’s distance applied to example strings.

Secondly, the ontological similarity between two elements relies on the

meaning of these elements names. An ontology is a formal specification of the

conceptualisation of a given knowledge, usually within a given domain [Gru-

ber, 1995]. It defines a vocabulary that explicitly expresses the concepts of that

domain, their classification and properties, as well as the relationships between

*Strangely enough, all these reference libraries implementing the Jaro Winkler metrics
yield the unexpected result 0.0 when comparing “Name” and “First Name”.

3.4.1. Clarifying terminological and structural ambiguities 41

them. Ontologies are used in various fields and applications of software en-

gineering, such as artificial intelligence, semantic web, biomedical informatics

and so on. Several languages have been developed to support the encoding of

ontologies. One of the most prominent ones is Web Ontology Language (OWL)

and its family of languages, which are endorsed by the World Wide Web Con-

sortium. Using such languages, a wide variety of domain-specific ontologies

has been developed, most notably for scientific (biology, medicine, computer

science, ...) and business fields.

Ontologies can therefore be useful to track down similarities of meaning

among a set of words. Consider for instance the strings “Primary provider” and

“Alternative supplier”. They are not orthographically close (Levenshtein finds

them similar at 16 and Jaro-Winkler at 0.52), but one may notice the nearness

of meaning of the words “provider” and “supplier”. Besides, the adjectives

“primary” and “alternative” suggest that a classification may exist between

these possible synonyms. Thesaurus and Dictionaries can also be useful to

track down similarities of meaning among a set of words, and may also target

specific domains, e.g. UMLS for the medical field [Hersh et al., 2000].

To clarify the terminological ambiguities between the elements of a given

schema, it is therefore possible to combine String Metrics, Ontologies, The-

saurus and Dictionaries in order to compare these elements. Elements that are

orthographically and/or ontologically similar would therefore be considered se-

mantically similar, and would need to be arbitrated with the help of domain

experts.

Structural redundancy

The second type of similarity that may occur is the structural redundancy. Typ-

ically, we can observe that attribute owners (such as entity types, relationship

types and compound attributes) can share attributes bearing the same names.

Take for instance the schema of Fig. 3.3 : the entity type Person, the entity

type Reservation and the compound attribute Manager all have attributes

named First Name and Last Name. Note that although we here focus on the

naming of schema elements, these observations also apply to other properties

such as cardinalities, value types and value sizes of attributes.

The observation of entity types sharing attribute with the same name sug-

gest that these elements may represent different degrees of similarity. Let

us consider two entity types E1 and E2 sharing two attributes A and B

(Fig. 3.4(a)), and review the most common cases of structural redundancies:

• equality : The two entity types represent the same concept, but were

assigned different names, for instance because of one of the reasons men-

42 Chapter 3. State of the art and Research questions

Figure 3.3: A simple schema with structural redundancies

tioned about terminological ambiguities (recall for instance “Provider”

and “Supplier”). Such entity types should be merged into a single con-

cept (Fig. 3.4(b));

• union: The two entity types partially represent the same concept, and

could be seen as specialising a higher concept non explicitly expressed

(Fig. 3.4(c)). For instance, within a same company, a Clerk and a Sales

Representative are specialisations of the concept of Employee;

• specialisation: One of the two elements is a specialisation of the other

(Fig. 3.4(d)). For instance, one could argue that a Sales Representa-

tive is an enhanced Shop Assistant;

• complementarity : One of the two entity types actually refers to the other

(Fig. 3.4(e)). For instance, Reservation refers to Person in Fig. 3.3;

• difference: Finally, two entity types can also fortuitously share a same set

of attributes, while being intrinsically different. For instance, a Subcon-

tractor and a Supplier may share properties such as Name and Address,

but still represent different concepts.

Figure 3.4: Typical cases of structural redundancies.

Besides, two entity types can also be considered structurally redundant if

one of them contains components that can be obtain by derivation from com-

ponents of the other one. This is often the case in form-based interfaces, when

the content of a field is automatically computed from the values of fields com-

ing from other forms. In order to standardise the terminology of the attributes

3.4.1. Clarifying terminological and structural ambiguities 43

owners of a given schema, the first step therefore consists in discovering and

grouping elements that share structural redundancies.

Given the tree-like structure of the GER model, the problem of mining

structural redundancies is actually alike the problem of tree mining [Chi et al.,

2005], and more precisely frequent embedded subtrees mining in rooted unordered

trees [Jiménez et al., 2008]. A rooted unordered tree is a particular connected,

directed and acyclic graph G = (V,E) comprising a set V of vertices (or nodes)

together with a set E of edges (or lines). Such a tree has a node (called root)

from which it is possible to reach all the other vertices (descendants) in the

tree, and does not provide any order among siblings. Each other node has one

and only one parent node. Given such a tree, a bottom-up subtree is obtained

by taking one vertex from G and all its descendants. An induced subtree is

a bottom-up subtree from which leaf nodes (i.e. nodes with no descendant)

have been repeatedly removed, while an embedded subtree is another particular

bottom-up subtree from which nodes have been removed without breaking the

ancestor relationship between the vertices of G.

In this context, entity types can be seen as root nodes, compound attributes

as intermediary nodes, simple attributes and roles as leaves, and the order of the

attributes is precisely irrelevant, as we explored in [Vilz et al., 2006]. Several

well known tree mining algorithms have been developed to tackle this issue,

such as Zaki’s SLEUTH [Zaki, 2005], Asai et al.’s UNOT [Asai et al., 2003],

Termier et al.’s TreeFinder [Termier et al., 2002] or Chehreghani et al.’s TDU

[Chehreghani et al., 2007]. Tree based approaches are suitable for complex and

deep graphs, however we observe that the structure of user-drawn interfaces is

usually quite simple (the path from the root to the deepest node in the tree

rarely uses more than a few edges), if only for legibility and usability. Indeed,

Choobineh et al. noticed that “most forms have a shallow (i.e. few levels) and

narrow (few nodes per level) structure because of human information processing

limitations” [Choobineh et al., 1992]. This might imply that simpler algorithms

may be more appropriate.

For the purpose of discovering structural redundancies, Formal concept

analysis (FCA) is also a popular approach [Wille, 2005]. It relies on the defini-

tion of a formal context K = (G,M, I), where G is a set of formal objects, M a

set of formal attributes, and I a binary relationship defining which attributes

of M can be associated to which objects of G. Consequently, a formal concept

of K is a pair (A,B) with A ⊆ G and B ⊆M , so that the set of all attributes

shared by the objects of A is identical with B, and on the other hand A is also

the set of all objects that have all attributes in B.

Thus, FCA can therefore be seen as a conceptual clustering technique pro-

viding descriptions and hierarchisation for the abstract concepts or data units

44 Chapter 3. State of the art and Research questions

it produces. In this context and for a given schema, entity types, relationship

types and compound attributes can be seen as formal objects, while attributes

and roles can be seen as formal attributes. Searching the different formal con-

cepts contained in the schema, and hierarchically grouping them according to

their shared attributes could consequently highlight structural redundancies in

a given schema.

To clarify the structural ambiguities between the attribute owners of a given

schema, it is therefore possible to use tree mining and/or FCA in order to com-

pare these elements. Elements that share embedded subtrees would therefore

be considered structurally similar, and would need to be arbitrated with the

help of domain experts.

3.4.2 Eliciting implicit constraints and dependencies

When conceiving a conceptual schema, it is important to define a set of pred-

icates that will guarantee that once the subsequent database is implemented

and operational, any changes made to its content by authorised users will main-

tain its consistency. Typically, inserting, modifying or deleting values from the

database should not result into data anomalies or unnecessary redundancies.

Among the different constraints usually considered to obtain such a reliable

database, let us recall the most common ones:

• domains of values, which may restrict the possible values of given at-

tributes, for instance using domain types, sets or ranges of (un)authorised

values, rule-based formulas for the values, ...;

• cardinality constraints, which define the minimal (typically zero or one)

and maximal numbers (typically one or infinite) of occurrence(s) of given

attributes and roles;

• existence constraints, which define how optional components (attributes

and roles) may influence each other. For two components A and B, these

constraints may be:

– coexistence, which implies that A and B must always be not null

simultaneously;
– at-most-one, which implies that A and B cannot be not null simul-

taneously;
– at-least-one, which implies that A and B cannot be null simultane-

ously;
– exactly-one, which implies that if A is not null, then B should be

null, and vice-versa;
– implication, where A implies B means that A can be not null only

if B is not null itself;

3.4.2. Eliciting implicit constraints and dependencies 45

• identifiers, which are a set of components which, taken collectively, allow

to identify uniquely the given instance of a given entity type;

• functional dependencies, which express constraints between sets of at-

tributes;

The challenge here is more about uncovering possible undetected constraints

than expressing them directly. Indeed, while traditional database elicitation

techniques usually may yield most of the relevant constraints during the design

of the conceptual schema, analysing the content of the subsequent database

(or at least, a set of relevant data samples) may highlight constraints that

remained unmentioned, maybe because the domain experts were not aware of

them, or (more probably) because they are part of some tacit knowledge. How

can we therefore nurture an existing schema to elicit and express constraints

and dependencies based on data samples?

The relational model of a database

Since we need to consider our set of schemas not as a “rigid skeleton”, but as

a “living being” (i.e. an operational and populated database), let us introduce

the relational model of a database according to the First normal form (1NF),

which is a database model based on first-order predicate logic, first formulated

and proposed by [Codd, 1970].

In the relational model, all the data is represented through relations (also

know as tables). A relation is structured using attributes (a.k.a. fields or

columns), each of which is defined on a domain, which is a given set of values.

A tuple (a.k.a. row) contains all the data of a single instance, that is a value for

each attribute of the relation with respect to its domain. Intuitively, relations

and attributes of the relational model correspond to entity types and attributes

in the GER model, as illustrated in Figure 3.5*.

For a relation, an identifier (a.k.a. candidate key) is a set of attributes so

that when considering all the possible tuples of the relation, there cannot be

more than one tuple having the same combination of domain values for these

attributes. Let us note t[A] the restriction of a tuple t to the set of attributes

A (called projection of t onto A). For instance, from the tuples visible in

Figure 3.5, we could assume that Customer Number and Last Name form an

identifier for the relation Customer, since there are no tuples having the same

combination of values. More formally, we therefore have:

*Most of these customers are fictional characters from the acclaimed TV show Bat-
tlestar Galactica.

46 Chapter 3. State of the art and Research questions

Figure 3.5: The representation of a Customer using the GER and relational model.

Definition 3.1. Given a relation R, its associated sets of attributes A =

{a1, ..., an} and possible tuples T = {t1, ..., tm}, Ā ⊆ A is identifier for R iff:

@i, j ∈ [1,m] : ti[Ā] = tj [Ā] ∧ i 6= j

An identifier is minimal if none of its members can be removed without

jeopardising the identifying property. For instance, from the tuples visible in

Figure 3.5, we could assume that Customer Number and Last Name is not a

minimal identifier for the relation Customer, since we can remove Last Name

and still identify each tuple using uniquely Customer Number.

In a database, each relation contains an implicit identifier that can is ob-

tained by construction. However, it is preferable to define an explicit identifier

for each relation. Since there can be several explicit identifiers, it is common

to choose a minimal identifier as the sole primary identifier. Identifiers other

than the primary one are said to be secondary. When it is impossible to define

a primary identifier, a virtual attribute is added to the relation to play the role

of technical identifier.

A similar notion is the concept of functional dependencies, which are ma-

terialised by the explicit or implicit constraints between two sets of attributes

in a relation from a database. Given a relation R, a set of attributes X ∈ R is

said to functionally determine another set of attributes Y ∈ R, if and only if

through all the possible tuples extending R, each value of X is associated with

precisely one value of Y . This functional dependency is written R : X → Y ,

with X called the determinant set of attributes and Y the dependent set of

attributes. For instance, from the tuples visible in Figure 3.5, it seems that the

functional dependency Customer:First Name → Last Name does not stand,

since there are two persons named “Bill” but with a different family name.

On the other hand, the functional dependency Customer:First Name, Last

Name → Gender could be legit, but would need to be validated.

Armstrong’s axioms are a set of inference rules used to infer all the func-

tional dependencies on a relational database [Armstrong, 1974]. The axioms

3.4.2. Eliciting implicit constraints and dependencies 47

are sound in that they generate only functional dependencies in the closure

of a set of functional dependencies (denoted as F+) when applied to that set

(denoted as F). They are also complete in that repeated application of these

rules will generate all functional dependencies in the closure F+.

• Reflexivity: If Y ⊆ X, then X → Y

• Augmentation: If X → Y , then XZ → Y Z for any Z

• Transitivity: If X → Y and Y → Z , then X → Z

In addition to these rules, the following derivate rules are also taken in

account.

• Union: If X → Y and X → Z then X → Y Z

• Decomposition: If X → Y Z, then X → Y and X → Z

• Pseudo Transitivity: If A→ B and CB → D then AC → D

For instance, If A→ B is an FD, then, (A,C → B) is considered redundant.

Mining constraints and functional dependencies

Analysing the content of a database or a subset of data samples can intuitively

lead to make possible assumptions on, e.g., the domains of values, the cardinal-

ities of the attributes, their existence constraints and possibly their identifiers.

Consider for instance an optional textual attribute A. If for any tuple ti, we

observe that ti[A] is never null and always composed of a number, we could

easily wonder if A is not actually a mandatory numeric attribute. Moreover, if

all the ti[A] have different values, this could suggest that A is in fact a primary

or secondary identifier. The same kind of induction could be led on optional

attributes to assess their possible existence constraints. However, mining func-

tional dependencies is far less trivial.

Back in 1995, Ram presented four categories of heuristics to derive func-

tional dependencies from an existing conceptual ER schema [Ram, 1995]. The

first category consists in using keyword analysis to identify intra-entity func-

tional dependencies: typically, attributes bearing a suffix or prefix such as

“id” or “number” should be considered potential determinants, while attributes

bearing a suffix or prefix such as “maximum”, “minimum”, “average” or “to-

tal” should be considered potential dependent attributes. The second category

consists in analysing the cardinalities of binary relationships to identity inter-

entity functional dependencies, typically between their identifiers. The third

category is similar, but concerns N-ary relationships. And finally, the fourth

category consists in analysing sample data to elicit undiscovered functional

dependencies. These heuristics were supported by the FDExpert tool.

48 Chapter 3. State of the art and Research questions

The first three categories rely on the analysis of the schema itself, while

the latter category, known as the dependency discovery problem, focuses on the

content of the database itself. This is a well-know issue, especially in data

mining, database archiving, data warehouses and Online Analytical Processing

(OLAP). The most prominent existing algorithms dealing with this issue can

be classified in three types of approach, which are so different that it is difficult

to compare them qualitatively [Lopes et al., 2002].

The candidate generate-and-test approach is based on the partitioning of

the database combined with a levelwise exploration and pruning of the search

space, as in Huhtala et al.’s TANE [Huhtala et al., 1999], Novelli and Cic-

chetti’s FUN [Novelli and Cicchetti, 2001], or Yao and Hamilton’s FD Mine

[Yao and Hamilton, 2008]. The modus operandi of these algorithms is sensibly

the same, and they mainly differ by the pruning rules that they use. First of all,

the stripped partition database r̂ of the relation r is calculated by partitioning

the tuples into maximal equivalence classes based on their values. Then, the

dependencies are computed level by level, starting with the singleton sets of at-

tributes of r, and continuing with the combinations of non discarded attributes

to test the dependencies of the form X\{A} → A with A ∈ X for each set X

of the level.

The minimal cover approach relies on searching the minimal cover of the

set of FDs for a given database, i.e. the minimal set of FDs from which the en-

tire set of FDs can be generated using the Armstrong axioms, as in DepMiner,

proposed by Lopes et al. [Lopes et al., 2000] and FastFDs, proposed by Wyss

et al. [Wyss et al., 2001]. They also rely on the extraction of a stripped parti-

tion database from the initial relation, before computing agree sets of tuples.

Maximal sets are then generated, which allows to define a minimum FD cover

according to these maximal sets, based on hypergraph theory. DepMiner uses

a levelwise search, while FastFDs uses a depth-first, heuristic-driven (DFHD)

search.

Finally, Formal concept analysis (FCA) has also been used recently to find

and represent logical implications in datasets [Priss, 2005], mainly through a

closure operator from which concepts (closed sets) can be derived. For in-

stance, Baixeries uses Galois connections and concept lattices as a framework

to find functional dependencies [Baixeries, 2004], while Rancz et al. optimise an

existing method introduced by [Correia, 2002], which provides a direct trans-

lation from relational databases into the language of power context families,

in order to build inverted index files to optimise the elicitation the functional

dependencies in a relational table through the construction of their formal

context [Rancz and Varga, 2008]. The latter authors also developed the sub-

sequent FCAFuncDepMine software to detect functional dependencies in rela-

3.4.3. Handling schema integration 49

tional database tables [Rancz et al., 2008]. Similar principles were also used

in Flory’s method, which was based on the definition and analysis of a matrix

and its associated graph of functional dependencies [Flory, 1982].

To elicit the implicit possible constraints and dependencies of a given schema,

it is therefore possible to use induction, dependency discovery algorithms and

FCA on data samples. Such constraints evidently need to be arbitrated with

the help of domain experts. However, existing approaches rely on massive

pre-existing data sets, which could be problematic.

3.4.3 Handling schema integration

View integration

The ultimate objective of the Conceptual Design is to produce a single, inte-

grated conceptual schema describing the future database. The final step of this

database design process is therefore to handle view integration, which is a typ-

ical case of database schema integration [Batini et al., 1986]. View integration

may be required because the stakeholders have different perspectives on the

modelling of the information, which can induce different representations of the

same concepts (different names, different constructs, different properties, etc.)

that may turn out to be incompatible. It is therefore crucial to resolve these

discrepancies and integrate the involved elements in order to obtain a sound

and consistent conceptual schema.

View integration consists in identifying and comparing elements to inte-

grate, unifying them before merging and restructuring them. The elements

to consider are those involved in issues such as naming conflicts (typically

homonyms and synonyms) and structural conflicts (such as construct mis-

matches, identifiers conflicts, cardinality conflicts, constraints conflicts, ...).

The difficulty actually lies in conflict identification rather than in conflict reso-

lution. Managing this process can therefore be simplified if we take in account

the elements that we discussed for the previously mentioned challenges. How

can we therefore bind elements of an existing schema?

Transformational techniques

First of all, as we just pointed out, the identification and subsequent unification

of the elements depends on the problems previously discussed in Section 3.4.1.

If the semantic and structural ambiguities are solved, we can here focus on

merging and restructuring the necessary elements. Transformational techniques

have proved to be particularly powerful to carry out this process and enable to

50 Chapter 3. State of the art and Research questions

integrate similar objects into a unique, non-redundant structure, without any

loss of semantics.

When dealing with multiple (sub)schemas, three main strategies naturally

appear, as explained by Hainaut [Hainaut, 2009]:

• n-ary integration, which is suitable when several concepts appear in mul-

tiple (sub)schemas;

• hierarchical integration, which is suitable when the application domain

is naturally decomposed into hierarchical subsystems;

• incremental integration, which is suitable for large and numerous schemas

who do not prevail upon each other.

Hierarchical and incremental integration rely on a progressive binary inte-

gration of schemas, where corresponding elements are pairwisely merged. For

the sake of simplification, we consider that two elements correspond to the

same concept if they are semantically and/or structurally similar. Typically,

two corresponding entity types A and B should be replaced with a merged

entity type C, for which each attribute and role would find at least one corre-

spondent in A and/or B. Merging attributes and roles implies arbitrating their

differing properties, including cardinalities, domain of values and value types,

and so on. Integrity constraints must also be propagated.

However, there is not always a strict identity between two concepts, other

integration techniques must then be used to resolve redundancies [Spaccapi-

etra et al., 1992]. For instance, if two objects are not of the same type, such

as an entity type and a compound attribute corresponding to the same con-

cept, transformational techniques are used to set them in conformity before

integration, by typically extracting the compound attribute as an entity type.

3.4.4 Generating applicative components

From the conceptual schema to the prototype

Once the integrated conceptual schema representing the application domain

has been produced, and in the perspective of integrating prototyping for the

purpose of database forward engineering, it might be interesting to generate the

database and interfaces to which it could be connected. Handing a playable

prototype to domain experts could serve indeed as a valuable validation of

the data specifications, since it would allow them to test various aspects of

their requirements. How can we therefore objectify an existing schema into

applicative components such as a database?

3.5. Extracting data models from form-based interfaces 51

Transformations and CASE tools

As exposed in Chapter 2.2, producing the conceptual schema representing the

requirements is the most complex step of Database Engineering. Once it is

elaborated, the database engineers can subsequently automate the production

of the platform-specific logical schema and the performance-oriented physi-

cal schema from their conceptual counterpart, using dedicated transformations

plans, i.e. specifically defined sequences of standard transformations. After-

wards, from these schemas, well-mastered (semi) automated techniques, that

have long been studied in the database research community and applied in in-

dustry, allow the artefacts of the final application to be produced: interfaces,

programs, database code, etc.

These transformations and techniques are usually handled by dedicated

CASE tools that allow to customise the necessary sequence of transformations

to meet specific needs and target technologies. For instance, DB-MAIN is

a data-oriented modelling CASE-tool dedicated to Database Application En-

gineering [DB-MAIN, 2010]. It is designed to help developers and analysts

in the development, reverse-engineering, reengineering, migration, integration,

maintenance and evolution of data-centred applications, mainly based on the

Entity-Relationship model. DB-MAIN includes meta-model components that

allow the users to develop transformational scripts, new functions and methods,

as well as a Java library to interact with its internal repository.

3.5 Using Database reverse engineering to extract data mod-

els from form-based interfaces

In the Chapter 3.4, we discussed the challenges surrounding the definition of the

conceptual schema, and more particularly the aspects that should be managed

on an ongoing schema. To begin these refining processes, we could start from a

raw schema obtained from the transformation of a set of form-based interfaces

into a set of data schemas, as suggested by the principles of Database reverse

engineering that have been exposed in Section 2.2.2, and the applications of

these principles which were presented in Section 3. How can we therefore

adapt a set form-based interfaces into data models to which we could apply the

previously discussed processes of Database forward engineering?

3.5.1 Static information based on layout and content

First of all, the appearance of form-based interfaces contains a lot of information

regarding the underlying data models. Indeed, a set of forms can be considered

52 Chapter 3. State of the art and Research questions

a set of derived views of the data. To extract each view from the forms, the

approaches of Section 3 usually start by analysing the layout of the forms to

detect the labels of each widget and how they are logically and hierarchically

structured. This step is not trivial, since the labels may not systematically be

visible, and the choice and placement of the objects and their label may not

always be intuitive and systematic, as illustrated in Fig. 3.6. In this example,

we can for instance observe that:

• some elements do not bear any label, such as the group boxes for the

product and the payment, as well as the radio buttons for the title of the

customer;

• the placement of the label is not always the same, as it is sometimes at

the left of the widgets, and sometimes on the top;

• the placement of the radio buttons is not always the same either: they

are on the same line for the title of the customer, but not for the balance

of the payment;

• and so on...

Figure 3.6: A form-based interface with unlabelled elements and unsystematic
choice and placement of widgets.

Once the structure and labels of the forms are clarified, each given form Fi
is translated into a data model Mi using injection-based mapping rules between

elements of the chosen form model and data model, so that each widget of Fi
has a deterministic counterpart in Mi. These mapping rules depend on the

languages used to model and/or implement the source interfaces, as well as the

target destination model. As it appears, the output data models will be more

precise and detailed if it is possible to access the detailed specifications of the

interfaces, which is not always possible with legacy interfaces.

3.5.2. Dynamic information 53

3.5.2 Dynamic information

Besides, it is also possible to observe the execution of programmes to analyse

the actions and inputs that must be processed, and how the programmes re-

spond to these actions and inputs. If the database is accessible, one can also

observe how the data evolves according to this execution. Investigating pro-

gram behaviour using information gathered as the program is running is a well

known problematic. For instance, Program profiling (also known as Software

profiling) mainly focuses on determining which sections of a program could be

optimised (typically in terms of overall speed and memory requirement), while

Program comprehension focuses on acquiring knowledge about computer pro-

grams in order to facilitate reuse, inspection, maintenance, reverse engineering,

reengineering, migration, and extension of existing software systems.

The data obtained typically through interpretation (for instance using the

Virtual Machine in Java) or instrumentation of system’s execution is used for

such purposes as reverse engineering and debugging. Numerous dynamic anal-

ysis approaches have been proposed for this purpose, with a broad spectrum

of different techniques and tools as a result, as presented by [Cornelissen et al.,

2009]. According to the main objectives of the programme comprehension

and the target programming platforms and languages, different methods can

be combined, among which visualisation, program slicing, filtering, metrics,

querying, ...

3.6 Prototyping to express and validate requirements

Among the various challenges of Prototyping, we notably need to allow end-

users to express concepts through form-based interfaces, and conversely, to

validate concepts through form-based interfaces.

3.6.1 Expressing requirements through form-based interfaces

How can users represent concepts and requirements by building themselves

form-based interfaces?

Modelling form-based interfaces

In their most general definition, forms are a structured mean of displaying and

collecting information for further processing. Originally, forms were materi-

alised as paper documents sharing common parts and including blank fields to

fill in the necessary information, typically for orders, requests, checks, ...

54 Chapter 3. State of the art and Research questions

The introduction of electronic forms allowed for conveniently typing in the

variable parts by providing a set of widgets accordingly to the type of expected

data input (constrained or unconstrained, mono or multivalued, ...). These

interactive forms, which have become a natural part of GUIs through a wide

variety of applications and websites, usually use the following common input

widgets:

• textual input fields, that allow input of a single or several lines of text;

• radio buttons, which usually allow to choose one value among several

ones;

• check boxes, which usually allow to choose zero, one or several values

among several ones;

• push buttons (to call a specific function or another screen, for instance to

search a file or reset the whole form);

• combo-boxes (drop-down list that displays a list of items a user can select

from).

On top of these simple widgets exist more specific or complex widgets, such

as spin boxes (to adjust a value in an adjoining text box by either clicking on

an up or down arrow), tree views (to display hierarchical information) or colour

pickers.

Input widgets are usually combined with output (display) widgets, such as

labels or images. Both categories of widgets can be structured using group

boxes and tables within a given top level window.

Existing User Interface Description Languages

In the last decade, new classes of IT devices have emerged in conjunction with

new interaction styles such as 3D interaction, virtual/mixed reality, tangible

user interfaces, context-aware interfaces and recognition-based interfaces. Since

there is a large variety of programming languages each offering its own model

of GUI, there has been many research on User Interface Description Languages

(UIDL).

Such languages enable designers to specify user interfaces using high-level

constructs, and without worrying about implementation details. From the de-

scription of these abstract user interfaces, concrete user interfaces can then be

(semi) automatically generated according to the chosen platforms and tech-

nologies. As described by [Luyten et al., 2004], the goals of UIDLs are to:

• capture the requirements for a user interface as an abstract definition

that remains stable across a variety of platforms;

3.6.1. Expressing requirements through form-based interfaces 55

• enable the creation of a single user interface design for multiple devices

and platforms;

• improve the reusability of a user interface;

• support evolution, extensibility and adaptability of a user interface;

• enable automated generation of user interface code.

Let us therefore briefly review a few recent UIDLs, which are mostly based

on the eXtensible Markup Language (XML), which is a standard markup lan-

guage that has notably become a standard recommendation of the World Wide

Web Consortium (W3C) to model and carry structured data [W3C, 2010]. The

tree-like structure of XML documents perfectly with the hierarchical structure

of traditional form-based interfaces.

The User Interface Markup Language (UIML) is an XML-based language

that allows the canonical description of user interfaces for different platforms

[Ali et al., 2002]. A UIML document is structured in three different parts: a UI

description, a peers section that defines mappings from the UIML document to

external entities (target platform’s rendering and application logic), and finally

a template section that allows the reuse of already written elements. The UI

is described as a set of interface interaction elements for which a presentation

style (such as position, font style or colour), the content (text, images, etc.)

and the possible user input events and resulting actions are specified. The

interface is built using a rendered that interprets UIML on the client device

(similar to the way a web browser renders an HTML file) or compiles it to

another language (for instance HTML). However, the UI description is bound

to the target language and device, which implies that a same interface may

need separate UI descriptions if it has different targets.

The eXtensible Interface Markup Language (XIML) [Puerta and Eisenstein,

2002] is a representation language for interaction data that supports design, op-

eration, organisation, and evaluation functions. It is able to relate the abstract

and concrete data elements of an interface, while enabling knowledge-based

systems to exploit the captured data. XIML is a hierarchically organised set

of interface elements that are distributed into one or more of the different in-

terface components. XIML predefines five basic interface components, namely

task (the business process and user tasks), domain (the hierarchical set of

all the objects and classes used), user (the hierarchical tree of the target end-

users), dialog (the structured collection of elements that determine the possible

interactions), and presentation (the hierarchy of concrete interaction objects

used in the interface). The interaction data elements captured by the various

XIML components can be linked together using relations, and be enriched by

attributes (i.e. features or properties).

56 Chapter 3. State of the art and Research questions

Teresa XML is the XML-compliant language that was developed inside the

Teresa project, which is intended to be a transformation-based environment

supporting the design and the generation of a concrete user interface for a spe-

cific type of platform [Paternò and Santoro, 2002]. The Teresa XML language is

composed of a XML-description of the CTT notation [Mori et al., 2002] which

was the first XML language for task models, as well as a language for describ-

ing user interfaces. Teresa XML specifies how the various Abstract Interaction

Objects (AIO) composing the UI are organised, along with the specification of

the UI dialog.

The USer Interface eXtensible Markup Language (UsiXML) is a XML-

compliant markup language that describes the UI for multiple contexts of use

such as Character User Interfaces (CUIs), Graphical User Interfaces, Auditory

User Interfaces, and Multi-modal User Interfaces [Limbourg et al., 2004; Lim-

bourg and Vanderdonckt, 2004]. This language allows interactive applications

with different types of interaction techniques, modalities of use, and computing

platforms to be described in a way that preserves the design independently from

peculiar characteristics of physical computing platform. It was initiated by the

exhaustive review of XML-compliant User Interface Description Languages led

by [Souchon and Vanderdonckt, 2003].

Mapping UIDLs to Data Models

As we have seen in the Chapter 3.5, it is possible to define mapping rules

between UIDLs and Data Models, which would transparently associate spe-

cific widgets to specific types of concepts. However, a major concern about

these various UIDLs comes from the structure of the languages itself. Indeed,

since they must express complex interfaces, layouts and behaviours, their XML

structure becomes complex and difficult to read, which in turn may lead to very

complex mappings to given data models.

Besides, such complex languages may scare laymen users that need to ex-

press simple concepts, because they would have to choose among too many wid-

gets and would be challenged by the definition of appropriate layouts. These

concerns may prevent them to focus on the content of the forms rather than

the appearance. The users should therefore be given adequate tools to manage

the drawing of accessible form-based interfaces.

3.6.2 Validating requirements through form-based interfaces

As we have seen in Chapter 2.3, prototypical interfaces can also be used to

validate requirements. If applicative components can be generated from the

3.7. Managing User-Involvement 57

integrated conceptual schema that results of the analysis of the raw schema

obtained from prototypical form-based interfaces, a prototypical application

could be generated and testing as a final validation step. How can users there-

fore wander through a playable prototype to validate their requirements?

As we have seen in Section 3.4.4, the generation of applicative components

can be relatively straightforward using transformations and CASE tools. The

challenge here is to interconnect form-based interfaces with their underlying

database and applicative components.

3.7 Managing User-Involvement

In the previous chapters, we presented challenges inherent to the disciplines

that would need to interoperate in order to perform an interactive conceptual

analysis based on the reverse engineering of prototypical user-drawn form-based

interfaces. Still, one of our major concerns resides in the involvement of end-

users, so that they can effectively and efficiently participate in the resolution

of these challenges. How can we therefore handle user-involvement in this

context?

3.7.1 Participatory Design Perspectives

[Bødker et al., 1993] address different recommendations regarding the appli-

cation of Participatory Design. Among these recommendations, it appears

that the design process should be situated within the users work but guided

and arbitrated by the designers. It should encourage creativity and draw out

tacit and shared knowledge, while simulating the future to aid in prediction

and evaluation of design. Kensing and Blomberg also insist that end-users

should participate in the analysis of needs and possibilities, the evaluation and

selection of technology components, the design and prototyping of new tech-

nologies, organisational implementation, and ultimately, in decision making

[Kensing and Blomberg, 1998].

In this context, the roles of the designer include coordination, facilitation,

material preparation and managing the social interactions (which can be re-

ferred to as “Social Engineering”). Since it is not systematically possible for all

those affected by the design effort to fully participate in the process, the choice

of user participants, their responsibilities and accountabilities as well as their

form of participation must be carefully considered and negotiated.

Besides, [Sanders, 2002] explains that to access the end-users experience and

knowledge, the analysts can observe them under three perspectives: what they

say, what they do, and what they make. Listening to people tells us what they

58 Chapter 3. State of the art and Research questions

are able and willing to express in words (i.e., explicit knowledge) and watching

people in their activities provides us with observable information, which may

help us to understand their perceptions of experience. To grasp their tacit

knowledge, we also need to understand how they feel in order to empathize

with them. Observing end-users on the long run can also reveal unsuspected

needs (latent knowledge).

Furthermore, Muller et al. drew a taxonomy of Participatory Design prac-

tices according to “who participates with whom in what” and at what stage

of the development cycle this activity occurs in [Muller et al., 1993]. As it

appears, we would like end-users to participate in the early database design

activities, which would rather call for co-development settings.

In this context, [Grønbæk et al., 1997] precisely advocated users and de-

signers to collectively explore the form, functionalities and context of applica-

tions through cooperative prototyping. Using adequate prototyping tools and

the users actual work materials to allow case-based prototyping, they can ap-

ply their knowledge and experience as competent professionals in the design

process. Besides, [Mogensen, 1992] and [Trigg et al., 1991] also noted that pro-

totypes can act as “catalysts” and “triggers” for discussions, which may lead to

mutual learning, since it provokes concrete experience.

3.7.2 Tailoring existing techniques

Arguably, using cooperative prototyping as a means to express, capture and

validate data requirements implies tailoring and integrating the processes and

existing techniques in order to suit the context of use, support the users skills

and keep them focused and dedicated to the overall process.

Typically, since conceptual schemas are difficult to comprehend, we should

find a way to transparently use form-based interfaces instead for the various

steps of analysis and arbitration of the design process. The design and in-

teraction with the prototype should be simple, intuitive and enjoyable, which

could be threatened by the fact that existing UIDLs are complex and that

we might require the acquisition of numerous data samples (which would be

(too) demanding) for further analysis. Also, the available algorithms for mining

structural dependencies and possible constraints are quite complex, which im-

plies that their execution could be time-consuming and therefore interfere with

the flow of the process. All these observations urge us to consider adapting or

redefining the existing strategies to improve the experience of the end-users, so

that their interactions with the data modelling process become more intuitive

and transparent.

Part II

The RAINBOW Approach

In this part of the dissertation, we present the integrated RAINBOW ap-

proach to reverse engineer user-drawn form-based interfaces in order to perform

an interactive database conceptual analysis. First, Chapter 4 introduces the

approach and formalises its principles into a semi-automatic process. Each

of its seven steps is subsequently detailed in a separate chapter and a proof-

of-concept tool support is then presented. The principles and results of this

proposal have notably been presented in international conferences [Ramdoyal

et al., 2010, 2009; Vilz et al., 2006; Brogneaux et al., 2005a] and workshops

[Ramdoyal, 2010; Ramdoyal et al., 2007; Brogneaux et al., 2005b].

59

Chapter 4

Proposal

4.1 Claim

As we have seen, providing a better requirements acquisition process for Database

Engineering implies bridging the gap between end-users and analysts. Since

the traditional ER schema has shown understandability limitations, this issue

clearly calls for a better medium, which should be common to all the stake-

holders and rich enough to convey relevant meaning and interactivity. For

this purpose, we propose to use user-drawn form-based interfaces as a

two-way channel to express, capture and validate static data require-

ments with end-users by taking advantage of reverse engineering

techniques. More precisely, we claim that:

• Given:

– An environment for which forms are a privileged way to exchange

information;

– Stakeholders familiar with form-based (computer) interaction and

the application domain;

• We can:

– Exploit the expressiveness of form-based user interfaces and proto-

types;

– Specialise and integrate standard techniques to help acquire and

validate data specifications from existing artefacts;

61

62 Chapter 4. Proposal

• In order to:

– Use form-based user interfaces as a two-way channel to communicate

static data requirements between end-users and analysts;

– And therefore transparently produce a conceptual schema of the

application domain, including integrity constraints, existence con-

straints and functional dependencies.

Indeed, since existing artefacts can be used to recover the underlying re-

quirements through well-mastered reverse engineering techniques, we advocate

to use such tailored techniques in forward engineering by working with the

virtual artefacts produced by the end-users (Fig. 4.1). This approach benefits

from the advantages of rapid prototyping, while making the user a central actor

of the process, and designing a set of simple semantic interfaces rather than a

complete application.

Figure 4.1: Using reverse engineering in a forward engineering perspective.

4.2 Context of use

The RAINBOW approach targets a certain type of context, which can be char-

acterised by the following aspects:

• Application type: the modelled software engineering projects should be

related to form-based data intensive applications; this is typically the

case for business applications that need to frequently encode, share and

access specific data;

• Target companies: the expected enterprises should be small to medium

sized, such as a self-employed entrepreneur or a local chain of stores;

4.3. Founding principles 63

• End-users profile: the participating end-users should be at least familiar

with form-based human-computer interactions, typically through office

suites or form-based websites. Data modelling experience is not required,

so that a regular white-collar or secretary would be an archetype of the

expected kind of end-user. Still, the approach should also be accessible for

to other types of users, such as database engineers, analysts or developers.

4.3 Founding principles

In order to formalise this approach, we need to take in account several speci-

ficities, among which:

• a high level of interaction with the end-users;

• the possibility to involve different levels of participants, ranging from

laymen to experts, through a modular process;

• the need for a tool support accessible to end-users and useful to the

analysts;

• the necessity to tailor existing techniques.

We indeed want to provide end-users with adequate tools to draw and spec-

ify by themselves the interfaces describing the underlying key concepts of their

application domain, without having to worry about any application logic. Pro-

vided a little training and as previously explained, involving end-users in such

processes may have a very positive impact. This is especially true in the Re-

quirements Engineering process, for which it is essential to avoid mismatches

between the actual needs of end-users and the way they are formalised.

By allowing end-users to build themselves a “light” prototype of the future

application (in terms of command screens and information exchanges), we avoid

the development of a “heavy” prototype, which is obviously an expensive task

(it includes the development of a limited but operational application, whose

components cannot usually be reused in the implementation of the final system)

and reduces the costly presence of computer designers during the specification

phase. In this context, the computer analysts rather appear as guides, whose

roles are oriented towards the validation of requirements and the generation of

complex code.

These principles are at the foundation of broader approaches, such as the

ReQuest framework [Vilz et al., 2006], which provides a complete methodol-

ogy and a set of tools to deal with the analysis, development and maintenance

of web-based data-intensive applications. Regarding data modelling, that ap-

proach consists of four main steps: (a) inviting the end-users to draw the

interfaces of the future application, (b) extracting of data structures from each

64 Chapter 4. Proposal

interface fragment into a logical model, (c) analysing the logical models to iden-

tify and resolve redundancies, (d) integrating and conceptualising the logical

models. During the whole process, traceability is ensured, so that the con-

ceptual structure corresponding to an interface component can be retrieved

and conversely. The ReQuest framework also deals with dynamic aspects of

the future application (such as task analysis, behaviour of the application, ...),

while providing generators for several components of the future application

(database, framework skeleton, ...), as illustrated in Fig.4.2.

Figure 4.2: Overview of the ReQuest approach.

4.4 Overview of the approach

In the alternative RAINBOW approach, we want to keep the same overall

philosophy while focusing on the specification of static data requirements as

part of a greater Requirements Engineering process. The specificities of this

approach lead us to specialise the techniques presented in Part I and integrate

4.4. Overview of the approach 65

Figure 4.3: Overview of the RAINBOW approach.

them into a semi-automatic seven-step process (see Fig. 4.3) that does not aim

to provide a ready-to-use application, but a set of specification documents and

tools, in order to support the development of future applications and overcome

the limitations synthesized in Part I:

1. Represent : the end-users are invited to draw and specify a set of form-

based interfaces to perform usual tasks of their application domain;

2. Adapt : the forms are “translated” into data models, which basically con-

sists in extracting a data model from each interface using mapping rules;

3. Investigate: the data models are cross-analysed to highlight and arbitrate

semantic and structural similarities and produce a pre-integrated schema;

4. Nurture: using the interfaces that they drew, the end-users are invited to

provide data examples that are analysed to infer and arbitrate possible

constraints and dependencies;

5. Bind : the pre-integrated schema is completed and refined into a non

redundant integrated conceptual schema;

6. Objectify : from the integrated conceptual schema, the artefacts of a pro-

totypical data manager application are generated;

7. Wander : finally, the end-users are invited to play with the prototype in

order to refine and ultimately validate the integrated conceptual schema.

In this context, the development of an appropriate tool support is therefore

a crucial and integral part of the approach. Besides, as one may notice, these

seven steps address the various challenges regarding Database forward engi-

neering, Database reverse engineering and Prototyping, which were presented

in Part I. Indeed:

66 Chapter 4. Proposal

• Chapter 5 addresses the expression of requirements through user-drawn

form-based interfaces (Represent).

• Chapter 6 explains how to translate these interfaces into data models

(Adapt).

• Chapter 7 deals with the analysis of these data models to clarify termi-

nological and structural ambiguities before performing a pre-integration

of the models (Investigate).

• Chapter 8 engages in the elicitation of additional constraints and depen-

dencies within the pre-integrated model (Nurture).

• Chapter 9 addresses the final schema integration and refinement of the

pre-integrated data model (Bind).

• Chapter 10 presents the generation, integration and testing of applica-

tive components based on the integrated data models, for the purpose of

ultimately validating the elicited requirements (Objectify and Wander).

Subsequently, Chapter 11 discusses the dedicated tool support. In this doc-

toral research, we mainly focus on the five first steps of the approach, since the

generation of the components is relatively straightforward and the manipula-

tion of a reactive prototype mainly adds another level of validation.

Chapter 5

REPRESENT

Expressing concepts through form-based interfaces

In this chapter, we address the expression of requirements through form-based

interfaces by end-users. Firstly, we recall the concerns regarding the existing

UIDLs and how they lead us to define our own simplified form model. We then

detail this simplified form model and how to use it in order to specify a set of

form-based interfaces.

5.1 Concerns

The main concern about existing UIDLs comes from the structure of the lan-

guage itself. Indeed, since they must express complex interfaces, layouts and

behaviours, their XML structure becomes complex and difficult to read, and

furthermore, the end-users may be overwhelmed by this superabundance of

available widgets and compositions.

In the RAINBOW approach, we really want to focus on simple interface

widgets that can allow end-users to simply express concepts, while casting

away the technical aspects of layout. By defining a simple XML language to

express the structure of our interfaces, the latter can be rendered later on in a

more stylish way using templates, style sheets, eXtensible Stylesheet Language

Transformations (XSLT) transformers and so on.

This should therefore help the analysts to draw the attention of end-users to

the semantics of the used vocabulary (ambiguous terms, synonyms, recurring

structures, ...) in order to build a clean and clear set of interfaces.

67

68 Chapter 5. Represent

5.2 RAINBOW’s Simplified Form Model

For this purpose, we propose the RAINBOW’s Simplified Form Model (RSFM),

based on the most usual form widgets, which can intuitively be mapped to the

GER model. This model is intended to be transparently used by the end-

users to express concepts, and includes information for designers and CASE

developers that would like to instantiate or extend it. The RSFM foremost lays

the foundation for an exploratory type of prototyping, though its definition also

provides possible evolutionary perspectives.

To build the interface corresponding to each concept, we suggest to use a

limited set of primitive widgets, which are simple but usual high-level form

widgets through which any other widget can be expressed. They are classified

as follows:

• containers: forms, fieldsets and tables;

• simple widgets: inputs, selections and buttons.

Consequently, the RFSM could be seen as a model halfway between UsiXML’s

Abstract User Interface (AUI) and Concrete User Interface (CUI) models

[UsiXML, 2007]. Indeed, the RFSM actually defines a set of abstract containers

and individual components having direct concrete widgets counterparts, which

is usually not the case for UIDLs.

All these widgets may have specific properties, but they share the following

properties:

• a unique and mandatory identifier ;

• a mandatory label, which is the visible name of the widget. It may only

be composed of letters, white spaces, dashes (’-’) and numbers;

• an optional term, which is the semantic name of the widget, i.e. the non

plural concept conveyed by the widget. If null, the term and the label

are considered to be equivalent, but when analysing and unifying the

terminology of the labels, it may be useful to differentiate them (e.g. the

label of a table may be “Products”, but its term would be “Product”).

The term may only be composed of letters, white spaces, dashes (’-’) and

numbers;

• a qualifier, which is an optional additional piece of labelling used to pre-

vent two widgets to have the exact same name when they have the same

parent (e.g. in a fieldset, we may have two inputs labelled “Address”,

but respectively qualified as “Primary” and “Secondary”). The qualifier

may only be composed of letters, white spaces, dashes (’-’) and num-

bers. If it is not empty, the visible name of the widget will be “Label

(qualifier)”;

5.2. RAINBOW’s Simplified Form Model 69

• an optional description, which can hold any relevant description, expla-

nation or additional information regarding this element, its behaviour

and/or the concept it conveys.

Besides, their layout is constrained, as will be exposed for each of them.

In order to illustrate the elements and their properties, Fig. 5.1 provides an

example of a simple form intended to gather information on a person.

Figure 5.1: A simple form gathering information on a person.

For a given software engineering project using the RAINBOW approach, a

set of forms containing other widgets will therefore be built according to the

RSFM. A given form F will contain a set of widgets that can be filled with any

content that does not contradict the various properties defined for the form and

70 Chapter 5. Represent

its widgets. Each of these unique combinations of filling is called an instance

of the form F .

Forms

A form is a top level container representing the concept of window (Fig. 5.2).

It may contain any of the other elements and has the following properties:

• a mandatory identifier ;

• a mandatory label ;

• an optional term;

• an optional qualifier ;

• an optional description.

Figure 5.2: A form widget.

Besides, additional information may be provided regarding the content of

the elements the form contains when it is accepted:

• the unique constraints specify the different (sets of) mandatory widgets

whose content form an identifier for the all the possible instances of the

given form. Each identifier may be:

– primary, which means that this set of widgets will be used as the

main and preferred identifier for the concept conveyed by the form.

For instance, the input labelled National Registry Number could

be a primary identifier for the form Person;

– secondary, which means that this set of widgets should not be re-

garded as the main or preferred way to identify the instances of the

given form. For instance, the input labelled Social Security Num-

ber could be a secondary identifier for the same Person form, but

would be less interesting than the National Registry Number;

5.2. RAINBOW’s Simplified Form Model 71

• the existence constraints specify which restrictions should be imposed to

the instances of (sets of) optional widgets of the form. These restrictions

can be:

– coexistence, which implies that all the widgets must be either empty

or filled together. For instance, the inputs labelled Date of birth

and Place of birth could be specified as coexistent;

– at-most-one, which implies that there can be, at most, only one of

the widgets that is filled. For instance, one could require a Person

to fill exclusively the fieldset Caretaker or the table Dependants or

none of them.;

– at-least-one, which implies that at least one of the widgets should

not be empty. For instance, in the fieldset Contact, one could re-

quire to fill at least one widget among“Address (primary)”, “Address

(secondary)”, Telephone and Fax;

– exactly-one, which implies that there must be one and only one

of the widgets that is not be empty. For instance, in the fieldset

Caretaker, one could require to specify either the Family ties or

the Non family ties.

Fieldsets

A fieldset is a container used to group any other elements except forms (Fig. 5.3),

like Contact and Caretaker in Fig. 5.1.

Figure 5.3: A fieldset widget.

A fieldset has the following properties:

• a mandatory identifier ;

• a mandatory label ;

• an optional term;

• an optional qualifier ;

• an optional description;

• a mandatory cardinality, which defines if the widget if optional or manda-

tory. A mandatory fieldset requires to have at least one of its children

72 Chapter 5. Represent

widgets that is not empty. For instance, if the fieldset Contact was

mandatory, it would require at least one of the widgets among Address

(primary), Address (secondary), Telephone and Fax to be filled;

• a mandatory distinctiveness, which defines if a given combination of chil-

dren values must correspond to one and only one instance of the parent

widget (true) or not (false). For instance, the fieldset Contact is not dis-

tinctive, because a given combination of Address (primary), Address

(secondary), Telephone and Fax may correspond to several different

Persons.

• optional unique constraints, as defined for the form widget;

• optional existence constraints, as defined for the form widget;

• an optional prerequisite constraint, which may specify, if the fieldset is

optional, the identifiers of other widgets owned by the parent form. The

specified widgets must be filled before the given widget can also be filled.

Tables

A table is a container used to structure elements sharing the same characteris-

tics (Fig. 5.4), like Dependants in Fig. 5.1. It has the following properties:

• a mandatory identifier ;

• a mandatory label ;

• an optional term;

• an optional qualifier ;

• an optional description;

• a mandatory cardinality, as defined for the fieldset widget;

• a mandatory distinctiveness, which defines if a given combination of chil-

dren values for a given row must correspond to one and only one instance

of the parent widget (true) or not (false);

• optional unique constraints, which specifies the different (sets of) manda-

tory widgets whose content form an identifier for the all the possible

instances of rows for the given table, as defined for the form widget;

• optional existence constraints, which specifies which restrictions should

be imposed to the instances of (sets of) optional widgets of rows for the

given table, as defined for the form widget;

• an optional prerequisite constraint, as defined for the fieldset widget.

Among the widgets, the table is clearly the most complex one. Its columns

can only host simple widgets, i.e. inputs, selections and buttons. In addition,

5.2. RAINBOW’s Simplified Form Model 73

it is bundled with four buttons to add, edit, delete and reset the entries of

the table. When adding or editing an entry, a form is automatically generated

using the same graphical chart as the rest of widgets (Fig. 5.5). The motivation

is to keep the table as a way to handle multiple occurrence of simple data

structures, or as a “view” on more complex data structures that would require

drawing additional forms to specify all their details.

Figure 5.4: A table widget.

Figure 5.5: A simple form gathering information on a person.

Inputs

An input is a widget designed to receive simple textual input (Fig. 5.6).

Figure 5.6: A mandatory input widget.

An input has the following properties:

• a mandatory identifier ;

• a mandatory label ;

• an optional term;

74 Chapter 5. Represent

• an optional qualifier ;

• an optional description;

• a mandatory cardinality, as defined for the fieldset widget;

• a mandatory value type, which indicates the expected type of the field.

The value types are text, integer, real, boolean and date. For in-

stance, the First Name would be a text, the Social Security Number

would be an integer and the Date of birth would be a date. Setting

the value type will restrict accordingly the characters that can be typed

into the field;

• an optional value size, which indicates the expected size of the field, if

relevant;

• an optional formula, which explains how the content of this widget should

automatically be computed according to other variables. For instance,

an input labelled Age could be automatically computed from another an

input labelled Date of birth;

• an optional prerequisite constraint.

Selections

A selection is a widget designed to let the user choose zero, one or several

values among a non empty set of predefined values (Fig. 5.7). This field can

correspond to various combinations of widgets in GUIs, such as a group of

radio buttons or checkboxes, a list of a combobox. If needed, users should be

able to provide additional values to the predefined ones. It has the following

properties:

• a mandatory identifier ;

• a mandatory label ;

• an optional term;

• an optional qualifier ;

• an optional description;

• a mandatory cardinality, which defines if the minimum and maximum of

items that may be selected. We restrict the possible cardinalities to the

most common one, i.e. at most one, exactly one, at least one, zero to

many. This cardinality must of course be consistent with the available

number of selectable values.

• a mandatory editability, that specifies if the users can provide additional

values to the predefined ones (true) or not (false);

5.2. RAINBOW’s Simplified Form Model 75

• a mandatory value type, which indicates the expected type of the field

when the selection is editable. The value types are text, integer, real,

boolean and date;

• an optional value size, which indicates the expected size of the field, if

the selection is editable;

• an optional formula;

• an optional prerequisite constraint.

Figure 5.7: Different representations of the selection widget.

The selectable values are known as options, and have the following proper-

ties:

• a mandatory identifier ;

• a mandatory label ;

• an optional term;

• an optional qualifier ;

• an optional description;

To simplify the use of the widget, we chose to make it automatically adapt

its rendering according to the number of available options and the minimal and

maximal cardinalities:

• a set of radio buttons, for 3 options or less, and a cardinality of at most

one or exactly one;

• a set of checkboxes, for 3 options or less, and a cardinality of at least one

or zero to many;

• a list for all other cases.

Buttons

A button is a widget that allows to specify a set of actions that must be

triggered when the widget is pressed (Fig. 5.8).

A button has the following properties:

• a mandatory identifier ;

• a mandatory label ;

76 Chapter 5. Represent

Figure 5.8: An button widget.

• an optional term;

• an optional qualifier ;

• an optional description;

• an optional prerequisite constraint.

Each action attached to a given button must explain through a description

what happens when the button is pressed.

Getting and setting the properties of the widgets

For further processing by eventual analysts and developers, all the properties

expressed for the different types of widgets must be accessible in read and write

mode. For a given widget w, one can get and set a property using the following

functions;

• get<PropertyName>(w)

• set<PropertyName>(w, value)

For instance, we can get the label of a table t using getLabel(t), and set it

to “Dependants” using setLabel(t,“Contact”).

We call FE the set of all the possible functions available for the different

types of widgets. A function f ∈ FE should return f(w) =null if it is not

defined for the type of widget w.

Tree structure

Similarly, analysts and developers can take advantage of the inherent tree-like

structure of the RSFM, which enables us to the direct parent and children of

each widget, as well as their ancestors and descendants. For a given widget w,

they are accessible using:

• getDirectParent(w), which returns null if w is a form and the parent

widget otherwise;

• getDirectChildren(w), which returns ∅ if w is a simple widget (i.e. an

input, a selection or a button) or the set of direct children if w is a

container (i.e. an form, a fieldset or a table).

Fig 5.9 illustrates the tree-like structure of the Person form shown in

Fig. 5.1.

5.3. Managing the process 77

Figure 5.9: The tree-like structure of the Person form shown in Fig. 5.1.

5.3 Managing the process

During the Represent step, the end-users are invited to draw and specify a set

of form-based interfaces to perform usual tasks of their application domain. In

this section, we present a series of recommendations to efficiently prepare and

execute this process.

5.3.1 Preparation guidelines for the analyst

The first step in the process is twofold. On the one hand, the participants must

get together and discuss the objectives and organisation of their project. On

the other hand, the analysts need to understand the application domain, and

the subject of the software engineering for which the RAINBOW approach will

be used. Since the approach is not intended to replace any existing approach,

but rather complement them, traditional elicitation techniques can be used for

this purpose.

Meeting and choosing the participants

From the start, the analysts therefore need to meet with as many stakeholders

as possible, and carefully negotiate the choice of user participants (as explained

in Chapter 3.7), since it is not systematically possible for all those affected by

78 Chapter 5. Represent

the design effort to fully participate in the process. Preferably, one will choose

among experienced volunteer users.

Planning the project

Once the participant end-users are selected, the planning for the execution

of the RAINBOW approach should be defined. This planning may evidently

evolve later on, but an overall estimation of the duration of the tasks should

be done, and the appointments should be set for the training sessions.

Training the end-users

The last step before starting the drawing is to train the participant end-users.

This involves explaining the overall philosophy of the approach and familiaris-

ing them with the available widgets, their specification and the tool-support

that they will use to draw relevant form-based interfaces.

Getting a preliminary insight of the application domain

In parallel, using interviews, the analysts should be able to draw a first out-

line of the project and have a basic understanding of the subject, its main

objectives and possible challenges and conflicts. Any existing documentation

on the application domain and its process, as well as possible paper forms and

existing applications should be studied and made available for further refer-

ence. Similarly, listing the expected tasks the future system should support,

and defining their associated use cases [OMG, 2007], is helpful to direct the

end-users during their drawing.

5.3.2 Execution guidelines and recommendations

Once the preparation step is over, the drawing step may begin. The end-users

are invited to draw form-based interfaces to describe the key concepts of their

application domain and enabling them too perform simple and usual tasks,

such as a window to introduce a new registered customer into an hypothetical

system. They must provide details on the concepts through the previously

defined properties of the widgets. Based on the preliminary analysis led during

the preparation step, the analysts can advantageously guide the end-users by

precisely suggesting them key concepts and tasks, and assist them to use the

RFSM in their drawing work.

Let us keep in mind that the objective here is not to lead the end-users to

draw the interfaces of a future application, but to express requirements through

5.3.3. Assisting the end-users through the tool support 79

a medium that is familiar to them. To produce a set of form-based interfaces

I = {interface1, ..., interfacen} agreeing with the RAINBOW approach, we

recommend to respect the following recommendations:

• Respect the structure of the RSFM;

• Whenever possible, provide the maximum information for each interface

element, even if the latter is optional;

• Regarding the labelling the interface elements, in order to ensure expres-

siveness (and to ease the Investigation phase):

– one should use a structured concatenation of words, numbers and

separators (such as white spaces, commas, ...) rather than just any

series of characters;

– abbreviations and acronyms should be avoided;

– labels should be wisely and consistently chosen, typically to limit

the risks of synonymy and polysemy;

– two elements at the root of the same container (form, fieldset or

table) should not have the exactly same label: if necessary, use a

qualifier to differentiate the elements.

In Chapter 7, we will introduce mechanisms to particularly help unifying

the terminology of the widgets from the start, during this drawing phase.

5.3.3 Assisting the end-users through the tool support

The drawing phase should be performed using a dedicated drawing tool. For

this purpose, a proof-of-concept tool-support will be presented in Chapter 11.

Besides, we already mentioned that the analyst should assist the end-users

throughout this representation phase, in order to limit the risk of ambiguities

and inconsistencies.

5.4 Output

The output of the Represent phase is therefore a set of form-based interfaces

I = {interface1, ..., interfacen} using elements of the RSFM, and representing

various concepts that need to be analysed. We call EI the set of all the widgets

used in I.

80 Chapter 5. Represent

5.5 A running example

Let us consider a simple running example to illustrate the process: the context

is the development of a tailored IT solution to manage a small company that

offers Services and sales Products, including Special goods, through differ-

ent Shops. They wish to store information on their Providers and Customers,

including the Orders that they submitted. Fig. 5.10 illustrates forms that the

end-users might draw for this purpose. For instance, for each customer, per-

sonal information including his main and alternative addresses are stored, as

well as the list of orders that he issued. Each of these orders mention informa-

tion on the context of its creation, and list the associated list of products, and

so on. For the sake of further discussion, we consider that the forms do not

mention any unique, existence or prerequisite constraint.

Figure 5.10: Possible user-drawn form-based interfaces for the management of a
small company that offers services and sales products.

Chapter 6

ADAPT

Extracting data models from form-based interfaces

In this chapter, we address the automatic twofold translation of the previously

drawn form-based interfaces into their corresponding logical data model that

expresses its underlying data structure using the GER model, which paves

the way to using the transformational power of conceptual modelling later

on. For this purpose, we introduce the intuitive mapping rules that we use,

then formalise them into two consecutive algorithms to first perform a raw

transformation, then a refined transformation.

6.1 Intuitive mapping between the RSFM and the GER model

As explored in [Choobineh et al., 1992] or [Rollinson and Roberts, 1998], it is

possible to translate a form based-interface into a logical user interface model

that expresses its underlying data structure in an abstract way. We choose

to use the GER model, which was presented in Section 2.2.3 and is a wide-

spectrum variant of the popular Entity-relationship model that encompasses

logical and conceptual structures [Hainaut, 2005]. We can intuitively present

the mapping rules that we want to define as follows, and illustrate them for a

simple form in Fig. 6.1:

• we create one schema per form, then, within this schema:

• each form is mapped to an entity type;

• each fieldset is mapped to a single-valued compound attribute;

• each table is mapped to a multi-valued compound attribute;

81

82 Chapter 6. Adapt

• each input is mapped to a single-valued simple attribute;

• each selection is mapped to a simple attribute with a predefined domain

of values;

• each button is mapped to an procedural unit.

Figure 6.1: Illustration of the intuitive mapping rules for a simple form.

The resulting raw schemas contains only monolithic entity types, with pos-

sibly several levels of compound attributes. However, we would like to work

with refined schemas containing“flat”entity types (i.e. entity types having only

simple attributes), in order to ease the handling of the next steps of the ap-

proach. To obtain these simple “refined” entity types, the idea is to recursively

transform the compound attributes into entity types. Let us now formalise

both the raw and refined transformation process.

6.2 Raw transformation

The intuitive raw mapping rules of the previous section can be formalised as

follows. Given a set of form-based interfaces I = {interface1, ..., interfacen},
using a set EI of interface elements, we create a corresponding set of schemas

S = {schema1, ..., scheman} containing the data objects ES .

To achieve this, Algorithm 6.1 creates a schemai for each interfacei, then

creates an entityTypei within this schema. Then, it uses Algorithm 6.2 to cre-

ate its structure by creating the logical counterpart of each interface element ∈
EI into its logical parentdataobject.

6.2. Raw transformation 83

Algorithm 6.1 Adapt : extract the data model of each interface contained in
the set I
Require: I = {interface1, ..., interfacen} ∧ n > 0
Ensure: S = {schema1, ..., scheman} ∧ ∀i ∈ [1, n] : ∃entityTypei ∈ schemai

1: procedure represent(I)
2: S ← ∅
3: for all interfacei ∈ I do
4: schemai ← createSchema(S)
5: idi ← getId(interfacei)
6: labeli ← getLabel(interfacei)
7: termi ← getTerm(interfacei)
8: if term 6= null then
9: term← label

10: end if
11: qualifieri ← getQualifier(interfacei)
12: descriptioni ← getDescription(interfacei)
13: namei ← labeli
14: if qualifieri 6= null then
15: namei ← namei +′ (′+qualifieri+

′)′

16: end if
17: entityTypei ← createEntityType(schemai, namei)
18: directChildreni ← getDirectChildren(interfacei)
19: for all widgetj ∈ directChildreni do
20: representChild(widgetj , entityTypei) . See Algorithm 6.2 on page 84
21: end for

22: uniqueconstraintsi ← getUniqueConstraints(interfacei)
23: for all uniqueconstraintij ∈ uniqueconstraintsi do
24: uniquetypeij ← getUniqueType(uniqueconstraintij)
25: uniqueidsij ← getUniqueIds(uniqueconstraintij)
26: addUniqueConstraint(entityTypei, uniquetypeij , uniqueidsij)
27: end for

28: existenceconstraintsi ← getExistenceConstraints(interfacei)
29: for all existenceconstraintij ∈ I do
30: existencetypeij ← getExistenceType(existenceconstraintij)
31: existenceidsij ← getExistenceIds(existenceconstraintij)
32: addExistenceConstraint(entityTypei, existencetypeij , existenceidsij)
33: end for
34: storeMetaProperties(entityTypei, idi, labeli, termi, qualifieri,

descriptioni)
35: end for
36: end procedure

84 Chapter 6. Adapt

Algorithm 6.2 AdaptChildInto : extract the data object corresponding to a
given widget into the given parent data object (1/3)

Require: widget 6= ∅∧ widget ∈ EI∧ parentdataobject 6= ∅∧ parentdataobject ∈ ES
∧ getType(parentdataobject) ∈ {ENTITYTYPE, COMPOUNDATTRIBUTE}

Ensure: dataobject 6= ∅
∧ getParent(dataobject) = parentdataobject

1: procedure representChild(widget, parentdataobject)
2: id← getId(widget)
3: label← getLabel(widget)
4: term← getTerm(widget)
5: if term 6= null then
6: term← label
7: end if
8: qualifier ← getQualifier(widget)
9: description← getDescription(widget)

10: cardinality ← getCardinality(widget)
11: name← label
12: if qualifier 6= null then
13: name← name+′ (′+qualifier+′)′

14: end if
15: if widgetType = FIELDSET ∨ widgetType = TABLE then
16: if cardinality = optional then
17: minCard← 0
18: else
19: minCard← 1
20: end if
21: if widgetType = FIELDSET then
22: maxCard← 1
23: else . widgetType = TABLE

24: maxCard← N
25: end if
26: dataobject ← createCompoundAttribute(parentdataobject, name,

minCard, maxCard)
27: directChildren← getDirectChildren(widget)
28: for all widgetj ∈ directChildren do
29: representChild(widgetj , dataobject)
30: end for
31: distinctiveness← getDistinctiveness(widget)
32: uniqueconstraints← getUniqueConstraints(widget)
33: for all uniqueconstrainti ∈ uniqueconstraints do
34: uniquetypei ← getUniqueType(uniqueconstrainti)
35: uniqueidsi ← getUniqueIds(uniqueconstrainti)
36: addUniqueConstraint(dataobject, uniquetypei, uniqueidsi)
37: end for

. [continued on page 85]

6.2. Raw transformation 85

Algorithm 6.3 AdaptChildInto (2/3)

38: existenceconstraints← getExistenceConstraints(widget)
39: for all existenceconstrainti ∈ existenceconstraints do
40: existencetypei ← getExistenceType(existenceconstrainti)
41: existenceidsi ← getExistenceIds(existenceconstrainti)
42: addExistenceConstraint(dataobject, existencetypei, existenceidsi)
43: end for
44: prerequisiteids← getPrerequisiteConstraint(widget)
45: storeMetaProperties(dataobject, id, label, term, qualifier, description,

distinctiveness, prerequisiteids)
46: else if widgetType = INPUT ∨ widgetType = SELECT then
47: if widgetType = INPUT then
48: if cardinality = optional then
49: minCard← 0
50: else
51: minCard← 1
52: end if
53: maxCard← 1
54: else . widgetType = SELECT

55: if cardinality = at most one then
56: minCard← 0
57: maxCard← 1
58: else if cardinality = exactly one, then
59: minCard← 1
60: maxCard← 1
61: else if cardinality = at least one then
62: minCard← 0
63: maxCard← N
64: else
65: minCard← 1
66: maxCard← N
67: end if
68: end if
69: valueType← getValueType(widget)
70: valueSize← getValueSize(widget)
71: dataobject ←createSimpleAttribute(parentdataobject, name, minCard,

maxCard, valueType, valueSize)
72: formula←getFormula(widget)
73: prerequisiteids←getPrerequisiteConstraint(widget)
74: if widgetType = INPUT then
75: storeMetaProperties(dataobject, id, label, term, qualifier,

description, formula, prerequisiteids)
. [continued on page 86]

86 Chapter 6. Adapt

Algorithm 6.4 AdaptChildInto (3/3)

76: else . widgetType = SELECT

77: editability ←getEditability(widget)
78: options←getOptions(widget)
79: for all option ∈ options do
80: value←getValue(option)
81: addValueConstraint(dataobject, value)
82: end for
83: storeMetaProperties(dataobject, id, label, term, qualifier,

description, editability, formula, prerequisiteids)
84: end if
85: else . widgetType = BUTTON

86: proceduralunit←createProceduralUnit(parentdataobject, name)
87: actionDescriptions← ∅
88: actions←getActions(widget)
89: for all action ∈ actions do
90: actionDescription←getDescription(action)
91: actionDescriptions← actionDescriptions ∪ actionDescription
92: end for
93: storeMetaProperties(dataobject, id, label, term, qualifier, description,

actionDescriptions)
94: end if
95: end procedure

For this purpose, it uses the functions of FE , as defined in Section 5.2. It

also stores several meta properties into the logical elements, in order not to

lose any semantic information and to ensure traceability.

When applied to the form-based interfaces of Fig. 5.10, we obtain the

schemas and entity types depicted in Fig. 6.2. As we can for instance see,

the form Customer is mapped to an entity with the same name, while the

input First name is mapped to an atomic attribute First name, the fieldset

Address is mapped to a compound attribute Address, and so on.

6.3 Refined transformation

At this point, each interface of I is mapped to an entity type of one of the raw

schemas of S. Given the tree-like structure of the interfaces, the correspond-

ing entity types may contain compound attributes. However, in this doctoral

research, we want to work with a sub-model of the GER restricted to “flat”

entity types (i.e. entity types having only atomic attributes), binary relation-

ship types (i.e. relationship types having exactly two roles) and IS-A hierar-

chies. This restriction does not reduce the impact of the approach, since more

6.4. Managing the process and output 87

Figure 6.2: Translation of the interfaces into raw entity types.

complex structures can be converted into the latter using semantic-preserving

transformations.

In order to “flatten” the entity types, we use Algorithm 6.5 to recursively

extract each compound attribute from each individual entity type into another

entity type, which is an equivalence preserving transformation. The original

compound attributes are therefore “replaced” by a role referencing the newly

created entity type using the metaproperty targetEntityType.

We call EF the set of entity types corresponding to a given form F . The

complete data structure extraction of Fig. 5.10 therefore leads to the schemas

and entity types illustrated in Fig. 6.3.

6.4 Managing the process and output

This automatic process requires no input from the end-users, and produces a

set of schemas S = {schema1, ..., scheman} based on I = {interface1, ...,

interfacen}. Given the nature of the process, there is a injection between

EI and ES , so that any interface widget can be mapped to a unique logical

counterpart that is an entity type or a simple attribute, and conversely, any

entity type or simple attribute of the schemas can be mapped to a unique

widget.

88 Chapter 6. Adapt

Algorithm 6.5 Unfold : Adapt the schema by recursively transforming each
compound attributes

Require: entityType 6= ∅
∧ entityType ∈ schema

Ensure: @ e ∈ schema : getType(e) = COMPOUNDATTRIBUTE

1: procedure unfold(entityType)
2: for all element ei ∈ entityType do
3: if getType(ei) = COMPOUNDATTRIBUTE then
4: minCard1← getMinimumCardinality(ei)
5: maxCard1← getMaximumCardinality(ei)
6: isDistinctive← getMetaProperty(ei, distinctiveness)
7: if thenisDistinctive = true

8: minCard2← 1
9: maxCard2← 1

10: else
11: minCard2← 0
12: maxCard2← N
13: end if
14: idi ← getMetaProperty(ei, id)
15: labeli ← getMetaProperty(ei, label)
16: termi ← getMetaProperty(ei, term)
17: qualifieri ← getMetaProperty(ei, qualifier)
18: descriptioni ← getMetaProperty(ei, description)
19: namei ← getName(ei)
20: entityTypei ← createEntityType(schema, namei)
21: storeMetaProperties(entityTypei, idi, labeli, termi, qualifieri,

descriptioni)
22: removeAttribute(entityType, ei)
23: relTypei ← createRelationshipType(entityType, entityTypei)
24: setCardinalities(relTypei, minCard1, maxCard1, minCard2,

maxCard2)
25: rolei ← getRole(entityType, relTypei)
26: setMetaProperty(rolei, entityTypei, targetEntityType)
27: unfold(entityTypei)
28: end if
29: end for
30: end procedure

31: procedure adaptSchema(schema)
32: for all entityType ∈ schema do
33: unfold(entityType)
34: markAsRoot(entityType)
35: end for
36: end procedure

6.4. Managing the process and output 89

Figure 6.3: Translation of the raw entity types into independent schemas.

Chapter 7

INVESTIGATE

Analysing semantic and structural redundancies to manage commonality

Human-computer interfaces offer several levels of communication. For instance,

Nielsen identifies seven layers, among which analysing the static appearance of

a set of interfaces notably involves the semantics (the meaning of the expected

interactions), syntax (the anticipated sequence of necessary actions to perform

a task), lexical (the interaction tokens, such as labels and icons) and alpha-

betic (the primitive information units, such as letters, digits and colours) layers

[Nielsen, 1986]. So many levels may obviously induce equivocal interfaces open

to interpretation.

In particular, cross-analysing the individual schemas obtained by adapt-

ing the user-drawn forms usually brings to light possible ambiguities as well

as redundant information contained in each interface. If these redundancies

can be automatically identified and manually validated, they can be resolved

afterwards in order to synthesize and refine an integrated conceptual schema.

Typically, whereas we can observe that the constructs used by a single user are

relatively (though not necessarily) consistent among the interfaces he draws,

when considering multiple users, we notice that typical variabilities, ambigui-

ties and redundancies may occur. These phenomena may concern the various

properties of the widgets, such as the labels, qualifiers, descriptions, minimal

cardinality, maximal cardinality, value type, value size, or domain of values.

In the scope of this doctoral research, we focus on the widgets labels to

track down semantic and structural ambiguities, but the definitions and strate-

gies that we propose could intuitively be extended to take in account other

91

92 Chapter 7. Investigate

properties. In this chapter, we therefore formalise the definition of semantic

and structural similarity based on the labels of the widgets, then explain how

to discover and present them for end-user arbitration and further processing.

7.1 Terminological ambiguities

As explained in Section 3.4.1, terminological ambiguities occur when elements

of the schema are semantically similar, i.e. their name appear to be ortho-

graphically and/or ontologically similar. In our running example, the labels

“Orders” and “Order” are orthographically similar, while the labels “Provider”

and “Supplier” are ontologically similar, as illustrated in Fig. 7.1.

In this section, we therefore formalise these notions of semantic, ortho-

graphic and ontological similarities, then provide a strategy to discover such

similarities among the elements of the underlying schema of the forms before

presenting them to the end-users for validation.

7.1.1 Formalising the notions of similaritiy

Orthographic and ontological similarity for two strings

As explained in Section 3.4.1, String Metrics can be used to compare strings

according to their spelling. We can therefore define the orthographic similarity

of two strings as follows:

Definition 7.1. Given a String distance metric sdm and threshold t, we define

two strings l1 and l2 as orthographically similar with respect to sdm and t, iff

sdm(l1, l2) ≤ t. y

Besides, we also explained that Ontologies can be useful to track down

similarities of meaning among a set of words. They offer many information on

the concepts and their relations within a given domain, but in our research we

focus mainly on the proximity of meaning. In particular, for a given ontology

O, we consider the synonyms function sO that associates a given string l to its

set of synonyms in O, if any. For any l′ ∈ sO(l), we naturally have l ∈ sO(l′).

Definition 7.2. Given an ontology O and a synonyms function sO, we define

two strings l1 and l2 as ontologically similar with respect to O and sO, iff :

l1 ∈ sO(l2) y

7.1.1. Formalising the notions of similaritiy 93

Figure 7.1: Highlighting of the terminological ambiguities for the labels“Orders”and
“Order” (which are orthographically similar), and the labels “Provider”and“Supplier”
(which are ontologically similar).

Semantic similarity for two word-based terms

Though interface widgets are associated with visible labels, we are truly inter-

ested in the terms hiding behind the labels, since they represent the semantic

concepts conveyed by the widgets. Besides, if we recall the mapping rules of

Chapter 6, we know that if no specific term has been used to describe a widget,

the label is used as the default term. Let us therefore focus on the seman-

tic similarity of the terms used in the set I of form-based interfaces, and by

extension, their underlying set S of schemas.

Given the recommendations of the Represent phase (see Section 5.3.2), we

can reasonably assume that the terms (and labels) used by end-users in I
are not just arbitrary series of characters, but a systematic and structured

concatenation of words, numbers and separators (such as white spaces, commas,

...). This implies that two terms may not be orthographically or ontologically

similar as such, but that the words composing them could be.

Recall for instance the strings “Primary provider” and “Alternative sup-

plier” (see Section 3.4.1), that could be used as realistic terms in form-based

94 Chapter 7. Investigate

interfaces. They are not orthographically similar as such, and since they each

consist of the combination of an adjective and a noun, they can’t be found

as such in an ontology. This means that they won’t produce any synonyms,

and consequently, they can’t be be ontologically similar either. However, if we

consider the words composing them, we can find that “provider” and “supplier”

are synonyms, which should lead us to conclude that “Primary provider” and

“Alternative supplier” do seem semantically similar.

In order to improve the analysis of orthographic and ontological similarities

among the terms of I, we therefore need to break these terms into words in

order to consider them too. For this purpose, we consider the function w which

returns the set of words contained by a given string, typically by using the space

character as a separator. For instance, we have w(“product”) = {“product”}
and w(“first name”) = {“first”,“name”}.

Intuitively, we will therefore consider two terms t1 and t2 as semantically

similar if:

• t1 and t2 are orthographically or ontologically similar as such, or

• t1 is orthographically or ontologically similar to at least one of the words

of t2, or

• t2 is orthographically or ontologically similar to at least one of the words

of t1

• at least one of the words of t1 is orthographically or ontologically similar

to at least one of the words of t2.

In other words:

Definition 7.3. Given a string distance metric sdm and its associated thresh-

old tsdm, an ontology O and its synonyms function sO, we define two terms

t1 and t2 as semantically similar with respect to sdm, tsdm, O and sO (noted

ti
sdm,tsdm,O,sO⇐========⇒ tj), iff:

t1 and t2 are orthographically similar with respect to sdm and tsdm

∨ t1 and t2 are ontologically similar with respect to O and sO

∨ ∃w2i
∈ w(t2) : t1 and w2i

are orthographically similar with respect to sdm

and tsdm

∨ ∃w2i
∈ w(t2) : t1 and w2i

are ontologically similar with respect to O and sO

∨ ∃w1i ∈ w(t1) : t2 and w1i are orthographically similar with respect to sdm

and tsdm

7.1.1. Formalising the notions of similaritiy 95

∨ ∃w1i ∈ w(t1) : t2 and w1i are ontologically similar with respect to O and sO

∨ ∃w1i
∈ w(t1), w2i

∈ w(t2) : w1i
and w2i

are orthographically similar with

respect to sdm and tsdm

∨ ∃w1i ∈ w(t1), w2i ∈ w(t2) : w1i and w2i are ontologically similar with respect

to O and sO

y

Semantic similarity for a set of word-based terms

The definition of semantic similarity for two terms leads in turn to the definition

of equivalence classes within a given set of terms T , which we callsemantically

similar subsets of T . In such a subset Ti, each term is close enough from at

least one of the other terms, while being far enough from any term of another

subset Tj . More formally:

Definition 7.4. Given a string distance metric sdm and its associated thresh-

old tsdm, an ontologyO and its synonym function sO, the set Ti = {ti1 , ti2 , ..., tim}
⊆ T = {t1, t2, ..., tn} is a subset of semantically similar terms of T , with re-

spect to sdm, tsdm, O and sO, iff:

(n = 1 ∨ ∀ tij ∈ Ti,∃tik 6= tij ∈ Ti : tij
sdm,tsdm,O,sO⇐========⇒ tik)

∧(∀ tij ∈ Ti,@tk ∈ T \Ti : tij
sdm,tsdm,O,sO⇐========⇒ tk)

y

The set TT that contains all the Ti forms a partition of T , so that:

• ∀i 6= j : Ti ∩ Tj = ∅

•
⋃
i

Ti = T

Consider for instance the set of terms T = {“First Name”, “Last Name”,

“Primary provider”, “Alternative supplier”, “Address” }. The subsets T1 =

{“First Name”,“Last Name”}, T2 = {“Primary provider”,“Alternative supplier”}
and T3 = { “Address” } are semantically similar subsets of T and form a par-

tition for it.

96 Chapter 7. Investigate

7.1.2 Discovering terminological ambiguities

Building a thesaurus

In order to identify the semantically similar subsets of all the terms used in

the set of schemas S obtained through the Adapt phase, we start by building

a thesaurus. A thesaurus holds the mappings between terms, labels, qualifiers

and identifiers within a set of schemas. More formally:

Definition 7.5. For a given set of schemas S = {schema1, ..., scheman}, a

thesaurus τS contains mappings lτS and qτS so that:

• lτS (term) = {(labeli, {idij}) | ∀ i, j ∃ elementi,j,k ∈ schemak:

getId(elementi,j,k) =idij

getTerm(elementi,j,k)=term

getLabel(elementi,j,k)=labeli}

• lτS (term, label) = {idi | ∀ i ∃ elementi,j ∈ schemaj :

getId(elementi,j) =idi

getTerm(elementi,j)=term

getLabel(elementi,j)=label}

• qτS (term) = {(qualifieri, {idij}) | ∀ i, j ∃ elementi,j,k ∈ schemak:

getId(elementi,j,k) =idij

getTerm(elementi,j,k) =term

getQualifier(elementi,j,k)=qualifieri}

• qτS (term, qualifier) = {idi | ∀ i ∃ elementi,j ∈ schemaj :

getId(elementi,j) =idi

getTerm(elementi,j) =term

getQualifier(elementi,j)=qualifier}

y

To build the thesaurus τS , we use the procedure buildThesaurus of Algo-

rithm 7.1 on the set of schemas S obtained through the Adapt phase.

7.1.3. Submitting terminological ambiguities to end-users for arbitration 97

Algorithm 7.1 BuildThesaurus : Build the thesaurus of a given set of schemas

Require: S = {schema1, ..., scheman} ∧ ∀i ∈ [1, n] : ∃entityTypei ∈ schemai
Ensure: τS is a thesaurus for S

1: procedure buildThesaurus(S, τS)
2: reset(τS)
3: for all schemai ∈ S do
4: for all entityTypeij ∈ schemai do
5: addEntryToThesaurus(τS , entityTypeij) . See Algorithm 7.2 on

page 98
6: end for
7: end for
8: end procedure

Building the subsets of semantically similar terms

The thesaurus τS holds the set T of terms used in the user-drawn interfaces,

which we want to partition into subsets of semantically similar terms. To build

TT , the set of semantically similar subsets of T , we apply Algorithm 7.3 on

τS , using the string distance metric sdm, the threshold tsdm, the ontology O
and the synonyms function sO.

Applying this algorithm on the schemas of Fig. 6.3 would typically yield the

following relevant (i.e. containing more than one term) semantically similar

subsets :

• T1 = {“Code”, “Zip code”}
• T2 = {“Customer”, “Customer number”, “Vat number”, “Number”}
• T3 = {“Date”, “Hourly rate”}
• T4 = {“Name”, “First name”, “Last name”}
• T5 = {“Order”, “Orders”}
• T6 = {“Product”, “Products”}
• T7 = {“Provider (primary)”, “Supplier (secondary)”}

7.1.3 Submitting terminological ambiguities to end-users for arbi-

tration

Defining the subsets of semantically equivalent elements

Once the set T = {T1, T2, ...} has been built from τS , we can use the latter to

map any term tij ∈ Ti to its corresponding data elements, and furthermore,

to their interface widget counterparts. We can therefore visually point out the

98 Chapter 7. Investigate

Algorithm 7.2 AddEntryToThesaurus : Add an entry to a given thesaurus

Require: ∅
Ensure: τ contains the mappings lτ and qτ for the new element and its descendants,

if any.

1: procedure addEntryToThesaurus(τ, element)
2: id← getId(element)
3: label← getLabel(element)
4: term← getTerm(element)
5: qualifier ← getQualifier(element)
6: . Get the existing mappings for the labels
7: λ← lτ (term) . λ = {(labeli, {idij})}
8: ι← lτ (term, label) . ι = {idi}
9: . Update the mapped sets

10: λ← λ\{(label, ι)}
11: if ι = ∅ then
12: ι = {id}
13: else
14: ι = ι ∪ {id}
15: end if
16: λ← λ ∪ {(label, ι)}
17: . Update the mappings functions of the thesaurus
18: Ask> define: lτ (term, label) 7→ ι
19: Ask> define: lτ (term) 7→ λ
20: . Get the existing mappings for the qualifiers
21: λ← qτ (term) . λ = {(qualifieri, {idij})}
22: ι← qτ (term, qualifier) . ι = {idi}
23: . Update the mapped sets
24: λ← λ\{(qualifier, ι)}
25: if ι = ∅ then
26: ι = {id}
27: else
28: ι = ι ∪ {id}
29: end if
30: λ← λ ∪ {(qualifier, ι)}
31: . Update the mappings functions of the thesaurus
32: Ask> define: qτ (term, qualifier) 7→ ι
33: Ask> define: qτ (term) 7→ lambda
34: if getType(element) ∈ {ENTITYTYPE, COMPOUNDATTRIBUTE} then
35: children← getAttributes(element)
36: for all childi ∈ children do
37: addEntryToThesaurus(τ, childi)
38: end for
39: end if
40: end procedure

7.1.3. Submitting terminological ambiguities to end-users for arbitration 99

Algorithm 7.3 BuildSemanticallySimilarSubsets : Build the set T of seman-
tically similar subsets for a given thesaurus τ

Require: τ , sdm, tsdm, O and sO
Ensure: T contains the set of semantically similar subsets of τ with respect to sdm,

tsdm, O and sO

1: procedure BuildSemanticallySimilarSubsets(T ,τ ,sdm, tsdm, O, sO)
2: T ← {termsi | ∀i ∈ [0, n] : termsi ∈ τ}
3: T ← ∅
4: for i = 1 to n do . is there already a subset containing the current term?
5: if ∃ Tk ∈ T : ti ∈ Tk then
6: Ti ← Tk
7: else
8: Ti ← {ti}
9: T ← T ∪ {Ti}

10: end if
11: for j = i+ 1 to n do . for all the remaining terms...
12: if ∃ Tl ∈ T : tj ∈ Tl then
13: Tj ← Tl
14: else
15: Tj ← {tj}
16: end if
17: T ← T \Ti
18: T ← T \Tj
19: if ti

sdm,tsdm,O,sO⇐========⇒ tj then . ti and tj are semantically similar
20: Ti ← Ti ∪ Tj
21: T ← T ∪ {Ti}
22: else
23: T ← T ∪ {Ti} ∪ {Tj}
24: end if
25: end for
26: end for
27: end procedure

discovered similarities between concepts in the user-drawn interfaces, in order

to ask end-users to validate or reject them.

Indeed, each set of terms Ti ∈ TT has a corresponding set of logical elements

ESi ⊆ ES , which can be obtained using Algorithm 7.4. For our running example,

we can for instance highlight the elements associated with T1 as illustrated in

Fig. 7.2.

This task consists in deciding which semantic similarities are actually gen-

uine semantic equivalences, which we can define as follows.

100 Chapter 7. Investigate

Algorithm 7.4 GetSemanticallySimilarDataElements : Get the data elements
associated with a given a term contained in the given set of semantically similar
terms
Require: ∅
Ensure: ESi contains the set of logical elements associated with a given set of terms

1: procedure getSemanticallySimilarDataElements(Ti, ESi)
2: ESi ← {eij ∈ ES | getTerm(eij) ∈ Ti}
3: end procedure

Figure 7.2: Illustration of the set ES1 of the semantically similar elements, which
are associated with T1 = {“Code”, “Zip code”} for the running example.

7.1.3. Submitting terminological ambiguities to end-users for arbitration 101

Definition 7.6. Two widgets w1 and w2 (and by extension, their logical

counterpart elements e1 and e2) are said to be semantically equivalent (noted

w1 ≡ w2 and e1 ≡ e2 respectively) when it is agreed by the end-users and the

analysts that they represent the same concept. y

The validation therefore first consists in examining each Ti and its associated

ESi in order to define the subsets of semantically equivalent data elements.

More formally, we want to define E ′

Si = {E ′

Si1
, E ′

Si2
, ...} so that :

∀i, j, k : E
′

Sij
∩ E

′

Sik
= ∅

∀i :
⋃
j

E
′

Sij
= ESi

∀i, j, k : eij , eik ∈ E
′

Si ⇔ eij ≡ eik (7.1)

The widgets associated with T1 = {“Code”, “Zip code”} in Fig. 7.2 could

for instance be grouped into:

• ES11 = {e11 , e12 , e13 , e14} (corresponding to the widgets {w11 , w12 , w13 , w14})
• ES12 = {e15

, e16
, e17

, e18
} (corresponding to the widgets {w15

, w16
, w17

, w18
})

This would illustrate that the widgets of ES11 represent a same concept

different from the one of the widgets of ES12 . Coincidentally, the widgets of

ES11 and ES12 each bear the same terms, respectively “Code” and “Zip code”.

However, this is not necessarily always the case.

Consider for instance the subset T6 = {“Product”, “Products”} and its as-

sociated elements illustrated in Fig. 7.3. The arbitration could here lead to

a single subset ES61 = {e61
, e62
} of semantically equivalent elements bearing

different labels.

Defining unifying terms for semantically equivalent elements

Consequently, since each of these E ′

Sij
may be associated to several non exclu-

sive terms, we want to unify the terminology of these semantically equivalent

subsets by define a new unique term for each of them, so that we can partition

ES into Γ = {(t′i, E
′

i)} so that :

∀i, j : t
′

i 6= t
′

j

∀i, j : E
′

i ∩ E
′

j = ∅⋃
i

E
′

i = ES (7.2)

This distinctive term may be a new one or can be chosen among the terms

of τS . A new qualifier can also be assigned individually to put the elements of

102 Chapter 7. Investigate

Figure 7.3: Illustration of the set ES6 of the semantically similar elements, which
are associated with T6 = {“Product”, “Products”} for the running example.

a same E ′

Sij
back into context. The labels may also be updated to reflect the

new terms, but according to the circumstances (for instance, to indicate the

plurality), it might be preferable to keep the same label.

For our example, this could typically include unifying the terminology of

the widgets initially associated with the following terms:

• Order and Orders (T5) into Order, while keeping the label of Orders

unchanged;

• Product and Products (T6) into Product, while keeping the label of

Products unchanged;

• Provider and Supplier (T7) into Provider, while propagating the mod-

ification to the labels.

7.1.4 Processing the terminological decisions of the end-users

The final step of this update consists in updating the widgets, the schemas and

the mappings of thesaurus τS based on the new terminology Γ = {(t′i, E
′

i)}.
Each previously defined set E ′

Sij
may involve logical elements of different

natures, typically entity types and simple attributes. Given two non necessarily

distinct entity types e1 and e2, saying that a simple attribute a1i
of e1 is

semantically similar to e2 implies that a1i is actually a reference to the entity

type e2. This is typically the case for the term “Provider”, which is associated

with a form and two fieldsets, as illustrated in Fig. 5.10.

We therefore need to update the form w1 associated to e1, as well as its

underlying data model to acknowledge this information. This implies removing

7.1.4. Processing the terminological decisions of the end-users 103

the widget w1i
associated with a1i

from wi, replacing it with a container w
′

1i

associated with a same term, then inserting w1i into w
′

1i
after giving it a new

term, which ideally should be the term of one of the widgets of the form w2

associated to e2. This procedure can be formalised into Algorithm 7.5.

Algorithm 7.5 TransformReferentialElement : Transform a referential ele-
ment into an entity type

Require: getType(e1 = ATTRIBUTE)∧getType(e2 = ENTITYTYPE)
∧∃w1, w2 corresponding to e1, e2

Ensure: ∅

1: procedure transformReferentialElement(e1, e2, w1, w2)
2: w1p ← getParent(w1)
3: removeChild(w1p , w1)

4: w
′
1 ← null

5: while w
′
1 = null ∨ getType(w

′
1 /∈ [FIELDSET,TABLE]) do

6: Ask> define: (w
′
1) . define a new container and its properties

7: setTerm(w
′
1, getTerm(w2))

8: setLabel(w
′
1, getLabel(w2))

9: setQualifier(w
′
1, getQualifier(w2))

10: end while
11: while ∃w ∈ getDirectChildren(w1p) : ((getTerm(w) = getTerm(w

′
1) ∧

getQualifier(w) = getQualifier(w
′
1)) ∨ (getLabel(w) = getLabel(w

′
1) ∧

getQualifier(w) = getQualifier(w
′
1))) do

12: Ask> define: (q
′
1) . define an alternative qualifier to prevent widgets with

the same combinations
13: setQualifier(w

′
1, q

′
1)

14: end while
15: Ask> define: (t1, l1, q1) . define the new properties for the original referential

widget
16: setTerm(w1, t1)
17: setLabel(w1, l1)
18: setQualifier(w1, q1)

19: addChild(w
′
1, w1)

20: addChild(w1p , w
′
1)

21: unfold(w1p) . see Algorithm 6.5 on page 88
22: end procedure

In our case, this would imply replacing the inputs Provider (primary) and

Provider (secondary) of the form Product by two fieldsets, each containing

an input named Name.

The whole validation process can hence be described by Algorithm 7.6, and

as can be observed, it implies that all the semantically equivalent elements of the

schemas now bear the same term, and vice-versa. Moreover, logical elements

104 Chapter 7. Investigate

can now only be semantically equivalent to elements of the same nature (simple

attributes with simple attributes and entity types with entity types).

Fig. 7.4 illustrates the update of the forms, while Fig. 7.5 illustrates the

update of the schemas for our running example.

Figure 7.4: The updated forms of the example after the validation of the semantic
redundancies.

7.1.5 Choosing appropriate String Metrics

The principles of our approach are generic and need to be instantiated using

appropriate Strings Metrics and Ontologies.

Among available String metrics, we choose to work around Jaro-Winkler’s

metrics [Winkler, 1990], which has proven to be a good fit for short strings.

Jaro-Winkler’s metrics uses a prefix scale p which gives more favourable ratings

to strings that match from the beginning for a set prefix length `. Given two

strings l1 and l2, their Jaro-Winkler’s similarity index djw1,2
is calculated as

7.1.5. Choosing appropriate String Metrics 105

Algorithm 7.6 ValidateSemanticSimilarities : Validate the semantically sim-
ilar subsets of a given thesaurus

Require: ∅
Ensure: ∅

1: procedure validateSemanticSimilarities(τ ,sdm, tsdm, O, sO)
2: buildThesaurus(S, τ)
3: buildSemanticallySimilarSubsets(T , τ, sdm, tsdm,O, sO)
4: for all Ti ∈ T do
5: getSemanticallySimilarDataElements(Ti, ESi)
6: Ask> define: (E

′
Si) . define the semantically equivalent subsets based on

Ti and ESi
7: end for
8: T

′
← ∅

9: Γ← ∅
10: for all E

′
Sij
∈
⋃
i

{E
′
Si} do

11: t
′
ij ← null

12: while t
′
ij = null ∨ t

′
ij ∈ T

′
do

13: Ask> define: (t
′
ij) . define a unique term

14: end while
15: for all eijk ∈ E

′
Sij

do

16: setMetaproperty(eijk , t
′
ij , term)

17: setTerm(wijk , t
′
ij)

18: if relevant then
19: Ask> define: (l

′
ij)

20: setMetaproperty(eijk , l
′
ij , label)

21: setLabel(wijk , l
′
ij)

22: end if
23: if necessary then
24: Ask> define: (q

′
ij)

25: setMetaproperty(eijk , q
′
ij , qualifier)

26: setQualifier(wijk , q
′
ij)

27: end if
28: if getType(eijk = ATTRIBUTE) ∧ (∃eijl ∈ E

′
Sij
|getType(eijl) =

ENTITYTYPE) then
29: transformReferentialElement(eijk , eijl , wijk , wijl)
30: end if
31: end for
32: T

′
← T

′
∪ {t

′
ij}

33: Γ = Γ ∪ {(t
′
ij , E

′
Sij

)}
34: end for
35: buildThesaurus(S, τ)
36: end procedure

106 Chapter 7. Investigate

Figure 7.5: The updated schemas of the example after the validation of the semantic
redundancies.

follows:

djw(l1, l2) = dj(l1, l2) + (`p(1− dj(l1, l2))) (7.3)

where:

• dj1,2 is the Jaro similarity index for strings l1 and l2:

dj(l1, l2) =
1

3

(
m1,2

|l1|
+
m1,2

|l2|
+
m1,2 − t1,2

m1,2

)
(7.4)

where:

– m1,2 is the number of matching characters between l1 and l2;

– t1,2 is the number of transpositions between l1 and l2.

• ` is the length of common prefix at the start of the string up to a maximum

of 4 characters;

• p is a constant scaling factor for how much the score is adjusted upwards

for having common prefixes. The standard value for this constant in

Winkler’s work is p = 0.1

7.1.5. Choosing appropriate String Metrics 107

Since Jaro-Winkler’s metrics is actually a similarity index ranging from 0

(different) to 1 (equal) and that we want to agree with Definition 7.1, we need

to adapt this metrics so that its smaller scores correspond to higher similarities.

For this purpose, we define the Jaro-Winkler’s inverted similarity index djwi
for two strings l1 and l2 as follows:

djwi(l1, l2) = 1− djw(l1, l2) (7.5)

Since the longest common prefix impacts the similarity index, we observe

that comparing reversed strings may yield better results in certain cases. For

instance, Table 7.1 shows Jaro-Winkler’s inverted similarity index applied to

the strings “Name”, “First Name”, “Last Name”, “Family Name” and their re-

versed version. We can notably see that that“Name”and“Last Name”are much

closer (0.19) in their reversed versions that in their normal versions (0.55).

Label 1 Label 2 djwi Label 1 bis Label 2 bis djwi
Name Name 0 Eman Eman 0

Name First Name 1 Eman Eman tsrif 0.2

Name Last Name 0.55 Eman Eman tsal 0.19

Name Family Name 0.44 Eman Eman ylimaf 0.21

First Name Last Name 0.17 Eman tsrif Eman tsal 0.17

First Name Family Name 0.2 Eman tsrif Eman ylimaf 0.22

Last Name Family Name 0.25 Eman tsal Eman ylimaf 0.25

Table 7.1: Jaro-Winkler’s inverted similarity index (djwi) applied to example strings
and their reversed version.

In order to take in account these observations, we therefore define the Jaro-

Winkler-based similarity index djwb for two labels l1 and l2, as follows:

djwb(l1, l2) = Minimum(djwi(l1, l2), d
′

jwi(l1, l2)) (7.6)

where d
′

jwi is Jaro-Winkler’s inverted similarity index applied to the reversed

version of the labels l1 and l2.

And since we observed that tjwb = 0.2 was a reasonable threshold, we

define two labels s1 and s2 as orthographically similar with respect to Jaro-

Winkler-based similarity index, iff djwb(s1, s2) ≤ tjwb.

108 Chapter 7. Investigate

7.1.6 Choosing appropriate Ontologies

Besides, to investigate the ontological aspect, and more precisely the synonymy

issue, we choose to take advantage of WordNet [Fellbaum, 1998], which is not

precisely an ontological tool, but nevertheless an English non domain-specific

orthographical reference system, handling nouns, verbs, adjectives and adverbs,

and providing definitions, synonyms and hypernyms (i.e. generalisation of

words).

7.1.7 Reducing terminological redundancies

In order to reduce the semantic redundancies upstream, i.e. during the drawing

phase, we can take advantage of our definition of semantic similarity to provide

an on-the-fly terminology suggester and analyser. When inserting a new widget

or editing an existing one, the suggester automatically proposes possible terms,

labels and qualifiers based on the existing terminology. If the user chooses to

provide his own term, label and qualifier, the analyser compares them to the

existing terminology to detect possible similarities and ask the user for direct

arbitration. This can help to reduce typing mistakes and the use of synonyms

in order to unify the terminology from the start.

7.2 Structural ambiguities

The second type of similarity that may occur is the structural similarity. Typ-

ically, we can observe that interface containers (i.e. forms, fieldsets or tables)

bearing different labels may contain interface elements who share semantically

similar labels. This is for instance the case for:

• the fieldsets Address, the fieldset Location and the form Provider, who

all share at least Street, Zip Code and City (Fig. 7.6);

• the forms Customer and Order, who share First Name and Last Name

(Fig. 7.7);

• the forms Product, Special good and Service, who all share at least

Code and Description (Fig. 7.8).

Intuitively, given the chain of transformations that we went through, one

may sense that at the logical level, such redundancies involve entity types as-

sociated to interface containers (i.e. interfaces, fieldsets and tables) and having

semantically similar attributes, as well as relationships with other semantically

similar entity types (Fig. 7.9). This implies looking for patterns across the

schemas of S, which could lead to merging or connecting different concepts.

7.2.1. Formalising the notion of structural similarity 109

Figure 7.6: The fieldsets Address, the fieldset Location and the form Provider,
who all share at least the widgets Street, Zip Code and City in our running example.

7.2.1 Formalising the notion of structural similarity

Most common cases of structural similarity

Intuitively, two entity types are said to be structurally similar if they have

attributes bearing the same name and/or roles in relationship types involving

the same target entity types. Consider for instance the two entity types E1

and E2 of Fig. 7.10(a), which share the attributes A and B (the following

principles are the same for shared roles). Let us recall that, as mentioned in

110 Chapter 7. Investigate

Section 3.4.1, the signification of their structural similarity can be classified

among the following most common cases:

• equality : The two entity types represent the same concept, but went

undetected during the semantic analysis. This is typically the case of

Address and Location. Such entity types should be merged into a single

concept (Fig. 7.10(b)).

• specialisation : One of the two elements is a specialisation of the other

(Fig. 7.10(d)), such as a Seasonal good that can be seen as a specialised

Product.

• union : The two entity types partially represent the same concept, and

could be seen as specialising a higher concept non explicitly expressed

(Fig. 7.10(c)). For instance, one could argue that a Product and a Ser-

vice are specialisations of the concept of Solution.

• complementarity : One of the two entity types actually refers to the

other (Fig. 7.10(e)). This is typically the case of Order which refers to

Customer, or Provider which refers to Address.

• difference : Finally, two entity types can also fortuitously share a same

of attributes, while being intrinsically different. For instance, a Subcon-

tractor and a Supplier may share properties such as Name and Address,

but they represent different concepts.

Figure 7.7: The forms Product, Special good and Service, who all share at least
the widgets Code and Description in our running example.

Attribute and role pattern for two entity types

As we have seen, the structural similarity of two entity types actually relies

on the semantically equivalent attributes that they have in common, as well as

the semantically equivalent entity types with which they have a relationship.

7.2.1. Formalising the notion of structural similarity 111

Figure 7.8: The forms Customer and Order, who share the widgets First Name and
Last Name in our running example.

Regarding the attributes, a pattern can be defined as a bijection between two

sets of attributes belonging to a different entity type. More formally:

Definition 7.7. Given two entity types e1 and e2, and their associated sets of

attributes A1 and A2, p = {(A11
,A21

), ..., (A1n
,A2n

)} is an attribute pattern

of n for e1 and e2 iff:

∀i ∈ [1, 2], j ∈ [1, n] : Aij ⊆ Ai
∀i ∈ [1, 2], j, k ∈ [1, n] : Aij ∩ Aik = ∅
∀i ∈ [1, 2], j ∈ [1, n] : aijk , aijl ∈ Aij ⇒ aijk ≡ aijl
∀i ∈ [1, 2], j ∈ [1, n] : aijk ∈ Aij ∧ al ∈ Ai\Aij ⇒ aijk 6≡ al
∀j ∈ [1, n] : a1jk

∈ A1j ∧ a2jl
∈ A2j ⇒ a1jk

≡ a2jl

y

Until now, we only considered the semantic equivalence of entity types and

attributes. Let us now define it for roles as well.

112 Chapter 7. Investigate

Figure 7.9: The structural redundancies within the schemas corresponding to the
forms illustrated in Fig. 7.6, Fig. 7.7 and Fig. 7.8.

Figure 7.10: Typical cases of structural similarity.

Definition 7.8. Two roles r1 and r2, respectively played by entity types e1

and e2, are said to be semantically equivalent (noted r1 ≡ r2) iff er1 ≡ er2 , with

eri being the entity type associated to ei through the relationship involving the

role ri y

In the scope of our research, we will actually consider that:

eri = getMetaproperty(ri, targetEntityType)

in order to focus on the logical counterparts of referential widgets. We can

therefore have eri = null if that metaproperty has not been set for ri.

7.2.1. Formalising the notion of structural similarity 113

As for the attributes, a role pattern can therefore be defined as a bijection

between sets of semantically equivalent roles being played by different entity

types. More formally:

Definition 7.9. Given two entity types e1 and e2, and their associated sets

of roles R1 and R2, p = {(R11
,R21

), ..., (R1n
,R2n

)} is a role pattern of size n

for e1 and e2 iff:

∀i ∈ [1, 2], j ∈ [1, n] : Rij ⊆ Ri
∀i ∈ [1, 2], j, k ∈ [1, n] : Rij ∩Rik = ∅
∀i ∈ [1, 2], j ∈ [1, n] : rijk , rijl ∈ Rij ⇒ rijk ≡ rijl
∀i ∈ [1, 2], j ∈ [1, n] : rijk ∈ Rij ∧ rl ∈ Ri\Rij ⇒ rijk 6≡ rl
∀j ∈ [1, n] : r1jk

∈ R1j
∧ r2jl

∈ R2j
⇒ r1jk

≡ r2jl

y

Coincidentally, semantically equivalent attributes and entity types can be

asserted easily, thanks to the previous terminological investigation. Indeed,

thanks to the partition Γ of the elements of ES , all the equivalent elements

bear the same term.

Consider for instance the schemas depicted in Figure 7.11, with the entity

types e1, e2, e3 and e4, respectively named “Clerk”, “Shop Assistant”, “Direc-

tor” and “Sales Representative”. The entity types e1 and e2 have the sets of

attributes A1 = {a11 , a12 , a13} and A2 = {a21 , a22 , a23}, as well as the sets of

roles R1 = {r11 , r12 , r13 , r14 , r15} and R2 = {r21 , r22 , r23}.
These two entity types therefore share the following attribute and role pat-

terns:

• p1 = {({a11
}, {a21

})}, which involves the term “First Name”;

• p2 = {({a12
}, {a22

})}, which involves the term “Last Name”;

• p3 = {({a11
}, {a21

}), ({a12
}, {a22

})}, which involves the terms “First

Name” and “Last Name”;

• p4 = {({r11
}, {r21

})}, which involves the entity type named “Branch”;

• p5 = {({r12
}, {r22

})}, which involves the entity type named “Status”;

• p6 = {({r11
}, {r21

}), ({r12
}, {r22

})}, which involves the entity types named

“Branch” and “Status”.

Component pattern and structural similarity for two entity types

Based on the definitions of attribute and role patterns, we can now define the

notion of component pattern for two entity types.

114 Chapter 7. Investigate

Figure 7.11: A few example schemas illustrating different patterns.

Definition 7.10. Given two entity types e1 and e2, their associated sets of

components C1 = A1 ∪R1 and C2 = A2 ∪R2, p = {(C11
, C21

), ..., (C1n
, C2n

)} is

a component pattern of size n for e1 and e2 iff:

∀i ∈ [1, 2], j ∈ [1, n] : Cij ⊆ Ci
∀i ∈ [1, 2], j, k ∈ [1, n] : Cij ∩ Cik = ∅
∀i ∈ [1, 2], j ∈ [1, n] : cijk , cijl ∈ Cij ⇒ cijk ≡ cijl
∀i ∈ [1, 2], j ∈ [1, n] : cijk ∈ Cij ∧ cl ∈ Ci\Cij ⇒ cijk 6≡ cl
∀j ∈ [1, n] : c1jk

∈ C1j
∧ c2jl

∈ C2j
⇒ c1jk

≡ c2jl

y

We also define the components of a pattern and the pattern components of

an entity type as follows.

Definition 7.11. Given a component pattern p = {(C11
, C21

), ..., (C1n
, C2n

)}
for two entity types e1 and e2 and their associated sets of components C1 and

C2, the set of the components of the pattern p is defined as:

Cp = {c | ∃i ∈ [1, 2], j ∈ [1, n] : c ∈ Cij}

7.2.1. Formalising the notion of structural similarity 115

y

Definition 7.12. Given a component pattern p for two entity types ei and ej
and their associated sets of components Cp, Ci and Cj , the set of the pattern’s

components for the entity type ei is defined as:

Cpi = {c | c ∈ Ci ∩ Cp}

y

In the example of Fig. 7.11, the pattern p7 = {({a21
}, {a41

}), ({a22
}, {a42

}),
({a23

}, {a43
})({r21

}, {r41
}), ({r22

}, {r42
}), ({r23

}, {r43
})} is a component pat-

tern of size 6 for the entity types e2 (Shop assistant) and e4 (Sales repre-

sentative).

Subsequently, we can define the maximal pattern for two entity types e1

and e2 as the largest pattern for these entity types, which is unique since

the definition of a component pattern relies on semantic equivalence. More

formally:

Definition 7.13. Given two entity types e1 and e2, their associated sets of

components C1 and C2, and P1,2 the set of all the components patterns for e1

and e2, ρ̃1,2 ∈ P1,2 is said to be the maximal component pattern for e1 and e2

iff:

∀p 6= ρ̃1,2 ∈ P1,2 : |p| < |ρ̃1,2|

y

In our example, p7 is therefore the maximal component pattern for the

entity types e2 (Shop assistant) and e4 (Sales representative).

Intuitively, we will therefore consider two entity types e1 and e2 as struc-

turally similar if their component maximal pattern is not null. More formally:

Definition 7.14. Two entity types e1 and e2 are said to be structurally similar

to the degree n (noted e1
n
! e2), iff |ρ̃1,2| = n. y

Structural similarity for a set of entity types

By extension, we can also define the notion of a pattern for a set of entity

types, which is basically a pattern that occurs between any pair of these entity

types. More formally:

116 Chapter 7. Investigate

Definition 7.15. Given a set of entity types E = {e1, ..., em}, and their asso-

ciated sets of components C1, ..., Cm, p = {(C11 , ..., Cm1), ..., (C1n , ..., Cmn)} is a

component pattern of size n for E iff:

∀i ∈ [1,m], j ∈ [1, n] : Cij ⊆ Ci
∀i ∈ [1,m], j, k ∈ [1, n] : Cij ∩ Cik = ∅
∀i, j ∈ [1,m] : p = {(Ci1 , Cj1), ..., (Cin , Cjn)} ∈ Pi,j

y

Similarly to pairs of entity types, we also define the components of a pattern

and the pattern components of an entity type as follow.

Definition 7.16. Given a component pattern p = {(C11 , ..., Cm1), ..., (C1n , ..., Cmn)}
for a set of entity types E = {e1, ..., em} and their associated sets of components

C1, ..., Cm, the set of the components of the pattern p is defined as:

Cp = {c | ∃i ∈ [1,m], j ∈ [1, n] : c ∈ Cij}

y

Definition 7.17. Given a component pattern p (with the components Cp) for

a set of entity types E containing ei (with the components Ci), the set of the

pattern’s components for the entity type ei is defined as:

Cpi = {c | c ∈ Ci ∩ Cp}

y

In our example, p = {({a11
}, {a21

}, {a31
}, {a41

}), ({a12
}, {a22

}, {a32
}, {a42

}),
({r11

}, {r21
}, {r31

}, {r41
})}, which is based on the attributes named “First

Name” and “Last Name” and the roles involved with the entity types named

“Branch”, is a component pattern of size 3 for E = {e1, e2, e3, e4}.
Subsequently, we can also define the maximal pattern for a set of entity

types E, as the largest pattern for this set of entity types. More formally:

Definition 7.18. Given a set of entity types E, and PE the set of all the

component patterns for E, ρ̃E ∈ PE is said to be the maximal component

pattern for E iff:

∀p 6= ρ̃E ∈ PE : |p| < |ρ̃E|

y

7.2.2. Discovering structural ambiguities 117

In our example, p = {({a11
}, {a21

}, {a31
}, {a41

}), ({a12
}, {a22

}, {a32
},

{a42}), ({r11}, {r21}, {r31}, {r41}), ({r12}, {r22}, {r32}, {r42})}, which is based

on the attributes named “First Name” and “Last Name” and the roles involved

with the entity types named “Branch” and “Status”, is the maximal component

pattern for E = {e1, e2, e3, e4}.
The definition of structural similarity for a set of entity types leads in turn

to the definition of structurally similar subsets within a given set of entity types.

In such a subset Ei, all the entity types are structurally close enough from at

least another entity type of the set, while being structurally different from any

other entity type. More formally:

Definition 7.19. Given a set of entity types E, Ei = {ei1 , ..., eim} ⊆ E is a

subset of structurally similar entity types of E, iff:

(m = 1 ∨ ∀ eij ∈ Ei, ∃ eik 6= eij ∈ Ei : eij
n
! eik ∧ n > 0)

∧(∀ eij ∈ Ei, @ ek ∈ E\Ei : eij
n
! ek ∧ n > 0)

y

The set EE that contains all the Ei forms a partition of E, so that:

• ∀i 6= j : Ei ∩ Ej = ∅
•
⋃
i

Ei = E

Consider for instance the set E containing the entity types highlighted in

Fig. 7.9. The following sets E1, E2 and E3 form a partition of E:

• E1 = { Customer, Order }
• E2 = { Address, Address (alternative), Location, Provider }
• E3 = { Product, Special good, Service }

7.2.2 Discovering structural ambiguities

In order to build the subset of structurally similar entity types of a given set

E while storing the maximal pattern between each entity types, we need to

analyse the structure of these entity types.

As explained in Section 3.4.1, the structure of user-drawn interfaces is usu-

ally quite simple, which implies that traditional tree mining algorithms prove

inappropriate. Instead of putting in motion such heavy algorithms, we there-

fore propose to adopt a simpler approach that consists in comparing one by

one each entity types in terms of attributes and directly related entity types.

For this purpose, we use Algorithm 7.7 to build the set of maximal patterns

ΦE = {ρ̃i,j} for each pair of ei, ej and the set EE of structurally similar subsets

of E.

118 Chapter 7. Investigate

Algorithm 7.7 BuildPatternsSet : Mine maximal patterns

Require: E = {e1, ..., en}
Ensure: ΦE is the set of all the maximal component patterns of E
∧EE is the set of the structurally similar subsets of E

1: procedure buildPatternsSet(E, ΦE, EE)
2: ΦE ← ∅
3: EE ← ∅
4: for i = 1 to n do . is there already a subset containing the current entity

type?
5: if ∃ Ek ∈ EE : ei ∈ Ek then
6: Ei ← Ek
7: else
8: Ei ← {ei}
9: EE ← EE ∪ {Ei}

10: end if
11: for j = i+ 1 to n do . for all the remaining entity types...
12: if ∃ El ∈ E : ej ∈ El then
13: Ej ← El
14: else
15: Ej ← {ej}
16: end if
17: EE ← EE\Ei
18: EE ← EE\Ej
19: if ei

n
! ej ∧ n > 0 then . ei and ej are structurally similar

20: Ei ← Ei ∪ Ej
21: EE ← EE ∪ {Ei}
22: else
23: EE ← EE ∪ {Ei} ∪ {Ej}
24: end if
25: ΦE ← ΦE ∪ {ρ̃i,j} . store the maximal pattern anyway
26: end for
27: end for
28: end procedure

7.2.3 Submitting structural ambiguities to the end-users for arbi-

tration

Once the sets ΦE = {ρ̃i,j} and EE have been built from all the entity types

contained in S, we can visually point out the discovered similarities in the user-

drawn interfaces, in order ask the end-users to to validate or reject them, as in

Fig. 7.6, Fig. 7.7 and Fig. 7.8.

The validation process therefore consists in examining each maximal pattern

ρ̃ij ,ik discovered and its associated pair of entity types eij and eik with regards

to the structurally similar subset Ei ⊆ EE to which they belong, in order to

7.2.3. Submitting structural ambiguities to the end-users for arbitration 119

specify the nature of their relation, as defined in Section 7.2.1:

• eij equals eik (noted eij
e

� eik)

• eij specialises eik (noted eij
s
⇒ eik , or conversely eik

s
⇒ eij)

• eij unites with eik (noted eij
u
� eik)

• eij complements eik (noted eij
c
⇒ eik , or conversely eik

c
⇒ eij)

• difference : eij
e

6� eik

Defining semantically equivalent subsets of entity types

For this purpose, we first need to ask the end-users to elicit the semantically

equivalent subsets of Ei and assigning them a unifying term. By doing so, we

actually define the subsets of entity types that are equal, as well as the concepts

they represent. More formally, we want the end-users to specify E
′

i so that it

concurs with the following definition:

Definition 7.20. Given a set Ei of structurally equivalent entity types, the set

E eq
i = {E eq

i1
,E eq
i2
, ...} is the set of the semantically equivalent subsets of Ei iff;

∀i, j, k : E eq
ij
∩ E eq

ik
= ∅

∀i :
⋃
j

E eq
ij

= Ei

∀i, j, k, l : eijk , eijl ∈ E eq
ij
⇔ eijk

e

� eijl (i.e. eijk ≡ eijl)

y

Note that these E eq
i and their associated term teqij defines a partition of E

into Υeq = {(teqij ,E
eq
ij

)}, so that :

∀i, j, k : teqij 6= teqik

∀i, j, k : E eq
ij
∩ E eq

ik
= ∅⋃

i,j

E eq
ij

= E (7.7)

If we consider again the set E containing the entity types highlighted in

Fig. 7.9, we could for instance obtain the following subsets:

• E eq
1 = { {Customer}, {Order} }

• E eq
2 = { {Address, Address (alternative), Location}, {Provider} }

• E eq
3 = { {Product}, {Special good}, {Service} }

with teq21
= “Address”.

120 Chapter 7. Investigate

Defining union of subsets of entity types

Once these concepts are defined, we proceed with the specification of the pos-

sible unions between pairs of concepts conveyed by any E
′

ij
, E

′

ik
∈ E

′

i , and we

assign a term to their underlying parent concept. More formally, we want the

end-users to specify E un
i so that it concurs with the following definition:

Definition 7.21. Given a set Ei of structurally equivalent entity types and its

associated set E eq
i of semantically equivalent subsets, the set E un

i = {E un
i1
,E un
i2
, ...}

is the set of the unions of semantically equivalent subsets of Ei iff;

∀i, j, k : E un
ij ∩ E un

ik
= ∅

∀i :
⋃
j

E un
ij = E eq

i

∀i, j, k, l : eijk , eijl ∈ E un
ij ⇔ eijk

u

� eijl

y

Note that these E un
i and their associated term tunij defines a partition of E

into Υun = {(tunij ,E
un
ij

)}, so that :

∀i, j, k : tunij 6= tunik

∀i, j, k : E un
ij ∩ E un

ik
= ∅⋃

i,j

E un
ij = E (7.8)

For the set E of the entity types highlighted in Fig. 7.9, we could for instance

obtain the following subsets:

• E un
1 = {{{Customer}}, {{Order}}}

• E un
2 = {{{Address, Address(alternative), Location}}, {{Provider}}}

• E un
3 = {{{Product}, {Service}}, {{Special good}}}

with teq31
= “Solution”.

Defining specialisation among subsets or unions of entity types

Then, we carry on by eliciting the possible specialisations between pairs of

concepts conveyed by any E
′

ij
, E

′

ik
∈ E

′

i or their parent concept. More formally,

we want the end-users to specify E sp
i so that it concurs with the following

definition:

7.2.3. Submitting structural ambiguities to the end-users for arbitration 121

Definition 7.22. Given a set Ei of structurally equivalent entity types, its

associated sets E eq
i and E un

i1
, the set E sp

i = {(αi1 , βi1), (αi2 , βi2), ...} is the set

of the specialisations of Ei iff;

∀i, j : (αij ∈ E eq
i ∨ αij ∈ E un

i) ∧ (βij ∈ E eq
i ∨ βij ∈ E un

i)

∀i, j, k, l : eijk ∈ αij , eijl ∈ βij ⇔ eijk

s
⇒ eijl

y

For the set E of the entity types highlighted in Fig. 7.9, we could for instance

obtain the following subsets:

• E sp
1 = ∅

• E sp
2 = ∅

• E sp
3 = {({Special good}, {Product})}

Defining complementarity among subsets or unions of entity types

And finally, we end by specifying the possible complementarities between pairs

of concepts conveyed by any E
′

ij
, E

′

ik
∈ E

′

i or their parent concept. More

formally, we want the end-users to specify E cp
i so that it concurs with the

following definition:

Definition 7.23. Given a set Ei of structurally equivalent entity types, its

associated sets E eq
i and E un

i1
, the set E cp

i = {(αi1 , βi1), (αi2 , βi2), ...} is the set

of the complementarities of Ei iff;

∀i, j : (αij ∈ E eq
i ∨ αij ∈ E un

i) ∧ (βij ∈ E eq
i ∨ βij ∈ E un

i)

∀i, j, k, l : eijk ∈ αij , eijl ∈ βij ⇔ eijk

c
⇒ eijl

y

For the set E of the entity types highlighted in Fig. 7.9, we could for instance

obtain the following subsets:

• E cp
1 = {({Order}, {Customer})}

• E cp
2 = {({Provider}, {Address, Address(alternative), Location})}

• E cp
3 = ∅

Preventing stalemates

One of the major risks during this process is to gather conflictual or prob-

lematic decisions that would lead to a stalemate. Consider for instance three

122 Chapter 7. Investigate

entity types e1, e2 and e3. Declaring that e1 and e2 are equivalent, but that

e1 specialises e3 while e2 is specialised by e3 intuitively creates a puzzling sit-

uation with a hierarchical cycle. Fig. 7.12 illustrates such a situation, with

Individual and Person being equivalent, while respectively specialising and

being specialised by Customer.

Figure 7.12: A problematic situation where two entity types are equivalent
(Individual and Person), but respectively specialises and is specialised by a third
one (Customer).

Detection mechanisms can obviously be set to detect these kinds of situa-

tion. However, this also highlights once again the primordial role of the analyst

in our approach, as he is the most suited person to notice and prevent such

cases. He should therefore help the end-users to avoid them by guiding him

into structuring their decisions in the most consistent fashion.

7.2.4 Processing the structural decisions of the end-users

Similarly to the semantic analysis, the final step of this validation consists in

updating the widgets, the schemas and the mappings of thesaurus τS for each

type of validated similarity. The main aspect concerns the pre-integration of

each individual schema into a single schema based on these validated redun-

dancies.

First of all, we process the sets E eq
ij

of equal entity types. Whenever these

sets contain more that one element, a supertype is created and assigned the

unifying term. If a set contains only one entity type, this entity type is con-

sidered the supertype of E eq
i1

and is also assigned the unifying term if it defers

from its original term.

Then, we process the sets E un
i1

of united entity types. Whenever these

sets contain more that one element, a supertype is also created and assigned

the unifying term. If a set contains only one entity type, this entity type is

considered the supertype of E un
i1

and is also assigned the unifying term if it

differs from its original term.

Afterwards, the (αij , βij) ∈ E sp
i are processed. An IS-A relationship is

created between the supertype of αij and the supertype of βij .

7.2.5. Reducing structural redundancies 123

Subsequently, the (αij , βij) ∈ E cp
i are processed. A stereotyped relationship

type is created between the supertype of αij and the supertype of βij . Alterna-

tively, this step can be replaced by looping back and modifying the container

holding the referential elements, so that the latter are moved into a new sub

container associated with a given term of the referred element.

Finally, thesaurus τS is updated. The label of each container associated to

an entity type involved in a validated structural similarity may also be updated

if relevant, such as the label “Location” that may be updated to Address.

The whole validation process can hence be described by Algorithm 7.8,

and as can be observed, it implies that all the semantically equivalent entity

types of the schemas now have a super type, and that the entity types are now

hierarchically structured. If cycles should appear in the schemas in spite of the

analysts attention, they redundancies between the involved entity types should

be re-examined to prevent these cycles.

Fig. 7.13 illustrates the update of the forms, while Fig. 7.14 illustrates the

update of the schemas for our running example. As one can notice, at this

point of the process, the appearance of the forms hasn’t changed much, unlike

their underlying schemas that have been pre-integrated. As we can also see,

the components still need to be properly integrated and “transferred” to the

appropriate supertypes.

7.2.5 Reducing structural redundancies

As for semantic analysis, structural redundancies can be reduced upstream.

This can be managed in the drawing phase by providing common predefined

and standardised reusable patterns (typically, such as an Address or a Person),

having a direct RSFM representation and an associated GER counterpart. Such

reusable constructs could for instance be inferred from existing ontologies or

patterns classifications (such as Coad’s object-oriented patterns [Coad, 1992]),

or defined from our own elicited patterns.

7.3 Output

At the end of this interactive process, we obtain a pre-integrated schema s

resulting from the terminological and structural analysis of the set of schemas

S obtained through the Adapt phase. In this schema, the terminology has

been unified so that every element associated with a given term now represent

the same concept. Also, the sub schemas originally associated with each form

are now connected through the relationship types and IS-A hierarchies of their

124 Chapter 7. Investigate

Algorithm 7.8 ValidateStructuralSimilarities : Validate the semantically sim-
ilar subsets of a given thesaurus (1/2)

Require: S
Ensure: s is the pre-integrated schema of all the schemas of S, and τ is his thesaurus

1: procedure ValidateStructuralSimilarities(S, s, τ)
2: E← {ei|(∃sj ∈ S : ei ∈ sj) ∧ (getType(ei) = ENTITYTYPE)}
3: buildPatternsSet(E, ΦE, EE)
4: s← createSchema()
5: for all si ∈ S do
6: copy si in s
7: end for
8: T ← ∅
9: for all Ei ∈ EE do

10: Ask> define: E eqi
11: for all E eqij ∈ E eqi do

12: teqij ← null

13: while teqij = null ∨ teqij ∈ T do

14: Ask> define: teqij . define: a unifying term for the supertype
15: end while
16: T ← T ∪ {teqij }
17: end for
18: Ask> define: E uni
19: for all E unij ∈ E uni do
20: tunij ← null

21: while tunij = null ∨ tunij ∈ T do
22: Ask> define: tunij . define: a unifying term for the supertype
23: end while
24: T ← T ∪ {tunij }
25: end for
26: Ask> define: E spi
27: Ask> define: E cpi
28: for all E eqij ∈ E eqi do

29: entityTypei ← createEntityType(s, teqij)

30: for all eijk ∈ E eqij do

31: createIsA(entityTypei, eijk) . entityTypei is a supertype for eijk
32: end for
33: end for
34: for all E eqij ∈ E uni do

35: entityTypei ← createEntityType(s, tunij)
36: for all eijk ∈ E unij do
37: createIsA(entityTypei, eijk) . entityTypei is a supertype for eijk
38: end for
39: end for

. [continued on page 125]

7.3. Output 125

Algorithm 7.9 ValidateStructuralSimilarities (2/2)

40: for all (αij , βij) ∈ E spi do
41: eij1 ← superType(αij)
42: eij2 ← superType(βij)
43: createIsA(eij2 , eij1) . eij2 is a supertype for eij1
44: end for
45: for all (αij , βij) ∈ E cpi do
46: eij1 ← superType(αij)
47: eij2 ← superType(βij)
48: relTypei ← createRelationshipType(eij1 , eij2)
49: setCardinalities(relTypei, 1, 1, 0, N)
50: setStereotype(relTypei, refersTo)
51: end for
52: end for
53: buildThesaurus({s}, τ)
54: end procedure

Figure 7.13: The updated forms of the running example after validation of structural
redundancies.

126 Chapter 7. Investigate

Figure 7.14: The pre-integrated schema of the example after validation of structural
redundancies. The newly created supertypes and relationship types are marked with a
stereotype expressing their meaning: “Equals” stands for equality, “Unites with” for
union, “Refers to” for complementarity. There is no stereotype for the specialisation,
as it is implicit.

entity types. Besides, the maximal component pattern between each pair of

entity type is stored for further processing.

The newly created “parent” entity types still need to be complemented by

the appropriate attributes shared by their “children” entity types, and the

stereotyped relationship types must also be supplemented with the relevant

referential attributes. This process, whose responsibility rests with the Bind

step, could typically lead to merging the components of the entity types in-

volved in the same IS-A relation.

Chapter 8

NURTURE

Eliciting dependencies and constraints

The previous chapter dealt with the analysis of terminological and structural

ambiguities within a set of schemas in order to pre-integrate the latter into a

single schema with a unified terminology. In order to enrich this schema, we

now need to discover additional constraints and dependencies on its elements.

Though these constraints can be provided directly, it appears that the ac-

quisition and use of data samples may also be useful and more natural in this

process. Indeed, not only do data samples test the ability of the user-drawn

form-based interfaces to gather the necessary information, but it also helps to

visualise the implications of existing constraints. Moreover, their analysis may

in turn reveal possible unsuspected constraints.

In this chapter, we therefore formalise the notions of data samples, con-

straints and dependencies, then present an interactive process inspired by the

principles of Armstrong relations, in order to acquire data samples that will

restrict the possible “hidden” constraints, and to arbitrate constraints that will

in turn restrict the tuples that can be encoded.

8.1 Delimiting constraints and dependencies

There are numerous types of constraints and dependencies that can be es-

tablished for a given schema. They can concern individual elements, their

components, or even how (the components of) an element can affect (the com-

ponents of) other elements. In this doctoral research, we focus on constraints

127

128 Chapter 8. Nurture

that can be expressed for entity types and their components, developing an

approach that could be intuitively extended to constraints and dependencies

among (components of) multiple elements.

More specifically, for each entity type of the pre-integrated schema s, we

want to elicit the constraints and dependencies presented in Section 3.4.2, which

we group as follows:

• technical constraints, which define the following restrictions on the indi-

vidual components of each entity type:

– the minimal and maximal cardinalities;

– the value type;

– the value size;

– the prerequisite optional components, if the component is optional;

• existence constraints, which define how the optional components should

coincide for each entity type;

• functional dependencies, which define the implications between sets of

components (we do not treat multivalued dependencies);

• identifiers, which define the sets of components that uniquely identify a

given instance of a given entity type.

Some of these properties can be trivial and may be expressed directly, or

have been expressed during the drawing step or subsequent modifications of

the original form-based interfaces. For instance, in the forms of Fig. 7.13, the

Title of a Customer appears to be optional and single-valued, and the Zip

Code of a Provider may have been encoded as a textual value.

However, the specified properties may need to be refined, and there may

be some unsuspected constraints and dependencies among the elements of the

schema. As we have seen, we can take advantage of data samples to induce

possible implicit constraints and mine functional dependencies. For instance,

we could observe that though optional, the Title is systematically filled for

each encoded Customer, or that the Zip Code of a Provider is always encoded

using only numerical characters. We could also observe, for example, that

there is always at least a Zip Code or a City for each encoded Provider.

These observations must be submitted to end-users form arbitration, in order

to eventually enrich the pre-integrated schema.

Unfortunately, we observed that the existing approaches rely on massive

pre-existing data sets, which is here problematic. Indeed given our context,

there is possibly no available data samples, or their re-encoding would be too

expensive. It is anyway unrealistic to ask end-users to willingly provide numer-

ous data samples. This naturally calls for new ways to discover and suggest

8.2. Formalising data samples and tuples 129

constraints and dependencies on-the-fly, based on the incremental input of data

samples by the end-users.

Before introducing our approach to suggest constraints and dependencies,

let us start by formalising the notions of data samples and tuples, as well as

these constraints and dependencies.

8.2 Formalising data samples and tuples

First of all, the easiest way to ask end-users to provide data samples is to

let them use the very form-based interfaces they drew as an encoding means,

knowing that each form is associated with several entity types. Now recall that

we presented the relational model of a database in Section 3.4.2, and let us

adapt it for our purpose.

A relation (or table) is the natural equivalent of an entity type in the re-

lational realm, while its attributes (or columns) can be associated to the com-

ponents of the entity type. Since a tuple (or row) contains a value for each

attribute of the relation with respect to its domain, we can likewise define a

tuple for an entity type.

Let A and R respectively be the set of simple attributes and roles of a given

entity type e, and let Te be the set of tuples associated with it. Recall also that

eCi
represents the entity type associated to e through the relationship involving

the role Ci (see Section 7.2.1).

Definition 8.1. Given an entity type e and its set of components C = A∪R,

t is a tuple for e iff:

t = {(Ci, vi) | (
⋃
i

Ci = C)∧ ((Ci ∈ A∧ vi ∈ Dom(Ci))∨ (Ci ∈ R∧ vi ∈ TeCi
))}

y

Furthermore:

Definition 8.2. The tuple t′ is the projection of the tuple t on the set of

components C (noted t[C]) iff: t′ = {(Ci, vi) ∈ t | Ci ∈ C} y

The projection of a tuple t on a single component C (noted t[C]) is therefore

the pair (Ci, vi) verifying Ci = C, and it can be null (which is noted ∅ and

implies that the component C is optional and that no value has been provided

for it) or multivalued.

Whenever an end-user provides a data sample, he actually transparently

provides a tuple for each entity type associated with the form-based interface.

In this doctoral research, we focus and reason on valid user-provided data

130 Chapter 8. Nurture

samples, i.e. data samples that are realistic and consistent with the current

state of the requirements acquired using the RAINBOW approach. However,

it would also be possible to reason on invalid data samples, which would also

imply detailing the criteria for invalidity.

Recalling that EF is the set of entity types corresponding to a given form

(see Section 6.3), we can hence formally define a data sample as follows:

Definition 8.3. A set d = {(ei, ti)} is a data sample for the form F iff:

(
⋃
i

ei = EF) ∧ (∀i : ti is a tuple for ei)

y

Consider for instance the form Product illustrated in Fig. 7.13. A data

sample for this form would actually provide tuples for the entity types Product,

Provider (primary) and Provider (secondary) of Fig. 7.14.

Let us now formalise the notions of constraints and dependencies for an

entity type and its associated set of tuples.

8.3 Formalising constraints and dependencies

8.3.1 Technical constraints

Let us consider a given entity type e, having the set of components C = A∪R,

the set of optional components C′ ⊆ C and the set of tuples Te. For a given

component C ∈ C, the different types of technical constraints that we inquire

about can be grouped in the set T = {cardinality, value type, value size,

prerequisite components}.
The domains of values for each type of these technical constraints can be

derived from the specification of the Simplified Form Model as follows:

• Dom(cardinality) = {(0, 1), (1, 1), (0, N), (1, N)}
• Dom(value type) = {text, integer, real, boolean, date} if C ∈ A
• Dom(value type) = ∅ if C ∈ R
• Dom(value size) = N if C ∈ A
• Dom(value size) = ∅ if C ∈ R
• Dom(prerequisite) = {C′′ ⊂ C′ | C /∈ C′}
We can therefore formally define a technical constraint as follows:

Definition 8.4. Given an entity type e and its set of components C, θi =

(Ci, pi, vi) is a technical constraint for e iff : Ci ∈ C ∧ pi ∈ T ∧ vi ∈ Dom(pi) y

8.3.1. Technical constraints 131

Furthermore:

Definition 8.5. A tuple t ∈ Te agrees with a technical constraint θ = (C, p, v)

(noted t on θ), iff the projection t[C] respects the value v for the property p. y

Generally speaking, a tuple agrees with a technical constraint if the latter

isn’t too restrictive regarding the value(s) of the tuple for the given component.

Typically, the tuple must provide at least a value if the constraints specifies a

mandatory cardinality, and at most a value if the constraint specifies a single-

valued cardinality.

Similarly, if the component is an attribute, the value(s) associated with the

component can either be of any type if the constraint specifies a textual value

type, or integer if the constraint specifies a real value type. In any other cases,

the value type of the value(s) associated with the component must absolutely

concur with the constraint.

Also, the size of the value(s) associated with the component must be smaller

or equal that the value size constraint, given that the component is an attribute.

And finally, if the value(s) associated with the component is not null, the

values associated with the prerequisite components cannot be null. More for-

mally, a tuple t therefore agrees with a technical constraints θ = (C, p, v) when:

• C is a component, p = cardinality, v = (mincard,maxcard) and

mincard ≤ t[C] ≤ maxcard
• C is an attribute, p = value type, and :

– v = text and the value type of t[C] is in Dom(value type)
– v = real and the value type of t[C] is in {integer, real}
– v ∈ Dom(value type)\{text, real} and the value type of t[C] is

equal to v

• C is a role, p = value type, and v = ∅
• C is an attribute, p = value size, and the size of t[C] is ≤ v
• C is a role, p = value size, and v = ∅
• C is a component, p = prerequisite and t[C] 6= ∅⇒ ∀Ci ∈ v : t[Ci] 6=

∅

Consequently:

Definition 8.6. A technical constraint θ is satisfied by a set of tuples T (noted

T |= θ) iff: ∀ti ∈ T : ti on θ. y

We call Θe the set of all the technical constraints defined on a given entity

type e and satisfied on its set of tuples Te, so that:

∀Ci ∈ C, pj ∈ T : ∃! θ = (Ci, pj , vk) ∈ Θe (8.1)

132 Chapter 8. Nurture

8.3.2 Existence constraints

Let us consider a given entity type e, having the set of optional components C′
and the set of tuples Te. For a given set of optional components X ⊆ C′, the

different types of existence constraints that it may support can be grouped in

the set E = {coexistence, exactly one, at most one, at least one}.
We can therefore formally define an existence constraint as follows:

Definition 8.7. Given an entity type e and its set of optional components C′,
ξi = (Xi, pi) is a existence constraint for e iff: Xi ⊆ C′ ∧ pi ∈ E. y

Furthermore:

Definition 8.8. A tuple t ∈ Te agrees with a existence constraint ξ = (X , p)
(noted t on ξ), iff the projection t[X] respects the constraint p. y

Practically, a tuple t will agree with an existence constraint ξ = (X , p) if:

• p = coexistence and (∀ Ci ∈ X : t[Ci] = ∅) ∨ (∀ Ci ∈ X : t[Ci] 6= ∅)

• p = exactly one and ∃! Ci ∈ X : t[Ci] 6= ∅
• p = at least one and ∃ Ci ∈ X : t[Ci] 6= ∅
• p = at most one and (∀ Ci ∈ X : t[Ci] = ∅) ∨ (∃!Ci ∈ X : t[Ci] 6= ∅)

Consequently:

Definition 8.9. A existence constraint ξ is satisfied by a set of tuples T (noted

T |= ξ) iff: ∀ti ∈ T : t on ξ. y

We call Ξe the set of all the existence constraints defined on a given entity

type e and satisfied on its set of tuples Te.

8.3.3 Functional dependencies

Let us consider a given entity type e, having the set of components C and the

set of tuples Te. We can formally define a functional dependency as follows:

Definition 8.10. Given an entity type e and its set of components C, a func-

tional dependency over e is an expression f : L → R, with L,R ⊆ C, restricting

the possible tuples of e. y

We respectively call L and R the left-hand side and right-hand side of the

functional dependency f . Furthermore:

Definition 8.11. A functional dependency f : L → R, is satisfied for a set of

tuples T (noted T |= f), iff: ∀ti, tj ∈ T : ti[L] = tj [L]⇒ ti[R] = tj [R] y

8.3.4. Unique constraints 133

We call Fe the set of all the functional dependencies defined on a given

entity type e and satisfied on its set of tuples Te. Besides, recall that func-

tional dependencies can be compared using Armstrong’s axioms, which were

introduced in Section 3.4.2.

8.3.4 Unique constraints

Let us consider a given entity type e, having the set of components C, the set

of mandatory components C∗ ⊆ C and the set of tuples Te. We can formally

define a unique constraint as follows:

Definition 8.12. Given an entity type e, its set of components C, its set of

mandatory components C∗ ⊆ C and its set of tuples Te, the set of components

X ⊆ C∗ is an identifier for e iff: ∀ti ∈ Te, @tj 6= ti ∈ Te : tj [X] = ti[X] y

Besides, the different types of unique constraints can be grouped in the set

U = {primary, secondary}, so that:

Definition 8.13. Given an entity type e, its set of components C, its set of

mandatory components C∗ ⊆ C and its set of tuples Te, υi = (Xi, pi) is a unique

constraint for e iff: Xi ⊆ C∗ ∧ pi ∈ U. y

Furthermore:

Definition 8.14. A unique constraint υ = (X , p) is satisfied by a set of tuples

Te (noted Te |= υ) iff X is an identifier for the entity type e. y

We call Υe the set of all the unique constraints defined on a given entity

type e and satisfied on its set of tuples Te.

8.4 Managing the process

8.4.1 Overview

Now that we have formalised the notions of data samples, constraints and

dependencies, let us expose our nurturing process, considering that we initially

have no available tuples at all. Recall that our objective is to involve then end-

users in the elicitation of constraints and dependencies, while ensuring that

none of them are forgotten. We therefore propose to start by envisaging initial

possible constraints and dependencies. Then, using user input, we progressively

enforce (i.e. validate) or discarded (i.e. refute) them, and generate alternatives

until they are all arbitrated. This process hence relies on several sub processes:

• the initialisation of all initial valid constraints and dependencies;

134 Chapter 8. Nurture

• the acquisition and analysis of new valid data samples in order to auto-

matically discard the invalid constraints and dependencies, and possibly

generate alternatives;

• the arbitration of currently valid constraints and dependencies through

user input, and the subsequent generation of alternatives;

• the processing of the enforced constraints and dependencies, once there

are no other valid constraints or dependencies left.

Note that the acquisition of data samples will progressively restrict the set

of possibly valid constraints, and that conversely, enforcing constraints will also

restrict the future data samples that will be encodable. Let us now examine

each of the sub processes.

8.4.2 Initialisation

Before beginning the interaction with the end-users, we start by initialising an

empty set of tuples and defining the initial sets of enforced, valid and discarded

constraints and dependencies for each entity type e. The valid sets will be used

to provide suggestions to the users, while the discarded sets will be used to

collect all the rejected constraints and dependencies.

Note that in the algorithms of this section, we use simplified methods of

the form get<PropertyName>(c) and set<PropertyName>(c, value) to access

the different components properties for the sake of simplicity. These methods

transparently access the necessary (meta) properties for these components.

Technical constraints

Let Θe, Θ̌e and Θ̄e respectively be the enforced, valid and discarded technical

constraints for e. The enforced technical constraints are the constraints im-

plicitly or explicitly expressed during the drawing phase. The valid technical

constraints regroup all the other technical constraints that could be valid at

this point, given the restrictions of the enforced technical constraints that were

presented in Section 8.3.1.

If a given component is mandatory, we cannot suggest it to be optional,

and if it is single-valued, we cannot suggest it to be multivalued. Similarly,

a textual attribute could be of any other type, while a real attribute could

only also be of the type integer. Finally, if the component is optional, it could

require every other optional components of the entity type.

Algorithm 8.1 formalises this initialisation process for the technical con-

straints. For the entity type Product associated with its homographic form,

this could yield the following enforced constraints:

8.4.2. Initialisation 135

• for the attribute Code : (Code, cardinality, (1, 1)), (Code, value type,

text), (Code, value type, 50), (Code, prerequisite, ∅)

• for the attribute Price : (Price, cardinality, (0, 1)), (Price, value type,

real), (Price, value type, 50), (Price, prerequisite, ∅)

• for the role whose associated entity type is Provider (primary) : (Provider

(primary), cardinality, (0, 1)), (Provider (primary), value type, ∅), (Provider

(primary), value type, ∅), (Provider (primary), prerequisite, ∅)

It would also yield the following valid constraints suggestions:

• for the attribute Code : (Code, value type, integer), (Code, value type,

real), (Code, value type, boolean), (Code, value type, date), (Code, value size,

0)

• for the attribute Price : (Price, cardinality, (1, 1)), (Price, value type,

integer), (Price, value size, 0), (Price, prerequisite, {Brand, Description,

Provider (primary), Provider (secondary)})
• for the role whose associated entity type is Provider (primary) : (Provider

(primary), cardinality, (1, 1)), (Provider (primary), prerequisite, {Brand,

Description, Price, Provider (secondary)})

Existence constraints

Let Ξe, Ξ̌e, Ξ̄e respectively be the enforced, valid and discarded existence con-

straints for e. The enforced constraints are the constraints implicitly or explic-

itly expressed during the drawing phase, while the valid constraints regroup

all the other constraints that could be valid at this point. This implies that

any subset of optional components that isn’t enforced and has more than one

element could be subject to a existence constraint.
Algorithm 8.3 hence formalises the initialisation process for the existence

constraints. For instance, if entity type Special Good of Fig. 7.14 had no ini-
tially enforced existence constraints, this could yield the following valid coex-

istence ones: ({Conditions, Description, Price}, coexistence), ({Conditions,

Description}, coexistence), ({Conditions, Price}, coexistence), ({Description,

Price}, coexistence).

Functional dependencies and Armstrong relations

Let Fe, F̌e, F̄e respectively be the enforced, valid and discarded functional de-

pendencies for e. The ideal process should lead us to build a set of data samples

and dependencies so that each entity type of the underlying conceptual schema

becomes an Armstrong relation (i.e. a relation that satisfies each FD implied

by a given set of functional dependencies, but no functional dependency that

is not implied by that set). Reaching such a state is obviously not trivial per

136 Chapter 8. Nurture

Algorithm 8.1 InitTechnicalConstraints : Initialise the technical constraints
for the components of a given entity type (1/2)

Require: e is an entity type
Ensure: Θe, Θ̌e, Θ̄e are respectively the initially enforced, valid and discarded tech-

nical constraints for e

1: procedure InitTechnicalConstraints(e, Θe, Θ̌e, Θ̄e)
2: Θe, Θ̌e, Θ̄e ← ∅
3: C ← getComponents(e)
4: C′ ← getOptionalComponents(e)
5: for all C ∈ C do
6: mincard← getMinimumCardinality(C)
7: maxcard← getMaximumCardinality(C)
8: Θe ← Θe ∪ {(C, cardinality, (mincard, maxcard)}
9: v ← ∅

10: s← ∅
11: if getType(C) = SIMPLEATTRIBUTE then
12: v ← getV alueType(C)
13: s← getV alueSize(C)
14: end if
15: Θe ← Θe ∪ {(C, value type, v)}
16: Θe ← Θe ∪ {(C, value size, s)}
17: r ← ∅
18: if mincard = 0 then . C is an optional component
19: r ← getPrerequisiteComponents(C)
20: end if
21: Θe ← Θe ∪ {(C, prerequisite, r)}
22: pC ← Dom(cardinality)\{(mincard, maxcard)}
23: if mincard > 0 then
24: pC ← pC\{(0, 1), (0, N)}
25: end if
26: if maxcard = 1 then
27: pC ← pC\{(0, N), (1, N)}
28: end if
29: for all či ∈ pC do
30: Θ̌e ← Θ̌e ∪ {(C, cardinality, či)}
31: end for
32: pV ← ∅
33: if getType(C) = SIMPLEATTRIBUTE then
34: if v = text then
35: pV ← Dom(value type)\{text}
36: else if v = real then
37: pV ← {integer}
38: end if
39: Θ̌e ← Θ̌e ∪ {(C, value size, 0)}
40: end if

. [continued on page 137]

8.4.2. Initialisation 137

Algorithm 8.2 InitTechnicalConstraints (2/2)

41: for all v̌i ∈ pV do
42: Θ̌e ← Θ̌e ∪ {(C, value type, v̌i)}
43: end for
44: ř ← ∅
45: if mincard = 0 then
46: ř ← {Ci 6= C ∈ C′}
47: end if
48: Θ̌e ← Θ̌e ∪ {(C, prerequisite, ř)}
49: end for
50: end procedure

Algorithm 8.3 InitExistenceConstraints : Initialise the existence constraints
for a given entity type

Require: e is an entity type
Ensure: Ξe, Ξ̌e, Ξ̄e are respectively the initially enforced, valid and discarded exis-

tence constraints for e

1: procedure InitExistenceConstraints(e, Ξe, Ξ̌e, Ξ̄e)
2: Ξe, Ξ̌e, Ξ̄e ← ∅
3: C′ ← getOptionalComponents(e)
4: existenceconstraints← getExistenceConstraints(e)
5: for all existenceconstrainti ∈ existenceconstraints do
6: Xi ← getExistenceComponents(existenceconstrainti)
7: pi ← getExistenceType(existenceconstrainti)
8: Ξe ← Ξe ∪ {(Xi, pi)}
9: end for

10: for all Xi ⊆ C′ with |Xi| > 1 do
11: for all pi ∈ E do
12: Ξ̌e ← Ξ̌e ∪ {(Xi, pi)}
13: end for
14: end for
15: Ξ̌e ← Ξ̌e\Ξe
16: end procedure

se, and these principles are here inapplicable as a side effect of user involve-

ment. However, we can try to near it by progressively narrowing the functional

dependencies.

Since the number of possible functional dependencies for each entity types

can be very high, we prefer to initialise a set of high-level possible dependen-

cies, which would be the most general yet restrictive ones. These high-level

dependencies claim that any component of a given entity type could determine

the combined values of the other components. From these dependencies, we

will be able to recursively generate weaker functional dependencies to cover all

138 Chapter 8. Nurture

the existing ones, by progressively reducing the right-hand sides and enlarging

the left-hand sides. The objective is to favour functional dependencies with

minimal left-hand sides and maximal right-hand sides.

Algorithm 8.4 formalises the initialisation process for the technical con-

straints. For the entity type Shop associated with its homographic form in

Fig. 7.14, this would yield the following top-level functional dependencies (con-

sidering that Address is the target entity type of the role played by Shop):

• for Shop: {Shop Name} → {Telephone, Address}, {Telephone} → {Shop Name,

Address}, {Address} → {Telephone, Shop Name}.

• for the associated Address: {Street} → {Zip code, City}, {Zip code} →
{Street, City}, {City} → {Zip code, Street}.

One might notice that we also consider optional components as possible

members of the left-hand of functional dependencies. Indeed, we actually con-

sider the null value (also noted ∅) as a value as such.

Algorithm 8.4 InitFunctionalDependencies : Initialise the functional depen-
dencies for a given entity type

Require: e is an entity type
Ensure: Fe, F̌e, F̄e are respectively the initially enforced, valid and discarded func-

tional dependencies for e

1: procedure InitFunctionalDependencies(e, Fe, F̌e, F̄e)

2: F
′
e ← getFunctionalDependencies(e)

3: if F
′
e 6= ∅ then

4: Fe ← F
′
e

5: else
6: Fe ← ∅
7: end if
8: C ← getComponents(e)
9: F̌e ← {f : {C} → C\{C} | C ∈ C}

10: F̄e ← ∅
11: end procedure

Unique constraints

Let Υe, Υ̌e and Ῡe respectively be the enforced, valid and discarded unique

constraints for e. The enforced constraints are the constraints implicitly or ex-

plicitly expressed during the drawing phase, while the valid constraints should

regroup all the other constraints that could be valid at this point. However,

similarly to the functional dependencies, we prefer to start with high-level pos-

8.4.3. Analysing new data samples to suggest constraints & dependencies 139

sible identifiers, i.e. single attributes that could identify the entity type by

themselves.
Algorithm 8.5 formalises the initialisation process for the unique constraints.

This would yield the following unique sets for entity type labelled Service in
Fig. 7.14: {Code}, {Description}, {Hourly rate}.

For unique constraints, we also consider optional components as possible

members of the valid identifiers. Indeed, we actually consider the null value

(also noted ∅) as a value as such. We will discuss the implications of enforcing

such a constraint later on.

Algorithm 8.5 InitUniqueConstraints : Initialise the unique constraints for a
given entity type

Require: e is an entity type
Ensure: Υe, Υ̌e, Ῡe are respectively the initially enforced, valid and discarded

unique constraints for e

1: procedure InitUniqueConstraints(e, Υe, Υ̌e, Ῡe)
2: Υe, Υ̌e, Ῡe ← ∅
3: C ← getComponents(e)
4: uniqueconstraints← getUniqueConstraints(e)
5: for all uniqueconstrainti ∈ uniqueconstraints do
6: Xi ← getUniqueComponents(uniqueconstrainti)
7: pi ← getUniqueType(uniqueconstrainti)
8: Υe ← Υe ∪ {(Xi, pi)}
9: end for

10: for all Ci ∈ C do
11: for all pi ∈ U do
12: Υ̌e ← Υ̌e ∪ {({Ci}, pi)}
13: end for
14: end for
15: Υ̌e ← Υ̌e\Υe

16: end procedure

8.4.3 Analysing new data samples to suggest constraints and de-

pendencies

Once the sets of constraints and dependencies have been initialised, we can

take advantage of user input to acquire data samples that will progressively

reduce the set of valid but unenforced constraints and dependencies. To be

consistent with the previously enforced constraints and dependencies, any new

tuple must respect the latter to be accepted.

Once a new tuple is acceptable, we can proceed with its analysis to deter-

mine which previously valid constraints and dependencies do not stand any

140 Chapter 8. Nurture

more. The invalidated constraints are discarded, while the invalidated func-

tional dependencies are replaced by alternative dependencies.

Algorithm 8.6 formalises this process for the acquisition of a data sample

for a form F and its associated set of entity types EF . The updating process

for each of the sets of constraints and dependencies are detailed subsequently.

Algorithm 8.6 AddDataSample : Add a data sample

Require: F is a form ∧ EF is the set of entity types associated with F
Ensure: ∅

1: procedure AddDataSample(F,EF)
2: d← ∅
3: while d = ∅ do
4: Ask> define: d = {(ei, ti)|(ei ∈ EF) ∧ (ti is a tuple for ei)}
5: if d is a data sample for e then
6: dataSampleIsV alid← true

7: for all (ei, ti) ∈ d do
8: if (∃θ ∈ Θei : Tei ∪ {ti} 6|= θ) ∨ (∃ξ ∈ Ξei : Tei ∪ {ti} 6|= ξ) ∨ (∃f ∈

Fei : Tei ∪ {ti} 6|= f) ∨ (∃υ ∈ Υei : Tei ∪ {ti} 6|= υ) then
9: dataSampleIsV alid← false

10: end if
11: end for
12: if dataSampleIsV alid = true then
13: for all (ei, ti) ∈ d do
14: updateTechnicalConstraints(ei, Tei , ti, Θ̌ei , Θ̄ei)
15: updateExistenceConstraints(ei, Tei , ti, Ξ̌ei , Ξ̄ei)
16: updateFunctionalDependencies(ei, Tei , ti,Fei , F̌ei , F̄ei)
17: updateUniqueConstraints(ei, Tei , ti, Υ̌ei , Ῡei ,Fe, F̌e)
18: Tei ← Tei ∪ {ti}
19: end for
20: else
21: d← ∅
22: end if
23: else
24: d← ∅
25: end if
26: end while
27: end procedure

Technical constraints

Once we add a new tuple to the set of tuples associated with a given entity

type, discarding the valid technical constraints that do not stand any more

8.4.3. Analysing new data samples to suggest constraints & dependencies 141

is relatively straightforward, since it consists in removing the constraints with

which the tuple does not agree.

Regarding the cardinalities, we remove the possible mandatory constraints

for components that are empty, and possible single-valued constraints for com-

ponents that are multivalued. For the attributes, we remove the value type

constraints that are not compatible with the value provided for each attribute

and replace the value size if the provided value is longer. Finally, we remove

all the require constraints for optional components if the suggested prerequisite

components are not part of the non empty components of the tuple.

Algorithm 8.7 formalises this process. Consider for instance the initial con-

straints of Section8.4.2 and the data sample of Fig. 8.1. The tuple associated

with the entity type Product invalidates the following constraints:

• for the attribute Code : (Code, value type, integer), (Code, value type,

real), (Code, value type, boolean), (Code, value type, date), (Code, value size,

0)

• for the attribute Price : (Price, value size, 0), (Price, prerequisite, {Brand,

Description, Provider (primary), Provider (secondary)})

• for the role whose associated entity type is Provider (primary) : (Provider (primary),

prerequisite, {Brand, Description, Price, Provider (secondary)})

In return, it generated these alternative valid constraints:

• for the attribute Code : (Code, value size, 7)

• for the attribute Price : (Price, value size, 3), (Price, prerequisite, {Brand,

Description, Provider (primary)})

• for the role whose associated entity type is Provider (primary) : (Provider (primary),

prerequisite, {Brand, Description, Price})

Figure 8.1: Data samples for the forms Product and Special good.

142 Chapter 8. Nurture

Algorithm 8.7 UpdateTechnicalConstraints : Update the technical con-
straints for a given entity type

Require: e is an entity type
∧ Te is the current set of tuples associated with e
∧ t is a tuple to be added to Te
∧ Θ̌e, Θ̄e are the currently valid and discarded technical constraints for e

Ensure: Θ̌e, Θ̄e are the updated valid and discarded technical constraints for e and
the set of tuples Te ∪ {t}

1: procedure UpdateTechnicalConstraints(e, Te, t, Θ̌e, Θ̄e)
2: C ← getComponents(e)
3: C′ ← getOptionalComponents(e)
4: C′′ ← {Ci ∈ C′|t[Ci] 6= ∅}
5: Θ

′
e ← ∅ . The set of unsatisfied technical constraints

6: for all Ci ∈ C do
7: if t[Ci] = ∅ then . Ci is optional and non initialised for t

8: Θ
′
e ← Θ

′
e ∪ {(Ci, cardinality, vij) ∈ Θ̌e|vij ∈ {(1, 1), (1, N)}}

9: else if |t[Ci]| > 1 then . Ci is multivalued for t

10: Θ
′
e ← Θ

′
e ∪ {(Ci, cardinality, vij) ∈ Θ̌e|vij ∈ {(0, 1), (1, 1)}}

11: end if
12: if getType(Ci) = SIMPLEATTRIBUTE then
13: V ← getPossibleV alueTypes(t[Ci])

14: Θ
′
e ← Θ

′
e ∪ {(Ci, value type, vij) ∈ Θ̌e|vij /∈ V }

15: s← getV alueSize(t[Ci])
16: S ← {vij |∃(Ci, value size, vij) ∈ Θ̌e}
17: if s > Max(S) then

18: Θ
′
e ← Θ

′
e ∪ {(Ci, value size, vij) ∈ Θ̌e|vij ∈ S}

19: Θ̌e ← Θ̌e ∪ {(Ci, value size, s)}
20: end if
21: end if
22: if t[Ci] 6= ∅ then

23: Θ
′
e ← Θ

′
e ∪ {(Ci, prerequisite, vij) ∈ Θ̌e|vij 6⊆ C′′\{Ci}}

24: end if
25: end for
26: Θ̌e ← Θ̌e\Θ

′
e

27: Θ̄e ← Θ̄e ∪Θ
′
e

28: end procedure

Existence constraints

Once we add a new tuple to the set of tuples associated with a given entity

type, discarding the valid existence constraints that do not stand any more also

consists in removing the constraints with which the tuple does not agree.

Consequently, coexistence constraints are removed if their set of components

8.4.3. Analysing new data samples to suggest constraints & dependencies 143

is different from the set of non empty optional components of the tuple. Exactly

one, at most one and at least one constraints are respectively removed if there

is not one and only one, more than one or less than one of their components

that is not null among the set of non empty optional components of the tuple.

Algorithm 8.8 formalises this process. Consider for instance the initial con-

straints of Section8.4.2 and the data sample of Fig. 8.1. The tuple associated

with the entity type Special good invalidates:

• the following coexistence constraints: ({Conditions, Description, Price},
coexistence), ({Conditions, Description}, coexistence), ({Description, Price},
coexistence)

• the following exactly one constraints: ({Conditions, Description, Price},
exactly one), ({Conditions, Price}, exactly one)

• the following at most one constraints: ({Conditions, Description, Price},
at most one), ({Conditions, Price}, at most one)

• no least one constraints.

Algorithm 8.8 UpdateExistenceConstraints : Update the existence con-
straints for a given entity type

Require: e is an entity type
∧ Te is the current set of tuples associated with e
∧ t is a tuple to be added to Te
∧ Ξ̌e, Ξ̄e are the currently valid and discarded existence constraints for e

Ensure: Ξ̌e, Ξ̄e are the updated valid and discarded existence constraints for e and
the set of tuples Te ∪ {t}

1: procedure UpdateExistenceConstraints(e, Te, t, Ξ̌e, Ξ̄e)
2: C′ ← getOptionalComponents(e)
3: C′′ ← {Ci ∈ C′|t[Ci] 6= ∅}
4: for all ξi = (Xi, pi) ∈ Ξ̌e do
5: if (vi = coexistence∧C′′ 6= C′∧C′′ 6= ∅)∨(vi = exactly one∧|C′′∩Xi| 6=

1) ∨ (vi = at most one ∧ |C′′ ∩ Xi| > 1) ∨ (vi = at least one ∧ |C′′ ∩ Xi| < 1)
then

6: Ξ̌e ← Ξ̌e\{ξi}
7: Ξ̄e ← Ξ̄e ∪ {ξi}
8: end if
9: end for

10: end procedure

Functional dependencies

When a new tuple is added, we analyse each valid functional dependency to

check if there is an existing tuple of the tuple base that is conflictual, i.e. if an

144 Chapter 8. Nurture

existing tuple has the same left-hand side but a different right-hand side when

considering the components of the functional dependency. If such a conflict-

ual tuple exists, the functional dependency is discarded and alternatives are

recursively generated.

First of all, this implies that the right-hand side is too large with respect to

left-hand side, and we therefore consider smaller right-hand sides by removing

a component. The removed component may be purely dismissed, or added to

the left-hand side to consequently generate two alternatives per component.

Algorithm 8.9 formalises this process. Consider for instance the initial func-

tional dependencies of Section8.4.2 and the data samples of Fig. 8.2. If the set

of tuples was initially empty, adding the first tuple doesn’t jeopardise these

dependencies. However, adding the second tuple invalidates the following de-

pendencies:

• for Shop: {Telephone} → {Shop Name, Address}.

• for the associated Address: {Zip code} → {Street, City}, {City} → {Zip code,

Street}.

In return, it yields the following alternative valid dependencies:

• for Shop:

– {Telephone, Shop Name} → {Address}
– {Telephone, Address} → {Shop Name}

• for the associated Address:

– {Street, Zip code} → {City}
– {Street, City} → {Zip code}
– {Zip code} → {City}
– {City} → {Zip code}

Figure 8.2: Data samples for the form Shop.

8.4.3. Analysing new data samples to suggest constraints & dependencies 145

Algorithm 8.9 UpdateFunctionalDependencies : Update the functional de-
pendencies for a given entity type

Require: e is an entity type
∧ Te is the current set of tuples associated with e
∧ t is a tuple to be added to Te
∧ Fe, F̌e, F̄e are respectively the currently enforced, valid and discarded functional
dependencies for e

Ensure: F̌e, F̄e are the updated valid and discarded functional dependencies for e
and the set of tuples Te ∪ {t}

1: procedure UpdateFunctionalDependencies(e, Te, t,Fe, F̌e, F̄e)
2: for all fi : Li → Ri ∈ F̌e do
3: if ∃tj ∈ Te : tj [Li] = t[Li] ∧ tj [Ri] 6= t[Ri] then
4: F̌e ← F̌e\{fi}
5: F̄e ← F̄e ∪ {fi}
6: GenerateAlternatives(fi,Fe, F̌e, F̄e, Te ∪ {t}) . See Alg. 8.10 on

page 145
7: end if
8: end for
9: end procedure

Algorithm 8.10 GenerateAlternatives : Recursively generate alternatives
“weaker” functional dependencies from the given one

Require: f is an unsatisfied functional dependency for a given entity type e
∧ T is a set of tuples for e
∧ F, F̌, F̄ are respectively the currently enforced, valid and discarded functional
dependencies for e

Ensure: F, F̌, F̄ are respectively the enforced, valid and discarded functional depen-
dencies for e that have been updated to include the alternatives for f

1: procedure GenerateAlternatives(f : L → R,F, F̌, F̄, T)
2: if |R| > 1 then
3: for all C ∈ R do
4: GenerateAlternativeBranch(f1 : L → R\{C},F, F̌, F̄, T)
5: GenerateAlternativeBranch(f2 : L ∪ {C} → R\{C},F, F̌, F̄, T)
6: . See Alg. 8.11 on page 146
7: end for
8: end if
9: end procedure

Unique constraints

When adding a new tuple, that valid unique constraints can be easily verified

by checking if an existing tuple already has the same values for the set of

identifying components. Another option consists in taking advantage of the

146 Chapter 8. Nurture

Algorithm 8.11 GenerateAlternativeBranch : Tests a candidate functional
dependency and generates alternatives if necessary

Require: f is a candidate functional dependency for a given entity type e
∧ T is a set of tuples for e
∧ F, F̌, F̄ are respectively the currently enforced, valid and discarded functional
dependencies for e

Ensure: F, F̌, F̄ are respectively the enforced, valid and discarded functional depen-
dencies for e that have been updated to include f and, if relevant, its alternatives

1: procedure GenerateAlternativeBranch(f,F, F̌, F̄, T)
2: if f /∈ (F ∪ F̌ ∪ F̄) then . f hasn’t been tested yet
3: if (T |= f) ∧ (f /∈ F) then . f is valid and has not been enforced yet
4: F̌← F̌ ∪ {f}
5: else
6: F̄← F̄ ∪ {f}
7: GenerateAlternative(f,F, F̌, F̄, T)
8: end if
9: end if

10: end procedure

fact that an enforced or valid functional dependency may induce an identifier

for an entity type, if all the components of this entity type are mentioned in

the left-hand or right-hand side of the functional dependency.

Algorithm 8.12 formalises this observation to update the sets of unique
constraints. Consider for instance the initial constraints of Section8.4.2 and the
data samples of Fig. 8.3 for the entity type Special good. If the set of tuples
was initially empty, adding the first tuple doesn’t jeopardise these dependencies.
However, adding the second tuple invalidates the unique constraints associated
with {Description}. In return, it yields the following alternative possible sets
of identifiers: {Code, Description}, {Description, Hourly rate}.

Figure 8.3: Data samples for the form Service.

Generating problematic tuples to help manage constraints and dependencies

Understanding the implications of a functional dependency is not always trivial

and easy to grasp. Presenting the end-users with automatically generated data

8.4.3. Analysing new data samples to suggest constraints & dependencies 147

Algorithm 8.12 UpdateUniqueConstraints : Update the unique constraints
for a given entity type

Require: e is an entity type
∧ Te is the current set of tuples associated with e
∧ t is a tuple to be added to Te
∧ Υ̌e, Ῡe are respectively the currently valid and discarded unique constraints
for e

Ensure: Υ̌e, Ῡe are respectively the updated valid and discarded unique constraints
for e and the set of tuples Te ∪ {t}

1: procedure UpdateUniqueConstraints(e, Te, t, Υ̌e, Ῡe,Fe, F̌e)
2: C ← getComponents(e)
3: C∗ ← getMandatoryComponents(e)

4: Υ
′
e ← ∅ . the new possibly valid identifiers

5: for all fi : Li → Ri ∈ (Fe ∪ F̌e) do
6: if (Li ∪Ri = C) then

7: Υ
′
e ← Υ

′
e ∪ {(Li, primary), (Li, secondary)}

8: end if
9: end for

10: Υ̌
′
e ← Υ̌e ∩Υ

′
e

11: Ῡe ← Ῡe ∪ (Υ̌e\Υ̌
′
e)

12: Υ̌e ← Υ̌
′
e

13: end procedure

samples that would jeopardize the validity of existing functional dependencies

could therefore help them to visualise the relevance of these dependencies, while

reducing the number of tuples that they would need to provide by themselves.

As we can observe, a tuple t is actually problematic for the functional

dependency f : L → R and the existing set of tuples T if: ∃t′ ∈ T : t′[L] =

t[L] ∧ t′[R] 6= t[R].

If we already have several tuples in the tuples set of a given entity type,

we can therefore generate problematic tuples using Algorithm 8.13. For in-

stance, the set of tuples built from the two data samples of Fig. 8.2 could

yield the problematic data sample of Fig. 8.4 for the functional dependency

{Shop Name} → {Telephone, Address}.
Accepting the problematic data sample would imply discarding this func-

tional dependency, but also consequently discard the following dependencies,

for which alternatives must be generated:

• {Address} → {Shop Name, Telephone}

• {Telephone, Shop Name} → {Address}

• {Telephone, Address} → {Shop Name}

148 Chapter 8. Nurture

Algorithm 8.13 GenerateProblematicTuple : Tests a candidate functional
dependency and generates alternatives if necessary

Require: f is functional dependency for a given entity type e
∧ T = {t1, t2, ...} is a set of tuples for e

Ensure: t is a problematic tuple for f or is ∅ it is was impossible to create it

1: procedure GenerateProblematicTuple(f,F, F̌, F̄, T)
2: t← ∅
3: i← 1
4: while i ≤ |T | ∧ t = ∅ do
5: j ← 1
6: while j ≤ |T | ∧ t = ∅ do
7: if i 6= j then
8: t← ti . Init the left components of the tuple
9: t[R]← tj [R] . Init the right components of the tuple

10: end if
11: if t ∈ T then
12: t← ∅
13: end if
14: j ← j + 1
15: end while
16: if t ∈ T then
17: t← ∅
18: end if
19: i← i+ 1
20: end while
21: end procedure

Figure 8.4: A problematic data sample for the form Shop.

Besides, this would impacts on the possible identifiers of Shop, and could

have also impacted the existence constraints if the problematic tuple had been

generated from other tuples (this would have obviously required a more popu-

lated set of tuples).

In order to propose original problematic tuples, it is appropriate to store

8.4.4. Acquiring constraints and dependencies 149

the discarded problematic tuples into a set T̄e for each entity type e.

8.4.4 Acquiring constraints and dependencies

Another way to take advantage of user input is to directly acquire enforced

or discarded constraints and dependencies, whenever they are trivial and easy

to express for the participants. An alternative is to invite the end-users to

arbitrate the valid constraints and dependencies that could be suggested after

the acquisition of multiple data samples.

Directly providing constraints and dependencies

The end-users should be able to directly specify enforced or discarded con-

straints and dependencies, even without looking at possible suggestions. To be

accepted as enforced, a given constraint or dependency must be satisfied by

the existing set of tuples associated with the considered entity type. On the

other hand, it can be discarded as long as it still qualifies as a constraint or

dependency for the given entity type.

Let δ be a candidate constraint or a dependency for the entity type e with

the set of tuples Te. Let ∆e and ∆̄e respectively be the sets of enforced and

discarded constraints or dependencies of the same type than δ. Algorithm 8.14

formalises this acquisition process.

Algorithm 8.14 EnforceOrDiscardCandidateConstraint : Enforce or discard
a candidate constraint or dependency

Require: δ is a constraint or dependency for a given entity type e
∧ Te is a set of tuples for e
∧ ∆e, ∆̄e are the sets of currently enforced and discarded constraints or depen-
dencies of the same type than δ for e
∧ α is true if the constraint should be enforced, and false if it should be dis-
carded

Ensure: ∆e contains δ if it is satisfied by Te, and ∆̄e contains it otherwise

1: procedure EnforceOrDiscardCandidateConstraint(δ,Te,∆e, ∆̄e, α)
2: if δ is a technical, existence, functional or unique constraint or dependency

for e then
3: if Te |= δ ∧ α = true then
4: ∆e ← ∆e ∪ {δ}
5: else
6: ∆̄e ← ∆̄e ∪ {δ}
7: end if
8: end if
9: end procedure

150 Chapter 8. Nurture

Arbitrating valid constraints and dependencies

Alternatively, the participants can also take advantage of the valid constraints

and dependencies to arbitrate them, i.e. to enforce or discard them. The

advantages of this approach are that the participants do not have to imagine

all the possible constraints and dependencies for each entity type, and that we

directly know that each candidate constraint or dependency is currently valid

for the given entity type. Algorithm 8.15 formalises this acquisition process.

Algorithm 8.15 EnforceOrDiscardValidConstraint : Enforce or discard a can-
didate constraint or dependency

Require: δ ∈ ∆̌e is a valid and unenforced constraint or dependency for a given
entity type e
∧ ∆e, ∆̄e are the sets of currently enforced and discarded constraints or depen-
dencies of the same type than δ for e
∧ α is true if the constraint should be enforced, and false if it should be dis-
carded

Ensure: ∆e contains δ if it is satisfied by Te, and ∆̄e contains it otherwise
∧ ∆̌e does not contain δ anymore

1: procedure EnforceOrDiscardValidConstraint(δ,Te,∆e, ∆̄e, α)
2: if α = true then
3: ∆e ← ∆e ∪ {δ}
4: else
5: ∆̄e ← ∆̄e ∪ {δ}
6: end if
7: end procedure

One can suspect that enforcing or discarding a constraint or a dependency

may impact on the constraints or dependencies of other types. Such a syn-

ergy actually exists between functional dependencies and unique constraints.

Indeed, discarding a valid functional dependency may change the valid unique

constraints, whereas enforcing a unique constraints automatically enforces its

underlying functional dependency. When these cases occur, the relevant sets

must therefore be updated.

Besides, it obviously appears that the number of suggested constraints and

dependencies can eventually become very high. It is therefore crucial to or-

ganise these suggestions in an approachable fashion, so that the end-users do

not feel overwhelmed. Besides, this underlines the importance of the analyst

to guide the end-users through this process, by assessing the relevance of these

suggestions.

This observation is especially true regarding the elicitation of the functional

dependencies, since the number of suggestions can increase dramatically. We

8.4.4. Acquiring constraints and dependencies 151

therefore propose to filter the valid functional dependencies in order to limit

the number of relevant suggestions, while privileging the “stronger” functional

dependencies (i.e. the dependencies with smaller left-hand side and larger

right-hand side, as previously explained).

For this purpose, we therefore propose to “hide” dependencies that can

be obtained from other valid dependencies using Armstrong’s axioms (recall

Section 3.4.2). For a given entity type e, let us consider two different functional

dependencies of F̌e, namely fi : Li → Ri and fj : Lj → Rj . In particular, we

will hide fj if one of the following situations occurs:

1. Li ⊂ Lj ∧Ri = Rj
2. Li = Lj ∧Ri ⊃ Rj
3. ∃W 6= ∅ : Li ∪W = Lj ∧Ri ∪W = Rj
4. ∃W 6= ∅ : Li ∪W = Lj ∧Ri = Rj ∪W

In the first case, the left-hand side of fi is smaller than the one of fj and their

right-hand sides are equal, which makes fj redundant and gives fi more weight

in the balance. In the second case, fj can be obtained from fi by decomposition,

which makes it redundant. In the third case, fj can be obtained from fi by

augmentation. We can indeed observe that the left-hand sides and right-hand

sides only differ by the same set of components. Finally, in the fourth case, we

can decompose fi into Li → W and Li → Rj , from which fj : Li ∪W → Rj
can be deduced.

Hiding these functional dependencies does not mean discarding them. In-

deed, they are still valid, and may eventually become visible again with the

progressive arbitration of the other dependencies. Still, this filtering should

help keeping the focus of the end-users.

Preventing stalemates

One of the major risks during this process is to gather conflictual or problem-

atic constraints or dependencies that would lead to a stalemate. Consider for

instance a set of component X . Declaring that the components of X should

coexist and simultaneously that there should be at least one of them creates

a puzzling situation since one constraint cannot be satisfied without infringing

the other.

Detection mechanisms can obviously be set to detect these kinds of situa-

tion. However, this also highlights once again the primordial role of the analyst

in our approach, as he is the most suited person to notice and prevent such

cases. He should therefore help the end-users to avoid them by guiding him

into structuring their decisions in the most consistent fashion.

152 Chapter 8. Nurture

8.4.5 Editing the set of valid tuples and the sets of enforced con-

straints and dependencies

During this phase, the necessity to delete or edit a tuple t ∈ Te for a given

entity type e may occur. Similarly, an enforced FD may need to be edited

or dismissed. Modifying these sets can be problematic, since they can create

different types of conflicts.

Deleting and/or editing valid tuples

Deleting a tuple does not jeopardize the currently enforced and valid constraints

and dependencies, but it could render previously discarded constraints and

dependencies valid again. It is therefore important to recheck the latter, as

formalised by Algorithm 8.16.

In contrast, editing a tuple can not contradict the currently enforced con-

straints and dependencies, and it can impact on the valid and discarded depen-

dencies. Simply put, editing a tuple is actually similar to deleting and existing

tuple then adding a new one.

Dismissing and/or editing enforced constraints and dependencies

Dismissing an enforced constraint or dependency δ for an entity type e simply

comes down to moving it from its set ∆e to ∆̌e, since it is still satisfied by the

current set of tuples Te.
However, editing an enforced constraint is more problematic, as it must still

be satisfied by Te. This actually implies that editing a constraint or dependency

is equivalent to discarding it, then choosing its replacement among the set of

valid constraints or dependencies of the same type. The sole exception concerns

the value size constraint for attributes, which can be edited as long as it

doesn’t conflict with the existing set of valid tuples.

8.4.6 Processing the end-users decisions

Whenever the participants are satisfied with their sets of tuples and enforced

constraints and dependencies, we can proceed with the processing of their de-

cisions to update the components of the pre-integrated schema s, as well as the

form-based interfaces. This process should ideally occur once there is not more

valid constraints or dependencies, i.e. they are all either enforced or discarded,

but this is not mandatory. Let us now detail how each enforced type of con-

straints and dependencies are treated. Note that we only present the processes

8.4.6. Processing the end-users decisions 153

Algorithm 8.16 RemoveTuple : Remove a valid tuple from the given set of
tuples and update the constraints and dependencies accordingly.

Require: t is a valid tuple of Te
∧ Te is a set of tuples for a given entity type e

Ensure: Θ̌e, Θ̄e, Ξ̌e, Ξ̄e, F̌e, F̄e, Υ̌e, Ῡe are updated to take in account the previously
discarded constraints and dependencies that are now valid again

1: procedure RemoveTuple(t, Te)
2: Te ← Te\t
3: for all θ ∈ Θ̄e do
4: if Te |= θ then
5: Θ̌e ← Θ̌e ∪ {θ}
6: Θ̄e ← Θ̄e\{θ}
7: end if
8: end for
9: for all ξ ∈ Ξ̄e do

10: if Te |= ξ then
11: Ξ̌e ← Ξ̌e ∪ {ξ}
12: Ξ̄e ← Ξ̄e\{ξ}
13: end if
14: end for
15: for all f ∈ F̄e do
16: if Te |= f then
17: F̌e ← F̌e ∪ {f}
18: F̄e ← F̄e\{f}
19: end if
20: end for
21: for all υ ∈ Ῡe do
22: if Te |= υ then
23: Υ̌e ← Υ̌e ∪ {υ}
24: Ῡe ← Ῡe\{υ}
25: end if
26: end for
27: end procedure

for the entity types for the sake of brevity, but also because the updating of

the forms is intuitively similar.

Technical constraints

Since the set of enhanced technical constraints contains one constraint per com-

ponent and type of technical constraint, the easiest way to process the users

decision is to treat them one by one to update the underlying data model

accordingly. Algorithm 8.17 formalises this processing for the technical con-

straints.

154 Chapter 8. Nurture

Algorithm 8.17 ProcessTechnicalConstraints : Process the technical con-
straints for the components of a given entity type

Require: e is an entity type
∧ Θe is the set of enforced technical constraints for e

Ensure: e is updated to take into account the enforced constraints

1: procedure ProcessTechnicalConstraints(e, Θe)
2: C ← getComponents(e)
3: A ← getAttributes(e)
4: for all C ∈ C do
5: (mincard,maxcard)← vi|(C, cardinality, (mincard,maxcard)) ∈ Θe

6: setMinimumCardinality(C,mincard)
7: setMaximumCardinality(C,maxcard)
8: r ← vi|(C, cardinality, vi) ∈ Θe

9: setPrerequisiteComponents(C, r)
10: if C ∈ A then
11: v ← vi|(C, value type, vi) ∈ Θe

12: setV alueType(C, v)
13: s← vi|(C, value size, vi) ∈ Θe

14: setV alueSize(C, s)
15: end if
16: end for
17: end procedure

Consider for instance that the technical constraints θ1 = (Customer Number,

value type, integer) for the entity type Customer and θ2 = (Vat Number,

cardinality, (1, 1)) for the entity type Provider (see Fig.7.14) are enforced.

Processing them will practically modify the value type of the Customer Number

and set Provider as a mandatory component.

Existence constraints

Let Ξ
′

e be the set of existence constraints that were defined before the nurturing

process, and that can be obtained using Algorithm 8.3. The first step consists in

removing all the constraints of Ξ
′

e that do not stand any more, then adding the

constraints that were not included yet. Algorithm 8.18 formalises this process.

Consider for instance that the existence constraint ξ = ({Zip Code, City},
at least one) for the entity type Address (associated with a Customer, as

shown in Fig.7.14) is enforced. Processing them will practically create an group

containing the attributes Zip Code and City in the entity type Address, then

constraint this group with an at least one predicate.

8.4.6. Processing the end-users decisions 155

Algorithm 8.18 ProcessExistenceConstraints : Process the existence con-
straints for a given entity type

Require: e is an entity type
∧ Ξe is the current set of enforced existence constraints for e
∧ Ξ

′
e is the initial set of enforced existence constraints for e

Ensure: e is updated to take into account the enforced constraints

1: procedure ProcessExistenceConstraints(e, Ξe, Ξ
′
e)

2: Ξ
′′
e ← Ξe ∩ Ξ

′
e . the initially enforced constraints that were not dismissed

3: for all ξi = (Xi, pi) ∈ Ξ
′
e\Ξ

′′
e do

4: removeExistenceConstraint(e, pi,Xi)
5: end for
6: for all ξi = (Xi, pi) ∈ Ξe\Ξ

′′
e do

7: addExistenceConstraint(e, pi,Xi)
8: end for
9: end procedure

Functional dependencies

Let F ′

e be the set of functional dependencies that were defined before the nur-

turing process, and that can be obtained using Algorithm 8.4. The first step

consists in removing all the dependencies of F ′

e that do not stand any more,

then adding the dependencies that were not included yet. Algorithm 8.19 for-

malises this process.

Algorithm 8.19 ProcessFunctionalDependencies : Process the functional de-
pendencies for a given entity type

Require: e is an entity type
∧ Fe is the set of enforced functional dependencies for e
∧ F

′
e is the initial set of enforced functional dependencies for e

Ensure: e is updated to take into account the enforced dependencies

1: procedure ProcessExistenceConstraints(e, Fe, F
′
e)

2: F
′′
e ← Fe ∩F

′
e . the initially enforced dependencies that were not dismissed

3: for all fi = (Xi, pi) ∈ F
′
e\F

′′
e do

4: removeFunctionalDependency(e, fi)
5: end for
6: for all fi = (Xi, pi) ∈ Fe\F

′′
e do

7: addFunctionalDependency(e, fi)
8: end for
9: end procedure

156 Chapter 8. Nurture

Unique constraints

Let Υ
′

e be the set of unique constraints that were defined before the nurturing

process, and that can be obtained using Algorithm 8.5. The first step consists in

removing all the constraints of Υ
′

e that do not stand any more, then adding the

constraints that were not included yet. Algorithm 8.20 formalises this process.

Algorithm 8.20 ProcessUniqueConstraints : Process the unique constraints
for a given entity type

Require: e is an entity type
∧ Υe is the current set of enforced unique constraints for e
∧ Υ

′
e is the initial set of enforced unique constraints for e

Ensure: e is updated to take into account the enforced constraints

1: procedure ProcessUniqueConstraints(e, Υe, Υ
′
e)

2: Υ
′′
e ← Υe ∩Υ

′
e . the initially enforced constraints that were not dismissed

3: for all υi = (Xi, pi) ∈ Υ
′
e\Υ

′′
e do

4: removeUniqueConstraint(e, pi,Xi)
5: end for
6: for all υi = (Xi, pi) ∈ Υe\Υ

′′
e do

7: addUniqueConstraint(e, pi,Xi)
8: end for
9: end procedure

Consider for instance that the unique constraint υ = ({Vat number}, primary)

for the entity type Provider is enforced. Processing them will practically cre-

ate an group containing the attribute Vat number in the entity type Provider,

then set this group as a primary identifier for the entity type.

8.5 Output

At the end of this interactive process, the pre-integrated schema s has been

augmented by all the constraints and dependencies that were enforced using the

end-users input. At this point, it is necessary to observe that the constraints

and dependencies that were not explicitly enforced have not been implicitly

added. This underlines once again the importance of the analysts to guide the

end-users appropriately.

After this process, the appearance of the forms is overall the same, the

only visible modifications concerning the cardinality of the fields, and possible

value type and size restrictions when inputting through the forms. The main

modifications therefore concerns the underlying schema. Fig. 8.5 illustrates

how our running example could have been nurtured. As we can see, there was

8.5. Output 157

no trivial identifier for the different Address entity types, and that no one was

mentioned for the entity type labelled Orders either.

Figure 8.5: The pre-integrated schema of the example after the nurturing step.

Chapter 9

BIND

Completing the integration of the conceptual schema

In this chapter, we take advantage of the previous steps to complete the integra-

tion process of the different pieces of specification. Based on the pre-integrated

schema obtained during the Investigate phase and the constraints and depen-

dencies obtained through the Nurture phase, the semantically equivalent struc-

tures are arbitrated and integrated into a a non-redundant conceptual schema

representing the data model conveyed by the user-drawn form-based interfaces.

We therefore first expose the elements that need to be arbitrated, then

present our integration strategy. We subsequently explain how to manage the

process, and present the resulting output.

9.1 Delimiting elements to integrate

As can be observed in Fig. 8.5, there are still different types of challenges to

arbitrate at this point of the RAINBOW process. They notably concern the

appropriate moving and integration of:

• the components of entity types involved in IS-A hierarchies that can be

upwardly inherited;

• the components of entity types that are actually references to other entity

types;

• the attributes of entity types would be better placed in relationship types

involving these entity types;

• the constraints and dependencies involving these components.

159

160 Chapter 9. Bind

As we have seen in Section 3.4.3, different transformational techniques ex-

ist to handle the integration of similar objects into non-redundant structures.

Among these techniques, we choose to work with:

• n-ary integration for handling upward inheritance and solving the con-

straints, because of the potential multiple occurrences of key concepts;

• binary integration for referential components and attributes that need to

be moved from entity types into relationship types.

All these transformations on the schema must maintain the traceability of

elements, so that any widget of the user-drawn form-based interfaces can still

found its counterpart in the data model.

9.2 Managing the process

One of the main challenges inherent to this process is to manage simultaneously

all these transformation, since one does not really prevail on the others. We

will hence present independently each type of sub process that needs to be led

by the participants, and that could be interrupted to start another one. These

sub processes all work around the same elements.

Let us consider Es, the set of data elements of the schema s, and E ∈ Es, the

set of entity types of s, which we want to integrate. Since we want to integrate

elements of Es, some of them will be removed. We call E]s , the set that will

receive those elements, so that we can still access their properties.

Let us also introduce the function φ : X → Y , that will contain the mapping

between removed components of entity types and their associated “integrated”

components, i.e. the component by which they are replaced. The set X ⊆ E]s
is the domain of φ (noted Dom(φ)), and the set Y ⊆ Es is the codomain of φ

(noted Codomain(φ)).

9.2.1 Arbitrating upward inheritance for IS-A relationships

In this step, we analyse the hierarchical organisation of entity types (declared

as equal, specialised or united during the Investigate step) to discover and

arbitrate components that could be upwardly inherited by supertypes. For

this purpose, let us note ei B ej the fact that ei has ej as supertype.

Since we ensured that there is no hierarchical cycles in schema s, each IS-A

tree has a root supertype, possibly intermediary entity types, and leaf entity

types. The idea is therefore to start by the leaves and recursively arbitrate

their components to decide which ones can be moved to the supertypes.

9.2.1. Arbitrating upward inheritance for IS-A relationships 161

This process can be handled as a discussion between the end-users and the

analysts regarding the definition of a“super”form containing all the information

concerning a given concept.

Practically, for each level of a given hierarchy, the end-users must trans-

parently define the sets of equivalent components that can be replaced by a

single component into the supertype. Typically, this would concern attributes

bearing the same terminology, or roles for relationship types involving the same

entity type.

Consequently, a new component is created and the equivalent components

are removed from the schema but stored in order to arbitrate their properties

and constraints later on. Algorithm 9.1 formalises this process.

Algorithm 9.1 MoveInheritedComponents : arbitrate and move the relevant
components from entity types to their supertypes

Require: E is the set of entity types to be arbitrated
∧ φ is the mapping function between components and their integrated counterpart

Ensure: E is updated
∧ φ is updated

1: procedure MoveInheritedComponents(E)
2: Ê← {ei ∈ E|(∃ej ∈ E : ej B ei) ∧ (@ek ∈ E : ei B ek)}
3: for all e ∈ Ê do
4: MoveInheritedComponentsRecursive(e,E, φ) . See Algorithm 9.2 on

page 162
5: end for
6: end procedure

Take for instance the hierarchy with Solution as root in Fig. 8.5. We

start by confronting Product, Products and Solution, for which the user

may decide to move and integrate the following components into the supertype

Product:

• Code from Product, Products and Special Good

• Description from Product and Special Good

• Brand from Product

• Price from Product and Special Good

• the role leading to Provider (primary) from Product

• the role leading to Provider (secondary) from Product

• the role leading to Order from Products

Then, the supertype Product is confronted to Service, for which the user

may decide to move and integrate the following components into the supertype

Solution:

162 Chapter 9. Bind

Algorithm 9.2 MoveInheritedComponentsRecursive : Recursively arbitrate
and move the relevant components to the given entity type from its subtypes
(1/2)

Require: e is the supertype for which the components must be arbitrated
∧ E is a set of entity types containing the subtypes of e
∧ φ is the mapping function between components and their integrated counterpart

Ensure: e is updated with new components that represent the integration of arbi-
trated components from the subtypes
∧ φ is updated accordingly

1: procedure MoveInheritedComponentsRecursive(e,E, φ)
2: E ← {ei ∈ E | ei B e}
3: for all ei ∈ E do
4: if ∃ej ∈ E | ej B ei then
5: MoveInheritedComponentsRecursive(ei,E, φ)
6: end if
7: end for
8: for all ei ∈ E do
9: Cei ← getComponents(ei)

10: for all Ci ∈ Cei do
11: . Get the equivalent components among all subtypes of e
12: Ci ← ({Ci} ∪ {Cj 6= Ci | (∃ej ∈ E : Cj ∈ getComponents(ej)) ∧ (Cj ≡

Ci) ∧ (getType(Cj) = getType(Ci))})
13: . Choose components to integrate (at most one per subtype)
14: Ask> define: C]i ⊆ Ci | ∀Cj , Ck ∈ C]i , ∃ej , ek ∈ E : Cj ∈

getComponents(ej) ∧ Ck ∈ getComponents(ek) ∧ ej 6= ek
15: if C]i 6= ∅ then
16: Ce ← getComponents(e)
17: . Choose corresponding component in supertype, if any
18: Ask> define: Ĉi ⊆ Ce | (Ĉi = ∅) ∨ (∃!C ∈ Ce|Ĉi = {C})
19: . Create a vessel that will be completely specified later on
20: if getType(Ci) = SIMPLEATTRIBUTE then
21: T← {tk |∃Ck ∈ C]i ∪ Ĉi : getTerm(Ck) = tk}
22: if @!t | T = {t} then
23: Ask> choose/redefine: t
24: end if
25: C]i ← createSimpleAttribute(e, t)
26: else
27: eCi ← getTarget(Ci)
28: R← createRelationshipType(e, eCi)
29: C]i ← getRole(e,R)
30: end if
31: . Set the integrated components associated with the new compo-

nent
. [continued on page 163]

9.2.1. Arbitrating upward inheritance for IS-A relationships 163

Algorithm 9.3 MoveInheritedComponentsRecursive (2/2)

32: C\i ← {Cj ∈ Dom(φ) | φ(Cj) ∈ (C]i ∪ Ĉi)}
33: for all Cj ∈ (C]i ∪ Ĉi ∪ C

\
i) do

34: (re)define: φ(Cj) 7→ C]i
35: removeComponent(Cj)
36: end for
37: end if
38: end for
39: end for
40: end procedure

• Code from Product and Service

• Description from Product and Service

• the role leading to Order from Product

Another example is the Order hierarchy. When Order is confronted with

Orders, the user may decide to move and integrate the following components

into the supertype:

• Order number from Order and Orders

• Date from Order and Orders

• the roles leading to Customer from Order and Orders

Once the analysis of a hierarchy is completed, it may appear (possibly after

leading other sub processes) that some entity types of the hierarchy are left

with one or less components. The analyst should therefore decide if such entity

types should be maintained, for instance for the legibility of the schema, or if

it could be transformed, for instance, into a boolean attribute in the subtype.

In our example, we could end up with an empty subtype Product and a

Seasonal good containing only the attribute Conditions. The entity type

Product could therefore be simply deleted (after updating φ so that φ(Product)

produces its supertype), while Seasonal good containing could be main-

tained, or integrated with its supertype.

Since there are multiple ways to handle these transformations and refine,

this process should be left at the discretion of the analyst. However, he should

ensure to maintain the traceability of the elements by updating φ appropriately.

Another element that must be handled once the hierarchy is “stabilised” is

the definition of its type: disjunction, totality or partition. Once again, this

process is left at the discretion of the analyst.

164 Chapter 9. Bind

9.2.2 Arbitrating referential components

In this step, we analyse the entity types that were declared as referencing others

during the Investigate phase. For this purpose, we examine each of these entity

types and select which components may be moved their referred counterpart.

If the referential role was inherited, the selectable components may be chosen

from the subtypes as well.

Once these components are selected, they are moved and integrated with

their possible counterpart components in the destination entity type. Algo-

rithm 9.4 formalises this process.

For instance, we observe that Provider refers to Address. The arbitration

could imply moving and integrating Street, Zip Code, City, Telephone and

Fax from Provider into Address. Similarly, First Name and Last Name could

be moved and integrated from Order into Customer.

9.2.3 Dispatching attributes from entity types to relationship types

In this step, we analyse the entity types involved into relationship types, and

for which attributes (or attributes of the subtypes) actually describe a property

of the relationship between these entity types rather than a property of their

current owner.

These attributes are therefore misplaced and should be moved to these

relationship types. This can typically be the case for entity types originally

associated with fieldsets or tables that aggregate information on a given concept

as well as additional details on the relation between that concept and the

concept associated with the parent widget.

Once these attributes are identified, they must be moved into the appropri-

ate relationship type. Algorithm 9.5 formalises this process.

For instance, an order actually mentions a certain quantity for each prod-

uct that it contains. This implies that Quantity is rather an attribute for

the relationship type existing between a Product and an Order than solely a

Product’s property, and should therefore be moved accordingly.

9.2.4 Solving constraints and dependencies for integrated compo-

nents

Moving and integrating components also implies managing the constraints and

dependencies in which they were involved, and hence completing their spec-

ification. The integrated objects may carry conflictual constraints, or even

invalidate the constraints that were previously defined for (one of) their source

components. We specifically consider two types of conflicts.

9.2.4. Solving constraints and dependencies for integrated components 165

Algorithm 9.4 MoveReferentialComponents

Require: E is a set of entity types to analyse
∧ φ is the mapping function between components and their integrated counterpart

Ensure: the referential components for each entity type of E are moved and inte-
grated in the referred entity types
∧ φ is updated accordingly

1: procedure MoveReferentialComponents(E, φ)
2: for all ei ∈ E do
3: Cei ← getComponents(ei) ∪ {Cj |∃ej ∈ E : Cj ∈ getComponents(ej) ∧
ej B ei}

4: Ei ← {ej ∈ E : ei
c

⇒ ej}
5: for all ej ∈ Ei do
6: Cej ← getComponents(ej)
7: for all Ci ∈ Cei do
8: Ci ← ({Ci} ∪ {Cj 6= Ci ∈ Cei | Cj ≡ Ci})
9: . Choose components to integrate (at most one per entity type)

10: Ask> define: C]i ⊆ Ci | ∀Ck, Cl ∈ C
]
i , ∃ek, el ∈ E : Ck ∈

getComponents(ek) ∧ Cl ∈ getComponents(el) ∧ ek 6= el
11: if C]i 6= ∅ then
12: Cej ← getComponents(ej)
13: . Choose corresponding component in referred entity type, if

any
14: Ask> define: Ĉi ⊆ Cej | (Ĉi = ∅) ∨ (∃!C ∈ Cej |Ĉi = {C})
15: . Create a vessel that will be completely specified later on
16: if getType(Ci) = SIMPLEATTRIBUTE then
17: T← {tk |∃Ck ∈ C]i ∪ Ĉi : getTerm(Ck) = tk}
18: if @!t | T = {t} then
19: Ask> choose/redefine: t
20: end if
21: C]i ← createSimpleAttribute(ej , t)
22: else
23: eCi ← getTarget(Ci)
24: R← createRelationshipType(ej , eCi)
25: C]i ← getRole(ej , R)
26: end if
27: . Set the integrated components associated with the new com-

ponent
28: C\i ← {Cj ∈ Dom(φ) | φ(Cj) ∈ (C]i ∪ Ĉi)}
29: for all Cj ∈ (C]i ∪ Ĉi ∪ C

\
i) do

30: (re)define: φ(Cj) 7→ C]i
31: removeComponent(Cj)
32: end for
33: end if
34: end for
35: end for
36: end for
37: end procedure

166 Chapter 9. Bind

Algorithm 9.5 MoveAttributesToRelationship

Require: E is the set of entity types to be analysed
∧ φ is the mapping function between components and their integrated counterpart

Ensure: the components of E that needed to be moved into a relationship type were
effectively moved
∧ φ is updated accordingly

1: procedure MoveAttributesToRelationship(E, φ)
2: for all ei ∈ E do
3: Aei ← getSimpleAttributes(ei) ∪ {Aj |∃ej ∈ E : Aj ∈
getSimpleAttributes(ej) ∧ ej B ei}

4: Rei ← getRoles(ei)
5: for all rj ∈ Rei do
6: Rj ← getRelationshipType(rj)
7: . Choose attributes to move into Rj
8: Ask> define: A]j ⊆ Aei
9: if A]j 6= ∅ then

10: ARj ← getSimpleAttributes(Rj)
11: . Choose corresponding component in Rj , if any
12: Ask> define: Âj ⊆ ARj | (Âj = ∅) ∨ (∃!A ∈ ARj |Âj = {A})
13: . Create a vessel that will be completely specified later on
14: T← {tk |∃Ak ∈ A]j ∪ Âj : getTerm(Ak) = tk}
15: if @!t | T = {t} then
16: Ask> choose/redefine: t
17: end if
18: A]j ← createSimpleAttribute(Rj , t)
19: . Set the integrated components associated with the new compo-

nent
20: A\j ← {Ak ∈ Dom(φ) | φ(Ak) ∈ (A]j ∪ Âj)}
21: for all Ak ∈ (A]j ∪ Âj ∪ A

\
j) do

22: (re)define: φ(Ak) 7→ A]j
23: removeComponent(Ak)
24: end for
25: end if
26: end for
27: end for
28: end procedure

First of all, for technical constraints, a constraint becomes problematic if

for the a given component, there are different values associated with the given

property p ∈ T. For instance, the value type could be either real or integer.

In such a case, a unifying value must be chosen.

Secondly, for other types of constraints and dependencies, let X be the set

of components originally associated with a constraint or dependency δ. The

9.2.5. Manual modifications 167

set X can be partitioned into X1 ⊆ Es, the subset of components that were not

updated, and X2 ⊆ Dom(φ), the set of updated components. The constraint

δ will therefore become problematic if the components of X1 ∪ φ(X2) do not

belong to the same entity type, or if φ(X2) has less elements that X2 . There

is no trivial solution for “repairing” such a problem, and the original constraint

must therefore be reconsidered.

Mechanisms for detecting potential conflicts could obviously be set up to

to prevent problematic transformations on-the-fly. However, we rather focus

on integrating non-problematic constraints and dependencies, and to detecting

problematic ones for further manual analysis. Algorithm 9.6 formalises this

process.

9.2.5 Manual modifications

In addition to these transformations, additional analysis and manipulations

can naturally be performed on the schema s to improve it according to the

subjectivity of the analyst. However, as long as the subsequent transforma-

tions do not jeopardize the semantics of the schema and the previously defined

specifications, they do not require the input of the end-users. In such cases, the

analysts should ensure to maintain the traceability of the elements by updating

φ appropriately.

9.2.6 Updating the forms

The final step of this process concerns the update process of the form. We

won’t detail the process, but intuitively, for this purpose, we need to propagate

the technical constraints of integrated components to their source widgets.

The invalidated constraints and dependencies need to be removed, while the

constraints and dependencies that were replaced remain valid and consistent

with the current schema.

9.3 Output

At the end of this interactive process, the pre-integrated schema s has been

progressively transformed into an integrated schema, where the constraints and

dependencies previously defined for each entity type, as well as the relationships

specified between entity types have been processed.

Accordingly to the user input, all the redundant elements and structure have

been integrated, misplaced components moved to the appropriate owner, and

the constraints and dependencies have been adapted accordingly. Traceability

168 Chapter 9. Bind

Algorithm 9.6 SolveConstraints : Solves the constraints for which elements
have been transformed
Require: E is the set of entity types to be analysed
∧ φ is the mapping function between components and their integrated counterpart

Ensure: ∆] is the set of constraints for which updated copies were made
1: ∧ ∆̄ is the set of constraints that could not be properly integrated

2: procedure SolveConstraints(E, φ,∆], ∆̄)
3: ∆], ∆̄← ∅
4: for all e ∈ E do
5: Ce ← getComponents(e)
6: for all Ci ∈ (Ce ∩ Codomain(φ)) do
7: Θ← {θj | ∃ej ∈ E, θj = (Cj , pj , vj) ∈ Θej : φ(Cj) = Ci}\∆]

8: for all pj ∈ T do
9: V ← {vk | ∃θ = (Cl, pj , vk) ∈ Θ}

10: if @!v | V = {v} then
11: Ask> choose/redefine: v
12: end if
13: θ ← (Ci, pj , v)
14: addConstraint(ei, θ)
15: end for
16: ∆] ← ∆] ∪Θ
17: Ξ← {ξj | ∃ej ∈ E, ξj = (Xj , pj) ∈ Ξej : Ci ∈ φ(Xj)}\∆]

18: F← {fj | ∃ej ∈ E, fj : Lj → Rj ∈ Fej : Ci ∈ φ(Lj ∪Rj)}\∆]

19: Υ← {υj | ∃ej ∈ E, υj = (Xj , pj) ∈ Υej : Ci ∈ φ(Xj)}\∆]

20: for all δ ∈ Ξ ∪ F ∪Υ do
21: X ← getComponents(δ)
22: X ′ ← {Ci | (∃Cj ∈ X : φ(Cj) = Ci) ∨ (Ci /∈ Dom(φ) ∧ Ci ∈ X)}
23: E ← {e ∈ E | ∃C ∈ getComponents(e) : C ∈ X ′}
24: if (|X | = |X ′|) ∧ (∃!e | E = {e}) then
25: δ′ ← δ
26: replaceComponents(δ′,X ,X ′)
27: addConstraint(e, δ′)
28: deleteConstraint(δ)
29: ∆] ← ∆] ∪ {δ}
30: else
31: ∆̄← ∆̄ ∪ {δ}
32: end if
33: end for
34: end for
35: end for
36: end procedure

9.3. Output 169

between the elements of the form-based interfaces and the elements of the

underlying schema is ensured thanks the mapping function φ.

After this process, the appearance of the forms is overall the same, the

only visible modifications concerning the cardinality of the fields, and possible

value type and size restrictions when inputting through the forms. The main

modifications therefore concerns the underlying schema. Fig. 9.1 illustrates

how the running example could have been updated.

Figure 9.1: The schema of the running example after the binding phase.

Chapter 10

OBJECTIFY and WANDER

Generating and testing a playable prototype

In this chapter, we address the two last steps of the RAINBOW approach, which

occur after the production of an integrated conceptual schema representing the

underlying data model of the form-based interfaces that were drawn by the

end-users. In order to ultimately validate the requirements conveyed by this

schema, a prototypical application is generated and submitted to the end-users

so they can test it.

Section 10.1 therefore presents the principles behind the generation and

integration of applicative components, while Section 10.2 explains how to take

advantage of the generated prototypical application as a means for validation.

However, in this doctoral research, we mainly focused on the previous steps of

the approach and only briefly expose these two steps, since the generation of

the components is straightforward and the manipulation of a reactive prototype

mainly adds another level of validation.

10.1 Objectify

The first stage of this ultimate validation consists in generating and integrating

applicative components from the integrated conceptual schema. As we have

seen, this process is relatively straightforward.

First of all, a database can be automatically generated using the transforma-

tional approach: the integrated conceptual schema is sequentially transformed

into a logical schema, then a physical schema, and finally DDL code, from which

171

172 Chapter 10. Objectify and Wander

an operational database can be created using a compatible Database Manage-

ment System (DBMS). CASE tools have proven very effective in supporting

such a process.

Given the restrictions that were imposed in the RAINBOW approach, the

automatic transformations that can be recursively applied on its conceptual

structures are the following:

• entity types are transformed into tables

• monovalued simple attributes are transformed into columns

• multivalued simple attributes are transformed into entity types (repre-

sentation by instance)

• relationship types with no attributes and that are not N to N are trans-

formed into foreign keys

• other relationship types are transformed into entity types

• primary identifiers are transformed into primary keys

• secondary identifiers are transformed into uniques

• entity types with no identifiers receive a technical identifier

• domain, requires and existence constraints, as well as functional depen-

dencies are transformed into check predicates

• IS-A relationships are transformed into relationship types with existence

constraints, with respect to their type

Subsequently, access keys, spaces and clusters can be generated. After-

wards, if judged relevant by the participants, the database can be populated

with the data samples provided by the end-users. Fig. 10.1 illustrates the phys-

ical schema that can be automatically obtained from the schema of Fig. 9.1,

and Listing 10.1 shows an excerpt of the associated DDL code.

Listing 10.1: Excerpt of the DDL code generated from the schema of Fig. 10.1

create table Address (

ID_address char (10) not null ,

Street varchar (50),

Street_number varchar (50),

Zip_code varchar (50),

City varchar (50),

Telephone varchar (50),

Fax varchar (50),

constraint ID_ID primary key (ID_address));

create table Customer (

Customer_number numeric (50) not null ,

First_name varchar (50) not null ,

Last_name varchar (50) not null ,

Title varchar (50),

ID_address_main char (10),

ID_address_alternative char (10),

constraint ID_Customer primary key (Customer_number));

10.1. Objectify 173

alter table Address add constraint LSTONE_Address

check(Zip_code is not null or City is not null);

alter table Customer add constraint FKmain

foreign key (ID_address_main)

references Address;

alter table Customer add constraint FKalternative

foreign key (ID_address_alternative)

references Address;

create unique index ID_IND on Address (ID_address);

create unique index ID_Customer on Customer (Customer_number);

create index FKmain on Customer (ID_address_main);

create index FKalternative on Customer (ID_address_alternative);

Figure 10.1: A possible physical schema for the running example.

Once the database has been set up in the DBMS, simple queries SQL to

select, insert, update and delete rows of each table can be automatically gener-

ated. These queries can subsequently be connected to the form-based interfaces

drawn by the end-users in order to make them reactive and report the messages

of the database. The issue of querying through user interfaces has notably been

studied in the Natural Forms Query Language (NFQL) [Embley, 1989] and the

Guava framework [Terwilliger et al., 2006].

174 Chapter 10. Objectify and Wander

The final step consists in grouping the user-drawn interfaces in an oper-

ational environment. This implies creating the mechanisms for a central ap-

plication granting navigational access to the forms and between them. The

prototypical application thus created should enable to perform simple consult-

ing and editing actions the database though the form-based interfaces, which

would qualify it as a lightweight data manager for the database.

10.2 Wander

Finally, the last stage consists in confronting the end-users with the prototyp-

ical application to see if the static data requirements that were materialised

correspond to their needs, which should ultimately validate the integrated con-

ceptual schema.

The role of the analyst during this process is therefore to assist the users in

the validation of the model through the use of the prototype, and to record their

positive and negative remarks. Reporting mechanisms could also be integrated

to the reactive form-based interfaces to gather these comments.

The evaluation of the elicited requirements through the manipulation of

the associated lightweight data manager should eventually lead to end the

requirements elicitation process or to loop back to the previous steps to add,

delete or modify the specifications that were expressed.

Chapter 11

The RAINBOW Toolkit

A proof-of-concept tool support for the RAINBOW approach

In this chapter, we introduce the proof-of-concept CASE tool that was de-

veloped in order to support and experiment the RAINBOW approach. We

consequently present the RAINBOW Toolkit that handles most of the pro-

cesses developed in the five first steps of the approach. First, we present the

overall design principles and the technologies that were used, then for each of

the five steps, we present how the theoretical principles are instantiated.

11.1 Design principles

The RAINBOW Toolkit has been designed to support the processes of the

five first steps of our approach, which are the most crucial ones. We therefore

needed to develop an integrated environment that would allow to draw form-

based interfaces and transparently manage their underlying data models.

For this purpose, we chose to use Java [Java, 2010], which is one of the most

widely used multi-platform object-oriented programming languages, because it

gave access to rich libraries serving our purpose.

Among them, we notably used the Qt Jambi library to develop the graphical

interface of the application and manage the drawing of the forms. This library

is the Java version of the Qt toolkit [Qt, 2010], which is a free and open-source

cross-platform application development framework using C++.

Java also enables us to interact with the previously mentioned DB-Main

CASE tool [DB-MAIN, 2010], through their Java API which gives access to

175

176 Chapter 11. A proof-of-concept tool support

the DB-Main repository and GER constructs.

11.1.1 Available processes

To simplify the development, we organised the RAINBOW steps into exclusive

and sequential objectives:

1. Represent : the end-users can draw and specify a set of form-based in-

terfaces to perform usual tasks of their application domain. Once they

are satisfied with their interfaces, the set of interfaces are automatically

adapted into their underlying conceptual counterparts;

2. Investigate: the sets of terminological and structural ambiguities are con-

secutively computed and presented for arbitration. Based on the provided

decisions, the pre-integrated schema is automatically built;

3. Nurture: using the interfaces that they drew, the end-users are invited to

provide data examples as well as constraints and dependencies for each

form. Each new data sample is analysed to adapt the suggested con-

straints and dependencies, and conversely, each new enforced constraint

or dependency directly restricts the new data samples that can be en-

coded. The pre-integrated schema is updated accordingly;

4. Bind : the elements to integrate are computed and presented to the

users for arbitration. Based on the provided decisions, the pre-integrated

schema is transformed into a non redundant integrated conceptual schema.

The decisions made during each step are stored so that if required, the users

can loop back to change a given decision then replay the other steps without

requiring any re-arbitration for decisions that are still valid.

11.1.2 Implementation structure

The toolkit was implemented around the following main packages:

• The main rainbow package contains the main application, as well as the

definitions of transversal constants and settings;

• The rainbow.graphical.components package (re)defines graphical com-

ponents and widgets for the rendering the main application, such as ded-

icated dialog or message boxes;

• The rainbow.graphical.rendering package implements all the widgets

for the rendering and manipulation of the form-based user interfaces that

can be drawn;

11.2. Drawing and specifying form-based interfaces 177

• The rainbow.project.components package defines the main compo-

nents of a RAINBOW project (such as a centralised Project manager,

a Thesaurus, an XML handler), as well as utility classes;

• The rainbow.toolboxes package defines a set of classes to interact with

the DB-Main repository, including a centralised class to manipulate DB-

Main schemas (one per main process of the RAINBOW approach), the

implementation of standard “black box” transformations, the definition

of “virtual” elements to emulate DB-Main elements, as well as a converter

between elements of the form-based interfaces and the DB-Main elements;

• The rainbow.represent package implements all the necessary classes to

convey the specifications of the form-based interfaces, as well as dialogs

to edit them;

• The rainbow.adapt package provides the mechanisms to transform a set

of form-based interfaces into consecutive raw and refined schemas;

• The rainbow.investigate.semantics package provides term analysis

on a schema based on orthographical and ontological comparison, the

interactive arbitration of terminological similarities, as well as the pro-

cessing of subsequent decisions;

• The rainbow.investigate.syntax package provides structural analysis

on a schema based on patterns, the interactive arbitration of structural

similarities, as well as the processing of subsequent decisions;

• The rainbow.nurture package enables to provide data samples, con-

straints and dependencies and to update the associated schema accord-

ingly;

• The rainbow.bind package manages the integration process of the ele-

ments of a schema.

See Appendix C for the Java source code of the toolkit and its associated

documentation.

11.2 Drawing and specifying form-based interfaces

11.2.1 Drawing environment

The toolkit provides access to all the elements specified in Chapter 5, as illus-

trated in Fig.11.1. For beginners, the environment is voluntarily pared down in

order not to be overwhelming. However, advanced users may access additional

docking windows with the interfaces list, the thesaurus, and the properties of

the currently selected element.

178 Chapter 11. A proof-of-concept tool support

Figure 11.1: The RAINBOW toolkit’s drawing environment.

The user starts by creating a form, before progressively inserting more ele-

ments into it. The layout of forms is voluntarily limited to a vertical sequence

of elements, in order to keep the end-users focused on the content rather than

the form. Each new widget is initialised with default values, so that the end-

users can focus on the main properties (see Fig. 11.2), which are the label, the

qualifier, the description and the cardinality for simple widgets, as well as the

distinctiveness for containers. Advanced users may directly specify alternative

terms, as well as technical or existence constraints.

Note that the toolkit restrict the edition of the form-based interfaces only

to this drawing step. The next steps allow to update the terminology of the

forms indirectly, but does not allow to change their structure. However, it is

possible to loop back in the process at any time to edit the interfaces and replay

the following steps without losing any of the intermediary decisions.

11.2.2 Suggesting terms on-the-fly

In order to reduce the semantic redundancies upstream, we provide an on-

the-fly terminology suggester and analyser. When inserting a new widget or

editing an existing one, the suggester automatically proposes possible terms,

11.2.2. Suggesting terms on-the-fly 179

Figure 11.2: Editing a widget.

labels and qualifiers based on the existing terminology. If the user chooses

to provide his own term, label and qualifier, the analyser compares them to

the existing terminology to detect possible orthographical and/or ontological

similarities, then asks the user for direct arbitration.

The conflictual siblings and non siblings are therefore presented, and the

user may choose:

• to keep his own terminology, and possibly impose it to a selected set of

other similar elements;

• to unify his own terminology, based on one of the similar elements;

• use a completely different terminology, which could in turn generate other

similarities.

As we mentioned, we use Jaro-Winkler ’s distance [Winkler, 1990] for lex-

ical comparison, and the WordNet orthographical reference system[Fellbaum,

1998] for this purpose. Several java libraries have been developed to imple-

ment and manage string distance metrics, among which SimMetrics [Chapman,

2007], LingPipe [LingPipe, 2010] and SecondString [Carnegie Mellon Univer-

sity, 2006]. For our purpose, they are relatively equivalent, so we chose to work

with the latter. Similarly, several java libraries have also been developed to

interact with the WordNet database, among which JAWS [Spell, 2009], JWNL

[Walenz and Didion, 2008] and MIT’s JWI [Finlayson, 2009]. For our purpose,

they are also relatively equivalent, so we chose to work with the latter.

180 Chapter 11. A proof-of-concept tool support

11.2.3 Storing and adapting the interfaces

Once the users are satisfied with their set of form-based interfaces, the latter

are stored and automatically adapted. We use XML [W3C, 2010] to store the

initial interface drawings. Based on the specifications of Section 5.2, we defined

a Document Type Definition (DTD) for our Simplified Form Model, as shown

in Listing 11.1. Listing 11.2 shows an excerpt of the XML file associated with

our running example.

Listing 11.1: The DTD specification for the RSFM

<!ELEMENT rtk (forms , dbmain ?) >

<!ATTLIST rtk label CDATA #IMPLIED >

<!ATTLIST rtk description CDATA #IMPLIED >

<!ELEMENT forms (form+) >

<!ATTLIST forms id CDATA #REQUIRED >

<!ELEMENT form ((fieldset|table|input|select|button)*, unique*, existence *) >

<!ATTLIST form id CDATA #REQUIRED >

<!ATTLIST form label CDATA #REQUIRED >

<!ATTLIST form qualifier CDATA #IMPLIED >

<!ATTLIST form description CDATA #IMPLIED >

<!ATTLIST form term CDATA #IMPLIED >

<!ELEMENT fieldset ((fieldset|table|input|select|button)*, unique*, existence*, requires

?) >

<!ATTLIST fieldset id CDATA #REQUIRED >

<!ATTLIST fieldset label CDATA #REQUIRED >

<!ATTLIST fieldset qualifier CDATA #IMPLIED >

<!ATTLIST fieldset description CDATA #IMPLIED >

<!ATTLIST fieldset term CDATA #IMPLIED >

<!ATTLIST fieldset maxcard CDATA #FIXED "1" >

<!ATTLIST fieldset mincard (0|1) "0" >

<!ATTLIST fieldset transformbyinstance (false|true) #IMPLIED >

<!ELEMENT table ((input|select|button)*, unique*, existence*, requires ?)>

<!ATTLIST table id CDATA #REQUIRED >

<!ATTLIST table label CDATA #REQUIRED >

<!ATTLIST table qualifier CDATA #IMPLIED >

<!ATTLIST table description CDATA #IMPLIED >

<!ATTLIST table term CDATA #IMPLIED >

<!ATTLIST table maxcard CDATA #FIXED "infinite" >

<!ATTLIST table mincard (0|1) "0" >

<!ATTLIST table transformbyinstance (false|true) #IMPLIED >

<!ELEMENT input (requires ?) >

<!ATTLIST input id CDATA #REQUIRED >

<!ATTLIST input label CDATA #REQUIRED >

<!ATTLIST input qualifier CDATA #IMPLIED >

<!ATTLIST input description CDATA #IMPLIED >

<!ATTLIST input term CDATA #IMPLIED >

<!ATTLIST input mincard (0|1) "0" >

<!ATTLIST input maxcard CDATA #FIXED "1" >

<!ATTLIST input valuetype (boolean|date|datetime|integer|real|text) "text" >

<!ATTLIST input valuesize CDATA "50" >

<!ATTLIST input formula CDATA #IMPLIED >

<!ELEMENT select (option+, requires ?) >

<!ATTLIST select id CDATA #REQUIRED >

<!ATTLIST select label CDATA #REQUIRED >

<!ATTLIST select qualifier CDATA #IMPLIED >

<!ATTLIST select description CDATA #IMPLIED >

<!ATTLIST select term CDATA #IMPLIED >

<!ATTLIST select mincard (0|1) "0" >

<!ATTLIST select maxcard (1| infinite) "1" >

<!ATTLIST select valuetype (boolean|date|integer|real|text) "text" >

<!ATTLIST select valuesize CDATA "50" >

<!ATTLIST select iseditable (false|true) "false" >

11.3. Arbitrating terminological and structural similarities 181

<!ATTLIST select formula CDATA #IMPLIED >

<!ELEMENT option EMPTY >

<!ATTLIST option id CDATA #REQUIRED >

<!ATTLIST option label CDATA #REQUIRED >

<!ATTLIST option qualifier CDATA #IMPLIED >

<!ATTLIST option description CDATA #IMPLIED >

<!ELEMENT button (action+, requires ?) >

<!ATTLIST button id CDATA #REQUIRED >

<!ATTLIST button label CDATA #REQUIRED >

<!ATTLIST button qualifier CDATA #IMPLIED >

<!ATTLIST button description CDATA #IMPLIED >

<!ATTLIST button term CDATA #IMPLIED >

<!ATTLIST button label CDATA #REQUIRED >

<!ELEMENT action (item*) >

<!ATTLIST action label CDATA #REQUIRED >

<!ATTLIST action description CDATA #REQUIRED >

<!ELEMENT unique (item+) >

<!ATTLIST unique type (primary|secondary) "secondary" >

<!ELEMENT existence (item+) >

<!ATTLIST existence type (coex|atmost1|atleast1|exactly1) "coex" >

<!ELEMENT requires (item+) >

<!ELEMENT item EMPTY>

<!ATTLIST item refid CDATA #REQUIRED >

<!ELEMENT dbmain (schemas) >

<!ATTLIST dbmain filename CDATA #REQUIRED >

<!ELEMENT schemas (schema *) >

<!ELEMENT schema EMPTY >

<!ATTLIST schema class (AdaptRaw|AdaptRefined|InvestigateSemantics|InvestigateSyntax|

Nurture|Bind|Objectify|Wander) "AdaptRaw" >

<!ATTLIST schema iddbm CDATA #REQUIRED >

As can be observed, the DTD maintains a mapping between each step of the

approach and a schema of the DB-Main repository. Therefore, when the edition

of the forms is finished, a raw schema and a refined schema are consecutively

created in the DB-Main repository using the mapping rules of Chapter 6, and

the mapping is updated accordingly.

11.3 Arbitrating terminological and structural similarities

11.3.1 Terminological similarities

Once the refined schema has been produced, it is copied into a new schema to

perform the terminological analysis. The schema is analysed to compute the

sets of terminologically similar elements, using the principles of Section 7.1.2.

As for the on-the-fly term suggester, we use the SecondString library to handle

orthographical comparison with Jaro-Winkler ’s distance, and JWI to interact

with WordNet.

The sets that are discovered are compared with the previously arbitrated

similar subsets, which are stored in the DB-Main repository using meta prop-

erties, so that valid pre-existing decisions are maintained. The sets are subse-

quently presented for arbitration, as illustrated in Fig. 11.3.

The elements bearing conflictual terms are grouped separately from the

elements that bear non conflictual identical terms. For each set, subsets can be

182 Chapter 11. A proof-of-concept tool support

Listing 11.2: The XML code associated with the Customer form of Fig. 5.10

<form description="" id="1" label="CUSTOMER" maxcard="1" mincard="1" qualifier="" term="

CUSTOMER">

<input description="" id="2" label="Customer Number" maxcard="1" mincard="1" qualifier="

" valuesize="" valuetype="integer"/>

<input description="" id="3" label="first name" maxcard="1" mincard="1" qualifier=""

valuesize="" valuetype="text"/>

<input description="" id="4" label="Last Name" maxcard="1" mincard="1" qualifier=""

valuesize="" valuetype="text"/>

<select description="" formula="" id="5" iseditable="false" label="title" maxcard="1"

mincard="0" qualifier="" term="title" valuesize="50" valuetype="text">

<option description="" id="6" label="Mrs" qualifier=""/>

<option description="" id="7" label="Miss" qualifier=""/>

<option description="" id="8" label="Mr" qualifier=""/>

</select >

<fieldset description="" id="9" label="address" maxcard="1" mincard="0" qualifier=""

term="address" transformbyinstance="false">

<input id="10" label="street" maxcard="1" mincard="0" valuesize="50" valuetype="text"/>

<input id="11" label="Number" maxcard="1" mincard="0" valuesize="50" valuetype="text"/>

<input id="12" label="Zip Code" maxcard="1" mincard="0" valuesize="50" valuetype="text"/

>

<input id="13" label="city" maxcard="1" mincard="0" qualifier="" valuesize="50"

valuetype="text"/>

<input description="" formula="" id="14" label="Telephone" maxcard="1" mincard="0"

qualifier="" valuesize="50" valuetype="text"/>

</fieldset >

<fieldset description="" id="15" label="address" maxcard="1" mincard="0" qualifier="

alternative" term="address" transformbyinstance="false">

<input id="16" label="street" maxcard="1" mincard="0" qualifier="" valuesize="50"

valuetype="text"/>

<input id="17" label="number" maxcard="1" mincard="0" qualifier="" valuesize="50"

valuetype="text"/>

<input id="18" label="Zip Code" maxcard="1" mincard="0" valuesize="50" valuetype="text"/

>

<input id="19" label="city" maxcard="1" mincard="0" qualifier="" valuesize="50"

valuetype="text"/>

</fieldset >

<table description="" id="20" label="orders" maxcard="infinite" mincard="0" qualifier=""

transformbyinstance="true">

<input description="" formula="" id="21" label="number" maxcard="1" mincard="1"

qualifier="" valuesize="50" valuetype="text"/>

<input description="" formula="" id="22" label="date" maxcard="1" mincard="0" qualifier=

"" valuesize="" valuetype="date"/>

</table>

</form>

created and assign a unifying term. The conflictual elements are highlighted

in form that contains them, thanks to the mapping between the data elements

and the interface widgets.

Based on the provided decisions, the schema and the forms are updated

with the new terminology, and the new decisions are stored in the DB-Main

repository using meta properties.

11.3.2 Structural similarities

The terminologically updated schema is then copied into a new schema to

perform the structural analysis. The schema is analysed to compute the sets

of structurally similar elements, using the principles of Section 7.2.2.

11.4. Providing data samples and constraints 183

Figure 11.3: Arbitrating terminological similarities.

The sets that are discovered are compared with the previously arbitrated

similar subsets, which are stored in the DB-Main repository using meta prop-

erties, so that valid pre-existing decisions are maintained. The sets are subse-

quently presented for arbitration, as illustrated in Fig. 11.4.

For each entity type, the set of structurally similar entity types are pre-

sented through their associated form-based interfaces. The structurally similar

containers and the shared patterns are highlighted, thanks to the mapping be-

tween the data elements and the interface widgets. For entity types that are

equal or that unites, a unifying term can be provided.

Based on the provided decisions, the schema is subsequently pre-integrated

to reflect them, and the new decisions are stored in the DB-Main repository

using meta properties. The terminology of the forms is updated accordingly.

11.4 Providing data samples and constraints

The structurally updated schema is then copied into a new schema to perform

the constraint analysis. The previously provided data samples and constraints

are loaded from the DB-Main repository, and the valid constraints and depen-

184 Chapter 11. A proof-of-concept tool support

Figure 11.4: Arbitrating structural similarities.

dencies are initialised accordingly, using the principles exposed in Section 8.4.2.

The toolkit enables to handle the entity types associated with one form

at a time, as illustrated in Fig. 11.5. For each entity type of each form, the

end-users may provide several data samples, that must respect the previously

enforced constraints and that will restrict the valid constraints that can be en-

forced, which notably provides an interactive means to approximate Armstrong

relations. At any time, the user can switch from the list of valid data samples

to one of the constraints panel.

For the technical constraints, he can visualise the enforced and valid car-

dinality and prerequisite components for every components of a given entity

type, as well as value types for attributes, as illustrated in Fig. 11.6. Any valid

constraint can be enforced, and any modified constraint can be reinitialised as

long as the set of data samples is compatible. On the contrary, the value sizes

are not handled.

Similarly, for the existence constraints, he can visualise the enforced and

valid constraints for a given entity type as illustrated in Fig. 11.7. Any valid

constraint can be enforced, while any enforced constraint can be unenforced.

The functional dependencies panel contains the enforced, valid and dis-

carded dependencies for a given entity type, as illustrated in Fig. 11.8. The

valid dependencies can be enforced or manually discarded, and the enforced

dependencies can be unenforced. Discarded dependencies can be reinitialised

to recalculate the dependencies that are still valid after all. The dependencies

11.4. Providing data samples and constraints 185

Figure 11.5: Adding data samples.

Figure 11.6: Arbitrating technical constraints.

are filtered according to the principles exposed in Section 8.4.4, and set visible

(they are formatted using strike-out in the figure) or hidden.

Finally, the identifiers panel contains the enforced (primary and secondary)

and valid unique constraints for a given entity type, as illustrated in Fig. 11.8.

The constraints can be enforced and unenforced, and set to primary or sec-

ondary.

Based on the provided decisions, the pre-integrated schema is updated with

the new constraints and dependencies, while the new decisions and constraints

are stored in the DB-Main repository using meta properties. The constraints

of the forms are updated accordingly.

186 Chapter 11. A proof-of-concept tool support

Figure 11.7: Arbitrating existence constraints.

Figure 11.8: Arbitrating functional dependencies.

Figure 11.9: Arbitrating unique constraints.

11.5 Finalising the project

The final process handled by the toolkit is the binding process, which is partially

supported. The nurtured pre-integrated schema is copied into a new schema to

perform this integration process. Using the principles exposed in Section 9.2.1,

the IS-A hierarchies are identified are presented for upward integration and

subsequent constraints and dependencies handling, as illustrated in Fig. 11.10.

11.5. Finalising the project 187

Figure 11.10: Binding concepts.

For each level of the hierarchy, the components that could be inherited

from the subtypes are grouped and proposed for integration. Once integrated,

the associated constraints and dependencies can also be confirmed or rejected.

The schema is subsequently transformed to reflect the provided decisions and

represent an integrated conceptual schema of the application domain. The

terminology of the forms is updated accordingly.

In contrast, the handling of referential components and dispatching of at-

tributes into relationship types must be handled manually in the DB-Main

toolkit, while ensuring the mapping between the widgets and the integrated

elements of the data model. However, the issue of referential components can

be circumvented upstream. If an entity type is found to complement another

during the analysis of structural ambiguities, the users can loop back to edit

the drawing step to change the structure of the form and add a container to

hold the appropriate referential components, as explained in Section 7.2.4.

Part III

Validation

In this part of the discussion, we address the validation of the RAINBOW

approach. Chapter 12 presents the two main research questions underlying the

RAINBOW approach, which are (1) its ability to help end-users and analysts

to communicate static data requirements to each other, and (2) the quality

of the conceptual schemas produced using it. Both questions raise number of

issues, and such problems are not easy to experiment, measure and validate,

especially given the immanent difficulty of evaluating methodologies for the de-

velopment of large systems. Since an extensive experimentation is not feasible

at our level, an experimentation and validation canvas is define instead and

applied to two preliminary case studies, in order to validate the said canvas

and coincidentally get a first insight on the implementation of the RAINBOW

approach. Chapter 13 subsequently describes the experimentation process, and

Chapter 14 discusses its results.

189

Chapter 12

Validation protocol

In this chapter, we present the two main research questions underlying the

RAINBOW approach, and define an experimentation and validation protocol

to address them. For this purpose, we briefly review different types of data

collection techniques, then formalise the goals and context of the expected

experimentation before defining and detailing the protocol itself.

12.1 Research questions

One of the most critical aspect of this doctoral research concerns its validation.

The transversal nature of our approach, as well as the interdependence between

the methodology and the tool support, naturally lead to two critical research

questions. First of all, does the RAINBOW approach and tool support help

end-users and analysts to communicate static data requirements to each other?

Or in other words, do they give the means to express, capture, discuss and

validate conceptual schemas, knowing that the stakeholders may have such dif-

ferent backgrounds? This question inherently raises methodological, practical

and sociological issues: were our design decisions strategic, or should we have

used alternative techniques? Does our approach carry a real added value for

stakeholders? Is the current tool support usable and efficient? How does our

approach influences the communication between the end-users and the analysts

and their behaviour during the whole process?

The second research question concerns the quality of the conceptual schemas

produced using the RAINBOW approach. How can we define the quality of a

schema in general, and the acceptability of these schemas in particular? What

191

192 Chapter 12. Validation protocol

are their flaws and merits, and what could and should be done to improve

them? This issue addresses the predicament of quality assessment, which is

itself intrinsically complex as well.

Indeed, such problems are not easy to experiment, measure and validate,

especially given the immanent difficulty of evaluating methodologies for the

development of large systems. To obtain relevant results and draw valuable

conclusions, we would need to compare the RAINBOW approach to existing

ones, based on multiple experimentations led on numerous and different case

studies over an extensive time span. Such an effort is not feasible at our level,

and would easily make for a significant research subject per se.

However, one of the contributions of this research is instead to define an

experimentation canvas, based on preliminary studies that could in turn lead

to a more realistic experimentation endeavour. The objective of the experi-

mentation is therefore to analyse the use of the RAINBOW Toolkit for the

purpose of evaluating and improving the RAINBOW approach, with respect

to its usability and effectiveness as a two-way communication channel from

the viewpoint of potential end-users and analysts in the context of static data

requirements elicitation within a process of software engineering.

12.2 Types of data collection techniques

The first concern regarding the validation of the RAINBOW approach was to

choose appropriate techniques to lead the preliminary field studies. As pre-

sented by [Singer et al., 2008], there are various types of data collection tech-

niques for software engineering, which can be classified into three categories,

namely direct, indirect and independent.

Direct techniques make the researchers interact more or less directly with

the participants. Among these techniques, inquisitive techniques (such as brain-

storming, focus groups, interviews, questionnaires, ...) are useful to obtain a

better understanding of processes by getting to debate with their very actors.

This can also lead to discuss the tools and conditions in which the processes

are performed and how they are experienced by these actors. Observational

techniques (such as shadowing and participant-observer) rather focus on mon-

itoring the studied phenomena to describe and analyse them as accurately as

possible. Both categories of techniques are quite time-consuming for all persons

involved, and their output must be handled with caution, since they can be

subjective and modified by the previously mentioned Hawthorne effect [Mayo,

1933].

Indirect techniques focuses on the working environment and equipment of

processes, which implies that the researchers do not interact with any partici-

12.3. Goals and context of the experimentation 193

pants. The actors of the processes continue their work while data is collected

either transparently (through instrumentation systems) or voluntarily (“fly on

the wall” technique, where the participants record their own work), so that it

can be analysed afterwards. These techniques are appropriate for longitudinal

studies and require little to no additional time from the participants.

Finally, independent techniques are suitable for processes that can be seen as

black boxes from which the products can be analysed. With these techniques,

the researchers only access work artefacts related to the participants (such as

change logs, tool logs, bug trackers, documentation, code, execution traces, ...),

in order to uncover information on how these participants get their work done.

Selecting the appropriate techniques depends on the research questions, as

well as the available participants and artefacts for the study. Let us therefore

review the goals and the context of our experimentation.

12.3 Goals and context of the experimentation

As explained, the main validation concerns relate to the ability of the RAIN-

BOW approach to enable the communication of static data requirements be-

tween stakeholders of a software engineering project, and the quality of the

requirements produced using our approach. The experiment should therefore

focus on two primary goals that can be refined as follows.

12.3.1 Goal 1: Assessing the effectiveness of the RAINBOW ap-

proach

The first goal concerns the effectiveness of the RAINBOW approach as a means

to transparently communicate static data requirements between end-users and

analysts. In other words, we want to:

• Analyse the use of the RAINBOW Toolkit as tool support of the RAIN-

BOW approach

• For the purpose of assessing their effectiveness to express, capture and

validate static data requirements

• With respect to their usability and potency to generate discussions

• From the viewpoint of end-users and analysts

• In the context of static data requirements elicitation within a process of

software engineering.

Basically, we will consider the approach effective if the end-users consider

that they were easily able to express all their static data requirements using

it, and if the analysts consider that the approach helped them to get a good

194 Chapter 12. Validation protocol

understanding of the application domain and the subsequent database that

will need to be developed. The analysts appreciation of the elements generated

through the approach rather regards the quality of the approach’s output,

which we will discuss afterwards. More precisely, we need to be attentive to

the following efficiency-related elements:

• the possible articulation problems that were presented in Section 2.1,

namely: confusion, improper expectations, difficult or unclear articula-

tion, inappropriate prioritisation;

• the attitude and satisfaction of the participants regarding the methodol-

ogy (and how they can possibly compare them to other approaches);

• the information that could and could not be expressed using the toolkit;

• the discussions that were induced by the approach and toolkit for the

requirements that could and could not be expressed using the toolkit;

• the ease of use and reliability of the toolkit;

• the relevance of the elements presented by the toolkit (similar labels and

structures, possible constraints and dependencies) for end-users arbitra-

tion.

12.3.2 Goal 2: Assessing the quality of the RAINBOW output

The second goal concerns the quality of the schemas produced using the RAIN-

BOW, to understand if these schemas are relevant, usable and useful. In other

words, we want to:

• Analyse the output of the RAINBOW Toolkit as tool support of the

RAINBOW approach

• For the purpose of assessing their effectiveness to produce static data

requirements

• With respect to their quality

• From the viewpoint of analysts

• In the context of static data requirements elicitation within a process of

software engineering.

Defining the quality in Software Engineering in general, and in Data mod-

elling in particular, is an old, complex and never-ending issue, though standards

such as the ISO/IEC 9126 have been established [ISO/IEC, 2001]. The notion

of quality can focus on various elements, such as the form and the content of

various artefacts (data models, code, applicative components, ...) or specific

characteristics of these artefacts (such as maintainability, evolvability, perfor-

mance, ...). According to the peculiar aspects that need to be studied, four

12.3.2. Assessing the quality of the RAINBOW output 195

main trends have appeared to address this topic. Let us present very briefly

present these approaches and provide a few references for further investigation:

• Frameworks allow their authors to tackle quality of models based on

theoretical methods (see for instance [Briand et al., 1996], [Hoxmeier,

1998], [Lindland et al., 1994], [Krogstie, 1998], [Kesh, 1995], [Habra et al.,

2008], [Maes and Poels, 2006] or [Moody et al., 2003; Moody and Shanks,

2003]). These frameworks can typically be (non exclusively) classified as:

– semiotic, which addresses the quality of models and/or modelling

languages based on how their syntactics (syntax), semantics (ex-

pected meaning) and pragmatics (actual interpretation) combines

with different elements of context of use;

– methodological, which relies on practical methodologies and pro-

cesses for evaluating quality;

– relational, which focuses on the interactions between quality factors;

– model-based, where the quality is analysed through structured di-

mensions that can themselves be structured through attributes and

properties;

• Metrics enable quality to be evaluated based on mathematical functions,

typically involving different object counts (number of associations, num-

ber of entity-types, ...) constrained by specific coefficients (see for in-

stance [Genero et al., 2000] or [Cherfi et al., 2002]);

• Best practises are built on empirical evidence to usually suggest visual

and structural improvement for models (see for instance [Moody, 2006],

[Gemino and Wand, 2005] or [Daly et al., 1996]);

• Analytical approaches focus on specific quality problems such as normal-

isation, minimality or structural consistency, and resolve them through

theoretical reasoning (see for instance [Codd, 1971b,a] or [Wahler, 2008]);

Obviously, systematically reviewing all the approaches in that domain and

defining an extensive canvas to evaluate the quality of the schemas produced

using the RAINBOW would be a tremendous endeavour that could make for

a whole research topic in itself. However, if we recall the expected charac-

teristics of a Software Requirement Specification (as detailed in Section 2.1),

we can nevertheless observe that they coincide with most of the criteria often

mentioned in quality-related researches.

Simply speaking, we will therefore consider that the output of the RAIN-

BOW approach is of quality if the analysts consider that they gathered all

the static data requirements necessary to build an appropriate and reliable

196 Chapter 12. Validation protocol

database. We hence need to be attentive to the following quality-related crite-

ria:

• correctness: does the schema use appropriate constructs?

• consistency : is the schema free of contradictions?

• completeness: does the schema cover (exactly) all the aspects necessary to

conceive the future database of the software engineering project (scope),

and is it detailed enough (level of details)?

• conciseness: is the schema free of redundancies?

• unambiguity : are there elements of the schema that are still unclear or

disputable?

• modifiability : can the schema be updated easily ?

• traceability : can each element of the schema be retraced to the original

requirements expressed by the end-users?

• verifiability : can the schema be used to verify that the software meets

the requirements?

• testability : can pass/fail or quantitative assessment criteria can be derived

from the schema?

Besides, we also want to analyse the following practical issues:

• Does the approach help the analyst to understand the application domain,

whether he was part of the experimentation or not?

• What could and should be done to improve the output schemas?

12.3.3 Context of the experimentation

To answer these questions, the use of the RAINBOW approach and toolkit

during the experimentation should be as faithful as possible to their expected

context of use in the real life and in a wider experimentation context, which

implies that we ought to be careful to the following aspects, some of which are

mentioned in Section 4.2:

• Application type: the modelled software engineering projects should be

related to form-based data intensive applications;

• Type of company : the projects should involve few people to reflect that

the expected companies are small to medium sized;

• Experience of the participants: the end-users should be familiar with

form-based human-computer interactions and the analysts should be fa-

miliar with (static) data modelling;

12.4. Building our dedicated validation approach 197

• Analysed Process: the experimentation should focus on Data Require-

ments Engineering within any Software Engineering process (Waterfall

model, Iterative and Incremental Development, Agile Development, ...);

• Tools: we use the RAINBOW Toolkit.

To understand more precisely the context of the experimentation, let us also

recall that this research focuses on Database conceptual modelling [Batini et al.,

1992; Hainaut, 2006] (as part of Requirements Engineering), in conjunction

with Database reverse engineering [Chikofsky and Cross, 1990; Hall, 1992],

Prototyping [Gomaa and Scott, 1981; Lantz, 1986] and Participatory Design

[Schuler and Namioka, 1993].

12.4 Building our dedicated validation approach

12.4.1 Overview

As already hinted, evaluating the RAINBOW approach it is not a trivial mat-

ter. First of all, evaluating methodologies for the development of large systems

requires methodological comparisons on a significant amount of case studies

among lengthy periods of time, which we cannot afford. Secondly, comparing

methodologies on the same or a limited number of case studies is also problem-

atic. If we apply the RAINBOW approach and another approach on the same

case study, there will be inevitably interferences and biases, depending on the

sequence of the possible (inter)actions of each approach. Leading two instances

of the same case study in parallel is also questionable, since we would have to

separate the end-users into two groups which could influence their behaviour

as subgroups. As for leading different case studies with different approaches,

there would be little left for relevant comparison and analysis. Finally, it is in-

trinsically difficult to precisely define and objectively measure the effectiveness

of such a transversal method and the quality of the schemas it produces.

Since we wanted to draw guidelines for a wider experimentation and since

there is no indisputable experimentation solution, we therefore chose to observe

and assess real-life implementations of our approach. To do so, we defined two

independent studies S1 and S2, based on real-life issues concerning two end-

user participants EU1 and EU2, and decided to use the Participant-Observer

principles to monitor the use of the RAINBOW toolkit and approach, and

the Brainstorming/Focus group principles to analyse the resulting conceptual

schemas.

Therefore, for each preliminary study, a pair of observers (including a main

observer MO and a different assistant observer in each case, namely AO1 and

198 Chapter 12. Validation protocol

AO2) observed the interaction of one of the end-users with an analyst DB1 (the

same in each case), jointly designing the conceptual schema of their dedicated

project using solely the RAINBOW methodology and toolkit. The role of the

observers was to follow the process and take note of all the situations where

the usage of the methodology and toolkit were efficient or not.

Then, each resulting conceptual schema was discussed by three database

analysts (DB1, DB2 and MO) to determine their qualities and flaws, as well

as the delta between the “automatically” produced schemas and a likely “im-

proved” version.

12.4.2 Participants

Seven participants were therefore involved, namely two end-users (EU1 and

EU2), two analysts specialised in Database Engineering (DB1, DB2), and three

analysts playing the role of observers (OB1, OB2 and MO), the latter being

also specialised in Database Engineering. All participants are employed at the

Faculty of Computer Science of the University of Namur, Belgium, and were

chosen because of their profile:

• EU1 is the secretary notably responsible for promoting the teaching pro-

grammes of the Faculty of Computer Science and handling the registra-

tion of applicant students since 16 years. After obtaining her Bachelor

Degree in Computer Science, she previously worked during 25 years as

a researcher is process engineering. She is therefore aware and used to

human-computer interaction, though most of the current applicant files

are still received through postal mail. Her motivation lies is that she

would be interested in improving the registration process of the appli-

cant students.

• EU2 is the executive secretary of the Faculty of Computer Science since 7

years, and carries other tasks such as the organisation of seminars, sympo-

siums and other events for the Faculty. Previously, she worked five years

as a secretary for a non-profit-making organisation, before becoming the

secretary for the Teaching Units of the Faculty of Computer Science for

16 years. She never received any proper computer training, but masters

usual office tools such as Word, Excel, PowerPoint or FileMaker, which

gives her substantial knowledge in (form-based) human-computer inter-

action. Her motivation lies is that she would be interested by a tool

facilitating the organisation of events for the Faculty.

• DB1 is a researcher and PhD student of the Laboratory of Database Ap-

plication Engineering (LIBD) of the Faculty of Computer Science since 3

12.4.2. Participants 199

years. He has a Master Degree in Computer Science and his doctoral re-

search focuses on Database Quality, with a peculiar interest in the quality

of conceptual schemas.

• DB2 is a researcher and lecturer of the Laboratory of Database Appli-

cation Engineering (LIBD) of the Faculty of Computer Science since 12

years, after obtaining her Master Degrees in History and Computer Sci-

ence. During her tenure, she participated in several projects for which

she handled the database administration, and was notably a member of

the previously mentioned ReQuest project. In addition to her involve-

ment in the latter project, she has a special interest for integration and

normalisation issues.

• OB1 is a teaching assistant and PhD student of the Faculty of Computer

Science since 5 years, after obtaining his Master Degree in Computer

Science. During his tenure, he has been the leading assistant for the

course of Software Engineering of the Faculty of Computer Science and

is leading a PhD related to the quality of the information flow within the

Software Engineering process.

• OB2 is a teaching assistant and PhD student of the Faculty of Computer

Science since 2 years. He has a Master Degree in Computer Science and

previously worked as a researcher for the Tokyo University of Agriculture

and Technology during 3 years. His is specialised in the Computer Net-

works, but he has a special interest in human-computer interaction and

software engineering.

• MO is actually yours truly, and the initiator of this validation process. He

is a teaching assistant and PhD student of the Laboratory of Database

Application Engineering (LIBD) of the Faculty of Computer Science since

3 years. After obtaining his Master Degree in Computer Science, he was

a member of the previously mentioned ReQuest project for four years and

is currently the main assistant for the Database courses and one of the

assistants for the Software Engineering course of the Faculty of Computer

Science.

We deliberately chose to assign DB1 to carry both studies in order to prevent

possible biases and variations. On the one hand, he had no prejudice on the

RAINBOW approach, on contrary of MO, and on the other hand, he was

neutral towards EU1 and EU2, while DB2 is personally closer to EU1 than

EU2. In the contrary, we chose two different neutral observers to support the

main observer MO in order to possible notice different types of phenomena.

Each of these participants were assigned different types of tasks, that we will

now detail.

200 Chapter 12. Validation protocol

12.4.3 Task 1: Preparing the experimentation

Before beginning the evaluation, a different software engineering project was

defined with each end-user. Before starting the study, a separate half-hour

meeting was therefore organised with each end-user to define the overview and

goals of their project. From that point on, the following rules were established

and agreed upon to avoid biases and interferences between the studies, but also

to to keep the focus on the sessions and canalise the efforts during those laps

of time:

• Rule 1: Seal of Secret. The two studies are anonymous and independent,

and the participants are not supposed to talk to each other about the

experiment if the main observer (MO) is not present, even if they are

part of the same study. However, a mail can be sent within the members

of a same study to discuss it, as long as MO is put in carbon copy.

• Rule 2: Only there and then. The participants are not supposed to use

the RAINBOW toolkit outside the sessions, for instance to modify what

they produced during the previous session. To prevent this to occur, the

application will only be available on the laptop of MO.

• Rule 3: The observers do not exist. As far as possible, the end-user and

the analyst must act as if the main observer and his assistant observer

are not present.

Before starting the observation, EU1, EU2, DB1, OB1 and OB2 received

a short training on the tool support and methodology based on 2 screencast

tutorials explaining how to draw form-based interfaces using the RAINBOW

toolkit (see Appendix C). DB2 was not involved in this process in order to

preserve her neutrality for the last task.

12.4.4 Task 2: Applying the RAINBOW approach to each project

For each study, the pair of end-user and analyst were asked to jointly design the

conceptual schema of their application project using the RAINBOW method-

ology and toolkit, while the observers took notes. This process was organised

in four sequential steps:

1. Drawing the forms (REPRESENT): first of all, the end-users had to draw

and edit forms that would allow them to accomplish usual tasks of their

future application project. They were asked to focus on the terminology

and data aspect of this application rather than the layout and general

appearance of the forms. In particular, they had to pay special attention

to the consistency of the labels/terms and the specification of the widgets

12.4.4. Applying the RAINBOW approach to each project 201

they needed, typically to input data. During this process, they were

expected to control the RAINBOW toolkit, while the analyst assisted

and guided them whenever necessary.

2. Analysing the terminology and structure of the forms (INVESTIGATE):

(1) the end-user and the analyst first had to analyse the terminology of

all the form elements to clarify any remaining ambiguities; (2) then, they

had to analyse the terminology of the containers to explain the relations

existing between these containers. If necessary, the pair could go back

and edit their forms. During this process, the end-user could still operate

the RAINBOW toolkit or give the control to the analyst. Whenever

necessary, the pair could go back and edit their forms.

3. Provide examples and constraints (NURTURE): for each form, the pair

first had to provide a set of examples, then examine the technical con-

straints, the existence constraints, the functional dependencies and the

possible identifiers associated with the form and its elements. If necessary,

the pair could go back and replay the previous steps.

4. Finalize the project (BIND): from the previous steps, a set of “high level”

concepts were materialised. For each of these concepts, the pair had to

arbitrate the properties that were to be associated with the concept, then

examine the associated technical constraints, the existence constraints,

the functional dependencies and the possible identifiers. If necessary, the

pair could go back and replay the previous steps.

For each study, one session of two hours per step per week was planned.

Each session was organised as follows:

• Introduction: the main observer (MO) recalled the previous steps and

presented the main objectives of the current session;

• Recapitulation: the participants discussed the previous steps and the pos-

sible elements that remained unclear or that should be reworked;

• Execution: the end-user and the analyst executed the tasks associated

with the current session using the RAINBOW toolkit while the observers

took notes;

• Individual debriefing : afterwards, the main observer discussed separately

with each other participant to take their impressions and remarks.

Recall that the ADAPT step is automatic, and that we deliberately left

aside the OBJECTIFY and WANDER steps, since the generation of the com-

ponents is straightforward and the manipulation of a reactive prototype mainly

adds another level of validation. Throughout these steps, DB1 never saw the

202 Chapter 12. Validation protocol

conceptual schemas that were produced and DB2 was not involved in this pro-

cess in order to preserve her neutrality for the last task.

During those sessions, the observers were asked to be attentive to the

efficiency-related elements that were introduced in Section 12.3.1, as well as

any other element that they felt relevant to the efficiency of the approach and

tool-support.

12.4.5 Task 3: Debating the quality of the produced schemas

At this point, the RAINBOW toolkit had produced a pre-integrated schema for

each study, while DB1 drew the conceptual schemas he felt the most appropri-

ate for each study before without at the output schemas. An additional step

was subsequently held between DB1, DB2 and MO to discuss the qualities and

the flaws of these schemas obtained using the RAINBOW approach.

During those sessions, the analysts were asked to be attentive to the quality-

related criteria and issues that were introduced in Section 12.3.2, as well as any

other element that they felt relevant to the quality of the schemas produced

using the approach and tool-support.

Chapter 13

The experimentation

In this chapter, we present the execution of the two preliminary studies that

were led. The first one concerns the electronic support of students wanting to

apply for studies at the Faculty of Computer Science of the Namur University,

while the second one deals with the definition of an academic event management

system. After preparing the experiment by defining the subject and training

the participants, we present how each pair of end-user and analyst managed

to jointly design the conceptual schema of their application project using the

RAINBOW methodology and toolkit, while observers took notes about the

efficiency of the process. We then expose the subsequent discussions on the

quality of the schemas produced using the approach and tool support for each

study. Both case study were led in French, but for the sake of this dissertation,

we translated the resulting forms and schemas. See Appendix C for the original

materials.

13.1 First case study: A student application form

13.1.1 Preparation

Defining the subject

During the preparation of the experiment, EU1 explained that, at the time

being, students (and in particular foreign students) who would like to apply

for studies at the Faculty of Computer Science of the Namur University needed

to fill then fax a paper form with various personal information and details

about their educational and professional curriculum. Moving this form to an

203

204 Chapter 13. The experimentation

electronic medium would enable for instance to handle a web application for

the registration of such demands. We therefore agreed to carry this case study

in order to define the conceptual schema supporting such a project.

Training

Before the beginning of the sessions, EU1 received the two screencast tutorials

explaining how to use the RAINBOW toolkit to draw relevant form-based

interfaces. She did not have many remarks, except that she found the notion of

“parent-dependent” unclear and possibly conflicting with the one of cardinality.

She also suggested the tutorial to be provided with a locale translation and more

navigational buttons (for instance to go back and skip sections).

13.1.2 Session 1: Drawing the forms

The first session focused on drawing the necessary forms to encode all the data

relative to a new application for a computer science student applicant, and was

organised as follows:

• Introduction: the main observer (MO) introduced the participants and

their roles, as well as the objectives (drawing the forms supporting the

encoding of information for the subject defined by EU1) and the proce-

dure (EU1 and DB1 draw jointly while OB1 and MO observe) for the

current session (10 minutes);

• Recapitulation: the participants recapped and discussed the subject of

the study, and discussed the tutorials (10 minutes);

• Execution: the end-user and the analyst executed the tasks associated

with the current session using the RAINBOW toolkit while the observers

took notes (90 minutes); Note that a paper form existed before our vali-

dation process, and the end-user had beforehand sketched a paper form

to collect her ideas regarding what should appear in the drawings;

• Individual debriefing : afterwards, the main observer discussed separately

with each other participant to take their impressions and remarks (15

minutes per participant).

In the following, we expose the remarks made by the observers and the

participants through the debriefing.

General observations

The execution of the drawing took 90 minutes altogether. However, the end-

user and the analyst started showed sign of fatigue after 65 minutes, which

13.1.2. First case study - Session 1 205

suggests that the duration of the session was too long.

The RAINBOW toolkit was installed on MO’s laptop, with which EU1 and

DB1 were not accustomed. EU1 acknowledge that she would have preferred

working on her own desktop computer.

When the drawing started, the end-user naturally gave the commands to

the analyst and was initially reluctant to manipulate the rainbow toolkit, but

she eventually took up the reins of the prototype. On the other hand, the

analyst did not find this configuration gratifying, because he did not feel very

useful or required for the process.

Still, the end-user acknowledged that the presence of the analyst was helpful,

because of the advices and explanations that he regularly provided. Rather

than being a user-driven design session, the drawing of the interfaces turned to

be a joint development, and using the tool led to discussions on the form and

substance of the interfaces.

Observations on the tool support

It appeared that the automatic suggestions of the integrated label analyser

actually annoyed the end-user, who found them too intrusive and most of the

times irrelevant. She found that her flow was interrupted, and would have

preferred clarifying the labels subsequently.

The automatic graphical rendering of the widgets according to its properties

surprised the end-user, especially the selection widget. The analyst had to insist

that one of the motivations behind this tool behaviour was to lead the end-user

to focus on the content of the forms rather than their appearance.

The available widgets are restricted to forms, fieldsets, tables, inputs, selec-

tions and buttons, and for the given problem, these widgets seemed sufficient,

though we can observe that no button was used. We also observe that the

though the problem could have been reduced to smaller sub problems (typically

encode a student, then encode an application for this student), the end-user

drew a single form to collect all the data.

We observed that the end-user drew 3 different tables for the same type

of issue (Academic Year), instead of merging them into a single table while

providing explanations in the “description” property of the table. This could

indicate that different possible uses and combinations of widgets may need to

be more explicitly explicated.

As previously mentioned, widgets have a cardinality specifying how many

values could and should at least and at most be provided. We observed that

the end-user often specified widgets as “mandatory”, even if she acknowledged

that “it would not be that problematic if this field was not filled”.

206 Chapter 13. The experimentation

Finally, there was few manipulation mistakes observed during this session.

They were mainly relation to the insertion process (widgets inserted after rather

and before, and vice-versa). The end-user drew only 3 of the 5 previous Aca-

demic Years, because she found it repetitive.

Output of the session

During this first session, EU1 and DB1 produced the single form at the left

side of Fig. 13.1. This form was automatically adapted into the schema at the

right side of Fig. 13.1, before being transformed into the schema of Fig. 13.2

using the previously defined mapping rules.

As we can see, this single form represents the inscription request made by a

candidate. Each request has a year of submission and a requested programme,

and various information must be provided regarding the applicant, notably

regarding his/her identity, his/her means of contact and his/her education and

training. We observe that this form is quite big, which makes it less pleasant

to manipulate.

EU1 enjoyed drawing the form and seeing the interface developing little

by little. Though DB1 did not feel very useful, the pair actually discussed

throughout the whole session to appropriately define each component of the

form.

13.1.3 Session 2: Analysing the terminology and structure of the

forms

This session focused on analysing the terminology and structure of the form, in

order to detect any possible ambiguity. The session was organised as follows:

• Recap of the objectives of this session

• Discussion on the previously drawn form, with suggestions of modifica-

tion.

• Analysis of all the labels: the similar labels have been group in lexi-

cally or ontologically similar label clusters; in these cluster, any element

that represent the same king of information must be grouped and jointly

relabelled (30 minutes).

• Analysis of the similar structures: the forms, tables and fieldsets con-

taining widgets with the same labels are presented for comparison and

arbitration; the end-user must explain why such situation occurs (equal-

ity, specialisation, union, complementarity or accident).

13.1.3. First case study - Session 2 207

Figure 13.1: The form drawn by end-user EU1 and analyst DB1 during the first
session, and its corresponding raw schema.

208 Chapter 13. The experimentation

Figure 13.2: The refined schema corresponding to the raw schema of Fig. 13.1.

• Individual debriefing : afterwards, the main observer discussed separately

with each other participant to take their impressions and remarks (15

minutes per participant).

In the following, we expose the remarks made by the observers and the

participants through the debriefing.

Reviewing the interfaces

Based on the notes and discussion from the first session, the analyst suggested

modifying the previously drawn form as follows (Fig. 13.3 and Fig. 13.4):

• Synthesize the different Academic Years of the Curriculum into a single

table labelled Experience to make the form lighter and more generic.

The description property explained that this table refers to the experience

of the candidate during the five years prior to the application.

• Remove the Experience from the Secondary Education, since they were

inadvertently mixed up.

13.1.3. First case study - Session 2 209

These suggestions were agreed by the end-user. In addition to these mod-

ifications, the end-user also suggested to relabel Experience to Curriculum,

as show further on. Subsequently, the updated form was “adapted” using the

mapping rules, then EU1 and DB1 proceeded with the execution of their task.

Observations on the terminological analysis

The original labelling ambiguities that were detected are presented in Table

13.1. After reviewing these ambiguities, it appeared that there were no labels

that still needed to be clarified thanks to the labelling suggestions and the

discussions that occurred during the drawing phase. The conflicting elements

were therefore different and did not need to be relabelled.

Ambiguities
Similar sub
groups

Coordonnees-candidat, Donnees-candidat, Donnees-
techniques, Identité- candidat

/

Date, detail, e-mail, equivalence de diplome, intituled-du-
diplome

/

Lieu /

Nom, prénom /

Numero-boite, numero-rue, numero-telephone, rue /

Table 13.1: Labelling ambiguities for session 2 of the first case study.

Observations on the structural analysis

The structural ambiguities that were detected are presented in Table 13.2.

After reviewing these ambiguities, it also appeared that the structural ambi-

guities were purely accidental. Though they shared similarly labelled widgets,

the involved containers were actually different.

Ambiguities Pattern Decision
Contact - Secondary education Country Different
Technical details - Certificate equivalence Year Different
Secondary education - Identity Date Different

Table 13.2: Structural ambiguities for session 2 of the first case study.

210 Chapter 13. The experimentation

Figure 13.3: The modified form as suggested by the analyst, and its corresponding
raw schema.

13.1.4. First case study - Session 3 211

Figure 13.4: The refined schema corresponding to the modified form suggested by
the analyst (Fig. 13.3).

Output of the session

The form resulting of this session can be seen in Fig. 13.5, while its underlying

schema can be seen in Fig. 13.6.

This session did not provide any modification on the core of the project.

However, it led to discuss the general structure and labelling of the form again.

13.1.4 Session 3: Providing examples and constraints

This session focused on providing and analysing examples to discover explicit

and implicit properties of the form. The session was organised as follows:

• Recap of the objectives of this session

• Discussion on the previously drawn form, to see if other modifications

should be brought.

• Example input and discussion on the properties of the form.

• Individual debriefing : afterwards, the main observer discussed separately

with each other participant to take their impressions and remarks (15

minutes per participant).

212 Chapter 13. The experimentation

Figure 13.5: The form at the end of the second session.

13.1.4. First case study - Session 3 213

Figure 13.6: The underlying schema of the form at the end of the second session.

In the following, we expose the remarks made by the observers and the

participants through the debriefing.

Reviewing the interfaces

At this point of the process, EU1 and DB1 did not feel that the form needed

to be updated.

General observations

EU1 took the control of the application to input the examples, based on real

paper applications, and during the experimentation, DBA1 eventually took

over. EU1 provided 3 examples in more or less 75 minutes, including:

• 15 minutes for example 1;

• 10 minutes for example 2 (which was lost because of a bad manipulation,

then recreated by DBA1 in 5 minutes);

• 10 minutes for example 3.

It actually appeared that the encoding of examples was more efficient (quicker

and more gratifying) when DBA1 was encoding the data samples under the

supervision of EU1, which was reading him the necessary paper forms and

documents. The examples were encoded before analysing the constraints and

dependencies.

214 Chapter 13. The experimentation

The only interesting constraint that was added was setting French level

as the identifier of the Spoken Languages. Besides, complex constraints could

not easily be expressed through the tool:

• complex identifiers: all the Inscription request should have be identi-

fied by the Year (of submission) and the Identity of the candidate;

• transversal dependencies: the Identity of the candidate determines his

Secondary education;

• multiple coexisting elements: there should have been at least be a contact

means (an address, a telephone number or an e-mail) for each Inscrip-

tion request;

• conditional elements: another dependency that could not be expressed

concerned the fact that Certificate equivalence should be completed

only if the Country of Secondary education is not European.

Since working with the tool raised these issues, the analyst was at least able

to note them for further notice, which implies that those information were not

lost. Further discussion between EU1 and DB1 confirmed that there should

not be any other “hidden” constraint among the given elements.

Output of the session

At this point, the appearance of the form has not changed, but the underly-

ing schema has (Fig. 13.7). It now includes the specified identifier and has

been annotated with the known domain of values and additional information

provided by the end-user.

During this session, EU1 hence provided a set of examples in order to elicit

constraints and dependencies. However, the application domain was such that

it was difficult to point out any major constraint or dependency.

13.1.5 Session 4: Finalising the project

This last session should have focused on discussing the main concepts emerging

from the forms, especially the one highlighted during the structural analysis.

However, no major concept was detected, and therefore this last session became

obsolete.

13.1.6. First case study - Discussing the schemas 215

Figure 13.7: The underlying schema of the form at the end of the third session.

13.1.6 Discussing the schemas

Characteristics of the subject

This case study was highly interesting because it dealt with a simple case study

that could be represented by a single monolithic form. There was very little

redundancies and ambiguities, yet there were some interesting constraints to

be expressed.

The subjected reviewed by the analyst

Based on the form-based interfaces and the knowledge he gathered during the

different steps of the approach, the analyst DB1 drew his own schema of the

application domain before analysing the schema generated by the RAINBOW

toolkit. The result of his modelling can be seen in Fig. 13.8.

Analysing the generated schemas

As we can see, the final generated schema is basically a tree of entity types,

reflecting the tree-like structure of the form. The content is fundamentally the

216 Chapter 13. The experimentation

Figure 13.8: The schema corresponding to the domain of the first case study, as
conceived by DB1 without seeing the final output schema.

same as the one modelled by DB1, but there is obviously room for technical

identifiers and integration between the entity types. Which entity types could

therefore be transformed into compound attributes of other entity types, and

under which conditions? Could it be when the entity type has no identifier,

or no other roles? For instance, Identity, Contact and Spoken Languages

could be transformed into compound attributes of Candidate Information,

and the attribute Year of submission could simply be moved into Inscrip-

tion request. In the contrary, Curriculum and Secondary education are

relevant enough to be maintained as entity types. This illustrates the semantic

arbitration that an analyst can provide, on the contrary of a machine.

13.2. Second case study: An academic event management system 217

13.2 Second case study: An academic event management

system

13.2.1 Preparation

Defining the subject

With the future restructuring of responsibilities within the Faculty of Computer

Science, EU2 will be fully in charge of the organisation of seminars, sympo-

siums, conferences and other kinds of meetings. The study will therefore focus

in designing the preliminary forms that could be used to facilitate the encoding

and reuse of information, to handle the various reservations, the planning and

so on.

Training

Before the beginning of the sessions, EU2 received the two screencast tutorials

explaining how to use the RAINBOW toolkit to draw relevant form-based

interfaces. Because of her full agenda, she did not have much time to spend

on the tutorial. She mainly suggested the tutorial to be provided with a locale

translation.

13.2.2 Session 1: Drawing the forms

The first session focused on drawing the necessary forms to encode new meet-

ings and registration for those meetings, and was organised as follows:

• Introduction: the main observer (MO) introduced the participants and

their roles, as well as the objectives (drawing the forms supporting the

encoding of information for the subject defined by EU2) and the proce-

dure (EU2 and DB1 draw jointly while OB2 and MO observe) for the

current session (10 minutes);

• Recapitulation: the participants recapped and discussed the subject of

the study, and discussed the tutorials (10 minutes);

• Execution: the end-user and the analyst executed the tasks associated

with the current session using the RAINBOW toolkit while the observers

took notes (100 minutes);

• Individual debriefing : afterwards, the main observer discussed separately

with each other participant to take their impressions and remarks (15

minutes per participant).

In the following, we expose the remarks made by the observers and the

participants through the debriefing.

218 Chapter 13. The experimentation

Figure 13.9: The forms drawn by end-user EU2 and analyst DB1 during the first
session, and the corresponding raw schema.

General observations

The end-user naturally gave the commands to the analyst and was reluctant to

manipulate the rainbow toolkit. It was therefore the analyst who manipulated

the toolkit, and he felt more involved and useful this time, while concealing

specification difficulties, such as the “parent-dependent” property.

The end-user appreciated that the analyst operated the toolkit, as she was

13.2.2. Second case study - Session 1 219

able to gather her thoughts while he drew the forms. Although she had thought

about the problem, she would have appreciated an additional preliminary meet-

ing in order to roughly sketch a first set of forms.

The end-user would have appreciated a projector to view the forms on a

large screen rather than watching the little screen of the laptop. The resolution

could also be larger, so that all the forms can be visible at once.

Observations on the tool support

There was no particular problem regarding the tool support, as it was operated

by the analyst. There were no manipulation mistakes, and the analyst arbi-

trated the labelling suggestions as they presented themselves. However, the

end-user and the analyst did brought to light the following elements:

• the toolkit should support graves, acutes and circumflexes in labels. This

coincides with the necessity to have locale versions of the tool support;

• regarding the widgets, it could be interesting to be able to order the

options of selections; one can also question the relevance of providing

labels for actions, since the buttons already have a label and the actions

themselves already have a description;

• regarding the rendering of the widgets, tables could adapt to their content

(in terms of columns) and the geometry of the widgets should be preserved

whenever they are redrawn;

• it would be nice if the toolkit supported drag-and-drop, to insert new

widgets, or to move them from a container to another.

Output of the session

During this first session, EU2 and DB1 produced the forms shown in Fig. 13.9.

These forms were automatically adapted into the raw schema of Fig. 13.10,

before being transformed into the schema of Fig. 13.11 using the previously

defined mapping rules.

From the discussion and drawings of this first session, it appears that a

Meeting is organised by an organisational and a scientific Committee and con-

sists of different Events. For each meeting, a Programme is defined and a

Budget is established base on the different possible Expense types. The Lec-

turers that attend a meeting need to fill a Registration, and may benefit

from a Rate Type corresponding to their status. Information regarding the

different Persons involved in meetings should also be stored for possible fur-

ther reuse. As we can see, there are several main concepts that are already

apparent and there seems to be several connections between these concepts.

220 Chapter 13. The experimentation

Figure 13.10: The raw schema corresponding to the forms drawn by end-user EU2
and analyst DB1 during the first session (Fig. 13.9).

DB1 and EU2 both felt comfortable with DB1 operating the toolkit under

EU2’s command. The former felt more useful and handled the building of

the forms, while the latter did not feel clumsy with the toolkit and could

concentrate on the content. Besides, EU2 appreciated seeing the interface

being developing little by little, since it gave her a good overview of the whole

project.

13.2.3 Session 2: Analysing the terminology and structure of the

forms

This session focused on analysing the terminology and structure of the form, in

order to detect any possible ambiguity. The session was organised as follows:

• Recap of the objectives of this session

13.2.3. Second case study - Session 2 221

Figure 13.11: The refined schema corresponding to the raw schema of Fig. 13.10.

• Discussion on the previously drawn form, with suggestions of modifica-

tion.

• Analysis of all the labels: the similar labels have been group in lexi-

cally or ontologically similar label clusters; in these cluster, any element

that represent the same king of information must be grouped and jointly

relabelled (30 minutes).

• Analysis of the similar structures: the forms, tables and fieldsets con-

taining widgets with the same labels are presented for comparison and

arbitration; the end-user must explain why such situation occurs (equal-

ity, specialisation, union, complementarity or accident).

222 Chapter 13. The experimentation

• Individual debriefing : afterwards, the main observer discussed separately

with each other participant to take their impressions and remarks (15

minutes per participant).

In the following, we expose the remarks made by the observers and the

participants through the debriefing.

Reviewing the interfaces

Based on the notes and discussion from the first session, the analyst suggested

modifying the previously drawn form as shown in Fig. 13.12, hence implying

the raw schema of Fig. 13.13 and the refined schema of Fig. 13.14:

• Move and restructure the Committees and Lecturers into their associ-

ated Meeting;

• Mention the Meeting to be associated with each Event, Registration,

Budget, Programme and Rate Type;

• Replace the column Person by the columns Last Name and First Name

in the tables, i.e. use elements that could be detected as referential (Last

Name and First Name can be found in the form Person) instead of using

an input to refer to a complex form;

• Remove the unnecessary buttons Add Person and Add Speaker, since

they are provided by the table widget.

These suggestions were agreed by the end-user. Subsequently, the updated

form was “adapted” using the mapping rules, then EU2 and DB1 proceeded

with the execution of their task.

General observations

EU2 had print the forms on paper before the session, and it appeared that it

was an efficient way to discuss the forms and annotate them.

Observations on the terminological analysis

The original labelling ambiguities that were detected are presented in Table

13.3. After reviewing these ambiguities, it appeared that there were no labels

that still needed to be clarified thanks to the labelling suggestions and the

discussions that occurred during the drawing phase. The conflicting elements

were therefore different and did not need to be relabelled.

However, this step did lead to loop back to update the forms, especially for

the following elements:

13.2.3. Second case study - Session 2 223

Figure 13.12: The modifications suggested by analyst DB1 to EU2 at the beginning
of the second session to replace the original forms (Fig. 13.9).

224 Chapter 13. The experimentation

Figure 13.13: The reviewed raw schema corresponding to the reviewed forms of
Fig. 13.12.

• Redefinition of the field Address into a fieldset;

• Improving the definition of Event (by adding a fieldset Parent event);

• Improving the definition of Rate type (by adding a fieldset Event);

• Unifying Food restriction and Special Diet (under the latter term);

• Improving the order of the elements of the form Meeting into a more

logical sequence for a better encoding

Observations on the structural analysis

For the sake of conciseness, the original structural ambiguities that were de-

tected and that were not arbitrated as different are presented in Table 13.4.

13.2.3. Second case study - Session 2 225

Figure 13.14: The reviewed refined schema corresponding to the reviewed raw
schema of Fig. 13.13.

226 Chapter 13. The experimentation

Table 13.3: Labelling ambiguities for session 2 of the second case study.

Ambiguities
Similar sub
groups

Adresse, Adresse web /

Catégorie, matériel, sous-categorie /

Code postal, date de naissance, date debut, date fin, de-
but, description, evenement, evenements, fin, inscription
participant, lieu, lieu de naissance, nom, nombre de partici-
pants attendus, organisateur principal, organisme, prenom,
regime particulier, role, type, type de frais, type de mouve-
ment, type de tarif, types de frais

/

Comite, localite /

Num tva, numero telephone /

In addition, all the Meeting containers were equal, and so were all the Event

containers.

We observed that there was a missing type of relationship, namely “is com-

posed of” that should be added to “equals”, “specialises”, “unites with”, “refers

to” and “differs”, because of the table widgets.

Output of the session

The form resulting of this session can be seen in Fig. 13.15. After the termino-

logical analysis, the underlying schema was the one of in Fig. 13.16, while after

the structural analysis, the underlying schema was the one of in Fig. 13.17.

As we can see, the main redundant concepts that stand out of the schema

are the notions of Meeting, Event, Person, Committee, Address and Expense

Type. These are the elements that will have to be integrated further on.

As we can see, during this session, there was a major shake-up of the original

forms, first because of the suggestions made by the analyst, then accordingly

to the discussion raised during the analysis of the terminology. The structural

analysis confirmed the intuition that there is a lot of redundancy between the

forms of the project.

13.2.4 Session 3: Providing examples and constraints

This session focused on providing and analysing examples to discover explicit

and implicit properties of the forms. The session was organised as follows:

• Recap of the objectives of this session (10 minutes);

13.2.4. Second case study - Session 3 227

Figure 13.15: The forms at the end of the second session.

228 Chapter 13. The experimentation

Figure 13.16: The underlying schema of the forms after analysing their terminology
during the second session.

13.2.4. Second case study - Session 3 229

Figure 13.17: The underlying schema of the forms after analysing their structure
during the second session.

230 Chapter 13. The experimentation

Table 13.4: Structural ambiguities for session 2 of the second case study.

Ambiguities Pattern Decision

Person > Address (private) Address, Postal Code,
City, Country

Equals
Person > Organisation > Address

Meeting > Committee (scientific)
Last Name, First Name Equals

Meeting > Committee (organisa-
tion)

Meeting > Committee (scientific)
Last Name, First Name

Specialises (is
composed of)Person

Meeting > Committee (organisa-
tion) Last Name, First Name

Specialises (is
composed of)

Person

Meeting > Lecturers
Last Name, First Name

Specialises (is
composed of)Person

Registration > Contact Last Name, First Name,
Address, Date of birth,
Fax, Place of birth,
Telephone, Special Diet

Refers to

Person

Event
Title Equals

Parent event

Event
Title

Equals
(composes)Programme > Events

Event
Title

Equals
(composes)Registration > Registered events

Event > Speaker
Last Name, First Name

Specialises (is
composed)Person

Expense type
Category, Sub-category

Is specialised
(composes)Budget > Expense types

• Discussion on the previously drawn form, to see if other modifications

should be brought(10 minutes);

• Example input and discussion on the properties of the form (165 minutes);

• Individual debriefing : afterwards, the main observer discussed separately

with each other participant to take their impressions and remarks (15

minutes per participant).

Note that the execution had to be split into two sessions: the first lasted

75 minutes and focused on encoding the examples, and the second lasted 90

minutes to discuss the properties. In the following, we expose the remarks

made by the observers and the participants through the debriefing.

13.2.4. Second case study - Session 3 231

Reviewing the interfaces

At this point of the process, EU2 and DB1 did not feel that the form needed

to be updated.

General observations

The discussions generated by the examples input led to reconsider the forms

Registration and Budget. In the former, the possibility to specify a funding

was added, while in the latter, details on the registration type and the invoice

number were added.

During the providing of the examples, it appeared that it would be conve-

nient to be able to copy and paste values from an existing example to another.

The most interesting findings during this session were that:

• If an Organisation is mentioned for a Person, its Name is mandatory;

• A Person must systematically provide if he/she is Belgian or not (the

latter is hence mandatory);

• It is mandatory to specify the Meeting associated to an Event; moreover,

the latter can be identified by the association of the former and its own

Title;

• A Meeting can be identified by its Name;

• A Expense type has a secondary identifier in the combination of Cate-

gory, Sub-category and Description;

• A Rate type has a secondary identifier in the combination of Category

and its roles towards Meeting and Event;

It appeared difficult to express relevant functional dependencies for the

other entity types of the schema. Typically, there was no satisfying identifier

for a Person. It was also difficult to express complex constraints such as the

fact that a Belgian Person should have a Social Security Number while a

foreigner should have a Birth date.

Since working with the tool raised these issues, the analyst was at least able

to note them for further notice, which implies that those information were not

lost. Further discussion between EU1 and DB1 confirmed that there should

not be any other “hidden” constraint among the given elements.

The discussions also suggested possible improvements that were not consid-

ered in our study, but still worthy of interest for eventual further developments:

• How could we handle multiple Main organizes?

• For the Budget, the Amount could be optional and list of usual destina-

tions for trips and travels could be provided;

232 Chapter 13. The experimentation

• It could be interesting to specify if a Lecturer should be remunerated or

not (through a checkbox for instance);

• Instead of encoding a Rate type for each Category and for each Event

of a Meeting, a table synthesising the combinations of Categories and

Amounts could prove more appropriate;

• Expense type should be encoded before budget;

• A separate Organisation form could be useful, with an identifying VAT

number (when available) and an optional Department if relevant, as well

as different possible addresses.

• It should be easy to switch from a Person to a Committee (and vice-

versa) so that a user could visualize one and complete the other (or even

copy-paste);

• The email and telephone of a Person are optional, but there should be

at least one contact address.

• In order to allow one Person to invite guests, it could be interesting

to add a table to Registration, enabling additional inscriptions with

number of persons, the events, the categories...

We also observed that the existing mechanism for eliciting functional de-

pendencies (FDs) could be improved. The progressive generation of FDs was

tedious, because the end-user and the analyst had to discard numerous FDs

before getting to the ones they wanted. Instead, it could be interesting to

provide a tool to directly define the left and right hand sides of FDs that are

trivial.

Output of the session

At this point, the appearance of the forms has slightly changed to reflect the

modified cardinalities (Fig. 13.18), but the most visible modifications are visi-

ble in underlying schema (Fig. 13.19). It now includes the specified identifiers

and has been annotated with the known domain of values and additional in-

formation provided by the end-user.

13.2.5 Session 4: Finalising the project

This session focused on discussing the main concepts emerging from the forms,

in other words, the ones highlighted during the structural analysis. The session

was organised as follows:

• Recap of the objectives of this session;

13.2.5. Second case study - Session 4 233

Figure 13.18: The forms at the end of the third session.

234 Chapter 13. The experimentation

Figure 13.19: The underlying schema of the form at the end of the third session.

• Discussion on the previously drawn form, to see if other modifications

should be brought;

• Finalising the project, that is, defining the components (attributes and

roles) and their properties, as well as the constraints and dependencies

of the main concepts;

13.2.5. Second case study - Session 4 235

• Individual debriefing : afterwards, the main observer discussed separately

with each other participant to take their impressions and remarks (15

minutes per participant).

In the following, we expose the remarks made by the observers and the

participants through the debriefing.

General observations

Here were the observations for each “main” concept:

• Address: the discussion on the cardinality of the attributes finally led to

defining them all as optional;

• Meeting: it was confirmed that the Name is identifying and that there

should be a mandatory Main organizer;

• Committee: a Committee is indeed composed of Persons;

• Event: it was confirmed that the Meeting was mandatory and part of

the identifier with Title;

• Person: there was no trivial identifier for this concept; besides, similarly

to a Speaker, the member of a Committee has a role (although it is here

implicit);

• Rate type: it was confirmed that the combination of Category and its

roles towards Meeting and Event formed a secondary identifier;

This step was a little confusing for the end-user since it was unclear on what

level they were working: the interfaces, their underlying data structures or even

the future tables of the database. This implies that special attention should

be given to improve this step, for instance by rendering the “main concepts”

through form-based interfaces so that the end-user and analyst could see them.

Output of the session

During this session, EU2 and DB1 discussed of the main concepts that were

elicited through the investigation step and enriched through the nurture step,

leading to the generation of a raw integrated schema of the domain.

At this point, the appearance of the form has not changed, but the under-

lying schema has (Fig. 13.20). It now includes the specified identifiers and has

been annotated with the known domain of values and additional information

provided by the end-user. As we can see, there are several “empty” entity types

that could be transformed, which will be discussed in the following section.

236 Chapter 13. The experimentation

Figure 13.20: The underlying schema of the form at the end of the fourth session.

13.2.6. Second case study - Discussing the schemas 237

13.2.6 Discussing the schemas

Characteristics of the subject

This case study was highly interesting because it dealt with a more complex case

study requiring complex and multiple forms. There was a lot of redundancies

and ambiguities, as well as several interesting constraints to be expressed.

The subjected reviewed by the analyst

Based on the form-based interfaces and the knowledge he gathered during the

different steps of the approach, the analyst DB1 drew his own two alternative

schemas of the application domain before analysing the schema generated by

the RAINBOW toolkit. The result of his modelling can be seen in Fig. 13.21

and Fig. 13.22.

Analysing the generated schemas

We can observe that in this case, the output schema does not have a tree-

like structure. It is actually quite complex, with multiples relationship types

existing between the different entity types and their hierarchies.

We can also notice that the schema is rather “interface-oriented”, with sev-

eral empty entity types that are subtypes of higher concepts (typically with

Meeting, Event, Person and Address), while the procedural units might not

be relevant at this point.

As previously mentioned, the notion of “composition” could be expressed

in a more expressive manner. Indeed, it would have been semantically more

appropriate to obtain a Meeting having two Committees, each of which being

composed of Persons, while in the current output, a Committee is actually a

specialised Person.

The representation of Expense Type and Expense Types is also problem-

atic, since the latter could have preferably been labelled as Movement and be

associated to the former. However, this results from disputable choices during

the drawing and structural analysis of the forms. Indeed, the label was prob-

ably ill-chosen to begin with, and a posteriori, the pattern {Category, Sub

Category} that was shared by both entity types rather suggested a comple-

mentarity then a specialisation or composition.

Besides, the handling of the “refers to” structural similarity has been left

aside, while there are clearly elements that could be integrated, typically for

Person, Contact and Address. This kind of structural similarity should also

be easily manageable, without forcing the end-user and the analyst to jump

back to the drawing step to correct the involved elements.

238 Chapter 13. The experimentation

Figure 13.21: The schema corresponding to the domain of the second case study,
as conceived by DB1 without seeing the final output schema.

These observations could be dealt with semi-automatically and combined

with the implementation of the binding principles that are not provided by the

toolkit yet (see Section 11.5). The output of the final session of this case study

could therefore be the one illustrated at Fig. 13.23.

13.2.6. Second case study - Discussing the schemas 239

Figure 13.22: An alternative schema corresponding to the domain of the second
case study, as conceived by DB1 without seeing the final output schema.

240 Chapter 13. The experimentation

Figure 13.23: The refined schema at the end of the fourth session.

Chapter 14

Discussing the results

In this chapter, we elaborate on the results and observations of this experimen-

tation in the perspective of our two main research questions. Let us recall that

the goals of these preliminary case studies were to assess (1) the effectiveness of

the RAINBOW approach to express, capture and validate static data require-

ments, as well as (2) the quality of the conceptual schemas produced using this

approach.

14.1 Assessing the effectiveness of the RAINBOW approach

To assess the effectiveness of the RAINBOW approach to express, capture and

validate static data requirements from the preliminary case studies, let us first

analyse the critical challenges of the approach, then see how they relate to the

chosen efficiency criteria.

14.1.1 Expressing concepts through form-based interfaces

Through the drawing step, we wanted then end-users to be able to express

concepts by specifying simple encoding screens carrying the data they would

need to manipulate in their future form-based application.

The first observation was that the end-users were able to express all their

requirements using the drawing tool and the underlying RAINBOW Simpli-

fied Form Model (RSFM). For the two studies, the available widgets (forms,

fieldsets, tables, inputs, selections and buttons) seemed sufficient, although

the elaboration of the forms sometimes called for creativity in the combina-

241

242 Chapter 14. Discussing the results

tion of the available widgets, and occasionally required detailed descriptions to

precisely explain the widgets. Still, we also observed phenomena that raised

several questions that we will now detail.

For instance, we observed that the end-users often drew single forms to

collect multiple informations instead of drawing smaller, simpler forms (i.e.

breaking the problem into smaller sub problems). Do the available widgets

therefore lead the end-users to draw of single oversized forms, or to create com-

plex structures? It also appeared that the end-users were sometimes challenged

by the use of tables, because the latter could only contain simple widgets (i.e.

inputs, selections and buttons). Are the tables hence too synthetic? Wouldn’t

it be problematic, at least visually, to allow them to contain fieldsets and other

tables? It is interesting to note that the lack of prior experience in modelling

was obviously not a factor in these behaviours.

Besides, we wanted to lead the end-user to focus on the content of the forms

rather than their appearance, and subsequently chose an adaptative rendering

for the widgets. For instance, selection widgets would automatically switch

from radio buttons to checkboxes or a selectable list according to the number

of options and the cardinality of the field. However, this behaviour surprised

the end-users, and more generally they would have enjoyed at least a minimum

of customisation for the rendering of the widgets. Though the forms could

be rendered afterwards in more stylish fashions (e.g. with HTML and CSS),

could aesthetic considerations lead to a “bad” modelling, just because the end-

users want the forms to be prettier? Can the analyst convince them that

“it’s ok if it is ugly”, and can the end-users really agree on that? Or should

there therefore be at least a minimum of customisation for the rendering of the

widgets? Should the available widgets be presented in an exhaustive manner

regarding their cardinality (typically the different combinations of selections)?

Speaking about cardinalities, as previously mentioned, the users must spec-

ify how many values could and should at least and at most be provided for each

widget. We observed that the end-users often specified widgets as“mandatory”,

even if they sometimes acknowledged that it would not really be problematic

if the given fields were not filled. Could the end-users therefore abusively use

this type of cardinality while it is not really necessary? Do they understand the

difference between a paper form, which can be submitted even if it is incorrect,

and an electronic form which offers immediate acceptance or rejection?

The integration of the“on-the-fly”labelling suggestions in the drawing phase

was originally intended to reduce the labelling ambiguities up stream, while be-

ing reused during the phase of “Investigation” to ensure the clarification of the

labels. However, the end-user and the analyst found that these suggestions

were annoying and interfered with the execution of their task. Should it there-

14.1.2. Finding and arbitrating terminological ambiguities 243

fore become an optional tool for the drawing phase? Should the similarity

parameters be adapted to detect fewer ambiguities? Could/should other tools

also be parametrised?

14.1.2 Finding and arbitrating terminological ambiguities

The analysis of terminological ambiguities did not yield any significant result.

The integration of the labelling suggestions in the drawing phase seemed to be

efficient in unifying the terminology of the forms, but in return, it basically

made this analysis step useless. It would therefore be interesting to observe

what would be the situation if there was no labelling suggestions in the drawing

phase.

14.1.3 Finding and arbitrating structural ambiguities

The analysis of structural ambiguities revealed that the notion of“composition”

that should be added to the ones of “equality”, “specialisation”, “unity”, “refer-

ence” and “difference”. Other than that, this step did not cause any concern.

14.1.4 Eliciting constraints and dependencies

As could be expected, this step was the most tedious one of the evaluation.

Providing examples was a long task, and it became obvious that it would

become difficult to ask for more than 3 to 5 data samples per complex form

during the same session without losing the motivation of the participants.

The role of the analyst was critical to filter the interesting technical and

existence constraints, as the available amount of possibilities may be high. Elic-

iting the functional dependencies (FDs) was also challenging, mostly because

of the tool support itself. The functionality allowing to generate problematic

data samples was never used. However, manipulating the toolkit did lead the

end-users and the analysts to discuss thoroughly the possible dependencies and

identifiers, including those that could not be expressed using the tool support.

Still, it seems that this step could take advantage of a better tool-supported

interaction to order the constraints and dependencies to arbitrate in terms of

criticality and likelihood.

14.1.5 Transparently handling integration

This step was only handled in one of the case studies. This step was a little

confusing for the end-user since it was unclear on what level they were working:

the interfaces, their underlying data structures or even the future tables of

244 Chapter 14. Discussing the results

the database. This implies that special attention should be given to improve

this step, for instance by rendering the “main concepts” through form-based

interfaces so that the end-user and analyst could see them.

14.1.6 Handling user-involvement

Throughout the experimentation, then end-users were receptive to our ap-

proach, and embraced the organisation of the experiment. They did not sys-

tematically apprehend the underlying objective of each step, but they did un-

derstand each task of the process, and thanks to the progressive modifications

of their forms, they sensed the developing evolution of their project. We may

want to take these positive reactions with caution, because all the participants

were willing volunteers and in particular, the end-users were able to define their

own subject, which is not often the case in small to medium enterprises that

set up a new IT project.

Regarding the assignment of the tasks during the experimentation, we ex-

pected the end-users to be more autonomous, especially during the drawing

phase. However, during that phase, the end-users were reluctant to operate

the toolkit, for various reasons, among which:

• they were afraid not to be able to manipulate it correctly, and therefore

give a less-than flattering portrait of themselves to the analyst;

• they felt that the analyst would be swifter and more efficient;

• they needed time to gather their thoughts before drawing each form.

Besides, when the end-users did take the drawing in charge, they recurrently

turned to the analyst for advices and explanations. On the other hand, the

analyst did not feel very helpful or required for the process when he was not

in charge of the drawing, though the end-users felt their presence reassuring.

Who should therefore be drawing and who should be assisting? Is the drawing

really a job for the end-user? We’ve been essentially focusing on the end-users

involvement, but what about the analyst’s own involvement and gratification?

In the end, instead of being a process where the involvement progressively

shifted from the end-users to the analyst, the execution of our approach turned

out to be a joint development effort. The participants collaborated intimately

during each steps, with the analyst serving as an intermediary between the

end-users and the toolkit.

To improve this collaboration and make the end-users feel more confidant,

a special care should be given to making the environment of the execution

reassuring and pleasant. Choosing appropriate settings, such as the location

and the equipment, may contribute to securing the adhesion of the participants.

14.1.7. Analysing the efficiency criteria 245

14.1.7 Analysing the efficiency criteria

How do theses observations relate to our efficiency criteria introduced in Sec-

tion 12.3.1? First of all, there was no major articulation problem. The end-

users did not seem confused about their task, and their expectations were rea-

sonable. Whenever their demands exceed the scope of the current validation

process (typically in terms of graphical rendering or navigation), notes were

taken in order to be provided to the persons in charge of the further steps of

the project. The end-users did not seem to retain critical information, and

were able to express their needs bearing the necessary time to get the grip on

the toolkit. They were open to the suggestions made by the analyst, and able

to put priorities in their requirements.

The attitude of the participants was positive towards the overall process.

The end-users were intrigued by this unconventional approach, and enjoyed

being intimately involved in the database design course. Seeing the forms

progressively evolve made them feel the progression in the elicitation process.

The analyst was also rather favourable to this approach, though he felt that he

could have been more involved at times, and that some elements were difficult

to express using the toolkit.

Most of the static data requirements of the end-users were expressed using

the toolkit. The information that could not be expressed concerned complex

identifiers, transversal dependencies, existence constraints concerning multiple

groups of elements, conditional elements and finally, the notion of composition

for table elements.

The toolkit induced discussions during each step of the process, either for

requirements that could or could not be expressed using the toolkit. For the

latter, since working with the tool raised these issues, the analyst was at least

able to note them for further notice, which implies that those information were

not lost.

Regarding the usability and reliability of the toolkit, various improvements

could be brought, for instance for the overall customisability of the toolkit

(parametrizability of tools), the editing of the forms (which could benefit from

drag-and-drop features), the elicitation of constraints and dependencies, and

so on. Similarly, the relevance of the elements presented by the toolkit (similar

labels and structures, possible constraints and dependencies) for end-users ar-

bitration may need to be refined in order to present them with more interesting

questions.

246 Chapter 14. Discussing the results

14.1.8 Assessing the validation protocol

By analysing the results and observations of these experimentations, it appears

that the experimentation canvas proved to be valid and relevant, though im-

provable. Indeed, it notably highlighted that the RAINBOW approach and tool

support did help end-users and analysts to communicate static data require-

ments to each other, while generating a positive response from the participants.

Though all the requirements could not be expressed through the toolkit, the

latter did serve as a basis for discussion and modifications.

These early results are therefore encouraging, though special care should

be given to improve critical aspects such as the assignment of responsibilities,

the drawing behaviours, the customisation of the tools and relevance of the ele-

ments they highlight. This preliminary validation process also stressed several

sensible and interesting phenomenons, such as the emergence of different design

styles during the drawing phase, typically regarding the grouping of elements

in containers. Such phenomenons will need to be monitored and analysed on

a larger scale experimentation

14.2 Assessing the quality of the RAINBOW output

To assess the quality of of the RAINBOW output, we essentially want to anal-

yse whether the analysts were able to gather all the static data requirements

necessary to build an appropriate and reliable database. Let us therefore assess

how the output schemas compare to the criteria introduced in Section 12.3.2.

14.2.1 Analysing the quality criteria

First of all, the correctness of the output schemas was ensured from the be-

ginning, since the mapping rules used in the ADAPT step and the various

transformation used in following steps were chosen in order to use only appro-

priate constructs.

The output schemas did not carry structural and terminological contra-

dictions, which seems to support their consistency. This could also be partly

expected from the deterministic use of the mapping rules and transformation.

However, although it did not occur in the preliminary studies, there could still

be structural and terminological variations for what should actually represent

the same type of information. Such a phenomenon is difficult to prevent, be-

cause of the “Garbage In, Garbage Out” adage, which essentially means that

providing incorrect input(s) in a systematic process cannot result in producing

correct output(s).

14.2.2. Assessing the validation protocol 247

The completeness of the schemas was satisfying, since the scope covered the

elements that the end-users felt critical, and that they provided themselves the

level of detail. However, there were still elements to be added manually, such

as technical identifiers or the constraints and dependencies that could not be

expressed using the toolkit. Ensuring the completeness is obviously difficult,

as in any mono-source approach with the view of a single (or restricted number

of) user(s). However, the preliminary analysis of the application domain (as

presented in Section 5.3.1) should limit the range of possible omissions in the

elicitation process.

The conciseness of the schemas could definitely be improved. As observed,

there are negligible empty entity types remaining from the integration process,

as well as the unresolved “refers to” structural redundancy. These flaws were

however expected, since the appropriate mechanisms were not implemented,

but as reported, they could be resolved semi-automatically.

The unambiguity could also be improved, by handling the conciseness is-

sue, and incorporating the “composition” relation. The remaining ambiguities

essentially came from the same “Garbage In, Garbage Out” problem.

The modifiability of the schema is not problematic, as long as the toolkit is

used to edit it. Advanced mechanisms should however be added if the output

schema was to be edited manually before being edited by the toolkit.

The traceability of the elements of the schema is ensured, thanks to the

unique identifier that is associated with each original form widget and perpet-

uated in each step of the process. Each element of the schema be therefore be

retraced to the original requirements expressed by the end-users.

Regarding the verifiability and testability of the schema, it obviously can

be used to verify if the future application meets the specified static data re-

quirements. Moreover, the original forms can also be used to check if all the

necessary fields are present, and if they obey the specified constraints and de-

pendencies.

The understandability of the output schemas was also satisfying. The ana-

lyst participating to the sessions with the end-users (DB1) felt that they were

representative and reasonably similar to the schemas that he had in mind him-

self. The analyst that did not participate in the sessions (DB2) felt that they

were rather comprehensible and expressive. Both agreed that managing the

previously mentioned issues would definitely improve the output schemas.

14.2.2 Assessing the validation protocol

It appears that the conceptual schemas produced using the RAINBOW ap-

proach are of good quality, notably because their content is sensibly the same

248 Chapter 14. Discussing the results

as the ones produced by DB1, and that DB2 was able to easily understand

them. There are too few examples to assess the representativity of these out-

puts, yet the validation protocol seems to provide an adequate canvas to ob-

serve and assess the quality of the RAINBOW output. These early results are

therefore encouraging, though it could be improved semi-automatically with

minimal effort to make it less “form-oriented” and redundant.

14.3 Threats to validity

The results of the preliminary studies were promising and tend to give confi-

dence in the feasibility and pertinence of the RAINBOW approach. However,

we cannot ignore the numerous threats to validity that surround this evalua-

tion work. First of all, as mentioned earlier, the validation of such a transversal

research is intrinsically complex, and would ideally require this approach to be

compared to existing ones, based on multiple experimentations led on numer-

ous and different case studies over an extensive time span. We did manage two

very different case studies, with different subjects, different representations,

different constraints and dependencies... But we only had one end-user in each

case, and the same analyst for both projects, which inevitably reduced the po-

tential divergent uses of the approach and toolkit. Studying their use over time

with different and multiple participants could in all likelihood reveal different

behaviours and other results.

Moreover, we dealt with willing participants who could accommodate their

schedule to participate in the experimentation. They were genuinely interested

by the project and inclined to provide constructive feedback, probably given

that they were able to participate in a project for which they had defined the

subject themselves. Real-life projects may not have such favourable settings,

and would probably involve more than one end-user and analyst in the process,

which may result in less receptive participants. Also, the case studies were led

on their own, though they could have served as the starting point of complete

software engineering projects (the second case study may actually turn in time

into such a project). There was therefore no problematic interference with other

requirement engineering or software engineering processes that could normally

occur at the same time. This is why, in the next chapters, we will focus on

improving the approach and proposing guidelines for a better experimentation

canvas, so that one could study the real impact of the RAINBOW approach

and compare it to existing approaches.

Part IV

Discussion and Conclusion

In this last part of the dissertation, we discuss the RAINBOW approach

and envision possible future works. In particular, Chapter 15 addresses the

specificities and merits of the approach and Chapter 16 conversely discusses its

limits and improvements that could be considered. Chapter 17 finally concludes

this dissertation.

249

Chapter 15

Specificities of the RAINBOW

approach

In this chapter, we present the main specificities of the RAINBOW approach,

as a methodology to acquire static data requirements. First of all, we re-

call that this approach aims at integrating different disciplines in a resolutely

user-oriented manner, in order to overcome existing limitations in related re-

searches. Then, we explain how Reverse engineering principles were deviated

to perform requirements elicitation. We also expose how this modular and non

standard process relies on the transformational paradigm and supports evolu-

tion. Finally, after explaining how this model-driven approach can be used in

conjunction with other approaches, we argue on the relevance of its output as

part of a rich and relevant Software Requirement Specification.

15.1 Integrating different disciplines to overcome existing lim-

itations in related researches

As emerges from this doctoral dissertation, the RAINBOW approach is at

the crossroads of different disciplines, each of which deals with specific issues

using dedicated methods and techniques. However, as introduced in Part I and

developed in Part II, their concerns and subsequent processing can concur for

the purpose of bridging the gap between end-users and analysts in order to

elicit static data requirements.

251

252 Chapter 15. Specificities of the RAINBOW approach
T
a
b
le

1
5
.1
:

C
o
m

p
a
ri

so
n

o
f

ex
is

ti
n
g

a
p
p
ro

a
ch

es
in

p
ro

to
ty

p
ic

a
l

re
v
er

se
en

g
in

ee
ri

n
g

fo
r

fo
rw

a
rd

en
g
in

ee
ri

n
g

M
e
t
h
o
d

F
D

S
/
E

D
D

S
F

L
U

I
D

/
C

li
c
k

G
U

A
V

A
A

p
p
F
o
r
g
e

R
A

I
N

B
O

W

A
u
t
h
o
r
s

[C
h
o
o
b
in

e
h

e
t

a
l.
,

1
9
9
2
]

[K
ö
st

e
rs

e
t

a
l.
,

1
9
9
6
]

[R
o
ll
in

so
n

a
n
d

R
o
b

e
rt

s,
1
9
9
8
]

[R
o
d
e

e
t

a
l.
,

2
0
0
5
]

[T
e
rw

il
li
g
e
r

e
t

a
l.
,

2
0
0
6
]

[Y
a
n
g

e
t

a
l.
,

2
0
0
8
]

R
a
m

d
o
y
a
l

T
o
o
l

s
u
p
p

o
r
t

(
d
r
a
w

in
g

a
n
d

a
n
a
ly

s
is

)

F
o
rm

D
e
fi
n
it

io
n

S
y
st

e
m

+
E

x
p

e
rt

D
a
ta

b
a
se

D
e
si

g
n

S
y
st

e
m

D
IW

A
+

E
x
te

n
d
e
d

P
C

T
E

o
b

je
c
t

m
a
n
a
g
e
m

e
n
t

sy
st

e
m

X
fi
g

+
P

ro
lo

g
+

G
R

L
+

X
V

C
G

C
li
c
k

G
U

A
V

A
fr

a
m

e
w

o
rk

A
p
p
F
o
rg

e
R

a
in

b
o
w

T
o
o
l

K
it

P
r
o
t
o
t
y
p
in

g
fi

n
a
li
t
y

E
x
p
lo

ra
to

ry
,

e
v
o
lu

ti
o
n
a
ry

E
v
o
lu

ti
o
n
a
ry

E
x
p
lo

ra
to

ry
,

e
v
o
lu

ti
o
n
a
ry

E
v
o
lu

ti
o
n
a
ry

E
x
p
lo

ra
to

ry
E

v
o
lu

ti
o
n
a
ry

E
x
p
lo

ra
to

ry
,

(e
v
o
lu

ti
o
n
a
ry

)
P

r
o
t
o
t
y
p

e
d
e
s
ig

n
e
r
s

A
n
a
ly

st
s,

e
n
d
-u

se
rs

A
n
a
ly

st
s

A
n
a
ly

st
s

A
n
a
ly

st
s,

e
n
d
-u

se
rs

A
n
a
ly

st
s

A
n
a
ly

st
s,

e
n
d
-u

se
rs

A
n
a
ly

st
s,

e
n
d
-u

se
rs

U
n
d
e
r
ly

in
g

fo
r
m

m
o
d
e
l

/

U
se

r
In

te
rf

a
c
e

A
n
a
ly

si
s

(U
IA

)
+

U
se

r
In

te
rf

a
c
e

O
b

je
c
t

(U
IO

)
m

o
d
e
ls

T
R

ID
E

N
T

v
a
ri

a
n
t

H
T

M
L

/
P

H
P

G
U

A
V

A
-t

re
e

H
T

M
L

R
S
F

M

S
y
n
t
a
c
t
ic

s
c
h
e
m

a
m

a
t
c
h
in

g
/

/
p
lu

ra
ls

/
/

/
o
rt

h
o
g
ra

p
h
ic

,
o
n
to

lo
g
ic

a
l

S
t
r
u
c
t
u
r
a
l

s
c
h
e
m

a
m

a
t
c
h
in

g
e
q
u
a
li
ty

e
q
u
a
li
ty

e
q
u
a
li
ty

/
/

e
q
u
a
li
ty

e
q
u
a
li
ty

,
sp

e
c
ia

li
sa

ti
o
n
,

u
n
io

n
,

c
o
m

p
le

m
e
n
ta

ri
ty

C
o
n
s
t
r
a
in

t
s

a
n
d

d
e
p

e
n
d
e
n
c
ie

s

id
e
n
ti

fi
e
rs

,
F

D
s

id
e
n
ti

fi
e
rs

id
e
n
ti

fi
e
rs

id
e
n
ti

fi
e
rs

id
e
n
ti

fi
e
rs

id
e
n
ti

fi
e
rs

id
e
n
ti

fi
e
rs

,
F

D
s,

e
x
is

te
n
c
e

c
o
n
st

ra
in

ts

E
x
a
m

p
le

s
a
n
a
ly

s
is

st
a
ti

c
,

u
se

r-
p
ro

v
id

e
d

a
n
d
/
o
r

g
e
n
e
ra

te
d

d
y
n
a
m

ic
,

u
se

r-
p
ro

v
id

e
d

/
/

/
/

st
a
ti

c
,

u
se

r-
p
ro

v
id

e
d

a
n
d
/
o
r

g
e
n
e
ra

te
d

D
a
t
a

m
o
d
e
l

E
R

O
O

A
E

R
C

+
(E

E
R

)
R

e
la

ti
o
n
a
l

M
o
d
e
l

(M
y
S
Q

L
)

R
e
la

ti
o
n
a
l

m
o
d
e
l

(N
a
tu

ra
l

sc
h
e
m

a
)

E
R

G
E

R

L
if

e
c
y
le

o
f

t
h
e

m
o
d
e
l

li
n
e
a
r

li
n
e
a
r

li
n
e
a
r

li
n
e
a
r

li
n
e
a
r

li
n
e
a
r

c
y
c
li
c

T
a
r
g
e
t

p
la

t
fo

r
m

U
n
re

st
ri

c
te

d
U

n
re

st
ri

c
te

d
U

n
re

st
ri

c
te

d
W

e
b
-o

ri
e
n
te

d
U

n
re

st
ri

c
te

d
W

e
b
-o

ri
e
n
te

d
U

n
re

st
ri

c
te

d

N
B
:

T
h
e

sy
m

b
o
l
“
/
”

m
e
a
n
s

th
a
t

n
o

d
e
ta

il
s

w
e
re

e
x
p
li
c
it

ly
p
ro

v
id

e
d

fo
r

th
e

g
iv

e
n

c
h
a
ra

c
te

ri
st

ic
.

15.2. End-users as major stakeholders of the data requirements process 253

One of the main achievements of this research was therefore to identify, tai-

lor and integrate principles and techniques coming from the fields of Database

Forward Engineering, Database Reverse Engineering, Prototyping and Partic-

ipatory Design in order to provide this interactive and user-oriented Database

Conceptual Analysis approach, and overcome the limitations that were high-

lighted in Section 3.2 *.

The following sections naturally follow from the decisions that were made to

support this integration into a consistent and comprehensive approach. They

also detail the contributions of this research with respect to the limitations of

existing approaches, which are synthesized in Table 15.1.

15.2 End-users as major stakeholders of the data require-

ments process

As we have seen, the RAINBOW approach relies on the same principles as the

ReQuest framework, which deals with data modelling and the dynamic aspects

of the future application, and proved that it is possible to efficiently and swiftly

involve end-users in the definition of their needs. However, most laymen end-

users were challenged by the task of designing dynamic and rich front-end

interfaces supporting the business logic of their future application. Here, we

therefore decided to focus specifically on simplifying and improving the static

data requirements process, leading the interfaces to appear as a means rather

than an end product. In particular, we wanted form-based interfaces to serve

as a basis for discussion and joint development, hence using prototyping in an

exploratory fashion, though it could be used in an evolutionary approach.

We therefore managed several challenges inherent to this user-centred ap-

proach. First of all, to make the development of the interfaces more accessible

and to focus the drawing on the substance rather than (ironically) the form,

we restricted the available graphical elements to the most commonly used ones,

which incidentally also simplifies the mapping rules between the form model

and the ER model, and proposed a dedicated tool to support this process.

We also took in account the possible lexical variations that could occur in

such an interactive process, which is simply ignored by other similar researches.

We therefore offer the possibility to detect and correct on-the-fly many mistakes

or deviations in the terminology, or to deal with them later on.

Besides, the interfaces are systematically used to visualise similarities, to

input constraints and data samples, so that they can be the referent for the

*It should come as no surprise that the approach overcomes all the identified limitations,
as it was precisely designed to do so!

254 Chapter 15. Specificities of the RAINBOW approach

end-users, and their favourite communication means. The end-users therefore

interact with the form-based interfaces, while the analyst can also access and

edit the underlying data models at any time, as long as he ensures the mainte-

nance of the mapping.

The will to involve intimately end-users into the definition of their needs

and the specification of the static data requirements, while managing the sat-

isfaction of all the stakeholders, also places the approach as more suitable for

software engineering projects in small to medium size enterprises. Besides, the

projects should be themselves small to medium sized, in order to maintain a

manageable set of form-based interfaces.

It is interesting to note that though the approach is oriented towards the

end-users, the real corner-stone of the RAINBOW processes is the analyst.

Indeed, his social and technical skills and knowledge are crucial to manage,

assist and guide the end-users in order to perform an enjoyable and effective

elicitation process for all the parties involved.

15.3 Using Reverse Engineering for the purpose of Forward

Engineering

As exposed in Section 2.2.2, Reverse engineering consists, among other things,

in recovering or reconstructing the functional specifications from a piece of

software, starting mainly from the source code of the programs. However, using

controlled artefacts and monitored processes, our objective is here to “build the

truth” rather than “find the truth”. In particular, the form-based interfaces are

used as a well-defined specification language, as opposed to the usual reverse

engineering approach, where the existing screens are obscure artefacts that

need to be decrypted. This requires to significantly adapt the usual database

Reverse engineering (DBRE) methodology [Hainaut, 2002].

Indeed, as recalled in Figure 15.1 (a), DBRE typically comprises the fol-

lowing four sub-processes: (1) Physical extraction, which consists in parsing

the DDL code in order to extract the raw physical schema of the database; (2)

Refinement, which enriches the raw physical schema with additional constructs

and constraints elicited through the analysis of the application programs and

other sources; (3) Cleaning, which removes the physical constructs (such as

indexes) for producing the logical schema; (4) Conceptualisation, which aims

at deriving the conceptual schema that the logical schema implements.

Such a methodology is not applicable as is in the context of the of RAIN-

BOW approach, as shown in Figure 15.1 (b). Starting from a set of user

interfaces (UI1, UI2, · · · , UIN), the physical extraction does not allow one to

15.3. Using Reverse Engineering for the purpose of Forward Engineering 255

Figure 15.1: (a) Standard database Reverse engineering methodology. (b) Reverse
engineering methodology of the RAINBOW approach.

derive a complete physical schema, but a set of partial views of this schema

(PS1, PS2, · · · , PSN). Similarly, the refinement process may not rely on ad-

ditional available artefacts such as application programs or database contents.

However, it can take benefit from data samples provided by the users through

the interfaces they have drawn, leading to the identification, among others, of

candidate dependency constraints and attribute domains. The recovered con-

straints, once validated, are used to enrich the physical schemas PSi in order

to obtain a set of logical schemas LSi. The cleaning phase, as defined above,

does not make sense in the absence of an initial DDL code.

Instead, the conceptualisation step allows one to derive a set of partial

conceptual schemas (CSi) from the logical schemas obtained so far. In par-

ticular, the logical schemas are normalised in order to ease the identification

of similarities between them. This important process relies on transformation

techniques. During the integration phase, the partial conceptual schemas are

merged, based on structural and semantic similarity criteria, in order to pro-

duce a single complete conceptual schema.

256 Chapter 15. Specificities of the RAINBOW approach

15.4 A modular and non standard view integration process

One of the key assets of the RAINBOW approach is its flexibility, especially

regarding the enrichment of the data models. As we have seen, proficient end-

users can already provide constraints during the drawing phase. Otherwise,

such properties can be directly provided later on, or discovered from a set of

data samples provided by end-users. Similarly, the unification of the terminol-

ogy and structures can also be led during the drawing phase, or during further

steps.

This modularity makes the approach suitable for different types of users,

ranging from the layman end-user to the advanced database engineer, or from

the analyst to the developer. The progressive gathering of elements of integra-

tion for further resolution also differs from the standard integration processes.

15.5 A transformational and evolutive approach

The approach also heavily relies on the transformational engineering paradigm,

according to which most (if not all) Database Engineering processes can be

modelled as a chain of schema transformations. Recall that a transformation

operator is defined by a rewrite rule that substitutes a target schema construct

for a source construct (see Section 2.2.4). The transformations that we use

are incremental and preserve the semantics of source constructs in their target

counterpart, which ensures the consistency, traceability and reversibility of the

specified elements through out the whole approach.

This also favours the evolvability of the specifications produced via the

approach. Indeed, our approach is designed to loop if necessary, while storing

all the previously provided specifications and decisions. Combined with the

traceability of the elements, we can ensure the propagation of any modification

in the different steps of our approach.

15.6 An interoperable model-driven approach

The transformational aspect of the approach also highlights that it foremost

focuses on developing two main types of models (interface and data), by taking

advantage of their connexion while benefiting from the possible use of other

types of models (such as tasks models), which places it at the very heart of

Model-Driven Engineering (MDE) [Schmidt, 2006]. Furthermore, this approach

is interoperable with other MDE approaches, which we can illustrate with two

likely circumstances by way of example.

15.7. A rich and relevant part of a SRS 257

It is notably noteworthy to mention the CAMELEON framework [Calvary

et al., 2003], which is a unifying reference framework for developing multi-

target user interfaces based on three main steps. First, ontological models are

defined to describe the problem regarding its application domain (concepts

and tasks), its expected context of use (user, platform, environment) and its

possible adaptation (evolution and transition). From these models, the design

phase produces a set of executable user interfaces each targeting specific con-

texts of use, based on the successive definition of task-oriented specifications,

abstract user interfaces, concrete user interfaces (platform-independent)and fi-

nal user interfaces (platform-dependent). Finally, a run-time configuration is

built from a run-time infrastructure and the user interfaces produced in the

design phase, which cooperate to support run-time adaptation. In this con-

text, the RAINBOW approach could be used as part of (or in conjunction

with) CAMELEON-compliant approaches, since it addresses the definition of

the application domain (the focus being on the concepts) and provides a simple

Abstract User Interface model with direct Concrete User Interface counterparts.

As a second illustration, let us consider the OO-Method approach [Pastor

et al., 2001], which is built on the basis of OASIS [Pastor et al., 1992], an object-

oriented formal specification language for Information Systems, and is notably

used by OLIVA NOVA, a software system that generates complete applications

from software models [Pastor and Insfrán, 2003]. The OO-Method basically re-

lies on two main modelling components, which are the conceptual model and

the execution model. The conceptual model is divided into four complementary

views, namely the object view (expressed through UML base diagrams), the dy-

namic view (described through state transition and interaction diagrams), the

functional view (which classifies the different classes attributes among differ-

ent types of information patterns) and the presentation view (which specifies,

through presentation patterns, how the users will interact with the system).

The execution model then defines the implementation-dependent features as-

sociated with the software representations corresponding to these conceptual

modelling constructs. In this context, the RAINBOW approach could notably

be used during the definition of the object view to ease the expression of classes

and attributes, while reusable interface components could typically be associ-

ated to specific presentation patterns.

15.7 A rich and relevant part of a SRS

The output of this process is a set of annotated form-based interfaces and their

underlying integrated conceptual schema, as well as their associated playable

prototype and ready-to-use database. Compared to other existing approaches,

258 Chapter 15. Specificities of the RAINBOW approach

the resulting conceptual schema is rather rich, since it includes hierarchies, as

well as constraints and dependencies. It can also be analysed to generate a

thesaurus of the application domain.

Besides, as corroborated by our experimentation (see Section 14.2), this

schema constitutes a relevant part of a Software Requirement Specification (see

Section 2.1.2), since it is consistent, complete, concise, unambiguous, modifi-

able, traceable, verifiable and testable, bearing an appropriate tool support.

Moreover, the produced elements can effectively be used to share and val-

idate requirements. Indeed, the RAINBOW approach ensures their validation

and correction, and these artefacts can be used for further evaluation and ref-

erence, while contributing to the forecast of future design and implementation,

as well as contractibility.

Although our approach addresses a significant subset of data requirements,

it does not cover all of its aspects, typically the dynamic ones. Therefore,

our approach does not replace more traditional task and information analysis

approaches, but rather complements them. For instance, the form-based graph-

ical representation of the underlying data model can be used during interviews

to stimulate the discussion.

As for the generated prototype, it can be used during the task analysis to

capture real-time use cases and define the expected behaviour of the system.

In addition, analysing how the tasks are performed using the prototype in

comparison to the legacy information system (if any), can help to support

the Reverse engineering of existing artefacts and even induce more general

considerations on the definition of the target information system.

Chapter 16

Possible improvements and future

works

In this chapter, we discuss the limits of the RAINBOW approach and its pos-

sible subsequent improvements. First, we focus on the current theoretical prin-

ciples of the approach, and consider possible extensions. Then, we assess the

existing tool support and the enhancements that would be welcome step by

step. Finally, we recall that the approach would require a wider experimenta-

tion scheme, which consequently calls for an improved experimentation canvas.

16.1 Extending the approach

In this chapter, we propose a non exhaustive list of theoretical extensions that

could be made to improve the RAINBOW approach, notably based on the

narrowing decisions that we took in this doctoral research, as well as the ob-

servations and discussions that took place during the experimentation.

16.1.1 Implementing the Objectify and Wander steps

In the scope of this research, we mainly focused on the five first steps of the

approach, which were the most challenging given that the generation of ap-

plicative components is known to be relatively straightforward, and that the

manipulation of a reactive prototype mainly added another level of validation.

However, taking the time to formalise these steps would undoubtedly give even

more weight to the approach as an integrated end-to-end process.

259

260 Chapter 16. Possible improvements and future works

16.1.2 Incorporating dynamic aspects

We also focused mainly on static data requirements, whereas the analysis of

dynamic elements also provides a rich set of specifications that could extend

and complement them.

First of all, behavioural modelling could for instance be integrated in the

approach by formalising the notion of formula that was introduced in the sim-

plified form models in general, and the notion of action for buttons in particu-

lar. A simple formula language resembling OCL (Object Constraint Language,

associated to UML) or the ones of spreadsheet programs could for instance be

defined, while the most common types of form actions could be classified and

made available in the drawing of forms.

Besides, program profiling and comprehension could also be integrated in

the Wander step to analyse how the end-users effectively use the generated

lightweight data manager.

16.1.3 Improving reusability through the drawing support

We concentrated on the use of the RAINBOW approach for independent soft-

ware engineering projects. However, since the approach is preferably suitable

for small to medium size enterprises, the requirements that need to be specified

may recurrently be somehow related. Typically, concepts such as“customer”(or

“person”) and “address” may occur almost systematically from a project to an-

other. Besides, a enterprise could decide to develop other applications reusing

an existing database that was developed using the RAINBOW approach. It

would therefore be highly recommended to allow the definition and reuse of pre-

defined and reusable structural components, and possibly dedicated ontologies

and thesaurus. Such components could also integrate constraints suggestions,

example data samples, alternatives terms, etc. Assistance to the end-users

could be extended accordingly, e.g. by suggesting such structures on-the-fly.

16.1.4 Refining the terminological and structural analysis

The terminological analysis could also be refined, to avoid reporting irrelevant

similarities. This issue remains intrinsically complex, but it would still be pos-

sible to improve the results, typically by extending the comparison algorithms.

For instance, terms could be compared using multiple string distances, and

possibly include alternative string comparison based on the phonetic distance.

The term analysis could also detect possible relationship between similar terms

based on adjectives, such as order (“first”, “second”, ...) or prevalence (“main”,

“alternative”). Regarding the structural analysis, the handling of compositions

16.1.5. Expanding the elicitation of constraints and dependencies 261

should be integrated, and mechanisms for characterising components as refer-

ential could also be explored.

16.1.5 Expanding the analysis of data samples, constraints and de-

pendencies

During this research, we mainly focused on technical, existence and unique con-

straints, as well as functional dependencies within single entity types. However,

it could be valuable to diversify our scope, for instance to also handle multival-

ued dependencies. Besides, as we mentioned, we reasoned on valid (or positive)

user-provided data samples to highlight possible constraints and dependencies,

but it is also possible to consider invalid (or negative) data samples for that

purpose. By exploring and detailing the criteria for invalidity, we could possi-

bly highlight additional constraints or dependencies. Using typical predefined

or reusable data samples could also ease the encoding of data samples.

16.2 Improving the current tool support

In this chapter, we propose various adjustments that could be made to im-

prove the execution of the RAINBOW approach through its dedicated toolkit,

notably based on the observations and discussions that took place during the

experimentation. Let us recall that the toolkit is currently an exploratory and

prototypical tool support, and that its limitations result from this stance.

16.2.1 General observations

A transversal improvement concerns the configurability of the tool support, in

order to support the participants in a relevant and non intrusive fashion (which

we will specify on a case by case basis). Another concern that appears in each

step is the possibility to edit the interfaces and display their widgets properties

without necessarily looping back and replaying each previous step. Finally, the

toolkit should be adaptable to different languages, which would imply, among

others, to extend the authorised character set in labels.

16.2.2 Drawing

Here are some possible improvements for the drawing step, which could be

implemented and tested:

• the toolkit could provide a drag-and-drop feature to insert and move

widgets;

262 Chapter 16. Possible improvements and future works

• widgets could be “transformable” into another one, e.g. an input into a

selection;

• the integrated label analyser should be parametrisable and easy to turn

on and off, since it unnecessarily triggered too often;

• the integrated label analyser could be integrated as a silent dockable

element of the toolkit instead of popping up whenever there is a lexical

or ontological ambiguity;

• the available widgets could be presented in an exhaustive manner regard-

ing their cardinality (typically the different combinations of selections);

• a dedicated widget for referential elements could be introduced;

• tables should have the (manual) possibility to adapt to their content;

• the options of a selection should be orderable;

• the actions of a button could be connectable to a set of simple but effec-

tive actions (such as navigating between forms, choosing an existing data

sample, ...);

• ...

16.2.3 Investigate

The layout of the terminological and structural tools should be improved. To

do so, alternative arrangements could be submitted to end-users in order to get

their feedback: for instance, groups of similar labels could be presented one by

one, instead of being shown all at the same time.

The label analyser produced large groups of similar labels, which was rather

gruelling to process. The elicitation and grouping of lexically or ontologically

similar labels could therefore be tested with other parameters and/or strategies.

For instance, we could handle similar labels as a graph of interconnected labels

instead of independent terminologically similar subsets. Each label would be

a node, and would be connected to other nodes through edges characterising

their computed terminological similarity, the latter having to be validated by

the end-users.

Besides, the handling of the“composition”and“complementarity”structural

similarities should also be easily manageable, without forcing the end-user and

the analyst to jump back to the drawing step to correct the involved elements:

the toolkit should instead include transformation tools to process/update the

forms and their underlying data model. Also, the toolkit should include tools

to add the “missing” form for containers that share a “union” similarity.

16.2.4. Nurture 263

16.2.4 Nurture

The nurturing step seems to be the most fastidious one of the process, in great

part because providing examples demands a great effort and arbitrating the

constraints is challenging. In order to facilitate the encoding of examples, the

end-users could rely on existing data samples and (if they want) ask the analyst

to encode them under their supervision. Also, it should be possible to easily

copy/paste values from existing data samples

Regarding the arbitration of constraints and dependencies, it might be prof-

itable to order them in terms of criticality and likelihood. Instead of using

summary tables for the constraints, the information could be structured dif-

ferently, for instance by generating “readable” questions (e.g. “Is this element

mandatory?”) and hiding the unquestionable elements.

For existence constraints and functional dependencies, it would be nice to

be able to directly define their components, instead of having to go through

example input and/or manual discard. Besides, complex identifiers, transversal

dependencies and conditional elements should also be handled.

16.2.5 Bind

This step is currently quite abstract, since we do not directly work with the

existing forms. To stay consistent with the approach, we could precisely render

the “main concepts” through form-based interfaces so that the end-users and

analysts could see them and compare them with the other forms they drew. The

generated form could be added to the project, and the related existing forms

could be annotated to specify this reference. Also, an integration assistant

should be provided to semi-automatically process the remaining elements, such

as empty entity types.

16.2.6 Objectify and Wander

As previously explained, the generation and integration of applicative com-

ponents into a “playable” prototype and the testing of that prototype by the

end-users have been deliberately left aside in the context of this doctoral re-

search, but it would definitely be interesting to implement them once they are

theoretically explored in depth.

264 Chapter 16. Possible improvements and future works

16.3 Pursuing the experimentation based on an improved can-

vas

We believe that the protocol that we presented in Section 12.4 was appropriate

to assess the efficiency of the RAINBOW approach and the quality of its output.

In this chapter, we therefore suggest to extend this experimentation canvas so

that it could be used in a wider experimentation endeavour, bearing in mind

the Participant-Observer and Brainstorming/Focus group principles. In the

following, we will hence explain how to prepare further case studies and how

to apply and review the RAINBOW approach, before comparing it to other

approaches.

16.3.1 Preparing the experimentation

The inevitable restriction is that the chosen software engineering projects must

target form-based applications for small to medium sized companies, though it

could also be interesting to study how relevant the RAINBOW approach could

prove for other types of applications. Additionally, it would be interesting to

have a wide range of application domains, to maximize the possible modelling

challenges.

All the participants should be familiar with form-based human-computer in-

teractions, such as web forms, and the analysts should be familiar with (static)

data modelling. Before starting the apply the RAINBOW approach, the ana-

lysts in charge of the (static) data modelling, as well as the observers, should

meet with as many of the stakeholders as possible, in order to get the big

picture and start thinking about the subject. If there are too many potential

end-users, the selection of the participants should be done carefully in order to

preserve their sensibility.

All the participants should subsequently receive a general explanation on

the RAINBOW approach, the organisation of the sessions and a special train-

ing to use the toolkit. In addition to the screencasts, training sessions could

be organised, and a sandbox version of the toolkit, including tutorials and

examples, should be available for individual testing.

Once the participants are properly trained, the analysts need to define the

experimentation settings with the end-users in other to maximise their com-

fort and willingness. This includes choosing the schedule and location of the

sessions, the equipment that will be used, and how multiple end-users will

participate (jointly, separately, alternatively, ...).

16.3.2. Applying the RAINBOW approach 265

16.3.2 Applying the RAINBOW approach

The implementation of the RAINBOW approach relies on the joint develop-

ment of the conceptual schema of the application domain, which will in turn

lead the implementation of the database. To perform this process, we advocate

to keep the four main interactive steps of the approach, namely Represent,

Investigate, Nurture and Bind, by planing one assignment for each of them.

Each assignment should be organised in sessions of 60 minutes at most, in or-

der to keep the focus and interest of the participants. If the future evolution

of the toolkit supports the Objectify step, the interactive Wander step could

be included in the experimentation as a fifth session.

Each session should be organised as follows:

• Introduction: recall the previous steps and present the main objectives

of the current session;

• Recapitulation: discuss the previous steps and the possible elements that

remained unclear or that should be reworked;

• Execution: execute the tasks associated with the current session using

the RAINBOW toolkit while the observers took notes;

• Individual debriefing : discuss separately with each other participant to

take their impressions and remarks.

In this first assignment, the end-users and the analysts must draw and edit

forms that would allow them to accomplish usual tasks of the future application

project, with a special attention to encoding forms. They need to focus on the

terminology and specification of the forms rather than their layout and general

appearance. It could be interesting to push forward the use of labels, for

instance by asking end-users to provide the singular and plural variations of

the labels they use, typically when using tables.

In order to study how the end-users react to the tool support and handle

the responsibility of the drawing, they should initially be asked to operate the

toolkit to draw the forms. However, if they feel uncomfortable with this task,

they could agree to delegate it to the analysts.

During that assignment, the observers should be attentive to the following

elements:

• the drawing behaviour, that is, how the participants use the available

widgets to represent different types of information and requirements;

• the articulation problems that occur (as presented in Section 2.1), and in

which circumstances;

• the information that could and could not be expressed using the toolkit;

• the discussions that were induced by the approach and toolkit;

266 Chapter 16. Possible improvements and future works

• the usability and the reliability of the toolkit;

• the behaviour of the label analyser and the relevance of its suggestions,

if it was activated.

At the end of each session, a screenshot of the forms should be taken (and

possibly printed) and provided to the participants, so that they can continue to

think about the project until the next session. In particular, the analyst should

analyse the labels and structure of the widgets to detect possible alternative

representations. At the beginning of the next session, the participants can then

discuss the possible improvements of the current forms.

In the second assignment, the participants must analyse and arbitrate the

terminology terminological and structural ambiguities remaining in their forms.

At this point, it appears that the analyst should operate the toolkit in order

to serve as an intermediary with the end-users.

It is important for the end-users to understand that, ideally, widgets refer-

ring to the same concept should bear the same label, and that widgets referring

to different concepts should bear different labels. Likewise, the similarity be-

tween two containers should be appropriately chosen among:

• equality for containers representing the same concept;

• specialisation when one of the concepts specialises the other;

• union for containers representing specialisation of a more generic concept

that is not explicitly expressed through the forms;

• complementarity when one of the concepts actually refers to the other;

• composition when one of the concepts (expressed through a table) consists

of multiple instance of the other;

• difference for different concepts.

During that assignment, the observers should be attentive to the following

elements:

• the relevance of the generated sets of similar labels;

• the impact of the possible use of the label analyser during the drawing

on the elements arbitrated during this assignment;

• the possible trends in the automatically generated structural ambiguities;

• the behaviour during the arbitration of structural ambiguities;

• the articulation problems that occur, and in which circumstances;

• the information that could and could not be expressed using the toolkit;

• the discussions that were induced by the approach and toolkit;

• the usability and the reliability of the toolkit.

16.3.2. Applying the RAINBOW approach 267

In the third assignment, the participants must provide a set of examples,

then examine the technical constraints, the existence constraints, the functional

dependencies and the possible identifiers associated with each form and its

elements. Since this assignment can be extremely time-consuming, multiple

sessions may have to be planned to encode examples and elicit constraints and

dependencies.

However, though gathering examples is important to generate possible con-

straints and dependencies, the analysts should cut directly to what he feels to

be the most likely relevant ones. Discussing with the end-users based on the

submitted forms and data samples may speed up the validation process.

During that assignment, the observers should be attentive to the following

elements:

• the variety and relevance of the submitted examples;

• the number of examples that seem to be necessary to obtain valuable

suggestions, according to the structure of a given form;

• the number of corrections that had to be made regarding technical con-

straints (typically regarding the cardinality);

• the articulation problems that occur, and in which circumstances;

• the information that could and could not be expressed using the toolkit;

• the discussions that were induced by the approach and toolkit;

• the usability and the reliability of the toolkit.

In the fourth assignment, the participants must arbitrate the properties

of the top-level concepts that were elicited through the previous steps, that

is, their attributes and associated technical constraints, existence constraints,

functional dependencies and possible identifiers.

It is important for the end-users to understand that they should treat these

top-level concepts as forms that should aggregate all the information shared by

their “sub forms”.

During that assignment, the observers should be attentive to the following

elements:

• the articulation problems that occur, and in which circumstances;

• the information that could and could not be expressed using the toolkit;

• the discussions that were induced by the approach and toolkit;

• the usability and the reliability of the toolkit.

268 Chapter 16. Possible improvements and future works

16.3.3 Reviewing the experiment and comparing the approach to

existing approaches

To assess the effectiveness of the RAINBOW approach, the observers and an-

alysts should analyse the observations taken during the different assignments

and sessions. Let us recall the efficiency-related elements they need to be at-

tentive to:

• the possible articulation problems that were presented in Section 2.1,

namely: confusion, improper expectations, difficult or unclear articula-

tion, inappropriate prioritisation;

• the attitude and satisfaction of the participants regarding the methodol-

ogy (and how they can possibly compare them to other approaches);

• the information that could and could not be expressed using the toolkit;

• the discussions that were induced by the approach and toolkit for the

requirements that could and could not be expressed using the toolkit;

• the ease of use and reliability of the toolkit;

• the relevance of the elements presented by the toolkit (similar labels and

structures, possible constraints and dependencies) for end-users arbitra-

tion.

To assess the quality of the RAINBOW output, let us recall the quality-

related criteria that the analysts need to analyse:

• correctness: does the schema use appropriate constructs?

• consistency : is the schema free of contradictions?

• completeness: does the schema cover (exactly) all the aspects necessary to

conceive the future database of the software engineering project (scope),

and is it detailed enough (level of details)?

• conciseness: is the schema free of redundancies?

• unambiguity : are there elements of the schema that are still unclear or

disputable?

• modifiability : can the schema be updated easily ?

• traceability : can each element of the schema be retraced to the original

requirements expressed by the end-users?

• verifiability : can the schema be used to verify that the software meets

the requirements?

• testability : can pass/fail or quantitative assessment criteria can be derived

from the schema?

Besides, they also need to analyse the following practical issues:

16.3.3. Analysing and discussing the execution 269

• Does the approach help the analyst to understand the application domain,

whether he was part of the experimentation or not?

• What could and should be done to improve the output schemas?

However, as we have seen, an additional effort could be made to define a

more systematic evaluation of the experiments. This would imply reviewing

evaluation techniques used in comparable existing approaches over time, as

well as Requirements Engineering in general. Synthesising the main evaluation

criteria and comparing the values and results for each of them could enable

at least a theoretical comparison of these approaches. By moreover asking

analysts to participate in different projects using the RAINBOW approach or

not, we could get more practical feedback on the flaws, advantages and possible

improvements of the approach.

Besides, it would also be interesting to study the evolution aspects of the

approach. While we already consider the possibility to “loop” during the steps

of the approach as long as we are in the conceptual design, what would be the

situation if we needed to edit a working database produced using the approach?

Chapter 17

Conclusion

As this dissertation comes to an end, let us take the time to recall the different

stages we went through during this endeavour. All started at the carrefour of

Requirements Engineering, Database Engineering and Human-Computer Inter-

faces, where we wondered how we could combine these disciplines to support

the elicitation of static database requirements in the context of Software Engi-

neering.

From this initial existential questioning, we started by examining the con-

text of this research area. We notably investigated how the Software Crisis

progressively led to the emergence of Requirements Engineering as a corner-

stone of Software Engineering, and presented different aspects of this field. We

then focused on Data Engineering, which aims at accurately eliciting and val-

idating data user requirements to help build a reliable documentation of the

application domain. In particular, we took a special interest in the phase of

conceptual design, which seeks to express user requirements into a conceptual

schema, based on data models such as the GER, which are not easily accessi-

ble to the laymen, but offers the advantages of transformational approaches. It

also appeared that several techniques to acquire data requirements do exist, but

that they do not involve actively end-users. Providing a better requirements

acquisition process for Database Engineering hence implied bridging this com-

munication gap between end-users and analysts.

Incidentally, we realised that Prototyping was precisely a technique that

had proved efficient to elicit and validate requirements, though prototypes are

still mainly designed by analysts rather than the end-users, and therefore ap-

pear as a one-way communication channel. Nevertheless, form-based interfaces

271

272 Chapter 17. Conclusion

especially fitted the purpose of transparently expressing formal requirements,

which could be used in combination with the principles of data reverse engi-

neering. The few related researches on this domain were reviewed and their

limitations exposed, among which the lack of user involvement and adequate

tool support to help them focus on the information content of the forms, the as-

sumption that labels are used consistently through out a set of different forms,

the non systematic use of data samples to elicit constraints (when the latter

are available), the lack of validation on final integrated data models, and the

absence of evolutionary perspectives.

We hence naturally wondered about the perspective of designing our own

approach to reverse engineer prototypical user-drawn form-based interfaces in

order to perform an interactive conceptual analysis. We consequently presented

several key problems inherent to the different disciplines that would need to

interoperate in order to perform such a process. Regarding Database forward

engineering, the main challenges concerned the elicitation of ambiguous ele-

ments needing arbitration, in order to prepare the integration of multiple data

models and the subsequent generation of applicative components. In partic-

ular, we presented String Metrics and Ontologies to discover terminological

ambiguities, Tree mining algorithms and Formal concept analysis (FCA) to

elicit structural redundancies, and the application of induction, dependency

discovery algorithms and FCA on data samples to uncover constraints and

dependencies.

We also mentioned traditional view integration strategies to manage schema

integration, as well as transformations and CASE tools to generate applica-

tive components. Regarding Database reverse engineering, we pointed out

that static and dynamic analysis of forms could be used to extract a set of

raw data models from a set of form-based interfaces. As for Prototyping, we

addressed the importance of choosing an appropriate User Interface Descrip-

tion Language and an adequate tool-support to express and validate concepts

through form-based interfaces, then generate a playable form-based prototype

from an existing conceptual schema. We furthermore insisted that the pro-

posed techniques and strategies needed to be tailored in order to promote user-

involvement through interactivity, and lead to an integrated and consistent

elicitation process.

Subsequently, we presented and detailed the principles and processes of the

RAINBOW approach to perform an interactive conceptual analysis, based on

the reverse engineering of prototypical user-drawn form-based interfaces, es-

pecially for environments where forms are a privileged way to exchange infor-

mation and stakeholders are familiar with form-based (computer) interaction

and the application domain. In order to overcome the observed limitations

273

of related approaches and transparently produce a conceptual schema of the

application domain that includes hierarchies, constraints and dependencies, we

formalised the approach into a semi-automatic seven-step process specialising

and integrating standard techniques to help acquire data specifications from

existing artefacts.

The Represent step first focused on the drawing and specification of a set

of simple form-based interfaces that would enable end-users to perform usual

tasks of their application domain. For this purpose, we notably explained

how the richness and inherent complexity of existing UIDLs led us to define

RAINBOW’s simplified form model, based on the most common form widgets

that are forms, fieldsets, tables, inputs, selections and buttons. We

then exposed how to manage the drawing step, by preparing and planning the

project, training the end-users, and finally providing them with a tool-support

consistent with our form model.

We then explained how to translate the produced set of form-based inter-

faces into a corresponding set of data models through the Adapt step. For this

purpose, we presented then formalised intuitive mapping rules to support this

extraction and obtain simple but semantically equivalent data structures of the

GER model.

The Investigate step subsequently addressed the analysis of these data mod-

els to highlight semantic and structural similarities, which were formalised

based on the definition of orthographic and ontological similarities, as well

as the use of patterns. We also presented how to process the arbitrated sim-

ilarities in order to produce a pre-integrated schema with unified terminology

and structures, and containing the materialisation of the relationships between

the concepts conveyed by the form containers.

The Nurture step then addressed the elicitation of technical, existence and

unique constraints, as well as functional dependencies and the parallel acquisi-

tion of data samples. We formalised these notions and presented the principles

of an interactive process, inspired by Armstrong relations, in order to suggest

them, collect them and consequently reflect them on the pre-integrated schema.

The Bind step afterwards handled and formalised the arbitration and pro-

cessing of the previously defined constraints and dependencies, as well as the

relationships specified between entity types, in order to produce an integrated

conceptual schema representing the application domain for which the form-

based interfaces were originally drawn.

Finally, the Objectify step addressed the generation of a lightweight pro-

totypical data manager application from this integrated conceptual schema,

and the Wander step exposed how to submit this prototype to the end-users

in order to transparently refine and ultimately validate the integrated con-

274 Chapter 17. Conclusion

ceptual schema. We then presented the prototypical RAINBOW Toolkit that

was developed in order to support and experiment the approach and provide a

sequential access and support to the five first crucial steps.

As could be expected, we then addressed the intrinsically complex valida-

tion of the RAINBOW approach. In particular, we focused on its effectiveness

(i.e. its ability to help end-users and analysts to communicate static data re-

quirements to each other), and the quality of the conceptual schemas produced

using it. The issues raised by these quintessential questions are not easy to

experiment, measure and validate, especially given the immanent difficulty of

evaluating methodologies for the development of large systems, which primar-

ily requires to spread the experimentations over time. Therefore, we defined

an experimentation canvas that we applied to two preliminary studies, in order

to get a first insight on the validation method and the implementation of the

RAINBOW approach.

We subsequently exposed our validation protocol based on the Participant-

Observer principles to monitor the use of the RAINBOW toolkit and approach,

and the Brainstorming/Focus group principles to analyse the resulting concep-

tual schemas. We consequently proposed to structure each experimentation

into a preparation phase, an execution phase and finally a review phase, then

detailed how the participating end-users, analysts and observers were involved

in each of these phases. We then introduced the two case studies, which were

each rich and relevant in their own way, and described how each pair of end-

user and analyst managed to jointly design the conceptual schema of their

application project using the RAINBOW methodology and toolkit, while the

observers took notes about the efficiency of the process. We followed with the

resulting discussions on the quality of the schemas produced using the approach

and tool support for each study.

The analysis of these preliminary experimentations led us to conclude that

the experimentation canvas proved to be valid and relevant. Besides, the RAIN-

BOW approach and tool support did effectively help end-users and analysts to

communicate static data requirements to each other and that the quality of

the produced conceptual schemas was good with respect to the given case

studies. This encouraging preliminary validation process also highlighted sev-

eral sensible phenomenons that will need to be monitored on a larger scale

experimentation, such as the drawing behaviour of the participants.

Finally, we retrospected on the RAINBOW approach to assess its specifici-

ties and merits, as well as its flaws and possible future works. We particularly

recalled some of the challenges that were overcame in order to intimately in-

volve end-users in the data elicitation processes, and underlined the importance

of the analyst in that matter. We also explained how principles of Reverse En-

275

gineering were applied on controlled artefacts and through monitored processes

to elicit requirements for the purpose of Forward Engineering. We discussed

the modularity and transformation-based reliability of the overall process, as

well as the diversity of potential users, before arguing that the output of the

approach was a rich and relevant part of a valid Software Requirement Specifi-

cation that could be used in conjunction with other elicitation methodologies.

Among the possible improvements, we recalled that the last two steps of

the RAINBOW approach could also be formalised, though they are relatively

straightforward. We also mentioned that the approach could take advantage

of dynamic aspects of form-based interfaces, reusability mechanisms for the

elaboration of the interfaces, refinements of the terminological and structural

analysis, as well as the expansion of constraints elicitation and the study of

data samples. The tool support could also be improved by notably working on

its ergonomy and usability, which could progressively turn it into a true CASE

tool. Finally, we drew the main lines of an improved experimentation canvas

for a wider experimentation endeavour over time that could give us a better

understanding of the real impact of the RAINBOW approach. In order to get

the most of these futures experiments, we advocated to carefully pave the way

for the procedure, and set guidelines for the execution as well as the reviewing

and comparison of the approach with similar existing approaches.

In the end, we can finally conclude that the RAINBOW approach qualifies

as an original and realistic contribution to elicit static database requirements

in the context of Software Engineering. As expected, the expressiveness of

form-based interfaces and prototypes, combined with the specialisation and in-

tegration of standard technique to help acquire and validate specifications from

existing artefacts, enabled to use form-based interfaces as a two-way communi-

cation channel to communicate static data requirements between end-users and

analysts. This approach can evidently be extended and optimised, but never-

theless, it overcomes the main concerns raised by similar researches, while be-

ing interoperable with other approaches and extensible for further analysis and

elicitation processes. Besides, the experimentation results of the preliminary

studies comforts us in believing that this approach is viable, worthy, and de-

serves to be improved and tested over time, by continuously looking for better

ways to involve stakeholders in an efficient and satisfying fashion.

Part V

Bibliography

Give back to Caesar what is Caesar’s and to God what is God’s.

Matthew, XXII, 21

277

References

Ali, M. F., Pérez-Quiñones, M. A., Abrams, M., and Shell, E. (2002). Building multi-

platform user interfaces with uiml. In Kolski and Vanderdonckt [2002], pages

255–266. [cited at p. 55]

Andriole, S. J. (1994). Fast, cheap requirements: Prototype, or else! IEEE Software,

11(2):85–87. [cited at p. 13]

Armstrong, W. W. (1974). Dependency structures of data base relationships. In IFIP

Congress, pages 580–583. [cited at p. 46]

Asai, T., Arimura, H., Uno, T., ichi Nakano, S., and Satoh, K. (2003). Efficient tree

mining using reverse search. In International Symposium on Information Science

and Electrical Engineering 2003 (ISEE 2003), Kyushu University, pages 401–404.

[cited at p. 43]

Astrova, I. and Stantic, B. (2005). An html-form-driven approach to reverse engineer-

ing of relational databases to ontologies. In Proceedings of IASTED International

Conference on Databases and Applications, pages 246–251. [cited at p. 33]

Baixeries, J. (2004). A formal concept analysis framework to mine functional depen-

dencies. In Proceeding of Mathematical Methods for Learning 2004 : Advances in

data mining and knowledge discovery. [cited at p. 48]

Batini, C., Ceri, S., and Navathe, S. B. (1992). Conceptual database design: an

Entity-relationship approach. Benjamin-Cummings Publishing Co., Inc., Redwood

City, CA, USA. [cited at p. 14, 15, 25, 197]

Batini, C., Demo, G. B., and Leva, A. D. (1984). A methodology for conceptual

design of office data bases. Information Systems, 9(3/4):251–263. [cited at p. 32]

Batini, C., Lenzerini, M., and Navathe, S. B. (1986). A comparative analysis

of methodologies for database schema integration. ACM Computing Surveys,

18(4):323–364. [cited at p. 49]

279

280 References

Bødker, S., Grønbaek, K., and Kyng, M. (1993). Cooperative design: Techniques and

experience from the scandinavian scene. In Schuler, D. and Namioka, A., editors,

Participatory design: Principles and practices. Hillsdale, New Jersey: Lawrence

Erlbaum Associates. [cited at p. 57]

Beyer, H. and Holtzblatt, K. (1998). Contextual design: defining customer-centered

systems. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. [cited at

p. 11]

Briand, L. C., Morasca, S., and Basili, V. R. (1996). Property-based software engi-

neering measurement. IEEE Transactions on Software Engineering, 22(1):68–86.

[cited at p. 195]

Brogneaux, A.-F., Ramdoyal, R., Vilz, J., and Hainaut, J.-L. (2005a). Deriving user-

requirements from human-computer interfaces. In Proceedings of 23rd IASTED

International Conference, Innsbruck, Austria, pages 77–82. [cited at p. 59]

Brogneaux, A.-F., Ramdoyal, R., Vilz, J., and Hainaut, J.-L. (2005b). Deriving user-

requirements from human-computer interfaces. In TC13 Workshop on Human-

Computer Interaction (Design and Visualisation), Namur, Belgium. [cited at p. 59]

Brown, J. S. and Duguid, P. (2000). The Social Life of Information. Harvard Business

School Press, Boston, MA, USA. [cited at p. 27]

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdon-

ckt, J. (2003). A unifying reference framework for multi-target user interfaces.

Interacting with Computers, 15(3):289–308. [cited at p. 257]

Carnegie Mellon University (2006). The SecondString project, the open-source java-

based package of approximate string-matching techniques. http://secondstring.

sourceforge.net. [cited at p. 179]

Chapman, S. (2007). SimMetrics, the open source extensible library of similarity or

distance metrics. http://simmetrics.sourceforge.net. [cited at p. 179]

Chehreghani, M. H., Rahgozar, M., Lucas, C., and Chehreghani, M. H. (2007). Min-

ing maximal embedded unordered tree patterns. In Proceedings of the IEEE Sym-

posium on Computational Intelligence and Data Mining, CIDM 2007,Honolulu,

Hawaii, USA, pages 437–443. [cited at p. 43]

Cherfi, S. S.-S., Akoka, J., and Comyn-Wattiau, I. (2002). Conceptual modeling

quality - from eer to uml schemas evaluation. In ER ’02: Proceedings of the 21st

International Conference on Conceptual Modeling, pages 414–428, London, UK.

Springer-Verlag. [cited at p. 195]

Chi, Y., Muntz, R. R., Nijssen, S., and Kok, J. N. (2005). Frequent subtree mining -

an overview. Fundamenta Informatica, 66(1-2):161–198. [cited at p. 43]

http://secondstring.sourceforge.net
http://secondstring.sourceforge.net
http://simmetrics.sourceforge.net

References 281

Chikofsky, E. J. and Cross, J. H. (1990). Reverse engineering and design recovery: A

taxonomy. IEEE Software, 7(1):13–17. [cited at p. 16, 197]

Choobineh, J., Mannino, M. V., and Tseng, V. P. (1992). A form-based approach for

database analysis and design. Communications of the ACM, Vol. 35, Nř2:108–120.

[cited at p. 27, 33, 43, 81, 252]

Coad, P. (1992). Object-oriented patterns. Communications of the ACM, 35(9):152–

159. [cited at p. 123]

Codd, E. F. (1970). A relational model of data for large shared data banks. Commu-

nications of the ACM, 13(6):377–387. [cited at p. 45]

Codd, E. F. (1971a). Further normalization of the data base relational model. IBM

Research Report, San Jose, California, RJ909. [cited at p. 195]

Codd, E. F. (1971b). Normalized data structure: A brief tutorial. In Codd, E. F.

and Dean, A. L., editors, SIGFIDET Workshop, pages 1–17. ACM. [cited at p. 195]

Cohen, W. W., Ravikumar, P., and Fienberg, S. E. (2003). A comparison of string

distance metrics for name-matching tasks. In Proceedings of IJCAI-03 Workshop

on Information Integration on the Web (IIWeb-03), Acapulco, Mexico, pages 73–78.

[cited at p. 40]

Connell, J. and Shafer, L. I. (1995). Object-oriented rapid prototyping. Yourdon Press,

Upper Saddle River, NJ, USA. [cited at p. 27]

Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., and Koschke, R. (2009).

A systematic survey of program comprehension through dynamic analysis. IEEE

Transactions on Software Engineering, 35(5):684–702. [cited at p. 53]

Correia, J. H. (2002). Relational scaling and databases. In Proceedings of the 10th In-

ternational Conference on Conceptual Structures (ICCS 2002), Borovets, Bulgaria,

July 15-19, 2002, pages 62–76. [cited at p. 48]

Daly, J., Brooks, A., Miller, J., Roper, M., and Wood, M. (1996). Evaluating inheri-

tance depth on the maintainability of object-oriented software. Empirical Software

Engineering, 1(2):109–132. [cited at p. 195]

Davis, A. M. and Zowghi, D. (2006). Good requirements practices are neither neces-

sary nor sufficient. Requirements Engineering, 11(1):1–3. [cited at p. 7]

DB-MAIN (2010). The DB-MAIN CASE Tool. http://www.db-main.be. [cited at

p. 51, 175]

Dix, A., Finley, J., Abowd, G., and Beale, R. (1998). Human-computer interaction

(2nd ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA. [cited at p. 8]

http://www.db-main.be

282 References

Embley, D. W. (1989). NFQL: The natural forms query language. ACM Transactions

on Database Systems, 14(2):168–211. [cited at p. 173]

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. MIT Press. [cited at

p. 108, 179]

Finlayson, M. A. (2009). The MIT Java Wordnet Interface (JWI). http://projects.

csail.mit.edu/jwi/. [cited at p. 179]

Fischer, G. (2002). Beyond“couch potatoes”: From consumers to designers and active

contributors. First Monday, 7(12). [cited at p. 12, 27]

Flory, A. (1982). Bases de données : conception et réalisation. ECONOMICA, Paris.

[cited at p. 49]

Gemino, A. and Wand, Y. (2005). Complexity and clarity in conceptual modeling:

Comparison of mandatory and optional properties. Data & Knowledge Engineering,

55(3):301–326. [cited at p. 195]

Genero, M., Jiménez, L., and Piattini, M. (2000). Measuring the quality of entity

relationship diagrams. In ER’00: Proceedings of the 19th international conference

on Conceptual modeling, pages 513–526, Berlin, Heidelberg. Springer-Verlag. [cited

at p. 195]

Goguen, J. A. and Linde, C. (1993). Techniques for requirements elimination. In

Proceedings of IEEE International Symposium on Requirements Engineering, pages

152–164, Los Alamitos, California. IEEE CS Press. [cited at p. 9]

Gomaa, H. (1983). The impact of rapid prototyping on specifying user requirements.

SIGSOFT Software Engineering Notes, 8(2):17–27. [cited at p. 26]

Gomaa, H. and Scott, D. B. (1981). Prototyping as a tool in the specification of

user requirements. In Proceedings of the 5th International Conference on Software

Engineering (ICSE’81), pages 333–342. IEEE Press. [cited at p. 197]

Grønbæk, K., Kyng, M., and Mogensen, P. (1997). Toward a cooperative experimental

system development approach. In Kyng, M. and Mathiassen, L., editors, Computers

and design in context, pages 201–238. MIT Press, Cambridge, MA, USA. [cited at

p. 58]

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowl-

edge sharing? International Journal of Human-Computer Studies, 43(5-6):907 –

928. [cited at p. 40]

Habra, N., Abran, A., Lopez, M., and Sellami, A. (2008). A framework for the

design and verification of software measurement methods. Journal of Systems and

Software, 81(5):633–648. [cited at p. 195]

http://projects.csail.mit.edu/jwi/
http://projects.csail.mit.edu/jwi/

References 283

Hainaut, J.-L. (1989). A generic entity-relationship model. In Proceedings of the IFIP

WG 8.1 Conference on Information System Concepts: an in-depth analysis, pages

109–138. North-Holland. [cited at p. 17]

Hainaut, J.-L. (1996). Specification preservation in schema transformations - appli-

cation to semantics and statistics. Data & Knowledge Engineering, 19(2):99–134.

[cited at p. 25]

Hainaut, J.-L. (2002). Introduction to Database Reverse Engineering, 3rd Edition.

LIBD Publish., Namur. http://www.info.fundp.ac.be/dbm/publication/2002/

DBRE-2002.pdf. [cited at p. 16, 28, 254]

Hainaut, J.-L. (2005). Transformation-based database engineering. In van Bommel,

P., editor, Transformation of Knowledge, Information and Data: Theory and Ap-

plications, chapter 1. IDEA Group. [cited at p. 81]

Hainaut, J.-L. (2006). The transformational approach to database engineering. In

Lämmel, R., Saraiva, J., and Visser, J., editors, Generative and Transformational

Techniques in Software Engineering, volume 4143 of LNCS, pages 95–143. Springer.

[cited at p. 14, 15, 22, 24, 28, 197]

Hainaut, J.-L. (2009). Bases de données - Concepts, utilisation et développement, 3rd

Edition. Dunod. [cited at p. 50]

Hainaut, J.-L., Henrard, J., Hick, J.-M., Roland, D., and Englebert, V. (1996).

Database design recovery. In Proceedings of International Conference on Advances

Information System Engineering (CAiSE), volume 1080 of LNCS, pages 272–300.

Springer. [cited at p. 26]

Hall, P. A. V. (1992). Software Reuse and Reverse Engineering in Practice. Chapman

& Hall, Ltd., London, UK, UK. [cited at p. 16, 197]

Hersh, W., Price, S., and Donohoe, L. (2000). Assessing thesaurus-based query expan-

sion using the umls metathesaurus. In Proceedings of the 2000 American Medical

Informatics Association (AMIA) Symposium, pages 344–348. [cited at p. 41]

Hick, J.-M. and Hainaut, J.-L. (2006). Database application evolution: A transfor-

mational approach. Data & Knowledge Engineering, 59:534–558. [cited at p. 26]

Hoxmeier, J. A. (1998). Typology of database quality factors. Software Quality

Control, 7(3/4):179–193. [cited at p. 195]

Huhtala, Y., Kärkkäinen, J., Porkka, P., and Toivonen, H. (1999). TANE: An efficient

algorithm for discovering functional and approximate dependencies. Computer

Journal, 42(2):100–111. [cited at p. 48]

IEEE (1998). IEEE recommended practice for software requirements specifications.

Technical report, IEEE. [cited at p. 10]

http://www.info.fundp.ac.be/dbm/publication/2002/DBRE-2002.pdf
http://www.info.fundp.ac.be/dbm/publication/2002/DBRE-2002.pdf

284 References

Illich, I. (1973). Tools for Conviviality. Harper & Row Publishers, New York. [cited

at p. 12, 27]

ISO/IEC (2001). ISO/IEC 9126. Software engineering – Product quality. ISO/IEC.

[cited at p. 194]

Jacobs, J. (1982). Finding words that sound alike. the soundex algorithm. Byte 7,

pages 473–474. [cited at p. 40]

Java (2010). The Java official website. http://www.java.com. [cited at p. 175]

Jiménez, A., Berzal, F., and Cubero, J. C. (2008). Mining induced and embed-

ded subtrees in ordered, unordered, and partially-ordered trees. In Proceedings of

Foundations of Intelligent Systems, 17th International Symposium, ISMIS 2008,

Toronto, Canada, pages 111–120. [cited at p. 43]

Kensing, F. and Blomberg, J. (1998). Participatory design: Issues and concerns.

Computer Supported Cooperative Work, 7(3/4):167–185. [cited at p. 57]

Kesh, S. (1995). Evaluating the quality of entity relationship models. Information

and Software Technology, 37(12):681 – 689. [cited at p. 195]

Kolski, C. and Vanderdonckt, J., editors (2002). Computer-Aided Design of User

Interfaces III, Proceedings of the Fourth International Conference on Computer-

Aided Design of User Interfaces, May, 15-17, 2002, Valenciennes, France. Kluwer.

[cited at p. 279, 287]

Kösters, G., Six, H.-W., and Voss, J. (1996). Combined analysis of user interface

and domain requirements. In ICRE ’96: Proceedings of the 2nd International

Conference on Requirements Engineering (ICRE ’96), page 199, Washington, DC,

USA. IEEE Computer Society. [cited at p. 34, 252]

Krogstie, J. (1998). Integrating the understanding of quality in requirements specifica-

tion and conceptual modeling. SIGSOFT Software Engineering Notes, 23(1):86–91.

[cited at p. 195]

Lantz, K. E. (1986). The prototyping methodology. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA. [cited at p. 26, 197]

Lee, H. and Yoo, C. (2000). A form-driven object-oriented reverse engineering

methodology. Information Systems, Vol. 25, No. 3. [cited at p. 33]

Limbourg, Q. and Vanderdonckt, J. (2004). Usixml: A user interface description

language supporting multiple levels of independence. In Proceedings of Workshops

in connection with the 4th International Conference on Web Engineering (ICWE

2004), Munich, Germany, pages 325–338. [cited at p. 56]

http://www.java.com

References 285

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and López-Jaquero, V.

(2004). Usixml: A language supporting multi-path development of user interfaces.

In Bastide, R., Palanque, P. A., and Roth, J., editors, EHCI/DS-VIS, volume 3425

of Lecture Notes in Computer Science, pages 200–220. Springer. [cited at p. 56]

Lindland, O. I., Sindre, G., and Sølvberg, A. (1994). Understanding quality in con-

ceptual modeling. IEEE Software, 11(2):42–49. [cited at p. 195]

LingPipe (2010). The LingPipe tool kit for processing text using computational

linguistics. http://alias-i.com/lingpipe/. [cited at p. 179]

Lopes, S., Petit, J.-M., and Lakhal, L. (2000). Efficient discovery of functional depen-

dencies and armstrong relations. In Proceedings of Advances in Database Technol-

ogy - EDBT 2000, 7th International Conference on Extending Database Technology,

Konstanz, Germany, pages 350–364. [cited at p. 48]

Lopes, S., Petit, J.-M., and Lakhal, L. (2002). Functional and approximate depen-

dency mining: database and fca points of view. Journal of Experimental and

Theoretical Artificial Intelligence (JETAI), 14(2-3):93–114. [cited at p. 48]

Luyten, K., Abrams, M., Vanderdonckt, J., and Limbourg, Q. (2004). Developing

user interfaces with xml: Advances on user interface description languages. In Pro-

ceedings of the Satellite Workshop of Advanced Visual Interfaces, Gallipoli, Italy.

[cited at p. 54]

Maes, A. and Poels, G. (2006). Evaluating quality of conceptual models based on

user perceptions. In Proceedings of ER 2006, 25th International Conference on

Conceptual Modeling, Tucson, AZ, USA, November 6-9, 2006, pages 54–67. [cited

at p. 195]

Mayo, E. (1933). The Human Problems of an Industrial Civilization. Mac Millan,

New York. [cited at p. 13, 192]

McConnell, S. (2000). From the editor - the best influences on software engineering.

IEEE Software, 17(1). [cited at p. 7]

Mehandjiev, N., Layzell, P., Brereton, P., Lewis, G., Mannion, M., and cois Coallier,

F. (2002). Thirteen knights and the seven-headed dragon: an interdisciplinary soft-

ware engineering framework. In STEP ’02: Proceedings of the 10th International

Workshop on Software Technology and Engineering Practice, page 46, Washington,

DC, USA. IEEE Computer Society. [cited at p. 6]

Mfourga, N. (1997). Extracting entity-relationship schemas from relational databases:

A form-driven approach. Reverse Engineering, Working Conference on, 0:184. [cited

at p. 32]

Mogensen, P. (1992). Towards a provotyping approach in systems development. Scan-

dinavian Journal of Information Systems, 4:31–53. [cited at p. 58]

http://alias-i.com/lingpipe/

286 References

Moody, D. (2006). What makes a good diagram? improving the cognitive effective-

ness of diagrams in is development. In Knapp and Magyar, editors, Intl Conf on

Information Systems Development. Springer. [cited at p. 195]

Moody, D. L. and Shanks, G. G. (2003). Improving the quality of data models:

empirical validation of a quality management framework. Information Systems,

28(6):619–650. [cited at p. 195]

Moody, D. L., Sindre, G., Brasethvik, T., and Sølvberg, A. (2003). Evaluating the

quality of information models: empirical testing of a conceptual model quality

framework. In ICSE ’03: Proceedings of the 25th International Conference on

Software Engineering, pages 295–305, Washington, DC, USA. IEEE Computer

Society. [cited at p. 195]

Mori, G., Paternò, F., and Santoro, C. (2002). Ctte: support for developing and an-

alyzing task models for interactive system design. IEEE Transactions on Software

Engineering, 28(8):797–813. [cited at p. 56]

Muller, M. J., Wildman, D. M., and White, E. A. (1993). Taxonomy of pd practices:

A brief practitioner’s guide. Communications of the ACM, 36(6):26–28. [cited at

p. 58]

Naur, P., Randell, B., and Buxton, J. (1976). Software Engineering: Concepts and

Techniques. Petrocelli/Carter, New York, USA. [cited at p. 6]

Navarro, G. (2001). A guided tour to approximate string matching. ACM Computing

Surveys, 33(1):31–88. [cited at p. 40]

Nielsen, J. (1986). A virtual protocol model for computer-human interaction. Inter-

national Journal of Man-Machine Studies, 24(3):301–312. [cited at p. 91]

Novelli, N. and Cicchetti, R. (2001). FUN: An efficient algorithm for mining func-

tional and embedded dependencies. In Proceedings of Database Theory - ICDT

2001, 8th International Conference, London, UK, pages 189–203. [cited at p. 48]

Nuseibeh, B. and Easterbrook, S. (2000). Requirements engineering: a roadmap. In

ICSE ’00: Proceedings of the Conference on The Future of Software Engineering,

pages 35–46, New York, NY, USA. ACM Press. [cited at p. 7, 9]

Object Management Group (OMG) (2007). Introduction to omg’s unified modeling

language. http://www.omg.org/gettingstarted/what_is_uml.htm. [cited at p. 10,

78]

Osmundson, J. S., Michael, J. B., Machniak, M. J., and Grossman, M. A. (2003).

Quality management metrics for software development. Information and Manage-

ment, 40(8):799–812. [cited at p. 6]

http://www.omg.org/gettingstarted/what_is_uml.htm

References 287

Pastor, O., Gómez, J., Insfrán, E., and Pelechano, V. (2001). The oo-method ap-

proach for information systems modeling: from object-oriented conceptual mod-

eling to automated programming. Information Systems, 26(7):507–534. [cited at

p. 257]

Pastor, O., Hayes, F., and Bear, S. (1992). Oasis: An object-oriented specifica-

tion language. In Proceedings of the Advanced Information Systems Engineering,

CAiSE’92, Manchester, UK, pages 348–363. [cited at p. 257]

Pastor, O. and Insfrán, E. (2003). Oo-method, the methodological support for oliva

nova model execution system. White paper, CARE Technologies S.A. http://

www.care-t.com/technology/whitepapers.asp. [cited at p. 257]

Paternò, F. and Santoro, C. (2002). One model, many interfaces. In Kolski and

Vanderdonckt [2002], pages 143–154. [cited at p. 56]

Pomberger, G., Bischofberger, W. R., Kolb, D., Pree, W., and Schlemm, H. (1991).

Prototyping-oriented software development - concepts and tools. Structured Pro-

gramming, 12(1):43–60. [cited at p. 27]

President’s Information Technology Advisory Committee (PITAC) (1999). Infor-

mation technology research: Investing in our future, report to the president.

http://www.nitrd.gov/pitac/report/. [cited at p. 6]

Pressman, R. S. (2000). Software Engineering: A Practitioner’s Approach. McGraw-

Hill Higher Education. [cited at p. 12]

Priss, U. (2005). Establishing connections between formal concept analysis and rela-

tional databases. In Common Semantics for Sharing Knowledge: Contributions to

ICCS 2005, pages 132–145. [cited at p. 48]

Puerta, A. R. and Eisenstein, J. (2002). Ximl: a common representation for interac-

tion data. In IUI, pages 216–217. [cited at p. 55]

Qt (2010). The QT official website. http://qt.nokia.com. [cited at p. 175]

Rahm, E. and Bernstein, P. A. (2001). A survey of approaches to automatic schema

matching. VLDB Journal, 10(4):334–350. [cited at p. 39]

Ram, S. (1995). Deriving functional dependencies from the entity-relationship model.

Communications of the ACM, 38(9):95–107. [cited at p. 47]

Ramdoyal, R. (2010). Reverse engineering user-drawn form-based interfaces for inter-

active database conceptual analysis. In Proceedings of CAiSE Doctoral Consortium

2010, Hammamet, Tunisia. [cited at p. 59]

Ramdoyal, R., Brogneaux, A.-F., Vilz, J., and Hainaut, J.-L. (2007). Recherche de

recouvrements dans une collection de schémas de base de données. In Proceedings

of the DECOR Workshop, EGC 2007, Namur, Belgium. [cited at p. 59]

http://www.care-t.com/technology/whitepapers.asp
http://www.care-t.com/technology/whitepapers.asp
http://www.nitrd.gov/pitac/report/
http://qt.nokia.com

288 References

Ramdoyal, R., Cleve, A., Brogneaux, A.-F., and Hainaut, J.-L. (2009). Rétro-

ingénierie dŠinterfaces utilisateur pour lŠanalyse conceptuelle de bases de données.

In Proceedings of the 25èmes Journées en Bases de Données Avancées (BDA 2009),

Namur, Belgium. [cited at p. 59]

Ramdoyal, R., Cleve, A., and Hainaut, J.-L. (2010). Reverse engineering user inter-

faces for interactive database conceptual analysis. In Proceedings of CAiSE 2010,

Hammamet, Tunisia, volume 6051 of LNCS, pages 332–347. [cited at p. 59]

Rancz, K. T. J. and Varga, V. (2008). A method for mining functional dependencies

in relational database design using fca. Studia Universitatis ”Babes-Bolyait’t’ Cluj-

Napoca, Informatica, Volume LIII(1):17Ű28. [cited at p. 48]

Rancz, K. T. J., Varga, V., and Puskas, J. (2008). A software tool for data analy-

sis based on formal concept analysis. Studia Universitatis ”Babes-Bolyait’t’ Cluj-

Napoca, Informatica, Volume LIII(2):67–78. [cited at p. 49]

Ravid, A. and Berry, D. M. (2000). A method for extracting and stating software

requirements that a user interface prototype contains. Requirements Engineering,

5(4):225–241. [cited at p. 28]

Robbins-Gioia LLC (2002). ERP survey. http://www.robbinsgioia.com/news%

5Fevents/012802%5Ferp.aspx. [cited at p. 12]

Rode, J., Bhardwaj, Y., Pérez-Quiñones, M. A., Rosson, M. B., and Howarth, J.

(2005). As easy as ”click”: End-user web engineering. In Lowe, D. and Gaedke,

M., editors, Proceedings of the 5th International Conference on Web Engineering,

ICWE 2005, Sydney, Australia, July 27-29, 2005, volume 3579 of Lecture Notes in

Computer Science, pages 478–488. Springer. [cited at p. 35, 252]

Rollinson, S. R. and Roberts, S. A. (1998). Formalizing the informational content of

database user interfaces. In ER’98: Proc. of the 17th International Conference on

Conceptual Modeling, pages 65–77. Springer-Verlag. [cited at p. 28, 35, 81, 252]

Sanders, E. B.-N. (2002). From user-centered to participatory design approaches.

In Frascara, J., editor, Design and the Social Sciences. Taylor & Francis Books

Limited. [cited at p. 57]

Schewe, K. D. and Thalheim, B. (2005). Conceptual modelling of web information

systems. Data & Knowledge Engineering, 54(2):147–188. [cited at p. 14]

Schmidt, D. C. (2006). Model-driven engineering. IEEE Computer, 39(2):25–31. [cited

at p. 256]

Schneider, K. (1996). Prototypes as assets, not toys: why and how to extract knowl-

edge from prototypes. In ICSE ’96: Proceedings of the 18th international conference

on Software engineering, pages 522–531, Washington, DC, USA. IEEE Computer

Society. [cited at p. 27]

http://www.robbinsgioia.com/news%5Fevents/012802%5Ferp.aspx
http://www.robbinsgioia.com/news%5Fevents/012802%5Ferp.aspx

References 289

Schuler, D. and Namioka, A., editors (1993). Participatory Design: Principles and

Practices. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA. [cited at p. 11,

197]

Sharp, H., Finkelstein, A., and Galal, G. (1999). Stakeholder identification in the

requirements engineering process. In DEXA ’99: Proceedings of the 10th Interna-

tional Workshop on Database & Expert Systems Applications, page 387, Washing-

ton, DC, USA. IEEE Computer Society. [cited at p. 8]

Shoval, P. and Shiran, S. (1997). Entity-relationship and object-oriented data

modeling-an experimental comparison of design quality. Data & Knowledge Engi-

neering, 21(3):297–315. [cited at p. 15]

Singer, J., Sim, S. E., and Lethbridge, T. C. (2008). Software engineering data

collection for field studies. In Shull, F., Singer, J., and Sjøberg, D. I., editors,

Guide to Advanced Empirical Software Engineering, pages 9–34. Springer. [cited at

p. 192]

Sommerville, I. and Kotonya, G. (1998). Requirements Engineering: Processes and

Techniques. John Wiley & Sons, Inc., New York, NY, USA. [cited at p. 9]

Souchon, N. and Vanderdonckt, J. (2003). A review of xml-compliant user interface

description languages. In Jorge, J. A., Nunes, N. J., and e Cunha, J. F., edi-

tors, DSV-IS, volume 2844 of Lecture Notes in Computer Science, pages 377–391.

Springer. [cited at p. 56]

Spaccapietra, S., Parent, C., and Dupont, Y. (1992). Model independent assertions

for integration of heterogeneous schemas. The VLDB Journal, 1(1):81–126. [cited

at p. 50]

Spell, B. (2009). Java API for WordNet Searching (JAWS). http://lyle.smu.edu/

~tspell/jaws. [cited at p. 179]

Standish Group International Inc. (1995). Chaos report. http://www.

standishgroup.com/chaos. [cited at p. 6]

Standish Group International Inc. (1999). Chaos : A recipe for success. http:

//www.standishgroup.com/chaos. [cited at p. 7]

Standish Group International Inc. (2001). Extreme chaos. http://www.

standishgroup.com/chaos. [cited at p. 7]

Stroulia, E., El-Ramly, M., Kong, L., Sorenson, P. G., and Matichuk, B. (1999).

Reverse engineering legacy interfaces: An interaction-driven approach. In Proceed-

ings of the 6th Working Conference on Reverse Engineering (WCRE’99), Atlanta,

USA, pages 292–302. [cited at p. 32]

http://lyle.smu.edu/~tspell/jaws
http://lyle.smu.edu/~tspell/jaws
http://www.standishgroup.com/chaos
http://www.standishgroup.com/chaos
http://www.standishgroup.com/chaos
http://www.standishgroup.com/chaos
http://www.standishgroup.com/chaos
http://www.standishgroup.com/chaos

290 References

Termier, A., Rousset, M.-C., and Sebag, M. (2002). Treefinder: a first step to-

wards xml data mining. In Second IEEE International Conference on Data Mining

(ICDM’02), pages 450–457. [cited at p. 43]

Terwilliger, J. F., Delcambre, L. M. L., and Logan, J. (2006). The user interface is the

conceptual model. In Proceedings of 25th International Conference on Conceptual

Modeling (ER’06), volume 4215 of LNCS, pages 424–436. Springer. [cited at p. 27,

35, 173, 252]

Trigg, R. H., Bødker, S., and Grønbæk, K. (1991). Open-ended interaction in coop-

erative prototyping a video-based analysis. Scandinavian Journal of Information

Systems, 3:63–86. [cited at p. 58]

UsiXML Consortium (2007). Usixml v1.8 reference manual. http://www.usixml.org.

[cited at p. 68]

Vilz, J., Brogneaux, A.-F., Ramdoyal, R., Englebert, V., and Hainaut, J.-L. (2006).

Data conceptualisation for web-based data-centred application design. In Proceed-

ings of the Advanced Information Systems Engineering, 18th International Confer-

ence, CAiSE 2006, Luxembourg, LNCS, pages 205–219. [cited at p. 43, 59, 63]

Vosburgh, J., Curtis, B., Wolverton, R., Albert, B., Malec, H., Hoben, S., and Liu,

Y. (1984). Productivity factors and programming environments. In ICSE, pages

143–152. [cited at p. 11]

Vries, H. D., Verheul, H., and Willemse, H. (2003). Stakeholder identification in it

standardisation processes. In MIS Quarterly Special Issue Workshop on Standard

Making: A Critical Research Frontier for Information Systems, pages 92–107. [cited

at p. 8]

Wahler, M. (2008). Using Patterns to Develop Consistent Design Constraints. PhD

thesis, ETH Zurich, Switzerland. [cited at p. 195]

Walenz, B. and Didion, J. (2008). The Java WordNet Library (JWNL). http:

//jwordnet.sourceforge.net. [cited at p. 179]

Wille, R. (2005). Formal concept analysis as mathematical theory of concepts and

concept hierarchies. In Formal Concept Analysis, Foundations and Applications,

volume 3626 of Lecture Notes in Computer Science, pages 1–33. Springer. [cited at

p. 43]

Wilson, W. M., Rosenberg, L. H., and Hyatt, L. E. (1997). Automated analysis

of requirement specifications. In ICSE ’97: Proceedings of the 19th international

conference on Software engineering, pages 161–171, New York, NY, USA. ACM.

[cited at p. 12]

http://www.usixml.org
http://jwordnet.sourceforge.net
http://jwordnet.sourceforge.net

References 291

Winkler, W. E. (1990). String comparator metrics and enhanced decision rules in

the fellegi-sunter model of record linkage. In Proceedings of the Section on Survey

Research Methods, American Statistical Association, pages 472–477. [cited at p. 40,

104, 179]

World Wide Web Consortium (W3C) (2010). The Extensible Markup Language

(XML). http://www.w3.org/XML. [cited at p. 55, 180]

Wyss, C. M., Giannella, C., and Robertson, E. L. (2001). Fastfds: A heuristic-driven,

depth-first algorithm for mining functional dependencies from relation instances.

In Proceedings of Data Warehousing and Knowledge Discovery, Third International

Conference, DaWaK 2001, Munich, Germany, pages 101–110. [cited at p. 48]

Yang, F., Gupta, N., Botev, C., Churchill, E. F., Levchenko, G., and Shanmugasun-

daram, J. (2008). Wysiwyg development of data driven web applications. Proceed-

ings of the VLDB Endowment, 1(1):163–175. [cited at p. 36, 252]

Yao, H. and Hamilton, H. J. (2008). Mining functional dependencies from data. Data

Mining and Knowledge Discovery, 16(2):197–219. [cited at p. 48]

Zaki, M. J. (2005). Efficiently mining frequent embedded unordered trees. Funda-

menta Informatica, 66(1-2):33–52. [cited at p. 43]

http://www.w3.org/XML

Part VI

Appendices

Among the appendices, Chapters A and B respectively provide explana-

tions for the conventions used in the algorithms and the schemas presented in

this dissertation, while Chapter C supplies information to obtain additional

materials related to this doctoral research.

293

Appendix A

Algorithmic conventions

In this chapter, we present the conventions used to express the algorithms

of this dissertation. These high level algorithms rely on basic conditional

(if/then/else) and iterative (for all/do and while/do) structures, assign-

ments (x← y), user input (Ask) and calls to existing or predefined methods or

algorithms, as illustrated by Algorithm A.1.

Algorithm A.1 MyAlgorithm : A sample algorithm to illustrate the conven-
tions
Require: the necessary preconditions
Ensure: the resulting postconditions

1: procedure MyAlgorithm(p1, p2, p3, ...) . The algorithm’s name and parameters
2: x← y . Assign the value (of) y to variable x
3: Ask> define: x . Ask the user to define x
4: Ask> choose/redefine: x . Ask the user to choose or redefine x
5: AnotherAlgorithm(p′1, p′2, p′3, ...) . Call another algorithm with the appropriate param-

eters
6: if condition1 then . A conditional structure
7: Do something
8: else if condition2 then
9: Do something else

10: else
11: Proceed with the default instructions
12: end if
13: for all x verifying a condition do . An iterative structure
14: Do something
15: end for
16: while condition do . Another iterative structure
17: Do something
18: end while
19: . And by the way, this is a comment.
20: end procedure

295

Appendix B

Schemas representation

conventions

In this chapter, we present the conventions used to graphically represent the

schemas of this dissertation. Recall, as exposed in Section 6.3, that in the

scope of this research, we work with a sub-model of the GER model which is

restricted to“flat”entity types (i.e. entity types having only atomic attributes),

binary relationship types (i.e. relationship types having exactly two roles) and

IS-A hierarchies. This sub-model encompasses part of concepts illustrated in

the following figures.

297

298 Appendix B. Schemas representation conventions

Figure B.1 illustrates basic GER concepts, which include:

• schemas;

• entity types;

• attributes, atomic or compound, optional or mandatory;

• binary relationship types;

• roles;

• cyclic relationship types;

• primary and secondary identifiers, either attribute-based or hybrid.

Figure B.1: Basic GER concepts.

299

Figure B.2 illustrates IS-A relations, which involve entity types with unique

or multiple supertypes, as well as disjunction, totality and partition constraints.

Figure B.2: IS-A relations.

Figure B.3 illustrates advanced GER constructs, among which:

• stereotypes;

• compound and/or multivalued attributes;

• user defined domains (UDD);

• multivalued identifiers for entity types;

• attribute identifiers;

• procedural units.

300 Appendix B. Schemas representation conventions

Figure B.3: Stereotypes, attributes, domains and procedural units.

Figure B.4 illustrates different types of constraints, among which we can

notably mention existence constraints (coexistence, at least one, at most one,

exactly one).

Figure B.4: Different types of constraints

Appendix C

Additional materials

The electronic version of this doctoral dissertation, as well as additional mate-

rials, such as the original forms drawn during the experimentation (in French),

the source code and documentation of the RAINBOW Toolkit and its screen-

cast tutorials, can be found on the web site of the Laboratory of Database Ap-

plications Engineering (http://info.fundp.ac.be/libd) or on the author’s

dedicated website (http://www.ramdoyal.be/rainbow).

301

http://info.fundp.ac.be/libd
http://www.ramdoyal.be/rainbow

