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In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued
to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been
expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have
described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable
methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a
difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or
autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete
process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result
in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within,
lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is
especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily
equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a
concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity.
Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine
macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are
focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part
on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most
appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we
consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by
discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
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Introduction

Many researchers, especially those new to the field, need to
determine which criteria are essential for demonstrating auto-
phagy, either for the purposes of their own research, or in the
capacity of a manuscript or grant review.1 This is an important
issue, particularly considering that each of us may have his/her
own opinion regarding the answer. Unfortunately, the answer is
in part a “moving target” as the field evolves,2 and this can be
extremely frustrating for researchers who may think they have met
those criteria, only to find out that the reviewers of their paper
have different ideas. Conversely, as a reviewer, it is tiresome to
raise the same objections repeatedly, wondering why researchers
have not fulfilled some of the basic requirements for establishing
the occurrence of an autophagic process. In addition, drugs that
potentially modulate autophagy are increasingly being used in
clinical trials, and screens are being performed for new drugs that
can modulate autophagy for therapeutic purposes. Clearly it is
important to determine whether these drugs are truly affecting
autophagy based on a set of accepted criteria. Accordingly, we
describe here a basic set of contemporary guidelines that can be
used by researchers to plan and interpret their experiments, by
clinicians to evaluate the literature with regard to autophagy-
modulating therapies, and by both authors and reviewers to justify
or criticize an experimental approach.

Several fundamental points must be kept in mind as we
establish guidelines for the selection of appropriate methods to
monitor autophagy.1 Importantly, there are no absolute criteria
for determining autophagic status that are applicable in every
biological or experimental context. This is because some assays
are inappropriate, problematic or may not work at all in parti-
cular cells, tissues or organisms.3-6 In addition, these guidelines
are likely to evolve as new methodologies are developed and
current assays are superseded. Nonetheless, it is useful to estab-
lish guidelines for acceptable assays that can reliably monitor
autophagy in many experimental systems. It is important to

note that in this set of guidelines the term “autophagy” generally
refers to macroautophagy; other autophagy-related processes are
specifically designated when appropriate.

For the purposes of this review, the autophagic compartments
(Fig. 1) are referred to as the sequestering (pre-autophagosomal)
phagophore (previously called the isolation or sequestration
membrane7,8),9 the autophagosome,10 the amphisome (generated
by the fusion of autophagosomes with endosomes, also referred to
as an acidic late autophagosome11),12 the autolysosome (generated
by fusion of autophagosomes or amphisomes with a lysosome),
and the autophagic body (generated by fusion and release of the
internal autophagosomal compartment into the vacuole in fungi
and plants; autophagic bodies are not formed within lysosomes/
autolysosomes because these lytic organelles are typically smaller
than autophagosomes13).8,10 One critical point is that autophagy
is a highly dynamic, multi-step process. Like other cellular
pathways, it can be modulated at several steps, both positively and
negatively. An accumulation of autophagosomes [measured by
transmission electron microscopy (TEM) image analysis, as
fluorescent GFP-MAP1LC3 (GFP-LC3) dots, or as LC3 lipida-
tion on a western blot], could, for example, reflect induction of
autophagy, reduction in autophagosome turnover,14-16 or the
inability of turnover to keep pace with increased autophagosome
formation (Fig. 1).17 For example, inefficient fusion with endo-
somes and/or lysosomes, respectively, or perturbation of the
transport machinery,18 would inhibit autophagosome maturation
to amphisomes or autolysosomes, whereas decreased flux could
also be due to inefficient degradation of the cargo once fusion has
occurred.19

Accordingly, the use of autophagy markers such as LC3-II
needs to be complemented by assays to estimate overall auto-
phagic flux, or flow, to permit a correct interpretation of the
results. That is, autophagic activity includes not just the increased
synthesis or lipidation of Atg8/LC3 (LC3 is a mammalian
homolog of yeast Atg8), or an increase in the formation of auto-
phagosomes, but, most importantly, flux through the entire
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Do not distribute.system, including lysosomes or the vacuole, and the
subsequent release of the breakdown products.
Therefore, autophagic substrates need to be mon-
itored dynamically over time to verify that they have
reached the lysosome/vacuole, and, when appropri-
ate, are degraded. By responding to perturbations in
the extracellular environment, cells tune autophagic
flux to meet intracellular metabolic demands. The
impact of autophagic flux on cell death and human
pathologies therefore demands accurate tools to
measure not only the current flux of the system,
but also its capacity,20 and its response time, when
exposed to a defined insult.21

One approach is to measure the rate of general
protein breakdown by autophagy.8,22 Alternatively, it
is possible to arrest the autophagic flux at a given
point, and then record the time-dependent accu-
mulation of an organelle, an organelle marker, a
cargo marker or the entire cargo at the point of
blockage; however, the latter assumes there is no
feedback of the accumulating structure on its own
rate of formation.23 Along the same lines, one can
follow the time-dependent decrease of an autophagy-
degradable marker (with the caveat that the potential
contribution of other proteolytic systems needs to be
experimentally addressed). In theory, this can be
achieved by blocking autophagic sequestration at
specific steps of the pathway (e.g., blocking further

Figure 1. Schematic model demonstrating the induction
of autophagosome formation when turnover is blocked
vs. normal autophagic flux, and illustrating the
morphological intermediates of macroautophagy. (A) The
initiation of autophagy includes the formation of the
phagophore, the initial sequestering compartment, which
expands into an autophagosome. Completion of the
autophagosome is followed by fusion with lysosomes and
degradation of the contents, allowing complete flux, or
flow, through the entire pathway. This is a different
outcome than the situation shown in (B) where induction
results in the initiation of autophagy, but a defect in
autophagosome turnover due, for example, to a block
in fusion with lysosomes or disruption of lysosomal
functions will result in an increased number of
autophagosomes. In this scenario, autophagy has been
induced, but there is no or limited autophagic flux. (C) An
autophagosome can fuse with an endosome to generate
an amphisome, prior to fusion with the lysosome.
(D) Schematic drawing showing the formation of an
autophagic body in plants and fungi. The large size of the
plant and fungal vacuole relative to autophagosomes
allows the release of the single-membrane autophagic
body within the vacuole lumen. In cells that lack vacuolar
hydrolase activity, or in the presence of inhibitors that
block hydrolase activity, intact autophagic bodies
accumulate within the vacuole lumen and can be
detected by light microscopy. The lysosome of most
higher eukaryotes is too small to allow the release of an
autophagic body.
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induction or nucleation of new phagophores) and by measuring
the decrease of markers distal to the block point.14,16,24 The key
issue is to differentiate between the often transient accumulation
of autophagosomes due to increased induction, from accumula-
tion due to inefficient completion of autophagy, by measuring
both the levels of autophagosomes at static time points and
by addressing changes in the rates of autophagic degradation of
cellular components.19 Both processes have been used to estimate
“autophagy,” but unless the experiments can relate changes in
autophagosome numbers to a direct or indirect measurement for
autophagic flux, they may be difficult to interpret.25 A general
caution regarding the use of the term “steady state” is warranted at
this point. It should not be assumed that an autophagic system is
at steady-state in the strict biochemical meaning of this term, as
this implies that the level of autophagosomes does not change
with time, and the flux through the system is constant. In these
guidelines, we use steady-state to refer to the baseline range of
autophagic flux in a system that is not subjected to specific
perturbations that increase or decrease that flux.

Autophagic flux refers to the entire process of autophagy
including the delivery of cargo to lysosomes (via fusion of the
latter with autophagosomes or amphisomes) and its subsequent
breakdown and release of the resulting macromolecules back
into the cytosol (this may be referred to as productive or com-
plete autophagy). Thus, increases in the level of phosphati-
dylethanolamine (PE)-modified Atg8/LC3 (Atg8–PE/LC3-II), or
even the appearance of autophagosomes are not measures of
autophagic flux per se, but can reflect the induction of auto-
phagic sequestration and/or inhibition of autophagosome or
amphisome clearance. Also, it is important to realize that while
formation of Atg8–PE/LC3-II appears to correlate with the
induction of autophagy, we do not know, at present, the actual
mechanistic relationship between Atg8–PE/LC3-II formation
and the rest of the autophagic process; indeed, it may be possible
to execute “self-eating” in the absence of LC3-II.26 As a final note,
we also recommend that researchers refrain from the use of the
expression “percent autophagy” when describing experimental
results, as in “The cells displayed a 25% increase in autophagy.”
In contrast, it is appropriate to indicate that the average number
of GFP-Atg8/LC3 puncta per cell is increased or a certain
percentage of cells display punctate GFP-Atg8/LC3 that exceeds
a particular threshold (and this threshold should be clearly
defined in the methods), or that there is a particular increase
or decrease in the rate of degradation of long-lived proteins, as
these are the actual measurements being quantified.

In the previous version of these guidelines,1 the methods were
separated into two main sections—steady-state and flux. In some
instances, a lack of clear distinction between the actual methodo-
logies and their potential uses made such a separation somewhat
artificial. For example, fluorescence microscopy was initially listed
as a steady-state method, although this approach can clearly be
used to monitor flux as described in this article, especially when
considering the increasing availability of new technologies such
as microfluidics. Furthermore, the use of multiple time points
and/or lysosomal fusion/degradation inhibitors can turn even a
typically static method such as TEM into one that monitors flux.

Therefore, although we maintain the importance of monitoring
autophagic flux and not just induction, this revised set of
guidelines does not separate the methods based on this criterion.
Readers should be aware that this article is not meant to present
protocols, but rather guidelines, including information that is
typically not presented in protocol papers. For detailed informa-
tion on experimental procedures we refer readers to various
protocols that have been published elsewhere.27-42

Collectively, we propose the following guidelines for measur-
ing various aspects of selective and nonselective autophagy in
eukaryotes.

A. Methods for Monitoring Autophagy

1. Transmission electron microscopy. Autophagy was first
detected by TEM in the 1950s (reviewed in ref. 8). The focal
degradation of cytoplasmic areas sequestered by the phagophore,
which matures into the autophagosome, is the morphological
hallmark of autophagy. TEM can be used to monitor both
selective and nonselective autophagy. In the case of selective
autophagy, the cargo should correspond to the specific substrate
being targeted for sequestration—bulk cytoplasm is essentially
excluded. In contrast, during nonselective autophagy, the content
of the autophagosome is morphologically identical to the
cytoplasm, containing similar densities of ribosomes, and intact
sequestered organelles are clearly identifiable. Therefore, the use of
TEM is a valid and important method both for the qualitative and
quantitative analysis of changes in various autophagic structures
that sequentially form the phagophore, autophagosome, amphi-
some, autolysosome and autophagic body (Fig. 1).43 The
maturation from the phagophore through the autolysosome is a
dynamic and continuous process,44 and, thus, the classification
of compartments into discrete morphological subsets can be
problematic; however, some basic guidelines can be offered.

Autophagosomes (also referred to as initial autophagic
vacuoles, AVi) have a double membrane that is usually at least
partly visible as two parallel membrane bilayers separated by
an electron-lucent cleft (Fig. 2A).45,46 Autophagosomes contain
cytosol and/or organelles that look morphologically intact, i.e.,
similar to the cytosol and organelles elsewhere in the cell.43,47

Amphisomes48 can sometimes be identified by the presence
of small internal vesicles inside the autophagosome/autophagic
vacuole (AV).49 These internal vesicles are delivered into the
lumen by fusion with multivesicular endosomes. Late/degradative
autophagic vacuoles and autolysosomes (AVd) usually have only
one limiting membrane, and contain cytoplasmic material and/or
organelles at various stages of degradation (Fig. 2A and B).43,47 It
should be emphasized that not all vesicles containing electron-
dense amorphous material are autolysosomes. The cytoplasmic
origin of the contents must still be morphologically identifiable,
if morphology is the only criterion that is being used for the
identification of autolysosomes. For many biological and patho-
logical situations, examination of both early and late autophagic
structures yields valuable data regarding the overall autophagy/
lysosomal status in the cells.17 Along these lines, it is possible to
use immunocytochemistry to follow particular cytosolic proteins
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such as CuZn superoxide dismutase (SOD) and carbonic anhy-
drase to determine the stage of autophagy; the former is much
more resistant to lysosomal degradation.50 In some autophagy-
inducing conditions it is possible to observe multi-lamellar
membrane structures in addition to the conventional double-
membrane autophagosomes. The nature of these structures is not
fully understood. They may indeed be multiple double layers of
phagophores51 and positive for LC3,52 or mere artifacts of fixation.

TEM observations of platinum-carbon replicas obtained by the
freeze fracture technique can also supply useful ultrastructural
information on the autophagic process. In quickly frozen and
fractured cells the fracture runs preferentially along the hydro-
phobic plane of the membranes, allowing characterization of the
limiting membranes of the different types of autophagic vacuoles
and visualization of their limited protein intramembrane particles
(IMPs, or integral membrane proteins). Several studies have
been performed using this technique on yeast,53 as well as on
mammalian cells or tissue, first on mouse exocrine pancreas,54

then on mouse and rat liver,55,56 mouse seminal vesicle epithe-
lium24,51 or cancer cell lines (e.g., breast cancer MDA-MB-231)57

to investigate the various phases of autophagosome maturation,
and to reveal useful details about the origin and evolution of their
limiting membranes.2,8,58-60

The phagophore and the limiting membranes of autophago-
somes contain few, or no detectable, IMPs (Fig. 3A and B),
when compared with other cellular membranes and to the mem-
branes of lysosomes. In subsequent stages of the autophagic
process the fusion of the autophagosome with an endosome and
a lysosome results in increased density of IMPs in the mem-
brane of the formed autophagic compartments (amphisomes,
autolysosomes; Fig. 3C).8,24,53-56,61,62 Autolysosomes are generally
delimited by a single membrane because, in addition to the
engulfed material, the inner membrane is degraded by the lytic
enzymes. Similarly, the limiting membrane of autophagic bodies
in yeast and plants is also quickly broken down under normal
conditions. Autophagic bodies can be stabilized, however, by the
addition of phenylmethylsulphonylfluoride (PMSF) or genetically
by the deletion of the yeast PEP4 gene. Thus, another method
to consider for monitoring autophagy in plants and yeast is to
count autophagic bodies by TEM using at least two time points.
The advantage of this approach is that it can provide accurate
information on flux even when the autophagosomes are abnor-
mally small.63,64 Thus, although a high frequency of “abnormal”
structures presents a challenge, TEM is still very helpful in
analyzing autophagy.

Cautionary notes: Although TEM is one of the most widely
used methodologies to monitor autophagy, it is also one of the
most problematic due to misinterpretations mostly deriving
from methodological artifacts.45,46,65,66 Care in the choice of
sample to be analyzed is critical to the success of TEM studies
for autophagy. Whereas fixation of in vitro samples is relatively
straightforward, fixation of excised tissues requires care to avoid
sampling a nonrepresentative or uninformative section of tissue.
For instance, if 95% of a tumor is necrotic, TEM analysis of the
necrotic core may not be informative, and if the sampling is

Figure 2. TEM images of autophagic vacuoles in isolated mouse
hepatocytes. (A) One autophagosome or early autophagic vacuole (AVi)
and one degradative autophagic vacuole (AVd) are shown. The AVi can
be identified by its contents (morphologically intact cytoplasm,
inlcuding ribosomes, and rough endoplasmic reticulum), and the limiting
membrane that is partially visible as two bilayers separated by a narrow
electron-lucent cleft, i. e., as a double membrane (arrow). The AVd can
be identified by its contents, partially degraded, electron-dense rough
endoplasmic reticulum. The vesicle next to the AVd is an endosomal/
lysosomal structure containing 5-nm gold particles that were added
to the culture medium to trace the endocytic pathway. (B) One AVi,
containing rough endoplasmic reticulum and a mitochondrion,
and one AVd, containing partially degraded rough endoplasmic
reticulum, are shown. Note that the limiting membrane of the AVi is
not clearly visible, possibly because it is tangentially sectioned.
However, the electron-lucent cleft between the two limiting membranes
is visible and helps in the identification of the AVi. The AVd contains
a region filled by small internal vesicles (asterisk), indicating that the AVd
has fused with a multivesicular endosome. mi, mitochondrion. Image
provided by E.-L. Eskelinen.
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from the viable rim, this needs to be specified when reported.
Ex vivo tissue should be fixed immediately and systematically
across samples to avoid changes in autophagy that may occur
simply due to elapsed time ex vivo. It is recommended that for
tissue samples, perfusion fixation should be used when possible.
For yeast, rapid freezing techniques such as high pressure freez-
ing followed by freeze substitution (i.e., dehydration at low
temperature) may be particularly useful.

Due to the high potential for sampling artifacts, careful
selection of appropriate nonbiased methods of quantification
and morphometric/stereological analyses is essential.67-69 Data
obtained simply by scoring for the presence or absence of auto-
phagic vacuoles (autophagosomes, autolysosomes) in the section
of a cell leads to unreliable results due to variability in cell areas,
and autophagic vacuole profiles in the sections. It is more reliable
to quantify autophagosome (and/or autolysosome) profiles per
total cytoplasmic or cellular area in sections, which still includes
an unaccounted variability in the profile size of the autophagic
element. The best approach is to estimate the volume occupied
by autophagic structures (as percent of cytoplasmic or cellular
volume, using volumetric morphometry/stereology) in at least 20
cell profiles per sample (the number needed should be dictated
by some form of power analysis, which indicates that the data are
significant).20,65,68,70,71 During quantification it is important to
make sure that each imaged cell profile is captured and scored at
the same magnification, and that every cell profile in the thin
section has an equal probability to be included in the counting.

The accurate identification of the autophagosome is a pre-
requisite for a valid analysis. An additional complication, how-
ever, is that maturation of metazoan autophagosomes involves
a transition from a double-membrane compartment to single-
membrane structures (i.e., amphisomes and autolysosomes).72 In
addition, not all double-membrane structures are autophago-
somes. Thus, double membranes cannot be relied upon as the
sole means for the ultrastructural identification of autophagy-
related structures, and it is important to employ expert analysis
to avoid misinterpretation of micrographs.46,65,66 In some cases,

it may be prudent to employ tomographic reconstructions of the
TEM images to confirm that the autophagic compartments are
spherical and are not being confused with endomembrane
cisternae or damaged mitochondria with similar appearance in
thin-sections (e.g., see ref. 73), but this is obviously a time-
consuming approach requiring sophisticated equipment. In
addition, interpretation of tomographic images can be problem-
atic. For example, starvation-induced autophagosomes should
contain cytoplasm (i.e., cytosol and possibly organelles), but
autophagosome-related structures involved in specific types of
autophagy should show the selective cytoplasmic target, but
may be relatively devoid of cytoplasm. Such processes include
selective peroxisome or mitochondria degradation (pexophagy or
mitophagy, respectively),74,75 targeted degradation of pathogenic
microbes (xenophagy),76-81 as well as the yeast biosynthetic
cytoplasm-to-vacuole targeting (Cvt) pathway.82 Furthermore,
some pathogenic microbes express membrane-disrupting factors
during infection (e.g., phospholipases) that disrupt the normal
double-membrane architecture of autophagosomes.83 It is not
even clear if the sequestering compartments used for specific
organelle degradation or xenophagy should be termed autophago-
somes or if alternate terms such as pexophagosome,84 mitophago-
some and xenophagosome should be used, even though the
membrane and mechanisms involved in their formation may
be identical to those for starvation-induced autophagosomes; for
example, the double-membrane vesicle of the Cvt pathway is
referred to as a Cvt vesicle.

It can also be difficult to determine whether material present
within a phagosomal structure reflects self-eating, or is from a
heterophagic (consumption of components from outside the cell)
process. A prominent example is related to apoptosis. Apoptotic
bodies from neighboring cells are readily phagocytosed by surviv-
ing cells of the same tissue.85,86 Immediately after phagocytic
uptake of apoptotic bodies, phagosomes have double limiting
membranes. The inner one is from the plasma membrane of the
apoptotic body and the outer one is that of the phagocytizing
cell. The early heterophagic vacuole formed in this way may

Figure 3. Different autophagic vesicles observed after freeze fracturing in cultured osteosarcoma cells after treatment with the autophagy inducer
voacamine.59 (A) Early autophagosome delimited by a double membrane. (B) Inner monolayer of an autophagosome membrane lacking protein particles.
(C) Autolysosome delimited by a single membrane rich in protein particles. In the cross-fractured portion (on the right) the profile of the single
membrane and the inner digested material are easily visible. Images provided by S. Meschini, M. Condello and A. Giuseppe.
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appear similar to an autophagosome or, in a later stage, an early
autolysosome in that it contains recognizable cytoplasmic
material. A major difference, however, is that the surrounding
membranes are the thicker (plasma membrane type), rather than
the thinner sequestration membrane type (9–10 nm, vs. 7–8 nm,
respectively).66 A good feature to distinguish between autophago-
somes and double plasma membrane-bound structures is the
lack of the distended empty space (characteristic for the sequestr-
ation membranes of autophagosomes) between the two mem-
branes of the phagocytic vacuoles. In addition, engulfed apoptotic
bodies usually have a larger average size than autophagosomes.87

The problem of heterophagic elements interfering with the
identification of autophagic ones is most prominent in cell types
with particularly intense heterophagic activity (such as macro-
phages, and amoeboid or ciliate protists). Special attention has
to be paid to this problem in cell cultures or in vivo treatments
(e.g., with toxic or chemotherapeutic agents) causing extensive
apoptosis.

To decide about the lytic nature of a vacuolar compartment,
demonstration of the presence of lysosomal enzymes by traditional
(enzyme) cytochemistry or immunocytochemistry is also feasible
for identifying post-fusion autophagic compartments. However,
when heterophagy and autophagy are going on in parallel, the
fusion of secondary lysosomes from both sources happens without
distinction. The result will be a mixture of degradative products
that may be derived both from heterophagy and autophagy,
making it impossible to determine the proportion derived from
a single process.

There are numerous structures in cells that resemble, or can be
confused with, autophagic vesicles. The most common organelles
are mitochondria, and ER, and also (depending on their struc-
ture) plastids in plants. Due to the cisternal structure of the ER,
double membrane-like structures surrounding mitochondria or
other organelles are often observed after sectioning,88 but these
can also correspond to cisternae of the ER coming into and out of
the section plane.45 If there are ribosomes associated with these
membranes they can help distinguish them from the ribosome-
free double-membrane of the phagophore and autophagosome.
Observation of a mixture of early and late autophagosomes that
is modulated by time point of collection and/or brief pulses of
bafilomycin A1 (a V-ATPase inhibitor) to trap the cargo in a
recognizable early state41 increases the confidence that an
autophagic process is being observed. Criteria for distinguishing
specialized structures such as melanosomes containing electron
dense pigment from autophagosomes should be specified prior
to scoring and included in a methods section when reporting
the results. Considering that swollen mitochondria can encom-
pass most of the internal structure of small autophagosomes, the
possibility exists for scoring errors in every study. To minimize
the impact of such errors, exact specification of autophagic
elements must be applied. Efforts should be made to clarify the
nature of questionable structures by extensive preliminary com-
parison in many test areas. Elements that still remain question-
able should be categorized into special groups and measured
separately. Should their later identification become possible, they
can be added to the proper category or, if not, kept separate.

Uncertainties of identification and special features of the
autophagic process may be clarified by immuno-TEM with gold-
labeling,89,90 using antibodies, for example, to cargo proteins of
cytoplasmic origin and to LC3 to verify the autophagic nature
of the compartment. Although labeling of LC3 can be difficult,
good antibodies exist to visualize the GFP moiety of GFP-LC3
reporter constructs.91 Antibodies against an abundant cytosolic
protein will result in high background labeling; however, organelle
markers work well. Because there are very few characterized
proteins that remain associated with the completed structure, the
choices for confirmation of its autophagic nature are limited.
Furthermore, autophagosome-associated proteins may be cell
type-specific. At any rate, the success of this methodology
depends on the quality of the antibodies and also on the TEM
preparation and fixation procedures utilized. With immuno-
TEM, authors should provide controls showing that labeling
is specific. This may require a quantification of staining over
different cellular compartments.

In addition, statistical information should be provided due to
the necessity of showing only a selective number of sections.
Again, we note that for quantitative data it is preferable to use
proper volumetric analysis rather than just counting numbers
of sectioned objects. On the one hand, it must be kept in mind
that even volumetric morphometry/stereology only shows either
steady-state levels, or a snapshot in a changing dynamic process.
Such data by themselves are not informative regarding auto-
phagic flux, unless performed over multiple time points. Alter-
natively, investigation in the presence and absence of flux
inhibitors can reveal the dynamic changes in various stages of
the autophagic process.14,20,92,93 For example, if the turnover of
autolysosomes is very rapid, a low number/volume will not
necessarily be an accurate reflection of low autophagic activity.
On the other hand, quantitative analyses indicate that auto-
phagosome volume in many cases does correlate with the rates of
protein degradation.94-96 One potential compromise is to perform
whole cell quantification of autophagosomes using fluorescence
methods, with qualitative verification by TEM,97 to show that
the changes in fluorescent puncta reflect increases in autophagic
structures.

One additional caveat with TEM, and to some extent with
confocal fluorescence microscopy, is that the analysis of a single
plane within a cell can be misleading and may make the
identification of autophagic structures difficult. Confocal micro-
scopy and fluorescence microscopy with deconvolution software
(or with much more work, 3-dimensional TEM) can be used
to generate multiple/serial sections of the same cell to reduce
this concern; however, in some cases where there is sufficient
structural resolution, analysis of a single plane with multiple cells
can suffice given practical limitations. Newer EM technologies,
including focused ion beam dual-beam EM, should make it
much easier to apply three-dimensional analyses. An additional
methodology to assess autophagosome accumulation is correla-
tive light and electron microscopy, CLEM, which is helpful in
confirming that fluorescent structures are autophagosomes.98,99

Along these lines, the new mini Singlet Oxygen Generator
(miniSOG) fluorescent flavoprotein, which is less than half the
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proteins for CLEM analysis under conditions that are parti-
cularly suited to subsequent TEM analysis.100 Combinatorial
assays using tandem mRFP-GFP-LC3 (see Tandem mRFP/
mCherry-GFP fluorescence microscopy) along with static TEM
images should help in the analysis of flux and the visualization
of cargo structures.101 Another technique that has proven quite
useful for analyzing the complex membrane structures that
participate in autophagy is three-dimensional electron tomo-
graphy,102,103 and cryoelectron microscopy (Fig. 4). Finally,
although an indirect measurement, a comparison of the ratio of
autophagosomes to autolysosomes by TEM can support altera-
tions in autophagy identified by other procedures.105 In this case
it is important to always compare samples to the control of the
same cell type and in the same growth phase, as the ratio of
autophagosome/autolysosome varies in a cell context-dependent
fashion, depending on their clearance activity. It may also be
necessary to distinguish autolysosomes from telolysosomes/late
secondary lysosomes (the former are actively engaged in degrada-
tion, whereas the latter have reached an end point in the break-
down of lumenal contents and are also referred to as residual
bodies; see Tissue fractionation) because lysosome numbers
generally increase when autophagy is induced.

With regard to immunohistochemistry using SOD1 as a
marker to follow autophagy, it should be noted that a portion of
the CuZn superoxide dismutase is also associated with various
organelles, including the ER, mitochondria and peroxisomes. In
addition, the wild-type SOD1 protein can be oxidized, and this
form (SODox) is associated with sporadic cases of amyotrophic

lateral sclerosis.106 Thus, the oxidized form of SOD1 might
interfere with autophagy, and, if so, it may not be a good choice
for a marker to monitor steady-state autophagic flux.

Conclusion: EM can be an extremely informative method for
monitoring autophagy; however, it must be performed with
extreme caution and rigor to avoid bias, and to ensure correct
identification and quantification of autophagic compartments.
With TEM, immunogold labeling is strongly recommended as
it generally provides the most unequivocal results. Whenever
possible, EM should not be the sole method used to monitor
autophagy, but rather should be complemented by additional
assays as described in this article.

2. Atg8/LC3 detection and quantification. Atg8/LC3 is the
most widely monitored autophagy-related protein. In this section
we describe multiple assays that utilize this protein, separating the
descriptions into several subsections for ease of discussion.

a. Western blotting and ubiquitin-like protein conjugation systems.
The Atg8/LC3 protein is a ubiquitin-like protein that can be
conjugated to PE (and possibly to phosphatidylserine107). In yeast
and several other organisms, the conjugated form is referred to
as Atg8–PE. The mammalian homologs of Atg8 constitute
a family of proteins subdivided in two subfamilies: LC3
(microtubule-associated protein 1 light chain 3) and GABARAP
(GABAA receptor-associated protein). The former is comprised
of LC3A, B, B2 and C, whereas the latter family includes
GABARAP, GABARAPL1/Atg8L/GEC1 (GABAA receptor-
associated protein like 1/Glandular Epithelial Cell 1),
GABARAPL2/GATE-16/GEF2 (GABAA receptor-associated pro-
tein like 2/Golgi-associated ATPase enhancer of 16 kDa/ganglioside

Figure 4. Cryoelectron microscopy can be used as a three-dimensional approach to monitor the autophagic process. Two computed sections
of an electron tomogram of the autophagic vesicle-rich cytoplasm in a hemophagocyte of a semi-thin section after high-pressure freezing preparation.
The dashed area is membrane-free (A) but tomography reveals newly formed phagophore-like membranes (B). Image published previously104 and
provided by M. Schneider and P. Walter.
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expression factor 2) and GABARAPL3 (GABAA receptor-
associated protein like 3).108 The nonlipidated and lipidated
forms are usually referred to as LC3-I and LC3-II, or
GABARAP and GABARAP–PE, etc. The positions of both
Atg8/LC3-I (approximately 18 kDa) and Atg8–PE/LC3-II
(approximately 16 kDa) should be indicated on western blots
whenever both are detectable.

The mammalian Atg8 homologs share from 29% to 94%
sequence identity and have all, apart from GABARAPL3, been
demonstrated to be involved in autophagosome biogenesis.109

The LC3 proteins are involved in phagophore formation, with
participation of GABARAP subfamily members in later stages of
autophagosome formation, in particular phagophore elongation
and closure.110 Nevertheless, in most published studies, LC3 has
been the primary Atg8 homolog examined in mammalian cells
and the one that is typically characterized as an autophagosome
marker per se, making this factor the most relevant for this
discussion (note that although this protein is referred to as “Atg8”
in many other systems, for simplicity we primarily refer to it here
as LC3 to distinguish it from the yeast protein). LC3, like the
other Atg8 homologs, is initially synthesized in an unprocessed
form, proLC3, which is converted into a proteolytically processed
form lacking amino acids from the C terminus, LC3-I, and is
finally modified into the PE-conjugated form, LC3-II (Fig. 5).
Atg8–PE/LC3-II is the only protein marker that is reliably
associated with completed autophagosomes, but is also localized
to phagophores. In yeast, Atg8 amounts increase at least 10-fold
when autophagy is induced.113 In mammalian cells, however, the
total levels of LC3 do not necessarily change in a predictable
manner, as there may be increases in the conversion of LC3-I to
LC3-II, or a decrease in LC3-II relative to LC3-I if degradation
of LC3-II via lysosomal turnover is particularly rapid. Both of
these events can be seen sequentially in several cell types as
a response to total nutrient and serum starvation. In cells of
neuronal origin a high ratio of LC3-I to LC3-II is a common
finding.114 For instance, SH-SY5Y neuroblastoma cell lines
display only a slight increase of LC3-II after nutrient deprivation,
whereas LC3-I is clearly reduced. This is likely related to a high
basal autophagic flux, as suggested by the higher increase in
LC3-II when cells are treated with NH4Cl,115,116 although cell-
specific differences in transcriptional regulation of LC3 may also
play a role. The pattern of LC3-I to LC3-II conversion seems not
only to be cell specific, but also related to the kind of stress to
which cells are subjected. For example, the same SH-SY5Y cells
display a strong increase of LC3-II when treated with the
mitochondrial uncoupler CCCP, a well-known inducer of
mitophagy. Thus, neither assessment of LC3-I consumption nor
the evaluation of LC3-II levels would necessarily reveal a slight
induction of autophagy (e.g., by rapamycin). Also, there is not
always a clear precursor/product relationship between LC3-I and
LC3-II, because the conversion of the former to the latter is cell
type-specific and dependent on the treatment used to induce
autophagy. Accumulation of LC3-II can be obtained by inter-
rupting the autophagosome-lysosome fusion step (e.g., by depoly-
merizing acetylated microtubules with vinblastine, or by raising
the lysosomal pH with the lysosomal proton pump inhibitor

bafilomycin A1) or by inhibiting lysosome-mediated proteolysis
(e.g., with the cysteine protease inhibitor E-64d, the aspartic
protease inhibitor pepstatin A, or chloroquine117). Western
blotting can be used to monitor changes in LC3 amounts
(Fig. 5);25,118 however, even if the total amount of LC3 does
increase, the magnitude of the response is generally less than that
documented in yeast. It is worth noting that since the con-
jugated forms of the GABARAP subfamily members are usually
undetectable without induction of autophagy in mammalian
cells,119 these proteins might be more suitable than LC3 to study
and quantify subtle changes in the autophagic flux.

In most organisms, Atg8/LC3 is initially synthesized with a
C-terminal extension that is removed by the Atg4 protease.
Accordingly, it is possible to use this processing event to monitor
Atg4 activity. For example, when GFP is fused at the C terminus
of Atg8 (Atg8-GFP), the GFP moiety is removed in the cytosol
to generate free Atg8 and GFP. This processing can be easily
monitored by western blot.120 It is also possible to use assays
with an artificial fluorogenic substrate, or a fusion of LC3B to
phospholipase A(2) that allows the release of the active phospho-
lipase for a subsequent fluorogenic assay,121 and there is a FRET-
based assay utilizing CFP and YFP tagged versions of LC3B and
GABARAPL2 that can be used for high-throughput screening.122

Another method to monitor ATG4 activity in vivo uses the release
of Gaussia luciferase from the C terminus of LC3 that is tethered
to actin.123 Note that there are four Atg4 homologs in mammals,
and they have different activities with regard to the Atg8
subfamilies of proteins.124 ATG4A is able to cleave the GABARAP
subfamily, but has very limited activity toward the LC3 subfamily,
whereas ATG4B is apparently active against most or all of these
proteins. The ATG4C and ATG4D isoforms have minimal
activity for any of the Atg8 homologs. In particular because a C-
terminal fusion will be cleaved immediately by Atg4, researchers
should be careful to correctly specify whether they are using GFP-
Atg8/LC3 (an N-terminal fusion, which can be used to monitor
various steps of autophagy) or Atg8/LC3-GFP (a C-terminal
fusion, which can only be used to monitor Atg4 activity).125

Cautionary notes: There are several important caveats to
using Atg8/LC3-II or GABARAP-PE to visualize fluctuations in
autophagy. First, changes in LC3-II amounts are tissue- and cell
context-dependent.112,126 Indeed, in some cases, autophagosome
accumulation detected by TEM does not correlate well with the
amount of LC3-II (Tallóczy Z, de Vries RLA, Sulzer D,
unpublished results; Eskelinen E-L, unpublished results). This is
particularly evident in those cells that show low levels of LC3-II
(based on western blotting) because of an intense autophagy flux
that consumes this protein,127 or in cell lines having high levels of
LC3-II that are tumor-derived, such as MDA-MB-231.112

Conversely, the detectable formation of LC3-II is not sufficient
evidence for autophagy, without careful quantification. For
example, homozygous deletion of Becn1 does not prevent the
formation of LC3-II in embryonic stem cells even though
autophagy is substantially reduced, whereas deletion of Atg5
results in the complete absence of LC3-II (see Fig. 5A and
Supplemental Data in ref. 128). The same is true for the
generation of Atg8–PE in yeast in the absence of ATG6
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(see Fig. 7 in ref. 129). Thus, it is important to remember that not all of the autophagy-
related proteins are required for Atg8/LC3 processing, including lipida-
tion.129 Vagaries in the detection and amounts of LC3-I vs. LC3-II present technical
problems. For example, LC3-I is very abundant in brain tissue, and the intensity of the
LC3-I band may obscure detection of LC3-II, unless the polyacrylamide crosslinking
density is optimized. Conversely, certain cell lines have much less visible LC3-I
compared with LC3-II. In addition, tissues may have asynchronous and heterogeneous
cell populations, and this may present challenges when analyzing LC3 by western
blotting.

Figure 5. LC3-I conversion and LC3-II turnover.
(A) Expression levels of LC3-I and LC3-II during
starvation. Atg5+/+ (wild-type) and Atg52/2 MEFs
were cultured in DMEM without amino acids
and serum for the indicated times, and then
subjected to immunoblot analysis using
anti-LC3 antibody and anti-tubulin antibody.
E-64d (10 mg/ml) and pepstatin A (10 mg/ml)
were added to the medium where indicated.
Positions of LC3-I and LC3-II are indicated. The
inclusion of lysosomal protease inhibitors
reveals that the apparent decrease in LC3-II is
due to lysosomal degradation as easily seen by
comparing samples with and without inhibitors
at the same time points (the overall decrease
seen in the presence of inhibitors may reflect
decreasing effectiveness of the inhibitors over
time). Monitoring autophagy by following
steady-state amounts of LC3-II without
including inhibitors in the analysis can result in
an incorrect interpretation that autophagy is
not taking place (due to the apparent absence
of LC3-II). Conversely, if there are high levels of
LC3-II but there is no change in the presence of
inhibitors this may indicate that induction has
occurred but that the final steps of autophagy
are blocked, resulting in stabilization of this
protein. This figure was modified from data
previously published in reference 25 and is
reproduced by permission of Landes Bioscience,
copyright 2007. (B) Lysates of 4 human adipose
tissue biopsies were resolved on two 12%
polyacrylamide gels, as described previously.111

Proteins were transferred in parallel to either a
PVDF or a nitrocellulose membrane, and blotted
with anti-LC3 antibody, and then identified
by reacting the membranes with an HRP-
conjugated anti-rabbit IgG antibody, followed
by ECL. The LC3-II/LC3-I ratio was calculated
based on densitometry analysis of both bands.
*p , 0.05. (C) HEK 293 and HeLa cells were
cultured in nutrient-rich medium (DMEM
containing10% FCS) or incubated for 4 h in
starvation conditions (Krebs-Ringer medium) in
the absence (-) or presence (+) of E-64d and
pepstatin at 10 mg/ml each (Inhibitors). Cells
were then lysed and the proteins resolved by
SDS-PAGE. Endogenous LC3 was detected by
immunoblotting. Positions of LC3-I and LC3-II
are indicated. In the absence of lysosomal
protease inhibitors, starvation results in a
modest increase (HEK 293 cells) or even a
decrease (HeLa cells) in the amount of LC3-II.
The use of inhibitors reveals that this apparent
decrease is due to lysosome-dependent
degradation. This figure was modified from data
previously published in reference 112 and is
reproduced by permission of Landes Bioscience,
copyright 2005. (D) Sequence and schematic
representation of the different forms of LC3B.
The sequence for the nascent (proLC3) from
mouse is shown. The glycine at position 120
indicates the cleavage site for ATG4. After this
cleavage, the truncated LC3 is referred to as
LC3-I, which is still a soluble form of the protein.
Conjugation to PE generates the membrane-
associated LC3-II (equivalent to Atg8–PE).
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Second, LC3-II also associates with the membranes of non-
autophagic structures. For example, some members of the
c-protocadherin family undergo clustering to form intracellular
tubules that emanate from lysosomes.130 LC3-II is recruited to
these tubules, and appears to promote or stabilize membrane
expansion. Furthermore, LC3 can be recruited directly to
bacteria-containing phagosome membranes under certain
immune activating conditions, for example, TLR-mediated
stimulation, in a process designated LC3-associated phagocytosis
(LAP)131,132 and also to apoptotic cell-containing phagosome
membranes,133,134 macropinosomes,133 and to single-membrane
entotic vacuoles.133 TEM analysis of murine macrophage-like
RAW 264.7 cells infected with Burkholderia pseudomallei reveals
that intracellular bacteria colocalize with GFP-LC3 puncta.
However, the TEM analysis further shows that bacteria are
either free in the cytosol, or sequestered in single-membrane
phagosomes rather than within canonical double-membrane
autophagosomes.135 Therefore, in studies of infection of mam-
malian cells by bacterial pathogens the identity of the LC3-II-
labeled compartment as an autophagosome should be confirmed
by a second method, such as TEM. It is also worth noting that
autophagy induced in response to bacterial infection is not
directed solely against the bacteria but can also be a response
to remnants of the phagocytic membrane.136 Similar cautions
apply with regard to viral infection, as coronaviruses induce
the formation of double-membrane vesicles that are coated with
LC3-I, and this nonlipidated form of LC3 plays an autophagy-
independent role in viral replication.137 Along these lines, with
herpes simplex virus infection, an LC3+ autophagosome-like
organelle derived from nuclear membranes is observed that
contains viral proteins.138

Third, caution must be exercised in general when evaluating
LC3 by western blotting, and appropriate standardization con-
trols are necessary. For example, LC3-I may be less sensitive
to detection by certain anti-LC3 antibodies. Moreover, LC3-I
is more labile than LC3-II, being more sensitive to freezing-
thawing and to degradation in SDS sample buffer, so fresh
samples should be heated and assessed as soon as possible and
should not be subjected to repeated freeze-thaw cycles. A general
point to consider when examining transfected cells concerns
the efficiency of transfection. A western blot will detect LC3
in the entire cell population, including those that are not
transfected. Thus, if transfection efficiency is too low, it may
be necessary to use methods, such as fluorescence microscopy,
that allow autophagy to be monitored in single cells. The critical
point is that the analysis of the gel shift of transfected LC3 or
GFP-LC3 can be employed to follow LC3 lipidation only in
readily transfected cells.139

When dealing with animal tissues, western blotting of LC3
should be performed on frozen biopsy samples homogenized in
the presence of general protease inhibitors (Isidoro C, personal
communication; see also Human).140 Caveats regarding detection
of LC3 by western blotting have been covered in a review.25

For example, PVDF membranes may result in a stronger LC3-II
retention than nitrocellulose membranes, possibly due to a higher
affinity for hydrophobic proteins (Fig. 5B; Kovsan J, Rudich A,

personal communication), and Triton X-100 may not efficiently
solubilize LC3-II in some systems.141 Heating in the presence of
1% SDS, or analysis of membrane fractions,142 may assist in the
detection of this protein.

Another important issue concerns the quantification of changes
in LC3-II. The previous version of these guidelines specifically
stated that the levels of LC3-II should be compared with actin
(and here we would modify this to include other appropriate
“housekeeping” proteins) and not to that of LC3-I. As a general
rule, this still holds true, but there are some exceptions. For
example, in some cases actin levels decrease when autophagy is
induced, so that it may be more appropriate to determine the
ratio of LC3-II to LC3-I. Either method has its potential
advantages and disadvantages. For example, if the amount of
LC3-I is high relative to LC3-II (as in brain tissues, where the
LC3-I signal can be overwhelming), it can be difficult to quantify
the change in LC3-II relative to LC3-I. Conversely, by ignoring
the level of LC3-I in favor of LC3-II the researcher may miss part
of the overall picture of the cellular autophagic response.

Fourth, LC3 is expressed as four isoforms in mammalian cells,
LC3A, LC3B, LC3B2 and LC3C,143,144 which exhibit different
tissue distributions, and it may be necessary to use different
antisera or antibodies that distinguish among these isoforms. A
point of caution along these lines is that the increase in LC3A-
II vs. LC3B-II levels may not display equivalent changes in all
organisms under autophagy-inducing conditions, and it should
not be assumed that LC3B is the optimal protein to monitor.145

This supports the important notion that the LC3 isoforms dis-
play different functions, but these are yet to be fully elucidated.
The commercialized anti-LC3B antibodies also recognize LC3A,
but do not recognize LC3C, which shares less sequence homo-
logy. It is important to note that LC3C possesses in its primary
amino acid sequence the DYKD motif that is recognized with a
high affinity by anti-FLAG antibodies. Thus, the standard anti-
FLAG M2 antibody can detect and immunoprecipitate over-
expressed LC3C, and caution has to be taken in experiments
using FLAG-tagged proteins (Biard-Piechaczyk M, Espert L,
personal communication).

In addition, it is important to keep in mind the presence of
the other subfamily of Atg8 proteins, the GABARAP subfamily
(see above).109,146 Certain types of mitophagy induced by
BNIP3L/NIX are highly dependent on GABARAP and less
dependent on LC3 proteins.147 Furthermore, commercial anti-
bodies for GABARAPL1 also recognize GABARAP,108 which
might lead to misinterpretation of experiments, in particular
those using immunohistochemical techniques. The problem with
cross-reactivity of the anti-GABARAPL1 antibody can be over-
come when analyzing these proteins by western blot because
they can be resolved during SDS-PAGE using high concentration
(15%) gels, with GABARAP migrating faster than GABARAPL1
(Boyer-Guittaut M, personal communication). We therefore
advise caution in choosing antibodies for western blotting and
immunofluorescence experiments and in interpreting results
based on stated affinities of antibodies unless these have been
clearly determined. As with any western blot, proper methods of
quantification must be used, which are, unfortunately, often not
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well disseminated, and the readers are referred to an excellent
paper on this subject (see ref. 148). Unlike the other members of
the GABARAP family, almost no information is available on
GABARAPL3, perhaps because it is not yet possible to differ-
entiate between GABARAPL1 and GABARAPL3 proteins, which
have 94% identity. As stated by the laboratory that described the
cloning of the human GABARAPL1 and GABARAPL3 genes,146

their expression patterns are apparently identical. It is worth
noting that GABARAPL3 is the only gene of the GABARAP
subfamily that seems to lack an ortholog in mice.146 GABARAPL3
might therefore be considered as a pseudogene without an intron
that is derived from GABARAPL1. Hence, until new data are
published, GABARAPL3 should not be considered as the fourth
member of the GABARAP family.

Fifth, in non-mammalian species, the discrimination of Atg8–
PE from the nonlipidated form can be complicated by their
nearly identical SDS-PAGE mobilities and the presence of
multiple isoforms (e.g., there are 9 in Arabidopsis). In yeast, it
is possible to resolve Atg8 (the nonlipidated form) from Atg8–
PE by including 6 M urea in the SDS-PAGE separating gel,149

or by using a 15% resolving gel without urea (Reggiori F,
personal communication). Similarly, urea combined with prior
treatment of the samples with (or without) phospholipase D (that
will remove the PE moiety) can often resolve the ATG8 species
in plants.150,151 It is also possible to label cells with radioactive
ethanolamine, followed by autoradiography to identify Atg8–PE,
and a C-terminal peptide can be analyzed by mass spectrometry
to identify the lipid modification at the terminal glycine residue.
Furthermore, Atg8–PE aberrantly migrates faster than unconju-
gated Atg8 during SDS-PAGE, even though the former has a
larger molecular mass. Special treatments are not needed for the
separation of mammalian LC3-I from LC3-II.

Finally, we would like to point out that one general issue with
regard to any assay is that it could introduce some type of
stress—for example, mechanical stress due to lysis, temperature
stress due to heating or cooling a sample, or oxidative stress on a
microscope slide, which could lead to potential artifacts
including the induction of autophagy.152 This point is not
intended to limit the use of any specific methodology, but rather
to note that there are no perfect assays; special care should be
taken with cells in suspension, however, as the stress resulting
from centrifugation can induce autophagy. Therefore, it is
important to verify that the positive (e.g., treatment with
rapamycin, torin1 or other inducers) and negative (e.g., inhibitor
treatment) controls behave as expected in any assays being
utilized. Similarly, plasmid transfection or nucleofection can
result in the potent induction of autophagy (based on increases
in LC3-II or SQSTM1 degradation). In some cell types, the
amount of autophagy induced by transfection of a control empty
vector may be so high that it is virtually impossible to examine
the effect of enforced gene expression on autophagy (Levine B,
personal communication). This effect is generally not observed
with siRNA transfection; however, it is an issue for plasmid
shRNA transfection and for plasmid expression constructs. The
use of endotoxin-free DNA reduces, but does not eliminate, this
problem. Finally, the precise composition of media components

can have profound effects on basal autophagy levels and may
need to be modified empirically depending on the cell lines
being used.

Conclusion: Atg8/LC3 is often an excellent marker for auto-
phagy; however, it must be kept in mind that there are multiple
LC3 isoforms, there is a second family of mammalian Atg8-like
proteins (GABARAPs), and antibody affinity (for LC3-I vs. LC3-
II) and specificity (for example, for LC3A vs. LC3B) must be
considered and/or determined.

b. Turnover of LC3-II/Atg8–PE. Autophagic flux can be
measured by inferring LC3-II/Atg8–PE turnover by western
blot (Fig. 5C)112 in the presence and absence of lysosomal, or
vacuolar, degradation. The relevant parameter in this assay is the
difference in the amount of LC3-II in the presence and absence
of saturating levels of inhibitors, which can be used to examine
the transit of LC3-II through the autophagic pathway; if flux is
occurring, the amount of LC3-II will be higher in the presence
of the inhibitor.112 Lysosomal degradation can be prevented
through the use of protease inhibitors (e.g., pepstatin A and
E-64d), compounds such as bafilomycin A1, chloroquine or
NH4Cl that neutralize the lysosomal pH,18,114,153,154 or by treat-
ment with agents that block fusion of autophagosomes with
lysosomes (note that bafilomycin A1 will ultimately cause a fusion
block as well as neutralize the pH155).156 Alternatively, knocking
down or knocking out lysosomal-associated membrane protein 2
(LAMP2) represents a genetic approach to block the fusion
of autophagosomes and lysosomes [for example, inhibiting
LAMP2 in myeloid leukemic cells results in a marked increase
of GFP-LC3 dot formation and endogenous LC3-II protein
compared with control cells upon autophagy induction during
myeloid differentiation (Tschan MP, unpublished data)].157 This
approach, however, may be complicated by the compensatory
upregulation of macroautophagy that occurs when chaperone-
mediated autophagy is blocked,158 unless the LAMP2B isoform is
specifically knocked down.159

Generally, an increase in the levels of LC3-II observed with a
particular treatment condition in the presence of bafilomycin
A1, compared with the treatment alone, is indicative of some
degree of flux through the system (i.e., compound/drug treat-
ment plus bafilomycin A1 should result in a higher amount of
LC3-II than compound/drug treatment alone); however, a treat-
ment condition increasing LC3-II on its own that has no
difference in LC3-II in the presence of bafilomycin A1 com-
pared with treatment alone may suggest a block in autophagy
at the terminal stages.6 This procedure has been validated with
several autophagy modulators.160 With each of these techniques,
it is essential to avoid assay saturation. The duration of the
bafilomycin A1 treatment needs to be relatively short (1–2 h) to
allow comparisons of the amount of LC3 that is lysosomally
degraded over a given time frame under one treatment condition
to another treatment condition. Positive control experiments
using treatment with known autophagy inducers, along with
bafilomycin A1 vs. vehicle, are important to demonstrate the
utility of this approach in each experimental context. The same
type of assay monitoring the turnover of Atg8–PE can be used
to monitor flux in yeast, by comparing the amount of Atg8
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present in a wild-type vs. a pep4D strain following autophagy
induction.161

An additional methodology for monitoring autophagy relies
on the observation that a subpopulation of LC3-II exists in a
cytosolic form (LC3-IIs) in some cell types.162 The amount of
cytosolic LC3-IIs and the ratio between LC3-I and LC3-IIs
appears to correlate with changes in autophagy and may provide
a more accurate measure of autophagic flux than ratios based
on the total level of LC3-II.162 The validity of this method has
been demonstrated by comparing autophagic proteolytic flux
in rat hepatocytes and hepatoma cells. One advantage of this
approach is that it does not require the presence of autophagic
or lysosomal inhibitors to block the degradation of LC3-II.

Finally, autophagic flux can be monitored based on the
turnover of LC3-II, by utilizing a luminescence-based assay. For
example, a reporter assay based on the degradation of Renilla
reniformis luciferase (Rluc)-LC3 fusion proteins is well suited for
screening compounds affecting autophagic flux.163 In this assay,
Rluc is fused N-terminally to either wild-type LC3 (LC3wt) or a
lipidation-deficient mutant of LC3 (G120A). Since Rluc-LC3wt,
in contrast to Rluc-LC3-G120A, specifically associates with the
autophagosomal membranes, Rluc-LC3wt is more sensitive to
autophagic degradation. A change in autophagy-dependent LC3-
turnover can thus be estimated by monitoring the change in
the ratio of luciferase activities between the two cell popula-
tions expressing either Rluc-LC3wt or Rluc-LC3-G120A. In its
simplest form, the Rluc-LC3-assay can be used to estimate
autophagic flux at a single time point by defining the luciferase
activities in cell extracts. Moreover, the use of a live cell luciferase
substrate makes it possible to monitor changes in autophagic
activity in living cells in real time. This method has been
successfully used to identify positive and negative regulators of
autophagy from cells treated with microRNA, siRNA and small
molecule libraries.163-166

Cautionary notes: The main caveat regarding the measurement
of LC3-IIs/LC3-I is that this method has only been tested in
isolated rat hepatocytes and H4-II-E cells. Thus, it is not yet
known whether it is generally applicable to other cell types,
and a soluble form of LC3-II (i.e., LC3-IIs) is not observed in
many standard cell types including HeLa, HEK 293 and PC12.
In addition, the same concerns apply regarding detection of
LC3-I by western blotting. It should be noted that the LC3-IIs/
LC3-I ratio must be analyzed using the cytosolic fractions
rather than the total homogenates. Furthermore, the same caveats
mentioned above regarding the use of LC3 for qualitatively
monitoring autophagy also apply to the use of this marker for
evaluating flux.

The use of a radioactive pulse-chase analysis provides an
alternative to lysosomal protease inhibitors,113 although such
inhibitors should still be used to verify that degradation is
lysosome-dependent. In addition, drugs must be used at con-
centrations and for time spans that are effective in inhibiting
fusion or degradation, but that do not provoke cell death. Thus,
these techniques may not be practical in all cell types or in tissues
from whole organisms where the use of protease inhibitors is
problematic, and where pulse labeling requires artificial short-term

culture conditions that may induce autophagy. Another concern
when monitoring flux via LC3-II turnover may be seen in the case
of a partial autophagy block; in this situation, agents that disrupt
autophagy (e.g., bafilomycin A1) will still result in an increase in
LC3-II, which may be interpreted as the complete absence of a
block resulting from the mutant or compound being tested. Thus,
care is needed in interpretation. Furthermore, for characterizing
new autophagy modulators, it is ideal to test autophagic flux at
early (e.g., 4 h) and late (e.g., 24 h) time-points, since in certain
instances, such as with calcium phosphate precipitates, a
compound may increase or decrease flux at these two time-
points, respectively.167 Finally, many of the chemicals used to
inhibit autophagy, such as bafilomycin A1, NH4Cl (see Autophagy
inhibitors and inducers below) or chloroquine, also directly inhibit
the endocytosis/uncoating of viruses (Smith DR, personal
communication), and other endocytic events requir-
ing low pH, as well as exit from the Golgi (Tooze S, personal
communication) and as such should be used only with extreme
caution in studies investigating autophagy-virus interactions.

One additional consideration is that it may not be absolutely
necessary to follow LC3-II turnover if other substrates are being
monitored simultaneously. For example, an increase in LC3-II
levels in combination with the lysosomal (or ideally autophagy-
specific) removal of an autophagic substrate (such as an
organelle168,169) that is not a good proteasomal substrate provides
an independent assessment of autophagic flux. However, due to
the fact that LC3 might be coupled to endosomal membranes and
not just autophagosomes, and the levels of well-characterized
autophagosome substrates such as SQSTM1 can also be affected
by proteasome inhibitors,170 it is probably prudent to monitor
both turnover of LC3-II and an autophagosome substrate in
parallel.

Another issue relates to the use of protease inhibitors (see
Autophagy inhibitors and inducers below). When using lysosomal
protease inhibitors, it is of fundamental importance to assess
proper conditions of inhibitor concentration and time of
pre-incubation to ensure full inhibition of lysosomal cathepsins.
In this respect, 1 h of pre-incubation with 10 mg/ml E-64d
is sufficient in most cases, since this inhibitor is membrane
permeable and rapidly accumulates within lysosomes. On the
other hand, pepstatin A is membrane impermeable (ethanol or
preferably DMSO must be employed as a vehicle) and requires
a prolonged incubation (. 8 h) and a relatively high con-
centration (. 50 mg/ml) to fully inhibit lysosomal cathepsin D
(Fig. 6). An incubation of this duration, however, can be pro-
blematic due to indirect effects (see GFP-Atg8/LC3 lysosomal
delivery and proteolysis). Also, note that the relative amount of
lysosomal cathepsins B and D is cell-specific and changes with
culture conditions. In contrast to the protease inhibitors,
chloroquine (10 mM) or bafilomycin A1 (1–100 nM) can be
added to cells immediately prior to autophagy induction.

Conclusion: It is important to be aware of the difference
between monitoring the steady-state level of Atg8/LC3 and
autophagic flux; the latter can be determined by following Atg8/
LC3 in the absence and presence of autophagy inhibitors, and/or
by examining the autophagy-dependent degradation of appropriate
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substrates. In particular, if there is any evidence of an increase in
LC3-II (or autophagosomes), it is essential to determine whether
this represents increased flux, or a block in fusion or degradation
through the use of inhibitors such as chloroquine or bafilomycin
A1.

c. GFP-Atg8/LC3 lysosomal delivery and proteolysis. GFP-LC3B
(hereafter referred to as GFP-LC3) has also been used to follow
flux. First, when GFP-Atg8 or GFP-LC3 is delivered to a
lysosome/vacuole the Atg8/LC3 part of the chimera is sensitive to
degradation, whereas the GFP protein is relatively resistant to
hydrolysis (note, however, that GFP fluorescence is quenched by
low pH; see GFP-Atg8/LC3 fluorescence microscopy and Tandem
mRFP/mCherry-GFP fluorescence microscopy). Therefore, the

appearance of free GFP on western blots can be used to
monitor lysis of the inner autophagosome membrane and
breakdown of the cargo in metazoans (Fig. 7A),161,171,173

or the delivery of autophagosomes to, and the breakdown
of autophagic bodies within, the yeast and plant
vacuole.151,161,174 Reports on Dictyostelium and mammalian
cells highlight the importance of lysosomal pH as a critical
factor in the detection of free GFP that results from the
degradation of fused proteins. In these cell types, free GFP
fragments are only detectable in the presence of nonsaturating
levels of lysosomotropic compounds (NH4Cl or chloroquine)
or under conditions that attenuate lysosomal acidity;
otherwise, the autophagic/degradative machinery appears to
be too efficient to allow the accumulation of the proteolytic
fragment (Fig. 7B and C).36,172 Hence, a reduction in the
intensity of the free GFP band may indicate reduced flux, but
it may also be due to efficient turnover. Using a range of
concentrations and treatment times of compounds that
inhibit autophagy can be useful in distinguishing between
these possibilities.175 Since the pH in the yeast vacuole is
higher than that in mammalian or Dictyostelium lysosomes,

the levels of free GFP fragments are detectable in yeast without
the necessity of using lysosomotropic compounds.29 Additionally,
in yeast the diffuse fluorescent haze from the released GFP moiety
within the vacuole lumen can be observed by fluorescence
microscopy.

The movement of GFP-LC3 to lysosomes also can be
monitored by fluorescence microscopy, although, as mentioned
above, the GFP fluorescent signal is more sensitive to acidic pH
than other fluorophores (see GFP-Atg8/LC3 fluorescence micro-
scopy). A time-course evaluation of the cell population showing
GFP-LC3 puncta can serve to monitor the autophagy flux, since
a constant increase in the number of cells accumulating GFP-
LC3 puncta is suggestive of defective fusion of autophagosomes

Figure 6. Effect of different inhibitors on LC3-II accumulation.
SH-SY5Y human neuroblastoma cells were plated and allowed
to adhere for a minimum of 24 h, then treated in fresh medium.
Treatments were as follows: rapamycin (Rap), (A) 1 mM, 4 h or
(B) 10 mM, 4 h; E-64d, final concentration 10 mg/ml from a 1 mg/ml
stock in ethanol (ETOH); NH4Cl (NH4

+), final concentration 10 mM
from a 1 M stock in water; pepstatin A (Pst), final concentration
10 mg/ml from a 1 mg/ml stock in ethanol, or 68.6 mg/ml from
a 6.86 mg/ml stock in DMSO; ethanol or DMSO, final concentration
1%. Pre-incubations in (B) were for 1 or 4 h as indicated. 10 mM
NH4Cl (or 30 mM chloroquine, not shown) were the most effective
compounds for demonstrating the accumulation of LC3-II. E-64d
was also effective in preventing the degradation of LC3-II, with or
without a preincubation, but ammomium chloride (or chloroquine)
may be more effective. Pepstatin A at 10 mg/ml with a 1 h
pre-incubation was not effective at blocking degradation, whereas
a 100 mM concentration with 4 h pre-incubation had a partial effect.
Thus, alkalinizing compounds are more effective in blocking LC3-II
degradation, and pepstatin A must be used at saturating conditions
to have any noticeable effect. Images provided by C. Isidoro. Note
that the band running just below LC3-I at approximately 17.5 kDa
may be a processing intermediate of LC3-I; it is detectable in freshly
prepared homogenates, but is less visible after the sample is
subjected to a freeze-thaw cycle.
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with lysosomes, and conversely a decline implies that GFP-LC3 is
consumed within newly formed autolysosomes. In either case, it
can be problematic to use GFP fluorescence to follow flux, as new
GFP-LC3 is continuously being synthesized. A potential solution
to this problem for following fluorescence is to use a
photoactivatable version of the fluorescent protein,176 which
allows this assay to be performed essentially as a pulse/chase
analysis. Another alternative is to follow flux using GFP-LC3

fluorescence by adding lysosomal protease or fusion
inhibitors to cells expressing GFP-LC3 and monitoring
changes in the number of puncta. In this case, the
presence of lysosomal inhibitors should increase the
number of GFP-LC3-positive structures, and the absence
of an effect on the total number of GFP-LC3 puncta or
on the percentage of cells displaying numerous puncta is
indicative of a defect(s) in autophagic flux.177 The
combination of protease inhibitors (to prevent the
degradation of GFP) or compounds that modify lyso-
somal pH such as NH4Cl or chloroquine, or compounds
such as bafilomycin A1 or others that block fusion of
autophagosomes with lysosomes (e.g., vinblastine) may
be most effective in preventing lysosome-dependent
decreases in GFP-LC3 puncta. However, because the
stability of GFP is affected by lysosomal pH, we advise the
use of protease inhibitors whether or not lysosomotropic
compounds or fusion inhibitors are included (although
lysosomotropic compounds should help stabilize GFP by
neutralizing the pH in the lysosome, they do not have an
immediate effect on lysosomal hydrolase activity).

Cautionary notes: The GFP-Atg8 processing assay is
used routinely to monitor autophagy in yeast. One caveat,
however, is that this assay is not always performed in a
quantitative manner (for example, western blot exposures
need to be in the linear range). Accordingly, an enzymatic
assay such as the Pho8D60 assay may be preferred (see
Autophagic protein degradation),178,179 especially when the
differences in autophagic activity need to be precisely
determined; however, appropriate caution must be used
as with any enzyme assay regarding, for example, substrate
concentrations and linearity (note that an equivalent
assay has not been developed for higher eukaryotic cells).

The main limitation of the GFP-LC3 processing assay
in mammalian cells is that it seems to depend on cell type
and culture conditions (Hosokawa N, Mizushima N,
unpublished data). Apparently, GFP is more sensitive to
mammalian lysosomal hydrolases than to the degradative
milieu of the yeast vacuole. Alternatively, the lower pH
of lysosomes relative to that of the vacuole may contribute
to differences in detecting free GFP. Under certain
conditions [such as Earle’s balanced salt solution (EBSS)-
induced starvation] in some cell lines, when the lysosomal
pH becomes particularly low, free GFP is undetectable
because both the LC3-II and free GFP fragments are
quickly degraded.172 Therefore, if this method is used it
should be accompanied by immunoblotting including
controls to address the stability of nonlysosomal GFP such

as GFP-LC3-I. It should also be noted that free GFP can be
detected when cells are treated with nonsaturating doses of
lysosomal inihibitors such as chloroquine, E-64d and bafilomycin
A1. The saturating concentrations of these lysosomal inhibitors
vary in different cell lines, and it would be better to use a
saturating concentration of lysosomal inhibitors when performing
an autophagic flux assay.172 Therefore, caution must be exercised
in interpreting the data using this assay; it would be helpful to

Figure 7. GFP-LC3 processing can be used to monitor delivery of autophagosomal
membranes. (A) Atg52/2 MEFs engineered to express Atg5 under the control
of the Tet-off promoter were grown in the presence of doxycyline (10 ng/ml)
for one week to suppress autophagy. Cells were then cultured in the absence
of drug for the indicated times, with or without a final 2 h starvation. Protein
lysates were analyzed by western blot using anti-LC3 and anti-GFP antibodies.
The positions of untagged and GFP-tagged LC3-I and LC3-II, and free GFP are
indicated. This figure was modified from data previously published in reference
171, FEBS Letters, 580, Hosokawa N, Hara Y, Mizushima N, Generation of cell lines
with tetracycline-regulated autophagy and a role for autophagy in controlling cell
size, pp. 2623–2629, copyright 2006, with permission from Elsevier. (B) Differential
role of unsaturating and saturating concentrations of lysosomal inhibitors on GFP-
LC3 cleavage. HeLa cells stably transfected with GFP-LC3 were treated with
various concentrations of chloroquine (CQ) for 6 h. Total lysates were prepared
and subjected to immunoblot analysis. (C) CQ-induced free GFP fragments require
classical autophagy machinery. Wild-type and Atg52/2 MEFs were first infected
with adenovirus GFP-LC3 (100 viral particles per cell) for 24 h. The cells were
then either cultured in regular culture medium with or without CQ (10 mM),
or subjected to starvation in EBSS buffer in the absence or presence of CQ for 6 h.
Total lysates were prepared and subjected to immunoblot analysis. (B and C) are
modified from the data previously published in reference 172.
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combine an analysis of GFP-LC3 processing with other assays
such as the monitoring of endogenous LC3-II by western blot.

Along these lines, a caution concerning the use of the EGFP
fluorescent protein for microscopy is that this fluorophore has
a relatively neutral pH optimum for fluorescence,180 so that its
signal may diminish quickly during live cell imaging due to the
acidic environment of the lysosome. It is possible to circumvent
this latter problem by imaging paraformaldehyde-fixed cultures
that are maintained in a neutral pH buffer, which retains EGFP
fluorescence (Kleinman M, Reiners JJ, personal communication).
Alternatively, it may be preferable to use a different fluorophore
such as monomeric red fluorescent protein (mRFP) or mCherry,
which retain fluorescence even at acidic pH.181 On the one hand,
a putative advantage of mCherry over mRFP is its enhanced
photostability and intensity, which are an order of magnitude
higher (and comparable to GFP), enabling acquisition of images
at similar exposure settings as are used for GFP, thus minimizing
potential bias in interpretation.182 On the other hand, caution is
required when evaluating the localization of mCherry fusion
proteins during autophagy due to the persistence of the mCherry
signal in acidic environments; all tagged proteins are prone to
show enrichment in lysosomes during nonspecific autophagy of
the cytoplasm, especially at higher expression levels. In addition,
red fluorescent proteins (even the monomeric forms) can be toxic
due to aggregation.183 Dendra2 is an improved version of the
green-to-red photoswitchable fluorescent protein Dendra, which
is derived from the octocoral Dendronephthya sp.184 Dendra2 is
capable of irreversible photoconversion from a green to a red
fluorescent form, but can be used also as a normal GFP or RFP
vector. This modified version of the fluorophore has certain
properties including a monomeric state, low phototoxic activation
and efficient chromophore maturation, which make it suitable
for real-time tracking of LC3 and SQSTM1 (Fig. 8; Kaarniranta
K, personal communication). Another alternative to mRFP or
mCherry is to use the Venus variant of YFP, which is brighter
than mRFP and less sensitive to pH than GFP.186

The pH optimum of EGFP is important to consider when
using GFP-LC3 constructs, as the original GFP-LC3 marker187

uses the EGFP variant, which may result in a reduced signal upon
the formation of amphisomes or autolysosomes. An additional
caveat when using the photoactivatable construct PA-GFP180 is
that the process of activation by photons may induce DNA
damage, which could, in turn, elicit induction of autophagy. Also,
GFP is relatively resistant to denaturation, and boiling for 5 min
may be needed to prevent the folded protein from being trapped
in the stacking gel during SDS-PAGE.

As noted above (see Western blotting and ubiquitin-like protein
conjugation systems), Atg4 cleaves the residue(s) that follow the
C-terminal glycine of Atg8/LC3 that will be conjugated to PE.
Accordingly, it is critical that any chimeras be constructed with
the fluorescent tag at the N terminus of Atg8/LC3.

Finally, lysosomal inhibition needs to be carefully controlled.
Prolonged inhibition of lysosomal hydrolases (. 6 h) is likely
to induce a secondary autophagic response triggered by the
accumulated undigested autophagy cargo. This secondary auto-
phagic response can complicate the analysis of the autophagy flux,

making it appear more vigorous than it would in the absence of
the lysosomal inhibitors.

Conclusion: The GFP-Atg8/LC3 processing assay (the genera-
tion of free GFP within the vacuole/lysosome) is a convenient
way to monitor autophagy, but it does not work in all cell types,
and is not as easy to quantify as enzyme-based assays.

d. GFP-Atg8/LC3 fluorescence microscopy. LC3B, or the protein
tagged at its N terminus with a fluorescent protein such as GFP
(GFP-LC3), has been used to monitor autophagy through
indirect immunofluorescence or direct fluorescence microscopy
(Fig. 9), measured as an increase in punctate LC3 or GFP-
LC3.187,188 The detection of GFP-LC3/Atg8 is also useful for in
vivo studies using transgenic organisms such as Caenorhabditis
elegans,189 Dictyostelium discoideum,190 filamentous ascomy-
cetes,191-195 Ciona intestinalis,196 Drosophila melanogaster,197-199

Arabidopsis thaliana,200 Leishmania major202,203 and mice.126 It is
also possible to use anti-LC3/Atg8 antibodies for immuno-
cytochemistry or immunohistochemistry,140,204-209 procedures
that have the advantages of detecting the endogenous protein,
obviating the need for transfection and or the generation of a
transgenic organism, as well as avoiding potential artifacts result-
ing from overexpression (for example, high levels of overexpressed
GFP-LC3 can result in its nuclear localization, although the
protein can still relocate to the cytosol upon starvation), but we
note that it is not always possible to detect endogenous Atg8/LC3.
The use of imaging cytometry allows rapid and quantitative
measures of the number of LC3 puncta and their relative number
in individual or mixed cell types, using computerized assessment,
enumeration, and data display (e.g., see refs. 142 and 210). In this
respect, the alternative use of an automated counting system may
be helpful for obtaining an objective number of puncta per cell.
For this purpose, the WatershedCounting3D plug-in for ImageJ
may be useful.211,212

Monitoring the endogenous protein, however, obviously
depends on the ability to detect it in the system of interest. If
the endogenous amount is below the level of detection, the use of

Figure 8. Movement of activated pDendra2-hp62 (orange) from the
nucleus (middle) to the aggregate in ARPE-19 cells, revealed by confocal
microscopy. Cells were exposed to 5 mM MG132 for 24 h to induce the
formation of perinuclear aggregates.185 The cells were then exposed to a
UV pulse (the UV-induced area is shown by red lines that are inside of
the nucleus) that converts Dendra2 from green to red, and the time
shown after the pulse is indicated. SQSTM1/p62 is present in a small
nuclear aggregrate, and is shuttled from the nucleus to a perinuclear
large protein aggregate (detected as red). Scale bar, 5 mm. Image
provided by K. Kaarniranta.
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an exogenous construct is warranted. In this case, it is important
to consider the use of stable transformants vs. transient trans-
fections. On the one hand, stable transformants may have reduced
background resulting from the lower gene expression, and there is
also the advantage of eliminating artifacts resulting from recent
exposure to transfection reagents (see below). Furthermore, with
stable transformants more cells can be easily analyzed because
nearly 100% of the population will express tagged LC3. On the
other hand, one disadvantage of stable transfectants is that the
integration sites cannot always be predicted, and expression levels
may not be optimal. Therefore, it is worth considering the use of
stable episomal plasmids that avoid the problem of unsuitable
integration.181 An important advantage of transient transfection is
that this approach is better for examining the immediate effects
of the transfected protein on autophagy, although it restricts the
length of time that the analysis can be performed, and consider-
ation must be given to the induction of autophagy resulting from
exposure to the transfection reagents (see below). In addition, a
double transfection can be used (e.g., with GFP-LC3 and the
protein of interest) to visually tag the cells that express the protein
being examined. In conclusion, there is no simple rule for the use
of stable vs. transient transfections. When stable transfections are
utilized, it is worthwhile screening for clones that give the best
signal-to-noise ratio, and when transient transfections are used, it
is worthwhile optimizing the GFP-LC3 DNA concentration to
give the best signal-to-noise ratio. In clones, the uniformity of
expression of GFP-LC3 also makes “thresholding” when scoring
puncta-positive cells (see below) much easier. However, there is
also a need to beware of the frequent unrepresentative behavior of
mammalian cell lines when selecting a single cell clone from a
parental pool; therefore, it may be better to use a pool of multiple
selected clones to avoid possible artifacts that can arise from the
selection and propagation of individual clones from a single
transfected cell (although the use of a pool is also problematic
as its composition will change over time). Optimization, together
with including the appropriate controls, will help overcome the
effects of the inherent variability in these analyses.

An additional use of GFP-LC3 is to monitor colocalization
with a target during autophagy-related processes such as organelle

degradation or the sequestration of pathogenic microbes.213-215

Preincubation of cells stably expressing GFP-LC3 with leupeptin
can help stabilize the GFP-LC3 signal during fluorescence micro-
scopy, especially under conditions of induced autophagic flux.
Leupeptin is an inhibitor of lysosomal cysteine and serine
proteases and will therefore inhibit degradation of membrane-
conjugated GFP-LC3 that is present within autolysosomes.

Cautionary notes: Quantification of autophagy by measuring
GFP-LC3 puncta (or LC3 by immunofluorescence) can be more
tedious, depending on the method used (e.g., high-throughput
image analysis can obviously be rapid and efficient), than
monitoring LC3-II by western blot; however, the former may
be more sensitive and quantitative. Ideally, it is preferable to
include both assays and to compare the two sets of results. In
addition, if GFP-LC3 is being quantified, it is better to deter-
mine the number of puncta corresponding to GFP-LC3 on a per
cell basis (or per cell area basis if the cell population is in culture
or the cell composition of the tissue is not homogenous, as well
as in the case of plant cells, which tend to grow) rather than
simply the total number of cells displaying puncta. This latter
point is critical because even in nutrient-rich conditions, cells
display some basal level of GFP-LC3 puncta, unless they are
lacking autophagy-related genes (and even in the latter case it is
possible to get puncta of GFP-LC3 depending on the specific
conditions). There are, however, practical issues with counting
puncta manually and reliably, especially if there are large numbers
per cell [although this may be more accurate than relying on
a software program, in which case it is important to ensure that
only appropriate dots are being counted; applicable programs
include ImageJ, Imaris, which may be more accurate (Ktistakis
NT, personal communication), and the open-source software
CellProfiler216]. Moreover, when autophagosome-lysosome fusion
is blocked, larger autophagosomes are detected, possibly due to
autophagosome-autophagosome fusion. Although it is possible
to detect changes in the size of GFP-Atg8/LC3 puncta by
fluorescence microscopy, it is not possible to correlate size with
autophagy activity without additional assay methods. Size deter-
minations can be problematic by fluorescence microscopy unless
careful standardization is performed,217 and size estimation is not

Figure 9. Changes in the detection and localization of GFP-LC3 upon the induction of autophagy. U87 cells stably expressing GFP-LC3 were treated with
PBS, rapamycin (200 nM), or rapamycin in combination with 3-MA (2 mM) for 24 h. Representative fluorescence images of cells counterstained with DAPI
(nuclei) are shown. Scale bar, 10 mm. This figure was modified from Figure 6 published in Badr et al. Lanatoside C sensitizes glioblastoma cells to tumor
necrosis factor–related apoptosis-inducing ligand and induces an alternative cell death pathway. Neuro-Oncology 2011, 13:1213–24, by permission
of Oxford University Press.
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recommended as a method for monitoring autophagy; however, it
is possible to quantify the fluorescence intensity of GFP-Atg8/
LC3 at specific puncta, which does provide a valid measure of
protein recruitment.218

In addition to autophagosome size, the number of puncta
visible to the eye will also be influenced by both the level of
expression of GFP-LC3 in a given cell and by the exposure
time of the microscope, if using widefield microscopy. In many
cell types it may be possible to establish a cut-off value for the
number of puncta per cell in conditions of “low” and “high”
autophagy.219 This can be tested empirically by exposing cells to
autophagy-inducing and -blocking agents. Thus, cell populations
showing significantly greater proportions of cells with autophago-
some numbers higher than the cut-off in perturbation conditions
compared with the control cells could provide quantitative
evidence of altered autophagy. It is then possible to score the
population as the percentage of cells displaying numerous
autophagosomes. This approach will only be feasible if the
background number of puncta is relatively low. For this method,
it is particularly important to count a large number of cells and
multiple representative sections of the sample (probably on the
order of 50 or more, preferably in at least three different trials,
depending on the particular system and experiment, but the
critical point is that this determination should be based on
statistical power analysis). Accordingly, high-content imaging
analysis methods are extremely applicable to provide reliable
values. Such methods enable quantification of GFP-LC3 puncta
(or overall fluorescence intensity) in thousands of cells per sample
(e.g., see refs. 164, 175 and 220). When using automated analysis
methods, care must be taken to manually evaluate parameters
used to establish background cutoff values for different treat-
ment conditions and cell types. Another note of caution is that
treatments affecting cell morphology, leading to the “rounding-
up” of cells for example, can result in apparent changes in the
number of GFP-LC3 puncta per cell. To avoid misinterpretation
of results due to such potential artifacts, manual review of cell
images is highly recommended.

To allow comparisons by other researchers attempting to repeat
these experiments, it is critical that the authors also specify the
baseline number of puncta that are used to define “normal” or
“low” autophagy. Furthermore, the cells should also be counted
using unbiased procedures (e.g., using a random start point
followed by inclusion of all cells at regular intervals), and statisti-
cal information should be provided for both baseline and altered
conditions, as these assays can be highly variable. One possible
method to obtain unbiased counting of GFP-LC3 puncta in a
large number of cells is to perform multispectral imaging flow
cytometry (see Autophagic flux determination using flow and
multispectral imaging cytometry).221 This method can also be used
for endogenous LC3, and, therefore, is useful for non-transfected
primary cells.222 Multispectral imaging flow cytometry allows
characterization of single cells within a population by assessing a
combination of morphology and immunofluorescence patterns,
thereby providing statistically meaningful data.223 For adherent
cell cultures, one caution for flow cytometry is that the techniques
necessary to produce single cell suspensions can cause significant

injury to the cells, leading to secondary changes in autophagy.
Therefore, staining for plasma membrane permeabilization (e.g.,
cell death) before vs. after isolation is an important control.

An important caveat in the use of GFP-LC3 is that this chimera
can associate with aggregates, especially when expressed at high
levels in the presence of aggregate-prone proteins, which can
lead to a misinterpretation of the results.224 Of note, GFP-LC3
can associate with ubiquitinated protein aggregates;225 however,
this does not occur if the GFP-LC3 is expressed at low levels
(Rubinsztein DC, unpublished observations). These aggregates
have been described in many systems, and are also referred to as
Aggresome-Like Induced Structures or ALIS,225-227 dendritic cell
ALIS,228 p62 bodies/sequestosomes229 and inclusions. Inhibition
of autophagy in vitro and in vivo leads to the accumulation of
these aggregates, suggesting a role for autophagy in mediating
their clearance.225,226,230-232 One way to control for background
levels of puncta is to determine fluorescence from untagged GFP.

The adaptor protein SQSTM1/p62 is required for the
formation of ubiquitinated protein aggregates in vitro (see
SQSTM1/p62 and related LC3 binding protein turnover assays).229

In this case, the interaction of SQSTM1 with both ubiquitinated
proteins and LC3 is thought to mediate delivery of these aggregates
to the autophagy system.233,234 Many cellular stresses can induce
the formation of aggregates, including transfection reagents,225 or
the introduction of foreign DNA (especially if the DNA is not
extracted endotoxin free). SQSTM1-positive aggregates are also
formed by proteasome inhibition or puromycin treatment.
Calcium phosphate transfection of COS7 cells or lipofectamine
transfection of MEFs (Pinkas-Kramarski R, personal communica-
tion), primary neurons (La Spada AR, personal communication) or
neuronal cells (Chu CT, personal communication) transiently
increases basal levels of GFP-LC3 puncta and/or the amount of
LC3-II. One solution is to examine GFP-LC3 puncta in cells
stably expressing GFP-LC3; however, as transfection-induced
increases in GFP-LC3 puncta and LC3-II are often transient,
another approach is to use cells transfected with GFP, and cells
subjected to a mock time-matched transfection as background
(negative) controls. A lipidation-defective LC3 mutant where
glycine 120 is mutated to alanine is targeted to these aggregates
independently of autophagy (likely via its interaction with
SQSTM1, see above) and as a result this mutant can serve as
another valuable control.225 When carrying out transfections it
may be necessary to alter the protocol depending on the level of
background fluorescence. For example, changing the medium and
waiting 24 to 48 h after the transfection can help to reduce the
background level of GFP-LC3 puncta that is due to the
transfection reagent (Colombo MI, personal communication).
Similarly, when using an mCherry-GFP-SQSTM1 double tag (see
Tandem mRFP/mCherry-GFP fluorescence microscopy) in transient
transfections it is best to wait 48 h after transfection to reduce the
level of aggregate formation and potential inhibition of autophagy
(Johansen T, personal communication). Another consideration is
that in addition to transfection, viral infection can activate stress
pathways in some cells and possibly induce autophagy, again
emphasizing the importance of appropriate controls, such as
control viruses expressing GFP.235
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Ubiquitinated protein aggregate formation and clearance
appear to represent a cellular recycling process. Aggregate
formation can occur when autophagy is either inhibited or when
its capacity for degradation is exceeded by the formation of
proteins delivered to the aggregates. In principle, formation of
GFP-LC3-positive aggregates represents a component of the
autophagy process. However, the formation of GFP-LC3-positive
ubiquitinated protein aggregates does not directly reflect either
the induction of autophagy (or autophagosome formation), or
flux through the system. Indeed, formation of ubiquitinated
protein aggregates that are GFP-LC3 positive can occur in
autophagy-deficient cells.225 Therefore, it should be remembered
that GFP-LC3 puncta likely represent a mix of ubiquitinated
protein aggregates in the cytosol, ubiquitinated protein aggregates
within autophagosomes and more “conventional” phagophores
and autophagosomes bearing other cytoplasmic cargo (this is one
example where CLEM could help in resolving this question). In
Dictyostelium, inhibition of autophagy leads to huge ubiquiti-
nated protein aggregates containing SQSTM1 and GFP-Atg8,
when the latter is co-expressed; the size of the aggregates and the
typical presence of only one structure per cell make them easily
distinguishable from autophagosomes. Saponin treatment has
been used to reduce background fluorescence under conditions
where no aggregation of GFP-LC3 is detected in hepatocytes,
GFP-LC3 stably-transfected HEK 293235 and human osteosar-
coma cells, and in nontransfected cells;236 however, treatment
with saponin and other detergents can provoke artifactual GFP-
LC3 puncta formation,237 and controls need to be included in
such experiments in light of these findings. In general, it is
preferable to include additional assays that measure autophagy
rather than relying solely on monitoring GFP-LC3. In addition,
we recommend that researchers validate their assays by
demonstrating the absence or reversal of GFP-LC3 puncta
formation in cells treated with pharmacological or RNA
interference-based autophagy inhibitors (Table 1). For example,
3-MA is commonly used to inhibit starvation- or rapamycin-
induced autophagy,256 but some data indicate that this compound
can also have stimulatory effects (see Autophagy inhibitors and
inducers).257

Another general limitation of the GFP-LC3 assay is that it
requires a system amenable to the introduction of an exogenous
gene. Accordingly, the use of GFP-LC3 in primary non-transgenic
cells is more challenging. Here again, controls need to be included
to verify that the transfection protocol itself does not artifactually
induce GFP-LC3 puncta or cause LC3 aggregation. Furthermore,
transfection should be performed with low levels of constructs,
and the transfected cells should be followed to determine (1)
when sufficient expression for detection is achieved, and (2) that
during the time frame of the assay, basal GFP-LC3 puncta remain
appropriately low. In addition, the demonstration of a reduction
in the number of induced GFP-LC3 puncta under conditions of
autophagy inhibition is helpful. For some primary cells, deliver-
ing GFP-LC3 to precursor cells by infection with recombinant
lentivirus, retrovirus or adenovirus,258 and subsequent differentia-
tion into the cell type of interest, is a powerful alternative to
transfection of the already differentiated cell type.91

To implement the scoring of autophagy via fluorescence
microscopy, one option is to measure pixel intensity. Since the
expression of GFP-LC3 may not be the same in all cells—as
discussed above—it is possible to use specific imaging software
to calculate the standard deviation (SD) of pixel intensity within
the fluorescence image and divide this by the mean intensity of
the pixels within the area of analysis. This will provide a ratio
useful for establishing differences in the degree of autophagy
between cells. Cells with increased levels of autophagic activity,
and hence a greater number of autophagosomes in their cytosol,
are associated with a greater variability in pixel intensity (i.e., a
high SD). Conversely, in cells where autophagy is not occurring,
GFP-LC3 is uniformly distributed throughout the cytosol and
a variation in pixel intensity is not observed (i.e., a low SD)
(Campanella M, personal communication).

Although LC3-II is primarily membrane-associated, it is not
necessarily associated with autophagosomes as is often assumed;
the protein is also found on phagophores, the precursors to
autophagosomes, as well as on amphisomes and phagosomes
(see Western blotting and ubiquitin-like protein conjugation
systems).132,259,260 Along these lines, yeast Atg8 can associate
with the vacuole membrane independent of lipidation, so that a
punctate pattern does not necessarily correspond to autophagic
compartments.261 Thus, the use of additional markers is necessary
to specify the identity of an LC3-positive structure; for example,
ATG12–ATG5-ATG16L1 would be present on a phagophore,
but not an autophagosome. In addition, the site(s) of LC3
conjugation to PE is not definitively known and levels of Atg8–
PE/LC3-II can increase even in autophagy mutants that cannot
form autophagosomes.262 One method that can be used to
examine LC3-II membrane association is differential extraction
in Triton X-114, which can be used with mammalian cells,258 or
western blot analysis of total membrane fractions following
solubilization with Triton X-100, which is helpful in plants.150,151

Another approach is to examine colocalization of LC3 with
ATG5 (or other ATG proteins); the ATG12–ATG5 conjugate
does not typically remain associated with autophagosomes,
meaning that colocalized structures would correspond to
phagophores. Importantly, we stress again that numbers of
GFP-LC3 puncta, similar to steady-state LC3-II levels, reflect
only a snapshot of the numbers of autophagy-related structures
(e.g., autophagosomes) in a cell, and not autophagic flux.

Finally, we offer a general note of caution with regard to using
GFP. First, the GFP tag is large, in particular relative to the size
of LC3; therefore, it is possible that a chimera may behave
differently from the native protein in some respects. Second, GFP
is not native to most systems, and as such it may be recognized
as an aberrant protein and targeted for degradation, which has
obvious implications when studying autophagy. Third, some
forms of GFP tend to oligomerize, which may interfere with
protein function and/or localization. Fourth, EGFP inhibits
polyubiquitination263 and may cause defects in other cellular
processes. Fifth, not all LC3 puncta represent LC3-II and
correspond to autophagosomes.137,264,265 Accordingly it would be
prudent to complement any assays that rely on GFP fusions
(to Atg8/LC3 or any protein) with additional methods that
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Table 1. Genetic and pharmacological regulation of autophagy†

Method Comments

1. 3-methyladenine
(3-MA)

A PtdIns3K inhibitor that effectively blocks an early stage of autophagy by inhibiting the class III PtdIns3K, but is not a
specific autophagy inhibitor. 3-MA also inhibits the class I PtdIns3K and can thus, at suboptimal concentrations in long-
term experiments, promote autophagy in some systems, as well as affect cell survival through AKT1 and other kinases.

2. 10-NCP 10-(4’-N-diethylamino)butyl)-2-chlorophenoxazine; an AKT1 inhibitor that induces autophagy in neurons.238

3. 17-AAG An inhibitor of the HSP90-CDC37 chaperone complex, induces autophagy in certain systems (e.g., neurons), but impairs
starvation-induced autophagy and mitophagy in others by promoting the turnover of ULK1.239

4. ATG4C74A An active site mutant of ATG4 that is defective for autophagy.240

5. Bafilomycin A1

(or concanamycin A)
A V-ATPase inhibitor that causes an increase in lysosomal/vacuolar pH, and ultimately blocks fusion of autophagosomes
with the vacuole.

6. Calcium An autophagy activator that can be released from ER or lysosomal stores under stress conditions; however, calcium can
also inhibit autophagy.241

7. Chloroquine, NH4Cl Lysosomotropic compounds that elevate/neutralize the lysosomal/vacuolar pH.

8. Deletion This method provides the most direct evidence for the role of an autophagic component; however, more than one gene
involved in autophagy should be targeted to avoid indirect effects.

9. E-64d A membrane-permeable cysteine protease inhibitor that can block the activity of a subset of lysosomal hydrolases; should
be used in combination with pepstatin A for inhibiting lysosomal protein degradation.

10. Knockdown This method provides relatively direct evidence for the role of an autophagic component. However, the efficiency of
knockdown varies, as does the stability of the targeted protein. In addition, more than one gene involved in autophagy
should be targeted to avoid indirect effects.

11. KU-0063794 An MTOR inhibitor that binds the catalytic site and activates autophagy.242,243

12. Leupeptin An inhibitor of cysteine, serine and threonine proteases that can be used in combination with pepstatin A and/or E-64d to
block lysosomal protein degradation. Leupeptin is not membrane permeable, so its effect on cathepsins may depend on
endocytic activity.

13. microRNA Can be used to reduce the levels of target mRNA(s) or block translation.

14. NAADP-AM Activates the lysosomal two pore channel and induces autophagy.244

15. NED-19 Inhibits the lysosomal two-pore channel and NAADP-induced autophagy.244

16. NVP-BEZ235 A dual inhibitor of PIK3CD/p110 and the MTOR catalytic site that activates autophagy.245,246

17. Pathogen-derived ICP34.5, vBCL2, vCFLAR/vFLIP, influenza M2, and HIV Nef autophagy inhibitor transfection.

18. Pepstatin A An aspartyl protease inhibitor that can be used to partially block lysosomal degradation; should be used in combination
with other inhibitors such as E-64d. Pepstatin A is not membrane permeable.

19. Protease inhibitors These chemicals inhibit the degradation of autophagic substrates within the lysosome/vacuole lumen. A combination of
inhibitors (e.g., leupeptin, pepstatin A and E-64d) is needed for complete blockage of degradation.

20. Rapamycin Inhibits MTOR by binding to RPTOR, thus inducing autophagy, but only provides partial inhibition.

21. Resveratrol A natural polyphenol that induces autophagy via activation of AMPK.247,248

22. RNAi Can be used to inhibit gene expression.

23. RSVAs Synthetic small-molecule analogs of resveratrol that potently activate AMPK and induce autophagy.249

24. Thapsigargin An inhibitor of the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) that inhibits autophagic sequestration
through the depletion of intracellular Ca2+ stores;250 however, thapsigargin may also block fusion of autophagosomes with
endosomes by interfering with recruitment of RAB7, resulting in autophagosome accumulation.251 Long-term
thapsigargin treatment may induce ER stress and a secondary stimulation of autophagy.

25. Torin1 A catalytic MTOR inhibitor that induces autophagy and provides more complete inhibition than rapamycin (it inhibits all
forms of MTOR).252

26. Trehalose An inducer of autophagy that may be relevant for the treatment of different neurodegenerative diseases.253,254

27. Tunicamycin A glycosylation inhibitor that induces autophagy due to ER stress.255

28. Vinblastine A depolymerizer of both normal and acetylated microbtubles that interferes with autophagosome-lysosome fusion.156

29. Wortmannin An inhibitor of PtdIns 3-kinase that blocks autophagy, but is not a specific inhibitor (see 3-MA above).

†This table is not meant to be complete, as there are many compounds and genetic methods that regulate autophagy, and new ones are being discovered
routinely.
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avoid the use of this fluorophore. Similarly, with the emergence
of “super-resolution” microscopy methods such as photoactivated
localization microscopy (PALM), new tags are being used (e.g.,
the EosFP green to red photoconvertible fluorescent protein, or
the Dronpa GFP-like protein) that will need to be tested and
validated.266

Conclusion: GFP-LC3 provides a marker that is relatively
easy to use for monitoring autophagy induction (based on the
appearance of puncta), or colocalization; however, it is not a
preferred method for determining flux. In addition, it is
recommended to use additional assays along with GFP-LC3
fluorescence microscopy to monitor autophagy.

e. Tandem mRFP/mCherry-GFP fluorescence microscopy. A
fluorescence assay that is particularly designed to monitor flux
relies on the use of a tandem monomeric RFP-GFP-tagged LC3
(tfLC3; Fig. 10).181 The GFP signal is sensitive to the acidic
and/or proteolytic conditions of the lysosome lumen, whereas
mRFP is more stable. Therefore, colocalization of both GFP and
mRFP fluorescence indicates a compartment that has not fused
with a lysosome, such as the phagophore or an autophagosome.
In contrast, an mRFP signal without GFP corresponds to an
amphisome or autolysosome. Other fluorophores such as
mCherry are also suitable instead of mRFP,229 and an image-
recognition algorithm has been developed to quantify flux of
the reporter to acidified compartments.242,267 One of the major
advantages of the tandem mRFP/mCherry-GFP reporter method
is that it enables simultaneous estimation of both the induction
of autophagy and flux through autophagic compartments in
essentially native conditions, without requiring any drug treat-
ment. The use of more than one time point allows visualization
of increased early autophagosomes followed by increases in late
autophagosomes as an additional assurance that flux has been
maintained.268 In addition, this method can be used to monitor
autophagy in high-throughput drug screening studies.242 The
quantification of “yellow only” and “red only” dots in a stable
tandem-fluorescent LC3-reporter cell line can be automated by
a Cellomics microscope that can be used to assess a huge
population of cells (1,000 or more) over a large number of
random fields of view. This can give rise to more accurate data
than can be achieved by manual assessment of a few selected
cells.167,269

An alternative dual fluorescence assay involves the Rosella
biosensor. This assay monitors the uptake of material to the
lysosome/vacuole and complements the use of the tandem mRFP/
mCherry-GFP reporter. The assay is based upon the genetically
encoded dual color-emission biosensor Rosella, a fusion between
a relatively pH-stable fast-maturing RFP variant, and a pH-
sensitive GFP variant. When targeted to specific cellular com-
partments or fused to an individual protein, the Rosella biosensor
provides information about the identity of the cellular component
being delivered to the vacuole/lysosome for degradation. Import-
antly, the pH-sensitive dual color fluorescence emission provides
information about the environment of the biosensor during
autophagy of various cellular components. In yeast, Rosella has
been successfully used to monitor autophagy of cytosol, mito-
chondria (mitophagy) and the nucleus (nucleophagy).270,271

Furthermore, the Rosella biosensor can be used as a reporter
under various conditions including nitrogen depletion-dependent
induction of autophagy.270,271 The Rosella biosensor can also be
expressed in mammalian cells to follow nonselective autophagy
(cytoplasmic turnover), or mitophagy.271

Cautionary notes: The use of tandem mRFP/mCherry-GFP-
LC3/Atg8 reporters in live imaging experiments can be com-
plicated by the motion of LC3/Atg8 puncta. As a consequence,

Figure 10. The GFP and mRFP signals of tandem fluorescent LC3 (tfLC3,
mRFP-GFP-LC3) show different localization patterns. HeLa cells were
cotransfected with plasmids expressing either tfLC3 or LAMP1-CFP.
Twenty-four hours after the transfection, the cells were starved in Hanks’
solution for 2 h, fixed and analyzed by microscopy. The lower panels are
a higher magnification of the upper panels. Bar, 10 mm in the upper
panels and 2 mm in the lower panels. Arrows in the lower panels point
to (or mark the location of) typical examples of colocalized signals of
mRFP and LAMP1. Arrowheads point to (or mark the location of) typical
examples of colocalized particles of GFP and mRFP signals. This figure
was previously published in reference 181 and is reproduced
by permission of Landes Bioscience, copyright 2007.
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conventional confocal microscopy may not allow visualization
of colocalized mRFP/mCherry-GFP puncta. In this case, GFP or
colocalized puncta represent newly formed autophagic structures
whereas mRFP/mCherry-only puncta are ambiguous. Spinning
disk confocal microscopy, or rapid acquisition times may be
required for imaging tandem mRFP/mCherry-GFP proteins,
although these techniques require a brighter fluorescent signal
associated with what may be undesirably higher levels of transgene
expression. One solution is to use the mTagRFP-mWasabi-LC3
chimera,272a as mTagRFP is brighter than mRFP1 and mCherry,
and mWasabi is brighter than EGFP.272b Another possibility is to
use fixed cells; however, this presents an additional concern: The
use of tandem mRFP/mCherry-GFP relies on the quenching of
the GFP signal in the acidic autolysosome; however, fixation
solutions are often neutral or weak bases, which will increase the
pH of the entire cell. Accordingly, the GFP signal may be restored
after fixation (Fig. 11), which would cause an underestimation of
the amount of signal that corresponds only to RFP (i.e., in the
autolysosome). Thus, the tissue or cell samples must be properly
processed to avoid losing the acidic environment of the
autolysosomes. In addition, there may be weak fluorescence of
EGFP even in an acidic environment (pH between 4 and 5).180,258

Therefore, it may be desirable to choose a monomeric green
fluorescent protein that is more acid sensitive than EGFP for
assaying autophagic flux.

Another caution in the interpretation of the tandem fluorescent
marker is that colocalization of GFP and mRFP/mCherry might also
be seen in the case of impaired proteolytic degradation within
autolysosomes, or altered lysosomal pH. Finally, expression of
tandemmRFP-GFP-LC3 is toxic to some cancer cell lines relative to
GFP-LC3 or RFP-LC3 (Choi KS, personal communication). The
cytotoxicity of DsRed and its variants such as mRFP1 is associated
with downregulation of BCL2L1/Bcl-xL.273 In contrast to mRFP-
GFP-LC3, overexpression of mTagRFP-mWasabi-LC3 does not
appear to be toxic to HeLa cells (Lin J, personal communication).

The Rosella assay has not been tested in a wide range of
mammalian cell types. Accordingly, the sensitivity and the
specificity of the assay must be verified independently until this
method has been tested more extensively and used more widely.

Finally, it is ideal to capture the dynamic behavior of auto-
phagy in real time, in order to generate data revealing the rate
of formation and clearance of autophagosomes over time, rather
than single data points. For example, by acquiring signals from
two fluorescent constructs in real time, the rate of change in
colocalization signal as a measure of the fusion rate and recycling
rate between autophagosomes and lysosomes can be assessed.
Importantly, due to the integral dynamic relationship of auto-
phagic flux with the onset of apoptosis and necrosis it is
advantageous to monitor cell death and autophagic flux para-
meters concomitantly over time, which FRET-based reporter
constructs make possible.274

Conclusion: The use of tandem fluorescent constructs, which
display different emission signals depending on the environment
(in particular, GFP fluorescence is particularly sensitive to an
acidic pH), provides a convenient way to monitor autophagy flux
in many cell types.

f. Autophagic flux determination using flow and multispectral
imaging cytometry. Whereas fluorescence microscopy, in combin-
ation with novel autophagy probes, has permitted single cell
analysis of autophagic flux, automation for allowing medium-
to high-throughput analysis has been challenging. A number of
methods have been developed that allow the determination of
autophagic flux using the fluorescence-activated cell sorter
(FACS),154,223,236,275-277 and commercial kits are now available
for monitoring autophagy by flow cytometry. These approaches
make it possible to capture high-content images of cells in flow
(up to 1,000 cells/sec), and are particularly useful for cells that
grow in suspension. Optimization of image analysis permits the
study of cells with heterogeneous LC3 puncta, thus making it
possible to quantify autophagic flux accurately in situations that
might perturb normal processes (e.g., microbial infection).277,278

Since EGFP-LC3 is a substrate for autophagic degradation, total
fluorescence intensity of EGFP-LC3 can be used to indicate levels
of autophagy in living mammalian cells.275 When autophagy is
induced, the decrease in total cellular fluorescence can be precisely
quantified in large numbers of cells to obtain robust data. In
another approach, soluble EGFP-LC3-I can be depleted from
the cell by a brief saponin extraction so that the total fluorescence
of EGFP-LC3 then represents that of EGFP-LC3-II alone
(Fig. 12A).235,236 Since EGFP-LC3 transfection typically results
in high relative levels of EGFP-LC3-I, this treatment significantly
reduces the background fluorescence due to non-autophagosome-
associated reporter protein. By comparing treatments in the
presence or absence of lysosomal degradation inhibitors, subtle
changes in the flux rate of the GFP-LC3 reporter construct can
be detected. If it is not desirable to treat cells with lysosomal
inhibitors to determine rates of autophagic flux, a tandem mRFP/
mCherry-EGFP-LC3 (or similar) construct can also be used for
autophagic flux measurements in FACS experiments (see Tandem
mRFP/mCherry-GFP fluorescence microscopy).276

These methods, however, require the cells of interest to be
transfected with reporter constructs. Since the saponin extraction
method can also be combined with intracellular staining for
endogenous LC3 protein, subtle changes in autophagic flux
can be measured without the need for reporter transfections
(Fig. 12B). This enables investigations of autophagic flux in a
wide variety of cell types and tissues.

Cautionary notes: Care must be taken when applying flow
cytometry measurements to adherent cells, particularly neurons
and other cells with interdigitated processes, as the preparation
of single cell suspensions entails significant levels of plasma
membrane disruption and injury that can secondarily induce
autophagy.

Users of the saponin extraction method should carefully titrate
saponin concentrations and times of treatment in order to ensure
specific extraction of LC3-I in their systems. Also, it has been
observed in some cell types that saponin treatment can lead to
non-autophagic aggregation of LC3,237 which should be con-
trolled for in these assays (see GFP-Atg8/LC3 fluorescence
microscopy).

Cell membrane permeabilization with digitonin and extraction
of the nonmembrane-bound form of LC3 allows combined
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staining of membrane-associated LC3-II protein and any markers
for detection of autophagy in relation to other cellular events/
processes. Based on this approach a method for monitoring
autophagy in different stages of the cell cycle was developed.279

Thus, the presence of basal or starvation-induced autophagy is
detected in G1, S and G2/M phases of the cell cycle in MEFs with
doxycycline-regulated ATG5 expression. In these experiments
cells were gated based on their DNA content, and the relative
intensity of GFP-LC3-II and LC3-II expression. This approach

might also be used for the detection of autophagic flux in different
stages of the cell cycle or subG1 apoptotic cell population by
measuring accumulation of LC3-II in the presence or absence of
lysosomal inhibitors.

Although GFP-LC3 can be used as a reporter for flow cyto-
metry, it is more stable (which is not necessarily ideal for flux
measurements) than GFP-SQSTM1 or GFP-NBR1 (NBR1 is a
selective autophagic substrate with structural similarity to
SQSTM1280); GFP-SQSTM1 displays the largest magnitude

Figure 11. GFP fluorescence in the autolysosome can be recovered upon neutralization of the pH. (A) GFP-LC3 emits green fluorescence in the
autolysosomes of post-mortem processed heart sections. Cryosections of 3.8% paraformaldehyde fixed ventricular myocardium from 3-week old
GFP-LC3 transgenic mice at the baseline (control) or starved for 24 h (starved) were processed for immunostaining using a standard protocol (buffered
at pH 7.4). Most of the GFP-LC3 puncta are positive for LAMP1, suggesting that the autolysosomes had recovered GFP fluorescence. (B) Colocalization
between GFP-LC3 direct fluorescence (green) and indirect immunostaining for GFP (red). Sections processed as in (A) were immunostained for GFP using
a red fluorescence-tagged secondary antibody, and the colocalization with GFP fluorescence was examined by confocal microscopy. Almost all of the red
puncta emit green fluorescence. Images provided by Xuejun Wang.
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deprivation or rapamycin treatment, and may thus be a better
marker for following autophagic flux by this method (confirmed in
SH-SY5Y neuronal cell lines stably expressing GFP-SQSTM1;
Valente EM, personal communication).281 However, SQSTM1
changes can be cell type and context specific. In some cell types,
there is no change in overall SQSTM1 levels despite strong levels of
autophagy induction, verified by the tandem mRFP/mCherry-
GFP-LC3 reporter as well as Atg7- and lysosome-dependent
turnover of cargo proteins (Chu CT, personal observation). In
other contexts, a robust loss of SQSTM1 does not correlate with
increased autophagic flux as assessed by a luciferase-based measure of
flux.166 Thus, appropriate positive and negative controls, and
assessment of SQSTM1 mRNA levels, may be needed prior to the
use of SQSTM1 as a flux indicator in a particular cellular context.

Conclusion: Medium- to high-throughput analysis of auto-
phagy is possible using flow and multispectral imaging cytometry
(Fig. 13). The advantage of this approach is that larger numbers
of cells can be analyzed with regard to GFP-LC3 puncta, cell
morphology and/or autophagic flux, and concomitant detection
of surface markers can be included, potentially providing more
robust data than is achieved with other methods.

g. Immunohistochemistry. Immunodetection of ATG proteins
(particularly LC3 and BECN1) has been reported as a prognostic
factor in various human carcinomas, including lymphoma,140,282

breast carcinoma,283 endometrial adenocarcinoma,284,285 head and
neck squamous cell carcinoma,286,287 hepatocellular carcinoma,288,289

gliomas,290 non-small cell lung carcinomas,291 pancreatic292 and
colon adenocarcinomas,293-295 as well as in cutaneous and uveal

melanomas.296,297 Importantly, this kind of assay should be
performed as recommended by the Reporting Recommendations
for Tumor Marker Prognostic Studies (REMARK).298 As we
identify new drugs for modulating autophagy in clinical
applications, this type of information may prove useful in the
identification of subgroups of patients for targeted therapy.299-301

In mouse and rat tissues, endogenous LC3, ATG4B, and
ATG9A have been detected by immnohistochemical analyses
using both paraffin sections and cryosections.208,302-304 When
autophagosomes are absent, the localization pattern of LC3 in the
cells of various tissues is diffuse and cytosolic. Moreover, intense
fibrillary staining of LC3 is detectable along dendrites of intact
neurons, whereas granular staining for LC3 appears mainly in the
perikarya of neurons in cathepsin D- or cathepsins B- and
L-deficient mouse brains.208 In developing retinal tissue in
chicken, BECN1 and AMBRA1 are detected by immunofluore-
scence.305,306 Finally, in non-mammalian vertebrates, BECN1 was
detected during follicular atresia in the ovary of three fish species
using paraffin sections; a punctate immunostaining for BECN1
was scattered throughout the cytoplasm of the follicular cells when
they were in intense phagocytic activity for yolk removal (Rizzo E,
unpublished results).

Cautionary notes: One problem with immunohistochemistry
for LC3 is that in some tissues this protein can be localized in
structures other than autophagosomes. For example, in murine
hepatocytes and cardiomyocytes under starved conditions,
endogenous LC3 is detected not only in autophagosomes but
also on lipid droplets.307 In neurons in ATG7-deficient mice, LC3
is accumulated in ubiquitin- and SQSTM1-positive aggregates.308

Figure 12. Saponin extraction allows quantification of LC3-II fluorescence by FACS. (A) Schematic diagram of the effects of the saponin wash. Due to
the reorganization of the EGFP-LC3 reporter protein, induction of autophagosome formation does not change the total levels of fluorescence
in EGFP-LC3-transfected cells. However, extraction of EGFP-LC3-I with saponin results in a higher level of fluorescence in cells with proportionally higher
levels of EGFP-LC3-II-containing autophagosomes. This figure was previously published in reference 236 (B) Saponin extraction can also be used to
measure flux of endogenous LC3 protein. Human osteosarcoma cells were starved of amino acids and serum by incubation in EBSS, for the indicated
times in the presence or absence of a 1 h chloroquine (50 mM) treatment. Cells were then washed with PBS containing 0.05% saponin and processed
for FACS analysis for endogenous LC3. These data are provided by K.E. Eng and G.M. McInerney.
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Thus, immunodetection of LC3 in cytoplasmic granules is not
sufficient to monitor autophagy in vivo.

Conclusion: It has not been clearly demonstrated that
immunohistochemistry of ATG proteins in tissues corresponds
to autophagy activity, and this area of research needs to be further
explored before we can make specific recommendations.

3. SQSTM1/p62 and related LC3 binding protein turnover
assays. In addition to LC3, SQSTM1/p62, or other receptors
such as NBR1, can also be used as a protein marker, at least in
certain settings.25,309 The SQSTM1 protein serves as a link
between LC3 and ubiquitinated substrates.98 SQSTM1 and
SQSTM1-bound polyubiquitinated proteins become incorpo-
rated into the completed autophagosome and are degraded in
autolysosomes, thus serving as a readout of autophagic degrada-
tion (Fig. 14). Inhibition of autophagy correlates with increased
levels of SQSTM1 in mammals and Drosophila, suggesting
that steady-state levels of this protein reflect the autophagic
status.304,310-315 Similarly, decreased SQSTM1 levels are associated
with autophagy activation. The phosphorylation of SQSTM1 at
Ser403 appears to regulate its role in the autophagic clearance of
ubiquitinated proteins, and anti-phospho-SQSTM1/p62 anti-
bodies can be used to detect the modified form of the protein.234

Cautionary notes: SQSTM1 contains an LC3 interacting motif
as well as a ubiquitin binding domain, and appears to act by
linking ubiquitinated substrates with the autophagic machinery.
Nonetheless, it would be prudent to keep in mind that SQSTM1
contains domains that interact with several signaling molecules,316

and SQSTM1 may be part of the mechanistic target of rapamycin
(MTOR) complex 1 (TORC1).317 Thus, it may have additional
functions that need to be considered with regard to its role in
autophagy. In the context of autophagy as a stress response, the
complexity of using SQSTM1 as an autophagy marker is
underscored by its capacity to modulate the NFE2L2/NRF2
anti-oxidant response pathway through a KEAP1 binding
domain.318 In fact, SQSTM1 may, itself, be transcriptionally
induced by NFE2L2.319 Furthermore, it is necessary to examine
endogenous SQSTM1 because overexpression of this protein
leads to the formation of protein inclusions. In fact, even
endogenous SQSTM1 becomes Triton X-100-insoluble in the
presence of protein aggregates and when autophagic degradation
is inhibited; thus, results with this protein are often context-
dependent. In addition, SQSTM1 participates in proteasomal
degradation, and its level may also increase when the proteasome
is inhibited.320 Accordingly, the SQSTM1 degradation rate should

Figure 13. Assessing autophagy with multispectral imaging cytometry. (A) Bright Detail Intensity (BDI)
measures the foreground intensity of bright puncta (that are three pixels or less) within the cell image. For
each cell, the local background around the spots is removed before intensity calculation. Thus, autophagic
cells with puncta have higher BDI values. (B) Media control (untreated wild type), rapamycin-treated wild-
type and Atg52/2 MEFs were gated based on BDI. Representative images of cells with high or low BDI values.
Scale bar, 10 mm. Images provided by M.L. Albert.

Figure 14. Regulation of the SQSTM1
protein during autophagy. (A) The
level of SQSTM1 during starvation.
Atg5+/+ and Atg52/2 MEFs were cul-
tured in DMEM without amino acids
and serum for the indicated times,
and then subjected to immunoblot
analysis using anti-SQSTM1/p62
antibody (Progen Biotechnik). This
figure was previously published in
reference 25 and is reproduced by
permission of Landes Bioscience,
copyright 2007. (B) The level of
SQSTM1 in the brain of neural cell-
specific Atg5 knockout mice. This
image was generously provided by
Dr. Taichi Hara (Tokyo Medical and
Dental University).
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be analyzed in the presence of an inhibitor such as epoxomicin or
lactacystin to determine the contribution from the proteasome
(see Autophagy inhibitors and inducers for potential problems with
MG132).321 SQSTM1 is also a substrate for CASP6/caspase 6
and CASP8/caspase 8 (as well as CAPN1/calpain 1), which may
confound its use in examining cell death and autophagy.322

Another issue is that some phosphatidylinositol 3-kinase
(PtdIns3K) inhibitors such as LY294002, and to a lesser extent
wortmannin (but apparently not 3-MA)256 can inhibit protein
synthesis;323 this might in turn affect the turnover of SQSTM1
and LC3, which could influence conclusions that are drawn
from the status of these proteins regarding autophagy flux or
aggresome-like induced structures (ALIS) formation. Accordingly,
it may be advisable to measure protein synthesis and proteasome
activity along with autophagy under inhibitory or activating
conditions. With regard to protein synthesis, it is worth noting
that this can be monitored through a nonradioactive method.324

Finally, SQSTM1 may be transcriptionally upregulated under
certain conditions,227,325 further complicating the interpretation of
results. For example, SQSTM1 upregulation, and at least transient
increases in the amount of SQSTM1, is seen in some situations
where there is an increase in autophagic flux.326-328 Of interest,
SQSTM1 hyperexpression at both gene and protein levels can be
observed in muscle atrophy induced by cancer, though not by
glucocorticoids, suggesting that the stimulus inducing autophagy
may also be relevant to the differential regulation of autophagy-
related proteins (Penna F, Costelli P, unpublished observations).
One solution to problems relating to variations in SQSTM1
synthesis is to use a HaloTag1-SQSTM1/p62 chimera.329 The
chimeric protein can be covalently labeled with HaloTag1

ligands, and the loss of signal can then be monitored without
interference by subsequent changes in protein synthesis. Similarly,
a stable cell line expressing EGFP-tagged SQSTM1 under the
control of in inducible promoter can be used to assess the rates
of SQSTM1 degradation, taking into account the limitations
outlined above (see Autophagic flux determination using flow and
multispectral imaging cytometry).281 Yet another solution is to
employ a radioactive pulse-chase assay to measure the rates of
SQSTM1 degradation.330

Western blot analysis using NP40 or Triton X-100 lysis in
autophagic conditions typically shows a reduction in SQSTM1
levels. However, this does not necessarily indicate that SQSTM1
is degraded, because SQSTM1 aggregates are insoluble in these
detergent lysis conditions.227,331 Moreover, in some instances
SQSTM1 levels do not change in the soluble fractions despite
autophagic degradation, a finding that might be explained by
simultaneous transcriptional induction of the gene encoding
SQSTM1, since the soluble fraction accounts only for the diffuse
or free form of SQSTM1. Accumulation of SQSTM1 in the
Triton X-100-insoluble fraction can be observed when autophagy-
mediated degradation is inhibited. Under conditions of higher
autophagic flux, accumulation of SQSTM1 in Triton X-100-
insoluble fractions may not be observed and SQSTM1 levels may
be reduced or maintained. The simplest approach to circumvent
many of these problems is by using lysis buffer that allows
identification of the entire cellular pool of SQSTM1 (e.g.,

containing 1% SDS); however, additional assessment of both
Triton X-100-soluble and -insoluble fractions will provide further
information regarding the extent of SQSTM1 oligomerization.308

To conclusively establish SQSTM1 degradation by autophagy,
SQSTM1 levels in both Triton X-100-soluble and -insoluble
fractions need to be determined upon treatment with autophagy
inducers in combination with autophagy inhibitors, such as those
that inhibit the autolysosomal degradation steps (e.g., protease
inhibitors, chloroquine or bafilomycin A1, or genetically by
knocking out or knocking down LAMP2). Additionally, an
alteration in the levels of SQSTM1 may not be immediately
evident with changes observed in autophagic flux upon certain
chemical perturbations (Sarkar S, personal communication).
Whereas LC3 changes may be rapid, clearance of autophagy
substrates may require a longer time. Therefore, if LC3 changes
are assessed at 6 h or 24 h after a drug treatment, SQSTM1 levels
can be tested not only at the same time points, but also at later
time points (24 h or 48 h) for determining the maximal impact on
substrate clearance. An alternative method is immunostaining for
SQSTM1 with and without autophagy inhibitors, which will
appear as either a diffuse or punctate pattern. Experiments with
autophagy inducers and inhibitors, in combination with western
blot and immunostaining analyses, best establish autophagic
degradation based on SQSTM1 turnover. A final point,
however, is that empirical evidence suggests that the species-
specificity of antibodies for detecting SQSTM1 must be taken
into account. For example, some commercial antibodies recognize
both human and mouse SQSTM1, whereas others detect the
human, but not the mouse protein (see the Autophagy Forum
at https://www.landesbioscience.com/journals/autophagy/forum/
for information pertaining to anti-SQSTM1/p62 antibodies).332

Another issue with detecting SQSTM1 in the context of human
diseases is that it can be mutated (e.g., in Paget disease of bone).333

Thus, care should be taken to ensure that potential mutations
are not affecting the epitopes that are recognized by anti-
SQSTM1 antibodies when using western blotting to detect this
protein.

Conclusion: There is not always a clear correlation between
increases in LC3-II and decreases in SQSTM1. Thus, although
analysis of SQSTM1 can assist in assessing the impairment of
autophagy or autophagy flux, we recommend using SQSTM1
only in combination with other methods such as LC3-II turnover
to monitor flux.

4. TOR, AMPK and Atg1/ULK1. Atg1/ULK1 are central
components in autophagy that likely act at more than one stage
of the process. There are multiple ULK isoforms in mammalian
cells including ULK1, ULK2, ULK3, ULK4 and STK36.334

ULK3 is a positive regulator of the Hedgehog signaling
pathway,335 and its overexpression induces both autophagy and
senescence.336 Along these lines, ectopic ULK3 displays a punctate
pattern upon starvation-induced autophagy induction.336 ULK3,
ULK4 and STK36, however, lack the domain present on ULK1
and ULK2 that bind ATG13 and RB1CC1/FIP200.337 Thus,
ULK3 may play a role that is restricted to senescence, and that is
independent of the core autophagy machinery. ULK2 has a higher
degree of identity with ULK1 than any of the other homologs,
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and they may have similar functions that are tissue specific;
however, ULK1 may be the predominant isoform involved in
autophagy, as knockdown of ULK2 does not affect movement of
ATG9.338 The stability and activation of ULK1, but not ULK2, is
dependent on its interaction with the HSP90-CDC37 chaperone
complex. Pharmacological or genetic inhibition of the chaperone
complex increases proteasome-mediated turnover of ULK1,
impairing its kinase activity and ability to promote both
starvation-induced autophagy and mitophagy.239

AMP-activated protein kinase (AMPK) is a multimeric serine/
threonine protein kinase comprising a- (catalytic), β- (scaffold),
and c- (regulatory) subunits. The enzyme activity of AMPK is
absolutely dependent on phosphorylation of the a-subunit on
Thr172,339,340 and can, therefore, be conveniently monitored by
western blotting with a phosphospecific antibody against this site.
In some cells, Thr172 is phosphorylated by the Ca2+-activated
protein kinase CAMKK2/CaMKKβ; in other cells by the
constitutively active kinase STK11/LKB1, regulation of AMPK
activity being performed primarily by Thr172-dephosphorylating
protein phosphatases such as protein phosphatase 1 and PPP2CB/
PP2A.341 Thr172 dephosphorylation is modulated by adenine
nucleotides that bind competitively to regulatory sites in the
c-subunit. AMP and ADP inhibit dephosphorylation and
promote AMPK activity, whereas Mg2+-ATP has the opposite
effect.340 AMPK thus acts as a fine-tuned sensor of the overall
cellular energy charge that regulates cellular metabolism to
maintain energy homeostasis. Activation of AMPK is also asso-
ciated with the phosphorylation of downstream enzymes involved
in ATP-consuming processes, such as fatty acid (acetyl-CoA
carboxylase) and cholesterol (hydroxymethylglutaryl-CoA dehy-
drogenase) biosynthesis.

The role of AMPK in autophagy is complex, and highly
dependent on both cell type and metabolic conditions. In liver
cells, AMPK suppresses autophagy at the level of cargo seques-
tration as indicated by the rapid sequestration-inhibitory effects of
a variety of AMPK activators, whereas it appears to stimulate
autophagy in many other cell types, including fibroblasts, colon
carcinoma cells and skeletal muscle.342-351 Autophagy-promoting
effects of AMPK are most evident in cells cultured in a complete
medium with serum and amino acids, where cargo sequestration
is otherwise largely suppressed.348 Presumably, AMPK antagonizes
the autophagy-inhibitory effect of amino acids (at the level of
phagophore assembly) by phosphorylating proteins involved in
TORC1 signaling, such as TSC2352 and RPTOR/RAPTOR353 as
well the TORC1 target ULK1 (see below).354-356

Compound C is an effective and widely used inhibitor of
activated (phosphorylated) AMPK.357 However, being a non-
specific inhibitor of oxidative phosphorylation,358,359 this drug has
been observed to inhibit autophagy under conditions where
AMPK is already inactive or knocked out,360 and has even been
shown to stimulate autophagy by an AMP-independent mecha-
nism.359,361 Compound C thus cannot be used as a stand-alone
indicator of AMPK involvement.

TORC1 is an autophagy-suppressive regulator that integrates
growth factor, nutrient and energy signals. In most systems,
inhibition of MTOR leads to induction of autophagy, and

AMPK activity is generally antagonistic toward MTOR function.
TORC1 mediates the autophagy-inhibitory effect of amino
acids, which stimulate the MTOR protein kinase through a
RRAG/RAG GTPase dimer. Insulin and growth factors activate
TORC1 through upstream kinases including AKT1 (protein
kinase B), and extracellular signal regulated kinase (MAPK3-
MAPK1, or ERK) when the energy supply is sufficient, whereas
energy depletion may induce AMPK-mediated TORC1 inhibi-
tion and autophagy stimulation, for example, during glucose
starvation. Amino acid starvation, on the other hand, can strongly
induce autophagy even in cells completely lacking AMPK catalytic
activity.362

AMPK and TORC1 regulate autophagy through coordinated
phosphorylation of ULK1; under glucose starvation, AMPK
promotes autophagy by directly activating ULK1 through
phosphorylation, although the exact AMPK-mediated ULK1
phosphorylation site(s) remains unclear.351,354-356 Under condi-
tions of nutrient sufficiency, high TORC1 activity prevents
ULK1 activation by phosphorylating alternate ULK1 residues and
disrupting the interaction between ULK1 and AMPK. There are
commercially available phospho-specific antibodies that recognize
different forms of ULK1. For example, phosphorylation at
Ser555, an AMPK site, is indicative of increased autophagy in
response to nutrient stress, whereas Ser757 is targeted by MTOR
to inhibit autophagy. Even the autophagy-suppressive effects of
AMPK could, conceivably, be mediated through ULK1 phos-
phorylation, for example, at the inhibitory site Ser638.363 AMPK
inhibits MTOR by phosphorylating and activating TSC2.364

Therefore, AMPK is involved in processes that synergize to
activate autophagy, by directly activating ULK1, and indirectly
impairing MTOR-dependent inhibition of ULK1. The identi-
fication of ULK1 as a direct target of TORC1 and AMPK
represents a significant step toward the definition of new tools to
monitor the induction of autophagy. However, further studies
directed at identifying physiological substrates of ULK1 will be
essential to understand how ULK1 activation results in initiation
of the autophagy program. Along these lines, ULK1 phosphoryl-
ates AMBRA1,365 and the MYLK/MLCK-like protein Sqa,366 as
well as ATG13 and RB1CC1/FIP200.367-370 In addition, ULK1
binds to, and phosphorylates, RPTOR, leading to inhibition of
TORC1.371 Furthermore, ULK1 itself appears to be able to
mediate inhibitory AMPK phosphorylation to generate a negative
feedback loop.372

TORC1 activity can be monitored by following the phospho-
rylation of its substrates, such as EIF4EBP1 (4E-BP1/PHAS-I)
and RPS6KB1 (p70S6 kinase) or the latter’s downstream target,
the ribosomal protein S6 (RPS6), for which good commercial
antibodies are available.373-375 In mammalian cells, the analysis
should focus on the phosphorylation of RPS6KB1 at Thr389, and
EIF4EBP1 at Thr37 and Thr46, which are directly phosphory-
lated by TORC1.376 The TORC1-dependent phosphorylation of
EIF4EBP1 can be detected as a molecular mass shift by western
blot.375 Examining the phosphorylation status of RPS6KB1 and
EIF4EBP1 may be a better method for monitoring TORC1
activity than following the phosphorylation of proteins such as
RPS6, because the latter is not a direct substrate of TORC1
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(although RPS6 phosphorylation is a good readout for RPS6KB1/
2 activities, which are directly dependent on MTOR), and it can
also be phosphorylated by other kinases such as RPS6KA/RSK.
Furthermore, the mechanisms that determine the selectivity as
well as the sensitivity of TORC1 for its substrates seem to be
dependent on the integrity and configuration of TORC1. For
example, rapamycin strongly reduces RPS6KB1 phosphorylation,
whereas its effect on EIF4EBP1 is more variable. In the case of
rapamycin treatment, EIF4EBP1 can be phosphorylated by
TORC1 until rapamycin disrupts TORC1 dimerization and its
integrity, whereas RPS6KB1 phosphorylation is quickly reduced
when rapamycin simply interacts with MTOR in TORC1 (see
Autophagy inhibitors and inducers for information on catalytic
MTOR inhibitors such as torin1).376 Since it is likely that other
inhibitors, stress, and stimuli may also affect the integrity of
TORC1, a decrease or increase in the phosphorylation status of
one TORC1 substrate does not necessarily correlate with changes
in others, including ULK1. Therefore, reliable antiphospho-
ULK1 antibodies should be used to directly examine the
phosphorylation state of ULK1, along with additional experi-
mental approaches to analyze the role of the MTOR complex in
regulating autophagy.

Activation/assembly of the Atg1 complex in yeast (composed
of at least Atg1-Atg13-Atg17-Atg29-Atg31) or the ULK1 com-
plex in mammals (ULK1-RB1CC1-ATG13-C12orf44/ATG101)
is one of the first steps of autophagy induction. Therefore,
activation of this complex can be assessed to monitor autophagy
induction. In yeast, dephosphorylation of Atg13 is associated with
activation/assembly of the core complex, which can be followed
by immunoprecipitation or western blotting.377-380 In addition,
the autophosphorylation of Atg1 at Thr226 is required for its
kinase activity and for autophagy induction; this can be detected
using phospho-specific antibodies, by immunoprecipitation or
western blotting (Fig. 15).381,382 In mammalian cells, the
phosphorylation status of ULK1 at the activating sites (Ser317,
467, 555, 637, 777, or Thr574) or dephosphorylation at
inactivating sites (Ser638, 757) can be determined using
phospho-specific antibodies,355,356 or by western blotting.383 In
general, the core complex is stable in mammalian cells, although,
as noted above, upstream inhibitors (MTOR) or activators
(AMPK) may interact dynamically with it, thereby determining
the status of autophagy.

One additional topic that bears on ULK1 concerns the process
of LC3-associated phagocytosis. LAP is a type of phagocytosis in
macrophages that involves the conjugation of LC3 to single-
membrane pathogen-containing phagosomes, a process that
promotes phagosome acidification and fusion with lysosomes.131

Most of the core autophagy components are required for LAP,
but the two processes can be distinguished by the presence or
absence, respectively, of a double-membrane sequestering vesicle.
ULK1 is not needed for LAP, which provides a more convenient
means for distinguishing between the two processes.134

Cautionary notes: A decrease in TORC1 activity is a good
measure for autophagy induction; however, TORC1 activity
does not necessarily preclude autophagy induction because there
are TOR-independent mechanisms that induce autophagy.384-387

Along these lines, whereas in most systems inhibition of MTOR
leads to the induction of autophagy, there are instances in
commonly used cancer cell lines in which MTOR appears to
be a positive effector.388 Furthermore, in adult skeletal muscle,
autophagy gene upregulation and autophagosome formation is
independent of TORC1 but partially dependent on MTOR
complex 2 (TORC2), as shown by the finding that autophago-
some formation is increased by knockdown of RICTOR, a
component of TORC2, but not TORC1.346 In addition, TORC1
is downstream of AKT1; however, oxidative stress inhibits
MTOR, thus allowing autophagy, despite the concomitant
activation of AKT1.115 Also, persistent autophagy induction can
cause negative feedback that results in the reactivation of MTOR
under conditions of ongoing starvation.389 Thus, it is necessary to
be cautious in deciding how to monitor the MTOR pathway, and
to verify that the pathway being analyzed displays MTOR-
dependent inhibition.

One problem in monitoring assembly of the ULK1 complex is
the low abundance of endogenous ULK1 in many systems, which
makes it difficult to detect phospho-ULK1 by western blot
analysis. In addition, Atg1/ULK1 is phosphorylated by multiple
kinases, and the amount of phosphorylation at different sites
can increase or decrease during autophagy induction. Thus,
although there is an increase in phosphorylation at the activating
sites upon induction, the overall phosphorylation states of ULK1
and ATG13 are decreased under conditions that lead to induction
of autophagy; therefore, monitoring changes in phosphorylation
by following molecular mass shifts upon SDS-PAGE may not be
informative. In addition, such phosphorylation/dephosphoryla-
tion events are expected to occur relatively early (1–2 h) in the
signaling cascade of autophagy. Therefore, it is necessary to
optimize treatment time conditions. Finally, in Arabidopsis and
possibly other eukaryotes, the ATG1 and ATG13 proteins are
targets of autophagy, which means that their levels may drop
substantially under conditions that induce autophagic turnover.174

At present, the use of Atg1/ULK1 kinase activity as a tool to
monitor autophagy is limited because only a few physiological
substrates have been identified, and the importance of the Atg1/
ULK1-dependent phosphorylation has not been determined.
Nonetheless, Atg1/ULK1 kinase activity appears to increase when
autophagy is induced, irrespective of the pathway leading to
induction. As additional physiological substrates of Atg1/ULK1

Figure 15. S. cerevisiae cells transformed with a plasmid encoding
HA-Atg1 were cultured to mid-log phase and shifted to SD-N (minimal
medium lacking nitrogen that induces a starvation response).
Immunoblotting was done with anti-HA antibody. The upper band
corresponds to autophosphorylation of Atg1. This figure was modified
from data previously published in reference 381 and is reproduced
by permission of the American Society for Cell Biology, copyright 2011.
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are identified it will be possible to follow their phosphorylation in
vivo as is done with analyses for MTOR. Nonetheless, it must be
kept in mind that monitoring changes in the activity of Atg1/
ULK1 is not a direct assay for autophagy, although such changes
may correlate with autophagy activity. Furthermore, in some cells
ULK1 has functions in addition to autophagy, such as in axonal
transport and outgrowth, and its activity state may thus reflect
its role in these processes.390-395 Accordingly, other methods as
described throughout these guidelines should also be used to
follow autophagy directly.

Finally, there is not a complete consensus on the specific
residues of ULK1 that are targeted by AMPK or MTOR.
Similarly, apparently contradictory data have been published
regarding the association of AMPK and MTOR with the ULK1
kinase complex under different conditions. Therefore, caution
should be used in monitoring ULK1 phosphorylation or the
status of ULK1 association with AMPK until these issues are
resolved.

Conclusion: Assays for Atg1/ULK1 can provide detailed
insight into the induction of autophagy, but are not a direct
measurement of the process. Similarly, analysis of MTOR
substrates such as RPS6KB1 and EIF4EBP1 are not recom-
mended readouts for autophagy, and need to be combined with
other assays that directly monitor autophagy activity.

5. Additional autophagy-related markers. Although Atg8/LC3
has been the most extensively used protein for monitoring
autophagy, other proteins can also be used for this purpose.
Here, we discuss some of the more commonly used or better-
characterized possibilities.

a. ATG9. ATG9/Atg9 is the only integral membrane ATG
protein that is essential for autophagosome formation. ATG9
displays partial colocalization with GFP-LC3.396 Perhaps the most
unique feature of ATG9/Atg9, however, is that it localizes to
multiple discrete puncta, whereas most Atg proteins are detected
primarily in a single punctum or diffusely within the cytosol.
Yeast Atg9 may cycle between the phagophore assembly site
(PAS) and peripheral reservoirs;397 the latter correspond to
tubulovesicular clusters that are precursors to the phagophore.398

Anterograde movement to the PAS is dependent on Atg11,
Atg23, Atg27 and actin. Retrograde movement requires Atg1-
Atg13, Atg2-Atg18 and the PtdIns3K complex I.399 Mutants such
as atg1D accumulate Atg9 exclusively at the PAS, and this
phenotype forms the basis of the transport of Atg9 after knocking
out ATG1 (TAKA) assay.63 In brief, this is an epistasis analysis in
which a double-mutant strain is constructed (one of the mutations
being atg1D) that expresses Atg9-GFP. If the second mutated
gene encodes a protein that is needed for Atg9 anterograde
transport, the double mutant will display multiple Atg9-GFP
puncta. In contrast, if the protein acts along with or after Atg1, all
of the Atg9-GFP will be confined to the PAS. Monitoring the
localization of ATG9 has not been used extensively in higher
eukaryotes, but this protein displays the same type of dependence
on Atg1/ULK1 for cycling as seen in yeast,396,399 suggesting that it
is possible to follow this protein as an indication of ULK1 and
ATG13 function.370

b. ATG12–ATG5. ATG5, ATG12, and ATG16L1, associate
with the phagophore and have been detected by fluorescence or
immunofluorescence (Fig. 16).400,401 Endogenous ATG5, ATG12
or ATG16L1 puncta formation can be followed to monitor
autophagy upregulation. Under physiological conditions, the
endogenous proteins are predominantly diffusely distributed
throughout the cytoplasm. Upon induction of autophagy, for
example during starvation, there is a marked increase in the
proportion of cells with punctate ATG5, ATG12 and ATG16L1.
Furthermore, inhibitors of autophagosome formation result in
a block in this starvation-induced puncta formation, and this
assay is very robust in mammalian cells.

ATG12–ATG5 conjugation has been used in some studies to
measure autophagy. In Arabidopsis and some mammalian cells
it appears that essentially all of the ATG5 and ATG12 proteins
exist in the conjugated form and the expression levels do not
change, at least during short-term starvation.150,400-402 Therefore,
monitoring ATG12–ATG5 conjugation per se may not be a
useful method for following the induction of autophagy. It is
worth noting, however, that in some cell lines free ATG5 can be
detected,403 suggesting that the amount of free ATG5 may be

Figure 16. Confocal microscopy image of HCT116 cells immunostained with human-specific antibody to ATG12. Cells were starved for 8 h or treated with
chloroquine (50 mM) for 3 h. Scale bar, 10 mm. Image provided by M. Llanos Valero, M.A. de la Cruz and R. Sanchez-Prieto.
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cell line-dependent. One final parameter that may be considered
is that the total amount of the ATG12–ATG5 conjugate may
increase following prolonged starvation as has been observed in
hepatocytes and both mouse and human fibroblasts (Cuervo AM,
personal communication; Sarkar S, personal communication).

c. ATG14. Yeast Atg14 is the autophagy-specific subunit of
the Vps34 complex I,404 and a human homolog, named ATG14
(ATG14L/BARKOR), has been identified.405-408 ATG14 localizes
primarily to phagophores. The C-terminal fragment of the protein
is named the BATS domain (BARKOR/ATG14(L) autophago-
some targeting sequence), and is able to direct GFP and BECN1
to autophagosomes in the context of a chimeric protein.409

Currently, a good antibody that can be used to detect the
endogenous ATG14 does not exist. ATG14-GFP or BATS-GFP
detected by fluorescence microscopy or TEM can be used as a
phagophore marker; however, ATG14 is not localized exclusively
to phagophores, as it can also be detected on mature auto-
phagosomes as well as the ER.409,410 Accordingly, detection of
ATG14 should be performed in combination with other phago-
phore and autophagosome markers.

d. ATG16L1. ATG16L1 has been used to monitor the move-
ment of plasma membrane as a donor for autophagy, and thus
an early step in the process; ATG16L1 is located on phago-
phores, but not on completed autophagosomes.269,411 ATG16L1
can be detected by immuno-TEM, by immunostaining of Flag
epitope-tagged ATG16L1, and/or by the use of GFP-tagged
ATG16L1.

e. Atg18/WIPI family. Yeast Atg18412,413 and Atg21262 (or the
mammalian WIPI homologs414) are required for both macro-
autophagy (i.e., nonspecific sequestration of cytoplasm) and
autophagy-related processes (e.g., the Cvt pathway,415,416 specific
organelle degradation,74 and autophagic elimination of invasive
microbes77,78,80,81,417).412 These proteins bind phosphatidylinositol
3-phosphate (PtdIns3P) that is present at the phagophore and
autophagosome418,419 and also PtdIns(3,5)P2. Human WIPI1 and
WIPI2 function downstream of the phosphatidylinositol 3-kinase
class III (PtdIns3KC3) complex I [PIK3C3, BECN1, PIK3R4/
VPS15, ATG14] and upstream of both the ATG12 and LC3
ubiquitin-like conjugation systems.418,420,421 Upon the initiation of
the autophagic pathway, WIPI1 and WIPI2 bind PtdIns3P and
accumulate at limiting membranes, such as those of the
endoplasmic reticulum, where they participate in the formation
of omegasomes and/or autophagosomes. On the basis of
quantitative fluorescence microscopy, this specific WIPI protein
localization has been used as an assay to monitor autophagy in
human cells.419 Using either endogenous WIPI1 or WIPI2,
detected by indirect fluorescence microscopy or EM, or
transiently or stably expressed tagged fusions of GFP to WIPI1
or WIPI2, basal autophagy can be detected in cells that display
WIPI puncta at autophagosomal membranes. In circumstances of
increased autophagic activity, such as nutrient starvation or
rapamycin administration, the induction of autophagy is reflected
by the elevated number of cells that display WIPI puncta when
compared with the control setting. Also, in circumstances of
reduced autophagic activity such as wortmannin treatment, the
reduced number of WIPI puncta-positive cells reflects the

inhibition of autophagy. Basal, induced and inhibited formation
of WIPI puncta closely correlate with both the protein level of
LC3-II and the formation of GFP-LC3 puncta.419,421 Accordingly,
WIPI puncta can be assessed as an alternative to LC3. Automated
imaging and analysis of fluorescent WIPI1 (Fig. 17) or WIPI2
puncta represents an efficient and reliable opportunity to combine
the detection of WIPI proteins with other parameters. It should
be noted that there are two isoforms of WIPI2 (2B and 2D),421

and in C. elegans WIPI4 (EPG-6) has been identified as the WIPI
homolog required for autophagy.422 Thus, these proteins, along
with the currently uncharacterized WDR45L/WIPI3, provide
additional possibilities for monitoring phagophore and
autophagosome formation.

Cautionary notes: With regard to detection of the WIPI
proteins, endogenous WIPI1 puncta cannot be detected in many
cell types,418 and the level of transiently expressed GFP-WIPI1
puncta is cell context-dependent;418,419 however, it has been used
in human and mouse cell systems348,419 and mCherry-Atg18 also
works in transgenic Drosophila (Juhász G, personal communica-
tion), although one caution with regard to the latter is that GFP-
Atg18 expression can induce autophagy in the fat body of fed
larvae (Kiger A, unpublished observation). GFP-WIPI1 and GFP-
WIPI2 have been detected on the completed (mature) auto-
phagosome by freeze-fracture analysis,60 but endogenous WIPI2
has not been detected on mRFP-LC3- or LAMP2-positive
autophagosomes or autolysosomes using immunolabeling.418

Accordingly, it may be possible to follow the formation and
subsequent disappearance of WIPI puncta to monitor autophagy
induction and flux using specific techniques. As with GFP-LC3,
overexpression of WIPI1 or WIPI2 can lead to the formation
of aggregates, which are stable in the presence of PtdIns3K
inhibitors.

f. BECN1/Atg6. BECN1/Atg6 and PIK3C3/VPS34 are
essential partners in the autophagy interactome that signals the
onset of autophagy,404,423,424 and many researchers use BECN1 as
a way to monitor autophagy. BECN1 is inhibited by its binding
to the anti-apoptotic protein BCL2.425 Autophagy is induced
by the release of BECN1 from BCL2 by pro-apoptotic BH3
proteins, phosphorylation of BECN1 by DAPK (at Thr119,
located in the BH3 domain),426 or phosphorylation of BCL2
by MAPK8/JNK1 (at Thr69, Ser70 and Ser87).427,428 The
relationship between BECN1 and BCL2 is more complex in
developing cerebellar neurons as it appears that the cellular levels
of BCL2 are, in turn, post-translationally regulated by an
autophagic mechanism linked to a switch from immaturity to
maturity.429,430 It is important to be aware, however, that certain
forms of macroautophagy are induced in a BECN1-independent
manner, and are not blocked by PtdIns3K inhibitors.97,431

Interestingly, caspase-mediated cleavage of BECN1 inactivates
BECN1-induced autophagy and enhances apoptosis in several cell
types,432 emphasizing that the crosstalk between apoptosis and
autophagy is complex.

Although a population of BECN1 may localize in proximity
to the trans-Golgi network,433 it is also present at the ER and
mitochondria.425 In keeping with these observations, in cerebellar
organotypic cultures BECN1 co-immunoprecipitates with BCL2
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that is primarily localized at the mitochondria and ER, and in
a mouse model of neurodegeneration autophagic vacuoles in
Purkinje neurons contain partially digested organelles that are
immunoreactive for BCL2.430,434 In addition, BECN1 and
PIK3C3 can be present in multiple complexes, so caution must
be exercised when monitoring localization. On induction of auto-
phagy by various stimuli the presence of BECN1- and PIK3C3-
positive macroaggregates can be detected in the region of the
Golgi complex by immunofluorescence.115,435 Thus, BECN1-
GFP puncta detected by fluorescence microscopy or TEM may
serve as an additional marker for autophagy induction;436

however, as with any GFP chimeras there is a concern that the
GFP moiety interferes with correct localization of BECN1. To
demonstrate that BECN1 or PtdIns3K macroaggregates are an
indirect indication of ongoing autophagy, it is mandatory to
show their specific association with the process by including
appropriate controls with inhibitors (e.g., 3-MA) or autophagy
gene silencing. When a BECN1-independent autophagy pathway
is induced, such aggregates are not formed regardless of the fact
that the cell expresses BECN1 (e.g., as assessed by western
blotting) (Isidoro C, personal communication).

g. DRAM1. DRAM1 (damage-regulated autophagic modulator
1) is a gene induced by activated TP53/p53 in response to

different types of cellular stress, including DNA damage.438,439

DRAM1 is a small hydrophobic protein with six transmembrane
domains. It is detected as a subpopulation in the Golgi and
cis-Golgi, colocalizing with GOLGB1/giantin and GOLGA2/
GM130, and also in early and late endosomes and lysosomes,
colocalizing with EEA1 and LAMP2.439 The elimination of
DRAM1 by siRNA blocks autophagy,439,440 as effectively as
elimination of BECN1, indicating it is an essential component for
this process, although its mechanism of action is not known. The
time course of autophagy as a consequence of DRAM1 activation
can be monitored following the disappearance of the VRK1
protein, a direct target of this process, by immunoblot.439

Detection of DRAM1 RNA is very easy by qRT-PCR during
autophagy;438,439 however, detection of the DRAM1 protein is
very difficult because of its small size and hydrophobicity, which
makes generation of specific antibodies a complicated process, and
in general these have very low sensitivity.

h. ZFYVE1/DFCP1. ZFYVE1/DFCP1 (double FYVE-
containing protein 1) binds PtdIns3P that localizes to the ER and
Golgi. The ER population of ZFYVE1 is involved in formation of
the omegasome.437 Starvation induces the translocation of ZFYVE1
to punctate structures on the ER. ZFYVE1 partially colocalizes with
WIPI1 upon nutrient starvation,421 and also with WIPI2.418

Figure 17. Automated WIPI1 puncta image acquisition and analysis monitors the induction and inhibition of autophagy. Stable U2OS clones expressing
GFP-WIPI1 were selected using 0.6 mg/ml G418 and then cultured in 96-well plates. Cells were treated for 3 h with nutrient-rich medium (control),
nutrient-free medium (EBSS), or with 233 nM wortmannin. Cells were fixed in 3.7% paraformaldehyde and stained with DAPI (5 mg/ml in PBS).
An automated imaging and analysis platform was used to determine the number of both GFP-WIPI1 puncta-positive cells and the number of GFP-WIPI1
puncta per individual cell.348 Cells without GFP-WIPI1 puncta are highlighted in red (cell detection) and purple (nuclei detection), whereas GFP-WIPI1
puncta-positive cells are highlighted in yellow (GFP-WIPI1 puncta detection), green (cell detection) and blue (nuclei detection). Bars, 20 mm. These images
were provided by S. Pfisterer and T. Proikas-Cezanne.
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Conclusion: Proteins other than Atg8/LC3 can be monitored
to follow autophagy, and can be important tools to define specific
steps of the process. For example, WIPI puncta formation can be
used to monitor autophagy, but, similar to Atg8/LC3, should be
examined in the presence and absence of inhibitors. Analysis of
WIPI puncta should be combined with other assays because
individual members of the WIPI family might also participate in
additional, uncharacterized functions apart from their role in
autophagy. At present, we caution against the use of changes
in BECN1 localization as a marker of autophagy induction.

6. Transcriptional and translational regulation. The induction
of autophagy in certain scenarios is accompanied by an increase in
the mRNA levels of certain autophagy genes, such as ATG8/
Lc3441,442 and Atg12,443 and an autophagy-dedicated microarray
was developed as a high-throughput tool to simultaneously
monitor the transcriptional regulation of all genes involved in,
and related to, autophagy.444 The gene that shows the greatest
transcriptional regulation in the liver (in response to starvation
and circadian signals) is Ulk1, but others also show more limited
changes in mRNA levels including Gabarapl1, Bnip3 and, to a
minor extent, Lc3B (Lin JD, personal communication). In several
mouse and human cancer cell lines, ER stress and hypoxia
increase the transcription of LC3, ATG5 and ATG12 by a
mechanism involving the unfolded protein response (UPR).
Similarly, a stimulus-dependent increase in LC3B expression is
detected in neutrophils undergoing autophagy induction.445

Increased expression of Atg5 in vivo after optic nerve axotomy
in mice446 and increased expression of Atg7, Becn1 and Lc3a
during neurogenesis at different embryonic stages in the mouse
olfactory bulb are also seen.447 LC3 and ATG5 are not required
for the initiation of autophagy, but mediate phagophore expan-
sion and autophagosome formation. In this regard, the trans-
criptional induction of LC3 may be necessary to replenish the
LC3 protein that is turned over during extensive ER stress- and
hypoxia-induced autophagy.443,448 Thus, assessing the mRNA
levels of LC3 and other autophagy-related genes by northern
blot or qRT-PCR may provide correlative data relating to the
induction of autophagy. It is not clear if these changes are
sufficient to induce autophagy, however, and therefore these are
not direct measurements.

Of note, large changes in Atg gene transcription just prior to
Drosophila salivary gland cell death (that is accompanied by an
increase in autophagy) are detected in Atg2, Atg4, Atg5 and Atg7,
whereas there is no significant change in Atg8a or Atg8b.449,450

Autophagy is critical for Drosophila midgut cell death, which is
accompanied by transcriptional upregulation of all of the Atg
genes tested, including Atg8a (Fig. 18).199,451 Similarly, in the
silkworm (B. mori) larval midgut the occurrence of autophagy is
accompanied by an upregulation of Atg5, Atg6 and Atg8 mRNA
levels.452 Transcriptional upregulation of Drosophila Atg8a and
Atg8b is also observed in the fat body following induction of
autophagy at the end of larval development,453 Atg5, Atg6, Atg8a
and Atg18 are upregulated in the ovary of starved flies,454 and an
increase in Drosophila Atg8b is observed in cultured Drosophila
l(2)mbn cells following starvation (Gorski S, personal communi-
cation). An upregulation of plant ATG8 may be needed during

the adaptation to reproductive growth; a T-DNA inserted
mutation of rice ATG8b blocked the change from vegetative
growth to reproductive growth in both homozygous and
heterozygous plant lines (Zhang M-Y, unpublished results).

Similarly, the upregulation of autophagy-related genes (Lc3,
Gabarapl1, Bnip3, Atg4b, Atg12l) has been documented at the
transcriptional and translational level in several other species (e.g.,
mouse, rat, trout, Arabidopsis and maize) under conditions of
ER stress,443 and diverse types of prolonged (several days)
catabolic situations including cancer cachexia, diabetes mellitus,
uremia and fasting.151,346,455-457 Along these lines, ATG9 and
ATG16L1 are transcriptionally upregulated upon influenza virus
infection (Khalil H, personal communication), and in C. elegans,
the FOXA transcription factor PHA-4 regulates the expression
of several autophagy-related genes.458 Such prolonged induction
of the expression of ATG genes has been thought to allow the
replenishment of critical proteins (e.g., LC3 and GABARAP)
that are destroyed during autophagosome fusion with the lyso-
some.459 The polyamine spermidine increases life span and
induces autophagy in cultured yeast and mammalian cells, as well
as in nematodes and flies; in aging yeast, spermidine treatment

Figure 18. pGFP-Atg8a can be used to monitor autophagy in Drosophila
melanogaster. The autophagosome marker pGFP-Atg8a, results
in expression of Atg8a fused to GFP from the endogenous Atg8a
promoter.199 Live imaging of gastric caeca from Drosophila melanogaster
midgut; pGFP-Atg8a puncta (green) and Hoechst 33342 (blue). Midgut
from early third instar larvae prior to the onset of cell death (top) and
from dying midgut at 2 h after puparium formation (bottom). Bar, 25 mm.
Figure provided by D. Denton and S. Kumar.

490 Autophagy Volume 8 Issue 4



© 2012 Landes Bioscience.

Do not distribute.

triggers epigenetic deacetylation of histone H3 through inhibition
of histone acetyltransferases, leading to significant upregulation of
various autophagy-related transcripts.460

In addition to the ATG genes, transcriptional upregulation of
VMP1 (a protein that is involved in autophagy regulation and that
remains associated with the completed autophagosome) can be
detected in mammalian cells subjected to rapamycin treatment
or starvation, and in tissues undergoing disease-induced auto-
phagy.461 VMP1 is an essential autophagy gene that is conserved
from Dictyostelium to mammals,232,462 and the VMP1 protein
regulates early steps of the autophagic pathway.420 VMP1 is poorly
expressed in mammalian cells under nutrient-normal conditions,
but is highly upregulated in cells undergoing autophagy, and the
expression of VMP1 induces autophagosome formation.

A gene regulatory network, named CLEAR (coordinated lyso-
somal enhancement and regulation) that controls both lysosome
and autophagosome biogenesis was identified using a systems-
biology approach.463-465 The basic helix-loop-helix transcription
factor EB (TFEB) acts as a master gene of the CLEAR network
and positively regulates the expression of both lysosomal and
autophagy genes, thus linking the biogenesis of two distinct types
of cellular compartments that cooperate in the autophagic
pathway. TFEB activity is regulated by starvation,463 and can
thus serve as a new tool for monitoring transcriptional regulation
connected with autophagy. Along these lines, the erythroid
transcription factor GATA1 and its coregulator Friend of GATA1
induce the transcription of multiple genes encoding autophagy
components; this developmentally regulated transcriptional
response is coupled to increases in autophagosome number as
well as the percent of cells that contain autophagosomes.466

Finally, CEBPB/C/EBPβ is a transcription factor that regulates
autophagy in response to the circadian cycle.467

Although less work has been done on post-transcriptional
regulation, several studies implicate microRNAs in controlling
the expression of proteins associated with autophagy.164,468-470

Cautionary notes: Most of the ATG genes do not show
significant changes in mRNA levels when autophagy is induced.
Even increases in LC3 mRNA can be quite modest and are cell
type- and organism-dependent.471 In addition, it is generally
better to follow protein levels because that is the ultimate readout
that is significant with regard to the initiation and completion of
autophagy, although ATG protein amounts do not always change
significantly and the extent of increase is again cell type- and
tissue-dependent. In some cases (e.g., yeast ATG14), increased
transcription is not accompanied by increased protein levels,
apparently due to changes in translation efficiency under starva-
tion conditions (Abeliovich H, unpublished data). Finally,
changes in autophagy protein levels are not sufficient evidence
of autophagy induction, and must be accompanied by additional
assays as described herein. Thus, monitoring changes in mRNA
levels for either ATG genes or autophagy regulators may provide
some evidence for autophagy induction, but should be used along
with other methods.

Another general caution pertains to the fact that in any cell
culture system different types of cells (for example, those
undergoing autophagy or not) exist simultaneously. Therefore,

only an average level of protein or mRNA expression can be
evaluated with most methods. This means that the results
regarding specific changes in autophagic cells could be hidden
due to the background of the average data. Along these lines,
experiments using single-cell real-time PCR to examine gene
expression in individual cardiomyocytes with and without signs
of autophagy revealed that the transcription of MTOR markedly
and significantly increased in autophagic cells in intact cultures
(spontaneously undergoing autophagy) as well as in cultures
treated with proteasome inhibitors to induce autophagy
(Dosenko V, personal communication). Finally, researchers need
to realize that mammalian cell lines may have mutations that
alter autophagy signaling or execution; this problem can be
avoided by using primary cells.

Conclusion: Although there are changes in ATG gene expres-
sion that coincide with, and may be needed for, autophagy, this
has not been carefully studied experimentally. Therefore, at the
present time we do not recommend the monitoring of ATG gene
transcription as a general readout for autophagy unless there is
clear documentation that the change(s) correlates with autophagy
activity.

7. Autophagic protein degradation. Protein degradation assays
represent a well-established methodology for measuring auto-
phagic flux, and they allow good quantification. The general
strategy is first to label cellular proteins by incorporation of a
radioactive amino acid (e.g., [14C]-leucine, [14C]-valine or [35S]-
methionine; although valine may be preferred over leucine due
to the strong inhibitory effects of the latter on autophagy), pre-
ferably for a long time to achieve sufficient labeling of the long-
lived proteins that best represent autophagic substrates, and then
to follow this with a long cold-chase so that the assay starts well
after labeled short-lived proteins are degraded (which occurs
predominantly via the proteasome). Next, the time-dependent
release of acid-soluble radioactivity from the labeled protein in
intact cells or perfused organs is measured.3,472,473 Note that the
inclusion of the appropriate unlabeled amino acid (i.e., valine,
leucine or methionine) in the starvation medium at a concen-
tration equivalent to that of other amino acids in the chase
medium is necessary; otherwise, the released [14C]-amino acid is
effectively re-incorporated into cellular proteins, which results
in a significant underestimation of protein degradation. The
turnover of specific proteins can also be measured in a pulse-chase
regimen using the Tet-ON/OFF system and subsequent western
blot analysis.474,475

In this type of assay a considerable fraction of the measured
degradation will be non-autophagic, and thus it is important to
also measure, in parallel, cell samples treated with autophagy-
suppressive concentrations of 3-MA or amino acids, or obtained
from mutants missing central ATG components (however, the
latter assumes that non-autophagic proteolytic activity remains
unchanged, which is unlikely); these values are then subtracted
from the total. The complementary approach of using com-
pounds that block other degradative pathways, such as proteasome
inhibitors, may cause unexpected results and should generally
be avoided due to crosstalk among the degradative systems.
For example, blocking proteasome function may activate
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autophagy.476-479 Thus, when using inhibitors it is critical to know
whether the inhibitors being used alter autophagy in the parti-
cular cell type and context being examined. In addition, because
3-MA could have some autophagy-independent effects in parti-
cular settings it is advisable to verify that the 3-MA-sensitive
degradation is also sensitive to general lysosomal inhibitors (such
as NH4Cl or leupeptin).

The use of stable isotopes, such as 13C and 15N, in quantitative
mass spectrometry-based proteomics allows the recording of
degradation rates of thousands of proteins simultaneously. These
assays may be applied to autophagy-related questions enabling
researchers to investigate differential effects in global protein or
even organelle degradation studies.480,481 SILAC (stable isotope
labeling with amino acids in cell culture) can also provide
comparative information between different treatment conditions,
or between a wild type and mutant.

Another assay that could be considered relies on the limited
proteolysis of a betaine homocysteine methyltransferase (BHMT)
fusion protein. The 44-kDa full-length BHMT protein is cleaved
in hepatocyte amphisomes in the presence of leupeptin to
generate 32-kDa and 10-kDa fragments.482-485 Accumulation of
these fragments is time-dependent and is blocked by treatment
with autophagy inhibitors. A modified version of this marker,
GST-BHMT, can be expressed in other cell lines where it behaves
similar to the wild-type protein.486 Other substrates may be
considered for similar types of assays. For example, the neomycin
phosphotransferase II-GFP (NeoR-GFP) fusion protein is a target
of autophagy.487 Transfection of lymphoblastoid cells with a
plasmid encoding NeoR-GFP followed by incubation in the
presence of 3-MA leads to an accumulation of the NeoR-GFP
protein as measured by flow cytometry.488

A similar western blot assay is based on the degradation of a
cytosolic protein fused to GFP. This method has been used in
yeast and Dictyostelium cells using GFP-PgkA and GFP-Tkt-1
(phosphoglycerate kinase and transketolase, respectively). In this
case the relative amount of the free GFP and the complete fusion
protein is the relevant parameter for quantification; although
it may not be possible to detect clear changes in the amount of
the full-length chimera, especially under conditions of limited
flux.29,36 As described above for the marker GFP-Atg8/LC3,
nonsaturating levels of lysosomal inhibitors are also needed in
Dictyostelium cells to slow down the autophagic degradation,
allowing the accumulation and detection of free GFP. It should
be noted that this method monitors bulk autophagy since it relies
on the passive transit of a cytoplasmic marker to the lysosome.
Consequently, it is important to determine that the marker is
distributed homogeneously in the cytoplasm.

One of the most useful methods for monitoring autophagy in
S. cerevisiae is the Pho8D60 assay. PHO8 encodes the vacuolar
alkaline phosphatase, which is synthesized as a zymogen before
finally being transported to and activated in the vacuole.489 A
molecular genetic modification that eliminates the first 60 amino
acids prevents the mutant (Pho8D60) from entering the endo-
plasmic reticulum, leaving the zymogen in the cytosol. When
autophagy is induced, the mutant zymogen is delivered to the
vacuole nonselectively inside autophagosomes along with other

cytoplasmic material. The resulting activation of the zymogen can
be easily measured by assays for alkaline phosphatase.178 To
minimize background activity, it is preferable to have the gene
encoding cytosolic alkaline phosphatase (PHO13) additionally
deleted (although this is not necessary when assaying certain
substrates).

Cautionary notes: Measuring the degradation of long-lived
proteins requires prior radiolabeling of the cells, and subsequent
separation of acid-soluble from acid-insoluble radioactivity. The
labeling can be done with relative ease both in cultured cells,
and in live animals.3 In cells, it is also possible to measure the
release of an unlabeled amino acid by chromatographic methods,
thereby obviating the need for prelabeling;490 however, it is
important to keep in mind that amino acid release is also regu-
lated by protein synthesis, which in turn is modulated by many
different factors. In either case, one potential problem is that the
released amino acid may be further metabolized. For example,
branched chain amino acids are good indicators of proteolysis in
hepatocytes, but not in muscle cells where they are further
oxidized (Meijer AJ, personal communication). In addition, the
amino acid can be reincorporated into protein; for this reason,
such experiments can be performed in the presence of cyclo-
heximide, but this raises additional concerns (see Turnover of
autophagic compartments). In the case of labeled amino acids, a
nonlabeled chase is added where the tracer amino acid is present
in excess (being cautious to avoid using an amino acid that
inhibits autophagy), or by use of single pass perfused organs or
superfused cells.491,492 The perfused organ system also allows for
testing the reversibility of effects on proteolysis and the use of
autophagy-specific inhibitors in the same experimental prepara-
tion, which are crucial controls for proper assessment.

If the autophagic protein degradation is low (as it will be in
cells in replete medium), it may be difficult to measure it reliably
above the relatively high background of non-autophagic degrada-
tion. It should also be noted that the usual practice of incubat-
ing the cells under “degradation conditions,” that is, in a saline
buffer, indicates the potential autophagic capacity (maximal
attainable activity) of the cells rather than the autophagic activity
that prevails in vivo or under rich culture conditions. Finally,
inhibition of a particular degradative pathway is typically accom-
panied by an increase in a separate pathway as the cell attempts
to compensate for the loss of degradative capacity.158,478,493 This
compensation might interfere with control measurements under
conditions that attempt to inhibit macroautophagy; however, as
the latter is the major degradative pathway, the contributions
of other types of degradation over the course of this type of
experiment are most often negligible.

The Pho8D60 assay requires standard positive and negative
controls (such as an atg1D strain), and care must be taken to
ensure the efficiency of cell lysis. Glass beads lysis works well in
general, provided that the agitation speed of the instrument is
adequate. Instruments designed for liquid mixing with lower
speeds should be avoided. We also recommend against holding
individual sample tubes on a vortex, as it is difficult to maintain
reproducibility; devices or attachments are available to allow
multiple tubes to be agitated simultaneously.
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Conclusion: Measuring the turnover of long-lived proteins is a
good method for determining autophagic flux.

8. Selective types of autophagy. Although autophagy can be
nonspecific, in particular during starvation, there are many
examples of selective types of autophagy.

a. The Cvt pathway, mitophagy, pexophagy and piecemeal
microautophagy of the nucleus in yeast. The precursor form of
aminopeptidase I (prApe1) is the major cargo of the Cvt pathway
in yeast, a biosynthetic autophagy-related pathway.82 The pro-
peptide of prApe1 is proteolytically cleaved upon vacuolar
delivery, and the resulting shift in molecular mass can be
monitored by western blot. Under starvation conditions, prApe1
can enter the vacuole through nonspecific autophagy, and thus
has been used as a marker for both the Cvt pathway and
autophagy. The yeast Cvt pathway is unique in that it is a
biosynthetic route that utilizes the autophagy-related protein
machinery, whereas other types of selective autophagy are
degradative. The latter include pexophagy, mitophagy, reticulo-
phagy, ribophagy and xenophagy, and each process has its own
marker proteins, although these are typically variations of other
assays used to monitor the Cvt pathway or autophagy. One
common type of assay involves the processing of a GFP chimera
similar to the GFP-Atg8/LC3 processing assay (see GFP-Atg8/LC3
lysosomal delivery and proteolysis). For example, yeast pexophagy
utilizes the processing of Pex14-GFP and Pot1 (thiolase)-
GFP,494,495 whereas mitophagy can be monitored by the genera-
tion of free GFP from Om45-GFP, Idh1-GFP, Idp1-GFP or
mito-DHFR-GFP.496-500 Localization of these mitochondrially-
targeted proteins (or specific MitoTracker dyes) or similar
organelle markers such as those for the peroxisome [e.g., GFP-
SKL with Ser-Lys-Leu at the C terminus that acts as a peroxi-
somal targeting signal, acyl-CoA oxidase 3 (Aox3-EYFP) that
allows simultaneous observation of peroxisome-vacuole dynamics
with the single FITC filter set, or GFP-catalase] can also be
followed by fluorescence microscopy.412,495,501-503 In addition,
yeast mitophagy requires both the Slt2 and Hog1 signaling

pathways; the activation and phosphorylation of Slt2 and Hog1
can be monitored with commercially available phospho-specific
antibodies (Fig. 19).381 It is also possible to monitor pexophagy in
yeasts by the disappearance of activities of specific peroxisome
markers such as catalase, alcohol oxidase or amine oxidase in
cell-free extracts,504 or permeabilized cell suspensions. Catalase
activity, however, is a useful marker only when peroxisomal
catalases are the only such enzymes present. In S. cereviseae
there are two genes encoding catalase activity, and only one of
these gene products is localized in peroxisomes. Plate assays
for monitoring the activity of peroxisomal oxidases in yeast
colonies are also available.501,505 The decrease in the level of
endogenous proteins such as alcohol oxidase or Pot1 can be
followed by western blotting,412,506-509 TEM,510 fluorescence
microscopy412,511,512 or laser confocal scanning microscopy of
GFP-labeled peroxisomes.513,514

In yeast, nonspecific autophagy can be induced by nitrogen
starvation conditions, whereas degradative types of selective
autophagy generally require a carbon source change or ER stress
for efficient induction. For example, to induce a substantial level
of mitophagy, cells need to be precultured in a nonfermentable
carbon source such as lactate or glycerol to stimulate the pro-
liferation of mitochondria. After sufficient mitochondria pro-
liferation, shifting the cells back to a fermentable carbon source
such as glucose will cause the autophagic degradation of super-
fluous mitochondria.497 It should be noted that in addition to
carbon source change, simultaneous nitrogen starvation is also
required for efficient mitophagy induction. This is possibly
because excessive mitochondria can be segregated into daughter
cells by cell division if growth continues.478A similar carbon
source change from oleic acid or methanol to ethanol or glucose
(with or without nitrogen starvation) can be used to assay for
pexophagy.515 In addition, mitophagy can also be induced by
culturing the cells in a nonfermentable carbon source to post-
log phase. In this case, mitophagy may be induced because the
energy demand is lower at post-log phase and the mitochondrial
mass exceeds the cell’s needs.75,516,517 It has been suggested by
several workers in the field that this type of mitophagy, also
known as “stationary phase mitophagy,” reflects a quality-control
function that culls defective mitochondria that accumulate in
nondividing, respiring cells.518 Similar, pexophagy can be induced
by culturing the cells in a peroxisome proliferation medium to
post-log phase (Farré J-C, unpublished results). Along these lines,
it should also be realized that selective types of autophagy
continuously occur at a low level under noninducing conditions.
Thus, organelles such as peroxisomes have a finite life span and
are turned over at a slow rate by autophagy-related pathways.519

Piecemeal microautophagy of the nucleus (PMN, also micro-
nucleophagy) is another selective autophagic subtype, which
targets portions of the nucleus for degradation.520-522 In
S. cerevisiae, the nuclear outer membrane, which is continuous
with the nuclear ER, forms contact sites with the vacuolar
membrane. These nucleus-vacuole junctions (NVJs) are generated
by interaction of the outer nuclear membrane protein Nvj1 with
the vacuolar protein Vac8.523 Nvj1 further recruits the ER-
membrane protein Tsc13, which is involved in the synthesis of

Figure 19. S. cerevisiae cells were cultured to mid-log phase and shifted
to SD-N for the indicated times. Samples were taken before (+) and
at the indicated times after (–) nitrogen starvation. Immunoblotting
was done with anti-phospho-Slt2 and anti-phospho-Hog1 antibody.
This figure was modified from data previously published in reference 381
and is reproduced by permission of the American Society for Cell
Biology, copyright 2011.
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very-long-chain fatty acids (VLCFAs) and Osh1, a member of a
family of oxysterol-binding proteins. Upon starvation the NVJs
bulge into the vacuole and subsequently a PMN-vesicle pinches
off into the vacuole. PMN vesicles thus contain nuclear material
and are limited by three membranes with the outermost derived
from the vacuole, and the two inner ones from the nuclear ER.
It is not clear which nuclear components are removed by PMN,
but since PMN is not a cell death mechanism per se, most likely
superfluous material is recycled. During PMN the NVJs are
selectively incorporated into the PMN vesicles and degraded.
Accordingly, PMN can be monitored using the proteins that are
associated with the NVJs as markers. To quantitatively follow
PMN, an assay analogous to the above-described GFP-Atg8/LC3
processing assay has been established using either GFP-Osh1 or
Nvj1-GFP. These GFP chimeras are, together with the PMN-
vesicles, degraded in the vacuole. Thus, the formation of the
relatively proteolysis-resistant GFP detected in western blots
correlates with the PMN rate. In fluorescence microscopy, PMN
can be visualized with the same constructs, and a chimera of
mCherry fused to a nuclear localization signal (NLS-mCherry)
can also be used. To assure that the measured PMN rate is indeed
due to selective micronucleophagy, appropriate controls such
as cells lacking Nvj1 or Vac8 should be included. Detailed
protocols for the described assays are provided in reference 524.

b. Reticulophagy and ribophagy. Activation of the UPR in
the ER in yeast induces a type of selective macroautophagy of the
ER.525-527 This process is termed reticulophagy to be consistent
with the terms pexophagy and mitophagy.527 Reticulophagy-
associated autophagosomes are lamellar-membraned structures
that contain ER proteins. In theory, since reticulophagy is
selective, it should be able to sequester parts of the ER that are
damaged, and eliminate protein aggregates that cannot be
removed in other ways. Reticulophagy may also serve to limit
the UPR, by reducing the ER to a normal level after a particular
stress condition has ended. Some of the mutated dysferlin protein,
LGMB2B/Miyoshi type muscle dystrophy, which accumulates in
the ER, is degraded by ER-stress mediated reticulophagy.528 In
addition to activation of the UPR, PtdIns3P and its binding
proteins could be good markers for reticulophagy.437 Autophagy is
also used for the selective removal of ribosomes.529 This process
can be monitored by western blot, following the generation of
free GFP from Rpl25-GFP or the disappearance of ribosomal
subunits such as Rps3. Vacuolar localization of Rpl25-GFP can
also be seen by fluorescence microscopy.

Cautionary notes: The Cvt pathway has been demonstrated to
occur only in yeast. In addition, the sequestration of prApe1 is
specific, even under starvation conditions, as it involves the
recognition of the propeptide by a receptor, Atg19, which in
turn interacts with the scaffold protein Atg11.530,531 Thus, unless
the propeptide is removed, prApe1 is recognized as a selective
substrate. Overexpression of prApe1 saturates import by the
Cvt pathway, and the precursor form accumulates, but is rapidly
matured upon autophagy induction.218 In addition, mutants such
as vac8D and tlg2D accumulate prApe1 under rich conditions,
but not during autophagy.380,532Accordingly, it is possible to
monitor the processing of prApe1 when overexpressed, or in

certain mutant strains to follow autophagy induction. However,
even the latter conditions may be misleading, as they do not
indicate the size of the autophagosome. The Cvt complex (prApe1
bound to Atg19) is smaller than typical peroxisomes or mito-
chondrial fragments that are subject to autophagic degradation.
Accordingly, particular mutants may display complete maturation
of prApe1 under autophagy-inducing conditions, but may still
have a defect in other types of selective autophagy, as well as being
unable to induce a normal level of nonspecific autophagy.63 For
this reason, it is good practice to evaluate autophagosome size
and number by TEM. Actually, it is much simpler to monitor
autophagic bodies (rather than autophagosomes) in yeast. First,
the vacuole is easily identified, making the identification of
autophagic bodies much simpler. Second, autophagic bodies can
be accumulated within the vacuole, allowing for an increased
sample size. It is best to use a strain background that is pep4D
vps4D to prevent the breakdown of the autophagic bodies, and
to eliminate confounding vesicles from the multivesicular body
pathway. One caveat to the detection of autophagic bodies,
however, is that they may coalesce in the vacuole lumen, making
it difficult to obtain an accurate quantification.

In general, when working with yeast it is preferable to use
strains that have the marker proteins integrated into the chro-
mosome rather than relying on plasmid-based expression, because
plasmid numbers can vary from cell to cell. The GFP-Atg8, or
similar, processing assay is easy to perform and is suitable for
analysis by microscopy as well as western blotting; however,
particular care is needed to obtain quantitative data for GFP-
Atg8, Pex14-GFP or Om45-GFP, etc. processing assays (see
cautionary notes for GFP-Atg8/LC3 lysosomal delivery and
proteolysis). An alternative is an organelle targeted Pho8D60
assay. For example, mitoPho8D60 can be used to quantitatively
measure mitophagy.498 In addition, for the GFP-Atg8 processing
assay, 2 h of starvation is generally sufficient to detect a signifi-
cant level of free (i.e., vacuolar) GFP by western blotting as a
measure of nonselective autophagy. For selective types of auto-
phagy, the length of induction needed for a clearly detectable
free GFP band will vary depending on the rate of cargo delivery/
degradation. Usually 6 h of mitophagy induction is needed to be
able to detect free GFP (e.g., from Om45-GFP) by western blot
under starvation conditions, whereas stationary phase mitophagy
typically requires 3 d before a free GFP band is observed.

c. Vacuole import and degradation pathway. In yeast, gluco-
neogenic enzymes such as fructose-1,6-bisphosphatase (Fbp1,
also called FBPase), malate dehydrogenase (Mdh2), isocitrate
lyase (Icl1) and phosphoenolpyruvate carboxykinase (Pck1) con-
stitute the cargo of the vacuole import and degradation (Vid)
pathway.533 These enzymes are induced when yeast cells are
glucose starved (grown in a medium containing 0.5% glucose
and potassium acetate). Upon replenishing these cells with fresh
glucose (a medium containing 2% glucose), these enzymes are
degraded in either the proteasome534-536 or the vacuole533,537

depending on the duration of starvation. Following glucose
replenishment after 3 d glucose starvation, the gluconeogenic
enzymes are delivered to the vacuole for degradation.538 These
enzymes are sequestered in specialized 30- to 50-nm vesicles
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called Vid vesicles.539 Vid vesicles can be purified by fractiona-
tion and gradient centrifugation; western blotting analysis using
antibodies against organelle markers and Fbp1, and the subse-
quent verification of fractions by EM facilitate their identifi-
cation.539 Furthermore, the amount of marker proteins in the
cytosol compared with the Vid vesicles can be examined by
differential centrifugation. In this case, yeast cells are lysed and
subjected to differential centrifugation. The Vid vesicle-enriched
pellet fraction and the cytosolic supernatant fraction are examined
with antibodies against Vid24, Vid30, Sec28 and Fbp1.540-542

Vid/endosomes containing their cargo aggregate around endo-
cytic vesicles forming on the plasma membrane and are released
into the cytoplasm. The Vid/endosomes can be purified by
fractionation and density gradient centrifugation.543 The fractions
containing purified Vid/endosomes can be identified by western
blot analysis using antibodies against Vid24, Fbp1 and the
endosomal marker Pep12. The distribution of Vid vesicles
containing cargo destined for endosomes, and finally for the
vacuole, can be examined using FM 4–64, a lipophilic dye that
stains endocytic compartments and the vacuole limiting mem-
brane.544 In these experiments, starved yeast cells are replenished
with fresh glucose and FM 4–64, and cells are collected at
appropriate time points for examination by fluorescence micro-
scopy.541 The site of degradation of the cargo in the vacuole can
be determined by studying the distribution of Fbp1-GFP, or
other Vid cargo markers in wild-type and pep4D cells.545 Cells
can also be examined for the distribution of Fbp1 at the ultra-
structural level by immuno-TEM.543

As actin patch polymerization is required for the delivery of
cargo to the vacuole in the Vid pathway, distribution of Vid
vesicles containing cargo and actin patches can be examined by
actin staining (with phalloidin conjugated to rhodamine) using
fluorescence microscopy.543 The distribution of GFP tagged
protein and actin is examined by fluorescence microscopy. GFP-
Vid24, Vid30-GFP and Sec28-GFP colocalize with actin during
prolonged glucose starvation and for up to 30 min following

glucose replenishment in wild-type cells; however, colocalization
is less obvious by the 60 min time point.540,543

d. Mammalian mitophagy and peroxisome degradation. There is
no consensus at the present time with regard to the best
method for monitoring mammalian mitophagy. As with any
organelle-specific form of autophagy, it is necessary to demon-
strate: (1) increased levels of autophagosomes containing mito-
chondria, (2) maturation of these autophagosomes to culminate
with mitochondrial degradation, which can be blocked by
specific inhibitors of autophagy or of lysosomal degradation,
and (3) whether the changes are due to selective mitophagy
or increased mitochondrial degradation during generalized
autophagy. Techniques to address each of these points have
been reviewed.41

Ultrastructural analysis at early time points can be used to
establish selective mitophagy, although a maturation inhibitor
may be needed to trap early autophagosomes with recognizable
cargo (Fig. 20). Depending on the use of specific imaging
techniques, dyes for living cells or antibodies for fixed cells have
to be chosen. In any case, transfection of the autophagosomal
marker GFP-LC3 and visualization of mitochondria (independent
of their mitochondrial membrane potential) makes it possible
to determine the association of these two cellular components.
This may appear as fluorescence colocalization or as rings of
GFP-LC3 surrounding mitochondria in higher resolution images.
For live cell imaging microscopy, a method that marks mito-
chondria independently of mitochondrial membrane potential,
such as MitoTracker1 Green FM or transfection with a matrix-
targeted fluorescent protein, should be used to detect mitochon-
drial structures. Antibodies that specifically recognize mitochon-
drial proteins such as VDAC1, TOMM20/TOM20 or complex IV
subunit I may be used to visualize mitochondria in immuno-
histochemical experimental procedures.546,547 Colocalization ana-
lyses of mitochondria and autophagosomes provide an indication
of the degree of sequestration. TEM can be used to demonstrate
the presence of mitochondria within autophagosomes (referred

Figure 20. Autophagosomes with recognizable cargo are rare in cells. (A) To assess relative rates of autophagosome formation, the fusion inhibitor
bafilomycin A1 (10 nM) was applied for 2 h prior to fixation with 2% glutaraldehyde in order to trap newly formed autophagosomes. Two different PINK1
shRNA lines exhibit increased AV formation over 2 h compared with the control shRNA line. *p . 0.05 vs. Control. (B) Autophagosomes in bafilomycin
A1-treated control cells contain a variety of cytoplasmic structures (left, arrow), while mitochondria comprise a prominent component of autophagosomes
in A14 bafilomycin A1-treated (PINK1 shRNA) cells (right, arrow). Scale bar, 500 nm. These data indicate induction of selective mitophagy in PINK1-deficient
cells. This figure was modified from Figure2 published in Chu CT. A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications
for Parkinson disease. Hum Mol Genet 2010; 19:R28–37.
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to as mitophagosomes during mitophagy), and this can be
coupled with bafilomycin A1 treatment to prevent fusion with
the lysosome.41

The fusion process of mitophagosomes with hydrolase-
containing lysosomes represents the next step in the degradation
process. To monitor the amount of fused organelles via live cell
imaging microscopy, MitoTracker1 Green FM, as a mitochon-
drial marker without significant membrane potential dependence
and LysoTracker1 Red DND-99 may be used to visualize the
fusion process (Fig. 21). Independent of the cell-type specific
concentration used for both dyes, we recommend exchanging
MitoTracker1 Green FM with normal medium after incubation
with the dye, whereas it is best to maintain the LysoTracker1

Red staining in the incubation medium during the acquisition of
images. For immuncytochemical experiments, antibodies specific
for mitochondrial proteins and an antibody against the lysosomal-
associated membrane protein 1 (LAMP1) can be used. Overlapp-
ing signals appear as a merged color and can be used as indicators
for successful fusion of autophagosomes that contain mitochon-
dria with lysosomal structures.548 To measure the correlation
between two variables by imaging techniques, such as the

colocalization of two different stainings, we recommend some
form of correlation analysis to assess the value correlating with the
strength of the association. This may use, for example, ImageJ
software, or other colocalization scores that can be derived from
consideration not only of pixel colocalization, but also from a
determination that the structures have the appropriate shape.
During live-cell imaging, the two structures should move together
in more than one frame. Mitophagy can also be quantitatively
monitored using a mitochondria-targeted version of the pH-
dependent Keima protein.549 The peak of the excitation spectrum
of the protein shifts from 440 nm to 586 nm when mitochondria
are delivered to acidic lysosomes, which allows easy quantification
of mitophagy (Fig. 22). However, it should be noted that long
exposure times of the specimen to intense laser light lead to a
similar spectral change.

The third and last step of the degradation process is the
monitoring of the amount of remaining mitochondria by
analyzing the mitochondrial mass. This final step provides the
opportunity to determine the efficiency of degradation of dysfunc-
tional, aged or impaired mitochondria. Mitochondrial mass can
either be measured by a FACS technique using MitoTracker1

Figure 21. Human fibroblasts showing colocalization of mitochondria with lysosomes. The degree of colocalization of mitochondria with lysosomes
in human fibroblasts was measured via live cell imaging microscopy at 37°C and 5% CO2 atmosphere using the ApoTome1 technique. LysoTracker1

Red DND-99 staining was applied to mark lysosomal structures (red), and MitoTracker1 Green FM to visualize mitochondria (green). Hoechst 33342 dye
was used to stain nuclei (blue). A positive colocalization is indicated by yellow signals (merge) due to the overlap of LysoTracker1 Red and MitoTracker1

Green staining (white arrows). Scale bar, 10 mm. Statistical evaluation is performed by calculating the Pearson’s coefficient for colocalizing pixels.
Image provided by L. Burbulla and R. Krüger.

Figure 22. Detection of mitophagy in primary cortical neurons using mitochondria-targeted Keima. Neurons transfected with mito-Keima were visualized
using 458 nm (green, mitochondria at neutral pH) and 561 nm (red, mitochondria in acidic pH) laser lines and 575 nm band pass filter. Compared
with the control (A) wild-type PINK1 overexpression (B) increases the number of the mitochondria exposed to acidic conditions. Scale bar, 2 mm.
(C) Quantification of red dots suggests increased mitophagy in wild-type PINK1 but not in the kinase dead PINK1K219M-overexpressing neurons.
Figure provided by V. Choubey and A. Kaasik.
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Green FM or, on a single cell basis, by either live cell imaging or
immuncytochemistry with use of MitoTracker1 Green FM or
MitoTracker1 Red FM for the former, and antibodies specifically
raised against different mitochondrial proteins for the latter.
Immunoblot analysis of the levels of mitochondrial proteins
from different mitochondrial subcompartments is valuable for
validating the data from FACS or microscopy studies. EM can
also be used to verify loss of entire mitochondria, and PCR (or
fluorescence microscopy) to quantify mitochondrial DNA.

In addition to monitoring the steady-state levels of different
steps of mitophagy, investigation of the mitophagic flux is needed
to decipher which steps within this process potentially fail to
result in efficient mitochondrial degradation. Therefore, appro-
priate treatment may be applied to prevent mitochondrial
degradation at distinct steps of the process.

Certain cellular models require stress conditions to measure
the mitochondrial degradation capacity, as basal levels are too
low to reliably assess organelle clearance. Hence, it may be useful
to pretreat the cells with uncoupling agents, such as CCCP that
stimulate mitochondrial degradation and allow measurements
of mitophagic activity; however, it should be kept in mind that,
although helpful to stimulate mitochondrial degradation, this
treatment is not physiological. Another method to induce
mitophagy is by expressing and activating a mitochondrially-
localized fluorescent protein photosensitizer such as Killer Red.550

The excitation of Killer Red results in an acute increase of
superoxide that causes mitochondrial damage resulting in mito-
phagy (Kim PK, unpublished results). The advantage of using a
genetically encoded photosensitizer is that it allows for both
spatial and temporal control in inducing mitophagy.

Relatively little work has been done in the area of mammalian
peroxisome degradation by autophagy, and at present it is not
known if this is a selective process. Typically, peroxisomes are
induced by treatment with hypolipidemic drugs such as clofibrate
or dioctyl phthalate, and degradation is induced by drug
withdrawal, although starvation without prior proliferation can
also be used. Loss of peroxisomes can be followed enzymatically
or by immunoblot, monitoring enzymes such as fatty acyl-CoA
oxidase (note that this enzyme is sometimes abbreviated “AOX,”
but should not be confused with the enzyme alcohol oxidase that
is frequently used in assays for yeast pexophagy) or catalase, and
also by EM.551,552 Finally, a HaloTag1-PTS1 marker that is
targeted to peroxisomes has been used to fluorescently label the
organelle.553

Cautionary notes: There are many assays that can be used to
monitor specific types of autophagy, but caution must be used in
choosing an appropriate marker(s). It is best to monitor more
than one protein, and to include an inner membrane or matrix
component in the analysis. In particular, it is not sufficient to
follow a single mitochondrial outer membrane protein because
these can be degraded independently of mitophagy. Although
the localization of PARK2/PARKIN to mitochondria as mon-
itored by fluorescence microscopy is associated with the early
stages of protonophore uncoupler (CCCP)-driven mitochondria
degradation,169 this by itself cannot be used as a marker for
mitophagy, as these events can be dissociated.554 PARK2

translocates to damaged mitochondria and ubiquitinates a wide
range of outer membrane proteins including VDAC1, MFN1/2
and TOMM20.547,555-557 This results in the preferential degrada-
tion of mitochondrial outer membrane proteins by the protea-
some, while inner membrane proteins and mitochondrial DNA558

remain intact. Monitoring loss of a single protein such
as TOMM20 by western blot or fluorescence microscopy to
follow mitophagy may thus be misleading.555 MitoTracker dyes
are widely used to stain mitochondria and, when colocalized with
GFP-LC3, they can function as a marker for mitophagy.
However, staining with certain MitoTracker dyes depends on
mitochondrial activity and membrane potential, so that damaged,
or sequestered nonfunctional mitochondria may not be stained.

Although it is widely assumed that macroautophagy is the
major mechanism for degradation of entire organelles, there are
multiple mechanisms that may account for the disappearance of
mitochondrial markers. These include proteasomal degradation of
outer membrane proteins and/or proteins that fail to correctly
translocate into the mitochondria, degradation due to proteases
within the mitochondria, and reduced biosynthesis or import
of proteins. In addition to mitophagy, mitochondria can be
eliminated by extrusion from the cell (mitoptosis).559 Thus, it is
advisable to use a variety of complementary methods to monitor
mitochondria loss including TEM, single cell analysis of LC3
fluorescent puncta, and western blot, in conjunction with flux
inhibitors and specific inhibitors of autophagy induction com-
pared with inhibitors of the other major degradation systems
(see cautions in Autophagy inhibitors and inducers).

Likewise, although the mechanism(s) of peroxisome degrada-
tion in mammals awaits further elucidation, it can occur by both
autophagic and proteasome-dependent mechanisms.560 Thus,
controls are needed to determine the extent of degradation that
is due to the proteasome. Moreover, two additional degradation
mechanisms have been suggested: the action of the peroxisome-
specific Lon protease and the membrane disruption effect of
15-lipoxygenase.561

e. Aggrephagy. Aggrephagy is the selective removal of aggregates
by macroautophagy.562 This process can be followed in vitro (in
cell culture) and in vivo (in mice) by monitoring the levels of an
aggregate-prone protein such as an expanded polyglutamine
(polyQ)-containing protein or mutant SNCA (a-synuclein).
Levels are quantified by immunofluorescence or traditional
immunoblot. Similarly, fluorescently tagged aggregated proteins
such as polyQ80-CFP can be monitored via immunoblot and
immunofluorescence. A polyQ80-luciferase reporter, which forms
aggregates, can also be used to follow aggrephagy.563 A nonag-
gregating polyQ19-luciferase or untagged full-length luciferase
serves as a control. The ratio of luciferase activity from these two
constructs can be calculated to determine autophagic flux.

Autophagic degradation of endogenous aggregates such as
lipofuscin can in some cell types be monitored by fluorescence
microscopy, utilizing the autofluorescence of lipofuscin particles.
The amount of lipofuscin in primary human adipocytes can be
reduced by activation of autophagy, and the amount of lipofuscin
is dramatically reduced in adipocytes from patients with type 2
diabetes and chronically enhanced autophagy.209
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Cautionary notes: Caution must be used when performing
immunoblots of aggregated proteins, as many protein aggregates
fail to enter the resolving gel and are retained in the stacking
gel. In addition, the polyQ80-luciferase in the aggregated state
lacks luciferase activity whereas soluble polyQ80-luciferase
retains activity. Therefore, caution must be used when inter-
preting results with these vectors, as treatments that increase
aggrephagy or enhance protein aggregation can lead to a decrease
in luciferase activity.564 Finally, soluble polyQ reporters can be
degraded by the proteasome; thus, changes in the ratio of
polyQ19-luciferase:polyQ80-luciferase may also reflect proteaso-
mal effects and not just changes in autophagic flux.

f. Xenophagy. The macroautophagy pathway has emerged
as an important cellular factor in both innate and adaptive
immunity. Many in vitro and in vivo studies have demonstrated
that genes encoding macroautophagy components are required
for host defense against infection by bacteria, parasites and
viruses. Macroautophagy may be defective in human diseases
such as inflammatory bowel disease, since genes encoding essential
macroautophagy components have been linked to the disease.
Xenophagy is often used as a term to describe autophagy of
microbial pathogens, mediating their capture and delivery to
lysosomes for degradation. Since xenophagy presents an immune
defense, it is not surprising that microbial pathogens have
evolved strategies to overcome it. The interactions of such
pathogens with the autophagy system of host cells are complex
and have been the subject of several excellent reviews.76-81,565-570

Here we will make note of a few key considerations when
studying interactions of microbial pathogens with the autophagy
system.

LC3 is commonly used as a marker of macroautophagy.
However, studies have established that LC3 can promote phago-
some maturation independently of macroautophagy through
LC3-associated phagocytosis (see cautionary notes in Atg8/LC3
detection and quantification). Other studies show that macro-
autophagy of Salmonella Typhimurium is dependent on ATG9,
an essential macroautophagy protein, whereas LC3 recruitment to
bacteria does not require ATG9.571 In contrast, macroautophagy
of these bacteria requires ubiquitination of target proteins (not yet
identified) and recruitment of three ubiquitin-binding adaptor
proteins, SQSTM1,572 CALCOCO2/NDP52573 and OPTN.574

Therefore, the currently available criteria to differentiate LAP
from macroautophagy include: (1) LAP involves LC3 recruitment
to bacteria in a manner that requires reactive oxygen species
production by an NADPH oxidase. It should be noted that most
cells express at least one member of the NADPH oxidase (also
known as NOX) family. Targeting expression of the common
CYBA/p22phox subunit is an effective way to disrupt the NOX
NADPH oxidases. Scavenging of reactive oxygen species by
antioxidants such as resveratrol and a-tocopherol is also an
effective way to inhibit LAP. In contrast, N-acetylcysteine, which
raises cellular glutathione levels, does not inhibit LAP.575

(2) Macroautophagy of bacteria requires ATG9, while LAP
apparently does not.571 (3) LAP involves single-membrane
structures. For LAP, CLEM (with LC3 as a marker) is expected
to show single-membrane structures that are LC3+ LAP.131 In

contrast, macroautophagy is expected to generate double-
membrane structures surrounding cargo (which may include
single membrane phagosomes, giving rise to triple-membrane
structures571). (4) Macroautophagy of bacteria requires protein
ubiquitination and ubiquitin-binding adaptors (SQSTM1,
CALCOCO2, OPTN, and possibly others), whereas LAP does
not. It is anticipated that more specific markers of LAP will be
identified as these phagosomes are further characterized.

Nonmotile Listeria monocytogenes can be targeted to double-
membrane autophagosomes upon antibiotic treatment,576 which
indicates that macroautophagy serves as a cellular defense against
microbes in the cytosol. However, subsequent studies have
revealed that macroautophagy can also target pathogens within
phagosomes, damaged phagosomes or the cytosol. Therefore,
when studying microbial interactions by EM, many structures can
be visualized, with any number of membranes encompassing
microbes, all of which may be LC3+.577 As discussed above, single-
membrane structures that are LC3+ may arise through LAP, and
we cannot rule out the possibility that both LAP and macro-
autophagy may operate at the same time to target the same
phagosome.

Viruses can also be targeted by autophagy, and in turn can
act to inhibit autophagy. For example, infection of a cell by
influenza and dengue viruses578 or enforced expression of the
hepatitis B virus C protein579 have profound consequences for
autophagy, as viral proteins such as NS4A stimulate autophagy
and protect the infected cell against apoptosis, thus extending
the time in which the virus can replicate. Conversely, the herpes
simplex virus ICP34.5 protein inhibits autophagy by targeting
BECN1.580 While the impact of ICP34.5's targeting of BECN1
on virus replication in cultured permissive cells is minimal, it
has a significant impact upon pathogenesis in vivo, most likely
through interfering with activation of CD4+ T cells.581,582 Care
must be taken in determining the role of autophagy in virus
replication, as some viruses such as vaccinia use double-
membrane structures that form independently of the autophagy
machinery.583 Similarly, dengue virus replication, which appears
to involve a double-membrane compartment, requires the ER
rather than autophagosomes,584 whereas coronaviruses use a non-
lipidated version of LC3 (see Atg8/LC3 detection and quantifica-
tion).137 Yet another type of variation is seen with hepatitis C
virus, which requires BECN1, ATG4B, ATG5 and ATG12 for
initiating replication, but does not require these proteins once an
infection is established.585

Finally, it is important to realize that there may be other
macroautophagy-like pathways that have yet to be characterized.
For example, in response to cytotoxic stress (treatment with
etoposide), autophagosomes are formed in an ATG5- and ATG7-
independent manner.26 While this does not rule out involve-
ment of other macroautophagy regulators/components in the
formation of these autophagosomes, it does establish that
the canonical macroautophagy pathway involving LC3 con-
jugation is not involved. In contrast, RAB9 is required for
this alternative pathway, potentially providing a useful marker
for analysis of these structures. Returning to xenophagy,
Mycobacterium tuberculosis can be targeted to autophagosomes in
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an ATG5-independent manner.586 Furthermore, up to 25% of
intracellular Salmonella typhimurium are observed in multi-
lamellar membrane structures resembling autophagosomes in
Atg52/2 MEFs.572 These findings indicate that an alternate
macroautophagy pathway is relevant to host-pathogen inter-
actions. Moreover, differences are observed that depend on
the cell type being studied. Yersinia pseudotuberculosis is
targeted to autophagosomes where they can replicate in bone
marrow-derived macrophages,587 whereas in RAW264.7 and
J774 cells, bacteria are targeted both to autophagosomes, and
LC3-negative, single-membrane vacuoles (Lafont F, personal
communication).

g. Lipophagy. The specific macroautophagic degradation of lipid
droplets represents another type of selective autophagy.588

Lipophagy requires the core autophagic machinery and can be
monitored by following triglyceride content, or total lipid levels
using BODIPY 493/503 or HCS LipidTOX neutral lipid stains
with fluorescence microscopy, cell staining with Oil Red O, or
ideally label-free techniques such as CARS or SRS microscopy.
TEM can also be used to monitor lipid droplet size and number.

Cautionary notes: With regard to changes in the cellular
neutral lipid content, the presence and potential activation of
cytoplasmic lipases that are unrelated to lysosomal degradation
must be considered.

h. Zymophagy. Zymophagy is a protective mechanism induced
during pancreatitis that results in the selective degradation of
activated zymogen granules, which are deleterious for the pancr-
eatic acinar cells.589 This process can be monitored by TEM,
identifying autophagosomes containing secretory granules, by
following SQSTM1 degradation by western blot, and by
examining the subcellular localization of VMP1-EGFP, which
relocates to granular areas of the cell upon zymophagy induction.
Colocalization of trypsinogen (which is packaged within zymogen
granules) and LC3, or of GFP-ubiquitin (which is recruited to the
activated granules) with RFP-LC3 can also be observed by
indirect or direct immunofluorescence microscopy, respectively.

i. Allophagy. In metazoans, mitochondria, and hence mito-
chondrial DNA, from the sperm is eliminated by an autophagic
process. This process of allogeneic (nonself) organelle autophagy is
termed “allophagy.”590,591 During allophagy in C. elegans, both
paternal mitochondria and membranous organelles (a sperm-
specific membrane compartment) are eliminated by the 16-cell
stage (100–120 min post-fertilization).592,593 The degradation
process can be monitored in living embryos with GFP::ubiquitin,
which appears in the vicinity of the sperm chromatin (labeled
for example with mCherry-histone H2B) on the membranous
organelles within 3 min after fertilization. GFP fusions and
antibodies specific for LGG-1 and LGG-2 (Atg8/LC3 homologs),
which appear next to the sperm DNA, membranous organelles
and mitochondria (labeled with CMXRos or mitochondria-
targeted GFP) within 15 to 30 min post-fertilization, can be used
to verify the autophagic nature of the degradation. TEM can also
be utilized to demonstrate the presence of mitochondria within
autophagosomes in the early embryo.

Conclusion: There are many assays that can be used to monitor
specific types of autophagy, but caution must be used in choosing

an appropriate marker(s). The potential role of other degradative
pathways for any individual organelle or cargo marker should be
considered, and it is advisable to use more than one marker or
technique.

9. Autophagic sequestration assays. Autophagic activity can
also be monitored by the sequestration of autophagic cargo, using
either an (electro)injected, inert cytosolic marker such as [3H]
raffinose,594 or an endogenous cytosolic protein such as lactate
dehydrogenase (LDH),595 in the latter case along with treatment
with a protease inhibitor (e.g., leupeptin) to prevent intralysoso-
mal degradation of the protein marker. The assay simply measures
the transfer of cargo from the soluble (cytosol) to the insoluble
(sedimentable) cell fraction (which includes autophagic compart-
ments), with no need for a sophisticated subcellular fractionation
(a filtration assay would presumably work just as well as
centrifugation, although it would be necessary to verify that the
filtration membrane does not destroy the integrity of the
postnuclear supernatant compartments). The cargo marker can
be quantified by an enzymatic assay, or by western blotting. In
principle, any intracellular component can be used as a cargo
marker, but cytosolic enzymes having low sedimentable back-
grounds are preferable. Membrane-associated markers are less
suitable, and proteins such as LC3, which are part of the
sequestering system itself, will have a much more complex
relationship to the autophagic flux than a pure cargo marker such
as LDH.

In yeast, sequestration assays are typically done by monitoring
protease protection of an autophagosome marker or a cargo
protein. For example, prApe1, and GFP-Atg8 have been used to
follow completion of the autophagosome.596 The relative resis-
tance or sensitivity to an exogenous protease in the absence
of detergent is an indication of whether the autophagosome (or
other sequestering vesicle) is complete or incomplete, respec-
tively. Thus, this method also distinguishes between a block in
autophagosome formation vs. fusion with the vacuole. The critical
issues to keep in mind involve the use of appropriate control
strains and/or proteins, and deciding on the correct reporter protein.
In addition to protease protection assays, sequestration can be
monitored by fluorescence microscopy during pexophagy of
methanol-induced peroxisomes, using GFP-Atg8 as a pexophago-
some marker, and BFP-SKL to label the peroxisomes. The vacuolar
sequestration process during micropexophagy can also be monitored
by formation of the vacuolar sequestration membrane (VSM)
stained with FM 4–64.501,507

Sequestration assays can be designed to measure flux through
individual steps of the autophagy pathway. For example,
intralysosomally degraded sequestration probes such as [14C]-
lactate or LDH will mark prelysosomal compartments in the
absence of degradation inhibitors. Hence, their accumulation
in such compartments can be observed when fusion with
lysosomes is suppressed, for example, by a microtubule
inhibitor such as vinblastine.597 Furthermore, lactate hydrolysis
can be used to monitor the overall autophagic pathway
(autophagic lactolysis).598 One caveat, however, is that inhi-
bitors may affect sequestration indirectly, for example, by
modifying the uptake and metabolism (including protein
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synthesis) of autophagy-suppressive amino acids (see Autophagy
inhibitors and inducers).

A variation of this approach applicable to mammalian cells
includes live cell imaging. Autophagy induction is monitored as
the movement of cargo, such as mitochondria, to GFP-LC3-
colocalizing compartments, and then fusion/flux is measured by
delivery of cargo to lysosomal compartments.258,599 In addition,
sequestration of fluorescently tagged cytosolic proteins into
membranous compartments can be measured, as fluorescent
puncta become resistant to the detergent digitonin.600 Use of
multiple time points and monitoring colocalization of a particular
cargo with GFP-LC3 and lysosomes can also be used to assess
sequestration of cargo with autophagosomes as well as delivery to
lysosomes.601

Cautionary notes: The electro-injection of radiolabeled probes
is technically demanding, but the use of an endogenous cytosolic
protein probe is very simple and requires no pretreatment of the
cells other than with a protease inhibitor. Another concern with
electro-injection is that it can affect cellular physiology, so it is
necessary to verify that the cells behave properly under control
situations such as amino acid deprivation. An alternate approach
for incorporating exogenous proteins into mammalian cell cytosol
is to use “scrape-loading,” a method that works for cells that are
adherent to tissue culture plates.602 Finally, these assays work well
with hepatocytes but may be problematic with other cell types,
and it can be difficult to load the cell while retaining the integrity
of the compartments in the post-nuclear supernatant (Tooze S,
unpublished results). General points of caution to be addressed
with regard to live cell imaging relate to photobleaching of the
fluorophore, cell injury due to repetitive imaging, autofluores-
cence in tissues containing lipofuscin, and the pH sensitivity of
the fluorophore.

There are several issues to keep in mind when monitoring
sequestration by the protease protection assay in yeast.596 First, as
discussed in Selective types of autophagy, prApe1 is not an accurate
marker for nonspecific autophagy; import of prApe1 utilizes a
receptor (Atg19) and a scaffold (Atg11) that make the process
specific. In addition, vesicles that are substantially smaller than
autophagosomes can effectively sequester the Cvt complex.
Another problem is that prApe1 cannot be used as an autophagy
reporter for mutants that are not defective in the Cvt pathway,
although this can be bypassed by using a vac8D background.603

At present, the prApe1 assay cannot be used in any system other
than yeast. The GFP-Atg8 protease protection assay avoids these
problems, but the signal-to-noise ratio is typically substantially
higher. In theory, it should be possible to use this assay in other
cell types, but at present no publications report its use other than
in yeast.

Conclusion: Sequestration assays present another valid method
for monitoring autophagy, and in particular for discriminating
between conditions where the autophagosome is complete (but
not fused with the lysosome/vacuole) or open (i.e., a phagophore).
These assays can also be modified to measure autophagic flux.

10. Turnover of autophagic compartments. Inhibitors of auto-
phagic sequestration (e.g., amino acids, 3-MA or wortmannin)
can be used to monitor the disappearance of autophagic elements

(phagophores, autophagosomes, autolysosomes) to estimate their
half-life by TEM morphometry/stereology. The turnover of the
autophagosome or the autolysosome will be differentially affected
if fusion or intralysosomal degradation is inhibited.14,16,24,604

The duration of such experiments is usually only a few hours;
therefore, long-term side effects or declining effectiveness of the
inhibitors can be avoided. It should be noted that fluorescence
microscopy has also been used to monitor the half-life of auto-
phagosomes, monitoring GFP-LC3 in the presence and absence
of bafilomycin A1 or following GFP-LC3 after starvation and
recovery in amino acid-rich medium (see Atg8/LC3 detection and
quantification).18,605

Cautionary notes: The inhibitory effect must be strong and
the efficiency of the inhibitor needs to be tested under the
experimental conditions to be employed. Cycloheximide is
sometimes used as an autophagy inhibitor, but this is problematic
because of the many potential indirect effects. Cycloheximide
inhibits translational elongation, and therefore protein synthesis.
In addition, it decreases the efficiency of protein degradation in
several cell types (Cuervo AM, personal communication) includ-
ing hematopoietic cells (Edinger A, personal communication).
Treatment with cycloheximide causes a potent increase in
TORC1 activity, which can decrease autophagy, in part as a
result of the increase in the amino acid pool resulting from
suppressed protein synthesis (Shen H-M, personal communica-
tion).606,607 In addition, at high concentrations (in the millimolar
range) cycloheximide inhibits complex I of the mitochondrial
respiratory chain,608,609 but this is not a problem, at least
in hepatocytes, at low concentrations (10 -20 mM) that are
sufficient to prevent protein synthesis (Meijer AJ, personal
communication).

Conclusion: The turnover of autophagic compartments is a
valid, but less preferred method, for monitoring flux, and cyclo-
heximide must be used in these experiments with caution.

11. Autophagosome-lysosome colocalization and dequench-
ing assay. Another method to demonstrate the convergence of the
autophagic pathway with a functional degradative compartment
is to incubate cells with the bovine serum albumin derivative
dequenched (DQ)-BSA that has been labeled with the red-
fluorescent BODIPY TR-X dye; this conjugate will accumulate
in lysosomes. The labeling of DQ-BSA is so extensive that the
fluorophore is self-quenched. Proteolysis of this compound results
in dequenching and the release of brightly fluorescent fragments.
Thus, DQ-BSA is useful for detecting intracellular proteolytic
activity as a measure of a functional lysosome.610

Furthermore, DQ-BSA labeling can be combined with GFP-
LC3 to monitor colocalization, and thus visualize the conver-
gence, of amphisomes with a functional degradative compartment
(DQ-BSA is internalized by endocytosis). This method can also
be used to visualize fusion events in real-time experiments
by confocal microscopy (live cell imaging). Along similar lines,
other approaches for monitoring convergence are to follow the
colocalization of RFP-LC3 and LysoSensor Green (Bains M,
Heidenreich KA, personal communication), mCherry-LC3 and
LysoSensor Blue,259 or tagged versions of LC3 and LAMP1
(Macleod K, personal communication) or CD63258 as a measure
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of the fusion of autophagosomes with lysosomes. It is also possible
to trace autophagic events by visualizing the pH-dependent
excitation changes of the coral protein Keima.549 This quantita-
tive technique is capable of monitoring the fusion of autophago-
somes with lysosomes, that is, the formation of an autolysosome,
and the assay does not depend on the analysis of LC3.

Cautionary notes: Some experiments require the use of inhibi-
tors (e.g., 3-MA or wortmannin) or overexpression of proteins
(e.g., RAB7 dominant negative mutants) that may also affect the
endocytic pathway or the delivery of DQ-BSA to lysosomes (e.g.,
wortmannin causes the swelling of late endosomes611). In this
case, the lysosomal compartment can be labeled with DQ-BSA
overnight before treating the cells with the drugs, or prior to the
transfection.

Conclusion: DQ-BSA provides a relatively convenient means
for monitoring lysosomal protease function, and to follow the
fusion of amphisomes with the lysosome. Colocalization of
autophagosomes (fluorescently tagged LC3) with lysosomal
proteins or dyes can also be monitored.

12. Tissue fractionation. The study of autophagy in the organs
of larger animals, in large numbers of organisms with very
similar characteristics, or in tissue culture cells provides an
opportunity to use tissue fractionation techniques as has been
possible with autophagy in rat liver.34,48,612-617 Because of their sizes
[smaller than nuclei but larger than membrane fragments (micro-
somes)], differential centrifugation can be used to obtain
a subcellular fraction enriched in mitochondria and organelles
of the autophagic-lysosomal system, which can then be subjected to
density gradient centrifugation to enrich autophagosomes, amphi-
somes, autolysosomes and lysosomes.34,48,617-621 Any part of such a
fraction can be considered to be a representative sample of tissue
constituents and used in quantitative biochemical, centrifugational
and morphological studies of autophagic particle populations.

The simplest studies of the autophagic process take advantage
of sequestered marker enzymes, changes in location of these
enzymes, differences in particle/compartment size and different-
ial sensitivity of particles of different sizes to mechanical and
osmotic stress (for example, acid hydrolases are found primarily
in membrane-bound compartments and their latent activities
cannot be measured unless these membranes are lysed). Such a
change in enzyme accessibility can be used to follow the time
course of an exogenously induced, or naturally occurring,
autophagic process.612,614,616

Quantitative localization of enzymatic activity (or any other
marker) to specific cytoplasmic particle populations and changes
in the location of such markers during autophagy can be per-
formed using rate sedimentation ultracentrifugation (see Auto-
phagic sequestration assays).618 Similar results can be obtained with
isopycnic centrifugation where particles enter a density gradient
(sometimes made with sucrose but iso-osmotic media such as
iodixanol, metrizamide and Nycodenz may be preferred as
discussed below under Cautionary notes) and are centrifuged until
they reach locations in the gradient where their densities are equal
to those of the gradient.618

The fractionation of organelles can also be evaluated by protein-
correlation-profiling (PCP), a quantitative mass spectrometry-based

proteomics approach. Similar to the biochemical assays described
above, gradient profiles of marker proteins can be recorded and
compared with proteins of interest.278 Compared with classical
biochemical approaches, PCP allows the proteome-wide record-
ing of protein gradient profiles.

Particle populations in subcellular fractions evaluated with
quantitative biochemical and centrifugational approaches can
also be studied with quantitative morphological methods.
Detailed morphological study of the particle populations involved
in the autophagic process usually requires the use of EM. The
thin sections required for such studies pose major sampling
problems in both intact cells622 and subcellular fractions.618

With the latter, 2,000,000 sections can be obtained from each
0.1 ml of pellet volume, so any practical sample size is an
infinitesimally small subsample of the total sample.618 However,
through homogenization and resuspension, complex and hetero-
geneous components of subcellular fractions become randomly
distributed throughout the fraction volume. Therefore, any
aliquot of that volume can be considered a random sample of
the whole volume. What is necessary is to conserve this property
of subcellular fractions in the generation of a specimen that
can be examined with the electron microscope. This can be done
with the use of a pressure filtration procedure.618,623 Because of
the thinness of the sections, multiple sections of individual
particles are possible so morphometric/stereological methods622

must be used to determine the volume occupied by a given
class of particles, as well as the size distribution and average size
of the particle class. From this information the number of particles
in a specific particle class can be calculated.624 Examination of
individual profiles gives information on the contents of different
types of particles and their degree of degradation, as well as their
enclosing membranes.612,614

Cautionary notes: When isolating organelles from tissues and
cells in culture it is essential to use disruption methods that do
not alter the membrane of lysosomes and autophagosomes,
compartments that are particularly sensitive to some of those
procedures. For example teflon/glass motor homogenization is
suitable for tissues with abundant connective tissue, such as liver,
but for circulating cells or cells in culture, disruption by nitrogen
cavitation is a good method to preserve lysosomal membrane
stability;625 however, this method is not suitable for small samples
and may not be readily available. Other methods, including
“Balch” or “Dounce” homogenizers also work well.626,627 During
the isolation procedure it is essential to always use iso-osmotic
solutions to avoid hypotonic or hypertonic disruption of the
organelles. In that respect, because lysosomes are able to take up
sucrose if it is present at high concentrations, the use of sucrose
gradients for the isolation of intact lysosome-related organelles is
strongly discouraged.

As with the isolation of any other intracellular organelle, it
is essential to assess the purity of each preparation, as there is
often considerable variability from experiment to experiment
due to the many steps involved in the process. Correction for
purity can be done through calculation of recovery (percentage
of the total activity present in the homogenate) and enrich-
ment (dividing by the specific activity in the homogenate)
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of enzymes or protein markers for those compartments (e.g.,
β-hexosaminidase is routinely used to assess lysosomal purity, but
enzymes such as CTSB/cathepsin B may also be used and may
provide more accurate readouts).625 Because of the time-
consuming nature of quantitative morphological studies, such
studies should not be performed until simpler biochemical
procedures have established the circumstances most likely to give
meaningful morphometric/stereological results.

Finally, it is worthwhile noting that not all lysosomes are alike.
For example, there are differences among primary lysosomes,
autolysosomes and telolysosomes. Furthermore, what we refer to
as “lysosomes” are actually a very heterogeneous pool of organelles
that simply fulfill five classical criteria, having a pH , 5.6, mature
cathepsins, the presence of LAMP proteins, a single membrane,
and the absence of endosomal and recycling compartment
markers (e.g., the mannose-6-phosphate receptor or RAB5).
But even applying those criteria we can separate lysosomes
with clear differences in their proteome and other properties,
and these distinct populations of lysosomes are likely to
participate in different functions in the cell (see Chaperone-
mediated autophagy).628

Conclusion: Considering the limited methods available for in
vivo analysis of autophagy, tissue fractionation is a valid, although
relatively laborious, method for monitoring this process. Care
must be taken to ensure that sample analysis is representative.

13. Analyses in vivo. Monitoring autophagic flux in vivo or in
organs is one of the least developed areas at present, and ideal
methods relative to the techniques possible with cell culture may
not exist. Importantly, the level of basal autophagy, time course
of autophagic induction, and the bioavailabilty of autophagy-
stimulating and -inhibiting drugs is likely tissue specific. More-
over, basal autophagy or sensitivity to autophagic induction may
vary with animal age, sex or strain background. Therefore
methods may need to be optimized for the tissue of interest.
One method for in vivo studies is the analysis of GFP-LC3/Atg8
(see GFP-Atg8/LC3 fluorescence microscopy above). Autophagy
can be monitored in tissue (e.g., skeletal muscle, liver and retina)
in vivo in transgenic mice systemically expressing GFP-LC3,126,446

or in other models by transfection with GFP-LC3 plasmids.346

In addition, tissue-specific GFP-LC3 mice have been generated
for monitoring cardiac myocytes.629,630 In these settings, GFP
fluorescent puncta are indicative of autophagic structures. In
addition, cleavage of GFP-LC3 to generate free GFP can be
evaluated. This has been successfully performed in mouse
liver,172,631 suggesting the GFP-LC3 cleavage assay may also be
applied to in vivo studies. Alternatively, confocal laser scanning
microscopy, which makes it possible to obtain numerous sections
and substantial data about spatial localization features, can be
a suitable system for studying autophagic structures (especially
for whole mount embryo in vivo analysis).632 In addition, this
method can be used to obtain quantitative data through
densitometric analysis of fluorescent signals.633

Another possibility is immunohistochemical staining, an
important procedure that may be applicable to human studies
as well, considering the role of autophagy in neurodegeneration,
myopathies and cardiac disease where samples may be limited

to biopsy/autopsy tissue. Immunodetection of LC3 as definite
puncta is possible in paraffin-embedded tissue sections and fresh
frozen tissue, by either immunohistochemistry or immunofluore-
scence;140,634-637 however, this methodology has not received
extensive evaluation, and does not lend itself well to dynamic
assays. Other autophagic substrates can be evaluated via
immunohistochemistry and include SQSTM1, NBR1, ubiquiti-
nated inclusions and protein aggregates. Similarly, autophagy can
be evaluated by measuring levels of these autophagic substrates via
traditional immunoblot; however, their presence or absence needs
to be cautiously interpreted as some of these substrates can
accumulate with either an increase or a decrease in autophagic
flux (see SQSTM1/p62 and related LC3 binding protein turnover
assays). Bone marrow transfer has been used to document in vivo
the role of autophagy in the reverse cholesterol transport pathway
from peripheral tissues or cells (e.g., macrophages) to the liver for
secretion in bile and for excretion,638 and a study shows that
transglutaminase type 2 protein levels decrease in mouse liver in
vivo upon starvation in an autophagy-dependent manner (and
in human cell lines in vitro in response to various stimuli;
Piacentini M, personal communication), presenting additional
possible methods for following autophagy activity.

It is also possible to analyze tissues ex vivo, and these studies
can be particularly helpful in assessing autophagic flux as they
avoid the risks of toxicity and bioavailabilty of compounds such
as bafilomycin A1 or other autophagy inhibitors. Along these
lines, autophagic flux can be determined by western blot in
retinas placed in culture for 4 h with protease inhibitors. This
method could be used in tissues that can remain “alive” for several
hours in culture such as the retina (Boya P, unpublished
observations) and brain slices (Desai S, unpublished observations).

Several studies have demonstrated the feasibility of monitoring
autophagic flux in vivo in skeletal muscle. Starvation is one of
the easiest and most rapid methods for stimulating the auto-
phagic machinery in skeletal muscles. Twelve h of fasting in mice
may be sufficient to trigger autophagy in muscle,639,640 but the
appropriate time should be determined empirically. Data about
the autophagic flux can be obtained by treating mice with, for
example, chloroquine,640 leupeptin641 or colchicine153 and then
monitoring the change in accumulation of LC3 (see cautionary
notes). This type of analysis can also be done with liver, by
comparing the LC3-II level in untreated liver (obtained by a
partial hepatectomy) to that following subsequent exposure to
chloroquine (Skop V, Papackova Z, Cahová M, personal com-
munication). Additional reporter assays to monitor autophagy
flux in vivo need to be developed, including tandem fluorescent-
LC3 transgenic mice, or viral vectors to express this construct in
vivo in localized areas.

Some biochemical assays may be used to at least provide
indirect correlative data relating to autophagy, in particular when
examining the role of autophagy in cell death. For example,
cellular viability is related to high CTSB activity and low CTSD/
cathepsin D activities.642 Therefore, the appearance of the oppo-
site levels of activities may be one indication of the initiation
of autophagy (lysosome)-dependent cell death. The question of
“high” vs. “low” activities can be determined by comparison to
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the same tissue under control conditions, or to a different tissue
in the same organism, depending on the specific question.

With regard to living mammals, a minimally invasive method
that may be used even in humans is to measure the arterio-venous
amino acid exchange rate in the peripheral tissues as a measure
of postabsorptive protein catabolism. In humans, the insulin- and
amino acid-sensitive postabsorptive (autophagic) net protein
catabolism in the peripheral (mostly skeletal muscle) tissue can
be measured by determining the amino acid exchange rate across
the lower extremities, as defined by the difference between the
plasma amino acid concentrations in the femoral artery and
femoral vein multiplied by the blood flow.643-645 Amino acid
exchange studies show that the peripheral tissues take up amino
acids during the post-prandial (fed) state and release amino acids
in the postabsorptive (fasted) state, i.e., in a state with relatively
low plasma insulin and amino acid levels. This post-absorptive
release of amino acids is strongly inhibited by infusion of insulin
or by exogenous supply of amino acids, suggesting that it is
mainly mediated by a lysosomal/autophagic mechanism of protein
catabolism.643-650 However, the relative contribution of autophagy
to the post-absorptive release of amino acids may be changed in
disease states (see cautionary notes).

Cautionary notes: The major hurdle with in vivo analyses is
the identification of autophagy-specific substrates and the ability
to “block” autophagosome degradation with a compound such as
bafilomycin A1. Regardless, it is still essential to adapt the same
rigors for measuring autophagic flux in vitro to measurements
made with in vivo systems. Moreover, as with cell culture, in order
to substantiate a change in autophagic flux it is not adequate to
rely solely on the analysis of static levels or changes in LC3-II
protein levels on western blot using tissue samples. To truly
measure in vivo autophagic flux using LC3-II as a biomarker, it is
necessary to block lysosomal degradation of the protein. Several
studies have successfully done this in select tissues in vivo. Certain
general principles need to be kept in mind: (a) Any autophagic
blocker, whether leupeptin, bafilomycin A1, chloroquine or
microtubule depolarizing agents such as colchicine or vinblastine
must significantly increase basal LC3-II levels. The turnover of
LC3-II or rate of basal autophagic flux is not known for tissues in
vivo, and therefore short treatments (e.g., 4 h) may not be as
effective as blocking for longer times (e.g., 12 to 24 h). (b) The
toxicity of the blocking agent needs to be considered (e.g., treating
animals with bafilomycin A1 for 2 h can be quite toxic) and food
intake must be monitored. If long-term treatment is needed to
see a change in LC3-II levels, then confirmation that the animals
have not lost weight may be needed. Mice may lose a substantial
portion of their body weight when deprived of food for 24 h, and
starvation is a potent stimulus for the activation of autophagy.
(c) The bioavailability of the agent needs to be considered. For
example, many inhibitors such as bafilomycin A1 or chloroquine
have relatively poor bioavailability to the central nervous system.
To overcome this problem, intracerebroventricular injection can
be performed.

When analyzing autophagic flux in vivo, one major limitation
is the variability between animals. Different animals do not always
activate autophagy at the same time. To improve the statistical

relevance and avoid unclear results, these experiments should be
repeated more than once and each experiment should include
several animals. Induction of autophagy in a time-dependent
manner by fasting mice for different times requires appropriate
caution. Mice are nocturnal animals, so they preferentially move
and eat during the night, while they mostly rest during daylight.
Therefore, in such experiments it is better to start food
deprivation early in the morning, in order to avoid the possibility
that the animals have already been fasting for several hours. The
use of chloroquine is technically easier, since it only needs one
intraperitoneal injection per day, but the main concern is that
chloroquine has some toxicity. Chloroquine suppresses the
immunological response in a manner that is not due to its pH-
dependent lysosomotropic accumulation (chloroquine interferes
with lipopolysaccharide-induced TNF/TNFa gene expression by
a nonlysosmotropic mechanism),651 as well as through its pH-
dependent inhibition of antigen presentation.652 Therefore,
chloroquine treatment should be used for short times and at
doses that do not induce severe collateral effects, which may
invalidate the measurement of the autophagic flux, and care must
be exercised in using chloroquine for studies on autophagy that
involve immunological aspects. It is also important to have time-
matched controls for in vivo analyses. That is, having only a zero
hour time point control is not sufficient because there may be
substantial diurnal changes in basal autophagy.467 For example,
variations in basal flux in the liver associated with circadian
rhythm may be several fold, which can equal or exceed the
changes due to starvation. Along these lines, in order to allow
comparisons of a single time-point it is important to specify what
time of day the measurement is taken, and the lighting conditions
under which the animals are housed. It is also important that the
replicate experiments are conducted at the same time of day.
Controlling for circadian effects can greatly reduce the mouse-to-
mouse variability in autophagy markers and flux (Haspel JA, Choi
AMK, personal communication).

The amino acid exchange rate, which has been suggested as a
minimal invasive marker for measuring autophagic flux in vivo
should be used with special caution. Postprandial suppression of
amino acid release by peripheral tissues is strongly mediated by
insulin and amino acids and is therefore thought to be mediated
by autophagy (see above). However, the ubiquitin-proteasome
system likely confounds this investigation, as this pathway can
also be inhibited by insulin and amino acids.653 In addition,
multiple disease states have been associated with an altered activity
of the ubiquitin-proteasome system, further complicating the use
of the amino acid exchange rate as a marker of autophagy.654

When analyzing basal autophagic level in vivo using GFP-
LC3 transgenic mice,126 one pitfall is that GFP-LC3 expression
is driven by the cytomegalovirus enhancer and β-actin (CAG)
promoter, so that the intensity of the GFP signal may not always
represent the actual autophagic activity, but rather the CAG
promoter activity in individual cells. For example, GFP-LC3
transgenic mice exhibit prominent fluorescence in podocytes,
but rarely in tubular epithelial cells in the kidney,126 but a similar
GFP pattern is observed in transgenic mice carrying CAG
promoter-driven non-tagged GFP.655 Furthermore, proximal
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tubule-specific ATG5-deficient mice656 display a degeneration
phenotype earlier than podocyte-specific ATG5-deficient mice,657

suggesting that autophagy, and hence LC3 levels, might actually
be more prominent in the former.

One caution in using approaches that monitor ubiquitinated
aggregates is that the accumulation of ubiquitin may indicate
a block in autophagy, inhibition of proteasomal degradation, or
may correspond to structural changes in the substrate proteins
that hinder their degradation. In addition, only cytosolic and not
nuclear ubiquitin is subject to autophagic degeneration. It is
helpful to analyze aggregate degradation in an autophagy-deficient
control strain, such as an autophagy mutant mouse, whenever
possible to determine whether an aggregate is being degraded by
an autophagic mechanism. This type of control will be impractical
for some tissues such as those of the central nervous system
because the absence of autophagy leads to rapid degeneration.
Accordingly, the use of Atg16l1 hypomorphs or Becn1+/-

heterozygotes may help circumvent this problem.
Conclusion: Although the techniques for analyzing autophagy

in vivo are not as advanced as those for cell culture, it is still
possible to follow this process (including flux) by monitoring, for
example, GFP-LC3 by fluorescence microscopy, and SQSTM1
and NBR1 by immunohistochemistry and/or western blotting.

14. Cell death. In a limited number of cases, autophagy has
been established as the cause of cell death;97,199,658-664 although
opposite results have been reported using analogous experimental
settings.665 Furthermore, many of the papers claiming a causative
role of autophagy in cell death fail to provide adequate
evidence.666 Other papers suffer from ambiguous use of the term
“autophagic cell death,” which was coined in the 1970s667 in a
purely morphological context to refer to cell death with auto-
phagic features (especially the presence of numerous secondary
lysosomes); this was sometimes taken to suggest a role of auto-
phagy in the cell death mechanism, but death-mediation was not
part of the definition.668 Unfortunately, the term “autophagic cell
death” is now used in at least three different ways: (a) autophagy-
associated cell death (the original meaning); (b) autophagy-
mediated cell death (which could involve a standard mechanism
of cell death such as apoptosis, but triggered by autophagy); (c) a
distinct mechanism of cell death, independent of apoptosis or
necrosis. Clearly claim (b) is stronger than claim (a), and needs to
be justified by proof that inhibiting autophagy, through either
genetic or chemical means, prevents cell death.669 Claim (c) is still
stronger, because, even if the cell death is blocked by autophagy
inhibition, proof needs to be provided that the cell death
mechanism is not apoptosis or necrosis.670 In view of the current
confusion it may be preferable to replace the term “autophagic cell
death” by other terms such as “autophagy-associated cell death” or
“autophagy-mediated cell death,” unless the criteria in claim (c)
above have been satisfied. Along these lines, it is preferable to use
the term “autophagy-dependent cell death” instead of “autophagy-
mediated cell death” when it is proven that autophagy is a pre-
requisite for the occurrence of cell death, but it is not proven
that autophagy mechanistically mediates the switch to cell death.
A special caution should also be taken when describing de-
velopmental programmed cell death in plants, which is in most

cases executed by the growing lytic vacuoles and therefore is
referred to as “vacuolar cell death.”671 Although the morphology
of vacuolar cell death resembles a combination of macro- and
microautophagy, there is no genetic evidence yet that this death
requires the core autophagic machinery. Finally, the relationship
between autophagy and cell death may significantly differ as a
function of the model system being studied. For example, upon
induction by starvation of multicellular development in the
protist Dictyostelium, autophagy (or at least Atg1) is required to
protect against starvation-induced cell death, allowing vacuolar
developmental cell death to take place instead.672,673 Autophagy
may be involved not only in allowing this death to occur, but also
in the vacuolization process itself.674

Cautionary notes: In brief, rigorous criteria must be met in
order to establish a death-mediating role of autophagy, as this
process typically promotes cell survival. These include a clear
demonstration of autophagic flux as described in this article, as
well as verification that inhibition of autophagy prevents cell
death [claim (b) above; if using a knockdown approach, at least
two ATG genes should be targeted], and that other mechanisms
of cell death are not responsible [claim (c) above]. As part of this
analysis, it is necessary to examine the effect of the specific
treatment, conditions or mutation on cell viability using several
methods.675 In the case of postmitotic cells such as neurons or
retinal cells, cell death—and cell rescue by autophagy inhibi-
tion—can usually be established in vivo by morphological
analysis,676 and in culture by cell counts and/or measurement of
the release of an enzyme such as LDH into the medium at early
and late time points; however, a substantial amount of neuronal
cell death occurs during neurogenesis, making it problematic to
carry out a correct analysis in vivo or ex vivo.677,678 In populations
of rapidly dividing cells, the problems may be greater. A
commonly used method is the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay, or a related assay
using a similar, or a water-soluble, tetrazolium salt. The main
concern with the MTT assay is that it measures mitochondrial
activity, but does not allow a precise determination of cellular
viability or cell death, whereas methods that show cell death
directly (e.g., trypan blue exclusion) fail to establish the viability
of the remaining cell population.679 Accordingly, a preferred
alternative is to accurately quantify cell death by appropriate
cytofluorometric or microscopy assays.675 Moreover, long-term
clonogenic assays should be employed when possible to measure
the effective functional survival of cells.

Conclusion: In most systems, ascribing death to autophagy
based solely on morphological criteria is insufficient; autophagic
cell death can only be demonstrated as death that is suppressed
by the inhibition of autophagy, through either genetic or chemi-
cal means.669 In addition, more than one assay should be used to
measure cell death.

15. Chaperone-mediated autophagy. The primary character-
istic that makes chaperone-mediated autophagy (CMA) different
from the other autophagic variants described in these guidelines is
that it does not require formation of intermediate vesicular
compartments (autophagosomes or microvesicles) for the import
of cargo into lysosomes.680,681 Instead, the CMA substrates are
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translocated across the lysosomal membrane through the action of
HSPA8/HSC70 located in the cytosol and lysosome lumen, and
the lysosome membrane protein LAMP2A. To date, CMA has
only been identified in mammalian cells, and accordingly this
section refers only to studies in mammals.

The following methods are commonly utilized to determine
if a protein is a CMA substrate (see ref. 682 for experimental
details): (a) Analysis of the amino acid sequence of the protein to
identify the presence of a KFERQ-related motif that is an absolute
requirement for all CMA substrates.683 (b) Colocalization studies
with lysosomal markers (typically LAMP2A and/or LysoTracker)
to identify a fraction of the protein associated with lysosomes. The
increase in association of the putative substrate under conditions
that upregulate CMA (such as prolonged starvation) or upon
blockage of lysosomal proteases (to prevent the degradation of the
protein) helps support the hypothesis that the protein of interest
is a CMA substrate. However, association with lysosomes is
necessary but not sufficient to consider a protein an authentic
CMA substrate, because proteins delivered by other pathways to
lysosomes will also behave in a similar manner. A higher degree of
confidence can be attained if the association is preferentially with
the subset of lysosomes active for CMA (i.e., those containing
HSPA8 in their lumen), which can be separated from other
lysosomes following published procedures.628 (c) Co-immunopre-
cipitation of the protein of interest with cytosolic HSPA8. Due
to the large number of proteins that interact with this chaperone,
it is usually better to perform affinity isolation with the protein
of interest and then analyze the isolated proteins for the presence
of HSPA8 rather than vice versa. (d) Co-immunoprecipitation of
the protein of interest with LAMP2A.684 Due to the fact that the
only antibodies specific for the LAMP2A variant (the only one of
the three LAMP2 variants involved in CMA105,685) are generated
against the cytosolic tail of LAMP2A, where the substrate also
binds, it is necessary to affinity isolate the protein of interest and
then analyze for the presence of LAMP2A. Immunoblot for
LAMP2A in the precipitate can only be done with the antibodies
specific for LAMP2A and not just those that recognize the
lumenal portion of the protein that is identical in the other
LAMP2 variants. If the protein of interest is abundant inside
cells, co-immunoprecipitations with LAMP2A can be done in
total cellular lysates, but for low abundance cellular proteins,
preparation of a membrane fraction (enriched in lysosomes) by
differential centrifugation may facilitate the detection of the
population of the protein bound to LAMP2A. (e) Selective
upregulation and blockage of CMA to demonstrate that
degradation of the protein of interest changes with these
manipulations. Selective chemical inhibitors for CMA are not
currently available. Note that general inhibitors of lysosomal
proteases (e.g., bafilomycin A1, NH4Cl, leupeptin) also block the
degradation of proteins delivered to lysosomes by other auto-
phagic and endosomal pathways. The most selective way to block
CMA is by knockdown of LAMP2A, which causes this protein
to become a limiting factor.105 The other components involved
in CMA, including HSPA8, HSP90, GFAP, and EEF1A1/eF1a
are all multifunctional cellular proteins, making it difficult to
interpret the effects of knockdowns. Overexpression of

LAMP2A684 is also a better approach to upregulate CMA than
the use of chemical modulators. The two compounds demon-
strated to affect degradation of long-lived proteins in lysosomes,686

6-aminonicotinamide and geldanamycin, lack selectivity, as they
affect many other cellular processes. In addition, in the case of
geldanamycin, the effect on CMA can be the opposite (inhibition
rather than stimulation) depending on the cell type (this is due to
the fact that the observed stimulation of CMA is actually a
compensatory response to the blockage of HSP90 in lysosomes,
and different cells activate different compensatory responses).687

(f) The most conclusive way to prove that a protein is a CMA
substrate is by reconstituting its direct translocation into
lysosomes using a cell-free system.682 This method is only
possible when the protein of interest can be purified, and it
requires the isolation of the population of lysosomes active for
CMA. Internalization of the protein of interest inside lysosomes
upon incubation with the isolated organelle can be monitored
using protease protection assays (in which addition of an
exogenous protease removes the protein bound to the cytosolic
side of lysosomes, whereas it is inaccessible to the protein that
has reached the lysosomal lumen; note that pre-incubation of
lysosomes with lysosomal protease inhibitors before adding
the substrate is required to prevent the degradation of the
translocated substrate inside lysosomes).688 The use of exogenous
protease requires numerous controls (see ref. 682) to guarantee
that the amount of protease is sufficient to remove all the sub-
strate outside lysosomes, but will not penetrate inside the
lysosomal lumen upon breaking the lysosomal membrane. The
difficulties in the adjustment of the amount of protease, has led
to the development of a second method that is more suitable
for laboratories that have no previous experience with these
procedures. In this case, the substrate is incubated with lysosomes
untreated or previously incubated with inhibitors of lysosomal
proteases, and uptake is determined as the difference of protein
associated with lysosomes not incubated with inhibitors (in which
the only remaining protein will be the one associated with the
cytosolic side of the lysosomal membrane) and those incubated
with the protease inhibitors (which contain both the protein
bound to the membrane and that translocated into the lumen).689

Confidence that the lysosomal internalization is by CMA
increases if the uptake of the substrate can be competed with
proteins previously identified as substrates for CMA (e.g.,
GAPDH/glyceraldehyde-3-phosphate dehydrogenase or ribonu-
clease A, both commercially available as purified proteins), but is
not affected by the presence of similar amounts of nonsubstrate
proteins (such as ovalbumin or PPIA/cyclophilin A). Blockage of
uptake by pre-incubation of the lysosomes with antibodies against
the cytosolic tail of LAMP2A also reinforces the hypothesis that
the protein is a CMA substrate.

In other instances, rather than determining if a particular
protein is a CMA substrate, the interest may be to analyze possi-
ble changes in CMA activity under different conditions or in
response to different modifications. We enumerate here the
methods, from lower to higher complexity that can be utilized to
measure CMA in cultured cells and in tissues (see ref. 682 for
detailed experimental procedures). (a) Measurement of changes
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in the intracellular rates of degradation of long-lived proteins,
when combined with inhibitors of other autophagic pathways,
can provide a first demonstration in support of changes that
are due to CMA. For example, CMA is defined as lysosomal
degradation upregulated in response to serum removal but
insensitive to PtdIns3K inhibitors. (b) Measurement of levels of
CMA components is insufficient to conclude changes in CMA
because this does not provide functional information, and changes
in CMA components can also occur under other conditions.
However, analysis of the levels of LAMP2A can be used to
support changes in CMA detected by other procedures. Cytosolic
levels of HSPA8 remain constant and are not limiting for CMA,
thus providing no information about this pathway. Likewise,
changes in total cellular levels of LAMP2A do not have an impact
on this pathway unless they also affect their lysosomal levels (i.e.,
conditions in which LAMP2A is massively overexpressed lead to
its targeting to the plasma membrane where it cannot function
in CMA). It is advisable that changes in the levels of these two
CMA components are confirmed to occur in lysosomes, either by
colocalization with lysosomal markers when using image-based
procedures or by performing immunoblot of a lysosomal enriched
fraction (purification of this fraction does not require the large
amounts of cells/tissue necessary for the isolation of the subset of
lysosomes active for CMA). (c) Tracking changes in the subset of
lysosomes active for CMA. This group of lysosomes is defined as
those containing HSPA8 in their lumen (note that LAMP2A is
present in both lysosomes that are active and inactive for CMA,
and it is the presence of HSPA8 that confers CMA capability).
Immunogold or immunofluorescence against these two proteins
(LAMP2A and HSPA8) makes it possible to quantify changes in
the levels of these lysosomes present at a given time, which
correlates well with CMA activity.628 (d) Analysis of lysosomal
association of fluorescent artificial CMA substrates. Two different
fluorescent probes have been generated to track changes in CMA
activity in cultured cells using immunofluorescence or FACS
analysis.628 These probes contain the KFERQ and context
sequences in frame with photoswitchable or photoactivated
fluorescent proteins. Activation of CMA results in the mobiliza-
tion of a fraction of the cytosolic probe to lysosomes and the
subsequent change from a diffuse to a punctate pattern. CMA
activity can be quantified as the number of fluorescent puncta per
cell or as the decay in fluorescence activity over time because
of degradation of the artificial substrate. Because the assay does
not allow measuring accumulation of the substrate (which
must unfold for translocation), it is advisable to perform a time-
course analysis to determine gradual changes in CMA activity.
Antibodies against the fluorescent protein in combination with
inhibitors of lysosomal proteases can be used to monitor
accumulation of the probe in lysosomes over a period of time,
but both the photoswitchable and the unmodified probe will be
detected by this procedure.690 As for any other fluorescence probe
based on analysis of intracellular “puncta” it is essential to include
controls to confirm that the puncta are indeed lysosomes
(colocalization with LysoTracker or LAMPs and lack of colo-
calization with markers of cytosolic aggregation such as ubiquitin),
and do not reach the lysosomes through other autophagic

pathways (insensitivity to PtdIns3K inhibitors and sensitivity to
LAMP2A knockdown are good controls in this respect). (e) Direct
measurement of CMA using in vitro cell free assays. Although the
introduction of the fluorescent probes should facilitate measure-
ment of CMA in many instances, they are not applicable for
tissue samples. In addition, because the probes measure binding
of substrate to lysosomal membranes it is important to confirm
that enhanced binding does not result from defective transloca-
tion. Lastly, the in vitro uptake assays are also the most efficient
way to determine primary changes in CMA independently of
changes in other proteolytic systems in the cells. These in vitro
assays are the same ones described in the previous section on the
identification of proteins as substrates of CMA, but are performed
in this case with purified proteins previously characterized to be
substrates for CMA. In this case the substrate protein is always
the same and what changes is the source of lysosomes (from the
different tissues or cells that are to be compared). As described
in the previous section, binding and uptake can be analyzed
separately using lysosomes previously treated or not with protease
inhibitors. The analysis of the purity of the lysosomal fractions
prior to performing functional analysis is essential to conclude
that changes in the efficiency to take up the substrates results from
changes in CMA rather than from different levels of lysosomes
in the isolated fractions. Control of the integrity of the lysosomal
membrane and sufficiency of the proteases are also essential to
discard the possibility that degradation is occurring outside
lysosomes because of leakage, or that accumulation of substrates
inside lysosomes is due to enhanced uptake rather than to
decreased degradation.

Cautionary notes: The discovery of a new selective form of
protein degradation in mammals named endosomal-microauto-
phagy (e-MI)691 has made it necessary to reconsider some of the
criteria that applied in the past for the definition of a protein as a
CMA substrate. The KFERQ-like motif, previously considered to
be exclusive for CMA, is also used to mediate selective targeting of
cytosolic proteins to the surface of late endosomes. Once there,
substrates can be internalized in microvesicules that form from
the surface of these organelles in an ESCRT-dependent manner.
HSPA8 has been identified as the chaperone that binds this
subset of substrates and directly interacts with lipids in the late
endosomal membrane, acting thus as a receptor for cytosolic
substrates in this compartment. At a practical level, to determine if
a KFERQ-containing protein is being degraded by CMA or e-MI
the following criteria can be applied: (a) Inhibition of lysosomal
proteolysis (for example with NH4Cl and leupeptin) blocks
degradation by both pathways. (b) Knockdown of LAMP2A
inhibits CMA but not e-MI. (c) Knockdown of components of
ESCRTI and II (e.g., VPS4 and TSG101) inhibits e-MI but not
CMA. (d) Interfering with the capability to unfold the substrate
protein blocks its degradation by CMA, but does not affect e-MI
of the protein. In this respect soluble proteins, oligomers and
protein aggregates can undergo e-MI, but only soluble proteins
can be CMA substrates. (e) In vitro uptake of e-MI substrates
can be reconstituted using isolated late endosomes whereas in
vitro uptake of CMA substrates can only be reconstituted using
lysosomes.
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Another pathway that needs to be considered relative to
CMA is chaperone-assisted selective autophagy (CASA).692

CASA is dependent on HSPA8 and LAMP2 (although it is
not yet known if it is dependent solely on the LAMP2A
isoform). Thus, a requirement for these two proteins is not
sufficient to conclude that a protein is degraded by CMA.

Conclusion: One of the key issues with the analysis of
CMA is verifying that the protein of interest is an authentic
susbstrate. Methods for monitoring CMA that utilize
fluorescent probes are available that eliminate the need for
the isolation of CMA-competent lysosomes, one of the most
difficult aspects of assaying this process.

B. Comments on Additional Methods

1. Acidotropic dyes. Among the older methods for following
autophagy is staining with acidotropic dyes such as mono-
dansylcadaverine (MDC),693 acridine orange,694 Neutral
Red,632 LysoSensor Blue695 and LysoTracker Red.198,696

Cautionary notes: Although MDC was first described as a
specific marker of autophagic vacuoles697 subsequent studies
have suggested that this, and other acidotropic dyes, are not
specific markers for early autophagosomes,258 but rather label
later stages in the degradation process. For example, auto-
phagosomes are not acidic, and MDC staining can be seen
in autophagy-defective mutants401 and in the absence of
autophagy activation.698 MDC may also show confounding levels
of background labeling unless narrow bandpass filters are used.
However, in the presence of vinblastine, which blocks fusion with
lysosomes, MDC labeling increases, suggesting that under these
conditions MDC can label late-stage autophagosomes.699 Along
these lines, cells that overexpress a dominant negative version of
RAB7 (the T22N mutant) show colocalization of this protein
with MDC; in this case fusion with lysosomes is also blocked700

indicating that MDC does not just label lysosomes. Finally, MDC
labeling could be considered to be an indicator of autophagy when
the increased labeling of cellular compartments by this dye
is prevented by treatment with autophagy inhibitors such as
wortmannin or 3-MA.

Overall, staining with MDC or its derivative monodansylamyl-
amine (MDH)693 is not, by itself, a sufficient method for
monitoring autophagy. Similarly, LysoTracker Red, Neutral Red
and acridine orange are not ideal markers for autophagy because
they primarily detect lysosomes. These markers are, however,
useful for monitoring selective autophagy when used in conjunc-
tion with protein markers or other dyes. For example, increased
colocalization of mitochondria with both GFP-LC3 and
LysoTracker can be used as evidence of autophagic cargo delivery
to lysosomes. Moreover, LysoTracker Red has been used to
provide correlative data on autophagy in Drosophila melanogaster
fat body cells (Fig. 23).197,198 However, additional assays, such as
GFP-Atg8/LC3 fluorescence or EM, should be used to sub-
stantiate results obtained with acidotropic dyes whenever possible.
One important caution when co-imaging with LysoTracker Red
and a green-fluorescing marker (e.g., GFP-LC3 or MitoTracker
Green) is that it is necessary to control for rapid red-to-green

photoconversion of the LysoTracker, which can otherwise result
in an incorrect interpretation of colocalization.701

Some of the confusion regarding the interpretation of results
with these dyes stems in part from the nomenclature in this
field. Indeed, the discussion of acidotropic dyes points out why it
is advisable to differentiate between the terms “autophagosome”
and “autophagic vacuole,” although they are occasionally, and
incorrectly, used interchangeably. The autophagosome is the
sequestering compartment generated by the phagophore. The
fusion of an autophagosome with an endosome or a lysosome
generates an amphisome or an autolysosome, respectively. The
early autophagosome is not an acidic compartment, whereas
amphisomes and autolysosomes are acidic. Earlier names for these
compartments are “initial autophagic vacuole (AVi),” “intermedi-
ate autophagic vacuole (AVi/d)” and “degradative autophagic
vacuole (AVd),” respectively. Thus, acidotropic dyes can stain late
autophagic vacuoles (in particular autolysosomes), but not the
initial autophagic vacuole, the early autophagosome. With the
above caveats in mind, the combined use of early and late
markers of autophagy is highly encouraged, and when quantifying
mammalian lysosomes, it is important to keep in mind that
increases in both lysosome size and number are frequently
observed. Finally, in order to avoid confusion with the plant and
fungal vacuole, the equivalent organelle to the lysosome, we
recommend the use of the term “autophagosome” instead of
“autophagic vacuole,” and the use of “autophagic compartment”
when the specific nature of the structure is not known.

Conclusion: Given the development of better techniques that
are indicators of autophagy, the use of acidotropic dyes to study
this process is discouraged, and relying entirely on such dyes is
not acceptable.

Figure 23. LysoTracker Red stains lysosomes and can be used to monitor
autophagy in Drosophila. Live fat body tissues from Drosophila were stained
with LysoTracker Red (red) and Hoechst 33342 (blue) to stain the nucleus.
Tissues were isolated from fed (left) or 3 h starved (right) animals. Bar, 25 mm.
This figure was modified from data presented in reference 198, Scott RC,
Schuldiner O, Neufeld TP, Role and regulation of starvation-induced autophagy
in the Drosophila fat body, Dev Cell 2004; 7:167–78, copyright 2004, with
permission from Elsevier.

www.landesbioscience.com Autophagy 507



© 2012 Landes Bioscience.

Do not distribute.

2. Autophagy inhibitors and inducers. In many situations it is
important to demonstrate an effect resulting from inhibition or
stimulation of autophagy (see ref. 702 for a partial listing of
regulatory compounds), and a few words of caution are worth-
while in this regard. Most chemical inhibitors of autophagy are
not entirely specific, and it is important to consider possible dose-
and time-dependent effects. Accordingly, it is generally preferable
to analyze specific loss-of-function Atg mutants. However, it must
be kept in mind that some apparently specific Atg gene pro-
ducts may have autophagy-independent roles (e.g., ATG5 in
cell death, and the PIK3C3-containing complexes—including
BECN1—in apoptosis, endosomal function and protein traffick-
ing).403,432,703-706 Therefore, the experimental conditions of
inhibitor application and their side effects must be carefully
considered. In addition, it must be emphasized once again that
autophagy, as a multistep process, can be inhibited at different
stages. Sequestration inhibitors, including 3-MA, LY294002 and
wortmannin, inhibit class I as well as class III PtdIns3Ks.134,257,707

The class I enzymes generate products [PtdIns(3,4,5)P3] that
inhibit autophagic sequestration, whereas the class III product
(PtdIns3P) generally stimulates autophagic sequestration. The
overall effect of these inhibitors is typically to block autophagy
because the class III enzymes that are required to activate
autophagy act downstream of the negative regulatory class I
enzymes, although cell death may ensue in cell types that are
dependent upon high levels of AKT1 for survival. The effect of
3-MA (but not that of wortmannin) is further complicated by
the fact that it has different temporal patterns of inhibition,
causing a long-term suppression of the class I PtdIns3K, but
only a transient inhibition of the class III enzyme. In cells
incubated in a complete medium for extended periods of time,
3-MA may, therefore (particularly at suboptimal concentrations),
promote autophagy by inhibition of the class I enzyme.257 Thus,
wortmannin may be considered as an alternative to 3-MA for
autophagy inhibition.257 However, wortmannin can induce the
formation of vacuoles that may have the appearance of auto-
phagosomes, although they are swollen late endocytic compart-
ments.611 Furthermore, studies have demonstrated that inhibition
of autophagy with 3-MA or wortmannin can have effects on
cytokine transcription, processing and secretion, particularly IL1
family members,708-710 but 3-MA also inhibits the secretion of
some cytokines (e.g., TNF, IL6) in an autophagy-independent
manner (Harris J, unpublished observations). Thus, in studies
where the effect of autophagy inhibition on specific cellular
processes is being investigated, is is important to confirm results
using other methods, such as RNA silencing. Due to these issues,
it is of great interest that inhibitors with specificity for the class
III PtdIns3Ks, and their consequent effects on autophagy, have
been described.165

Cycloheximide, a commonly used protein synthesis inhibitor
in mammals, is also an inhibitor of sequestration in
vivo,14-16,92,604,711-715 and in various cell types in vitro,344,716 and
it has been utilized to investigate the dynamic nature of the
regression of various autophagic elements.14-16,24,92,712,713 The
mechanism of action of cycloheximide in short-term experiments
is not clear, but it has no direct relation to the inhibition of

protein synthesis.344 This latter activity, however, may complicate
certain types of analysis when using this drug.

A significant challenge for a more detailed analysis of the
dynamic role of autophagy in physiological and pathophysiolo-
gical processes, for instance with regard to cancer and cancer
therapy, is to find more specific inhibitors of autophagy signaling
which do not affect other signaling cascades. For example, in the
context of cellular radiation responses it is well known that
PtdIns3Ks (e.g., ATM, PRKDC/DNA-PKcs), in addition to
signaling through the PtdIns3K-AKT1 pathway, have a major role
in the regulation of DNA-damage repair.717 However, 3-MA,
which is a nonspecific inhibitor of class 3 PtdIns3Ks, can alter the
function of other classes of this enzyme, which are involved in the
DNA-damage repair response. This is of particular importance for
investigations into the role of radiation-induced autophagy in
cellular radiation sensitivity or resistance.718,719

Most other inhibitory drugs act at post-sequestration steps.
These types of agents have been used in many experiments to
both inhibit endogenous protein degradation and to increase the
number of autophagic compartments. They cause the accumula-
tion of sequestered material in either autophagosomes or auto-
lysosomes, or both, because they allow autophagic sequestration
to proceed. The main categories of these types of inhibitors
include the vinca alkaloids (e.g., vinblastine) and other micro-
tubule poisons that inhibit fusion, inhibitors of lysosomal
enzymes (e.g., leupeptin, pepstatin A and E-64d), and compounds
that elevate lysosomal pH (e.g., inhibitors of vacuolar-type
ATPases such as bafilomycin A1 and concanamycin A (another
V-ATPase inhibitor), and weak base amines including methyl- or
propylamine, chloroquine, and Neutral Red, some of which slow
down fusion). Ammonia is a very useful agent for the elevation of
lysosomal pH in short-term experiments, but has been reported
to cause a stimulation of autophagy during long-term incubation
of cells in a full medium,720 under which conditions a good
alternative might be methylamine or propylamine.721 Along these
lines, it should be noted that the half-life of glutamine in cell
culture media is approximately two weeks due to chemical
decomposition, which results in media with lowered glutamine
and elevated ammonia concentrations that can affect the auto-
phagic flux (either inhibiting or stimulating autophagy, depend-
ing on the concentration722). Thus, the use of freshly prepared
cell culture media with glutamine is advised, to help reduce
experimental variation. A special note of caution is also warranted
in regard to chloroquine. Although this chemical is commonly
used as an autophagy inhibitor, chloroquine may initially
stimulate autophagy (Dorsey FC, personal communication;
Franco R, personal communication).

Some data suggest that some nanomaterials may also be novel
inhibitors of autophagy, by as yet unidentified mechanisms.723 It
is worth noting that lysosomal proteases fall into three general
groups, cysteine, aspartic acid and serine proteases. Therefore, the
fact that leupeptin, a serine and cysteine protease inhibitor, has
little or no effect does not necessarily indicate that lysosomal
degradation is not taking place; a combination of leupeptin,
pepstatin A and E-64d may be a more effective treatment.
However, it should also be pointed out that these protease
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inhibitors can exert inhibitory effects not only on lysosomal
proteases, but also on cytosolic proteases; that is, degradation of
proteins might be blocked through inhibition of cytosolic instead
of lysosomal proteases. Conversely, it should be noted that
MG132 (Z-leu-leu-leu-al) and its related peptide aldehydes are
commonly used as proteasomal inhibitors, but they can also
inhibit certain lysosomal hydrolases such as cathepsins and
calpains.724 Thus, any positive results using MG132 do not rule
out the possibility of involvement of the autophagy-lysosome
system. Therefore, even if MG132 is effective, it is important
to confirm the result using more specific proteasomal inhibitors
such as lactacystin or epoxomicin. Finally, there are significant
differences in cell permeability among protease inhibitors. For
example, E-64d is membrane permeable, whereas leupeptin and
pepstatin A are not (although there are derivatives that display
greater permeability such as pepstatin A methyl ester).725 Thus,
when analyzing whether a protein is an autophagy substrate,
caution should be taken in utilizing these protease inhibitors to
block autophagy.

As with the PtdIns3K inhibitors, many autophagy-suppressive
compounds are not specific. For example, okadaic acid726 is a
powerful general inhibitor of both type 1 (protein phosphatase 1)
and type 2A (PPP2CB/PP2A) protein phosphatases.727

Bafilomycin A1 and other compounds that raise the lysosomal
pH may have indirect effects on any acidified compartments.
Moreover, treatment with bafilomycin A1 for extended periods
(18 h) can cause significant disruption of the mitochondrial
network in cultured cells (Gegg ME, personal communication),
and either bafilomycin A1 or concanamycin A cause swelling of
the Golgi in plants,728 and increase cell death by apoptosis in
cancer cells (Rao VA, personal communication). Bafilomycin A1 is
often used at a final concentration of 100 nM, but much lower
concentrations such as 1 nM may be sufficient to inhibit
autophagic-lysosomal degradation and are less likely to cause
indirect effects;154,729,730 however, appropriate inhibitory concen-
trations should be empirically determined for each cell type.6 One
final caution with regard to bafilomycin A1 is that activation of
lysosomally localized TORC1 depends on an active V-ATPase.364

This means that treatment with bafilomycin A1 could elevate the
autophagic flux through MTOR inhibition, while simultaneously
interfering with flux by inhibiting fusion. Accordingly, other
compounds may be preferred for flux measurements. Thus,
although these various agents can inhibit different steps of the
autophagic pathway, their potential side effects must be
considered in interpretation of the secondary consequences of
autophagy inhibition, especially in long-term studies. For
example, lysosomotropic compounds can increase the rate of
autophagosome formation by inhibiting TORC1.731 Along these
lines, chloroquine treatment may cause an apparent increase in
the formation of autophagosomes possibly by blocking fusion
with the lysosome (Dorsey FC, Cleveland JL, personal communi-
cation). This conclusion is supported by the finding that
chloroquine reduces the colocalization of LC3 and LysoTracker
despite the presence of autophagosomes and lysosomes (Simon
AK, personal communication). Concanamycin A blocks sorting of
vacuolar proteins in plant cells in addition to inhibiting vacuolar

acidification.732 Furthermore, in addition to causing the accu-
mulation of autophagic compartments, many of these drugs seem
to be stimulators of sequestration in many cell types, especially in
vivo.93,235,604,712,716,733-737 Although it is clear why these drugs cause
the accumulation of autophagic compartments, it is not known
why they stimulate sequestration. One possibility, at least for
hepatocytes, is that the inhibition of protein degradation reduces
the intracellular amino acid pool, which in turn upregulates
sequestration. A time-course study of the changes in both the
intra- and extracellular fractions may provide accurate informa-
tion regarding amino acid metabolism. For these various reasons,
it is important to include appropriate controls; along these lines,
MTOR inhibitors such as rapamycin or amino acid depriva-
tion can be utilized as positive controls for inducing autophagy.
In many cell types, however, the induction of autophagy by
rapamycin is relatively slow, or transient, allowing more time for
indirect effects; thus, rapamycin may fail to activate autophagy
in cultured primary neurons, despite its potent stimulation of
autophagy in some cancer cell lines,238,738,739 and, similarly, it does
not induce autophagy in human neuroblastoma SH-SY5Y cells,
which can differentiate into neuron-like cells (Diaz-Nido J,
personal communication). Thus, glucose depletion may be much
more efficient at inducing autophagy than rapamycin or amino
acid starvation in neurons in culture (Germain M, Slack R,
personal communication); although a number of compounds can
also be quite efficient autophagy inducers in neurons including
the calpain inhibitor calpeptin.238,740,741 Several small molecule
inhibitors, including torin1, PP242, KU-0063794, PtdIns-103
and NVP-BEZ235, have been developed that target the catalytic
domain of MTOR in an ATP-competitive manner.154,252,742-745 In
comparison to rapamycin, these catalytic MTOR inhibitors are
more potent, and hence are stronger autophagy agonists in most
cell lines.242,252,746 The use of these second-generation MTOR
inhibitors may reveal that some reports of mTOR-independent
autophagy may actually reflect the use of the relatively weak
inhibitor rapamycin. Furthermore, the use of these compounds
has revealed a role for TORC1 and TORC2 as independent
regulators of autophagy.747 Finally, a specialized class of
compounds with a,β-unsaturated ketone structure tends to
induce autophagic cell death, accompanied by changes in
mitochondrial morphology; since the cytotoxic action of these
compounds is efficiently blocked by N-acetyl-L-cysteine, the β-
position in the structure may interact with an SH group of the
targeted molecules.748 Due to the potential pleiotropic effects of
various drug treatments, it is incumbent upon the researcher
to demonstrate that autophagy is indeed inhibited, by using the
methodologies described herein. Accordingly, it is critical to verify
the effect of a particular biochemical treatment with regard to
its effects on autophagy induction or inhibition when using a cell
line that was previously uncharacterized for the chemical being
used. Similarly, cytotoxicity of the relevant chemical should be
assessed.

The use of gene deletions/inactivations (e.g., in primary or
immortalized Atg2/2 MEFs,401 plant T-DNA or transposon
insertion mutants,200,749 or in vivo using transgenic knockout
models750,751 including Cre-lox based “conditional” knockouts230,231)
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or functional knockdowns (e.g., with RNAi against ATG genes)
is the preferred approach when possible because these methods
allow a more direct assessment of the resulting phenotype;
however, different floxed genes are deleted with varying
efficiency, and the proportion deleted must be carefully
quantified (Hwang S, Virgin IV HW, personal communication).
Studies also suggest that microRNAs may be used for blocking
gene expression.164,468,469,752 In certain contexts, it is advisable
when using a knockout or knockdown approach to examine
multiple autophagy-related genes to exclude the possibility that
the phenotype observed is due to effects on a non-autophagic
function(s) of the corresponding protein, especially when
examining the possibility of autophagic cell death (in contrast,
if examining whether perturbation induces clearance of a
substrate via autophagy, a single ATG gene knockout is
probably sufficient). This is particularly the case in evaluating
BECN1, which interacts with anti-apoptotic BCL2 family
proteins,425 or when low levels of a target protein are sufficient
for maintaining autophagy as is the case with ATG5.171 With
regard to ATG5, a better approach may be to use a dominant
negative (K130R) version.706,753,754 Along these lines, and as
stated above for the use of inhibitors, when employing a
knockout or especially a knockdown approach, it is again
incumbent upon the researcher to demonstrate that autophagy is
actually inhibited, by using the methodologies described herein.
Finally, we note that the long-term secondary consequences of
gene knockouts or knockdowns are likely much more complex
than the immediate effects of the actual autophagy inhibition.
To overcome this concern, inducible knockout systems might be
useful.171,315 One additional caveat to knockdown experiments is
that pathogen-associated molecular pattern (PAMP) recognition
pathways can be triggered by double-stranded RNAs (dsRNA),
like siRNA probes, or the viral vector systems that deliver
shRNA.755 Some of these, like TLR-mediated RNA recog-
nition,756 can influence autophagy by either masking any
inhibitory effect or compromising autophagy independent of
the knockdown probe. Therefore, nontargeting (scrambled)
siRNA or shRNA controls should be used with the respective
transfection or transduction methods in the experiments that
employ ATG knockdown. Another strategy to specifically
interfere with autophagy is to use dominant negative inhibitors.
Delivery of these agents by transient transfection, adenovirus, or
TAT-mediated protein transduction offers the possibility of their
use in cell culture or in vivo.753 However, since autophagy is an
essential metabolic process for many cell types and tissues, loss
of viability due to autophagy inhibition always has to be a
concern when analyzing cell death-unrelated questions. In this
respect it is noteworthy that some cell-types of the immune
system such as dendritic cells260 seem to tolerate loss of
autophagy fairly well, whereas others such as T and B cells are
compromised in their development and function after autophagy
inhibition.757,758

In addition to pharmacological inhibition, RNA silencing, gene
knockout and dominant negative RAB and ATG protein
expression, pathogen-derived autophagy inhibitors can also be
considered to manipulate autophagy. Along these lines ICP34.5,

viral BCL2 homologs and viral CFLAR/FLIP of herpesviruses
block autophagosome formation,425,580,759 whereas M2 of influ-
enza virus and HIV Nef block autophagosome degradation.278,760

However, as with other tools discussed in this section, transfection
or transduction of viral autophagy inhibitors should be used in
parallel with other means of autophagy manipulation, because
these proteins are used for the regulation of usually more than one
cellular pathway by the respective pathogens.

There are fewer compounds that act as inducers of autophagy,
but the initial characterization of this process was due in large part
to the inducing effects of glucagon, which appears to act through
indirect inhibition of MTOR via the activation of STK11/LKB1-
AMPK.615,616,761 Currently, the most commonly used inducer of
autophagy is rapamycin, an allosteric inhibitor of TORC1,
although one caution is that MTOR is a major regulatory protein
that is part of the insulin signaling pathway, and it controls
processes other than autophagy, so that rapamycin will ultimately
affect many metabolic pathways.379,762-764 In particular, the strong
effects of MTOR on protein synthesis may be a confounding
factor when analyzing the effects of rapamycin. MTOR-
independent regulation can be achieved through lithium, sodium
valproate and carbamazepine, compounds that lower the myo-
inositol-1,4,5-triphosphate levels.765 In vivo treatment of embryos
with cadmium results in an increase in autophagy, probably to
counter the stress, allowing cell survival through the elimination/
recycling of damaged structures.632 Autophagy may also be
regulated by the release of calcium from the endoplasmic
reticulum under stress conditions;212,726,766 however, additional
calcium signals from other stores such as the mitochondria and
lysosomes could also play an important role in autophagy
induction. The activation of the lysosomal two pore channel
(TPC), by nicotinic acid adenine dinucleotide phosphate
(NAADP) induces autophagy, which can selectively be inhibited
by the TPC blocker NED-19, or by pre-incubation with BAPTA,
showing that lysosomal calcium also modulates autophagy.244

Another way to induce autophagy, both in cultured cells and in
vivo, is through transcriptional control. For example, this can be
achieved either through overexpression or post-translational
activation of the gene encoding TFEB (see Transcriptional and
translational regulation), a transcriptional regulator of the
biogenesis of both lysosomes and autophagosomes.463,464

Similarly, adenoviral-mediated expression of the transcription
factor CEBPB/C/EBPβ induces autophagy in hepatocytes.467

Relatively little is known about direct regulation via the ATG
proteins, but there is some indication that tamoxifen acts to
induce autophagy by increasing the expression of BECN1 in
MCF7 cells.767 However, in U87MG cells treated with tamoxifen
BECN1 does not appear to be upregulated, whereas the levels of
LC3-II and SQSTM1 are increased, while LAMP2B is down-
regulated and CTSD and CTSL1 activities are almost completely
blocked (Choi KS, personal communication). Thus, the effect of
tamoxifen may differ depending on the cell type. Other data
suggest that tamoxifen acts by blocking cholesterol biosynthesis,
and that the sterol balance may determine whether autophagy acts
in a protective vs. cytotoxic manner.768,769 Finally, screens have
identified small molecules that induce autophagy independently
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of rapamycin, and allow the removal of misfolded or aggregate-
prone proteins,770,771 suggesting that they may prove useful in
therapeutic applications. However, caution should be taken
because of the crosstalk between autophagy and the proteasomal
system. For example, trehalose, an MTOR-independent auto-
phagy inducer,253 can compromise proteasomal activity in
cultured primary neurons.739

Conclusion: Rapamycin is much less effective at inhibiting
MTOR and inducing autophagy than catalytic inhibitors, and the
latter should therefore be considered for use instead of rapamycin;
however, it must be kept in mind that catalytic inhibitors also
affect MTORC2. The main concern with pharmacological
manipulations is pleiotropic effects of the compound being used.
Accordingly, genetic confirmation is preferred whenever possible.

3. Basal autophagy. Basal levels of LC3-II or GFP-LC3 puncta
may change according to the time after addition of fresh medium
to cells, and this can lead to misinterpretations of what basal
autophagy means. This is particularly important when comparing
the levels of basal autophagy between different cell populations
(such as knockout vs. wild-type clones). If cells are very sensitive
to nutrient supply and display a high variability of basal auto-
phagy, the best experimental condition is to monitor the levels
of basal autophagy at different times after the addition of fresh
medium. One example is the chicken lymphoma DT40 cells
(see Chicken B-lymphoid DT40 cells below) and their knockout
variant for all three inositol 1,4,5-trisphosphate receptor iso-
forms.241,772,773 In these cells, no differences in basal levels of
LC3-II can be observed up to 4 h after addition of fresh medium,
but differences can be observed after longer times (Vicencio JM,
Szabadkai G, personal communication). This concept should also
be applied to experiments in which the effect of a drug upon
autophagy is the subject of study. If the drugs are added after a
time in which basal autophagy is already high, then the effects of
the drug can be masked by the cell’s basal autophagy, and wrong
conclusions may be drawn. To avoid this, fresh medium should
be added first in order to reduce and equilibrate basal autophagy
in cells under all conditions, and then the drugs can be added.
The basal autophagy levels of the cell under study must be
identified beforehand in order to know the time needed to reduce
basal autophagy.

A similar caution must be exercised with regard to cell culture
density and hypoxia. When cells are grown in normoxic con-
ditions at high cell density, HIF1A/HIF-1a is stabilized at levels
similar to that obtained with low-density cultures under hypoxic
conditions.774 This results in the induction of BNIP3 and
BNIP3L/NIX and “hypoxia”-induced autophagy, even though
the conditions are theoretically normoxic.775 Therefore, research-
ers need to be careful about cell density in order to avoid
accidental induction of autophagy.

It should be realized that also in yeast species, medium changes
can trigger a higher “basal” level of autophagy in the cells. In the
methylotrophic yeast species Pichia pastoris and Hansenula poly-
morpha a shift of cells grown in batch from glucose to methanol
results in stimulation of autophagy.776,777 A shift to a new medium
can be considered a stress situation. Thus, it appears to be
essential to cultivate the yeast cells for a number of hours to

stabilize the level of basal autophagy, before performing experi-
ments intended to study levels of (selective) autophagy (e.g.,
pexophagy). Finally, plant root tips cultured in nutrient-sufficient
medium display constitutive autophagic flux (i.e., a basal level),
which is enhanced in nutrient-deprived medium.696,778,779

Conclusion: The levels of basal autophagy can vary substan-
tially and can mask the effects of the experimental parameters
being tested. Changes in media and growth conditions need to be
examined empirically to determine affects on basal autophagy and
the appropriate times for subsequent manipulations.

4. Experimental systems. Throughout these guidelines we have
noted that it is not possible to state explicit rules that can be
applied to all experimental systems. For example, some techniques
may not work in particular cell types or organisms. In each case,
the efficacy of autophagy promotors, inhibitors and measurement
technique must be empirically determined, which is why it is
important to include appropriate controls. Differences may also
be seen between in vivo or perfused organ studies and cell culture
analyses. For example, insulin has no effect on proteolysis in
suspended rat hepatocytes, in contrast to the result with perfused
rat liver. The insulin effect reappears, however, when isolated
hepatocytes are incubated in stationary dishes780,781 or are allowed
to settle down on the matrix (Häussinger D, personal com-
munication). The reason for this might be that autophagy
regulation by insulin and some amino acids requires volume
sensing via integrin-matrix interactions and also intact micro-
tubules.782-784 Along these lines, the use of whole embryos makes
it possible to investigate autophagy in multipotent cells, which
interact among themselves in their natural environment, bypass-
ing the disadvantages of isolated cells that are deprived of their
normal network of interactions.632 In general, it is important to
keep in mind that results from one particular system may not be
generally applicable to others.

Conclusion: Although autophagy is conserved from yeast to
human, there may be tremendous differences in the specific
details among systems. Thus, results based on one system should
not be assumed to be applicable to another.

5. Nomenclature. In order to minimize confusion regarding
nomenclature, we make the following notes: In general, we follow
the conventions established by the nomenclature committees
for each model organism whenever appropriate guidelines are
available, and briefly summarize the information here using
“ATG1” as an example for yeast and mammals. The standard
nomenclature of autophagy-related genes, mutants and proteins for
yeast is ATG1, atg1 (or atg1D in the case of deletions) and Atg1,
respectively, according to the guidelines adopted by the
Saccharomyces Genome Database (http://www.yeastgenome.org/
gene_guidelines.shtml). For mammals we follow the recommenda-
tions of the International Committee on Standardized Genetic
Nomenclature for Mice (www.informatics.jax.org/mgihome/
nomen/), which dictates the gene and protein designations Atg1
and ATG1 (for all rodents), respectively, and the guidelines for
human genes established by the HUGONomenclature Committee
(http://www.genenames.org/guidelines.html), which states that
human gene symbols are in the form ULK1, and recommends that
proteins use the same designation without italics, as with ULK1.

www.landesbioscience.com Autophagy 511



© 2012 Landes Bioscience.

Do not distribute.

C. Methods and Challenges
of Specialized Model Systems

There are now a large number of model systems being used to
study autophagy. These guidelines cannot cover every detail, and
this article is not meant to provide detailed protocols. Nonethe-
less, we think it is useful to briefly discuss what techniques can be
used in these systems, and to highlight some of the specific
concerns and/or challenges. We also refer readers to the three
volumes of Methods in Enzymology that provide additional
information for “nonstandard” model systems.38-40

1. C. elegans. C. elegans has a single ortholog of most yeast Atg
proteins; however, two nematode homologs exist for Atg4 and
Atg8.785 Multiple studies have established C. elegans as a useful
multicellular genetic model to delineate the autophagy pathway and
associated functions (see for example refs. 189, 462, 592, 593 and
786). The LGG-1/Atg8/LC3 reporter is the most commonly used
tool to detect autophagy in C. elegans. Similar to Atg8, which is
incorporated into the double membrane of autophagic vesicles
during autophagy,113,187,442 the C. elegans LGG-1 localizes into
cytoplasmic puncta under conditions known to induce autophagy.
Fluorescent reporter fusions of LGG-1/Atg8 with GFP, DsRED or
mCherry have been used to monitor autophagosome formation in
vivo, in the nematode. These reporters can be expressed either in
specific cells and tissues or throughout the animal.189,593,787,788 LGG-
2 is the second LC3 homolog and is also a convenient marker for
autophagy either fused to GFP,789 especially when expressed from an
integrated transgene to prevent its germline silencing,592 or using
specific antibodies.592 The exact function of LGG-1 vs. LGG-2
remains to be addressed.

For observing autophagy by GFP-LC3 fluorescence in
C. elegans, it is best to use integrated versions of GFP-
LC3592,593,790 (GFP::LGG-1 and GFP::LGG-2; Fig. 24) rather
than extrachromosomal transgenic strains189,789 because the latter
show variable expression among different animals or mosaic
expression (Kang C, personal communication; Galy V, personal
communication). It is also possible to carry out indirect
immunofluorescence microscopy using antibodies against endo-
genous LGG-1,462,593 or LGG-2.592 In addition, with the
integrated version, or with antibodies directed against endogenous
LGG-1, it is possible to perform a western blot analysis for
lipidation, at least in embryos,790 and in the whole animal,593

respectively. Finally, we point out the increasing availability of
instruments that are capable of “super-resolution” fluorescence
microscopy, which will further enhance the value and possibilities
afforded by this technology.791,792

2. Chicken B-lymphoid DT40 cells and retina. The chicken
B-lymphoid DT40 cell line represents a suitable tool for the
analysis of autophagic processes in a nonmammalian vertebrate
system. In DT40 cells, foreign DNA integrates with a very high
frequency by homologous recombination compared with random
integration. This makes the cell line a very valuable tool for the
generation of cellular gene knockouts. Generally, the complete
knockout of autophagy-regulatory proteins is preferable compared
with RNAi-mediated knockdown, since in some cases these
proteins function normally when expressed at reduced levels.171

Different Atg-deficient DT40 cell lines already exist, including
atg132/2, ulk12/2, ulk22/2, ulk1/22/2,793 becn12/2 and rb1cc1/
fip2002/2 (Stork B, personal communication). Many additional
non-autophagy-related gene knockout DT40 cell lines have been
generated and are commercially available.794

DT40 cells are highly proliferative (the generation time is
approximately 10 h) and knockout cells can be easily reconsti-
tuted with cDNAs by retroviral gene transfer for the mutational
analysis of signaling pathways. DT40 cells mount an autophagic
response upon starvation in EBSS,793 and autophagy can be
analyzed by a variety of assays in this cell line. Steady-state
methods that can be used include TEM, LC3 western blotting
and fluorescence microscopy; flux measurements include
monitoring LC3-II turnover and tandem mRFP/mCherry-GFP-
LC3 fluorescence microscopy. Using atg132/2 and ulk1/22/2

DT40 cells, it was shown that ATG13 and its binding capacity
for RB1CC1 are mandatory for both basal and starvation-induced
autophagy in this cell line, whereas ULK1/2 and in vitro-mapped
ULK1-dependent phosphorylation sites of ATG13 appear to be
dispensable for these processes.793

Another useful system is chick retina, which can be used for
monitoring autophagy at different stages of development. For
example, lipidation of LC3 is observed during starvation, and can
be blocked with a short-term incubation with 3-MA.305,306 LEP-
100 antibody is commercially available for the detection of this
lysosomal protein.

Cautionary notes: Since the DT40 cell line derives from a
chicken bursal lymphoma, not all ATG proteins and autophagy-
regulatory proteins are detected by the commercially available
antibodies produced against their mammalian orthologs. The
chicken genome is almost completely assembled, which facilitates
the design of targeting constructs. However, in the May 2006
chicken (Gallus gallus) v2.1 assembly, 5% of the sequence has not
been anchored to specific chromosomes, and this might also
include autophagy regulatory genes. It is possible that there is
some divergence within the signaling pathways between mam-
malian and nonmammalian model systems. One example might
be the role of ULK1/2 in starvation-induced autophagy described
above. Additionally, neither rapamycin nor torin1 seem to be
potent inducers of autophagy in DT40 cells, although MTOR
activity is completely repressed as detected by phosphorylated
RPS6KB western blotting.793 Finally, DT40 cells represent a
transformed cell line, being derived from an avian leukosis virus
(ALV)-induced bursal lymphoma. Thus, DT40 cells release ALV
into the medium, and the 3'-long-terminal repeat has integrated
upstream of the c-myc gene, leading to an increased c-myc
expression.795 Both circumstances might influence basal and
starvation-induced autophagy.

3. Chlamydomonas. It is possible to detect Atg8 modification
as well as an increase in the amount of the protein by western
blotting in response to autophagy activation.207 Detection of
Atg8 by immunofluorescence microscopy assays is also a reliable
method to study autophagy, although it is recommended that this
be combined with western blot analysis.

4. Drosophila. Drosophila provides an excellent system for
in vivo analysis of autophagy. In this case, the problem of
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animal-to-animal variability can be circumvented by the use of
clonal mutant cell analysis, a major advantage of this model
system. In this scenario, somatic clones of cells are induced that

either overexpress the gene of interest, or silence
the gene through expression of a transgenic RNA
interference construct, or homozygous mutant
cells are generated. These gain- or loss-of-
function clones are surrounded by wild-type
cells, which serve as an internal control for
autophagy induction. In such an analysis,
autophagy in these genetically distinct cells is
always compared with neighboring cells of the
same tissue, thus eliminating most of the
variability and also ruling out potential non-
cell-autonomous effects that may arise in mutant
animals. Along these lines, clonal analysis should
be an integral part of in vivo Drosophila studies
when possible.

LC3-II western blotting using antibodies
against mammalian proteins does not work in
Drosophila (Baehrecke E, Denton D, Kumar S,
Neufeld T, unpublished results). Western blot-
ting has been used successfully in Drosophila

by monitoring flies expressing human GFP-LC3101,197 or using an
antibody directed against the endogenous Atg8 protein.454,796 In
addition, cultured Drosophila (S2) cells can be stably transfected

Figure 24. GFP::LGG-1 and GFP::LGG-2 are autophagy
markers in C. elegans. (A–F) Animals were generated
that carry an integrated transgene expressing
a GFP-tagged version of lgg-1, the C. elegans ortholog
of mammalian MAP1LC3. Representative green fluor-
escence images in the pharyngeal muscles
of (A) control RNAi animals without starvation,
(B) control RNAi animals after 9 d of starvation,
(C) atg-7 RNAi animals after 9 d of starvation,
(D) starvation-hypersensitive gpb-2 mutants without
leucine after 3 d of starvation, and (E) gpb-2 mutants
with leucine after 3 d of starvation. The arrows show
representative GFP::LGG-1-positive punctate areas
that label pre-autophagosomal and autophagosomal
structures. (F) The relative levels of PE-conjugated and
unconjugated GFP::LGG-1 were determined
by western blotting. These figures were modified
from data previously published in Kang C, You YJ,
Avery L, Dual roles of autophagy in the survival of
Caenorhabditis elegans during starvation. Genes Dev
2007, 21:2161–71, Copyright G 2007, Genes &
Development by Cold Spring Harbor Laboratory Press
and Kang C, Avery L, Systemic regulation of starvation
response in Caenorhabditis elegans. Genes Dev 2009,
23:12–7, Copyright G 2011, Genes & Development by
Cold Spring Harbor Laboratory Press, www.genesdev.
org. (G and H) GFP:LGG-2 serves as a marker for
autophagosomes in early C. elegans embryos.
(G) GFP::LGG-2 expressed in the germline from an
integrated transgene reveals the formation of
autophagosomes (green) around sperm-inherited
membranous organelles (red). DNA of the two
pronuclei is stained (blue). (H) Later during
development, GFP::LGG-2-positive structures are
present in all cells of the embryo. Scale bar, 10 mm.
Images provided by V. Galy.
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with GFP fused to Drosophila Atg8a, which generates easily
resolvable GFP-Atg8a and GFP-Atg8a–PE forms that respond to
autophagic stimuli (Wilkinson S, personal communication).
Similarly, cultured Drosophila cells (l(2)mbn or S2) stably
transfected with EGFP-humanLC3B respond to autophagy
stimuli (nutrient deprivation) and inhibitors (3-MA, bafilomycin
A1) as expected, and can be used to quantify GFP-LC3 puncta,
which works best using fixed cells with the aid of an anti-GFP
antibody.797a However, in the Drosophila eye, overexpression of
GFP-Atg8 results in a significant increase in Atg8–PE by western
blot, and this occurs even in control flies in which punctate
GFP-Atg8 is not detected by immunofluorescence (Fanto M,
unpublished results), and in transfected Drosophila Kc167 cells,
uninducible but persistent GFP-Atg8 puncta are detected
(Kiger A, unpublished results). In contrast, expression of GFP-
LC3 under the control of the rh1 promoter in wild-type flies did
not result in the formation of LC3-II detectable by western blot,
nor the formation of punctate staining; however, increased GFP-
LC3 puncta by immunofluorescence or LC3-II by western blot
were observed upon activation of autophagy.797b Autophagy can
also be monitored with mCherry-Atg18, which is displayed in
punctate patterns that are very similar to mCherry-Atg8a (Juhász
G, personal communication). Tandem fluorescence reporters have
been established in Drosophila in vivo, where GFP-mCherry-
Atg8a is expressed in the nurse cells of the developing egg
chamber.662 A Drosophila transgenic line (Ref(2)P-GFP) and a
specific antibody against Ref(2)P, the Drosophila SQSTM1
homolog, are available to follow SQSTM1 expression and
localization.312,368

5. Filamentous fungi. As in yeast, autophagy is involved
in nutrient recycling during starvation.193,194,798-801 In addition,
macroautophagy seems to be involved in many normal deve-
lopmental processes such as sexual and asexual reproduction,
where there is a need for reallocation of nutrients from one part
of the mycelium to another to supply the developing spores and
spore-bearing structures.194,798,799,801,802 Similarly, autophagy also
affects conidial germination under nitrogen-limiting condi-
tions.194 In Podospora anserina, autophagy has been studied in
relation to incompatibility reactions between mating strains where
it seems to play a prosurvival role.192,802 Of special interest to
many researchers of autophagy in filamentous fungi has been the
possible involvement of autophagy in plant pathogen infection
and growth inside the host.193,798,799,803-805 Autophagy also appears
to be necessary for the development of aerial hyphae,194,798,802,804

and for appresorium function in Magnaporthe oryzae and
Colletotrichum orbiculare.193,803,804 Some of these effects could be
caused by the absence of autophagic processing of storage lipids
(lipophagy) to generate glycerol for increasing turgor.798,804,805

Methods for functional analysis of autophagy have been
covered in a review article.806 Most studies on autophagy in
filamentous fungi have involved deleting some of the key genes
necessary for autophagy, followed by an investigation of what
effects this has on the biology of the fungus. Most commonly,
ATG1 and/or ATG8 has been deleted.193,798,799,801,802,804 To
confirm that the deletion(s) affects autophagy, the formation
of autophagic bodies in the wild type and the mutant can be

compared. In filamentous fungi the presence of autophagic bodies
can be detected using MDC staining,193,798 TEM193,799 or fluo-
rescence microscopy to monitor Atg8 tagged with a fluorescent
protein.194,801,802 This type of analysis is most effective after
increasing the number of autophagic bodies by starvation,
in combination with decreasing the degradation of the auto-
phagic bodies through the use of the protease inhibitor
PMSF,193,799,801,802 or alternatively by adding the autophagy-
inducing drug rapamycin.194,798 In filamentous fungi it might also
be possible to detect the accumulation of autophagic bodies in the
vacuoles using differential interference contrast (DIC) micro-
scopy.801,802 Additional information regarding the timing of
autophagy induction can be gained by monitoring transcript
accumulation of ATG1 and/or ATG8 using qRT-PCR.799

6. Honeybee. The reproductive system of bees, or insects with
meroistic polytrophic ovaries, with regard to the ovary develop-
mental cycle can be a very useful tool to analyze and monitor
physiological autophagy. Both queen and worker ovaries of
Africanized A. mellifera display time-regulated features of cell
death that are, however, linked to external stimuli.807 Features
of apoptosis and autophagy are frequently associated with the
degeneration process in bee organs, but only more recently has the
role of autophagy been highlighted in degenerating bee tissues.
TEM is the primary method currently being used to monitor
autophagy by following the formation of autophagosomes and
autolysosomes. This can be combined with cytochemical and
immunohistochemical detection of acid phosphatase as a marker
for autolysosomes.808,809 Acidotropic dyes can also be used to
follow autophagy in bee organs, as long as the cautions noted in
this article are followed. The honeybee genome has been
sequenced, and differential gene expression has been used to
monitor Atg18 in bees parasitized by Varroa destructor.810

7. Human. Considering that much of the research conducted
today is directed at understanding the functioning of the human
body, in both normal and disease states, it is pertinent to include
humans and primary human tissues and cells as important models
for the investigation of autophagy. Although clinical studies are
not readily amenable to these types of analyses, it should be kept
in mind that the TORC1 inhibitor rapamycin is available as a
clinically approved drug (e.g., sirolimus). Furthermore, fresh
biopsies of some human tissues are possible to obtain. Blood, in
particular, as well as samples of adipose and muscle tissues, can
be obtained from needle biopsies or from elective surgery. For
example, in a large study, adipocytes were isolated from pieces
of adipose tissue (obtained during surgery) and examined for
insulin signaling and autophagy. It was demonstrated that auto-
phagy was strongly upregulated (based on LC3 flux, EM, and
lipofuscin degradation) in adipocytes obtained from obese patients
with type 2 diabetes compared with nondiabetic subjects.209

The major caveat of the work concerning autophagy on human
tissue is the problem of postmortem times and fixation. Post-
mortem times are typically longer in autopsy material than when
surgical biopsies are obtained. For tumors, careful sampling to avoid
necrosis, hemorrhagic areas and non-neoplastic tissue is required.
The problem of fixation is that it can diminish the antibody binding
capability; in addition, especially in autopsies, material is not
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obtained immediately after death.811,812 The possibilities of
postmortem autolysis and fixation artifacts must always be
taken into consideration when interpreting changes attributed
to autophagy.813 Analyses of these types of samples require not
only special antigen retrieval techniques, but also histopatho-
logical experience to interpret autophagy studies by immuno-
histochemistry, immunofluorescence or TEM.

The situation is even worse with TEM, where postmortem
delays can cause vacuolization. Researchers experienced in
the analysis of TEM images corresponding to autophagy
should be able to identify these potential artifacts because
autophagic vacuoles should contain cytoplasm. While brain
biopsies may be usable for high quality TEM (Figs. 25 and
26), this depends upon proper handling at the intraoperative
consultation stage, and such biopsies are performed infre-
quently except for brain tumor diagnostic studies. An
analysis that examined liver and skeletal muscle from
critically ill patients utilized tissue biopsies that were taken
within 30 ± 20 min after death and were flash-frozen in
liquid nitrogen followed by storage at -80°C.815 Samples
could subsequently be used for EM and western blot
analysis.

A major limitation of studying patient biopsies is that
only static measurements can be performed. This limitation
does not apply, however, for dynamic experiments on tissue
biopsies or cells derived from biopsies, as described above.209

Multiple measurements over time, especially when deep (vital)
organs are involved, are impossible and ethically not justifiable.
Hence, quantitative flux measurements are virtually impossible
in patients. To overcome these problems to the extent possible
and to gain a more robust picture of the autophagic status,
observational studies need to include two different aspects.
First, a static marker for phagophore or autophagosome
formation needs to be measured. This can be done by assessing
ultrastructural changes with TEM and/or on the molecular
level by measuring LC3-II protein levels. Second, accumula-
tion of autophagy substrates, such as SQSTM1 and (poly)
ubiquitinated proteins can provide information on the overall
efficacy of the pathway and can be a surrogate marker of the
consequences of altered autophagic flux, especially when
autophagy is insufficient, although these changes can also be
affected by the ubiquitin-proteasome system as mentioned
above. In addition, and even more so when problems with
specific pathways are suspected (e.g., mitophagy), specific
substrates of these pathways should be determined. Again,
none of these measurements on its own provides enough
information on (the efficacy of) autophagy, because other processes
may confound every single parameter. However, the combination of
multiple analyses should be informative. Although still in its infancy
with regard to autophagy, it is worth pointing out that mathematical
modeling has the power to bridge whole body in vivo data with
in vitro data from tissues and cells. The usefulness of so-called
hierarchical or multilevel modeling has thus been demonstrated
when examining the relevance of insulin signaling to glucose uptake
in primary human adipocytes compared with whole-body glucose
homeostasis.816

The amino acid exchange rate, which has been suggested as a
minimal invasive marker for measuring autophagic flux in vivo
should be used with special caution, as its utility is debatable in
disease models (see Analyses in vivo).

Finally, a stepwise process can be proposed for linking changes
in the autophagic pathway to changes in disease outcome. First, in
an observational study, the changes in the autophagic pathway
(see above) should be quantified and linked to changes in disease
outcome. To prove causality, a subsequent autophagy-modifying
intervention should be tested in a randomized study. Before an

Figure 25. A large dystrophic neurite from a brain biopsy of a patient
with Gerstmann-Sträussler-Scheinker (GSS) disease not unlike those reported
for Alzheimer disease.814 This structure is filled with innumerable autophagic
vacuoles, some of which are covered by a double membrane. Electron dense
lysosomal-like structures are also visible. The red arrow points to a double-
membrane autophagic compartment. Scale bar, 200 nm. Image provided
by P. Liberski.

Figure 26. A high-power electron micrograph from a brain biopsy showing
autophagic vacuoles in a case of ganglioglioma. Scale bar, 200 nm.
Image provided by P. Liberski.
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intervention study is performed in human patients, the phenotype
of (in)active autophagy contributing to poor outcome should be
established in a validated animal model of the disease. For the
validation of the hypothesis in an animal model, a similar two-step
process is suggested, with the assessment of the phenotype in a
first stage, followed by a proof-of-concept intervention study (see
Large animals).

8. Hydra. Hydra is a freshwater cnidarian animal that provides
a unique model system to test autophagy either in the context of
nutrient deprivation, as these animals easily survive several weeks
of starvation,817,818 or in the context of regeneration, because in
the absence of protease inhibitors, bisection of the animals leads
to an uncontrolled wave of autophagy; in the latter case, an excess
of autophagy in the regenerating tip immediately after amputa-
tion is deleterious.819-821 Most components of the autophagy and
MTOR pathways are evolutionarily conserved in Hydra.818 For
steady-state measurements, autophagy can be monitored by
western blot for ATG8/LC3, by immunofluorescence (using
antibodies to ATG8/LC3, LBPA or RSK), or with dyes such as
MitoFluor Red 589 and LysoTracker Red. Flux measurements
can be made by following ATG8/LC3 turnover using lysosomal
protease inhibitors (leupeptin and pepstatin A), or in vivo labeling
using LysoTracker Red. It is also possible to monitor MTOR
activity with phosphospecific antibodies to RPS6KB kinase and
EIF4EBP1, or to examine gene expression by semiquantitative
RT-PCR, using primers that are designed for Hydra. Autophagy
can be induced by RNAi-mediated knockdown of Kazal1,819,820 or
with rapamycin treatment, and can be inhibited with wortmannin
or bafilomycin A1.817,818

9. Large animals. Assessment of autophagy (and, in particular,
autophagic flux) in clinically relevant large animal models is
critical in establishing its (patho)physiological role in multiple
disease states. For example, evidence obtained in swine suggests
that upregulation of autophagy may protect the heart against
damage caused by acute myocardial infarction or “heart attack.”822

Autophagy also plays an important role in the development and
remodeling of the bovine mammary gland. In vitro studies with
the use of a three-dimensional culture model of bovine mammary
epithelial cells (MECs) have shown that this process is involved in
the formation of fully developed alveoli-like structures.823 Earlier
studies show that intensified autophagy is observed in bovine
MECs at the end of lactation and during the dry period, when
there is a decrease in the levels of lactogenic hormones, increased
expression of auto/paracrine apoptogenic peptides, increased
influence of sex steroids and enhanced competition between the
intensively developing fetus and the mother organism for nutri-
tional and bioactive compounds.824,825 These studies were based
on some of the methods described elsewhere in these guidelines,
including GFP-Atg8/LC3 fluorescence microscopy, TEM, and
western blotting of LC3 and BECN1. Creation of a specific GFP-
LC3 construct by insertion of cDNA encoding bovine LC3 into
the pEGFP-C1 vector makes it possible to observe induction of
autophagy in bovine MECs in a more specific manner than can be
achieved by immunofluoresce techniques, in which the antibodies
do not show specific reactivity to bovine cells and tissues.823,825

However, it is important to remember that definitive confirmation

of cause-and-effect is challenging for studies on large animals,
given the lack or poor availability of specific antibodies and
other molecular tools, the frequent inability to utilize genetic
approaches, and the often prohibitive costs of administering
pharmacological inhibitors in these translational preparations.

In contrast with cell culture experiments, precise monitoring
of autophagic flux is practically impossible in large animals.
Theoretically, repetitive analyses of small tissue biopsies should
be performed to study ultrastructural and molecular alterations
over time in the presence or absence of an autophagy inhibitor
(e.g., chloroquine). However, several practical problems impede
applicability of this approach. First, repetitive sampling of small
needle biopsies in the same animal (a major challenge by itself)
could be assumed to induce artifacts following repetitive tissue
destruction, especially when deep (vital) organs are involved. In
addition, chemical inhibitors of autophagy have considerable side
effects and toxicity, hampering their usage. Also, the general
physical condition of an animal may confound results obtained
with administration of a certain compound, for instance altered
uptake of the compound when perfusion is worse.

Therefore, in contrast to cells, where it is more practical to
accurately document autophagic flux, we suggest the use of a
stepwise approach in animal models to provide a proof-of-concept
with an initial evaluation of sequellae of (in)active autophagy
and the relation to the outcome of interest.

First, prior to an intervention, the static ultrastructural and
molecular changes in the autophagic pathway should be
documented and linked to the outcome of interest (organ
function, muscle mass or strength, survival, etc.). These changes
can be evaluated by light microscopy, EM and/or by molecular
markers such as LC3-II. In addition, the cellular content of
specific substrates normally cleared by autophagy should be
quantified, as such measurement, despite the static nature, could
provide a clue about the results of altered autophagic flux in vivo.
These autophagic substrates can include SQSTM1 and (poly)
ubiquitinated substrates or aggregates, but also specific substrates
such as damaged mitochondria. As noted above, measurement of
these autophagic substrates is mainly informative when auto-
phagic flux is prohibited/insufficient, and, individually, all have
specific limitations for interpretation. As mentioned several times
in these guidelines, no single measurement provides enough
information on its own to reliably assess autophagy, and all
measurements should be interpreted in view of the whole picture.
In every case, both static measurements reflecting the number of
autophagosomes (ultrastructural and/or molecular) and measure-
ments of autophagic substrates as surrogate markers of autophagic
flux need to be combined. Depending on the study hypothesis,
essential molecular markers can further be studied to pinpoint at
which stage of the process autophagy may be disrupted.

After having identified a potential role of autophagy in
mediating an outcome in a clinically relevant animal model, an
autophagy-modifying intervention should be tested. For this
purpose, an adequately designed, randomized controlled study of
sufficient size on the effect of a certain intervention on the
phenotype and outcome can be performed in a large animal
model. Alternatively, the effect of a genetic intervention can be
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studied in a small animal model with clinical relevance to the
studied disease.

As mentioned above, exact assessment of autophagic flux
requires multiple time points, which cannot be done in the same
animal. Alternatively, different animals can be studied for
different periods of time. Due to the high variability between
animals, however, it is important to include a sufficiently high
number of animals per time point. This thus limits feasibility and
the number of time points that can be investigated. The right
approach to studying autophagy in large animals likely differs
depending on the question that is being addressed. Several
shortcomings regarding the methodology, inherent to working
with large animals, can be overcome by an adequate study design.
As for every study question, the use of an appropriate control
group with a sufficient number of animals is crucial in this regard.

10. Lepidoptera. Some of the earliest work in the autophagy
field was performed in the area of insect metamorphosis.667

Microscopy and biochemical research revealed autophagy during
the metamorphosis of American silkmoths and the tobacco
hornworm, Manduca sexta, and included studies of the interseg-
mental muscles, but they did not include molecular analysis of
autophagy. Overall, these tissues cannot be easily maintained in
culture, and antibodies against mammalian proteins do not often
work. Accordingly, these studies were confined to biochemical
measurements and electron micrographs. During metamorphosis,
the bulk of the larval tissue is removed by autophagy and other
forms of proteolysis.826 Bombyx mori is now used as a representative
model among Lepidoptera, for studying not only the regulation of
autophagy in a developmental setting, but also the relations
between autophagy and apoptosis. The advantages of this model are
the large amount of information gathered on its developmental
biology, physiology and endocrinology, the availability of numer-
ous genetic and molecular biology tools, and a completely
sequenced genome.827 The basic studies of B. mori autophagy have
been performed in four main larval systems: the silk gland, the fat
body, the midgut and the ovary. The methods used for these studies
are comparatively similar, starting from EM, which is the most
widely used method to follow the changes of various autophagic
structures and other features of the cytosol and organelles that are
degraded during autophagy.452,828-831 Immuno-TEM also can be
used, when specific antibodies for autophagic markers are available.
Acidotropic dyes such as MDC and LysoTracker Red staining have
been used as markers for autophagy in silk moth egg chambers
combined always with additional assays.828,829 Acidic phosphatase
also can be used as a marker for autolysosomal participation in these
tissues.452,830,832 Systematic cloning and analysis revealed that
homologs of most of the Atg genes identified in other insect
species such as Drosophila are present in B. mori, and 11 Atg genes
have now been identified in the silkworm genome, as well as other
genes involved in the MTOR signal transduction pathway.833,834

Variations in the expression of several of these genes have been
monitored not only in silkworm larval organs, where autophagy is
associated with development,452,833-835 but also in the fat body of
larvae undergoing starvation.833

In the IPLB-LdFB cell line, derived from the fat body of
the caterpillar of the gypsy moth Lymantria dispar, indirect

immunofluorescence experiments have demonstrated an increased
number of Atg8-positive dots in cells with increased autophagic
activity; however, western blotting did not reveal the conversion
of Atg8 into Atg8–PE. Instead, a single band with an approximate
molecular mass of 42 kDa was observed that was independent of
the percentage of cells displaying punctate Atg8 (Malagoli D,
unpublished results). In contrast, with B. mori midgut, the use of
an antibody specific for BmAtg8 makes it possible to monitor
BmAtg8 processing to BmAtg8–PE by western blotting.452 Thus,
the utility of monitoring Atg8 in insects may depend on the
particular organism and antibody.

11. Neotropical teleosts. In tropical environments, fish have
developed different reproductive strategies, and many species have
the potential for use as biological model in cell and molecular
biology, especially for studying the mechanisms that regulate
gametogenesis and embryo development. In these fish, the ovary
is a suitable experimental model system for studying autophagy
and its interplay with cell death programs due to the presence of
postovulatory follicles (POFs) and atretic follicles (AFs), which
follow different routes during ovarian remodeling after spawn-
ing.836 In the fish reproductive biology, POFs are excellent
morphological indicators of spawning, whereas AFs are relevant
biomarkers of environmental stress. In addition, many freshwater
teleosts of commercial value do not spawn spontaneously in
captivity, providing a suitable model for studying the mechanisms
of follicular atresia under controlled conditions.837 When these
species are subjected to induced spawning, the final oocyte
maturation (resumption of meiosis) occurs, and POFs are formed
and quickly reabsorbed in ovaries after spawning.838 Assessment of
autophagy in fish has been primarily made using TEM at different
times of ovarian regression.839 Due to the difficulty of obtaining
antibodies specific for each fish species, immunodetection of
ATG-proteins (mainly LC3 and BECN1) by immunohisto-
chemistry associated with analyses by western blotting can be
performed using antibodies that are commercially available for
other vertebrates. Such studies suggest dual roles for autophagy in
follicular cells;836 however, evaluation of the autophagic flux in
different conditions is critical for establishing its physiological role
during follicular regression and ovarian remodeling after spawn-
ing. Given the ease of obtaining samples and monitoring them
during development, embryos of these fish are also suitable
models for studying autophagy that is activated in response to
different environmental stressors, particularly in studies in vivo.

12. Odontoblasts. Odontoblasts are long-lived dentin-forming
postmitotic cells, which evolved from neural crest cells early
during vertebrate evolution. These cells are aligned at the peri-
phery of the dental pulp and are maintained during the entire
healthy life of a tooth. As opposed to other permanent postmitotic
cells such as cardiac myocytes or central nervous system neurons,
odontoblasts are significantly less protected from environmental
insult, such as dental caries and trauma. Mature odontoblasts
develop a well-characterized autophagic-lysosomal system, includ-
ing a conspicuous autophagic vacuole that ensures turnover and
degradation of cell components. Immunocytochemical and TEM
studies make it possible to monitor age-related changes in
autophagic activity in human odontoblasts.840
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13. Planarians. Planarians are one of the favorite model
systems in which to study regeneration and stem cell biology, and
represent a unique model where it is possible to investigate
autophagy in the context of regeneration, stem cells and growth.
Currently the method used to detect autophagy is TEM. A
detailed protocol adapted to planarians has been described.841,842

However, complementary methods to detect autophagy are also
needed, since TEM cannot easily distinguish between activation
and blockage of autophagy, which would both be observed as an
accumulation of autophagosomes. Detection of autophagy by
other methods are being developed (González-Estévez C, personal
communication), including immunohistochemistry and western
blotting approaches for the planarian homolog of LC3. Several
commercial antibodies against human LC3 have been tried for
cross-reactivity without success (see the Autophagy Forum for
details) and three planarian-specific antibodies have been gener-
ated. Some preliminary results show that LysoTracker Red can be
a useful technique on whole-mount planarians. Interestingly,
most of the components of the autophagy and MTOR signaling
machinery are evolutionarily conserved in planarians, and an RNA
interference screen is being performed. Whether autophagy genes
vary at the mRNA level during starvation and after depletion of
MTOR signaling components is also currently being investigated
(González-Estévez C, personal communication).

14. Plants. The fluorophore of the red fluorescent protein
shows a relatively high stability under acidic pH conditions. Thus,
chimeric RFP fusion proteins that are sequestered within
autophagosomes and delivered to the plant vacuole can be easily
detected by fluorescence microscopy. Furthermore, fusion
proteins with some versions of RFP tend to form intracellular
aggregates, allowing the development of a visible autophagic
assay for plant cells.843 For example, fusion of cytochrome b5
and the original (tetrameric) RFP generate an aggregated cargo
protein that displays cytosolic puncta of red fluorescence and,
following vacuolar delivery, diffuse staining throughout the
vacuolar lumen. This system allows autophagy to be monitored
through fluorescence microscopy with minimum damage to intact
plant cells. In addition, the size difference between the intact and
processed cargo protein allows the quan-
tification of autophagic degradation
through the detection of RFP after separa-
tion of total protein by gel electrophoresis,
similar to the GFP-Atg8/LC3 processing
assay described for yeast and mammals.

Arabidopsis cells can be stably trans-
fected with GFP fused to plant ATG8,
and the lipidated and nonlipidated forms
can be separated by SDS-PAGE.150

Furthermore, the GFP-ATG8 processing
assay is particularly robust in Arabidopsis
and can be observed not only by western
blotting but also by a diffuse fluorescent
haze that appears in vacuoles together with
punctate GFP fluorescence, which is pre-
sumed to represent free soluble GFP and
GFP-ATG8–PE still bound to autophagic

bodies, respectively.151,174 Thus, as with other systems, auto-
phagosome formation in plants can be monitored through the
use of fluorescent protein fusions to ATG8, and by TEM (Fig. 27).
A tandem fluorescence reporter system is also available in
Arabidopsis.844

Furthermore, it is possible to use plant homologs of SQSTM1
and NBR1 (JOKA2 in tobacco845 and NBR1 in Arabidopsis844) as
markers for autophagy when constructed as fluorescent chimeras.
It is worth noting that in some plant models including
Arabidopsis200,402 and somatic embryos of Picea abies (Norway
spruce) (Minina A, Bozhkov PV, personal communication), the
high turnover rate of Atg8-decorated autophagosomes precludes
their detection in untreated cells using fluorescent markers (GFP/
RFP-Atg8, MDC or LysoTracker) and necessitates pretreatment
with concanamycin A. However, the latter treatment will increase
vacuolar pH, which may subsequently interfere with its detection
by MDC and LysoTracker.

In some systems, including fungi and plants, the size of the
vacuole is sufficiently large such that fusion of the autophagosome
results in the release of the inner vesicle into the organelle lumen;
the resulting single-membrane vesicle is termed an autophagic
body (Fig. 1).200,846 The accumulation of autophagic bodies can
be detected by light microscopy in cells that lack vacuolar
hydrolase activity (e.g., the pep4D yeast mutant) or in the presence
of inhibitors that interfere with hydrolase activity (e.g., PMSF or
concanamycin A). Using Nomarski optics (differential interfer-
ence contrast) it is easy to distinguish and quantify yeast vacuoles
that lack autophagic bodies from those that have accumulated
them, and the same is true for plants.

Other methods described throughout these guidelines can also
be used in plants. For example, in tobacco cells cultured in sucrose
starvation medium, the net degradation of cellular proteins can
be measured by a standard protein assay; this degradation is
inhibited by 3-MA and E-64c (an analog of E-64d), and is thus
presumed to be due to autophagy.847 In addition, the cytoplasm
in tobacco cells that is present in transvacuolar strands that cross
the large central vacuole can be seen by TEM to disappear during
starvation-induced autophagy.847

Figure 27. Detection of macroautophagy in tobacco BY-2 cells. (A) Induction of autophagosomes in
tobacco BY-2 cells expressing YFP-NtAtg8 (shown in green for ease of visualization) under conditions
of nitrogen limitation (Induced). Arrowheads indicate autophagosomes that can be seen as a bright
green dot. No such structure was found in cells grown in normal culture medium (Control). Bar, 10
mm. N, nucleus; V, vacuole. (B) Ultrastructure of an autophagosome in a tobacco BY-2 cell cultured for
24 h without a nitrogen source. Bar, 200 mm. AP, autophagosome; P, plastid; CW, cell wall. This image
was provided by K. Toyooka (RIKEN Plant Science Center).
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Cautionary notes: Although the detection of vacuolar RFP can
be applied to both plant cell lines and to intact plants, it is not
practical to measure RFP fluorescence in intact plant leaves, due
to the very high red fluorescence of chloroplasts. Furthermore,
different autophagic induction conditions cause differences in
protein synthesis rates; thus, special care should be taken to
monitor the efficiency of autophagy by quantifying the intact
and processed cargo proteins. With regard to autophagic body
accumulation, it is difficult to quantify their number and/or
volume, although their presence or absence can be examined by
light microscopy or TEM. In addition, the accumulation of
autophagic bodies requires the inhibition of vacuolar hydrolase
activity. Therefore, to demonstrate turnover, the assay must be
performed either in the absence and presence of appropriate
inhibitors, or in both a wild-type strain and a strain with a
mutation/deletion in a gene encoding a vacuolar hydrolase(s)
(see Selective types of autophagy). Otherwise, accumulation of
autophagic bodies could instead indicate a defect in the lysis/
degradation step of autophagy. Finally, this method is not well
suited for systems other than plants or fungi because lysosomes
are too small for detection by standard (i.e., nonfluorescence)
light microscopy, and fusion with autophagosomes does not
generate autophagic bodies (Fig. 1).

15. Protists. An essential role of autophagy during the differ-
entiation of parasitic protists (formerly called protozoa) is clearly
emerging. Only a few of the known ATG genes are present in
these organisms, which raises the question about the minimal
system that is necessary for the normal functioning of autophagy.
The reduced complexity of the autophagic machinery in many
protists provides a simplified model to investigate the core
mechanisms of autophagosome formation necessary for selective
proteolysis, and will open a completely new area in autophagy
research. Some of the standard techniques used in other systems
can be applied to protists including indirect immunofluorescence
using antibodies generated against ATG8, the generation of
stable lines expressing mCherry- or GFP-fused ATG8 for live
microscopy, and immuno-TEM analyses. Extrachromosomal
constructs of GFP-ATG8 also work well with lower eukaryo-
tes,201-203 as do other fluorescently-tagged ATG proteins including
ATG5 and ATG12.

The unicellular amoeba Dictyostelium discoideum provides
another useful system for monitoring autophagy.848 The primary
advantage of Dictyostelium is that it has a unique life cycle that
involves a transition from a unicellular to a multicellular form.
Upon starvation, up to 100,000 single cells aggregate by chemo-
taxis and form a multicellular structure that undergoes morpho-
genesis and cell-type differentiation. Development proceeds via
the mound stage, the tipped aggregate and a motile slug and
culminates with the formation of a fruiting body that is com-
posed of a ball of spores supported by a thin, long stalk made of
vacuolized dead cells. Development is dependent on autophagy
and, at present, all of the generated mutants in Dictyostelium
autophagy genes display developmental phenotypes of varying
severity.848,849 D. discoideum is also a versatile model to study
infection with human pathogens and the role of autophagy in the
infection process. The susceptibility of D. discoideum to microbial

infection and its strategies to counteract pathogens are similar to
those in higher eukaryotes.850 Along these lines, Dictyostelium
utilizes some of the proteins involved in autophagy that are not
present in S. cerevisiae including C12orf44/Atg101, Uvrag and
Vmp1, in addition to the core Atg proteins. Autophagy can be
monitored in Dictyostelium by fluorescence microscopy of GFP-
Atg8 or GFP-Atg18, by TEM and by western blot to detect free
GFP or the loss of SQSTM1.36,152,848

One cautionary note with regard to the use of GFP-ATG8 in
protists is that these organisms display some “nonclassical” varia-
tions in their ATG proteins. For example, Leishmania contains
many apparent ATG8-like proteins (the number varying per
species; e.g., up to 25 in L. major) grouped in four families, but
only one labels true autophagosomes even though the others
form puncta,202 and ATG12 requires truncation to provide the
C-terminal glycine before it functions in the canonical way.
Unusual variants in protein structures also exist in other protists,
including the malaria parasite Plasmodium falciparum, which
expresses ATG8 with a terminal glycine not requiring cleavage to
become functional in autophagy.851 Thus, in each case care needs
to be applied and the use of the protein to monitor autophagy
validated. In addition, due to possible divergence in the upstream
signaling kinases, classical inhibitors such as 3-MA, or inducers
like rapamycin, which are not as potent for trypanosomes852 or
apicomplexan parasites as in mammalian cells or yeast, must
be used with caution (Coppens I, personal communication);201

however, RNAi knockdown of TORC1 (e.g., TOR1 or RPTOR)
is effective in inducing autophagy.

The scuticociliate Philasterides dicentrarchi has proven to be a
good experimental organism for identifying autophagy-inducing
drugs or for autophagy initiation by starvation-like conditions,
since this process can be easily induced and visualized in this
ciliate.853 In scuticociliates, the presence of autophagic vacuoles
can be detected by TEM, fluorescence microscopy or confocal
laser scanning microscopy by using dyes such as MitoTracker
Deep Red FMG and MDC.

Finally, a novel autophagy event has been found in Tetrahy-
mena thermophila, which is a free-living ciliated protist. A
remarkable, virtually unique feature of the ciliates is that they
maintain spatially differentiated germline and somatic nuclear
genomes within a single cell. The germline genome is housed in
the micronucleus, while the somatic genome is housed in the
macronucleus. These nuclei are produced during sexual repro-
duction (conjugation), which involves not only meiosis and
mitosis of the micronucleus and its products, but also degrada-
tion of some of these nuclei as well as the parental old macro-
nucleus. Hence, there should be a mechanism governing the
degradation of these nuclei. The inhibition of PtdIns3Ks with
wortmannin or LY294002 results in the accumulation of addi-
tional nuclei during conjugation.854 During degradation of the
parental old macronucleus, the envelope of the nucleus becomes
MDC- and LysoTracker Red-stainable without sequestration of
the nucleus by a double membrane and with the exposure of
certain sugars and phosphatidylserine on the envelope.855 Sub-
sequently, lysosomes fuse only to the old parental macronucleus,
but other co-existing nuclei such as developing new macro- and
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micronuclei are unaffected.855 This evidence suggests that selective
autophagy may be involved in the regulation of the degradation
of nuclei during conjugation, but its mechanism apparently differs
from the classical pathway. Indeed, no ATG genes homologous to
those in yeast are characterized in this organism to date.

16. Rainbow trout. Salmonids (e.g., salmon, rainbow trout)
experience long periods of fasting often associated with seasonal
reductions in water temperature and prey availability or spawn-
ing migrations. As such, they represent an interesting model
system for studying and monitoring the long-term induction of
autophagy. Moreover, the rainbow trout (Oncorhynchus mykiss)
displays unusual metabolic features that may allow us to gain
a better understanding of the nutritional regulation of this
degradative system (i.e., a high dietary protein requirement, an
important use of amino acids as energy sources, and an apparent
inability to metabolize dietary carbohydrates). It is also probably
one of the most deeply studied fish species with a long history of
research performed in physiology, nutrition, ecology, genetics,
pathology, carcinogenesis and toxicology.856 Its relatively large size
compared with model fish such as zebrafish or medaka, makes
rainbow trout a particularly well-suited alternative model to carry
out biochemical and molecular studies on specific tissues or cells
that are impossible to decipher in small fish models. The genomic
resources in rainbow trout are now being extensively developed; a
high-throughput DNA sequencing program of EST has been
initiated associated with numerous transcriptomics studies,857-860

and the full genome sequence is now available.
Most components of the autophagy and associated signaling

pathways (AKT1, TOR, AMPK, FOXO) are evolutionarily con-
served in rainbow trout;457,861-863 however, not all ATG proteins
and autophagy-regulatory proteins are detected by the commer-
cially available antibodies produced against their mammalian
orthologs. Nonetheless, the expressed sequence transcript data-
bases facilitate the design of targeting constructs. For steady-state
measurement, autophagy can be monitored by western blot or
by immunofluorescence using antibodies to ATG8/LC3.863 Flux
measurements can be made in a trout cell culture model (e.g., in
primary culture of trout myocytes) by following ATG8/LC3
turnover in the absence and presence of bafilomycin A1. It is also
possible to monitor the mRNA levels of ATG genes by real-time
PCR using primer sequences chosen from trout sequences
available in the above-mentioned expressed sequence transcript
database. A major challenge in the near future will be to develop
for this model the use of RNAi-mediated gene silencing in order
to analyze the role of some signaling proteins in the control of
autophagy, and also the function of autophagy-related genes in
this species.

17. Sea urchin. Sea urchin embryo is an appropriate model
system for studying and monitoring autophagy and other defense
mechanisms activated during physiological development and in
response to stress.632 This experimental model offers the possibi-
lity of detecting LC3 through both protein gel blot and immuno-
fluorescence in situ analysis. Furthermore, in vivo staining of
autolysosomes with acidotropic dyes can also be performed.
Studies on whole embryos make it possible to obtain qualitative
and quantitative data for autophagy and also to get information

about spatial localization aspects in cells that interact among
themselves in their natural environment. Cautionary notes
include the standard recommendation that it is always preferable
to combine molecular and morphological parameters to support
the validity of the data.

18. Ticks. In the hard tick Haemaphysalis longicornis, endo-
genous autophagy-related proteins (Atg6 and Atg12) can be
detected by western blotting and/or by immunohistochemical
analysis of midgut sections.864,865 It is also possible to detect
endogenous Atg3 and Atg8 by western blotting using antibodies
produced against the H. longicornis proteins (Umemiya-Shirafuji
R, unpublished results). Commercial antibodies against mam-
malian ATG orthologs (ATG3, ATG5, and BECN1) can also be
used for western blotting; however, when the tick samples include
blood of a host animal, the animal species immunized with
autophagy-related proteins should be checked before use to avoid
nonspecific background cross-reactivity. In addition to these
methods, TEM is recommended to detect autophagosomes and
autolysosomes. Although acidotropic dyes can be useful as a
marker for autolysosomes in some animals, careful attention
should be taken when using the dyes in ticks. Since the midgut
epithelial cells contain acidic organelles (e.g., lysosomes) that are
related to blood digestion during blood feeding, this method may
cause confusion. It is difficult to distinguish between autophagy
(autolysosomes) and blood digestion (lysosomes) with acidotropic
dyes. Another available monitoring method is to assess the mRNA
levels of tick ATG genes by real-time PCR.866 However, this
method should be used along with other approaches such as
western blotting, immunostaining, and TEM as described in this
article. Unlike model insects, such as Drosophila, powerful
genetic tools to assess autophagy are still not established in ticks.
However, RNAi-mediated gene silencing is currently being deve-
loped to analyze the function of autophagy-related genes in ticks
during nonfeeding periods (Umemiya-Shirafuji R, unpublished
results).

19. Zebrafish. Zebrafish have many characteristics that make
them a valuable vertebrate model organism for the analysis of
autophagy. For example, taking advantage of the transparency
of embryos, autophagosome formation can be visualized in vivo
during development using transgenic GFP-Lc3 and GFP-Gabarap
fish. The addition of 1-phenyl-2-thiourea (PTU) to media
inhibits melanogenesis allowing visualization of later-stage
embryos. Lysosomes can also be readily detected in vivo by the
addition of LysoTracker Red to fish media prior to visualization.
Additionally, protocols have been developed to monitor Lc3
protein levels and conjugation to PE by western blot analysis
using commercially available Lc3 antibodies.35,879

Because of their translucent character and external fertilization
and development, this vertebrate has proven to be an exceptional
choice for developmental research. In situ hydridization of whole
embryos can be performed to determine expression patterns.
Knockdown of gene function is performed by treatment with
morpholinos; the core autophagy machinery protein Gabarap,880

and regulatory proteins such as the phosphoinositide phosphatase
Mtmr14,881 Rptor and Mtor,882 have all been successfully
knocked down by morpholino treatment. However, research is
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currently somewhat hampered by the deficiency of efficient
methods for targeted gene mutations and deletions.

Zebrafish are ideal organisms for in vivo drug discovery and/or
verification because of their relatively small size and aqueous
habitat, and several chemicals have been identified that modulate
zebrafish autophagy activity.879 Many chemicals can be added to
the media and are absorbed directly through the skin. Because of
simple drug delivery and the onset of neurodegenerative disease
phenotypes at the larval stage, zebrafish are a promising organism
for the study of autophagy’s role in neurodegenative disease.
Along these lines, a zebrafish model of Huntington disease has
been developed.740

20. Food biotechnology. Required for yeast cell survival under
a variety of stress conditions, autophagy has the potential to
contribute to the outcome of many food fermentation processes.
For example, autophagy induction is observed during the primary
fermentation of synthetic grape must,867 and during sparkling
wine production (secondary fermentation).868 A number of
genome-wide studies have identified vacuolar functions and
autophagy as relevant processes during primary wine fermentation
or for ethanol tolerance, based on gene expression data or cell

viability of knockout yeast strains;867,869-873 however, understand-
ing the actual relevance of autophagy in yeast-driven food
fermentation processes would require addressing this issue
experimentally using some of the methods available for
S. cerevisiae as described in these guidelines.

Autophagy is a target for some widespread food preservatives
used to prevent yeast-dependent spoilage. For example, the effect
of benzoic acid is exacerbated when concurrent with nitrogen
starvation.874 This opened the way to devise strategies to improve
the usefulness of sorbic and benzoic acid, taking advantage of their
combination with stress conditions that would require functional
autophagy for yeast cell survival.875 Practical application of these
findings would also require extending this research to other
relevant food spoilage yeast species, which would be of obvious
practical interest.

In the food/health interface, the effect of some food bioactive
compounds on autophagy in different human cell types has
already attracted some attention.876,877 Interpreting the results of
this type of research, however, warrants two cautionary notes.878

First, the relationship between health status and autophagic
activity is obviously far from being direct. Second, experimental

Table 2. Recommended methods for monitoring autophagy

Method Description

1. Electron microscopy Quantitative electron microscopy, immuno-TEM; monitor autophagosome number, volume

2. Atg8/LC3 western blotting Western blot. The analysis is performed in the absence and presence of lysosomal protease or fusion
inhibitors to monitor flux; an increase in the LC3-II amount in the presence of the inhibitor is usually
indicative of flux

3. GFP-Atg8/LC3 lysosomal delivery
and proteolysis

Western blot ± lysosomal fusion or degradation inhibitors; the generation of free GFP indicates
lysosomal/vacuolar delivery

4. GFP-Atg8/LC3 fluorescence
microscopy

Fluorescence microscopy, FACS to monitor vacuolar/lysosomal localization. Also, increase in punctate
GFP-Atg8/LC3 or Atg18/WIPI

5. Tandem mRFP/mCherry-GFP
fluorescence microscopy, Rosella

Flux can be monitored as a decrease in green/red (yellow) fluorescence (phagophores, autophagosomes)
and an increase in red fluorescence (autolysosomes)

6. SQSTM1/p62 and related LC3
binding protein turnover

The amount of SQSTM1 increases when autophagy is inhibited and decreases when autophagy is induced

7. MTOR, AMPK and Atg1/ULK1
kinase activity

Western blot, immunoprecipitation or kinase assays

8. WIPI fluorescence microscopy Quantitative fluorescence analysis using endogenous WIPI proteins, or GFP- or Myc-tagged versions.
Suitable for high-throughput imaging procedures.

9. Transcriptional and translational
regulation

Northern blot, or qRT-PCR, autophagy-dedicated microarray

10. Autophagic protein degradation Turnover of long-lived proteins to monitor flux

11. Pex14-GFP, GFP-Atg8, Om45-GFP,
mitoPho8D60

A range of assays can be used to monitor selective types of autophagy. These typically involve proteolytic
maturation of a resident enzyme or degradation of a chimera, which can be followed enzymatically
or by western blot

12. Autophagic sequestration assays Lysosomal accumulation by biochemical or multilabel fluorescence techniques, and TEM with
a maturation inhibitor

13. Turnover of autophagic compartments Electron microscopy with morphometry/stereology

14. Autophagosome-lysosome
colocalization and dequenching assay

Fluorescence microscopy

15. Sequestration and processing
assays in plants

Chimeric RFP fluorescence and processing, and light and electron microscopy

16. Tissue fractionation Centrifugation, western blot and electron microscopy

17. Degradation of endogenous lipofuscin Fluorescence microscopy
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design in this field must take into account the actual levels of
these molecules in the target organs after ingestion, as well as
exposure time and their transformations in the human body.
In addition, attention must be paid to the fact that several
mechanisms might contribute to the observed biological effects.
Thus, relevant conclusions about the actual involvement of
autophagy on the health-related effect of food bioactive com-
pounds would only be possible by assaying the correct molecules
in the correct concentrations.

Conclusions and Future Perspectives

There is no question that research on the topic of autophagy has
expanded dramatically since the publication of the first set of
guidelines.1 To help keep track of the field we have published a
glossary of autophagy-related molecules and processes,883,884 and
there are now databases that are specifically dedicated to auto-
phagy including the Human Autophagy-dedicated Database
(HADb; www.autophagy.lu) and the Autophagy Database
(http://tp-apg.genes.nig.ac.jp/autophagy/).

With this continued influx of new researchers we think it is
critical to try to define standards for the field. Accordingly, we
have highlighted the uses and caveats of an expanding set of
recommended methods for monitoring macroautophagy in a
wide range of systems (Table 2). Importantly, investigators need
to determine whether they are evaluating levels of early or late
autophagic compartments, or autophagic flux. If the question
being asked is whether a particular condition changes autophagic
flux (i.e., the rate of delivery of autophagy substrates to lysosomes
or the vacuole, followed by degradation), then assessment of
steady-state levels of autophagosomes (e.g., by counting GFP-LC3
puncta, monitoring the amount of LC3-II without examining
turnover, or by single time point electron micrographs) is not

sufficient as an isolated approach. In this case it is also necessary
to directly measure the flux of autophagosomes and/or auto-
phagy cargo (e.g., in wild-type cells compared with autophagy-
deficient cells, the latter generated by treatment with an
autophagy inhibitor or resulting from ATG gene knockdowns).
Collectively, we strongly recommend the use of multiple assays
whenever possible, rather than relying on the results from a
single method.

As a final reminder, we stated at the beginning of this article
that this set of guidelines is not meant to be a formulaic
compilation of rules, because the appropriate assays depend in
part on the question being asked and the system being used.
Rather, these guidelines are presented primarily to emphasize
key issues that need to be addressed such as the difference
between measuring autophagy components, and flux or sub-
strate clearance; they are not meant to constrain imaginative
approaches to monitoring autophagy. Indeed, it is hoped
that new methods for monitoring autophagy will continue
to be developed, and new findings may alter our view of the
current assays. Similar to the process of autophagy, this is a
dynamic field, and we need to remain flexible in the standards
we apply.
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Glossary

For a more complete listing of autophagy-related terms and
definitions we refer readers to Klionsky DJ, Baehrecke EH,
Brumell JH, Chu CT, Codogno P, Cuervo AM, etal. A
comprehensive glossary of autophagy-related molecules and
processes (2nd edition). Autophagy 2011; 7:1273–94.

Amphisome: Intermediate compartment formed by the fusion
of an autophagosome with an endosome; this compartment has
not yet fused with a lysosome (also referred to as an acidic late
autophagosome).

Autolysosome: A degradative compartment formed by the
fusion of an autophagosome or amphisome with a primary
lysosome or telolysosome. Upon completion of degradation, or
when degradation has reached an end point, this compartment
(again) becomes a telolysosome (also referred to as a residual
body).

Autophagosome: A cytosolic membrane-bound compartment
typically denoted by a limiting double membrane. The early
autophagosome in particular contains cytoplasmic components
and organelles that are morphologically unchanged because the
compartment has not fused with a lysosome and lacks proteolytic
enzymes.

Autophagy: A collection of processes typically involving
degradative delivery of a portion of the cytoplasm to lysosomes
or the plant or fungal vacuole that does not involve direct transport
through the endocytic or vacuolar protein sorting, Vps, pathways.

Chaperone-mediated autophagy (CMA): Import and degrada-
tion of soluble cytosolic proteins by chaperone-dependent, direct
translocation across the lysosomal membrane.

Cytoplasm-to-vacuole targeting (Cvt): A biosynthetic pathway
in fungi that transports resident hydrolases to the vacuole through
a selective autophagy-related process.

Lysosome: A degradative organelle in higher eukaryotes that
compartmentalizes a range of hydrolytic enzymes and maintains a
highly acidic pH. A primary lysosome is a relatively small
compartment that has not yet participated in a degradation
process, whereas secondary lysosomes are sites of present or past
digestive activity. The secondary lysosomes include autolysosomes
and telolysosomes. Autolysosomes/early secondary lysosomes are
larger compartments actively engaged in digestion, whereas
telolysosomes/late secondary lysosomes do not have significant
digestive activity and contain residues of previous digestions. Both
may contain material of either autophagic or heterophagic origin.

Macroautophagy: The largely nonspecific autophagic sequest-
ration of cytoplasm into a double- or multiple-membrane-
delimited compartment (an autophagosome) of nonlysosomal/
vacuolar origin and its subsequent degradation by the lysosomal
system. Note that certain proteins and organelles may be
selectively degraded via a macroautophagy-related process, and
conversely, some cytosolic components such as cytoskeletal
elements are selectively excluded.

Microautophagy: Uptake and degradation of cytoplasm by
protrusion, invagination or septation of the lysosome or vacuole
membrane.

Mitophagy: The selective autophagic sequestration and
degradation of mitochondria.

Nucleophagy: The selective autophagic degradation of the nucleus.
Pexophagy: A selective type of autophagy involving the

sequestration and degradation of peroxisomes; can occur by a
micro- or macroautophagic process.

Phagophore: Membrane cisterna that has been implicated in an
initial event during formation of the autophagosome. Previously
referred to as the “isolation membrane.”

Phagophore assembly site (PAS): A perivacuolar compartment
or location that is involved in the formation of Cvt vesicles and
autophagosomes in yeast. The PAS may supply membranes
during the formation process or may be an organizing center
where most of the autophagic machinery resides, at least
transiently.

Phosphatidylinositol 3-kinase (PtdIns3K): A family of enzymes
that add a phosphate group to the 3' hydroxyls on the inositol ring
of phosphoinositides. The class III phosphatidylinositol 3-kinases
are stimulatory for autophagy, whereas class I enzymes are
inhibitory.

Reticulophagy: A type of selective macroautophagy of the ER.
Autophagy counterbalances endoplasmic reticulum expansion
during the unfolded protein response. Activation of the UPR in
yeast induces reticulophagy.

Ribophagy: The selective autophagic sequestration and
degradation of ribosomes.

Vacuole: The fungal and plant counterpart of the lysosome;
this organelle also carries out storage and osmoregulatory
functions. The plants’ bona fide equivalent of the lysosome is
the lytic vacuole.

Xenophagy: The selective degradation of microbes (e.g.,
bacteria, fungi, parasites and/or viruses) through an autophagy-
related mechanism.
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