
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Voyager 2 (version 5.0) - Reference manual

Englebert, Vincent

Publication date:
1999

Link to publication
Citation for pulished version (HARVARD):
Englebert, V 1999, Voyager 2 (version 5.0) - Reference manual..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. May. 2025

https://researchportal.unamur.be/en/publications/adba4b53-6f58-4992-a70d-66a1311e1fe0

Voyager 2 1

Reference Manual

Version 5 Release 0

V. Englebert2

Computer Science Department
Facultés Universitaires Notre-Dame de la Paix

Rue Grandgagnage, 21
5000 Namur

Belgium

December 13, 1999

1 c© DB-MAIN
2Email: vincent.englebert@info.fundp.ac.be

Preface

We believe that programs1 like emacs, AutoCAD2, Word3 and TEX owe their
success partially to the existence of a language4 allowing the user to write macros
or even programs. Indeed, such languages fill a gap between built-in function-
alities and those expected by the user. This argument suffices to explain why
we choose to define and to implement such a language for the DB-MAIN tool.

Because small steps are more secure than large ones, at the beginning –
when Voyager did not exist yet– this language had to be a simple script facility
for generating reports. Now, this language shares the characteristics of its big
brothers and even has a name: Voyager 2. This last issue was the most difficult
to settle!

This manual was written as a reference manual and therefore is quite concise
in order to give the reader a maximum of detail economically. We are conscious
that the examples are rather scarce, especially regarding the use of the reposi-
tory. For this reason, this document is only a first version of what will ultimately
become a series of manuals: reference manual; users’s guide; and tutorial.

I thank the DB-MAIN, DB-MAIN/01, INTER-DB, PROAGEC research
groups and —last but not least— the Professor J.-L. Hainaut for their sup-
port in my work.

1TEX is a sophisticated program designed to produce high-quality typesetting, especially
for mathematical text. It was created by Donald Knuth. This manual was produced with
LATEX.

2AutoCad and AutoLisp are trademarks of Autodesk.
3Word and WordBasic are trademarks of Microsoft
4Elisp, AutoLisp, WordBasic

i

Forewords

Foreword to the Version 2 Release 1

The last edition of this manual was named release 1.0. We decided to split
the version number and to name each part respectively version and release. A
new version introduces important modifications or significative modifications
although a new release means only minor changes.

The Version 2 release 1 introduces major changes like: lexical analysis facil-
ities1 , new object types2, textual properties, object removal3, modification and
meta-properties4in the repository.

One major change in the environment is the new console. It is no more
possible to quit DB-MAIN in closing the Voyager 2’s console. This console has
one disadvantage: the display is quite slow. But be sure that your program is
as fast than before.

In this release, the format of the .oxo files has changed. So it is a good
idea to recompile your former programs with the new compiler. The compiler
is backward compatible.

Foreword to the Version 3 Release 0

Voyager 2 has now the same version number as DB-MAIN.
Several mistakes in the reference manual have been corrected5. I thank

Jean-Marc Hick for his help to improve the quality of the “modular program-
ming” part with his pertinent remarks. And last but not least, I thank Richard
Mairesse for his kindness — the page 51 would never have been printed without
his knowledge of Postscript.

The architecture of the abstract machine has been improved. In previous
releases, the abstract machine was unique and static. We can now have several
abstract machines at the same time, and the number of abstract machines is not
limited. This improvement allows us to call functions/procedures from other V2
programs (cfr. 16).

Voyager has now standard Windows dialog boxes (cfr. page 48).
The use of the compilers and DB-MAIN are now limited to people having an

electronic key. That ’s the price we have to pay for being famous. Without
1Chapter 9.
2Sections 11.40 and 11.39.
3Chapter 14.
4Chapter 15.
5I thank Philippe Thiran for his help.

iii

iv

the electronic key, it is impossible to run the compiler and DB-MAIN behaves in
“demo” mode (the size of the repository is limited). A whole chapter explains
these changes (cfr. 18).

The programs1 listings have been removed from the appendices and the font
has been reduced to get a smaller and more handy manual.

A β-version2 existed during a while between the releases 2.1 and 3.0. This
version allowed the use of one undocumented procedure (call V2). This state-
ment is now deprecated and should no more be used. (cfr. 16)

Foreword to the Version 4 Release 0

The abstract machine and the compilers have been translated in 32 bits. And
hence, some limitations vanished. The repository has been improved in order
to represent graphical properties (position, font, size, . . .). The following bugs
have been fixed:

• Concatenation of two empty lists.

• The documentation now describes the CharToStr function.

• The SetFlag function is fixed.

The main change is –without contest– the evolution of the repository in order
to generalize it and to represent various kind of information like programs, pro-
cess, procedures, etc. For this reason, we decided to attach the coll et object-
type to data object via the DATA COLET link and no more to the entity type
object-type. Unfortunately, Voyager 2 was not able to both take into account
this generalization and to preserve the existent programs. The reason is a risk
of failure when the user navigates through the old entity colet link.

So, a query expressed as

entity_type: ent;
...
ENTITY_TYPE[ent]{@ENTITY_COLET:L}

should be translated into

data_object: dta;
dta2ent(DATA_OBJECT[dta]{@DATA_COLET:L with GetType(dta)=ENTITY_TYPE})

where dta2ent is a function that you can write yourself as:

function list dta2ent(list: L1)
entity_type: ent;
list: L2;

{ for ent in L1 do {
AddLast(L2,ent);

}
return L2;

}

1The user can find these files in the DB-MAIN distribution.
2This version also had some dialog boxes and was distributed to some partners.

v

As you understood it, the compiler will now stop if the entity colet constant
is encountered.

Another modification was the introduction of the first concepts to represent
“process”1 (see 93).

Foreword to the Version 5 Release 0

This version is endowed with a large number of new concepts. Processes and ad-
vanced graphical representations are now supported by DB-MAIN. The repository
has thus considerably growed to such an extent that its representation does no
more take up one sheet! Some functions have also been added (see section 7.8)
since the previous version.

People have indicated some troubles when the path of the compiler con-
tains one or several space character. This problem can be avoided with the
-quote parameter in the command line. Unfortunately, this does not work with
Windows NT.

They are now two switches in the electronic key. One to allow the program-
mer to port .oxo files to some other station with a precise electronic key; and
another key to distribute them in an anonymous way (the -Kall option). The
compiler displays the status of those switches.

The extension of the repository has introduced new keywords. The program-
mer should check if these words were not used as variables or functions names
before. The posx, posy, and color attributes are now managed in a different
way (see section 7.8).

1In the large!

Contents

I The Voyager 2 Language 1

1 Preliminaries 3

2 Lexical Elements 7
2.1 Comments . 7
2.2 Operators . 7
2.3 Identifiers . 8
2.4 Reserved words . 8
2.5 Constants . 8

3 Types 13
3.1 Integers . 13
3.2 Characters . 13
3.3 Strings . 13
3.4 Lists . 15
3.5 Cursors . 16
3.6 Files . 16
3.7 References . 16

4 Expressions 19
4.1 Precedence and associativity of operators 19
4.2 Arithmetic Expressions . 19
4.3 Reference Expression . 20
4.4 Functional Assignment . 21

5 List Expressions 23
5.1 Overview . 23
5.2 Operations Definitions . 27

5.2.1 Concatenation . 27
5.2.2 Intersection . 27
5.2.3 Insertion . 28
5.2.4 Miscellaneous . 29

6 Statements 31
6.1 Assignment . 31
6.2 Selection Statement . 33

6.2.1 The if-then Statement 33
6.2.2 The if-then-else Statement 33

vii

viii CONTENTS

6.2.3 The switch Statement . 34
6.3 Iteration Statement . 35

6.3.1 The while Statement . 35
6.3.2 The repeat Statement . 36
6.3.3 The for Statement . 36
6.3.4 The goto Statement . 37
6.3.5 The label Statement . 37
6.3.6 The break Statement . 38
6.3.7 The continue Statement 38
6.3.8 The halt Statement . 39

7 Operations 41
7.1 Operations on Characters . 41
7.2 Operations on Strings . 42
7.3 Operations on Lists and Cursors 45
7.4 Operations on Files . 46
7.5 Interface Operations . 48
7.6 Time Operations . 51
7.7 Flag Operations . 55
7.8 General Operations . 56

8 Functions and Procedures 59
8.1 Definition . 59
8.2 Recursiveness . 61

9 Lexical Analyzer 63

II The Repository 67

10 Repository Definition 69

11 Objects Definition 75
11.1 generic object . 76
11.2 user object . 77
11.3 system . 79
11.4 product . 79
11.5 schema . 80
11.6 set of product . 80
11.7 set product item . 81
11.8 document . 81
11.9 connection . 82
11.10 data object . 82
11.11 ent rel type . 83
11.12 entity type . 83
11.13 rel type . 83
11.14 attribute . 84
11.15 si attribute . 84
11.16 co attribute . 86
11.17 do attribute . 87

CONTENTS ix

11.18 owner of att . 87
11.19 component . 87
11.20 group . 88
11.21 constraint . 89
11.22 member cst . 90
11.23 collection . 90
11.24 coll et . 90
11.25 cluster . 91
11.26 sub type . 91
11.27 role . 92
11.28 et role . 92
11.29 real component . 93
11.30 proc unit . 93
11.31 p statement . 93
11.32 p component . 94
11.33 p expression . 94
11.34 p environment . 95
11.35 p involve . 95
11.36 p function . 96
11.37 p actor . 96
11.38 owner of proc unit . 97
11.39 meta object . 97
11.40 meta property . 98
11.41 p user viewable . 99
11.42 p user view . 100

12 Predicative Queries 101
12.1 Introduction . 101
12.2 Specifications . 102

12.2.1 Global Scope Queries . 102
12.2.2 Restricted Scope Queries 103

13 Iterative Queries 107

14 Object Removal 109

15 Properties 111
15.1 Textual Properties . 111
15.2 Dynamic Properties . 113

15.2.1 Introduction . 113
15.2.2 Explanation . 114

III Modular Programming 117

16 Library and process 119
16.1 The New Architecture . 119
16.2 Voyager 2 Process . 120
16.3 Libraries . 124
16.4 Formal Definitions . 125

x CONTENTS

16.4.1 The use Function . 125
16.4.2 The ! suffix unary operator 125
16.4.3 The :: Suffix Unary Operator 126
16.4.4 The :: Binary Operator 126

16.5 Literate Programming . 126

17 The Include Directive 129

18 Security 131

IV Appendix 133

A The Voyager 2 Abstract Syntax 135

B The VAM Architecture 139

C Error Messages while Compiling 141

D Error Messages during the Execution 147

E Frequently Asked Questions 151
E.1 Environment Relation Questions 151
E.2 Language Specific Questions . 153

F Regular Expressions 155

List of Tables

2.1 Operators and separators . 7
2.2 Reserved keywords. 8
2.3 Reserved keywords (types). 9
2.4 Constants denoting entity-types. 9
2.5 Constants denoting links. 10
2.6 Miscellaneous Constants. 10
2.7 Field Constants. 11
2.8 Error Constants. 11

3.1 Conventions about special characters. 14
3.2 Meta-characters used in string constants. 14

4.1 Operators: Precedence and Associativity rules 20

xi

Part I

The Voyager 2 Language

1

Chapter 1

Preliminaries

Voyager 2 is an imperative language with original characteristics like list prim-
itive type with garbage collection and declarative requests to the predefined
repository of the DB-MAIN tool. Other characteristics will be discussed further
in this document. Because Voyager 2 is similar to traditional languages like C
and Pascal, we will suppose in this reference manual that the reader has a good
knowledge of them.

A Voyager 2 program is composed of three distinct sections given below:

global variables definitions
functions definitions
begin

the main body
end

The global variables definitions section contains the definition of all the global
variables of the program. The scope of these will be the whole program as
well as the functions and the procedures. Constants can also be defined in this
section. The functions definitions section will contain the definition of all the
functions and all the procedures needed by the program. Functions will not
be distinguished from procedures in this document unless they are explicitly
mentioned. The scope of a function is the whole program1. The main body
section is the main program, ie. a list of instructions enclosed between the two
keywords begin and end. Only the last section is mandatory in a Voyager 2
program. As you may have guessed it, the main program corresponds to the
main function in C and thus Voyager 2 begins the execution there.

The Global Variables Definitions section contains the definition of all the
global variables and all the constants of the program. This section is composed
of definition lines, each one respects the following syntax:

〈definition line 〉 ← 〈type 〉 : 〈var-const 〉 , . . . , 〈var-const 〉 ;
〈var-const 〉 ← 〈variable 〉 | 〈constant 〉
〈variable 〉 ← 〈identifier 〉
〈constant 〉 ← 〈identifier 〉 = 〈expression 〉

Types are explained in chapter 3. In a line definition, when an expression
is associated with an identifier, this variable is considered as being initialized

1Here is a first difference with Pascal: a function f can call a function g defined afterwards.

3

4 CHAPTER 1. PRELIMINARIES

by this expression. Each time this variable is used, its occurrence is replaced
by the corresponding expression. This characteristics differs from the languages
C1 and Pascal since these last ones evaluate the expression as soon as it is
found. In the Voyager 2 language, the evaluation process is delayed until the
variable is used. As a consequence, constant expression may contain identifiers
and function names that are outside the scope of the expression. Unlike macros
in C, constants have a type and the evaluation of the constant must match it.
Example:

Program 1.

integer: s=m+c2, age;

integer: lname=strlen(pname),m,c2;

string: pname="Einstein";

begin

m:=2; c2=3;

print(s*2);

m:= 4;

print(s*2);

end

will print the values “10” ((2 + 3)*2) and “14” ((4 + 3)*2). Let
us note that the evaluation of constants may return different values
depending on the context.

1The comparison does not hold neither with the macros of the C language nor with the
const type specifier of the C++ language

5

Program 2.

integer: sum=a+b;
procedure foo(integer: a)

integer: b;
{ b:=1;

print(sum);
}
begin

foo(2);
end

will print the value “3”.

2

The functions definitions section will contain all the functions/procedures
definitions. The syntax of a function/procedure definition is fully explained in
the chapter 8. Each function/procedure can be called from anywhere in the
program: from a function, from a procedure or from the main body even if the
call to the function/procedure is before its definition. This does not matter in
Voyager 2.

Chapter 2

Lexical Elements

2.1 Comments

A comment in a Voyager 2 program begins with an occurrence of the two
characters /* not within a character or string constant and ends with the first of
the occurrence of the two characters */. Comments may contain any characters
and may spread over several lines of the program. Comments do not have any
effect on the meaning of the program you are writing.

A comment may also be any characters found after the two characters // in
one line. There may be not have other characters between the both //.
Example:

/* Add comments to
** your programs, please ! */
begin
x:=x+1; // and comments must be pertinent !

end

2

2.2 Operators

The operator tokens are divided in several groups as shown in the table 2.1.

Token class Tokens
expression operators + - * / mod ++ **

or and xor not
< > <= >= <> =

instruction operators := <− << >> +> <+
separators . , ; () [] { }

Table 2.1: Operators and separators

Expression operators are used to build new expressions from other ones,
instruction operators are a convenient way to replace classical functions by infix
operators.

7

8 CHAPTER 2. LEXICAL ELEMENTS

2.3 Identifiers

An identifier is a sequence of letters, digits and underscores. An identifier must
begin with a letter, identifiers beginning with an underscore are reserved for
keywords having a special meaning for the language. There is no restriction on
the length of an identifier. Finally an identifier must be distinct of any reserved
keyword (cfr. section 2.4) and any predefined constant name (cfr. section 2.5).
Example:

factorial PI_31415 A_B__C_ are all valid identifiers.
_PI 314_PI for are all incorrect identifiers.

A_Einstein A_EINSTEIN a_einstein are three distinct identifiers
2

2.4 Reserved words

Some words (cfr. tables 2.2 and 2.3) are reserved for the language and can not
be redefined by the user.

GetFirst GetNext AddFirst AddLast
and as AscToChar begin
break call case CharIsAlpha
CharIsAlphaNum CharIsDigit CharToAsc CharToLower
CharToStr CharToUpper ClearScreen CloseFile
continue create delete do
else end Environment eof
ExistFile export for function
get GetAllProperties GetCurrentObjectGetCurrentSchema
GetFirst GetFlag GetLast GetProperty
GetType goto halt if
in IsActive IsNotNull IsNoVoid
IsNull IsVoid kill label
Length member mod neof
OpenFile or otherwise print
printf procedure read readf
rename repeat return SetFlag
SetPrintList Setproperty StrBuild StrConcat
StrFindChar StrFindSubStr StrGetChar StrGetSubStr
StrItos StrLength StrSetChar StrStoi
StrToLower StrToUpper switch TheFirst
then TheNext to until
use void Void while
xor

Table 2.2: Reserved keywords.

2.5 Constants

In Voyager 2, constants are predefined variables with constant expressions. The
constants names are listed in tables 2.4, 2.5, 2.6, 2.8, and 2.7.

2.5. CONSTANTS 9

attribute char
cluster co attribute
coll et collection
complex user object component
connection constraint
data object do attribute
document ent rel type
entity type et role
file generic object
user object group
integer list
member cst meta object
meta property owner of att
product real component
rel type role
schema set of product
set product item si attribute
string sub type
system

Table 2.3: Reserved keywords (types).

char char
file integer
lambda list
program string

ATTRIBUTE CLUSTER
CO ATTRIBUTE COLL ET
COLLECTION COMPLEX USER OBJECT
COMPONENT CONNECTION
CONSTRAINT DATA OBJECT
DO ATTRIBUTE DOCUMENT
ENT REL TYPE ENTITY TYPE
ET ROLE GENERIC OBJECT
USER OBJECT GROUP
MEMBER CST META OBJECT
META PROPERTY OWNER OF ATT
PRODUCT REAL COMPONENT
REL TYPE ROLE
SCHEMA SI ATTRIBUTE
SUB TYPE SYSTEM

Table 2.4: Constants denoting entity-types.

10 CHAPTER 2. LEXICAL ELEMENTS

CLU SUB COLL COLET
CONST MEM CONTAINS
DATA GR DOMAIN
ENTITY COLET ENTITY CLU
ENTITY ETR ENTITY SUB
GR COMP GR MEM
IS IN MO MP
OWNER ATT REAL COMP
REL RO RO ETR
SCH COLL SCH DATA
SYS MO SYSTEM SCH

Table 2.5: Constants denoting links.

A R
W ARRAY CONTAINER

ASS GROUP BAG CONTAINER
BOOL ATT CHAR ATT
COMP GROUP CON COPY
CON DIC CON GEN
CON INTEG CON XTR
CON COPY DATE ATT
EQ CONSTRAINT ETROUND
ETSHADOW ETSQUARE
FALSE FLOAT ATT
HIDEPROD INC CONSTRAINT
INDEX ATT INT MAX
INT MIN L CRITERION
L DATE L FREE
L NAME L ROLE
L SNAME L VERSION
LIST CONTAINER MARK1
MARK2 MARK3
MARK4 MARK5
MAX STRING N CARD
NUM ATT OBJECT ATT
OR MEM CST PROP CORRUPTED
PROP NOT FOUND RTROUND
RTSHADOW RTSQUARE
SCHEMA DOMAINS SELECT
SEQ ATT SET CONTAINER
TAR MEM CST TRUE
UNIQUE ARRAY CONTAINER UNIQUE LIST CONTAINER
USER ATT VARCHAR ATT

Table 2.6: Miscellaneous Constants.

2.5. CONSTANTS 11

atleastone coexistence
container creation date
criterion decim
disjoint exclusive
file desc filename
flag font name
font size identifier
key last update
length mark plan
max con max rep
mem role min con
min rep multi
name other
path posx
posx2 posy
posy2 predefined
primary recyclable
reduce secondary
sem short name
stable status
tech text font name
text font size total
type object type of file
type updatable
value version
view where
xgrid ygrid
zoom

Table 2.7: Field Constants.

ERR CALL ERR DIV BY ZERO
ERR ERROR ERR FILE CLOSE
ERR FILE OPEN ERR PATH NOT FOUND
ERR PERMISSION DENIED

Table 2.8: Error Constants.

Chapter 3

Types

3.1 Integers

Integer type covers all the integer values from INT MIN to INT MAX. Integers are
signed and the integer constant INT MIN (resp. INT MAX) is the smallest (resp.
greatest) value of this type. Integer constants are signed1 literals composed of
digits 0,1,. . . ,8,9. The integer type is named integer.
Examples:

1, 123, -458, -1021 are valid integer constants
+458, 3.1415, 3E+6 are not valid integer constants

2

3.2 Characters

The character type covers the whole ASCII character set from code 0 to 255. All
the characters having a graphic representation have a corresponding constant
in this type: the graphic representation itself enclosed between simple quotes.
Otherwise characters can be represented by their ASCII value like ’^val^’.
Examples:

char: a=’a’, Z=’Z’, plus=’+’;

char: bell=’^7^’, strange=’^236^’;

2

Some interesting non-graphic characters have a special representation illus-
trated in table 3.1

3.3 Strings

Strings are sequences of characters. Although the programmer must take care
of details like the size of the memory block where the string is stored in Pascal

1The unary operator + is not allowed.

13

14 CHAPTER 3. TYPES

Character Representation
backspace ’\b’
form feed ’\f’
newline ’\n’
carriage return ’\r’
tab ’\t’
’ ’’’

Table 3.1: Conventions about special characters.

Character Representation
backslash \ \\
double quote " \"
hat ^ \^
backspace \b
form feed \f
newline \n
carriage return \r
tab \t

Table 3.2: Meta-characters used in string constants.

and C, these mechanisms are completely transparent in Voyager 2. Thus in this
manual, the sentence “the size of the string s” means the number of characters
stored in the string s. String constants are sequence of characters between
double quotes. The length of a string must be less than the value found in the
constant MAX STRING.
Example:

The statement
print("Albert Einstein")
will produce
Albert Einstein
and
print("1\tone\n2\ttwo\n^51^\tthree\n")
will produce

1 one
2 two
3 three

2

Let us note that in string constants some characters have a special repre-
sentation depicted in table 3.2. The second part of the table uses the same
conventions as for the characters

With these conventions, the way the compiler interprets a string is not com-
pletely sound without some other rules:

1. Characters are examined from left to right

3.4. LISTS 15

2. If the ^ character is followed by a sequence of digits denoting a number
between 0 and 255 followed by ^, then the whole sequence is replaced
by exactly one character whose the ASCII code is the mentioned number
found in the string. Otherwise, the first ^ character is interpreted literally,
and the interpreter scans the right part of the string w.r.t. these rules.

3. If the \ character is followed by a letter (λ) and if \λ does not denote a
meta-character as depicted in table 3.2, then the sequence is replaced by
λ. The \ character is thus removed from the string.

Example:

The instruction

print("^1234^55^\^\\\h");

will print ^12347^\h

2

3.4 Lists

Lists are ordered collections of values. These values can be of any type (list
included). Because lists belong to a basic type (list), operations on lists are
often easier than in other languages like Pascal and C. Another type –cursor–
is strongly associated to lists and will be discussed in the next section. All the
operations and operators available with this type are explained here below.

A programmer can directly enter a constant list in a program simply by
specifying the components of the list between brackets like that:

list: lint ext, lint exp;

begin

lint exp:=[1..20];

lint ext:=[1,2,3,5,8,13,21];

print(lint exp**lint ext);

end

This program will print all the common values of the two lists: “1 2 3 5 8
13”. The first list was defined in expansion although the second one was defined
in extension. The syntax of list constants is:

〈list constant 〉 ← “[” 〈list expressions 〉 “]” | “[” 〈expression 〉 “..”
〈expression 〉 “]”
〈list expressions 〉 ← ∅ | 〈expression 〉 (“,” 〈expression 〉)*

More complicated list constant expressions follow:
Examples:

[1,[1..fact(1)],2,[1..fact(2)],3,[1..fact(3)],4,[1..fact(4)]]
[[],[1,[]],[2,[1,[]]],[3,[2,[1,[]]]]]
[1,2,3..10,11] error: dots are not allowed here!

2

16 CHAPTER 3. TYPES

3.5 Cursors

Cursors are references to elements of lists. A cursor can either be null or be
positioned. In the last case (positioned), it can be either active or passive. Let
us examine the meaning of cursors in these different cases:

null cursor: the cursor is not attached to any list and is not indicating any
value.

active cursor: the cursor is positioned on a value in a list, and this value can
be consulted, removed, . . .

passive cursor: let us suppose that there was a cursor c positioned on the
value 2 of the list l =[1,2,3]. Just afterwards, the value 2 is removed
from the list l, therefore the cursor has no more meaning and is said being
passive. If the program consults the value indicated by this cursor c, he
is getting an execution error. Although this situation looks like the null
reference, the situation is quite different since the cursor is still attached
to the list. This case will be discussed in the section 7.3.

3.6 Files

Objects of type file are references to files stored on disks managed by the
DOS operating system. This object becomes a real reference after the call to
the function OpenFile whose first argument is the name of the file and second
argument is an integer constant. This constant indicates the mode: _W if the
file is created for writing, _R if the file is opened for reading or _A is the file is
opened for appending. Depending on the mode, the program may read or write
information. Writing always occurs at the end of the file and characters are
read from the current position. Programs must close all the opened files before
leaving. More details are found in 7.4.

3.7 References

As mentioned in the section 1, Voyager 2 is integrated in the DB-MAIN tool
and therefore it may access to the content of the repository. The definition of
the repository needs too much pages to be explained here and a whole part is
devoted to the repository in part II.

The repository of DB-MAIN is a database built upon a network-technology
DBMS with inheritance. In this model, all the relations are one-to-many and
for this reason, relations are named links. Because the model is endowed with
the inheritance principle, entity types are named object-type. And thus a link
binds two object types together. The attributes of an object type are named
fields in our model. An instance of an entity type is named object or reference.
The following table summarizes the equivalence between these concepts:

ER-schema ↔ Voyager 2
entity-type ↔ object-type
entity ↔ object, reference
attribute ↔ field
relation ↔ link

3.7. REFERENCES 17

To each object type present in the definition of the repository of DB-MAIN,
there exists a type in Voyager 2. For instance, the type group corresponds
to the “group” object type. Variables or expressions of this type can either
be references to an object of this object-type, or can be void (a special value
denoting nothing), or can be not valid.

If a variable is a reference to an object, then we can get the value of a field
with the “.” operator. For instance, the following program prints the name of
the object referenced by the variable ent:

entity type: ent;

begin

...

print(ent.name);

...

end

Expressions composed with the “.” operator may also occur in the left hand
side part of an assignment like in the following example:

entity type: ent;

begin

...

ent.name:="CUSTOMERS";

...

end

The right hand part of the “.” operator is in fact an integer value identifying
the field among all the others. In this example, name is a predefined integer
constant.

Chapter 4

Expressions

Expressions are classified into several classes depending on the type returned
by the evaluation process. Some expressions are untyped mainly due to access
to the repository and to lists, for these particular cases, the type verification
is delayed until the execution time. The first subsection discuss the operators
used in expressions. Next subsections treat operators and functions provided
by the language for each type.

4.1 Precedence and associativity of operators

Each expression operator in Voyager 2 has a precedence level and a rule of
associativity. Where parentheses do not explicitly indicate the grouping of
operands with operators, the operands are grouped with the operators hav-
ing higher precedence. If two operators have the same precedence, there are
grouped following the associativity rule (left/right associativity). The table 4.1
defines the precedence and associativity rules of each operator.
Example:

Following complex expressions may be reduced as follows with the
precedence/associativity rules:

Original expression Equivalent expression
a+b*c a+(b*c)

a=not b and c or d a=(((not b) and c) or d)
a.length > 10 = 1 ((a.length)>10)=1

2

4.2 Arithmetic Expressions

Operators +1, -, *, /, mod, and, or, <, >, <=, >=, <>, =, not all require
integer expressions as operand. Their operands are fully evaluated before their
own evaluation but the order is let unspecified. The definition of +, -, *, / and
mod is respectively addition, subtraction, multiplication, division and remainder.

1The + operator is overloaded in order to behave like the StrConcat function with strings.

19

20 CHAPTER 4. EXPRESSIONS

Token Operator Class Associates Operandsa1]Operands must always be of the same type. Following letters denote expected types by previous operators: l: list, i: integer, c: char, s: string, any: any type.

not logical not prefix no i
- unary minus unary no i
* multiplicative binary left i
/ division binary left i
mod modulo binary left i
** list intersection binary left l
+ addition binary left i,s
++ difference binary left i
* list concatenation binary left l
< less than binary left i, c, s
> greater than binary left i, c, s
<= less than or equal binary left i, c, s
>= greater than or equal binary left i, c, s
<> different binary left i, c, s
= equal binary left i, c, s
and logical and binary left i
or logical or binary left i
xor logical xor binary left i
:== functional assignment binary right any
, separator binary left any

Lines separate operators following their precedence. One line separates two
groups of operators and each operator inside one group have the same prece-
dence. If a group is above another one, then the precedence of its operator is
higher than the other group. For instance: prec(*)>prec(+).

a[

Table 4.1: Operators: Precedence and Associativity rules

When the divisor is zero (x/y and y = 0), then the result is 0 and the error
register is set to DIV BY ZERO. For the other ones, the following table gives a
formal definition:

a > b returns : if a > b then 1 else 0
a < b returns : if a < b then 1 else 0
a <= b returns : if a ≤ b then 1 else 0
a >= b returns : if a ≥ b then 1 else 0
a = b returns : if a = b then 1 else 0
a <> b returns : if a 6= b then 1 else 0
not(a) returns if a = 0 then 1 else 0

4.3 Reference Expression

The word “reference” groups several types together and do not make distinction
among them. Let us examine the following line:

attribute: att;

4.4. FUNCTIONAL ASSIGNMENT 21

att is a variable that may reference an object in the repository. We will see in
chapter 13 that the following statement:

att:=GetFirst(attribute[a]{TRUE})

puts into the variable att the reference to the first attribute found in the repos-
itory of DB-MAIN. This variable can be used to consult or modify properties of
the object:
Example:

print(att.name);
att.name:="FIRST-NAME";

2

The left part of the “.” separator must be an identifier (global/local variable,
parameter) denoting an object. The left part must be a field name valid for the
object specified in the right part. The right expression must be either an integer
expression or a string. String fields will be explained later in chapter 15.

4.4 Functional Assignment

This operator behaves like the assignment operator (:=) except that the left-
hand-value is let on the stack afterwards. This operator is noted “:==”.
Example:

integer: a,b;
string: s;
begin

a:=(b:==0);
if ((s:==read(string))="Hello") then {

print(" World!");
}

end

2

The first statement initializes the two variables a and b with the value 0.
The second statement reads one string from the console, puts it into the variable
s and then compares this string with the string “World!”.

More explanations can be found in the section 6.1 at page 31.

Chapter 5

List Expressions

5.1 Overview

Lists in Voyager 2 have no similar counterparts in Pascal and C. As explained in
the subsection 3.4, lists are ordered collections of values. A list has an existence
which is not directly linked to the scope of variables representing it. Values in
lists may be of any type, even list, cursor, . . . A list exists in memory until the
program can no more use the values contained in this list, and the programmer
does not have to care about the memory management. Let us remember that
values can be get through cursors or variables of type list.

Because lists in Voyager 2 are quite different from lists in other languages
like Pascal, C and Lisp, some definitions are necessary.

Definition 5.1 (List) Let l be a variable denoting a list of values v1, . . . , vn,
we write [v1, . . . , vn] the content of this list.

Definition 5.2 (Ghost) We define • (a ghost) a special value having no mean-
ing in Voyager 2. This value may belong to lists.

Ghosts are invisible and therefore useless, but they will be used in list’s
graphical representation and in explanations.

Definition 5.3 (∂) We define a unary operator ∂. Let l be a list, then ∂l
returns the list l from where all the ghosts have been removed.

In other words, all the • values are removed from the list. Then ∂[•, 1, 2, [3, •], •] =
[1, 2, [3]].

Definition 5.4 (list equality, =) l1 = l2 iff ∂l1 ≡ ∂l2 where the ≡ operator
has the usual meaning. This means that ghosts are not pertinent to compare
lists in Voyager 2.

The list equality is the usual way to consider the equality between lists for
the programmer.

We associate a graphical representation to the lists, to the variables of type
list and to the cursors in order to make easier the explanations. A list is repre-
sented by a rectangle containing values linked by arrows. Values are represented

23

24 CHAPTER 5. LIST EXPRESSIONS

by dashed boxes. A variable v of type list is represented by an arrow towards
the graphical representation of the list. A cursor c pointing to a value inside
the list is denoted by an arrow towards this value. Let us consider the following
program:

1: list: L;
2: cursor: C;
3: begin
4: L:=[1..4];
5: attach C to L;
6: C >> 2;
7: end

At line 4, the list L is assigned to the list [1, 2, 3, 4], at line 5, the cursor C
is attached to the list L and therefore is indicating the first value of L 1. The
instruction at line 6 moves the cursor two elements forward, the cursor C is now
indicating the value 3. The graphical representation of the state at line 7 is:

1 2 3 4- - -L -

C

?

The instruction kill(C) destroys the value under the cursor. So, the in-
struction kill(C); will destroy the value 3 in L. We represent this action by
replacing the value 3 in L by the special value: •. The cursor is still attached
to the list L but it is now impossible to consult the value under C or to replace
this value by another one. The graphic becomes:

1 2 • 4- - -L -

C

?

With respect to the definition 5.4, the following property holds:

L = [1, 2, 4]

Let us suppose that the next sequence is executed right now: ‘C <<; C +> [5..8]”,
the cursor C is moved one element backward and the list [5, 6, 7, 8] is inserted
just after C. The graphic becomes:

1This is a convention. Newly attached cursors always point to the first element. If the list
is empty (L = []) then the cursor is said to be null and has the special value void.

5.1. OVERVIEW 25

1 2 ◦ 4- - -L -

C

?

5 6 7 8- - -

6

Let us remark that the ghost value has disappeared. The reason is simple:
the cell containing the ghost value was no more referenced. So it was become
safe to suppress it. From the user’s point of view, it was impossible to detect
the presence of the ghost value after the execution of the instruction “C <<;”.

The value under a cursor can be consulted with the function get. We will
use this function to attach C to the newly created list with the sequence of
instructions: “C>>; attach C to get(C);”. The cursor is now indicating the
first element of the new list: 5. The following sequence will destroy the two
elements 2 and 3 of this list: “C>>; kill(C); C>>; kill(C); C>>;”, C is
now indicating the last value: 8. This list is now equivalent to the list [5, 8] and
for this reason if the cursor C is moved one element backward, “C <<”, one finds
the value 5 under C as it is illustrated by the graphic:

1 2 ◦ 4- - -L -

5 • • 8- - -

6

C

6

Although the general rule in Voyager 2 for passing values to functions is by
value, list objects are always passed by address1. Let us examine the meaning
of the following program:

1: list: L,R;
2: procedure RemFirst(list: arg)
3: cursor: C;
4: { attach C to arg;
5: kill(C);
6: }
7: begin
8: L:=[1,2,3];
9: R:=RemFirst(L);

1Except some cases like the ++ operator and other functions.

26 CHAPTER 5. LIST EXPRESSIONS

10: print([L,R]);
11: end

After line 8, the state is described by this schema:

1 2 3

L -

- -

at line 6, when the first element has been deleted and the RemFirst function
has been called:

• 2 3

L -

arg -

C

6

- -

and finally at line 10:

2 3

L -

R -

-

and the result printed on the console will be:

[[2,3],[2,3]]

With respect to this principle, lists can be built inside a function and re-
turned to the global environment. The following program is a good example of
what happens when a list is returned from a function:

list: L;
function list foo()

list: local;
{ local:=[1..3];

return local;
}
begin

L:=foo();
print(L);

end

Because the list [1,2,3] is first referenced by the variable local, next by an
intermediate element placed on the stack and finally referenced by the global
variable L, the list was not destroyed when the function finished.

5.2. OPERATIONS DEFINITIONS 27

5.2 Operations Definitions

Several operators exist specifically for the lists. A description of each one follows.

5.2.1 Concatenation

The infixed operator ++ takes two distinct lists and returns the concatenation of
both. Let us note that the arguments are detached of their body after execution.
For instance, let us suppose that the cursor C is attached to the list L1 and
that the instruction R := L1 ++L2 is performed right now! Then the cursor C
is now attached to the list R and no more to L1 whose the value is the empty
list [].

function list: r ++ (list: l1, list: l2)

Precondition. lists l1 and l2 are two list expressions denoting
distinct lists.

Postcondition. lists l1 and l2 are now empty. Let us suppose
that list l1 is [v1, . . . , vn] and l2 is [w1, . . . , wm], then the result will
be a new list: [v1, . . . , vn, w1, . . . , wm]. After the call, the following
property holds: l1 = [] and l2 = [].

The following examples show what is the effect of this operator:
Examples:

[1,2,3]++[4,5,6] → [1,2,3,4,5,6]
L1:=[[’a’,1]]; L1:=L1++[[’b’,2]] → [[’a’,1],[[’b’,2]]]
L2:=L1++L1; → error !
L2:=L1; L3:=L1++L2; → error !

2

5.2.2 Intersection

The infixed operator ∗∗ is used between two lists to compute all the common
elements. There is no restrictions on the arguments of this operator.

function list: r ∗∗ (list: l1, list: l2)

Precondition. l1 and l2 are two lists. The type of the items stored
in both lists may not be identical.

Postcondition. r is the list of all the values common to lists l1 and
l2. If one object is present in both lists but with different types (one
super-type1 and one sub-type2 for instance), they are considered as
distinct. The order of the returned list is left unspecified.

The following instances show the power of this operator:

[1,1,2,4]**[1,5,2]→[1,2]
1For instance:data object
2For instance: ent rel type

28 CHAPTER 5. LIST EXPRESSIONS

[[1,2],[3,4],’b’,7]**[’a’,7,[3,4],["ab",GetCurrentSchema()]]
→[[3,4],7]
l1:=[1,2,1,3,’a’,’a’,’b’];
l1**l1→[1,2,3,’a’,’b’]

5.2.3 Insertion

To insert values in lists, several methods have already been presented. But no
one is as general than the new operators +> and <+. These operators are infixed.
For each one, the left hand operand must be an expression of type cursor and
the right hand operand may be any expression that can be inserted in a list.
The effect of the first (resp. second) operator is to insert the result of the right
hand expression just after (resp. before) the value designated by the cursor
specified in the left operand.

In order to remove any ambiguity, we give here the formal definition of these
two operators.

Let us analyse the effect of the following instruction:

C+> E

where C is any expression of type cursor and E is an expression.

1. C is attached to a list L.

a. The cursor C is null. Then the value of E is inserted as being the
first element of the list L.

b. The cursor C is not null. Then the value of E is inserted just
after the value designated by the cursor C.

2. C is not attached to a list. The instruction fails as well as the program.
This is an error of the programmer.

For the other operator <+, the effect of the following instruction

C <+E

will be:

1. C is attached to a list L.

a. The cursor C is null. Then the value of E is inserted as being the
last element of the list L.

b. The cursor C is not null. Then the value of E is inserted just
before the value designated by the cursor C.

2. C is not attached to a list. The instruction fails as well as the program.
This is an error of the programmer.

In all the cases, the cursor C is unchanged and is still designating the same
value as before the call of the instruction.

5.2. OPERATIONS DEFINITIONS 29

5.2.4 Miscellaneous

function any: r get (cursor: c)

Precondition. IsVoid(c)<>TRUE

Postcondition. r is the value pointed by the cursor c.
on error: The program is interrupted and an error message is dis-
played.

Chapter 6

Statements

Each statement must be terminated by one semi-colon except for compound in-
structions where this character is optional. The empty statement is not allowed
in Voyager 2, however a compound statement may be empty.

6.1 Assignment

Assignment statements must respect the following syntax:

〈assignment-inst 〉 ← 〈lhs 〉 := 〈rhs 〉
〈rhs 〉 ← 〈expression 〉
〈lhs 〉 ← 〈variable 〉 | 〈variable 〉.〈field 〉
〈field 〉 ← 〈expression 〉

The rhs-expression must have a type compatible with the type of the lhs-
expression. If the lhs-expression has a field, then the evaluation of the field must
return an integer value. Fields are specific to variables denoting a reference to
a repository’s object and usually, the user will use a predefined constant (cfr.
2.6) in place of complex expression. When this instruction is executed, the rhs-
expression is first computed and the result is then assigned to the lhs-expression.
Example:

int: a,b;

string: s;

begin

a:=1;

b:=a*2;

s:="Rob Roy";

end

2

But the assignment instruction does much more work than it is explained so
far. Indeed, when inheritance is involved during the assignment, this instruction
is able to solve automatically the ambiguity —dynamic type casting. Let us

31

32 CHAPTER 6. STATEMENTS

suppose that we have the following schema representing the inheritance between
the object types1:

A B

C D
H

HHY ��
�*

HH
HY

and the following program:

A: a;
B: b;
C: c;
begin

...
b:=c;
a:=b;
...

end

The last assignment is not trivial since the object referenced by b could be
either of type C or D. But the assignment is able to find the correct path between
the type of a and the type of the object referenced by b2.

If the assignment fails — types are not compatible — then the program is
aborted and the conflicting types are displayed in the console.

The dynamic type casting performed by the assignment is not a general
rule in Voyager 2. Therefore, unless it is explicitly mentioned3, types must
always be exactly identical. For instance, each time you define a new function,
arguments and parameters must always have the same type. For this reason the
following program is wrong:

C: c;
procedure foo(A:a){

...
}
begin

...
foo(c);

end

The only way to pass the value c to the function is by using an explicit
assignment like that:

C: c;
A: a;
procedure foo(A:a){

1The example is not a part of the real schema.
2Let us remark here, that the type of an object referenced by a variable may be different

of the type of the variable! For instance, just after the first assignment, the type of the object
referenced by b is C although the type of the variable b is B.

3The dynamic type casting is applied for the arguments of the function create.

6.2. SELECTION STATEMENT 33

...
}
begin

...
a:=c;
foo(a);

end

Often a suite of assignment is prone to be optimized. Although performances
are not critical for the Voyager 2 programmer, strings may slow down some
programs like parsers. For instance, the following scheme is often observed in
parsers:

while neof(f) do {
s:=read(string) ;
if s="begin" then

...
end

The scanned string will be put twice on the stack. The function read will read
the string from the file and place it on the stack in order to put it into the variable
s. And the next instruction will place the value of s on the stack. Conclusion:
we put the value we have just removed before! One obvious optimization is
to not remove the value from the stack. This optimization can be achieved by
the programmer in using the function assignment operator (:==) defined in the
section 4.4.

6.2 Selection Statement

Selection statements direct the flow of control depending on the value of an
expression.

6.2.1 The if-then Statement

The if-then statement executes a list of instructions if the evaluation of the
condition is different from 0. The syntax is:

〈if-then-statement 〉 ← if 〈condition 〉 then { 〈list-instruction 〉 }

The evaluation of the expression condition must return an integer value d.
If the value d is nonzero then the list of instructions list-instruction is executed.
Example:

if n=0 then { n:=1; }

2

6.2.2 The if-then-else Statement

The if-then-else statement executes a list of instructions among the candi-
dates success and failure depending on the evaluation of the expression condition.
The evaluation of this expression must return an integer value.

34 CHAPTER 6. STATEMENTS

〈if-then-else-statement 〉 ← if 〈condition 〉 then 〈success 〉 else 〈failure 〉
〈success 〉 ← { 〈list-instruction 〉 }
〈failure 〉 ← { 〈list-instruction 〉 }

The evaluation of the expression condition must return an integer value (d).
The flow of control is directed to the list of instructions success (resp. failure)
if the evaluation of the expression condition is nonzero (resp. zero).
Example:

if m<n then {
v:=m;

} else {
v:=n;

}

2

6.2.3 The switch Statement

The switch statement chooses one of several flows of control depending upon
a criterion. The criterion must be either a variable or a variable with a field
whose the type must be compatible with respect to the “=”” operator with the
values found in the case statements. Its syntax is:

〈switch-statement 〉 ← switch (〈variable 〉)
{ 〈case-list 〉 〈default 〉 }

〈case-list 〉 ← ∅ | 〈case-list 〉 〈case-sttmt 〉
〈case-sttmt 〉 ← case 〈expression 〉 : 〈list-instruction 〉
〈default 〉 ← ∅ | otherwise : 〈list-instruction 〉

The meaning of such a statement can be described by another equivalent
if-then-else statement as it is showed below:

switch (v) {
case e1: s1

case e2: s2

...
case en: sn
otherwise: s0

}

⇐⇒

if v = e1 then { s1 }
else {

if v = e2 then { s2 }
else {

...
if v = en then { sn }
else { s0 }

...
}

}

If the default clause is not present, then just consider that the s0 list is
empty. This translation of the switch statement is in no way an explanation
of the compilation process, so the order of evaluation of the ei expressions is

6.3. ITERATION STATEMENT 35

not garanteed by the language Voyager 2. Therefore, expressions for which the
evaluation has a side effect are discouraged since the semantics is unspecified.

When the switch statement is executed the value of the variable is compared
to each expression ei until values are equal. Once this condition is satisfied, the
respective list of instructions is executed. If all tests fail, then no instruction
is executed unless the default case is present and then its list of instructions is
executed.
Example:

switch (letter) {
case ’B’:

print("Belgium");
print(" (Belgique)");

case ’F’:
print("France");

case ’S’:
print("Spain");
print(" (Espagne)");

otherwise:
print("I don’t know!");

}

2

6.3 Iteration Statement

Iteration statements are the while, repeat and for instructions.

6.3.1 The while Statement

The while statement has the following syntax:

〈while-statement 〉 ← while 〈condition 〉 do { 〈body 〉 }
〈condition 〉 ← 〈expression 〉
〈body 〉 ← 〈list-instruction 〉

The evaluation of the condition must be an integer value. While the evaluation
of this expression will be nonzero, the body will be executed. The iteration stops
when the evaluation of the condition returns the value 0.
Example:

f:=1;
while n>0 do {

f:=f*n;
n:=n-1;

}

2

36 CHAPTER 6. STATEMENTS

6.3.2 The repeat Statement

The repeat statement has the following syntax:

〈repeat-statement 〉 ← repeat { 〈body 〉 } until 〈condition 〉
〈body 〉 ← 〈list-instruction 〉
〈condition 〉 ← 〈expression 〉

The evaluation of the expression condition must return an integer value. The
body is executed until the evaluation of the condition returns a nonzero value.
Example:

n:=read(integer);
repeat {

n:=n-1; } until n=0;

2

6.3.3 The for Statement

The for statement is probably the most usual instruction for doing iterations
among a set of values. The original feature of this statement is certainly the
iteration through elements of lists. This characteristic allows it to be used to
visit references coming from the evaluation of a request. Its syntax is:

〈for-statement 〉 ← for 〈iterator 〉 in 〈list 〉 do { 〈body 〉 }
〈iterator 〉 ← 〈variable 〉
〈list 〉 ← 〈expression 〉
〈body 〉 ← 〈list-instruction 〉

The evaluation of the expression list must return a value of type list. Moreover,
each element of this list must be of the same type as the variable iterator. If
the list is empty, this statement has no effect except the evaluation of the list.
Otherwise, the variable iterator is instantiated with the first value found in the
list, and the body is executed. Afterwards, we try to iterate through the suffix of
this list until the prefix becomes empty. When the for statement is completed,
the variable iterator is instantiated with the last value found in the list (the
value is unspecified if the list is empty).

Let us note that one do not tell neither how nor when the list is evaluated!
So we recommend to avoid any instruction that could have a side-effect on the
evaluation of the list. The following examples show very dangerous programs:
Examples:

for i in [1..n] do {
print(i);
n:=n+1; }

b:=1;
for i in [a,b] do {

b:=2;
}

l:=[1..10];

6.3. ITERATION STATEMENT 37

for i in l do{
l:=l++[11];

}

2

Here follow some correct use of the for instruction.
Example:

for i in [1..5+5] do {
print(i);

}

for data in DATA OBJECT[data]{@SCH DATA:[sch]
with data.name="Foo"} do {

print(data.short name);
for gr in GROUP[gr1]{@DATA GR:[data]} do {

print(gr.name);
}

}

for c in [’a’,’b’]++[’e’,’f’] do {
print(CharToUpper(c));

}

for my list in [[1,2],[3,4],[5]] do {
print(my list);

}

2

6.3.4 The goto Statement

The goto statement directs the flow of control to a statement labeled by an
identifier. If this instruction is used inside a function, the flow of control can
not go out the body of the function. In the same way, the control flow can
not be directed from the main body to the inside of a function. See 6.3.5 for a
detailed example.

〈goto-statement 〉 ← goto 〈identifier 〉

6.3.5 The label Statement

The label statement is used to put a label in front of a statement. The syntax
is:

〈label-statement 〉 ← label 〈identifier 〉

Example:

i:=0;
label loop;
if i<10 then {

38 CHAPTER 6. STATEMENTS

i:=i+1;
goto loop;

}

2

6.3.6 The break Statement

The break instruction can only be used in for-in-do, while and repeat in-
structions. For the while and repeat instructions, the effect of this instruction
is equivalent to a goto instruction to a label put just after the while/repeat
instruction. This “breaks” the loop.

For the for-in-do instruction, the explanation depends on the list used for
the iteration. If the list expression is a predicative query, then the effect of the
break instruction is to skip to the brother of the father of the current item. Let
us consider the following example:
Example:

1: owner of att: o,o1,o2,o3;
2: attribute: a;

3:
...

4: for a in ATTRIBUTE[a]{@OWNER ATT:[o1,o2,o3]} do {
5: if GetFirst(OWNER OF ATT[o]{OWNER ATT:[a]})=o1
6: then { break; }
7: print(a.name);
8: }

2

where o1 owns three attributes: a1, a2 and a3; and o2 owns two attributes:
b1 and b2. Then the first attribute at line 5 will be a1. Since the owner of a1
is o1, the test succeeds and the break instruction is called. Its effect will be to
skip all the sons of the o1 owner and to go directly to the next owner: o2. The
program will thus print: b1, b2, . . .

If the list expression is not a request, then the break instruction will break
the loop and will continue with the instruction following the for-in-do instruc-
tion.

6.3.7 The continue Statement

The continue instruction can only be called inside for-do-in, while and
repeat instructions. In the while/repeat instructions, continue will skip the
rest of the instruction’s body and causes the reevaluation of condition expres-
sion.

If the instruction is used inside the for-do-in instruction with a request as
list-expression, then its effect will be different. Let us get a look at the followiing
example:
Example:

6.3. ITERATION STATEMENT 39

owner of att: o,o1,o2,o3;
attribute: a;

...
for a in ATTRIBUTE[a]{@OWNER ATT:[o1,o2,o3]} do {

if a=a2
then { continue; }
print(a.name);

}

2

where the context is the same as in 6.3.6. When the current item becomes
a2, then the continue instruction is called. The instruction will skip the rest
of the body and will look for the brother of the current element, a2, which is
a3. If a2 were the last son of the owner, o1, then the for-do-in instruction will
terminate the processing the o1’s sons and go to the next owner: o2.

If the list expression is not a request, then the continue expression will just
skip the rest of the body for the current element and will process the next value
in the list.

6.3.8 The halt Statement

The halt instruction can be called anywhere in the program where an instruc-
tion is expected. This instruction will stop the program. As when your program
terminates, this instruction will not close your opened files!

Chapter 7

Operations

Operations are statements having the form of a call to a predefined proce-
dure/function. Because their syntax has already been defined, we have isolated
them from other statements.

7.1 Operations on Characters

function integer: d CharIsDigit (char: c)

Precondition. ∅
Postcondition. d = 1 if c ∈ {0, . . . , 9} and 0 otherwise.

function integer: d CharIsAlpha (char: c)

Precondition. ∅
Postcondition. d = 1 is c ∈ {a, . . . , z, A, . . . , Z} and 0 otherwise.

function integer: d CharIsAlphaNum (char: c)

Precondition. ∅
Postcondition. d = 1 if c ∈ {0, . . . , 9, a, . . . , z, A, . . . , Z} and 0
otherwise.

function string: s CharToStr (char: c)

Precondition. ∅
Postcondition. s is a string composed of the c character.

function char: c′ CharToUpper (char: c)

Precondition. ∅
Postcondition. if c ∈ {a, . . . , z} then c′ is the respective upper
case letter. All other characters are left unchanged.

41

42 CHAPTER 7. OPERATIONS

function char c′ CharToLower (char c)

Precondition. ∅
Postcondition. if c ∈ {A, . . . , Z} then c′ is the respective lower
case letter. All other characters are left unchanged.

function char: c AscToChar (integer: d)

Precondition. 0 ≤ d ≤ 255

Postcondition. Character c has the ASCII code: d.
on error: c =^0^.

function integer: d CharToAsc (char: c)

Precondition. ∅
Postcondition. d is the ASCII code of the character c.

7.2 Operations on Strings

We will define here some definitions to make easier the explanations that follow.
First of all, let s denote a string and d a positive number. Then we note sd the
dth character of the string s, and sd→ the suffix of the string s starting at the
position d (included) in the string and sd→d+l the substring comprised between
positions d and d+ l where l is a positive number such that d+ l does not exceed
the length of the string. Let us remember a last detail: the first character of
a string is placed at the position 0, and thus if l is the length of s, the last
character is placed at the position l− 1. The following operations are safe with
respect to two criteria:

• The program can never write a character outside strings.

• The program can never place the null character inside a string1.

This is a valuable guaranty against frequent bugs that C and Pascal program-
mers certainly know.

function string: s StrBuild (integer: d)

Precondition. d ≥ 0 and d ≤MAX STRING

Postcondition. s is a string composed of d space characters (’ ’).
on error: s is the empty string.

function string: s StrConcat (string: s1, string: s2)

Precondition. ∅
Postcondition. This function appends the string s2 at the end of
s1 and the result is stored in s. The length of the resulting string
is StrLength(s1)+StrLength(s2). The infix operator “+” can also
be used in place of the StrConcat function.

1By convention, the null character ends strings. Therefore such a possibility is troubling
the memory manager.

7.2. OPERATIONS ON STRINGS 43

function integer: r StrFindChar (string: s, integer: d, char: c)

Precondition. 0 ≤ d < StrLength(s).

Postcondition. If r ≥ 0 then sr = c and ∀i, d ≤ i < r : si 6= c.
Otherwise if r = −1 then ∀i, d ≤ i < StrLength(s) : si 6= c.
on error: r = −1.

function integer: r StrFindSubStr (string: s, integer: d, string: t)

Precondition. 0 ≤ d < StrLength(s).

Postcondition. If r ≥ 0 then t is a prefix of sd+r→. Otherwise if
r = −1 then ∀i ≥ 0, t never is a prefix of sd+i→.
on error: r = −1

function char: c StrGetChar (string: s, integer: d)

Precondition. 0 ≤ d < StrLength(s).

Postcondition. c = sd.
on error: c =’^0^’

function string: r StrGetSubStr (string: s, integer: d, integer: l)

Precondition. 0 ≤ d <StrLength(s) ∧ 0 ≤ l ≤StrLength(s)− d
Postcondition. r = sd→d+l

on error: if d < 0 then d← 0; if d ≥StrLength(s) then d←StrLength(s);
if l < 0 then l ← 0; if l >StrLength(s) − d then the function will
consider that l−StrLength(s) + d space characters are added at the
end of the string s.

function string: s StrItos (integer: d)

Precondition. ∅
Postcondition. Converts the integer d into the string s.

function integer: d StrLength (string: s)

Precondition. ∅
Postcondition. d is the length of the string s.

function string: s′ StrSetChar (string: s, integer: d, char: c)

Precondition. 0 ≤ d <StrLength(s) and c 6=’^0^’.

Postcondition. ∀i ∈ {0 . . .StrLength(s) − 1} \ {d} : s′i = si and
s′d = c.
on error: s′ = s.

44 CHAPTER 7. OPERATIONS

function integer: d StrStoi (string: s)

Precondition. 1) The number represented by s is a number be-
tween INT MIN and INT MAX. 2) The string must match this regular
expression: [\t]*[+-]?[0..9]+ (see appendix F for more details
about regular expressions). The string may start with spaces or tab-
ular characters but must end with a number. A number may have
a sign (+ or -) and must have at least one digit.

Postcondition. Converts the longest prefix of s satisfying the
above regular expression to an integer d. Space and tabular charac-
ters at the beginning of s are omitted.
on error: If the value d is outside the integer range, then the result
d is undefined. If the string s does not match the regular expression,
then d = 0.

function string: s′ StrToLower (string: s)

Precondition. ∅
Postcondition. All the characters c ∈ {A, . . . , Z} in the string s
are replaced by their corresponding lowercase letters, the result is
stored in s′. No other characters are changed.

function string: s′ StrToUpper (string: s)

Precondition. ∅
Postcondition. All the characters c ∈ {a, . . . , z} in the string s
are replaced by their corresponding upper case letters, the result is
stored in s′. No other characters are changed.

function integer StrCmp (string: s1, string: s2)

Precondition. ∅
Postcondition. Returns 0 if s1 = s2, 1 if s1 > s2 and -1 otherwise.

function integer StrCmpLU (string: s1, string: s2)

Precondition. ∅
Postcondition. Returns 0 if s′1 = s′2, 1 if s′1 > s′2 and -1 otherwise,
where s′i = StrToUpper(si) and i ∈ {1, 2}.

function integer StrIsInteger (string: s)

Precondition. ∅
Postcondition. Returns 1 if CharIsDigit(si)=1 ∀0 ≤ i ≤ StrLengths−
1 and 0 otherwise.

See also MakeChoice and MakeChoiceLU in chapter 9 (pages 65).

7.3. OPERATIONS ON LISTS AND CURSORS 45

7.3 Operations on Lists and Cursors

procedure AddFirst (list: l1, any: e)

Precondition. ∅
Postcondition. After evaluation of the expression e, the result is
added to the list l1 at the first position. If the expression is a list,
this list is shared by l1.

procedure AddLast (list: l1, any: e)

Precondition. ∅
Postcondition. After evaluation of the expression e, the result is
added to the list l1 at the last position. If the expression is a list,
this list is shared by l1.

function any: r GetFirst (list: l)

Precondition. l is a non-empty list

Postcondition. r is the first element of the list l. Of course, if the
first element of a the list is a list, then the result is not a copy of it
but shares it.
on error: the program is halted.

function any: r GetLast (list: l)

Precondition. l is a non-empty list

Postcondition. r is the last element of the list l. Of course, if the
last element of a the list is a list, then the result is not a copy of it
but shares it.
on error: the program is halted.

function integer : n Length (list: l)

Precondition. ∅
Postcondition. n is the number of elements found in the list l.

function cursor: c member (list: l, any : m)

Precondition. ∅
Postcondition. if the element m occurs in the list l, then the
cursor c points to this element. If the elements occurs more than
once, then c points to the first occurrence. Elements that have a
type different of the element m are omitted. If m does not belong
to the list then the cursor c is void.

46 CHAPTER 7. OPERATIONS

7.4 Operations on Files

function file OpenFile (string: FileName, integer: Mode)

Precondition. FileName is the name of a file. Mode is an integer
constant among: W for the write mode and R for the read mode
and A for the append mode.

Postcondition. Depending on the value of Mode:

W : If the file FileName exists then it is destroyed and the result is
a handle to a new file opened for writing only. If FileName is
not a valid name, the result is void and the error register is set
to ERR FILE OPEN.

R : If the file FileName does not exist, the result is the value void
and the error register is set to ERR FILE OPEN. Otherwise the
result is a handle to the file opened for reading. The current
position is either the first character of the file or the end of file
if the file is empty.

A : If the file Filename does exist then the function returns an han-
dle to this file opened for writing at the end-of-file. Otherwise,
the file is created and the function behaves like the mode was
W.

procedure CloseFile (file: f)

Precondition. f denotes an handle to a file opened with the in-
struction OpenFile.

Postcondition. The file is closed, and the value of f is undefined.
on error: The error register is set to ERR FILE CLOSE.

procedure printf (file: f, any: value)

Precondition. f denotes a file opened for writing and value is any
expression among types string, char, integer, list.

Postcondition. value is written on the file denoted by f. If the type
of value is list then all the values found in this list are written on
the file surrounded by the string constants LEFT,RIGHT and separated
by the string constant COMMA1 (cfr. 7.4 for more details about these
constants). Values not belonging to types string, char, integer,
list are skipped.
on error: The behavior is undefined.

Let us remark that very depth and recursive lists perturb this procedure.
The procedure print only accepts the second argument of printf and write
the value on the console.

1These constants are internal and are not visible.

7.4. OPERATIONS ON FILES 47

function any readf (file: f, integer: t)

Precondition. f denotes a file opened for reading and t is an
integer constant denoting the type of value to be read in the file.
Following constants can be used: integer, char, string.
Postcondition. Upon the value of t, the instruction will behave
like this:

integer : The longest sequence of decimal digits optionally pre-
ceded by - or + is read from the current position. At the end,
the current position is either the first character after the se-
quence or the end of file. If current position is either the end
of file or is not indicating a number, then 0 is returned. If the se-
quence denotes a number outside the range [INT MIN...INT MAX]
then the instruction returns a random integer.

string : The longest sequence of characters before either the end
of file or the first character ’\n’ or the MAX BUFFERnth character
after the current position. If the current position is the end of
file or is indicating the end of line character, then the empty
string is returned. The current position becomes either the end
of file or the first character after the sequence.

char : The character under the current position is returned. If the
end of file is reached, the ASCII code 0 is returned.

The function read behaves like readf except that characters are read from
the console.

function integer eof (file: f)

Precondition. The file f is opened.
Postcondition. eof returns 1 if the end of file is reached and 0
otherwise.

function integer neof (file: f)

Precondition. The file f is opened.
Postcondition. neof returns 0 if the end of file is reached and 1
otherwise.

For files opened for writing, the function always returns 0. C programmers
will note that the function neof is quite different of the function feof in this
language.

Some other instructions are discussed here although they have no concern
with the type file.

procedure rename (string: OldName, string: NewName)

Precondition. OldName is the name of an existing file. NewName
is a file name that does not yet exist. Both expressions must denote
files on a same physical device.
Postcondition. The file OldName is renamed NewName. If paths
are different, then this instruction will move the file. On errors, the
error register is set to ERR ERROR.

48 CHAPTER 7. OPERATIONS

procedure delete (string: filename)

Precondition. filename is the name of an existing file.

Postcondition. The file filename is deleted. On errors, the error
register is set to one of the following values: ERR PERMISSION DENIED,
ERR PATH NOT FOUND.

function integer ExistFile (string: filename)

Precondition. filename is a valid file name for DOS. The file may
not exist.

Postcondition. The function returns 1 if the file exists. Otherwise,
error codes ERR PERMISSION DENIED and ERR PATH NOT FOUND can
be returned. The error register is not modified.

procedure SetPrintList (string: left, string: right, string: comma)

Precondition. left, right and comma are strings with no more
than MAX DELIM characters. Strings can be empty.

Postcondition. Strings left, right, lexicalcomma are put into con-
stants LEFT, RIGHT and COMMA.

The next example illustrates the use of the previous instructions.

Example:

file: f;
begin

f:=OpenFile("c:\\tmp\\foo.txt", W);
SetPrintList("(",")",",");
printf(f,[1,[1,2,3],4,’\n’]);
SetPrintList("\/*","*/\n","\n");
printf(f,["line comment 1","line comment 2","line comment 3"]);CloseFile(f);

end

The program will print the next characters in the file foo.txt:

(1,(1,2,3),4)
/*line comment 1
line comment 2
line comment 3*/

2

7.5 Interface Operations

The following operations are illustrated with screen snapshots. Al-
though the manual is written in English, my operating system has a
French configuration, and therefore dialog boxes are a mix of French
and English texts. French texts are system dependent messages and
English are user’s parameters defined below.

7.5. INTERFACE OPERATIONS 49

function string DialogBox (string : t, string :m, integer: s, string: d)

Precondition. ∅
Postcondition. Create a dialog box shown in figure 7.1 (page 50)
from the argument interpreted as:

t: the title (<TITLE> in the figure)

m: the message (<MESSAGE> in the figure)

s: the maximum length of the input area in characters

d: the default string displayed in the input area (<DEFAULT VALUE>
in the figure)

If the user chooses the CANCEL button, the result is the empty string
and the error register is set to ERR CANCEL.

function string BrowsePrint (string : t, string :m, string: e)

Precondition. ∅
Postcondition. Create a dialog box shown in figure 7.2 (page 52)
from the argument interpreted as:

t: the title (<TITLE> in the figure)

m: the message (<MESSAGE> in the figure)

e: suggested extensions. This string is formatted as a list of pairs
like this: "name|ext|name|ext|name|ext" where name is the
associated name of one extension (“text file” for instance)
and ext is its extension (“*.v2” for instance).

If the user chooses the CANCEL button, the result is the empty string
and the error register is set to ERR CANCEL. Otherwise, the result is
name of the selected file (with its path). The user may either choose
an existing file or type a new name.

function string BrowseRead (string : t, string :m, string: e)

Precondition. ∅
Postcondition. Create a dialog box shown in figure 7.2 (page 52)
from the argument interpreted as:

t: the title (<TITLE> in the figure)

m: the message (<MESSAGE> in the figure)

e: suggested extensions. This string is formatted as a list of pairs
like this: "name|ext|name|ext|name|ext" where name is the
associated name of one extension (“text file” for instance)
and ext is its extension (“*.v2” for instance).

If the user chooses the CANCEL button, the result is the empty string
and the error register is set to ERR CANCEL. Otherwise, the result is
name of the selected file (with its path). Although file names are
greyed, the user can type a new file name.

50 CHAPTER 7. OPERATIONS

Figure 7.1: A DialogBox Window

7.6. TIME OPERATIONS 51

procedure MessageBox (string : t, string :m)

Precondition. ∅
Postcondition. Create a messge box displayed as in the figure 7.3
(page 53). Arguments are interpreted as:

t: the title (<TITLE> in the figure)

m: the message (<MESSAGE> in the figure)

function integer: r DialogBox (string : t, list :L, integer: s, integer: m)

Precondition. ∅
Postcondition. Create a dialog box that let the user to choose an
item among several items.

t: the title (<TITLE> in the figure)

L: the list that wiull denote the possible items. Elements of L that
are be not of type string, will be omitted.

s: the listbox will be sorted.

m: whenever the user will click on the OK button, an item must be
selected

If the user chooses the CANCEL button, the result is the -2. If the
choice is not mandatory (m =FALSE) and if no items are selected,
the result is -1. Otherwise, the result if the index of the string in
the list (the first index is 0). (See fig. 7.4).

7.6 Time Operations

function integer GetDay ()

Precondition. ∅
Postcondition. returns the current day (1-31).

function integer GetHour ()

Precondition. ∅
Postcondition. returns the hour (0-23).

function integer GetMin ()

Precondition. ∅
Postcondition. returns the minute (0-59).

52 CHAPTER 7. OPERATIONS

Figure 7.2: A File Browsing Window

7.6. TIME OPERATIONS 53

Figure 7.3: A Message Box

54 CHAPTER 7. OPERATIONS

Choice("Choose your favorite author\nChoisissez votre auteur préféré",
["Malet, Léo",
"Steeman, Stanislas-André",
"Ray, Jean", "Simenon, Georges",
"Mayence, Bruce",
"Tabachnik, Maud"],
TRUE,
TRUE

);

Figure 7.4: A Choice Dialog

7.7. FLAG OPERATIONS 55

function integer GetMonth ()

Precondition. ∅
Postcondition. returns the month (1-12).

function integer GetSec ()

Precondition. ∅
Postcondition. returns the second (0-59).

function integer GetWeekDay ()

Precondition. ∅
Postcondition. returns the day in the week (1-7).

function integer GetYear ()

Precondition. ∅
Postcondition. returns the year.

function integer GetYearDay ()

Precondition. ∅
Postcondition. returns the day in the year (1-365).

7.7 Flag Operations

Arrays of bits have been introduced in the repository definition to compact the
project size. This new type needs ad-hoc functions to access each bit. An array
of bit is stored into an integer and each bit is used as a boolean value. Integer
having 32 bits, it is thus possible to store 32 boolean values in it.

function integer: r GetFlag (integer: d, integer: p)

Precondition. ∅
Postcondition. Returns the bit stored at position p in the integer
d. The value p is a binary mask to access the bit.

function integer: r SetFlag (integer: d, integer: p, integer: v)

Precondition. ∅
Postcondition. Builds a new flag from d where the bit at position
p has been set to v. All the other bits are let unchanged.

56 CHAPTER 7. OPERATIONS

7.8 General Operations
p5.0 q

procedure BlackBoxP (integer: c, . . .)

Precondition. c denotes a unique code that must correspond to
some defined operation. The “. . . ” denotes the arguments of the
procedure. This procedure is described in the help file of DB-MAIN.

Postcondition.

function any BlackBoxF (integer: c, . . .)

Precondition. c denotes a unique code that must correspond to
some defined operation. The “. . . ” denotes the arguments of the
procedure. This procedure is described in the help file of DB-MAIN.

Postcondition.

The posx, posy, and color attributes are no more accessible. The program-
mer must now use ad-hoc accessors named GetPosX, GetPosY, and GetColor.
They accept two arguments: a user view and a generic object. They re-
turn a value (an integer) that corresponds to the expected attributed with re-
spect to the view (i.e., a window). Procedures UpdatePosX, UpdatePosY, and
UpdateColor accept a third argument (an integer) and udpates the ad-hoc at-
tribute in the user view.

function integer GetOID (generic object: g)

Precondition. g 6=∅
Postcondition. Return the technical identifier of the generic ob-
ject. This value is unique and stable.

x5.0 y

procedure call (string: s)

Precondition. s denotes a windows application with optional
arguments.

Postcondition. The program s is executed and the Voyager 2
program continues its execution. on error: The error register is set
to the constant ERR CALL.

procedure ClearScreen ()

Precondition. ∅
Postcondition. The screen is cleared.

function any GetCurrentObject ()

Precondition. ∅
Postcondition. Returns the reference of the object that is se-
lected. If no object is currently selected, then the function returns
Void(GENERIC OBJECT).

7.8. GENERAL OPERATIONS 57

function schema GetCurrentSchema ()

Precondition. ∅
Postcondition. Returns the reference of the current schema. If
no schema is selected, the function returns the value void.

function integer: e GetError ()

Precondition. ∅
Postcondition. e is the value found in the error register. The call
puts the value 0 in the error register.

function string: s GetOxoPath ()

Precondition. ∅
Postcondition. returns a string with the path of the “oxo” file
that contains the current program.

function integer: r GetType (any: v)

Precondition. ∅
Postcondition. this function returns the value denoting the ac-
curate type of the value passed as argument. For instance, if the
argument is a variable defined as ent rel type then the possible re-
sults are ENTITY TYPE and REL TYPE. This function is mainly used
to know how to process the values coming from lists when lists are
heterogeneous.

function integer: r IsNoVoid (any: v)

Precondition. ∅
Postcondition. returns not IsVoid(v). See 7.8 for more details.

function integer: r IsVoid (any: v)

Precondition. ∅
Postcondition. returns TRUE if the argument is null. If the type
of the argument is list or string the result is always FALSE. For
integers and characters, this predicate is true if the value is the
integer 0 or the character ’^0^’.

function any: o Void (integer: t)

Precondition. The integer constant t denotes a valid type of the
language, except the types: list and string.

Postcondition. o is the special value void of the type denoted by
t.
on error: The program halts.

Chapter 8

Functions and Procedures

8.1 Definition

Functions and procedures are abstractions of program slices. We make no dis-
tinction between both terms except if it is explicitly mentioned (in this case,
the term is underlined like that: function). The scope of a function is the whole
program. Each function is identified by its name. The definitions may occur
anywhere between the last global variable definition and the main program.
Functions may have local variables (their scope is restricted to the body of the
function) and return a value (the result) of any type (not the procedures!). The
syntax of a function definition is formally defined in A.

For functions, the flow of the executed instructions must pass through a
return instruction before reaching the end of the function. If this condition is
not respected, the execution will probably be aborted with a strange message!
Functions returning no values have no sense in Voyager 21.

In the body of a function, return instructions may occur anywhere in the
body and must be followed by an expression whose the type is exactly the same
has the one specified in the definition. When this instruction is reached, all the
local variables disappear from the environment, the memory is cleaned and the
expression is returned as the result of the function.

In the body of a procedure, the return instruction as the same sense as
before except that no expression may follow it2. If the flow of the executed
instructions reaches the end of the body, then the execution of the procedure is
completed and all the local variables are removed from the environment.

When a function is completed, the flow is directed to the next instruction
following the function call.

All the arguments are passed by value except for lists. This means, that for
each call, the parameter is in fact a copy of the argument. But let us note two
remarks:

1. lists are passed by reference. This means that all the operations performed
on a list parameter are also performed on the argument.

1This is another difference with the C language.
2If an expression follows the return statement, then this expression is not evaluated. Its

presence is not a syntax error but has no influence on the program

59

60 CHAPTER 8. FUNCTIONS AND PROCEDURES

2. when arguments are reference to objects, although this argument is passed
by value, the behavior of the program is the same as if the value was passed
by reference. The reason is simple:

• the value is persistent and is stored in a repository.

• if a variable is a reference to one object, then this variable is like a
pointer and then is quite the same thing than passing the object by
reference1.

The remark about list arguments also holds for lists returned by functions.
Let us suppose that l is a local list variable, and its value before the call to the
return instruction is [1,2,3]. Then this list is still valid after the call although
we said that all the local variables were destroyed when a function exits. The
reason is very simple: lists are managed by a garbage collector and this one sees
that the list is both used by a local variable and by the program calling the
function. Hence, the garbage collector does not destroy the list.

Finally, there is no implicit type casting argument expressions to the type
of the arguments specified in the signature of the function. This means that
this job must be done by the programmer. For instance, if a function expects a
data object as first argument, it is forbidden to pass expressions of another type
(even entity type) that is a subtype.

The following program illustrates the use of functions and procedures to
print lists of factorials:

function integer fact(integer: n)
integer: i, f;

{ f:=1;
for i in [1..n] do {

f:=f*i;
};
return f;

}

procedure PrintFact(integer: i, integer: j)
integer: z;
list: l;

{ for z in [i..j] do {
l:=l++[fact(z)];

};
print(l);

}

begin
SetPrintList("","",",");
PrintFact(2,5);

end

The export and explain clauses that appear in the syntax are outside the
scope of this chapter and will respectively be described in 16.2 and 16.5.

1C programmers certainly know this technic.

8.2. RECURSIVENESS 61

8.2 Recursiveness

We said before that the scope of a function was the whole program. It is still
true but can we call a function from inside its body? The answer is yes! This
principle is called recursiveness and is very useful in practice. This is specially
true in Voyager 2 since the stack used by Voyager 2 is much bigger than the
one used by classical languages like C and Pascal (for MS-DOS/WIN3.1 only).
For instance the factorial function could be shortened in this way:

function integer fact(integer: n){
if n=0
then { return 1; }
else { return n*fact(n-1); };

}

In the same way, the PrintFact procedure could be rewritten like that:

procedure PrintFact(integer: i, integer: j){
if i<j
then {

print(fact(i));
print(’,’);
PrintFact(i+1,j);

} else {
print(fact(i));

};
}

Chapter 9

Lexical Analyzer

Because strings are passed by value to functions and procedures in Voyager 2
and also because characters are read once a time from files, so far, it was not
easy to write efficient lexical analyzers in Voyager 2. For these reasons, some
specificic functions were added to do this job.

All these functions use the same input stream that is initialized by the func-
tion SetParser. The input stream may be either a file or a string. Because a
stream is a little bit more sophisticated than a normal file (OpenFile), usual
functions for files can not be used with this input stream.

procedure SetParser (τ : sf)

Precondition. τ is either the string type or the file type. This
instruction specifies from which stream the functions from the lexical
library will read the input. If the argument is a string, then all the
lexical functions will read characters from a “virtual” file initialized
with the argument. Otherwise, if it is a file, characters are read from
the file itself.

Postcondition. The input stream is initialized.

function string : r GetTokenWhile (string : s)

Precondition. The input stream is initialized.The argument must
be a literal string – the value of s must be known at the compilation
time. This string denotes a pattern that defines the behaviour of the
lexical analyzer. The pattern specifies a range of characters. This
range may be defined either in extension or in expansion. The first
character of the pattern is always interpreted literaly. For the other
ones, the pattern is expanded like that: for each occurence of “α-β”
where α, β denote any character, this substring is replaced in the
pattern by the set of characters γ : α ≤ γ ≤ β. Thus the following
pattern : “-a-d0-4” is equivalent to the string: “-abcd01234”.

Postcondition. Let (αi)n1 be the characters present in the input
stream of the lexical library. The result of this function is the string
(αi)m1 where 0 ≤ m ≤ n and ∀i ∈ 1..m : αi ∈ P and if m < n then
αm+1 6∈ P where P is the pattern. After the call, the input stream
is replaced by (αi)nm+1.

63

64 CHAPTER 9. LEXICAL ANALYZER

function string : r GetTokenUntil (string : s)

Precondition. The input stream is initialized. The argument must
be a literal string – the value of s must be known at the compilation
time. This string denotes a pattern that defines the behaviour of the
lexical analyzer. The pattern specifies a range of characters. This
range may be defined either in extension or in expansion. The first
character of the pattern is always interpreted literaly. For the other
ones, the pattern is expanded like that: for each occurence of “α-β”
where α, β denote any character, this substring is replaced in the
pattern by the set of characters γ : α ≤ γ ≤ β. Thus the following
pattern : “-a-d0-4” is equivalent to the string: “-abcd01234”.

Postcondition. Let (αi)n1 be the characters present in the input
stream of the lexical library. The result of this function is the string
(αi)m1 where 0 ≤ m ≤ n and ∀i ∈ 1..m : αi 6∈ P and if m < n then
αm+1 ∈ P where P is the pattern. After the call, the input stream
is replaced by (αi)nm+1.

procedure SkipWhile (string : s)

Precondition. The input stream is initialized. The argument must
be a literal string – the value of s must be known at the compilation
time. This string denotes a pattern that defines the behaviour of the
lexical analyzer. The pattern specifies a range of characters. This
range may be defined either in extension or in expansion. The first
character of the pattern is always interpreted literaly. For the other
ones, the pattern is expanded like that: for each occurence of “α-β”
where α, β denote any character, this substring is replaced in the
pattern by the set of characters γ : α ≤ γ ≤ β. Thus the following
pattern : “-a-d0-4” is equivalent to the string: “-abcd01234”.

Postcondition. Let (αi)n1 be the characters present in the input
stream of the lexical library. After the call, the input stream is
replaced by (αi)nm+1 where m is defined as 0 ≤ m ≤ n and ∀i ∈
1..m : αi ∈ P and if m < n then αm+1 6∈ P where P is the pattern.

procedure SkipUntil (string : s)

Precondition. The argument must be a literal string – the value
of s must be known at the compilation time. This string denotes
a pattern that defines the behaviour of the lexical analyzer. The
pattern specifies a range of characters. This range may be defined
either in extension or in expansion. The first character of the pattern
is always interpreted literaly. For the other ones, the pattern is
expanded like that: for each occurence of “α-β” where α, β denote
any character, this substring is replaced in the pattern by the set of
characters γ : α ≤ γβ. Thus the following pattern : “-a-d0-4” is
equivalent to the string: “-abcd01234”.

Postcondition. Let (αi)n1 be the characters present in the input
stream of the lexical library. After the call, the input stream is

65

replaced by (αi)nm+1 where m is defined as 0 ≤ m ≤ n and ∀i ∈
1..m : αi 6∈ P and if m < n then αm+1 ∈ P where P is the pattern.

procedure UngetToken (string : s)

Precondition. The input stream is initialized. Let (αi)n1 be the
input stream. α1 is the first character. Let (σj)m1 be the sequence
of letters in s.

Postcondition. The input stream is replaced by (σj)m1 ◦ (αi)n1
where ◦ is the “append” operator for lists.

function char : c GetChar ()

Precondition. The input stream is initialized. There is at least
one character in the input stream.

Postcondition. The first character of the input stream is removed
and returned.

function integer seof ()

Precondition. The input stream is initialized.

Postcondition. Let n be the value returned by this function. Then
n = 1 if there is one character in the input stream and 0 otherwise.

function integer nseof ()

Precondition. The input stream is initialized.

Postcondition. Let n be the value returned by this function. Then
n = 0 if there is one character in the input stream and 1 otherwise.

The following functions are not really in the lexical library. They should be
defined in the section 7.2. But they are often used with lexical functions.

function integer: d MakeChoice (string: s, list: l)

Precondition. l is a literal list of strings —This value must be
known at the compilation time. We note (σi)n1 the list l where σ1 is
the first element. All the values should be distinct.

Postcondition. if ∃i ∈ 1..n : σi = s then d = i otherwise d = 0.
The complexity of the this function is Θ(log2 n). on error: If one
value occurs several times in the list l, then the result is random.
The compiler prints a warning message.

function integer: d MakeChoiceLU (string: s, list: l)

Precondition. l is a literal list of strings —This value must be
known at the compilation time. We note (σi)n1 the list l where

66 CHAPTER 9. LEXICAL ANALYZER

σ1 is the first element. All the values should be distinct. labeli-
makechoicelu

Postcondition. if ∃i ∈ 1..n : StrCmpLU(σi, s) = 0 then d = i other-
wise d = 0. This comparaison is case insensitive. The complexity of
the this function is Θ(log2 n). on error: If one value occurs several
times (case insensitive) in the list l, then the result is random. The
compiler prints a warning message.

Part II

The Repository

67

Chapter 10

Repository Definition

This chapter is devoted to a global presentation of the repository of DB-MAIN.
The repository is composed of objects. Each one is formally defined (cfr. chap-
ter 11) and all the instances of an object type must respect its definition. Two
kinds of relations may exist between object types: is-a and link relations.

The is-a relation denotes the generalization concept. When an object A
derives from an object B, we say that A (resp. B) is a specialization (resp.
generalization) of B (resp. A). This simply means that all the properties of the
object A also hold for the object B.

A link relation denotes a one-to-many relation between objects. If such a
relation does exist between objects A and B as depicted in the following picture
this means that to each instance of object A corresponds a collection1

To each side of a link r, one says that the object plays a role named r or
@r depending on the valuation of the cardinality of the role. In our example,
object B plays the role @r and A plays the role r. The cardinality of a role may
be 0-1, 1-1 or 0-∞. In the first case, an instance may play at most one role, in
the next case, each instance must play exactly one role and at least, in the last
case, each instance may have several roles. p5.0 q

The repository of the version 5.0 is now too large to be presented in one
piece. For this reason, the repository definition has been “exploded” in five
views depending on the various ontologies the repository can model. The first
view (cfr. Fig. 10.1) is a macro-view. This corresponds mainly to the objects
the software engineer can observe in the project window. The “data-schema”
view (cfr. Fig. 10.2) corresponds to the former definition, that is, the repre-
sentation of the entity-relationship schemas. The third view (cfr. Fig. 10.3)is
new and represents the process schema (statements, functions, expressions, . . .).
The fourth view (cfr. Fig. 10.4)denotes the persistent data that underlie the
graphical representation of the schema (data and process). Finally, the last
view (cfr. Fig. 10.5)is just an overview of all the objects which inherit from the
generic object. Of course, all those views are intimately linked together and
objects can occur in several views. x5.0 y

Although each object type will be fully described and defined in chapter
11, we will give here a general overview of this schema. Let us remember that
the aim of this schema definition is to store the definition of any extended

1this collection may be empty depending on the value of the cardinality.

69

70 CHAPTER 10. REPOSITORY DEFINITION

1-10-N sys_mo

1-1

0-N
system_sch

1-1
0-N

pto

1-1
0-N

pfrom

1-1

0-N

mo_mp

1-1

0-N

lineof

1-1
0-N is_in

1-1

0-N

contains
P

text_line
num
description[0-1]

system
name
short_name[0-1]
creation_date[0-1]
sem[0-1]
tech[0-1]

set_product_item

set_of_productschema
short_name[0-1]

product
name
version
creation_date[0-1]
last_update[0-1]
sem[0-1]
tech[0-1]

meta_property
name
type
updatable[0-1]
predefined[0-1]
multi[0-1]
hidden[0-1]
sem[0-1]

meta_object
name
type
sem[0-1]

document
path
type_of_file[0-1]

connection
type[0-1]

SCHEMA/macro

Figure 10.1: The “macro” view.

1-1

0-N

sch_data

1-10-N sch_coll

1-1

0-N

rt_ro

1-1 0-Nro_etr

1-1

0-N

real_comp

1-1
0-N owner_att

1-1
0-Ngr_mem

1-1

0-N

gr_comp

1-1

0-N

entity_sub

1-1

0-N

entity_etr

1-1
0-N

entity_clu

1-1

0-N

domain

1-1

0-N

data_gr

1-10-N data_colet

1-1

0-N

const_mem

1-1

0-N

coll_colet

1-1

0-N

clu_sub

PP

P

P

sub_type
value[0-1]

si_attribute
type
length
decim[0-1]
container[0-1]
stable[0-1]
recycable[0-1]

schema
short_name[0-1]

role
name
min_con
max_con
sem[0-1]
tech[0-1]

rel_type

real_component

owner_of_att

member_cst
mem_role[0-1]

group
name
type[0-1]
primary[0-1]
secondary[0-1]
coexistence[0-1]
exclusive[0-1]
at_least_one[0-1]
min_rep[0-1]
max_rep[0-1]
key[0-1]
sem[0-1]
tech[0-1]

et_role

ent_rel_type

entity_type

do_attribute

data_object
name
short_name[0-1]
sem[0-1]
tech[0-1]

co_attribute

constraint
type

component

coll_et/go

collection
name
short_name[0-1]
sem[0-1]
tech[0-1]

cluster
name[0-1]
total
distinct
criterion[0-1]

attribute
min_rep
max_rep

SCHEMA/data-schema

Figure 10.2: The “data” view.

71

0-N

0-1

p_sub_expression

1-1 0-N

p_part_of

0-1

0-N

p_parameter

1-1 0-N
p_made_of

1-1 0-Np_involves

1-1

0-N

p_involved_in

0-1

0-N

p_invokes

1-1 0-N

p_has_a

1-1

0-N

p_go_env

0-1

0-N

p_fct_call

1-1

0-N

p_decl

0-1

0-N

p_body

1-1 0-N
p_attributed_to

0-1

0-N

p_act_arg

1-1

0-N

owner_pu

P

P

schema
short_name[0-1]

p_statement
type
description[0-1]

p_involve
type[0-1]
mode[0-1]

p_function
type[0-1]
mode[0-1]
description[0-1]

p_expression
operator
constant[0-1]
description[0-1]

p_environment
type
mode[0-1]

p_component
type[0-1]
mode

p_actor
name
sem[0-1]
tech[0-1]

proc_unit
mode[0-1]
type[0-1]

owner_of_proc_unit

group
name
type[0-1]
primary[0-1]
secondary[0-1]
coexistence[0-1]
exclusive[0-1]
at_least_one[0-1]
min_rep[0-1]
max_rep[0-1]
key[0-1]
sem[0-1]
tech[0-1]

generic_object
flag[0-1]

data_object
name
short_name[0-1]
sem[0-1]
tech[0-1]

SCHEMA/process-schema

Figure 10.3: The “process” view.

1-1

0-N

uv_uo

1-10-N object_view

1-10-N go_uo

P

user_object
posx[0-1]
posy[0-1]
color[0-1]

system
name
short_name[0-1]
creation_date[0-1]
sem[0-1]
tech[0-1]

schema
short_name[0-1]

p_user_viewable

p_user_view
name
type
font_name
font_size
mark_plan
reduce
text_font_name
text_font_size
xgrid
ygrid
zoom

generic_object
flag[0-1]

document
path
type_of_file[0-1]

SCHEMA/graphical

Figure 10.4: The “graph” view.

72 CHAPTER 10. REPOSITORY DEFINITION

entity relationship schema. For this reason, one will need to represent concepts
like entity types, attributes, relationships, . . . To each concept will correspond
an object type. For instance, the entity type object type corresponds to the
entity type concept and co attribute to a compound attribute. However, some
object types do not correspond to pertinent concepts. It is the case of the
component object type. Its presence is due to technical reasons1.

Our tour begins with the system object type. There is only one instance/object
of this type. This object will denote the whole project. A system can be com-
posed of schemas (schema) and documents (document). Because these object
types share common propreties, we decided to define a more general object type:
the product. Thus a product can be either a schema or a document. Products
can be connected together via connections (connection). A schema denotes of
course an ER schema and will contain entity types, relationship types, . . . The
three obvious concepts from the ER theory: the entity types, the relation-
ship types and the attributes are represented by the entity type, rel type
and attribute object types. There are three possible specializations of an at-
tribute: it can be a simple attribute, or a compound attribute or a domain2

attribute. To each one corresponds one specific object type: si attribute,
co attribute and do attribute. When a simple attribute denotes an object
attribute (that is an attribute wich references an entity type), one links this
attribute to its “type” with the domain link. Entity types, relationship types
and compound attributes may all be composed of attributes. For this reason,
the entity type, rel type and co attribute inherit from the owner of att
object type. This object type may own attributes (by using the link owner att).
The entity type and rel type object types inherit from the ent rel type ob-
ject type that inherits itself from the data object object type. We said above
that a schema was composed of entity types, relationship types and attributes.
All the object types that represent these concepts inherit from the data object
object type. Thus a schema will just contain objects from the data object
object type (the link sch data).

Besides all these concepts may own properties that are represented by groups
in the DB-MAIN tool. For this reason, a link (data gr does exist between
data object and the new object type: group. A group is just a set of proper-
ties/concepts like attributes, roles, or even groups. A group alone has absolutely
no semantics (this is explained afterwards). Let us consider the concept c (it is
for example the attribute: “customer-name”). This concept may belong to sev-
eral groups g1, g2, . . . , gn but we also said that one group may contain several
items. Because one can not represent this many-to-many relationship type in our
schema with links, we have introduced the component object type. Thus a group
may be connected to several components, and one item/concept/real component
may be connected to several components. A real component is just one instance
of the real component object type that is a generalization of all the possible
concepts one can find in a group: attributes, roles and groups. We said that
groups had no semantics. This is only true if no constraints are attached to it.
A constraint can be a referential integrity rule for instance. Each constraint is
represented by one instance/object of the constraint object type. To repre-
sent the many-to-many relationship type between constraint and group, we

1Our repository technology can not represent many-to-many relationship types.
2This concept is not yet managed by DB-MAIN.

73

have defined the member cst object type wrt the same principle than the one
explained above.

One relationship type (ie: one object of rel type) may have several roles,
each one being attached to at least one entity-type. The role concept is rep-
resented by the role object type. And the et role object type is defined to
implement the many-to-many relationship type between entity type and role.

To each entity type may correspond several clusters (cluster). Each one de-
scribes a decomposition of the original entity type (the supertype) into subtypes
(sub type). To each subtype corresponds exactly one entity type. This decom-
position is also named is-a/inheritance relation. Because multipe-inheritance is
also representable in DB-MAIN, one entity type may own several subtypes via the
entity sub link.

Schemas may have collections (collection). Collections have no semantics
but are often used as representation of concepts like files, clusters, db-space1,
storage areas2, areas3, . . . Collections can thus own entity types and one entity
type may belong to several collections (once again, the coll et object type is
just defined to represent a many-to-many relationship type between collection
and entity type).

A special object type has been created in the schema definition: the generic object
object type. This object type is a supertype of all the object types cited above.

1DB2, SQL92
2RDB.
3CODASYL.

P

user_objecttext_line

system sub_type

set_product_item

set_of_product

role

p_user_viewp_statement

p_involvep_function

p_expressionp_environment

p_component

p_actorproduct

meta_propertymeta_object member_cst

group

generic_object

et_role data_objectconstraint

connection component

coll_etcollection

cluster

SCHEMA/inheritance

Figure 10.5: The “inheritance” view.

Chapter 11

Objects Definition

The repository of DB-MAIN is composed of object types related together by is-a
relations and one-to-many relationships (network technology with inheritance).
This chapter introduces definitions for each object of the repository and de-
scribes how to create them.

Each time a new object is defined, one describes the way to create such an
object as well as the component of the object. Here follows the conventions we
use.

For each object, a table will describe the formal components of the object
like fields, roles and inheritance with all needed information about each one.
Then, the semantics of the object is explained and finally one describes the way
to create new objects.

The table looks like that example:

employee
isa−→ person

name string [L NAME] 1–1

own 0–∞ cars

p5.0 q
The first line contains the object name. Then come all the properties of the

object: attributes and roles. x5.0 y
Each field is described by its name, its type and its minimum-maximum

repetitivity. When an attribute is optional, the default value is also mentioned
between parentheses. When the type is a string, the maximum length of the
string is put after the type in a smaller size1. The size is indicated by the use of
a predefined integer constant, we recommend to use the name of the constants
rather than their value for obvious reasons of maintenance.

Each role is described by its name2, the minimum-maximum cardinality and
finally the object present at the other side of the link.

Each time a new object is created, its environment must be defined. The
environment of an object is the collection of all the informations required to
create it: fields values, roles, positions. . . Among these informations, some are

1Although strings size is unlimited in Voyager 2, the need to store this information in a
persistent way on disk requires to limit the size of each string to a reasonable length.

2Let us note that roles name are sometimes preceded by the symbol @ to indicate which
direction of the link is used.

75

76 CHAPTER 11. OBJECTS DEFINITION

mandatory and others not. When a role is mandatory, its name is printed in
bold type in the table.

The creation of objects is made by calling the function create with in ar-
guments the components of the environment. Such a call looks like that:

et:=create(ENTITY TYPE,
name:"employee",
short name:"emp",
sem:"male/female",
@SCH DATA:GetCurrentSchema());

where the first argument is a predefined integer constant denoting the type of
the object to create. The next arguments are items composed of two expressions:
a constant denoting the component of the environment being specified and the
second one is its value. All the mandatory components must be specified, and
the order is without importance. If a component is specified twice or more,
create will choose one of them randomly. In an item, when the left expression of
the ’:’ operator is underlined, this one is required in the environment. Otherwise
it is optional but subject to restrictions explained in the semantics description.

If a mandatory component (field, role, . . .) is lacking, or if an integrity con-
straint is violated then the program is aborted! There is no sense for Voyager 2
to treat these errors since they should be prevented by the programmer. When
a program is aborted for such reasons, a possible explanation is printed on the
console, but sometimes the message can be confusing. It is the case for instance,
when unicity/integrity constraints are violated1, in such cases, the program is
aborted and a message about the memory is displayed2. But in all cases, you
will know which instruction is causing the error.

We said that the repository was implemented with one-to-many relation-
ships. This kind of relationship is called a link. This terminology make easier
the distinction between relationships used by the repository (link) and relation-
ships defined by the repository (see 11.13). They always are two types of objects
on each side of a link: the father and the son. Obviously, the father may have
zero, one or more sons and sons may have zero or one father but no more. To
each link corresponds one integer constant described in the table 2.5.

11.1 generic object

generic object
flag integer 0–1 (= 0)

p act arg 0–∞ p expression

p go env 0–∞ p environment

go uo 0–∞ user object

This object type has no other properties than being a supertype of all the
other object types. This property if often used when programmers have to deal
with objects for which they do not know the exact type. For instance: “What
is the current selected object in the schema window?” (GetCurrentObject())

1For instance: you are defining for the second time an entity-type with the same name.
2This is due to improve the efficiency of the system.

11.2. USER OBJECT 77

will return one object whose the type is unknown. The programmer can store
this value in a variable of type generic object.

The flag field is an array of bits that stores various information. The “mark
information” is such an information. The programmer can use the functions
GetFlag and SetFlag1 to manage this array.

Let us note that this array can store information you are are not aware.
Therefore, be careful to preserve all the bits whatever is the bit you are interested
in. So far, five indexes have been defined: MARK1, MARK2, MARK3, MARK4, MARK5.
The flag of index MARKi is true iff the corresponding object belongs to the blazing
number i (see figure 11.1). The next example shows how using this flag:

schema: sch;

data_object: dta;

integer: the_flag;

begin

sch:=GetCurrentSchema();

for dta in DATA_OBJECT[dta]{@SCH_DATA:[sch] with GetType(dta)=ENTITY_TYPE} do {

the_flag:=dta.flag;

if GetFlag(the_flag,MARK2) then {

dta.flag:=SetFlag(the_flag,MARK2,FALSE);

} else {

dta.flag:=SetFlag(the_flag,MARK2,TRUE);

}

}

end

This program marks unmarked entity types and unmarks marked entity types
(wrt. the 2th blazing). The last index is SELECT that is used to select/unselect
an object.

11.2 user object

user object
isa−→ generic object

posx integer 0–1 (= unknown)
posy integer 0–1 (= unknown)
color integer 0–1 (= unknown)

This object type denotes a position inside an Entity-Relationship schema.
The posx and posy fields denote the graphical positions.

1cfr. page 55

78 CHAPTER 11. OBJECTS DEFINITION

Figure 11.1: Window sample showing the “mark” interface.

11.3. SYSTEM 79

11.3 system

system
isa−→ user viewable

name string [L NAME] 1–1
short name string [L SNAME] 0–1 (= " ")
creation date string [L DATE] 0–1(see †)
sem string 0–1 (= " ")
tech string 0–1 (= " ")

sys sch 0–∞ product

An object of type system represents the whole project under development:
schemas, processes, files (document), . . . There is only one object of this type
at the same time since DB-MAIN can not manage several projects. A system is
composed of products.

To create a new system:

what:=create(SYSTEM, name:string , short name:string , creation date:string ,
flag:integer);

† When the creation date field is not mentioned, then this field if automat-
ically updated with the date of the computer.

11.4 product

product
name string [L NAME] 1–1
version string [L VERSION] 1–1
creation date string [L DATE] 0–1(see †)
last update string [L DATE] 0–1(see †)
sem string 0–1 (= " ")
tech string 0–1 (= " ")

@system sch 1–1 system

pfrom 0–∞ connection

pto 0–∞ connection

Objects of type product do not exist per se. They only have a sense as a
generalization of schemas (cfr. section 11.5) and documents (cfr. section 11.8).
Therefore it is impossible to create directly such an object. Each product is
identified by its mandatory components.

† It is recommended not to use the creation date and last update fields
since they are updated automatically. In case these fields are used, they must
follow the following format : “YYYYMMDD”, exactly four digits to represent
the year, exactly two digits for the month and exactly two digits for the day.

80 CHAPTER 11. OBJECTS DEFINITION

11.5 schema

schema
isa−→ product
isa−→ user viewable
isa−→ owner of proc unit

short name string [L SNAME] 0–1 (= " ")

sch coll 0–∞ collection

sch data 0–∞ data object

Objects of type schema are generalized entity-relationship schemas. Each
schema belongs to only one system1 and is identified by its name, its version
and the system.

The following indexes in the flag field denote the following properties:

RTSQUARE: the shape of the rel-types has square corners.

RTROUND: the shape of the rel-types has round corners.

RTSHADOW: the rel-types are displayed with a shadow.

ETSQUARE: the shape of the entity types has square corners.

ETROUND: the shape of the entity types has round corners.

ETSHADOW: the entity types are displayed with a shadow.

To create a new schema:
what:=create(SCHEMA,

name:string ,
short name:string ,
version:string ,
creation date:string ,
last update:string ,
flag:integer ,
sem:string ,
tech:string ,
@SYSTEM SCH:system);

11.6 set of product

set of product
isa−→ product
isa−→ owner of proc unit

contains 0–∞ set product item

Objects of type set of product are denote sets of products. Every object
belongs to only one system2 and is identified by its name, its version and the
system.

The following indexes in the flag field denote the following properties:
1There is only one system instance in the repository of DB-MAIN.
2There is only one system instance in the repository of DB-MAIN.

11.7. SET PRODUCT ITEM 81

HIDEPROD: Will DB-MAIN must display the elements of the set?

To create a new set of product:

what:=create(SET OF PRODUCT,
name:string ,
version:string ,
creation date:string ,
last update:string ,
flag:integer ,
sem:string ,
tech:string ,
@SYSTEM SCH:system);

11.7 set product item

set product item
isa−→ generic object

@contains 1–1 set of product

@is in 1–1 product

Each set product item object denotes a tuple (p, s) where p is an product
and s is a set of products. Each tuple (p, s) means that the product p belongs
to the set of products s.

To create a new set product item:

what:=create(SET PRODUCT ITEM,
flag:integer ,
@CONTAINS:set of product ,
@IS IN:product);

11.8 document

document
isa−→ product
isa−→ user viewable

path string 1–1
type of file string 0–1 (= " ")

Objects of type document denote any document like files, documentation, . . .
The type of file field is a string describing the type of file (eg. “text”,
“COBOL”, “annual report 95”, . . .). The creation date and last update
fields are optional (cfr. section 11.4 for more details about the default value).
Documents are attached to one and only one schema.

To create a new document:

82 CHAPTER 11. OBJECTS DEFINITION

what:=create(DOCUMENT,
name:string ,
version:string ,
path:string ,
creation date:string ,
last update:string ,
flag:integer ,
type of file:string ,
@SYSTEM SCH:system);

11.9 connection

connection
isa−→ generic object

type string [L ROLE] 0–1 (= " ")

@pfrom 1–1 product

@pto 1–1 product

Objects of type connection establish oriented links (vertices) between ob-
jects like schemas and documents (file, . . .). If the type field is not mentioned,
then the default value is " ". This field can have any value but someones have
precise semantics and are described hereafter:

CON COPY: The target product is a copy of the origin product.

CON DIC: The target product is a “printed” copy (File/Print dictionary).

CON GEN: The target product was generated from the origin product.

CON INTEG: Undocumented feature (so far).

CON XTR: The target product is the result of the extraction process.

To create a new object of type connection:
what:=create(CONNECTION,

type:string ,
flag:integer ,
@PFROM:product ,
@PTO:product);

11.10 data object

data object
isa−→ user object
isa−→ owner of proc unit

name string [L NAME] 1–1
short name string [L SNAME] 0–1 (= " ")
sem string 0–1 (= " ")
tech string 0–1 (= " ")

@sch data 1–1 schema

data gr 0–∞ group

domain 0–∞ si attribute

11.11. ENT REL TYPE 83

Objects of type data object are generalizations of objects denoting entity
types, relationship types and attributes. Therefore, it is impossible to create
objects of this type but only specializations like entity types (section 11.12),
relation types (section 11.13) and attributes (sections 11.15, 11.16 and 11.17).
Data objects are the main components of a schema.

11.11 ent rel type

ent rel type
isa−→ data object
isa−→ owner of att

Objects of type ent rel type are generalizations of entity types (section
11.12) and relationship types (section 11.13). Therefore it is impossible to create
such objects.

11.12 entity type

entity type
isa−→ ent rel type

entity etr 0–∞ et role

entity sub 0–∞ sub type

entity clu 0–∞ cluster

Each object of type entity type denotes an entity type of a entity-relationship
schema. Entity types can belong to collections, have attributes, play roles in
relations, and be generalization/specialization of other entity types.

To create a new object of type entity type:

what:=create(ENTITY TYPE,
name:string ,
short name:string ,
sem:string ,
tech:string ,
flag:integer ,
@SCH DATA:schema);

11.13 rel type

rel type
isa−→ ent rel type

rt ro 0–∞ role

Objects of type rel type denote relationships in ER schemas. Each relation
is attached to exactly one schema and its name identifies it among all other
relations. Rel-types may own attributes, groups and roles.

To create a new relation:

84 CHAPTER 11. OBJECTS DEFINITION

what:=create(REL TYPE,
name:string ,
short name:string
sem:string ,
tech:string ,
flag:integer ,
@SCH DATA:schema);

11.14 attribute

attribute
isa−→ data object
isa−→ real component

min rep integer 1–1
max rep integer 1–1

@owner att 1–1 owner of att

Objects of type attribute do not exist per se. The attribute is a super-
type of types si attribute, co attribute and do attribute. Therefore, there
is no reason to create such objects. See sections 11.15, 11.16 and 11.17 for more
details.

All the fields of an attribute are shared with sub-types by the inheritance
principle. The min rep (resp. max rep) is the minimum (resp. maximum)
cardinality of the attribute. This value must be comprised between 0 and N CARD
which is equivalent to the infinite value1. The minimum cardinality must be less
than the maximum cardinality. If one of the rules cited above is transgressed,
then the program is aborted.

Let us remark an interesting property of the environment: although the
@sch data was required in the data object environment, it is no more the case
here. The reason is very simple. This role can be deduced from the manda-
tory role @owner att since attributes and their owners must belong to identical
schemas.

11.15 si attribute

si attribute
isa−→ attribute

type char 1–1
length integer 1–1
decim integer 0–1
container char 0–1 (= SET CONTAINER)
stable integer 0–1 (= FALSE)
recyclable integer 0–1 (= TRUE)

@domain 0–1 data object

Objects of type si attribute represent simple attributes (ie. attributes
whose the type is elementary — integer, string, character). The type field is
the type of the attribute, this field is a character and special constants are
available in Voyager 2 to denote the different possible types:

1Only the maximum cardinality may take the infinite value.

11.15. SI ATTRIBUTE 85

CHAR ATT: string with a constant length.

VARCHAR ATT: string with a maximal length but variable.

NUM ATT: numerical value with fixed integer and decimal parts.

DATE ATT: date.

BOOL ATT: boolean value.

FLOAT ATT: real value with given precision.

USER ATT: the domain of this attribute is predefined and it is found via the
domain relationship.

OBJECT ATT: the domain of this attribute is an entity-type1 found it is found
via the domain relationship.

INDEX ATT: The value of the corresponding attribute is automatically computed
by the DBMS in order that all the values are distinct (without gap).

SEQ ATT: The value of the corresponding attribute is automatically computed
by the DBMS in order that all the values are distinct.

When the user associates a user domain with a simple attribute, he attaches
it a data object. This one is store in a special schema that you can retrieve with
the following query:

GetFirst(SCHEMA[sch]{sch.name=SCHEMA DOMAINS})

The user should use this schema to add new user defined domains. They will
automatically appear in the ad-hoc dialog boxes of DB-MAIN.

The length field denotes the size of the value and the decimal field denotes
the precision of the decimal type. The following table indicates when the length
and decimal are required. Cells marked with a cross mean that a value is
expected if the corresponding type is mentioned.

length decimal
CHAR ATT ?
VARCHAR ATT ?
NUM ATT ? ?
DATE ATT 10
BOOL ATT 1
FLOAT ATT ?
USER ATT
OBJECT ATT

The container field denotes the kind of container used if the attribute is
multivalued. The possible values of this field are:

SET CONTAINER: It is the default value. It denotes a set as in mathematics.
1Although the data object is the object type found on the other side of the domain rela-

tionship, only the entity-type instances are pertinent

86 CHAPTER 11. OBJECTS DEFINITION

BAG CONTAINER: It is a set with possible duplicates. There is no order inside a
set/bag.

ARRAY CONTAINER: It is an array, each item can be referenced with an index.
Arrays can contain several identical items.

UNIQUE ARRAY CONTAINER: It is an array but each element occurs only once.

LIST CONTAINER: A list is a collection of items (duplicates are allowed). This
collection is ordered.

UNIQUE LIST CONTAINER: A list with no duplicates.

The stable field denotes an attribute that can not change once it received
a value. The recyclable field denotes an attribute whose the value can be
reused.

To create a new si attribute:

what:=create(SI ATTRIBUTE,
name:string ,
min rep:integer ,
max rep:integer ,
type:char ,
length:integer ,
short name:string ,
stable:integer ,
recyclable:integer ,
container:char ,
decim:integer ,
where:attribute ,
flag:integer ,
@OWNER ATT:owner of att ,
@DOMAIN:data object);

The where tells where the new attribute must be placed among all its new
brothers. If this information is not supplied, the new attribute becomes the first
attribute of the father (an entity-type, a rel-type or a compound attribute). Oth-
erwise, the information must denote an attribute whose the father is identical
to the one specified by the field found after @OWNER ATT. So, to create a simple
attribute which references an entity type (ent) we could write:

si attr:=create(SI ATTRIBUTE,type:OBJECT ATT,min rep:1,
max rep:MAX CON,container:BAG ATT,@OWNER ATT:the owner,@DOMAIN:ent);

11.16 co attribute

co attribute
isa−→ attribute
isa−→ owner of att

Objects of type co attribute represent compound attributes. The type
of such attributes depends on the types of the components, therefore only the

11.17. DO ATTRIBUTE 87

min rep and max rep fields must be mentioned in the environment as well as
the name (of course) and the owner.

To create new composed attributes:

what:=create(CO ATTRIBUTE,
name:string ,
short name:string ,
min rep:integer ,
max rep:integer ,
sem:string ,
tech:string ,
where:attribute ,
flag:integer ,
@OWNER ATT:owner of att);

See 11.15 for more details about the where field.

11.17 do attribute

do attribute
isa−→ attribute

The do attribute type is not yet used in DB-MAIN and therefore, the user
is discouraged to create such objects.

11.18 owner of att

owner of att
isa−→ generic object

owner att 0–∞ attribute

The type owner of att has no creator. Objects of this type are just a gen-
eralization of objects of ent rel type and co attribute types. The semantics
of such objects simply means that they can own attributes.

11.19 component

component
isa−→ generic object

@real comp 1–1 real component

@gr comp 1–1 group

Objects of component type are just artifacts to represent many-to-many re-
lationships. Therefore there are no other information in the environment than
both objects playing a role in the many-to-many relationship. However, since
objects order is of importance, a special field is used to denote the component
preceding the new one in the set of components owned by a group. If this infor-
mation is not provided in the environment, then the new component becomes
the first one of the group. This information is supplied after the constant where.

To create a new object of type component:

88 CHAPTER 11. OBJECTS DEFINITION

what:=create(COMPONENT,
@REAL COMP:real component ,
@GR COMP:group ,
flag:integer ,
where:component);

For instance, let us suppose that the attribute at must be inserted at the
second place in the group gr then, if the first item in this group is linked to the
group by the component co, the instruction will be:

new one:=create(COMPONENT,@REAL COMP:at,@GR COMP:gr,WHERE:co);

11.20 group

group
isa−→ user object
isa−→ owner of proc unit

name string [L NAME] 1–1
type char 0–1 (= ASS GROUP)
primary integer 0–1 (= 0)
secondary integer 0–1 (= 0)
coexistence integer 0–1 (= 0)
exclusive integer 0–1 (= 0)
at least one integer 0–1 (= 0)
key integer 0–1 (= 0)
sem string 0–1 (= " ")
tech string 0–1 (= " ")

@data gr 1–1 data object

gr mem 0–∞ member cst

A group in the DB-MAIN’s repository is a set of properties like attributes, roles
and groups themselves. Elements of groups have their own type: real component
that is the supertype of the previous types. A group can be attached to an entity-
type, a rel-type or an attribute, therefore there is a link between data object
and group.

The fields of a group are described below:

name: The group name is mandatory but will often be a technical name. All
the groups attached to the same data object must have distinct names.
The type is either ASS GROUP or COMP GROUP.

type:

primary/secondary: The primary and secondary fields denote respectively pri-
mary and secondary identifiers and must be used as boolean values.

coexistence: This field is used as a boolean value to indicate if all the items
present in the group must be instantiated together or not.

exclusive: This field is used as a boolean value to indicate that at most one
item in the group can be instantiated.

at least one: This field is used as a boolean value to indicate that at least one
item in the group must be instantiated.

11.21. CONSTRAINT 89

key: The group is used as a key to access the object containing the group.

To create a new group, use the instruction:
what:=create(GROUP,

name:string ,
type:char ,
primary:integer ,
secondary:integer ,
coexistence:integer ,
exclusive:integer ,
at least one:integer ,
key:integer ,
sem:string ,
tech:string ,
flag:integer ,
@DATA GR:data object);

11.21 constraint

constraint
isa−→ generic object

type char 1–1

const mem 0–∞ member cst

Let us note that only the type field is required in the environment of this
object. Although its domain is a character, its possible values are restricted to
two constants: EQ CONSTRAINT and INC CONSTRAINT.

A constraint is a property attached to a tuple of groups (g1, g2, . . . , gn). Each
component of the tuple plays a special part for the constraint. The name of the
role is specified in the object member cst. The type of the constraint is stored
in the type field of constraint. Only two types of constraints are defined so
far: INC CONSTRAINT and EQ CONSTRAINT. They are both binary and their roles
have the same names: OR MEM CST (for origin) and TAR MEM CST (for target).

Let us suppose that the group g1 (composed of the name and first name
attributes of an entity e1) is a foreign key to a group g2 (composed of the
N F names attribute). Then g1 will be the origin of one inclusion constraint
and the target role is the group g2. All the types of constraints respect the
pattern explained here above.

INC CONSTRAINT : Let g1 and g2 be two groups playing respectively the origin
and target roles for the constraint. Then all the components of g1 (at-
tributes and/or roles) must take their values in the domain built on the
values of all the components of g2.

EQ CONSTRAINT : Let g1 and g2 be two groups participating in an equality con-
straint, then the inclusion constraint holds for both (g1, g2) and (g2, g1).
Therefore, this constraint should not be oriented: g1 and g2 play the same
role. However, some physical models require that a group must be the
origin of the other one1.

1This constraint is usually implemented in SQL by a foreign key followed by a check. The
orientation takes a sense here!

90 CHAPTER 11. OBJECTS DEFINITION

To create a new constraint:
what:=create(CONSTRAINT,

type:char ,
flag:integer);

11.22 member cst

member cst
isa−→ generic object

mem role string [L ROLE] 0–1 (= "")

@const mem 1–1 constraint

@gr mem 1–1 group

See section 11.21 for more details. To create a new member cst object:

what:=create(MEMBER CST,
mem role:string ,
flag:integer ,
@CONST MEM:constraint ,
@GR MEM:constraint);

11.23 collection

collection
isa−→ user object

name string [L NAME] 1–1
short name string [L SNAME] 0–1 (= " ")
sem string 0–1 (= " ")
tech string 0–1 (= " ")

@sch coll 1–1 schema

coll colet 0–∞ coll et

Objects of type collection denote files, clusters, areas . . . Each collection
is identified by its name and a schema (sch coll link).

To create a new object of type collection:

what:=create(COLLECTION,
name:string ,
short name:string ,
sem:string ,
tech:string ,
flag:integer ,
@SCH COLL:schema);

11.24 coll et

coll et
isa−→ generic object

@coll colet 1–1 schema

@data colet 1–1 data object

11.25. CLUSTER 91

Objects of this type are technical instances to represent many-to-many rela-
tions between collection and data object entities. Therefore the creation of
these objects is derived from the attachment of an entity-type to a collection.

11.25 cluster

cluster
isa−→ user object

name string [L NAME] 0–1 (= " ")
total integer 1–1
distinct integer 1–1
criterion string [L CRITERION] 0–1 (= " ")

@entity clu 1–1 entity type

clu sub 0–∞ sub type

Objects of type cluster denote groups of distinct entity types being special-
ization of a super-type entity-type. The total and disjoint fields are boolean
values characterizing the semantics of the group:

total: is TRUE if the set of all the instances of the super-type must be the same
as the union of all the sets of instances of sub-types and FALSE otherwise.

disjoint: is TRUE if to each instance of the super-type does correspond at most
one instance in the range of its sub-types.

11.26 sub type

sub type
isa−→ generic object

value string [L VALUE] 0–1 (= " ")

@clu sub 1–1 cluster

@entity sub 1–1 entity type

The object-type sub type is due to the decomposition of one many-to-many
relationship into two links (one-to-many). The value field is the criterion value
upon which sub-types may be distinguished.

To create a new object of type sub type

what:=create(SUB TYPE,
value:string ,
flag:integer ,
@CLU SUB:cluster ,
ENTITY SUB:entity type);

92 CHAPTER 11. OBJECTS DEFINITION

11.27 role

role
isa−→ user object

name string [L NAME] 1–1(cfr. †)
min con integer 1–1
max con integer 1–1
sem string 0–1 (= "")
tech string 0–1 (= "")

@rt ro 1–1 rel type

ro etr 0–∞ et role

† Objects of type role denote roles of relationship types. Each role is identified
by its name, its connectivities (min/max) and the relationship type it depends
on. Although the name is mandatory, this field can be omitted if the following
constraints are satisfied:

• the role is not a multi-entity role

∀r ∈ ROLE[. . .]{TRUE} : Length(ET ROLE[. . .]{@RO ETR : [r]}) = 1

• the name of the entity type that should play the new role, must not be a
name of another role of this relationship type.

If these constraints are satisfied, one considers that the name of the role is
the name of the entity-type playing the role.

To create a new role:
what:=create(ROLE,

name:string ,
min con:integer ,
max con:integer ,
sem:string ,
tech:string ,
flag:integer ,
@RT RO:rel type);

11.28 et role

et role
isa−→ generic object

@entity etr 1–1 entity type

@ro etr 1–1 role

Each et role object denotes a tuple (e, r) where e is an entity type and r
is a role. Each tuple (e, r) means that the entity type e participates in the role
r. If several entity types participate in a role r, we say that r is a multi-ET.

To create a new et role:
what:=create(ET ROLE,

flag:integer ,
@ENTITY ETR:entity type ,
@RO ETR:role);

11.29. REAL COMPONENT 93

11.29 real component

real component
isa−→ generic object

real comp 0–∞ component

The real component type is just a supertype of the attribute, role and
group types. Its only role in the repository is to denote a group item.

11.30 proc unit

proc-unit
isa−→ data object

mode char 0–1 (= unknown)
type char 0–1 (= unknown)

@owner pu 1–1 owner of proc unit

pinvolves 0–∞ pinvolve

pbody 0–∞ pstatement

pinvokes 0–∞ pstatement

pfctcall 0–∞ pexpression

pdecl 0–∞ penvironment

This object represent a process (in the large).

what:=create(PROC UNIT,
name:string ,
short name:string ,
sem:string ,
tech:string ,
flag:integer ,
@SCH DATA:schema ,
@OWNER PU:owner of proc unit
);

11.31 p statement

p statement
isa−→ generic object

type char 1–1
description string 0–1 (= " ")

@p body 0–1 proc unit

@p invokes 0–1 proc unit

p made of 0–∞ proc unit

p part of 0–∞ proc unit

This object represents a statement. At least one of the both roles @p body
and @p invokes are mandatory. The where attribute indicates the left brother
of the new object in the relation that comes afterwards.

94 CHAPTER 11. OBJECTS DEFINITION

what:=create(P STATEMENT,
type:char ,
description:string ,
flag:integer ,
where:p statement ,
@P BODY:proc unit ,
where:p statement ,
@P INVOKES:proc unit
);

11.32 p component

p component
isa−→ generic object

mode char 0–1 (= 0)
type char 0–1 (= 0)

@p made of 1–1 p statement

@p part of 1–1 p statement

This object denotes the decomposition of a statement into its sub-components.
The type and mode attributes denote the kind of decomposition. The where
attribute indicates the left brother of the new object in the relation that comes
afterwards.

what:=create(P COMPONENT,
type:char ,
mode:char ,
flag:integer ,
where:p component ,
@P MADE OF:p statement ,
where:p component ,
@P PART OF:p statement

11.33 p expression

p expression
isa−→ generic object

operator char 1–1
constant string 0–1 (= "")
description string 0–1 (= "")

@p sub expression of 0–1 p expression

p sub expression of 0–∞ p expression

@p parameter 0–1 p statement

@p fct call 0–1 p proc unit

@p act arg 0–1 generic object

This object denotes an expression. At least one of the four possible roles
must be defined in the creator and the where argument that precedes a role
indicates the place of the new object amongst its “brothers” inside the relation.

11.34. P ENVIRONMENT 95

what:=create(P EXPRESSION,
operator:char ,
constant:string ,
description:string ,
flag:integer ,
where:p expression ,
@P SUB EXPRESSION:p expression ,
where:p expression ,
@P ACT ARG:generic object ,
where:p expression ,
@P PARAMETER:p statement ,
where:p expression ,
P FCT CALL:proc unit ,

11.34 p environment

p environment
isa−→ generic object

type char 1–1
mode char 0–1 (= 0)

@p decl 1–1 proc unit

@p go env 1–1 generic object

The where argument defines the place of the newly created object in the one-
to-many relation that comes just afterwards. If this argument is not present,
the new object is inserted at the first place in the relation.

what:=create(P ENVIRONEMNT,
type:char ,
mode:char ,
flag:integer ,
where:p environment ,
@P DECL:proc unit ,
where:p environment ,
@P GO ENV:generic object

11.35 p involve

p involve
isa−→ generic object

type char 0–1 (= 0)
mode char 0–1 (= 0)

@p involved in 1–1 p actor

@p involved 1–1 proc unit

The where argument defines the place of the newly created object in the one-
to-many relation that comes just afterwards. If this argument is not present,
the new object is inserted at the first place in the relation.

96 CHAPTER 11. OBJECTS DEFINITION

what:=create(P INVOLVE,
type:char ,
mode:char ,
flag:integer ,
where:p involve ,
@P INVOLVED IN:p actor ,
where:p involve ,
@P INVOLVES:proc unit

11.36 p function

p function
isa−→ generic object

type char 0–1 (= 0)
mode char 0–1 (= 0)
description string 0–1 (= "")

@p has a 1–1 p actor

@p attributed to 1–1 p actor

The where argument defines the place of the newly created object in the one-
to-many relation that comes just afterwards. If this argument is not present,
the new object is inserted at the first place in the relation.

what:=create(P FUNCTION,
name:string ,
type:char ,
mode:char ,
flag:integer ,
where:p function ,
@P HAS A:p actor ,
where:p function ,
@P ATTRIBUTED TO:p actor

11.37 p actor

p actor
isa−→ generic object

name string 1–1
sem char 0–1 (= "")
tech char 0–1 (= "")

p involved in 0–∞ p involve

p has a 0–∞ p function

p attributed to 0–∞ p function

The where argument denotes the system the new object will belong to.
So far, there is a unique system. The programmer can retrieve it with this
expression:

GetFirst(SYSTEM[sys]TRUE)

11.38. OWNER OF PROC UNIT 97

what:=create(P INVOLVE,
name:string ,
sem:string ,
tech:string ,
flag:integer ,
where:system

11.38 owner of proc unit

owner of proc unit
owner pu 0–∞ proc unit

11.39 meta object

meta object
isa−→ generic object

name string [L NAME] 1–1
type integer 1–1
sem string 0–1 (= "")

@sys mo 1–1 system

mo mp 0–∞ meta property

To each instance of meta object corresponds exactly one object type of
the repository. The aim of each meta-object –ie: instance– is to describe the
corresponding object type. So far, this object type should be read-only. In a near
future, creation of new instances of this object type will have as consequence to
extend the repository with new object types. You could add new object types
like agent, module, . . .

The repository part made of the meta object and the meta property (cfr.
11.40) object types is called “the meta-definition”. This meta-definition will
possibly evolve in the future as explained early.

Only the objects that are not a super-type of another object type and that
does not belong to the meta-definition are described by the meta-definition.

A description of the fields follows:

name: It is the object type’s name (“entity type”, “system”, “si attribute”, . . .).

sem: It is the semantics description.

type: It is an integer constant identifying the type of the object type. These
constants are ENTITY TYPE, GROUP, . . . (cfr. 2.4).

Each time one loads/creates one project, these instances are created by
DB-MAIN. So you should not create such objects yourself.

what:=create(META OBJECT,
name:string ,
type:integer ,
sem:string ,
flag:integer ,
@SYS MO:system);

98 CHAPTER 11. OBJECTS DEFINITION

11.40 meta property

meta property
isa−→ generic object

name string [L NAME] 1–1
type integer 1–1
updatable integer 0–1 (= TRUE)
predefined integer 0–1 (= FALSE)
multi integer 0–1 (= FALSE)
hidden integer 0–1 (= FALSE)
sem string 0–1 (= "")

@mo mp 1–1 meta object

If an object type is described by one instance of meta object, it is possible
to dynamically add new fields to it (cfr. 15.2 for more details). These fields are
named dynamic properties. Each dynamic property is described by one instance
of the meta property object type.

A description of the fields follows:

name: The name of the property.

type: The type of the property. Constants explained in 11.15 are used to de-
note the type (string: VARCHAR ATT, char: CHAR ATT, integer: NUM ATT,
float1: FLOAT ATT).

updatable: This field is an integer value used as a boolean value. If the value is
equivalent to the constant TRUE, then the meta-property may be updated
in the DB-MAIN environment. Otherwise, the meta-property can only be
read/consulted and can not be edited/modified. However, Voyager 2 pro-
grams can always edit this field whatever it is updatable or not.

multi: This field is an integer value used as a boolean value. If this field has
the value true, the meta-property may be multivalued. The value of such
a meta-property is then a list of values whose the type is the one indicated
by the field type described above.

predefined: This field is an integer value used as a boolean value. If this field
has the value true, then the possible values of such a meta-property should
occur in a predefined list of values. For instance, a meta-property called
sex could have as predefined value female or male. The predefined values
must be compliant with the type of the meta-property and are stored in
the semantics description of the meta-property as a textual property. The
user is obliged to choose one of these values and has no other choice. This
restriction only holds in the DB-MAIN tool but is not true for a Voyager 2
program. There is no automatic validation in Voyager 2. This respons-
ability is let to the programmer.

hidden: This field is an integer value used as a boolean type. When it is worth
TRUE, the meta property is predefined and should be used very carefully.

sem: The semantics description of the dynamic property.
1This type is not yet supported by Voyager 2.

11.41. P USER VIEWABLE 99

Each meta-property is attached to the meta-object it describes by the link:
MO MP.

what:=create(META PROPERTY,
name:string ,
type:integer ,
sem:string ,
updatable:integer ,
predefined:integer ,
multi:integer ,
hidden:integer ,
flag:integer ,
@MO MP:meta object);

The next sample shows how creating meta-properties.

meta property: mp;

meta object: mo;

entity type: ent;

begin

// add the meta-property ‘local’ to each collection

// the meta-property is predefined and the allowed values are:

// Bruxelles, Paris, Madrid, London

mo:=GetFirst(META OBJECT[mo]{mo.type=COLLECTION});
mp:=create(META PROPERTY,name:"local",type:VARCHAR ATT,

predefined:1,@MO MP:mo);

mp.sem:=GetProperty(mp.sem,

"Bruxelles\nParis\nMadrid\nLondon");
// add the meta-property ‘owners’ to each entity-type

// the meta-property is multivalued

mo:=GetFirst(META OBJECT[mo]{mo.type=ENTITY TYPE});
mp:=create(META PROPERTY,name:"local",type:VARCHAR ATT,

multi:1,@MO MP:mo);

...

// let ‘ent’ be an entity-type

// add ‘tintin’ to the list of owners.

ent."owners":=ent."owners"++["tintin"];

print(ent."owners");

end

11.41 p user viewable

p user viewable
object view 0–∞ user view

100 CHAPTER 11. OBJECTS DEFINITION

11.42 p user view

p user view
isa−→ generic object

name string 1–1
type char 1–1
font name string 1–1
font size integer 1–1
mark plan integer 1–1
reduce integer 1–1
text font name string 1–1
text font size integer 1–1
xgrid integer 1–1
ygrid integer 1–1
zoom integer 1–1

@object view 1–1 user viewable

uv uo 0–∞ user object

This object denotes the graphical representation of a product (schema, doc-
ument, or a system). The programmer is not allowed to create new user views.

The font name and font size attributes denotes the font used in graphical
views. The text font name and text font size attributes denotes the font
used in textual views. The mark plan attribute is the current mark plan used
in a schema (see 77 for more details). The reduce attribute is the current reduce
factor (per cent) in the graphical views. The zoom attribute is the current zoom
factor (per cent) in the graphical views. The xgrid and ygrid attributes denote
the size of the page drawn in the graphical views.

Chapter 12

Predicative Queries

12.1 Introduction

Although navigational queries are provided in Voyager 2 (see page 107), pred-
icative queries are possible and welcome in Voyager 2 since this kind of query
is the most used. The aim of this query is to hide and to factorize boring and
technical details when querying the repository. With predicative queries, the
programmer has not to tell how to obtain a result but simply what he wants.
Another characteristic is the guaranty to keep the same performance than a
hand-written algorithm.

For instance: to get all the optional attributes from a project, the following
query will return the expected result in a list:
Example:

ATTRIBUTE[att]{att.min rep=0}

2

This query is of course an expression and it can be used everywhere a list-
expression is expected. Another form of query is illustrated here:
Example:

for dat in DATA OBJECT[dat]{@SCH DATA:[GetCurrentSchema()]}

do {

...

};

2

this example shows how to iterate through all the data-objects from the current
schema. And finally a more complex query:
Example:

list result:=DATA OBJECT[dat]{@SCH DATA:[GetCurrentSchema()]
with soundex(dat.name,"bank")};

101

102 CHAPTER 12. PREDICATIVE QUERIES

2

where the result is all the data-objects from the current schema having a name
similar to “bank”1.

Predicative queries have two forms: global scope and restricted scope queries.
A formal specification is given in the following sections.

12.2 Specifications

Queries always respect the following syntax:

〈query 〉 ← 〈ent-expr 〉 "[" 〈variable 〉 "]" "{" 〈constraint 〉 "}"

where 〈ent-expr 〉 is an integer expression denoting an object of the repository.
Although any integer expression is valid, programmers will usually use constants
from the table 2.4. The meaning of each constant has been explained in the
chapter 11. 〈variable 〉 denotes a variable whose the type must be exactly the
same as the object type represented by the 〈ent-expr 〉 expression2. 〈constraint 〉
is used to sort out the pertinent objects from the others.

Once the query has been evaluated, the value of the 〈variable 〉 is undefined.
During the evaluation, the program must not modify its content. The scope
of the 〈variable 〉 may be just a portion of the 〈constraint 〉. This last charac-
teristics will be explained here below. The 〈variable 〉 is called the iterator for
convenience.

12.2.1 Global Scope Queries

Global-scope queries look the whole repository for objects satisfying the con-
straint. The constraint may be any integer expression but is used as a boolean
value. The whole constraint is in the scope of the iterator. Thus the syntax of
the constraint is:

〈constraint 〉 ← 〈boolean-constraint 〉
〈boolean-constraint 〉 ← 〈integer-expression 〉

For instance:
Example:

ENTITY TYPE[e]{TRUE}

2

will look for all the entity-types of the project. All these entity-types are
then stored in a list. The following example shows how to use the variable
specified in the query to express more accurate constraints:
Example:

1soundex is not a primitive of Voyager 2.
2Although entity type may be an expression and thus may vary at the execution time, the

variable must be typed at the compilation time and can thus not vary during the execution.
This characteristics may seem strange. Why is the compiler not able to deduce the type of
the object from the variable? First, variables names are not always significant and therefore
queries would be difficult to understand. And finally, this feature could be used in a more
advanced version of Voyager 2.

12.2. SPECIFICATIONS 103

ATTRIBUTE[a]{a.min rep=1 and a.max rep=1}

2

The query looks for all the single-valued mandatory attributes.
Objects having one or more sub-types can not be used in global

scope queries! The query will return an empty list for such cases!
This restriction is present since the 1.0 release but this constraint was omitted
in the previous manuals.

12.2.2 Restricted Scope Queries

In restricted-scope queries, constraints have two components: the link-constraint
and the boolean-constraint. Although the first part is mandatory, the second one
is not. The syntax of this constraint is:

〈constraint 〉 ← 〈link-constraint 〉 ["with" 〈boolean-constraint 〉]
〈link-constraint 〉 ← 〈link-expr 〉 : 〈list-fathers 〉
〈boolean-constraint 〉 ← 〈integer-expression 〉
〈link-expr 〉 ← ["@"] 〈integer-expression 〉
〈list-fathers 〉 ← any expression of type list

The 〈link-expr 〉 is an integer expression denoting a link between two objects.
Usually, programmers will use constants rather than complex expressions due
to reasons explained in the previous section. The table 2.5 contains all the
constants that the programmer could ever need. Each constant is explained
in chapter 11. Because links are oriented, it suffices to reverse the sign of a
〈link-expr 〉 to reverse the corresponding link. In queries, a special token “@”
is equivalent to the unary operator: “−” and programmers are encouraged to
use it in order to make the query more readable. Therefore, if L is a constant
denoting a link, then we have: L ≡ @@L. This property will be used below.

The 〈ent-expr 〉 expression denotes an object type (see above). This object
type must be exactly the same as the one playing the role @L if L is the value
of “〈link-expr 〉”.

The 〈list-fathers 〉 expression denotes any expression for which the evaluation
will return a list. Let us note L, the value returned by the evaluation of “〈link-
expr 〉”. Then each item of the list l must be compatible with the object type
playing the role @L. The 〈list-fathers 〉 is not in the scope of the iterator.
Example:

If L is worth @PFROM, then the object type playing the role @@PFROM
(≡PFROM) is product. All the compatible object types with product
are: document, schema and generic object1.

2

1Let us note that the last object type is slightly different from the previous ones since
all the generic objects are not necessarily one product although each document/schema is a
product. Thus if your list contains generic objects, you must have the insurance that they are
all compatible with the product object type. Otherwise, it is a bug!

104 CHAPTER 12. PREDICATIVE QUERIES

The 〈boolean-constraint 〉 must be preceded by the with keyword. This part
is optional in the constraint. This expression is in the scope of the iterator and
can thus use it.

To make easier our examples, we will use a small “academic” schema defini-
tion. Let us suppose that A, A0, A1, B, B0 and B1 are new object types. We
note a, a0, a1, b, b0 and b1 their respective fields. The following relations hold:
A1 isa A, A isa A0, B1 isa B and B isa B0. There is a link noted L between
A and B: A L−→ B. The schema is depicted in figure 12.1.

A1

A

A0

B1

B

B0

6

6

6

-

6

e e

ee
L

Figure 12.1: Acadamic Schema.

We give here some examples as exercices. The solutions are given just after.
Are these requests correct?
Examples:

1) A[α]{L : [β1, β2]}
where A : α; B : β1, β2;

2) A0[α0]{L : [β1, β2]}
where A0 : α0; B : β1, β2;

3) A[α]{L : [β0, β1]}
where A : α; B0 : β0; B1 : β1;

4) B : [β]{@L : A[α]{α.a>=3} with β.b<=5 and β.b>0}
where A : α; B : β

5) A[α]{L : B[β]{@L : A[α1]{α1.a = β.b} with β.b = 3}}
where A : α, α1; B : β

6) A[α]{L : B[β]{@L : A[α]{α.a = 6} with β.b = 3}}
where A : α; B : β

7) A[α]{L : B[β]{@L : A[α1]{α1.a = 6} with β.b = 3}}
where A : α, α1; B : β

8) A[α]{L : B[β]{β.b = 1}+ +B[β]{@L : A[α1]{α1.a = 2}}}
where A : α, α1; B : β

12.2. SPECIFICATIONS 105

Solutions

1) YES: without any comments!

2) NO: L is a role played by the A object type. You can not use
A0 in place of A in this query.

3) YES: The list of fathers [β0, β1] may be composed of any value
for which the type is compatible with the object type playing
the role @L.

4) YES: without any comments!

5) NO: The constraint α1.a = β.b is not in the scope of the β
iterator. The value of β is undefined here.

6) NO: The same variable α is used two times as iterator in the
query.

7) YES: without any comments!

8) YES: The query asks for all the object from A that play the
role L for one element of the list B[β]{β.b = 1}+ +B[β]{@L :
A[α1]{α1.a = 2}}. This list is a new expression that is indepen-
dent of the query. This expression is composed of two operands:
two queries. Each query is computed, the result is a list. The
both lists are appended and used as a “list of fathers” in the
original query. Note: this query is not very efficient. How could
you rewrite it more efficiently?

2

Chapter 13

Iterative Queries

Although predicative queries are very useful, they are sometimes not sufficient.
For this reason, Voyager 2 offers basic primitives to access to the content of
the repository: GetFirst(), GetNext(), TheFirst and TheNext. Formal
specifications follow.

function generic object: o TheFirst (integer: t)

Precondition. t must be an integer expression. The evaluation of
t must return a value amongst the constants of table 2.4 and must
denote an object type.

Postcondition. o is the first object found within the object type
denoted by t. If the object type t has no instances, then o is void.

function generic object: o TheNext (integer: t, any: p)

Precondition. t must be an integer expression. The evaluation of
t must return a value amongst the constants of table 2.4 and must
denote an object type. p must be a reference to one object of the
object type denoted by t. p must be different of void.

Postcondition. o is the object that follows p within the instances
of the object type denoted by t. If p is the last object, then o is void.
on error: The behaviour is uncertain.

function any: s GetFirst (integer: l, any: f)

Precondition. the value of l must denote a link (see table 2.5). f
must be different of void and its type must be compatibe with the
object type that plays the role l.

Postcondition. If [s1,. . . ,sn] are all the sons of the link l when f
plays the role l, then o is the first element of this list. If the list is
empty, then s is void. The type of o is the type of the object type
that plays the role @l.
on error: The behaviour is uncertain.

107

108 CHAPTER 13. ITERATIVE QUERIES

function any: b GetNext (integer: l, any: f , any: s)

Precondition. the value of l must denote a link (see table 2.5). f
must be different of void and its type must be compatibe with the
object type that plays the role l. s must be one of the sons of the
link l when f plays the role l and the type of s must be compatibe
with the object type that plays the role @l.

Postcondition. Let [s1, . . . , si, si+1, . . . , sn] be the list of all the
sons of the link l when f plays the role l. If the precondition is
verified, then ∃i : si = s. If i < n then o = si+1, and if i = n then
o =void.
on error: The behaviour is uncertain.

One recommends to avoid the use of these functions as much as possible
since predicative queries have the same performances and are less error prone.
Example:

This example shows how to use the GetNext function:

entity type: ent;
attribute: att;
begin

ent:= one entity type expression ;
for att in ATTRIBUTE[att]{@OWNER ATT:[ent]}
do {

print(att.name);
if IsNoVoid(GetNext(OWNER ATT,ent,att)) then {

print(’,’);
};

};
end

2

Chapter 14

Object Removal

The removal of one object from the database is done by a call to the remove
procedure. This procedure accepts one argument: the object to remove. Al-
though this procedure is very simple for the user, this task is very complex
since it destroys a lot of useless objects that would no more satisfy the integrity
constraints after the removal of the main object (the argument).

procedure remove (object: o)

Precondition. o may be any object of the database. This value
must not be void.

Postcondition. The object is removed from the database. All
the objects that depends on it are also removed. For instance, the
removal of one entity-type will also remove all its attributes, its
groups, its roles, . . .

Example:

remove(GetFirst(ENTITY TYPE[ent]{name="CLIENT"}));

2

109

Chapter 15

Properties

The repository of DB-MAIN is staticaly defined with C++ classes. For this
reason, we could say that the repository definition can not be modified in a
dynamic way. However, the definition let some doors opened for such exten-
sions. At present at least two ways exist to extend the repository: Textual
Properties and Dynamic Properties.

The two kinds of properties have the same aim: “adding new fields to one
object-type in the repository”. Although the aim is identical, technics to imple-
ment them are completely different, and we will enforce to explain in the next
parts the difference between each one.

15.1 Textual Properties

Textual properties are new properties attached to one object in the repository.
This information is stored in either the semantic description field or in the
technical description field of the object. These properties are not completely
supported in Voyager 2, but two functions exist to help the programmer to
manage them: GetProperty and SetProperty. Each function is fully described
here after. Let us begin by giving an example of a property. Let us suppose that
o is one object (ex: one entity-type variable). Now, the technical description of
this object is :

“This object denotes a car bought by a firm.←↩
Each car is pink.←↩
eof”

If you wish to add a new property to some entity-types like: the average of
instances in the database1, you could represent this information in the technical
description:

“This object denotes a car bought by a firm.←↩
Each car is pink.←↩
#average=26←↩
eof”

1If your database is relational, then you will use “tuple” or “line” in place of instance.

111

112 CHAPTER 15. PROPERTIES

So that you can retrieve easily this information by a lexical analysis of the text.
Conventions are defined in DB-MAIN to represent this kind of information

inside texts. The definition is:

A textual properties has two informations: the field and the value.
The representation of this information can occur anywhere in a text
with the following restrictions: the field is the list of characters found
between the ’#’ character and the first occurrence of the ’=’ character.
All the characters are significative and the interpretation is case
sensitive. The ’#’ character must be preceded by a carriage-return
or must be the first character of the text. The value associated to
the field is the list of characters found just after the ’=’ character
until the first ’#’ preceded by a carriage return or – otherwise– until
the end of the text. In the first case, the sequence ’←↩#’ does not
belong to the value. If several properties exist in the text with the
same field, then just the first occurrence is taken into account.

The two functions defined here after help the programmer to manage the
textual properties stored in the semantic and technical description of any object
(and in any text in general).

function string: value GetProperty (string: s, string: field)

Precondition. ∅
Postcondition. If the field field is found in the text s, then the
associated value is returned to the user. Otherwise, the constant
PROP NOT FOUND is returned. This message is distinct of any possible
value! The text s is let unmodified. If the text is corrupted, then
the message PROP CORRUPTED is returned.

function string: r SetProperty (string: s, string: field, string: value)

Precondition. ∅
Postcondition. This function returns the string s where the value
associated with the field field has been replaced by the text value.
If the field were not present, the information is added at the end of
the text.

Example:

schema: sch;
integer: i;
string: s;
begin

sch:=GetCurrentSchema();
s:=GetProperty(sch.sem,"color"); (1)

if s=PROP NOT FOUND then { i:=0; }
else { i:=StrStoi(s); };
sch.sem=SetProperty(sch.sem,"color",StrItos(-i));

end (2)

At the point (1), the description is:

15.2. DYNAMIC PROPERTIES 113

“This schema will be printed on our printer with the color:←↩
#color=4←↩
#end←↩
But if the color is negative, this color is used for the←↩
background ! ←↩
eof”

and after the execution of the program the semantic description of
the schema has been updated with the inverse of the color field:

“This schema will be printed on our printer with the color:←↩
#color=-4←↩
#end←↩
But if the color is negative, this color is used for the←↩
background ! ←↩
eof”

Let us note that the special line “#end” is used to mark the end of
the property. This line could have been replaced by any property
like this:

“#font=Arial←↩
#end”

2

Last but not least, this last function retrieve all the properties from a string
with their associated values and put them in a list that is returned to the user.

function list: l GetAllProperties (string: s)

Precondition. ∅
Postcondition. l is a list of pairs [p1, v1, p2, v2, . . . , pn, vn] where
vi is the value of a property called pi. The pi’s are all the properties
present in the text s.

15.2 Dynamic Properties

15.2.1 Introduction

Although textual properties already allow to extend the repository in a quite easy
way. There exists another mechanism known as dynamic properties. The repos-
itory is partially1 described in a subpart of the repository itself called “meta-
repository”. This subpart contains so far two entity types: meta object and
meta property. To each entity type2 of the repository corresponds one instance
of the meta object entity-type. In an analogous way, each attribute/property
of one entity type is described by one instance of the meta property entity
type. The reader may observe a correspondence between this explanation and
the behaviour of the relational systems (tables and system tables).

1In a near future, relationships and inheritance relationships will also be described in this
meta subpart.

2This entity-type must not be a super-type.

114 CHAPTER 15. PROPERTIES

This “meta”-description is very interesting since it permits to dynamically
extend the repository. It suffices to add one new instance in the meta property
entity type and to link this one to one instance of meta object in order to add
one new property to the entity type described by the meta-object. One this
mofication is done, the new property is available both in the CASE tool and in
Voyager 2.

15.2.2 Explanation

One will use an example to illustrate the use of the dynamic properties. Let
us suppose that in your firm, ER-schemas are defined by several people at the
same time. To manage this complexity, you wish to add to each entity type and
to each relationship of your schema a new field indicating who has added this
object in the schema.

One way to proceed is in adding textual properties. You may add also dy-
namic properties. We will explained this last one.

First, we need to add one new property to the entity type object. This
property will represent a man/woman (“Albert”, “Bill”, “Jessica”, . . .) and
thus its type will be string. The normal way would be to proceed in using the
CASE tool from the menu: File→Meta...→Properties. The complicated
way would be in using Voyager 2. And we will choose this last one since our
purpose is to explain the dynamic properties in Voyager 2 !

Let us begin by creating one new instance in meta property:

meta object: mo;
meta property: mp;
begin

mo := GetFirst(META OBJECT[mo]{mo.type=ENTITY TYPE});
mp:=create(META PROPERTY,name:"owner",type:VARCHAR ATT,@MO MP:mo);

...
end

You have right now added a new property named “owner” to the entity type
object. Each instance of this object type has thus a new field initialized with
an empty string. A similar work should be done for the rel type object type.

Let us suppose now that the entity type “CLIENT” was created by Mr
Sherlock Holmes. You may use the new field to store the information.

entity type: ent;
...

ent:=GetFirst(ENTITY TYPE[ent]{ent.name="CLIENT"});
ent."owner":="Sherlock Holmes";
...
print([ent.name," has been created by ",ent."Owner",’\n’]);

end

Let us remark that you can reference this field like any other field with two
exceptions:

1. the name of the field is between double quotes. It is a string.

2. the machanism is not case sensitive.

15.2. DYNAMIC PROPERTIES 115

The sentence found after the “.” may be any expression. If the evaluation
of the expression returns an integer, then the field is static, otherwise the value
should be a string, and the field is dynamic. When the field is static — name,
short name, sem, tech, min rep, . . . —, the name of the field is predefined in
Voyager 2 as an integer constant.

Dynamic properties are much more efficient than textual properties and they
can be edited directly in the CASE tool.

116 CHAPTER 15. PROPERTIES

Part III

Modular Programming

117

Chapter 16

Library and process

One of the main innovations of the version 3.0 over the previous versions is the
possibility to use Voyager 2 programs as libraries or as process. This chapter
explains how to use these new characteristics.

These new possibilities are due to a new and completely rewritten abstract
machine. In the former versions, there were only one possible abstract machine
running at once.

In the new architecture1, several programs/abstract machines can occur at
the same time, and one program can call another program or just one function
from another program. This chapter explains how using these new capabilities.

16.1 The New Architecture

The abstract machine is composed of two memory blocks. The first one lodges
the program code (ie. the .oxo program), the second one is the memory used
during the execution of the program. They are respectively called the “image”
and the “stack”. In former version, there were only one image and one stack
at once as already explained. The new architecture allows several images and
stacks at once. Let us use the program “foo.oxo” as example. Once it is
loaded, this program can be stored in one or more images (as many times it
was loaded). Once a program is loaded, this program can be executed. This
entails the creation of one stack to give a working space to the new process. But
from the same image, another process can be runned that entails the creation
of another stack, that is distinct of the first one. Thus, one have one image and
two stacks. But the architecture allows to load another program, and hence, a
new process, ie. another stack. The situation is depicted in figure 16.1.

The image stores all the “instructions” to be executed to run a program,
and therefore each function/procedure has its representation inside the image.
One could execute either the whole program (ie. the body) or simply one func-
tion/procedure. Let us remember that as long as a stack is preserved, the
“memory” of the process is preserved. So, if one executes one process, this one

1The call V2 instructions that existed in some “draft” versions of DB-MAIN is now simu-
lated. This instruction replaced the calling program with the new program, this is no more
true. This instruction is now deprecated and should be avoided. It will be removed in the
next version.

119

120 CHAPTER 16. LIBRARY AND PROCESS

stack1 stack2 stack3

image1 image2

6

�
�
�
���

B
B
B
BBM

Figure 16.1: This schema depicts the memory state with two programs and
three running process.

can let the global variables in some state (S) at the end of its execution, and
retrieve the same state at the next execution.

We have now sufficient information to enter in more details in the mechanism.
Two new types have been added to the language. The first one is program. A
value of type program denotes a process, and one will see that once a value of this
type is correctly initialized, one can start an execution of the associated program.
The second type is lambda1. This one denotes an entry in the image of a program
corresponding to a procedure or a function. Such a value, once initialized, can
be used to start the execution of the associated function/procedure in using the
stack of a process.

16.2 Voyager 2 Process

The first step in the use of a process is the declaration of one variable of type
program.

program: p;

Once this variable is declared, you can initialize this variable with the use
instruction.

p := use("c:\\ foo.oxo");

The use instruction has only one argument (one string) that denotes the pro-
gram to be loaded into a newly created image. Once the p variable is initialized,
you can call this program in such a way:

p!(a1,...,an);

1The “lambda” term derives from an area of mathematical logic called the “lambda calculus”
in which many of the theorical foundations of functional languages are based [4], [2] . lambda

expressions in Voyager 2 have very few common characteristics with this concept but the
author had not enough imagination to invent a new term.

16.2. VOYAGER 2 PROCESS 121

The ! character is a suffix unary operator. The a1, . . . , an are values passed as
arguments to the process. A new characteristic of Voyager 2 is that a program
can now return a value, and its type does not have to be specified. Hence, a
program can either be executed as a procedure (an instruction) or a function
(an expression) depending on the importance of the returned value in the calling
program1. So, another call to the program foo could have been:

v := p!(a1,...,an);

We mentioned in the beginning of the chapter that functions/procedures
could be called separately. The first step to call such a procedure is to get
an “handle” of the function from the program/process. This is done with the
binary operator ::. The left operand denotes the process, and the right operand
is a string that denotes the name of the function/procedure. The result of this
operator is a value of type lambda. This result should obviously be stored in a
variable to be used later. This can be done as follows:

lambda: fct;
. . .
fct := p :: "my function";

where the fct variable has been declared as: “lambda: fct;”. Once this
variable has been correctly initialized, it can be used to call the function like
that:

x := fct :: (y1,...,ym);

The suffix unary operator :: calls and execute the function my function inside
the sleeping process p. The values y1, . . . , ym denotes the arguments of the
function. The situation for procedures is similar.

So the complete program could be:

program: p;
lambda: fct;
string: result;

begin
p:=use("c:\\foo.oxo");
fct:=p::"FormatDate";
result:=fct::(13, "Feb", 1968);
print(result);

end

This program is more concise and is strictly equivalent to the previous one:

begin
print((use("c:\\foo.oxo")::"FormatDate")::(13, "Feb", 1968));

end

The second program is described in order to illustrate that program and lambda
values can be used anywhere where such types are expected.

1This approach is near of the C philosophy, where functions can be used as procedures.

122 CHAPTER 16. LIBRARY AND PROCESS

So far, one were visiting the calling program, but how does look the called
program “foo.v2” ? Well, this program is as any other V2 program. The only
difference is that functions/procedures that can be called from outside must be
preceded with the export keyword. So the FormatDate function would have
the following syntax:

export function string FormatDate(integer: d, string: m,
integer: y) ...

The syntax is the same for a procedure. The export keyword allows you to
define functions whose the use is private and other ones whose the use is not
limited.

Another important principle is the stack! The stack is preserved as long as
it could be needed to execute the process or a function/procedure attached to
this process.

Let us take look at these two programs

/*******************/
/* calling program */
/*******************/

program: p;
lambda: fct;

begin
p:=use("c:\\foo.oxo");
fct:=p::"nestor";
p!();
print(fct::(1));
print(fct::(3));

end

and

/***/
/* called program. Stored in file c:\foo.oxo */
/***/
integer: n;

export function integer nestor(integer: a){
n:=n+a;
return n;

}

begin
n:=1;

end

The execution of the first program will call the body of the foo program
and put the 1 value into the global variable n. Next, the function nestor is
called. This function will use the variable n as the previous execution let it in
the stack. In our example, n will be worth 1 and the function will return 1+1!
The second call will return 2+3.

16.2. VOYAGER 2 PROCESS 123

Nothing prevents you to initialize two process from a program. Let us modify
the calling program as:

program: p1,p2;
lambda: fct1,fct2;

begin
p1:=use("c:\\foo.oxo");
p2:=use("c:\\foo.oxo");
fct1:=p1::"nestor";
fct2:=p2::"nestor";
p1!();
p2!();
print([fct1::(1),fct2::(3)]);

end

The execution of this program will print 2 and 4 as result. The execution of the
first function will not influence the stack of the second function!

Now that one can call extern functions/procedures, let us examine how a
program can retrieve the arguments and return a result when it is called from
another program. In the following extract, the “foo.oxo” program is called two
times. The first call tests the result of the program (that represents an error
code) to display a message. The second call is more confident and does not test
the error code.

program: prog;
begin
prog:=use("c:\\foo.oxo");
if prog!(1,2,3)=0 then {
print("error message");

}
prog!(4,5);

end

Let us remark that the number of arguments may change from one call to
another. The called program is defined as:

integer: sum,i;
begin
if Length(Environment) then {
for i in Environment do {
sum:=sum+i;

}
print(sum);
return 1;

} else {
return 0;

}
end

We may observe two important changes from previous versions:

124 CHAPTER 16. LIBRARY AND PROCESS

1. The global variable Environment is not defined in the program although
it is used. This variable is predefined in Voyager 2 and denotes a list.
This variable is initialized with the list of the arguments present in the
call. This variable can be used as any other variable.

2. The return instruction is now allowed in the body of the program. As
expected, it returns a value to the calling program. The type of this value
is not specified and can be of any type (integer, string, list, ...).

Some details were not fully explained in this part. The complete formal
definition of each concept is given in the last section (section 16.4).

Another important aspect is that the user has not to care about the pro-
cess unloading. As for strings and lists, the Voyager 2 language automatically
unloads process from the memory (image and stack) once a process is no more
needed.

Because, process and lambda values are first order classes, you can manipu-
late these values as any other value. You can pass such expressions as arguments
to functions (extern or not), store it into lists, . . . Only IO output are not al-
lowed: there is indeed no reason to print or read a process/value from a device
(file/keyboard).

Sometimes, the process loading can fail (not enough memory, .OXO file cor-
rupted, security failure, mistyped filename, . . .). In such events, the loading
mechanism returns either a program or a lambda void value that can be tested
with the usual functions (IsVoid or IsNoVoid). The user has to explicitely test
these values in insure the program correcteness.

16.3 Libraries

Libraries are just a convenient cosmetic ointment over the previous concepts.
Because process are very often used as “libraries” than as real “process” (as
known in operating system). The dynamic management of such process is too
heavy and unnecessary. For this reason, Voyager 2 has a special syntax to
declare libraries.

Let us suppose that you have defined a program with several functions for
advanced functionalities (for instance, to manage trees, associative lists, . . .).
To use all these functions, you should load this library/program each time,
declare lambda variables for each used function/procedure and so on.

Voyager 2 allows the declaration of a library at the beginning of the pro-
gram. Here is an example:

/*************************/
/* libraries declaration */
/*************************/
use "c:\\lib\\tree.oxo" as mylib;
use mylib.DisplayTree as DisplayTree;
use mylib.ErrorProcess as TreeError;
use mylib.ComputeDepth as Depth;
use "c:\\lib\\assoc.oxo" as associative_list;
use associative_list.SetAssoc as SetAssoc;
/* Global Variables */

16.4. FORMAL DEFINITIONS 125

integer: a,b,c;
...
begin
...
DisplayTree::(MyTree,File);
print(Depth::(MyTree));
...

end

The use keyword denotes here two possible uses. The first one gives a
logical name to a process/library. The second one gives a logical name to func-
tion/procedure inside a library.

As we already explained, libraries syntax is just a cosmetic layer on known
concepts. Nevertheless, this allows to initialize process whatever the body is
executed or not. This characteristic is important when you whish to use a
library that needs another library. If the program needs the library tree.oxo
and if this last one needs the library record.oxo, record.oxo must be loaded
before any function/procedure of tree.oxo is called! And this is ensured by the
use statement at the beginning of the program. Otherwise, you should execute
the process first before executing any function from this process.

To make easier the programming job, the compiler produces a file with the
extension .IXI that contains all the needed use declarations for each func-
tion/procedure defined with the export keyword. This file can be included
with the directive explained in chapter 17.

16.4 Formal Definitions

16.4.1 The use Function

function program: p use (string: s)

Precondition. s is string that denotes the name of a Voyager 2
program. The name must follow the syntax of paths in MS-DOS.
This program must have the same security privileges as the calling
program (see chapter 18).

Postcondition. p denotes a new process that has been loaded in
memory with a newly created stack. The process is just loaded and
no execution has been launched!
on error: The void value is returned.

16.4.2 The ! suffix unary operator

Syntax: P ! (a1, . . . , an)
P denotes a program expression. If P is not void, then the program/process
denoted by P is called in using the a1, . . . , an values as arguments. Otherwise,
nothing happens. If the “!” operator is used inside an expression, then the called
program must necessarily return a well-typed value as expected depending on
the context. If it is used as an instruction, the returned valued is ignored.

126 CHAPTER 16. LIBRARY AND PROCESS

16.4.3 The :: Suffix Unary Operator

Syntax: F::(a1, . . . , an)
F is any expression that is evaluated as a lambda value F ′. Depending on
the nature of F ′, the function/procedure denoted by this value (F ′) is called
in using the expressions a1, . . . , an as parameters. The number of arguments
must be strictly the same as the number specified in the definition of the func-
tion/procedure. Because the compiler does not have enough information, it
can not check if the number of arguments is correct! If F ′ denotes a function,
the “ F::(a1, . . . , an)” expression will be evaluated as the result of this func-
tion. Otherwise, the procedure is just called. Once again, the compiler does
not have enough information to check that functions are not used as procedures
or reciprocally. If F ′ denotes the void value, then nothing happens and the
execution is aborted with an error message. If there is a wrong number of ar-
guments, the stack will be corrupted and the program will stop without any
explicit messages! The same event occurs if a procedure is used as a function
and reciprocally. Such errors are programming errors and must not be catched
by the compiler/abstract machine. As for any function or procedure, arguments
must have exactly the same types as the ones found in the definition.

16.4.4 The :: Binary Operator

Syntax: P :: N
P is a program expression and N is a string expression. The :: operator
is evaluated as a lambda expression that corresponds to a function/procedure
named N and defined in the program P . The stack of P will be used during
the execution of the function/procedure. Let us name R the result, then if
IsVoid(P)=TRUE then R=Void(lambda). Otherwise if the N string does not
match a function or a procedure in the specified program, then the void value
is still returned.

16.5 Literate Programming

Programmers often document their program with comments. But few environ-
ment allow to recover the program documentation from comments1. Voyager 2
tries to use comments present in your programs to document the ixi file pro-
duced by the compiler. In the Voyager 2 syntax, “explain clauses” can occur
in the head of the program and inside each function/procedure. Explain clauses
are used by the compiler to produce documented ixi files. The figure 16.2 shows
how the compiler works on a sample.

1“Literate Programming” first appeared in the WEB programming language that is a mix of
TEX sentences and Pascal statements. WEB was defined by D. Knuth.

16.5. LITERATE PROGRAMMING 127

explain (*Factorial Library. Author: Nestor Burma *)

export function integer fact1(integer: a)

explain (*fact1 computes the factorial of its argument in using

a recursive algorithm *)

{ if a=0 then { return 1; }

else { return a* fact1(a-1); }

}

export function integer fact2(integer: a)

explain (*fact2 computes the factorial of its argument in using

an iterative algorithm *)

integer: i, result;

{ result:=1;

for i in [1..a]

do { result:=result*i; }

return result;

}

begin

end

⇓

/* FILE GENERATED ON: 23/IX/1997 at 10:44,24 secs

** Please, does not modify this file.

** Voyager 2 Declarations

** Compiled with Version 3 Release 0 Level 2 */

use "facto.OXO" as facto;

/******************

* Documentation: *

Factorial Library. Author: Nestor Burma */

use facto.fact1 as fact1;

/* FUNCTION returns integer

Arguments:

1) integer: a

EXPLAIN:

fact1 computes the factorial of its argument in using

a recursive algorithm */

use facto.fact2 as fact2;

/* FUNCTION returns integer

Arguments:

1) integer: a

EXPLAIN:

fact1 computes the factorial of its argument in using

an iterative algorithm */

/* IXI file completed */

Figure 16.2: Literate Programming: The ixi file (bottom) is produced from the
Voyager 2 program (top). Each “explain clause” is used to document exported
functions as well as the library itself.

Chapter 17

The Include Directive

Recurrent needs were observed during the programming phase. For instance,
you always use the same constants, functions, procedures, . . . For this reason,
programmers had often to duplicate sections from one program into another
program. Such programs become rapidly difficult to maintain.

It is now possible to include files into a program in using a directive state-
ment. The syntax is the same as for the C language. Its syntax is: #include "...".
Spaces are not allowed between the # character and the include. However, the
may appear anywhere in a line and must not necessarily occur at the beginning
of the line.

This directive may appear anywhere in the program: in the library section,
in the global variables declarations, between statements, or even inside an ex-
pression. The semantics of this directive is quite simple: the compiler replaces
the directive with the content of the file specified in argument. The backslash
characters do not (and must not) need to be escaped. Here follows an example:
Example:

#include "c:\lib\tree.ixi";
...
integer: n;
#include "c:\lib\rtf_cst.h2";
...
function char foo(){
...

}

#include "c:\misc\error.h2";

begin
#include "c:\misc\copyrigh.h2";
...

end

2

The language does not force the extension names. However, we stringly
recommend the use of .ixi for libraries declarations and .h2 for other files.
The .h2 extension should be used for any file that you reserve for inclusion

129

130 CHAPTER 17. THE INCLUDE DIRECTIVE

purposes. Although you can choose another extension name, life would be
easier if everyone respects this convention (as in C).

We also recommend to avoid as much as possible1 the use of this directive.
Libraries can often be used in place of this directive and should be prefered for
methodological reasons.

If an error occurs in an included file, then the compilation process fails as for
any other reason. However, if the compiler fails in the opening of an included
file, this one is simply skipped and the compiler produces a warning. Very often,
this will cause other errors but this will sometimes “spare” your life!

1The include directive really includes the content of a file and thus, enlarges the .oxo file
size. Since the size of .oxo files is limited, you could exceed this limit.

Chapter 18

Security

As registered user, you should have received an electronic key (EK). This one
stores informations in a crypted memory:

The user ID: A unique number associated with each user. A company having
several EK’s will share the same ID.

The key ID: A unique number associated with each EK. Two EK’s have dis-
tinct key ID’s.

Compile capability: If this flag is true, then the user can use the Voyager
compiler. Otherwise, the compiler will stop its execution with an explicit
error message.

The distribution capability: If this flag is true, then you can develop Voy-
ager programs for other users and restrict its use either for a user, or
for an EK. This capability is mainly interesting for companies selling the
products from the DB-MAIN Research Group.

It is impossible to run the compiler without the EK, and the use of the
compiler with the EK is restricted as explained in the above chapter.

When the “Compile capability” is set, the compiler produces .OXO files that
are restricted on computers having an EK with the same “User ID” as the one
found on the computer on wich the compilation was executed.

When the “Distribution capability” is set, the user can specify an explicit
“user ID” or an explicit “EK ID” that restricts the use of the .OXO file respec-
tively on a DB-MAIN process having the key with the ad-hoc information.

With the “Distribution capability” enabled, you can use additional switches
on the command line of the compiler:

-Kclient: to specify the user ID (cfr. -infokey).

-Kkey: to specify the key ID (cfr. -infokey).

-Kall: to remove the restrictions on the distribution of the .OXO file.

-infokey nnn : to specify the ID used by the compiler (cfr. -Kclient,-Kkey).
nnn is the number/ID information.

Example:

131

132 CHAPTER 18. SECURITY

Here follow some examples:

comp V2 foo.v2 -Kclient -infokey 31414
comp V2 foo.v2 -Kkey -infokey 27182
comp V2 foo.v2 -Kall

the command line “comp V2 foo.v2” is the same as the command
line “comp V2 foo.v2 -Kclient -infokey x” where x is the user
ID of your electronic key.

2

Part IV

Appendix

133

Appendix A

The Voyager 2 Abstract
Syntax

This chapter gives the abstract syntax of the Voyager 2 language. The syntax
is defined as a set of rules written in extended BNF. The following conventions
are respected.

• head ← body: A rule.

• “example”: literal characters.

• example: A keyword.

• example: A terminal word that represents a class of tokens. (cfr. 2 for
more details)

• example: A non terminal word. This one must be defined in a rule.

• the | operator denotes a disjunction in a body.

• 〈example〉0,∞: Example is repeated 0 or more times.

• 〈example〉α0,∞: Example is repeated 0 or more times and items are sepa-
rated by “α”.

• 〈example〉1,∞: Example is repeated 1 or more times.

• 〈example〉α1,∞: Example is repeated 1 or more times and items are sepa-
rated by “α”.

• ∅: the empty word.

The Syntax

program ← explain-clause 〈use-clause〉0,∞ 〈def-var〉0,∞ 〈def-fct〉0,∞ body

use-clause ← use string as identifier “;”
| use identifier “.” identifier as identifier “;”

135

136 APPENDIX A. THE VOYAGER 2 ABSTRACT SYNTAX

def-var ← type “:” 〈one-var〉,1,∞ “;”

one-var ← identifier 〈“=” expr〉0,1

def-fct ← def-function |def-procedure

def-function ← 〈export〉0,1 function type identifier “(” 〈arg〉,0,∞ “)” explain-
clause 〈def-var〉0,∞ “{” 〈instr〉0,∞ “}”

def-procedure ← 〈export〉0,1 procedure identifier “(” 〈arg〉,0,∞ “)” explain-
clause 〈def-var〉0,∞ “{” 〈instr〉0,∞ “}”

arg ← type “:” identifier

body ← begin 〈instr〉0,∞ end

instr ← ∅
| designer “:=” expr “;”
| goto identifier “;”
| continue “;”
| break “;”
| halt “;”
| label identifier “;”
| return 〈expr〉0,1 “;”
| attach-stmt “;”
| move-stmt “;”
| addcursor “;”
| setval “;”
| dynamic-call “;”
| loop-stmt 〈“;”〉0,1
| ifthenelse 〈“;”〉0,1
| while-stmt 〈“;”〉0,1
| switch-stmt 〈“;”〉0,1
| repeat-stmt “;”
| call-procedure “;”

omega2 ← “-” |“+” |“*” |“<” |“>” |“<=” |“>=” |“=” |“<>” |“++” |“**” |and |or
|xor |mod

expr ← expr omega2 expr
| designer “:==” expr
| “-” expr
| not “(” expr “)”
| “(” expr “)”
| “[” 〈expr〉,0,∞ “]”
| “[” expr “..” expr “]”
| expr “[” designer “]” “{” constraint “}”
| use “(” expr “)”
| expr “::” “(” 〈expr〉,0,∞ “)”

137

| expr “::” expr
| expr “!” “(” 〈expr〉,0,∞ “)”
| designer
| integer
| char
| string
| file
| call-procedure
| create-inst

constraint ← expr
| expr “:” expr 〈 with expr〉0,1

setval ← expr “<--” expr

dynamic-call ← expr “::” “(” 〈expr〉,0,∞ “)”
| expr “!” “(” 〈expr〉,0,∞ “)”

loop-stmt ← for designer in expr do “{” 〈instr〉0,∞ “}”

ifthenelse ← if expr then “{” 〈instr 〉0,∞ “}” 〈else “{” 〈instr〉0,∞ “}” 〉0,1

switch-stmt ← switch “(” designer “)” “{” 〈case-stmt〉0,∞ default-case
“}”

case-stmt ← case expr “:” 〈instr〉0,∞

default-case ← 〈otherwise “:” 〈instr〉0,∞〉0,1

repeat-stmt ← repeat “{” 〈instr〉0,∞ “}” until expr

while-stmt ← while expr do “{” 〈instr〉0,∞ “}”

〈expr〉0,1 ← 〈expr〉0,1

call-procedure ← identifier “(” 〈expr〉,0,∞ “)”

attach ← attach identifier to expr

move-stmt ← identifier
{

“<<” |“>>”
}
〈expr〉0,1

create-inst ← create “(” expr “,” 〈simple-field〉,0,∞ “)”

simple-field ← expr “:” expr

addcursor ← expr
{

“<+” |“+>”
}
expr

designer ← identifier
| identifier “.” expr

explain-clause ← 〈explain “(*” text “*)”〉0,1

138 APPENDIX A. THE VOYAGER 2 ABSTRACT SYNTAX

Remarks

The #include directive does not appear in the Voyager 2 syntax since it is
replaced anywhere by the content of the specified file.

Appendix B

The VAM Architecture

Although the only tool you see is the compiler, it is worthwhile to know that
Voyager 2 is interpreted. In fact, there are two languages: Voyager 2 (V2)
and Voyager 1 (V1). The first one was described in this manual. The second
one, V1, is just an intermediate level between V2 and the abstract machine: the
VAM1.

The picture of figure B.1 shows how a V2 program is translated to a binary
file (prog.oxo) that can be loaded directly into DB-MAIN in order to execute
its task. The following table shows extracts from three files: prog.v2, prog.v1
and prog.oxo:

prog.v2 prog.v1 prog.oxo
begin push-int 1 13/1
print(1+2); push-int 2 13/2
end add 65

print 43

The prog.oxo is just a binary file composed of 6 words (16 bits): 13,1,13,2,65
and 43.

V1 looks like an assembler language and the “oxo” file is just a binary trans-
lation of each instruction with its operands. The “oxo” file can be fastly loaded
into the DB-MAIN tool since the parsing has already been done. The general ar-
chitecture of all these processes is depicted in figure B.1. The compiler you used
is represented by a box that contains two hidden processes: the real V2 compiler
(named comp V2′) and the V1 compiler (named comp v1). What you see is just
the translation of the V2 program into the binary file. Once this compilation is
completed (and there was no errors!), this program can be loaded into the tool
and can be executed.

1Voyager Abstract Machine.

139

140 APPENDIX B. THE VAM ARCHITECTURE

�
�

�
�prog.oxo

comp v1

�
�

�
�prog.v1

comp v2′

�
�

�
�prog.v2

VAM

DB-MAIN

?

?

?

�
�

�
�prog.ixi

�
�
�
�
��	

@
@
@
@
@@R

6

Figure B.1: The Voyager Architecture.

Appendix C

Error Messages while
Compiling

The compiler produces three types of error messages during the compilation:

warning: The error is not important and the compiler is smart enough to
continue in producing the right code. Exemple: a return instruction is
followed by an expression in a procedure.

error: The error prevents the compiler from generating the right code. The
compiler will skip the error and continue its job looking for other errors.
The code is not produced.

fatal: The error is too important to continue the compilation. There is no
code produced of course.

All the errors produced by the compiler are documented here after. The
compiler always tries to display the line number of the error. Sometimes this
number does not correspond to the right line. It is the case for composed
instructions. This is a known bug1.

1: Buffer to small ! (maybe a line with too much characters)

A line in your program is too long for the buffer of the compiler.
It should be possible to split it in several lines.

2: Parsing error !

There is a syntax error. The compiler should show the content
of the line as well as the line number where the error occurred.
Note the character ’¨’ that indicates where the syntax is not
verified. Very often, it lacks a ’;’ separator in the previous line!

3: Error in opening file !

1We could say: it is not a bug but a feature. Indeed, the compiler only knows the line
number when one instruction is fully parsed. For this reason, the line number corresponds to
the last line of the instruction and not the first one.

141

142 APPENDIX C. ERROR MESSAGES WHILE COMPILING

It is impossible to open the specified file (.V2) or to create the
output file (.V1). Is it shared by other applications? Does it
exist? Is your path valid?

4: One function already exists with the same name !

You are defining a function/procedure twice.

5: The left hand expression of an assignment must be a variable or
a field !

Your program has one instruction E := T ; where E is not a
variable. Only variables (or with a field) are admitted in the
left part of assignments.

6: This procedure is used but not defined !

One instruction is calling a procedure that is not defined. Note
that lower and upper case characters are considered as distinct
in Voyager 2.

7: Unknown type !

Your are using a bad type. Probably a misspelled type like
integger or siattribute.

8: This identifier is neither a variable or a constant !

A variable is expected here and your identifier was not defined
as a variable.

9: The procedure is used here as a function !

You are using a procedure as a function. There is a problem in
your analysis.

10: A variable is expected here !

You have specified a field with a variable used as loop-variable in
a request. Only variables are allowed here. Example: ENTITY TYPE[e]{...}.

11: This identifier is already defined !

You are defining an identifier twice. Functions/procedures names,
global variables, parameters names and local variables must be
all different.

12: Incorrect number of arguments !

You are using less or more arguments than required in the def-
inition of a function/procedure.

13: A field is not allowed with a constant name !

You are using a constant name where a variable is expected.

143

14: This identifier is neither a function nor a buil-tin

You are using an undefined function. Check the spelling.

15: Only a variable can be passed by address !

You are passing a value to a built-in procedure/function that
expects a variable passed by reference.

16: This local variable is already defined !

There is a conflict between your local variable and either a global
variable, a constant name or a function/procedure name.

17: Local constants not yet supported !

This feature is not yet implemented although the parser under-
stands it. Note that the feature is not explained in this reference
manual.

18: Return statements in functions must have an expression !

You are using the return instruction inside a function with no
value. Note that the returned value must have the same type
as the one specified in the head of the function.

19: Return statements in procedures can not have expression !

You have specified a value after the return instruction inside
a procedure. This value has no sense and is not allowed in
Voyager 2.

20: Return statements in the body of the program can not have an
expression !

You have specified a value after the return instruction inside
the main body (the part between the begin and end keywords).
This value has no sense and is no allowed in Voyager 2.

21: "continue" statement not allowed here !

The continue instruction is only allowed inside while, repeat
and for instructions.

22: "break" statement not allowed here !

The break instruction is only allowed inside while, repeat and
for instructions.

23: The first character of identifiers must be different of ’ ’ !

The ’ ’ character is used for reserved keywords.

24: Internal Error !

144 APPENDIX C. ERROR MESSAGES WHILE COMPILING

The compiler has reached a dangerous state. Please warn the
DB-MAIN research group.

25: Not enough memory !

Not enough memory to allocate dynamic objects. Please close
some applications or restarts Windows.

26: Unterminated string !

You have omitted to close a string. Add a double quote at the
end.

27: This word is a reserved keyword !

Change the spelling of this identifier to avoid the conflict.

28: procedure expected in a call !

You are using a function where a procedure is expected.

29: Sub-process can not be executed !

The compiler can not run a sub-process. The .oxo file has not
been produced. You have too many applications, you do not
have enough memory or the process was not found. Its name is
comp v1.exe. Check that this file is correctly installed. A more
precise message should have been displayed indicating the exact
problem.

30: A */ is probably missing

A comment is not terminated or is too long.

31: A *) is probably missing

An explain clause is not terminated or is too long.

32: A literal string is expected here!

The expression must be a string (ie. ”...).

33: Fields are not allowed for iterator variables in loops.

Expressions of the form variable.field are not allowed in the loop
statements (for-in-do).

Let us note that the semantics of Voyager 2 prevents the compiler to trap
some errors. The main reason is that Voyager 2 is weakly typed and the type
verification is sometimes impossible. For this reason, it is possible to compile
strange programs and to execute them. Fortunately, the VAM will stop them.

For instance: the compiler will compile the next program without any errors
or warnings:
Example:

145

file: F;
begin

F:="Hello"+(5++’i’);
print(F);

end

2

34: The identifier does not denote a ‘‘program’’. Define it in a
use clause before

The program uses an identifier in a “use” clause that was not
declared as a library in a previous “use” clause.

35: Include directive skipped. Impossible to open the file.

The filename specified in an include directive does not denote a
file or this file can not be opened.

Appendix D

Error Messages during the
Execution

The VAM (Voyager Abstract Machine) is able to trap most of the problems
that can occur during the execution. Each time it is possible, an error message
is displayed indicating the cause of the problem. Unfortunately, it is impossible
to trap all the possible errors. This means that wrong voyager programs may
get the VAM wrong. The error may be in your program or in the VAM. Our
experience is that the error is often in the voyager program.

1: Another type is expected.

The type of an operand does not match the expected type of an
operation.

2: Internal Error: please stop here.

This error should not appear. Please report it to the develop-
ment team with all the available informations.

3: You are using an invalid field.

The used field is not valid for this type of object. Example:
print(dto.identifier); where dto is a data object.

4: No enough memory for allocation.

It is impossible to have more memory for dynamic data. You
may close some applications or restart Windows.

5: A list is expected here.

You are passing a non-list value to an operation that expects a
list.

6: No program loaded.

This error is obsolete.

147

148 APPENDIX D. ERROR MESSAGES DURING THE EXECUTION

7: Impossible to open file.

Impossible to open the .oxo file. Do you have compiled it?

8: Illegal Instruction

The .oxo file is probably corrupted. If it is the case, then re-
compile it. If it does not work, then the memory is corrupted,
restart Windows. If this fails again, then warn the development
team.

9: The instruction (yet valid) is not defined so far.

This message should never appear. Warn the DB-MAIN develop-
ment team.

10: Cell must be active !

You are referencing an invalid cell. This message will occur
during the following program:

cursor: c; ...; kill(c); print(get(c)); ← error 10.

This is just an example.

11: The list can not be empty !

The expected argument should be a list with at least one active
cell.

12: The file is corrupted

The .oxo file is corrupted. Please recompile your program.

13: Error while reading the file

Your .oxo file is corrupted. Recompile your program. This may
occur when you are using old versions of .oxo files with a
more recent version of DB-MAIN.

14: Argument of SetPrintList too large for the buffer !

Arguments of the SetPrintList are stored in static strings and
therefore the size is limited. Remove some characters.

15: This type can not be read/written !

You are printing/reading an invalid type of data. For instance,
you can not print values of type list or reference to objects like
data object.

16: Invalid field in Create operation !

You have specified an invalid field in the create instruction.

17: A mandatory field is lacking in Create operation !

149

Check the create instruction, all the mandatory fields must be
present.

18: Integrity rules are not checked !

A create instruction has violated an integrity rule during the
execution. Read the documentation of create for more details
about the integrity rules.

19: The buffer of the lexical analyzer is to small

You are trying to parse a too big piece of text for the buffer
of the lexical analyzer. Consult the MAX LEX BUFFER for more
details on the size of this buffer.

20: Several choices are identical in MakeChoice, suppress them!

Several arguments of the MakeChoice statement are identical.
It is probably a typing error.

21: A semi-formal field in the text is corrupted!

The syntax of a textual property is invalid.

22: The dynamical property does not exist!

You are referencing a dynamical property that is not referenced
as one instance of the meta property object type.

23: Remove is not allowed for this type!

The remove instruction must be used to remove objects of the
repository. The type of the value you are using as argument of
this instruction is invalid!

24: Impossible to start the AsbtractMachine with this program

You have specified a wrong name/path of a Voyager program.
Other causes can be a damaged file, or a problem with dynamic
ressources (file handle/memory/. . .).

25: Bad lambda expression

Your lambda expression is invalid. You are problaby trying to
use a function that does not exist or that is mispelled.

Appendix E

Frequently Asked Questions

E.1 Environment Relation Questions

1. How do I compile a program?

Once you have saved your program in a file (with your favorite text
editor), say “prog.v2”, you can compile it by using the Voyager 2
compiler.

The compiler is a 32-bits application that can be executed from the
DOS prompt. If your program is correct, the compiler has produced
a file called ”prog.oxo. This file can then be loaded in the DB-MAIN
tool. Otherwise, the compiler stops and prints all the error messages.
Each time an error is encountered, an error message is displayed.
After each message, the compiler expects a character. The effect of
the entered character is:

c: continue and do not stop any more
s: stop now!
other characters: continue and stop on the following

message

More options are allowed on the command line of the compiler and
they are described here after:

syntax
comp v2 <option>?

where option can be

filename: any string with no space character and with
the first character different from the character ’-’ can
be a filename. By convention: the first filename found
in the list is the name of the input file . The second
filename is the output file. This filename must not
have any extension. The compiler adds automatically
the .oxo extension. If the output file is not specified
then the name is deduced from the input file.

151

152 APPENDIX E. FREQUENTLY ASKED QUESTIONS

-date: prints the version of the compiler and stops imme-
diately.

If the filename is missing in the list of options, the compiler will ask
it during its execution.

2. How do I write efficient programs ?

Voyager 2 was not built to be efficient but to write programs rapidly
and easily. For this reason, it is bad idea to try to write a number
crunching program in Voyager 2 ! But there are some recipes to
make your programs a little faster:

• Avoid lists in the printx instructions: prefer print(x); print(y);
to print([x,y]);.

• Expand requests rather than using intermediate lists.

l:=request;
for x in l do {
...
}

for x in request do {
...
}

The right program will be faster than the left one.

• Use available built-in instructions when it is possible: prefer a
for-in-do to a while instruction.

• In the for-in-do instruction: when the list looks like [a..z], the
z expression is evaluated at each loop. Thus if this expression
is quite complex, you should evaluate it before the loop and
save the result into a variable.

3. Why do I have two windows after the compilation?

The compiler needs to launch another compiler during its execution.
The Windows library used to display the error messages does not
allow to close these windows once the program halts. You just have
to close them yourself! This problem does not occur anyway with
the 32bits version.

4. I can not close the console ! Why?

The console is locked until the 2̌ program is finished.

5. When I load program, DB-MAIN tells me that the ver-
sion of the program is too old!

E.2. LANGUAGE SPECIFIC QUESTIONS 153

Although DB-MAIN is backward compatible with all the versions of
the language, the binary format may change from one version to
another one. When you get this message, just recompile the .V2 file
with the ad-hoc compiler.

6. Why does the compiler find errors in my program
although it was working fine with the former version?

It means proprably that some identifiers used as variable/constant/function
name are now reserved keywords in the new version. It is espe-
cially true for “dot-expression” (variable.expression). In the for-
mer version, the compiler was able to distinct a variable declared as
integer: sem from a field used in a dot-expression like sch.sem.
Because right-hande-side expression of the “.” operator may now be
any expression, the compiler is no more able to distinct them. So
rename your variables to avoid the clash. The error message should
be enough precise to fix the problem yourself.

E.2 Language Specific Questions

1. In a predicative query, DB-MAIN tells me that there is an
invalid assignment. Why?

Well, it is possible that you are using a sub-type where a super-type
is expected. Get a look at the following query:

ENTITY TYPE[ent]{@SCH DATA:[sch] with
GetType(ent)=ENTITY TYPE}

Although the list returned by the query will be composed of only
entity types, the ent variable will be used as iterator in the gen-
erated code to find all the instances of data objects linked to the
sch schema. These objects can be entity types, but also rel-types
and attributes. Thus: it is possible that the VAM tries to put one
attribute in the ent variable that should be defined as entity type.
Thus the correct query would be:

DATA OBJECT[dto]{@SCH DATA:[sch] with
GetType(ent)=ENTITY TYPE}

2. Is there a nil value like in Pascal?

No. The reason is very simple: there are no pointers in 2̌. How-
ever for references, there are special values denoted by void. To
obtain the void value of the entity type, one can use the function
Void(ENTITY TYPE). This function can only be called for references
and not for other types like: integer or char.

154 APPENDIX E. FREQUENTLY ASKED QUESTIONS

3. Why is my request looping?

It is prohibited to modify the value of a variable used as iterator in
a query. For instance, this program is wrong:

Example:

data object: dto;
schema: sch;
begin

sch:=GetCurrentSchema();
for dto in DATA OBJECT[dto]{@SCH DATA:[sch]} do {

dto:=Void(DATA OBJECT);
}

end

2

4. How may I empty a list L?

Very simple: L:=[1,2]; L:=[];. The last instruction will empty
the list L.

5. How may I test if a list is empty ?

Well, there is at least two simple ways to proceed. The first one is in
matching the candidate list against the empty list: if mylist=[]
then If you do not like this first solution, you can also test the
length of the list: if Length(mylist)=0 then

Appendix F

Regular Expressions

A regular expression is a pattern description using a “meta” language. The
characters that form regular expressions are:

. Matches any single character.

* Matches 0 or more copies of the preceding expression.

+ Matches 1 or more copies of the preceding expression.

[. . .] Matches any character within the backets.

? Matches 0 or 1 occurence of the previous expression.

". . . " Matches exactly the content enclosed between quotes.

x..y Is a notation for a character range, e.g., “[0..4]” means “[0,1,2,3,4]”.

\t,\n,\x Denotes the tabular, the newline characters and the x character when
this one is already used by the regular expression language ([].*+. . .).

For instance [a..zA..Z][a..zA..Z0..9]* denotes the syntax of identi-
fiers in Pascal and [0..9]+[_[0..9]+]? denotes the syntax of real numbers
(12,012,19.021,. . .).

155

156 APPENDIX F. REGULAR EXPRESSIONS

Bibliography

[1] A. Aho, R. Sethi, and J. Ullman. Compilateurs. Principes, techniques et
outils. InterEditions, 1989.

[2] A. Church. The calculi of lambda conversion. Princeton University Press,
1941.

[3] V. Englebert, J. Henrard, J.-M. Hick, and D. Roland. Description du
méta-schéma de l’atelier logiciel DB-MAIN version 1.0. Technical report,
F.U.N.D.P., 1995.

[4] A. J. Field and P. G. Harrison. Functional Programming. International
computer science series. Addison-Wesley, 1989.

[5] K. Jensen and N. Wirth. Pascal. Manuel de l’utilisateur. Eyrolles, 1978.

[6] D. E. Knuth. The TEXbook. Addison-Wesley, 1990.

[7] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1991.

[8] R. Wilhelm and D. Maurer. Les compilateurs: théorie, construction,
génération. Masson, 1994.

157

Index

Symbols
∗∗ , 27
++ , 27
\, 14
’\n’, 14
’\t’, 14
*, 19
+, 19, 42
-, 19
., 17
/, 19
/*...*/, 7
//, 7
:=, 31
:==, 21
A, 46
A, 10
GetFirst, 8
GetFirst , 105
GetNext, 8
GetNext , 105
R, 46
R, 10
W, 46
W, 10
char, 9
file, 9
lambda, 9
list, 9
program, 9
string, 9

A
AddFirst, 8
AddFirst , 45
AddLast, 8
AddLast , 45
and, 8, 19
ARRAY CONTAINER, 83
ARRAY CONTAINER, 10
as, 8

AscToChar, 8
AscToChar , 42
ASS GROUP, 10
assignment, 31
associativity, 19
atleastone, 11
attribute

ATTRIBUTE, 9
attribute, keyword, 9
definition, 81

B
backslash, 14
\, 14
BAG CONTAINER, 83
BAG CONTAINER, 10
begin , 8
BlackBoxF , 54
BlackBoxP , 54
BOOL ATT, 10
break, 8, 38
BrowsePrint , 49
BrowseRead , 49

C
call, 8
call , 54
case, 8
char

char, keyword, 9
char, 13
CHAR ATT, 10
character, 13
CharIsAlpha, 8
CharIsAlpha , 41
CharIsAlphaNum, 8
CharIsAlphaNum , 41
CharIsDigit, 8
CharIsDigit , 41
CharIsLower, 8
CharIsUpper, 8

158

INDEX 159

CharToAsc , 42
CharToLower , 42
CharToScr, 8
CharToStr , 41
CharToUpper , 41
ClearScreen, 8
ClearScreen , 54
CloseFile, 8
CloseFile , 46
CLU SUB, 10
cluster

CLUSTER, 9
cluster, keyword, 9
definition, 88

co attribute
CO ATTRIBUTE, 9
co attribute, keyword, 9
definition, 84

coexistence, 11
COLL COLET, 10
coll et

COLL ET, 9
coll et, keyword, 9
definition, 88

collection
COLLECTION, 9
collection, keyword, 9
definition, 87

color, 54
COMMA, 46, 48
comment, 7
COMP GROUP, 10
complex user object

COMPLEX USER OBJECT, 9
complex user object, keyword,

9
component

COMPONENT, 9
component, keyword, 9
definition, 85

CON COPY, 10, 79
CON DIC, 10, 79
CON GEN, 10, 79
CON INTEG, 10, 79
CON XTR, 10, 79
connection

CONNECTION, 9
connection, keyword, 9
definition, 79

CONST MEM, 10

constant, 3, 8
character, 13
integer, 13
list, 15
string, 13

constraint
CONSTRAINT, 9
constraint, keyword, 9
definition, 86

container, 11
CONTAINS, 10
continue, 8, 38
create, 73
create, 8
creation date, 11
criterion, 11
cursor, 16

+ > operation, 28
< + operation, 28
get operation, 29

D
DATA GR, 10
data object

DATA OBJECT, 9
data object, keyword, 9
definition, 80

DATE ATT, 10
decim, 11
delete , 48
DialogBox , 49, 50
directive

include, 127
use, 122

disjoint, 11
do, 36
do, 8
do attribute

DO ATTRIBUTE, 9
do attribute, keyword, 9
definition, 84

document
DOCUMENT, 9
document, keyword, 9
definition, 78

DOMAIN, 10

E
else, 33
else, 8

160 INDEX

end, 8
ent rel type

ENT REL TYPE, 9
ent rel type, keyword, 9
definition, 80

ENTITY CLU, 10
ENTITY COLET, 10
ENTITY ETR, 10
ENTITY SUB, 10
entity type

ENTITY TYPE, 9
entity type, keyword, 9
definition, 80

Environment, 8
eof, 8
eof , 47
EQ CONSTRAINT, 86
EQ CONSTRAINT, 10
ERR CALL, 11
ERR DIV BY ZERO, 11, 20
ERR ERROR, 11
ERR FILE CLOSE, 11
ERR FILE OPEN, 11
ERR PATH NOT FOUND, 11
ERR PERMISSION DENIED, 11
error

messages, 139–147
register, 55

et role
ET ROLE, 9
et role, keyword, 9
definition, 90

ETROUND, 10
ETSHADOW, 10
ETSQUARE, 10
exclusive, 11
ExistFile, 8
ExistFile , 48
export, 8
expression, 19
expression operators, 7

F
FALSE, 10
field, 16
file, 16

file, keyword, 9
file desc, 11
filename, 11
flag, 11

FLOAT ATT, 10
font name, 11
font size, 11
for, 36
for, 8
function, 57
function, 8
functional assignment, 21

G
generic object

GENERIC OBJECT, 9
generic object, keyword, 9
definition, 74

get, 8
get , 29
GetAllProperties, 8
GetAllProperties , 111
GetChar , 63
GetColor

GetColor, 54
GetCurrentObject, 8
GetCurrentObject , 54
GetCurrentSchema, 8
GetCurrentSchema , 55
GetDay , 50
GetError , 55
GetFirst, 8
GetFirst , 45
GetFlag, 8
GetFlag , 53
GetHour , 50
GetLast, 8
GetLast , 45
GetMin , 50
GetMonth , 50
GetOID , 54
GetOxoPath , 55
GetPosX

GetPosX, 54
GetPosY

GetPosY, 54
GetProperty, 8
GetProperty , 110
GetSec , 53
GetTokenUntil , 62
GetTokenWhile , 61
GetType, 8
GetType , 55
GetWeekDay , 53

INDEX 161

GetYear , 53
GetYearDay , 53
gogo, 37
goto, 8
GR COMP, 10
GR MEM, 10
group

GROUP, 9
group, keyword, 9
definition, 85

H
halt, 8, 39
HIDEPROD, 10

I
identifier, 8
identifier, 11
if, 33
if, 8
if-then, 33
if-then-else, 33
in, 36
in, 8
INC CONSTRAINT, 86
INC CONSTRAINT, 10
include directive, 127
INDEX ATT, 10
instruction operators, 7
INT MAX, 13
INT MAX, 10
INT MIN, 13
INT MIN, 10
integer, 13

integer, keyword, 9
IS IN, 10
IsActive, 8
IsNotNull, 8
IsNoVoid, 8
IsNoVoid , 55
IsNull, 8
IsVoid, 8
IsVoid , 55

K
key, 11
keyword, 8
kill, 8

L
L CRITERION, 10

L DATE, 10
L FREE, 10
L NAME, 10
L ROLE, 10
L SNAME, 10
L VERSION, 10
label, 37
label, 8
last update, 11
LEFT, 46, 48
length, 8
length, 11
Length , 45
library, 122
link, 16
list, 15

+ > operation, 28
< + operation, 28
** operation, 27
++ operation, 27
get operation, 29
list, keyword, 9
overview, 23

LIST CONTAINER, 83
LIST CONTAINER, 10
literate programming, 124

M
machine, 137
MakeChoice , 63
MakeChoiceLU , 63
MARK1, 10
MARK1, 10
MARK1, 10
MARK1, 10
MARK1, 10
mark plan, 11
max con, 11
max rep, 11
MAX STRING, 14
MAX STRING, 10
mem role, 11
member, 8
member , 45
member cst

MEMBER CST, 9
member cst, keyword, 9
definition, 87

MessageBox , 50
meta-definition, 94

162 INDEX

meta object
META OBJECT, 9
meta object, keyword, 9
definition, 94

meta property
META PROPERTY, 9
meta property, keyword, 9
definition, 95

min con, 11
min rep, 11
MO MP, 10
mod, 8, 19
multi, 11

N
N CARD, 10
name, 11
neof, 8
neof , 47
newline, 14
not, 19
nseof , 63
NUM ATT, 10

O
object, 16
object-type, 16
OBJECT ATT, 10
OpenFile, 8
OpenFile , 46
operations

character, 41–42
cursor, 45
file, 46–48
list, 45
misc., 54–55
string, 42–44

operator
**, 27
++, 27
:: suffix, unary, 124
::, infix,binary, 124

suffix, unary, 123
operators, 7, 19
or, 8, 19
OR MEM CST, 86
OR MEM CST, 10
other, 11
otherwise, 8

OWNER ATT, 10
owner of att

OWNER OF ATT, 9
owner of att, keyword, 9
definition, 84

owner of proc unit
definition, 94

P
p actor

definition, 94
p component

definition, 91
p environment

definition, 92
p expression

definition, 92
p function

definition, 93
p involve

definition, 93
p statement

definition, 91
p user view

definition, 97
p user viewable

definition, 97
path, 11
posx, 54
posx, 11
posx2, 11
posy, 54
posy, 11
posy2, 11
precedence, 19
predefined, 11
primary, 11
print, 8, 46
printf, 8
printf , 46
proc unit

definition, 90
procedure, 57
procedure, 8
product

PRODUCT, 9
product, keyword, 9
definition, 76

POP CORRUPTED, 10
POP NOT FOUND, 10

INDEX 163

Property, 109

Q
query, 99
quote, double, 14

R
read, 8, 47
readf, 8
readf , 46
REAL COMP, 10
real component

REAL COMPONENT, 9
real component, keyword, 9
definition, 90

recursiveness, 59
recyclable, 11
reduce, 11
reference, 16, 20
register

error, see error, register
regular expression, 153
REL RO, 10
rel type

REL TYPE, 9
rel type, keyword, 9
definition, 81

remove, 107
remove , 107
rename, 8
rename , 47
repeat, 36
repeat, 8
reserved, word, 8
return, 8
RIGHT, 46, 48
RO ETR, 10
role

ROLE, 9
role, keyword, 9
definition, 89

RTROUND, 10
RTSHADOW, 10
RTSQUARE, 10

S
SCH COLL, 10
SCH DATA, 10
schema

SCHEMA, 9

schema, keyword, 9
definition, 77

SCHEMA DOMAINS, 10
secondary, 11
SELECT, 10
sem, 11
seof , 63
SEQ ATT, 10
SET CONTAINER, 83
SET CONTAINER, 10
set of product

set of product, keyword, 9
definition, 77

set product item
set product item, keyword, 9
definition, 78

SetFlag, 8
SetFlag , 53
SetParser , 61
SetPrintList, 8
SetPrintList , 48
SetProperty, 8
SetProperty , 110
short name, 11
si attribute

SI ATTRIBUTE, 9
si attribute, keyword, 9
definition, 82

SkipUntil , 62
SkipWhile , 62
stable, 11
statement, 35

for, 36
goto, 37
label, 37
repeat, 36
while, 35

status, 11
StrBuild, 8
StrBuild , 42
StrCmp , 44
StrCmpLU , 44
StrConcat, 8
StrConcat , 42
StrFindChar, 8
StrFindChar , 43
StrFindSubStr, 8
StrFindSubStr , 43
StrGetChar, 8
StrGetChar , 43

164 INDEX

StrGetSubStr, 8
StrGetSubStr , 43
string, 13

string, keyword, 9
StrIsInteger , 44
StrItos, 8
StrItos , 43
StrLength , 43
StrSetChar, 8
StrSetChar , 43
StrStoi, 8
StrStoi , 43
StrToLower, 8
StrToLower , 44
StrToUpper, 8
StrToUpper , 44
sub type, 88

SUB TYPE, 9
sub type, keyword, 9

switch, 34
switch, 8
SYS MO, 10
system

SYSTEM, 9
system, keyword, 9
definition, 76

SYSTEM SCH, 10

T
tab, 14
TAR MEM CST, 86
TAR MEM CST, 10
tech, 11
text font name, 11
text font size, 11
TheFirst, 8
TheFirst , 105
then, 33
then, 8
TheNext, 8
TheNext , 105
to, 8
total, 11
TRUE, 10
type, 11
type, definition, 13
type object, 11
type of file, 11

U
UngetToken , 63
UNIQUE ARRAY CONTAINER, 83
UNIQUE ARRAY, 10
UNIQUE LIST CONTAINER, 83
UNIQUE LIST CONTAINER, 10
until, 8
updatable, 11
UpdateColor

UpdateColor, 54
UpdatePosX

UpdatePosX, 54
UpdatePosY

UpdatePosY, 54
use, 8
use , 123
use directive, 122
USER ATT, 10
user object

USER OBJECT, 9
user object, keyword, 9
definition, 76

V
value, 11
VAM, 137
VARCHAR ATT, 10
variable, 3
version, 11
view, 11
Void, 8
void, 8
Void , 55

W
where, 11
while, 35
while, 8

X
xgrid, 11
xor, 8

Y
ygrid, 11

Z
zoom, 11

