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Towards a systematic approach for cognitively
efficient configuration visualizations
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ABSTRACT. In Software Product Line Engineering, the configuration process consists in deriv-
ing products from a variability model, usually a feature model. Configuration is difficult for
stakeholders because of numerous features to choose and complex constraints relating them. If
analysis tools assist in getting consistent products, they do not improve the cognitive effort to
be carried out by stakeholders. Data visualization techniques are known to be helpful in this
respect. However, choosing the right amongst thousands of visualizations available is often
done in an ad-hoc way. In this paper, we present a systematic approach which, from a study of
the data relevant to the configuration process, leads us to select an appropriate visualization
for understanding configuration decisions.
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1. Problem

During Software Product Line Engineering (SPLE), the configuration stage allows
to customize a product to suit the customer’s needs according to a given variability
model. The most common variability model is the Feature Model (FM) [KAN 90], a
tree-shaped graph expressing commonalities and differences amongst SPL products in
terms of features and constraints applied to them. A product line stakeholder carries
out the configuration by making some decisions depending on the constraints existing
between features. In some domains [STE 04], FMs can be composed of thousands of
features and numerous complex constraints [SHE 10]. Complex constraints include in
particular, cross-tree ones that are scattered over the whole FM.

Such large and heavily constrained FMs make the configuration process difficult
even when analysis tools are available. Such tools propagate automatically the conse-
quences of a given decision and check consistency but explain barely for example why
they need to extend or alter user decisions regarding the product. Configuration issues
have been reported in the SPL literature such as unclear consequences of a choice
[DEE 04] or non-functional aspects of decision [MUR 13] that eventually affect prod-
uct price or delivery time. Additionally, when the number of features is great, being
able to distinguish a set of features depending on some criteria is key because features
are not always presented in a relevant way [DEE 04].

One way of dealing with such cognitive issues is to use appropriate visualization
methods to efficiently represent the configuration process [CAR 99]. Several research
works have suggested the integration of visualization techniques to assist the users in
analysing the configuration process. C2O, a decision oriented configuration tool intro-
duced in [NÖH 10] contains a view where the size of the nodes representing questions
is related to their potential of minimizing the configuration process. In [MUR 13],
several synchronized views are proposed to analyse some non functional properties of
product line variants. Pleuss and Botterweck propose S2T2 [PLE 12], a configuration
tool which contains multiple visualization techniques. Despite the interest of these
integrated visualization solutions, no methodology was presented explaining the ap-
proach which allowed to find them. Considering the magnitude and the complexity of
the visualization domain [SCH 11], the choice of a visualization solution which suits
the specific configuration issues is not straightforward. Finding a method which leads
us to adapted and cognitively efficient visualization solutions for the configuration
process is the challenge that we want to tackle.

The remainder of the paper is structured as follows. Section 2 introduces our sys-
tematic approach to design cognitively-effective visualization solutions. We illustrate
the benefits of this approach on an example in Section 3. Finally, Section 4 wraps up
with conclusions and outlines future perspectives.



Improving Configuration Visualization 3

2. Approach

We want to find appropriate visualization solutions for the configuration issues.
For a given problem, defining an adapted visualization requires to answer to three
questions: "What is presented ?", "Why is presented ?" and "How is presented ?"
[AIG 11]. We will use the dataset concept which is a collection of data forming the
input of a visualization [TEL 08]. We will answer to the first question (“What?")
by defining a dataset relevant for the configuration process. In a second part, we
will introduce a methodology which addresses the second (“Why") and third (“How")
questions in a systematic manner by considering respectively the dataset part specific
to a particular configuration issue and then defining a visualization of this dataset part.

2.1. Characterization of the dataset

We propose to see the configuration process as an evolving dataset having some
properties we can precisely specify. Such properties relate to the type, hierarchy or
the size of the information chunks to be visualized. In this paper, we deliberately omit
size issues and focus on the data types. To define these types we need to observe
the configuration process applied on a feature model. We use the “classic” FODA
[KAN 90] feature model here, without considering any extension (such attributes or
cardinalities).

We also rely on multi-dimensional models [RAV 10] to characterize datasets:

– A dimension is an analyse axis, a point of view that will be used by the end-user
to analyse data. A dimension is usually a tree structure populated with members which
are the elements of that dimension.

– A measure is a data that we want to analyse. A measure is related to a set
of dimensions and can be either quantitative (related to a quantity) or categorical
(belonging to a non-numeric enumerable set of values).

– A fact is the valuation of a measure or a set of measures for one member of each
dimension involved in these measures.

Based on these definitions, we have defined three dimensions and four measures
which characterize a product configuration process. We illustrate them by taking a
configuration process for the simple feature model E-Shop illustrated in Figure 1a.
The numbers noted on the feature model correspond to the choices either explicitly
made by a user (steps: 1.0, 2.0, 3.0, 4.0, 5.0), or propagated automatically by config-
uration tool to satisfy constraints (steps: 1.1, 1.2, 1.3, 2.1, 2.2, 3.1). Figures 1a to 1e
depict the elicited dimensions.

2.1.1. The dimensions

Time dimension. The configuration process can be seen as a succession of steps
in a workflow [HUB 09], where each step relates to one or more choices. Thus, under-
standing a configuration state requires consequently to analyse when a feature choice
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(a) Time Dimension I (b) Time Dimension II

(c) Feature Dimension (d) Constraint Dimension I

(e) Constraint Dimension II

Figure 1. Feature Model Configuration Dimensions

has been made or propagated. Thus, we introduce the time dimension to describe this
succession of steps. Each configuration step is composed by a stakeholder feature
choice which may be automatically followed by a constraint propagation. Figure 1b,
illustrates the time dimension for the E-Shop example. In this figure, the content of the
red rectangle illustrates the organization of the configuration step two contained inside
the red rectangle of Figure 1a. The configuration step two is composed by the sub-step
Credit Card user choice (2.0) and by the sub-step propagation of constraints which
causes the automatic selection of the feature High (2.1) and the automatic rejection of
the feature Standard (2.2).

Feature dimension. As the goal of the configuration task is to decide which fea-
tures will be included in or excluded from the final product, the feature concept is
key to the configuration concept. Figure 1c shows the hierarchical organization of the
feature dimension which is identical to the feature model structure.
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Constraint dimension. The presence of constraints amongst features restrains the
possible configuration choices. Resultantly, a stakeholder needs to know during his
configuration task if a constraint is already resolved or not. The constraint dimension
gathers two types of constraints defined in the feature model: the constraints between
a parent feature node and its child feature nodes and the cross-tree constraints. In the
constraint dimension, the representation of a constraint is an algebraic tree whose the
leafs are logical literals involving a feature and the internal nodes are logical opera-
tor. Figure 1e illustrates the hierarchical organization of the constraint dimension. In
particular the colored parts C1 and C2 highlight the constraints representation respec-
tively contained in the frames C1 and C2 of Figure 1d.

2.1.2. The measures

As introduced above, measures are defined with respect to one or more dimensions.

Feature state. This categorical measure is defined regarding time and feature
dimensions. Feature state is quite straightforward considering the configuration task:
it aims at informing a feature state (selected, rejected or choice free).

Feature state origin. This categorical measure is defined on the time and feature
dimensions and allows to ascertain if a feature state change is due to a stakeholder
choice (chosen) or to a propagation of constraint (deduced). For example, in Figure 1a,
the selection of the feature Credit Card (2.0) is chosen by a user and consequently
the selection of the feature High (2.1) is deduced.

Constraint state. This categorical measure is defined on the time and constraint
dimensions and allows to know if a constraint is resolved or not. For example, in
Figure 1d, the constraint C2 is not resolved before the configuration step two and
becomes resolved after this step.

Feature-constraint involvement. This categorical measure is defined on the fea-
ture and constraint dimensions and allows to analyse if a link exists between a feature
state and a constraint state. For example, in Figure 1e, the features Credit Card and
High are involved in the constraint C2.

Our dataset is limited to simple configuration process, more sophisticated situa-
tions will lead to the extension of this dataset by adding other measures.

2.2. Methodology

To create dedicated visualizations, it is necessary but not sufficient to characterize
a generic dataset for the whole process, we need to precisely relate visualizations
to user tasks and objectives within the configuration process. Here, we offer some
methodological insights to do so.
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2.2.1. Dataset restriction

The first step consists in choosing the most suitable dimensions, dimension mem-
bers and measures relevant for a given task of the user within the configuration pro-
cess, yielding a subset of the dataset. For example, finding at a given point in time t
which choices have been made by a user and which choices have been automatically
deduced from the propagation of constraints involves the feature dimension, only the
member t of the time dimension and the measure feature state origin. Knowing in
which constraints a given feature is involved does not need the time dimension. Ad-
ditionally some measures can be derived from the subset thus defined. We will see an
illustrative example of this kind of measure in section 3.

2.2.2. Visualization solution elicitation

We intend to find an adapted visualization for the data subset identified which con-
tains some dimensions or part of dimensions and some measures. The characterization
of the dimensions/measures in section 2.1 and the number of elements contained in
the subset influences the selection of the visualization solution.

Proposing a complete visualization solution for the restricted dataset requires to
consider a static view and to integrate some dynamic aspects allowing the user to
understand the configuration process in a customized way.

In order to elaborate the static part, we have to define a visualization for all the
subset elements defined in section 2.2.1.
A visualization can be a simple element like a shape, a color, a texture, an orientation
[BER 83]. The visualization elements are classified depending on their perceptual
qualities [MOO 09]. The choice of a particular visualization element must be related
to the type of measure to visualize. For example, the visualization of a categorical
measure requires the distinction between its different values. As a color variation is
appropriate to highlight the difference between two elements [MOO 09], we can use
color to encode the different values of a categorical measure. We must also take into
account the number of different measures to visualize at the same time. Indeed, in the
case of different measures, we can combine the visualization elements. For example,
the visualization of a red rectangle combines a shape and a color elements and can
thus represent two different measures.
A visualization can also be a particular visualization design (see for example the nu-
merous representations of hierarchical data available in [SCH 11]). The choice of a
particular visualization design is influenced by the number of dimensions involved in
the subset and by the type of the dimensions. For example, the presence of the time
dimension needs a visualization design adapted for the time-oriented data [AIG 08].
Moreover, the number of members contained in the dimensions (i.e the size of the di-
mensions) have an impact on the visualization design as it determines the data quantity
to display. Several space-filling visualization design exists [STA 00] which optimize
the number of elements displayed on the space screen.
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We consider now the dynamic part. We have to integrate interactive visualization
techniques which offers the user to modify temporarily some chosen aspects of the
proposed view. During the task management process, some data can be less important
than the others. We need to identify this data in order to give the user temporarily the
possibility to hide it or to make it less visible. The user can thus focus on the crucial
data for his configuration task. To this purpose, several mechanisms [SPE 00] offer
to display in detail or highlight the relevant information and to skip or overview less
relevant information.

3. Example

We illustrate our approach on a specific configuration task issue: understanding
the impacts of a feature selection or rejection. We are therefore in the following sit-
uation: a stakeholder makes a new configuration choice. We intend to represent the
consequences (propagations) of such a choice on the other feature states so that the
stakeholder can better understand them. As an illustrative example, we have chosen
the feature model of a Graph Product Line (GPL).

3.1. Subset definition

Showing the consequences of a given choice leads to presenting the feature model
state before the choice and then the resulted changes on the feature states after this
choice.

We will define firstly the dimensions and secondly the measures required to illus-
trate the targeted problem.

As we need to present the feature model, the feature dimension is required in the
subset. The time dimension is also involved since we have to present the state of the
feature model at a given point in time t (before the choice) and at a given point in time
t+ 1 (after the choice). We are only interested by the specific t and t+ 1 members of
the time dimension.

Regarding measures, feature state, defined over time and feature dimensions is
naturally the most relevant here and we need to know its values for each features at
the given points in time t and t+ 1. Additionally, we want to distinguish at the given
point in time t + 1 the feature state change chosen by the user from the feature state
changes which are the consequences of this choice. For this purpose, the measure
feature state origin defined as well over time and feature dimensions is interesting
at the given point in time t + 1. According with the definitions mentioned in 2.1,
we select resultantly for each feature member, the fact containing the value of the
measure feature state related to the t time dimension member and the fact containing
the values of the measures feature state and feature state origin related to the t + 1
time dimension member.
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Additionally, we have to catch the feature states changes between the given point
in time t (before the choice) and t + 1(after the choice). For each feature member
of the feature dimension, we compare the fact corresponding to the t time dimension
member and the fact corresponding to the t + 1 time dimension member. We check
if the feature state measure value has changed. Resultantly, we obtain a list of the
feature states which have been modified between t and t+1. This list is an illustrative
example of a measure derived from the existing subset as mentioned in section 2.2.1.

Therefore, the subset contains the feature dimension, the members t and t + 1 of
the time dimension, the feature state measure values for all the features at the point
in time t, the values of the measures feature state and feature state origin for all the
features at the point in time t + 1 and the deduced list of modified feature states. We
need now to find a visualization solution for this subset in mapping the subset data to
visualization elements.

3.2. The visualization solution

We explained in section 2.2.2 that the choice of the visualization solution depends
on the type of dimensions/measures but also on the size of the dimensions. For this
example, we focus on the type of dimensions/measures contained in the data subset
and we do not consider the size of the dimensions.

We need to construct the visualization static part. To this purpose, we associate the
subset of dimensions/members/measures with selected visualizations.
The presence of the time dimension in the subset is generally a major element to take
into account for the choice of a visualization design [AIG 08]. The solution must
indeed be able to represent the data evolution over time. In this example, as only
two time dimension members are involved in the subset, the only data evolution to
visualize is the difference of the feature state measure values between this two points
in time.
For the subset elements, the mapping is thus the following:

The feature dimension is essential for the feature model visualization. It has a
hierarchical organization and resultantly we need a visualization design adapted for
the hierarchical data. We choose a classical horizontal tree visualization design whose
the feature nodes are represented with a circle and an affixed feature name text label. A
feature state measure value is categorical. We choose to represent a feature state with
a color visualization element: the color of the feature node circle circumference (green
for selected, blue for free and red for rejected). A feature state origin measure value
is categorical. We choose to distinguish the only feature state chosen by the user at the
given point in time t + 1. For this purpose, the name text label of the corresponding
feature is in bold and in the color corresponding to the feature state whereas the other
name text labels are not in bold and in black color. The feature state changes between
the points in time t and t + 1 are important elements to visualize the impacts of a
feature choice. As the color is particularly adapted to show the difference between
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Figure 2. Derived Visualization

two elements [MOO 09], we choose to represent the feature state changes with a color
visualization element. We keep the color code already used for the feature state but
we modify the color transparency. We add transparency to the circle circumference
color for the unmodified feature state changes whereas the circle circumference color
for the feature state changes is opaque.

Concerning the dynamic part, we want to optimize the space screen and to focus
the user attention on the changes. We add a visualization technique which by default,
folds all the tree branches which do not contain a feature state change. We obtain a
temporarily view where only the tree parts containing feature state changes are dis-
played. Obviously the user can then unfold the branches as it sees fit. To that purpose,
the user must know if, for a given node, there are folded children to unfold or if the
node is a leaf. As we have only used the circle circumference color to represent the
feature state, we can use the inner circle filling to indicate a children presence.

Figure 2, is a screenshot of our visualization solution, which we implemented
using the D3 1 javascript library.

1. http://d3js.org/
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Figure 3. FeatureIDE Visualisation

3.3. Comparison with an existing configuration tool

We want to compare our feature model configuration view in Figure 2 with the
Feature IDE [THU 12] advanced configuration view in Figure 3 and with the S2T2
[PLE 12] configuration view. However S2T2 does not manage the complex cross-
tree constraints implying more than two features. Our example contains this type of
constraints, consequently it was not reproducible on S2T2 and we compare only our
configuration view with the Feature IDE advanced configuration view.

The initial state of the feature model contains the selection of the features Gpl,
MainGpl, GraphType, Test, StartHere and Base. A user select the feature StrongC
and we aim at visualizing the twenty-three feature impacts due to this selection. The
screenshots presented in Figure 2 and in Figure 3 show the configuration view after
the choice of the feature StrongC. For the two screenshots the screen resolution used
is 1280*1024 px and the configuration view space screen is 1000*842 px.

In Figure 2, as explained in section 3.2, only the tree branches containing the
feature impacts are unfold by default. Resultantly, the whole feature model can be
displayed on the space screen and the impacts are highlighted. The text label of the
StrongC selected feature is in green and bold. Moreover, the feature selections which
were already validated before the new StrongC feature selection appear in transparent
green whereas the new StrongC feature and its impacts appear in opaque green (if the
feature is selected) or in opaque red (if the feature is rejected). The feature state
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StartHere and Base are folded under the node Test as these selections of features
were accomplished before the new StrongC choice.

In Figure 3, we notice that the Feature IDE configuration tool unfolds by default
all the branches of the feature model tree. Consequently, on the space screen, the
whole feature model can not be displayed and in particular, the twenty-three impacts
are not visible even if the screenshot focuses on the tree part with the maximum of
visible impacts. The user can not visually identify his last feature state choice given
that the StrongC feature is not distinguishable from the other features. Additionally,
as the new choice and its impacts are not highlighted, a stakeholder can not make the
distinction between the feature model state before the new StrongC feature selection
and after.

We strongly believe that reasoning in terms of dimensions, measures and facts,
helps us asking the right questions the visualizations should answer and avoid the
pitfalls encountered above.

4. Conclusion

In this paper, we delineated a systematic approach to design cognitively-effective
visualization solutions for configuring products in SPLE context. In particular, we ex-
plained how to decompose configuration information in terms of an evolving dataset,
defined basic dimensions and measures helping human understanding of the config-
uration process and eliciting the most suitable visualizations. We illustrated our ap-
proach by explaining how, from a configuration task issue example, we found a simple
visualization solution adapted to the configuration data involved in this specific task
issue. We are just defining the initial steps of our method and there is therefore room
for future work. First, we would like to extend our dataset to take into account more
expressive feature modelling constructs such as attributes and cardinalities, to visual-
ize e.g. non-functional properties of configured products [SIE 13]. Second, we want
to study the impact of quantitative measures on the derived visualizations.
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