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Article

A NAD-dependent glutamate dehydrogenase
coordinates metabolism with cell division in
Caulobacter crescentus
François Beaufay1, Jérôme Coppine1, Aurélie Mayard1, Géraldine Laloux2, Xavier De Bolle1 &

Régis Hallez1,*

Abstract

Coupling cell cycle with nutrient availability is a crucial process for
all living cells. But how bacteria control cell division according to
metabolic supplies remains poorly understood. Here, we describe a
molecular mechanism that coordinates central metabolism with
cell division in the a-proteobacterium Caulobacter crescentus. This
mechanism involves the NAD-dependent glutamate dehydrogenase
GdhZ and the oxidoreductase-like KidO. While enzymatically active
GdhZ directly interferes with FtsZ polymerization by stimulating
its GTPase activity, KidO bound to NADH destabilizes lateral inter-
actions between FtsZ protofilaments. Both GdhZ and KidO share
the same regulatory network to concomitantly stimulate the rapid
disassembly of the Z-ring, necessary for the subsequent release of
progeny cells. Thus, this mechanism illustrates how proteins initi-
ally dedicated to metabolism coordinate cell cycle progression
with nutrient availability.
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Introduction

Cell division is a key process to ensure survival, development, and

spreading of all living beings. At the heart of this mechanism, self-

assembly proteins play a crucial role (Margolin, 2000; Osteryoung,

2001). In eukaryotes, actin and myosin drive cell constriction,

whereas microtubules form the mitotic spindle. In prokaryotes, the

actin-like ATPase MreB and the tubulin-like GTPase FtsZ control cell

growth and cytokinesis (Karsenti & Vernos, 2001; Margolin, 2009;

Laporte et al, 2010). Accordingly, self-assembly proteins are

targeted by checkpoints all along the cell cycle. For instance,

cyclin-dependent kinases trigger the assembly of the mitotic spindle

upon completion of DNA replication (Li & Zheng, 2004; Yokoyama &

Gruss, 2013), while the nucleoid occlusion system inhibits FtsZ poly-

merization over the replicating chromosome and thereby prevents

genome bisection (Wu & Errington, 2004; Bernhardt & de Boer,

2005). In vitro, FtsZ self-assembles in a GTP-dependent manner into

protofilaments, which in turn associate through lateral interactions

into structures of higher complexity (Mukherjee & Lutkenhaus,

1994; Erickson & Stoffler, 1996; Gonzalez et al, 2003). In vivo, FtsZ

assembles at the division site into a dynamic ring-like structure,

called the Z-ring, where it acts as a scaffold for the recruitment of cell

division proteins and plays an active role in cytokinesis (Goehring &

Beckwith, 2005; Li et al, 2007; Goley et al, 2011). Although the exact

molecular mechanism by which the Z-ring disassembly drives cell

constriction in vivo is still under intense debate, GTPase activity and

lateral interactions play a crucial role in this process (Monahan et al,

2009; Dajkovic et al, 2010; Erickson et al, 2010; Osawa & Erickson,

2011). A recent study showed that the Z-ring is very likely continu-

ous, composed of either overlapping shorter filaments or a single

filament rolled up on itself (Szwedziak et al, 2014). Most impor-

tantly, the authors proposed that cell constriction requires the fila-

ments to slide along each other (Szwedziak et al, 2014). Although

lateral interactions between FtsZ filaments would play a direct role

in this process, the GTPase activity might be crucial in vivo to initiate

Z-ring disassembly as well as to maintain the dynamic state of the

Z-ring, essentially by stimulating filament shrinkage (Stricker et al,

2002; Osawa & Erickson, 2011; Szwedziak et al, 2014).

The a-proteobacterium Caulobacter crescentus is a powerful

model to study cell division control since it divides asymmetrically

to give rise to two different daughter cells, a small swarmer cell and

a large stalked cell. The sessile stalked cell initiates DNA replication

(S phase) shortly after the previous cytokinesis, whereas the motile

swarmer cell first enters in a non-replicative G1 phase (Fig 1A). The

swarmer cell then differentiates into a stalked cell by ejecting the

polar flagellum, retracting the polar pili, and synthesizing a stalk at

the same pole. This swarmer-to-stalked cell transition coincides

with the initiation of DNA replication (G1-to-S transition). Although
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the Z-ring is built up at the onset of the S phase, cell constriction

only starts at the early predivisional stage (late S phase) and is

followed by a rapid contraction of the Z-ring in late predivisional

stage (G2 phase) (Degnen & Newton, 1972; Osley & Newton, 1980;

Holden et al, 2014).

Among the regulators of FtsZ identified so far, only few have

been described to coordinate cell division with metabolism

(Kirkpatrick & Viollier, 2011). The glucosyltransferases, UgtP in Bacillus

subtilis and OpgH in Escherichia coli, interfere with FtsZ dynamics

to delay cell division, allowing cells to adapt their size according to

nutrient availability (Weart et al, 2007; Hill et al, 2013). In contrast

to E. coli or B. subtilis, C. crescentus does not vary its cell length in

response to changes in nutrient availability (Campos et al, 2014).

Nevertheless, the small NAD(H)-binding protein KidO has been

proposed to coordinate cell division with the metabolic state of the

cell (Radhakrishnan et al, 2010). KidO prevents premature Z-ring

formation during G1 phase and promotes Z-ring disassembly in G2

phase, but cannot interfere with FtsZ during S phase since it

is degraded by the ClpXP protease at the G1-to-S transition

(Radhakrishnan et al, 2010). However, the exact mechanism used

by KidO to modulate FtsZ dynamics remains unknown.

Here, we identified a conserved bifunctional NAD-dependent

glutamate dehydrogenase (GDH) that controls Z-ring disassembly. A

GDH catalyzes the interconversion of glutamate into a-ketoglutarate
and ammonia by using NAD(P)H as a cofactor, thereby bridging

Krebs and nitrogen cycles (Fig 1B) (Minambres et al, 2000). We

show that GdhZ (for glutamate dehydrogenase interacting with

FtsZ) stimulates cell constriction during cytokinesis by directly

interfering with Z-ring stability and that GDH activity is essential to

mediate this effect. In addition, we found that GdhZ and KidO use

different molecular mechanisms to stimulate depolymerization of

FtsZ, but share the same regulatory network to synergistically

prevent premature Z-ring formation in G1 swarmer cells and to trig-

ger Z-ring disassembly in G2 predivisional cells. This mechanism

illustrates how bacteria can adapt their cell cycle according to nutri-

ent availability.

Results

A NAD-dependent glutamate dehydrogenase interacts with FtsZ

To find additional regulators of FtsZ, a yeast two-hybrid screen was

performed using a prey library of random genomic DNA fragments of

C. crescentus (see details in Supplementary Materials and Methods).

We fished out a fragment encompassing the uncharacterized

CCNA_00086 gene (here referred to as gdhZ), coding for a NAD-

dependent GDH. To provide biochemical evidence that GdhZ and

FtsZ are part of the same complex, lysates from strains in which gdhZ

was replaced by either 3FLAG-gdhZ or gdhZ-3FLAG were subjected to

immunoprecipitation with a-FLAG antibodies. These experiments

showed that FtsZ was co-purified with both GdhZ fusions, further

supporting the interaction between GdhZ and FtsZ (Fig 1C).

gdhZ deletion leads to a severe cell division defect

By interacting with FtsZ, GdhZ might regulate cell division. To

address this question, we first generated an in-frame deletion of gdhZ

(DgdhZ) and found that DgdhZ cells displayed a large cell size heter-

ogeneity with a high proportion of tiny and filamentous cells (Fig 2A

and B). The DgdhZ mutant also exhibited a serious growth defect,

with a doubling time of ~165 min in complex media (PYE) compared
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Figure 1. The NAD-dependent glutamate dehydrogenase GdhZ interacts
with FtsZ in Caulobacter crescentus.

A Caulobacter crescentus cell cycle. During the G1 phase, the growth of the
swarmer cell is controlled by the actin-like protein MreB (Aaron et al, 2007)
and FtsZ is localized at the new pole. Upon initiation of DNA replication
(G1-to-S transition) and differentiation (swarmer-to-stalked transition),
FtsZ polymerizes at midcell where it recruits MreB and all the other cell
division proteins. Once DNA replication is complete, constriction starts at
the end of the S phase to finally lead to septation (G2 phase) and the
release of a small swarmer cell and a large stalked cell.

B GdhZ is a NAD-dependent glutamate dehydrogenase (GDH), which
catalyzes the interconversion of glutamate into a-ketoglutarate and
ammonia, bridging the tricarboxylic acid cycle (TCA) with the nitrogen
cycle. GdhZ is essential in vivo for the catabolism of histidine, proline,
arginine, glutamine, and glutamate, since it constitutes the only entry point
into the TCA.

C Co-immunoprecipitation (Co-IP) experiments showing that GdhZ can pull
down FtsZ. Co-IP were performed on protein extracts of wild-type (RH50),
gdhZ-3FLAG (RH728), and 3FLAG-gdhZ (RH743) strains. GdhZ and FtsZ were
detected by Western blotting using respectively anti-GdhZ and anti-FtsZ
antibodies before (IN) and after immunoprecipitation (IP) with anti-FLAG
antibodies. Proteins not immunoprecipitated were detected in flow-
through (FT) fractions.

Source data are available online for this figure.
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Figure 2. Inactivation of gdhZ leads to a severe cell division defect.

A Cell size distribution of wild-type (RH50) and DgdhZ (RH534) strains grown in complex PYE media. The cell length was measured by using MicrobeTracker software
(Sliusarenko et al, 2011). The mean cell size ! standard deviation (in lm) of the different strains is indicated in brackets.

B Phase contrast imaging of wild-type (RH50), DgdhZ (RH534), ftsZE79K (NR6102), and ftsZE79KDgdhZ (RH1329) strains, showing that combination of ftsZE79K with DgdhZ
leads to a conspicuous filamentation. Scale bar, 5 lm.

C Expression of ftsZ-yfp suppresses DgdhZ cell division defect over time. Wild-type (RH53) and DgdhZ (RH853) cells bearing an additional copy of ftsZ fused to yfp at the
vanA locus (PvanA::ftsZ-yfp) were grown in PYE and imaged at different timepoints following induction of ftsZ-yfp expression with 0.5 mM vanillate. Scale bar, 5 lm.

D Immunoblot of FtsZ and MreB steady-state levels in wild-type and DgdhZ cell lysates showing that both strains have similar amount of FtsZ proteins. Protein
extracts were prepared from wild-type (RH50) and DgdhZ (RH534) strains, and twofold serial dilutions of cell lysates were separated on SDS–PAGE. The relative
abundance of FtsZ and MreB intensities was quantified using ImageJ software, normalized according to the dilution factor. FtsZ levels were finally normalized
according to MreB (FtsZ/MreB 100% in wild-type versus 103% in DgdhZ).

E Overexpression of gdhZ leads to cell filamentation. DgdhZ cells expressing a venus-gdhZ fusion from PxylX at the xylX locus (RH740) were grown in PYE and imaged at
different timepoints following induction of venus-gdhZ expression with 0.1% xylose. Scale bar, 5 lm.

F Immunoblot of GdhZ and MreB showing levels of Venus-GdhZ increased over time in cells overexpressing venus-gdhZ. Proteins extracts were prepared from DgdhZ
PxylX::venus-gdhZ (RH740) strain at the indicated timepoints after xylose induction and separated on SDS–PAGE. The level of GdhZ-GFP in strain RH602 was used as a
control.

Source data are available online for this figure.

ª 2015 The Authors The EMBO Journal

François Beaufay et al Metabolic control of bacterial cell division The EMBO Journal

3



to ~85 min for the wild-type strain (Supplementary Fig S1). In

addition, the proportion of late predivisional (constricting) cells, that

is, predivisional cells with a visible ongoing constriction, was signifi-

cantly (P < 0.001) higher in DgdhZ (~25%) than in wild-type

(~10%). Surprisingly, DgdhZ phenotypes were rescued when

glucose, xylose, or alanine was added to PYE or used as the sole

carbon source in synthetic media (Supplementary Fig S1 and data

not shown). None of these carbon sources does require GDH activity

to be catabolized in vivo. In contrast, amino acids feeding the Krebs

cycle thanks to GdhZ activity (i.e. glutamate, histidine, proline,

arginine, and glutamine; Fig 1B) did suppress neither growth nor cell

division defects of DgdhZ (data not shown). These results indicate

that GdhZ might regulate cell division according to the carbon source

used and that GDH activity might be essential for this regulation.

As the proportion of late predivisional cells was abnormally high

in the DgdhZ strain, we asked whether the deletion of gdhZ could

specifically affect the G2 phase of the cell cycle. Flow cytometry

analyses of the DNA content over the cell cycle showed that G1 and

S phases were similar in both wild-type and DgdhZ strains (Supple-

mentary Fig S2). Likewise, the timing of localization of the G1-to-S

transition markers MipZ-CFP (Thanbichler & Shapiro, 2006) and

StpX-GFP (Hughes et al, 2010, 2013) was not affected in the DgdhZ
cells, supporting that GdhZ does regulate neither the G1 phase nor

the transition to the S phase (Supplementary Fig S2). In contrast,

the time spent at the division site by the late cell division marker

TipN-GFP (Huitema et al, 2006; Lam et al, 2006; Goley et al, 2011)

was prolonged in DgdhZ cells (~60 min) in comparison with wild-

type cells (~15 min). These observations are consistent with the

high number of predivisional (constricting) cells observed in a

DgdhZ population and further support a role for GdhZ in cell divi-

sion. In the same line, combination of DgdhZ with ftsZE79K resulted

in an exacerbated filamentation (Fig 2B). Initially isolated as a

mutant that tolerates kidO overexpression, ftsZE79K is still able to

sustain cell division despite a twofold reduced GTPase activity

(Radhakrishnan et al, 2010). On the contrary, expression of a second

copy of ftsZ fused to yfp from an inducible promoter (PvanA::ftsZ-

yfp) suppressed the cell size heterogeneity (Fig 2C and Supplemen-

tary Fig S3A), but not the growth defect of DgdhZ (Supplementary

Fig S3B). Indeed, after 3 h of induction with vanillate, the average

cell size of DgdhZ cells varied from 2.0 ! 1.5 lm to 2.5 ! 0.8 lm,

a distribution similar to a wild-type population grown in the same

conditions (2.7 ! 0.7 lm). This result prompted us to check

whether intracellular level of FtsZ decreased in the absence of gdhZ.

Quantification of immunoblot analyses revealed that FtsZ levels in

DgdhZ cells corresponded to 103% of wild-type FtsZ levels (Fig 2D),

suggesting that GdhZ does not control FtsZ levels but rather its

dynamics. Finally, overexpression of gdhZ fused to venus from the

inducible PxylX promoter (PxylX::venus-gdhZ) gave rise to cell fila-

mentation upon addition of xylose (Fig 2E and F), without seriously

interfering with cell growth (Supplementary Fig S1E and F).

Altogether these results suggest that GdhZ is a metabolic regula-

tor controlling late steps of cell division according to the carbon

source catabolized by C. crescentus.

GdhZ regulates FtsZ dynamics in vivo

Since gdhZ is required for efficient cell division, we tested whether

GdhZ controls FtsZ dynamics in vivo by monitoring the distribution

of FtsZ-YFP in wild-type and DgdhZ cells (Fig 3A). By plotting

FtsZ-YFP intensity profile along the cell length, we did not detect

any FtsZ misplacement in DgdhZ cells (Fig 3A). In contrast, we

found that the proportion of cells with a detectable medial Z-ring

was significantly (P < 0.001) higher in DgdhZ (87.5 ! 1.8%;

n = 672) than in the wild-type strain (70.4 ! 5.4%; n = 716). Simi-

lar observations were made with MreB, which is recruited very early

at the Z-ring (Goley et al, 2011), since 90.0 ! 2.6% (n = 937) of

DgdhZ cells displayed a midcell localization for GFP-MreB versus

76.3 ! 3.5% (n = 635) for wild-type cells (P < 0.001). These results

suggest that FtsZ could be prematurely recruited at the midcell in

small G1 swarmer cells in the absence of gdhZ. To test that, we

determined the localization of FtsZ-YFP in wild-type and DgdhZ
small G1 swarmer cells (≤ 2 lm). As expected, FtsZ-YFP was mostly

observed at a pole (75.7%, n = 70) and occasionally at midcell

(7.1%, n = 70) of wild-type cells ≤ 2 lm. In DgdhZ cells ≤ 2 lm,

FtsZ-YFP localized more often at a midcell position (24.7%,

n = 121), and less frequently at a pole (38.8%, n = 121). Thus, FtsZ

is prematurely assembled as a Z-ring in DgdhZ G1 swarmer cells. As

the expression of ftsZ-yfp suppresses DgdhZ cell division defects

(Fig 2C), we sought to use a strain expressing gfp-fzlC from the

inducible xylX promoter (PxylX::gfp-fzlC) to monitor FtsZ localization

throughout the cell cycle. Indeed, GFP-FzlC not only mirrors FtsZ

localization (Goley et al, 2011), but most of all, its expression does

not mitigate DgdhZ phenotypes (data not shown). Time-lapse exper-

iments revealed that GFP-FzlC failed to disappear from the contract-

ing Z-ring in late predivisional cells, but also relocalized at the

midcell of future daughter cells prior to the completion of cell divi-

sion in DgdhZ cells (Fig 3B).

These data indicate that GdhZ inhibits the formation and/or

stability of the Z-ring, presumably in G2 phase to stimulate its disas-

sembly and in G1 phase to prevent the assembly of a new Z-ring

before the constricting one is disassembled.

GdhZ colocalizes with FtsZ at midcell

To further characterize the role of GdhZ in cell division control, we

determined its subcellular localization in strains expressing either

gdhZ-gfp at the native gdhZ locus or venus-gdhZ from the inducible

PxylX promoter. Both GdhZ-GFP and Venus-GdhZ fusions accumu-

lated at a medial position (Fig 3C). Interestingly, GdhZ-GFP no longer

localized at midcell when glucose or xylose was added to the culture

medium (data not shown). Let’s remind that these two carbon

sources suppressed cell growth and division defects of DgdhZ cells

(Supplementary Fig S1 and data not shown). Coexpressing gdhZ-gfp

and ftsZ-mcherry from the inducible PxylX promoter confirmed that

GdhZ-GFP fluorescence signal was enriched at or near the Z-ring (i.e.

where FtsZ-mCherry localized) in more than 70% (n = 437) of cells

displaying a GdhZ-GFP signal (Fig 3D). Similar results were obtained

with GdhZ-GFP and mCherry-FzlC, since both proteins colocalized in

~65% of cells (Supplementary Fig S4A). In addition, demographic

representations of GdhZ-GFP and FtsZ-mCherry signals allowed us to

monitor the dynamic localization of both proteins along the cell cycle

from a heterogeneous population. As expected, FtsZ-mCherry was

found at one pole of small G1 swarmer cells before being relocated

at a medial position in larger cells (Figs 1A and 3E). In contrast,

GdhZ-GFP was not localized at one pole in small G1 swarmer cells

(Fig 3E), but started to accumulate at midcell in larger cells, slightly
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after the Z-ring was assembled at the division site (Fig 3E). This

result suggests that GdhZ could be recruited at midcell directly by

FtsZ. To test that, the localization of GdhZ-Venus and mCherry-FzlC

was assessed in a strain where the only copy of ftsZ was under the

control of the inducible PxylX promoter. After 3 h of xylose depletion,

GdhZ-Venus still displayed a discrete localization (≤ 1 focus per cell),

while mCherry-FzlC was mostly diffuse in the cytoplasm (Supple-

mentary Fig S4B and C). However, GdhZ-Venus no longer concen-

trated at midcell (Supplementary Fig S4D), suggesting that GdhZ

midcell recruitment relies on FtsZ.

A

C

D

B E

Figure 3. GdhZ regulates Z-ring dynamics in vivo.

A Localization of FtsZ-YFP determined by phase contrast and fluorescence microscopy of wild-type (RH53) and DgdhZ (RH853) cells expressing ftsZ-yfp from PvanA at the
vanA locus. Expression of ftsZ-yfp was induced by adding 0.5 mM vanillate to the cultures 1 h before imaging. Scale bar, 5 lm. FtsZ-YFP signal from wild-type and
DgdhZ cells was plotted according to the cell length. “0” and “1” correspond to the poles, and “0.5” to the midcell position.

B Time-lapse fluorescence microscopy of wild-type (RH1733) and DgdhZ (RH1734) cells harboring PxylX::gfp-fzlC, showing the dynamic localization of GFP-FzlC
throughout the cell cycle. Cells were grown in PYE, and xylose was added 1 h before spotting cells on PYE agarose pad. Each picture was taken every 35 min. Arrows
point to premature recruitment of GFP-FzlC at future division sites in daughter cells prior to the completion of cell division.

C Localization of GdhZ-GFP or Venus-GdhZ, determined by phase contrast and fluorescence microscopy of gdhZ-gfp (RH602) or DgdhZ PxylX::venus-gdhZ (RH740).
Expression of venus-gdhZ induced by adding 0.05% xylose was added to the cultures 30 min before imaging. Scale bar, 5 lm.

D Colocalization of GdhZ-GFP with FtsZ-mCherry, determined by phase contrast and fluorescence microscopy of gdhZ-gfp PxylX::ftsZ-mcherry (RH967). The
expression of ftsZ-mcherry was induced by adding 0.1% xylose to the cultures 30 min before imaging. Scale bar, 5 lm. GdhZ-GFP (green) and FtsZ-mCherry
(red) signals from gdhZ-gfp PxylX::ftsZ-mcherry cells were plotted according to the cell length. “0” and “1” correspond to the poles, and “0.5” to the midcell
position.

E Demographic representation of FtsZ-mCherry and GdhZ-GFP fluorescent patterns (n = 957). The signal intensity in each cell is represented by a color code, from dark
blue (low intensity) to red (high intensity). “0” corresponds to the midcell position.
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These observations suggest that GdhZ accumulates at the divi-

sion site in a FtsZ-dependent manner very likely to stimulate Z-ring

disassembly in late predivisional cells.

GdhZ modulates FtsZ dynamics in vitro

Our observations so far implicate GdhZ as a negative regulator of

the Z-ring. We thus tested the ability of GdhZ to modulate FtsZ

dynamics in vitro. For this purpose, we purified native GdhZ and

monitored its activity (oxidative deamination) by following NADH

production at 340 nm. The reaction was defined as a function of the

concentration of NAD+ or glutamate (Supplementary Fig S5). The

NAD+ saturation curve followed a Michaelis–Menten kinetics, yield-

ing a Km value of 0.038 mM (Supplementary Fig S5A). In contrast,

the glutamate saturation curve was sigmoidal, and a Hill plot

established a S0.5 of 42.5 mM with an interaction coefficient (n)

of 1.6, indicating a positive cooperativity in glutamate binding

(Supplementary Fig S5B).

Since purified GdhZ was active in vitro, we then measured the

intrinsic GTPase activity of FtsZ and visualized the formation of

FtsZ ordered structures (protofilaments and bundles) by negative-

stain electron microscopy (EM), in the presence or absence of GdhZ.

First, the addition of increasing concentration of GdhZ did not

substantially affect the GTPase activity of FtsZ, with only a slight

increase (~30%) in GTP hydrolysis at a 2:1 GdhZ:FtsZ molar ratio

(Fig 4A). In contrast, the addition of GdhZ together with its

substrates (NAD+ and glutamate) strongly stimulated the GTPase

activity of FtsZ in a dose-dependent manner (Fig 4B) (~4.5-fold
increase at 2:1 GdhZ:FtsZ ratios). Interestingly, the presence of only

one of the substrates (NAD+ or glutamate) was sufficient for GdhZ

to stimulate the GTPase activity of FtsZ (Supplementary Fig S6A),

suggesting that a conformational change of GdhZ induced by

substrate binding allows GdhZ to interfere with FtsZ dynamics

in vitro. Then, we examined the effect of GdhZ on FtsZ ultrastructures

by EM. In agreement with earlier studies, in the presence of GTP,

FtsZ assembled into straight protofilaments that can associate into

bundles (Fig 4C). Consistent with the above results, FtsZ structures

were still visible in the presence of GdhZ alone (Fig 4D), but barely

detectable when GdhZ and its substrates were included in the reac-

tions, with only a few short protofilaments observed at a 1:1 GdhZ:

FtsZ ratio (Fig 4E). Note that GdhZ also self-assembles into higher

ordered structures in a concentration-dependent manner (F. Beaufay

and R. Hallez, unpublished results), which affected the negative-

staining contrast. Importantly, neither substrates nor products of

GDH reaction (NAD(H), glutamate, ammonium, or a-ketoglutarate)
did, on themselves, neither stimulate the GTPase activity nor influ-

ence the polymeric structures of FtsZ in the tested conditions

(Fig 4B and data not shown). Likewise, the dynamics of FtsZ was

not affected by the unrelated bovine L-glutamic dehydrogenase

GdhA with its substrates (Supplementary Fig S6B and E). Finally,

we found that FtsZE79K, which displays a twofold reduced GTPase

activity compared to wild-type FtsZ, was still fully sensitive to active

GdhZ (Supplementary Fig S6C and F). The GTPase activity of

FtsZE79K was indeed strongly stimulated by active GdhZ (~ninefold
at 2:1 GdhZ:FtsZE79K ratio).

On the basis of these in vitro data, we propose that catalytically

active GdhZ very likely disassembles FtsZ polymers by triggering

the GTPase activity of FtsZ.

GdhZ activity is required to control the cell division process

The fact that GdhZ substrates are required in vitro for GdhZ to stimu-

late the GTPase activity of FtsZ prompted us to investigate the effect

of a catalytically inactive mutant of GdhZ (GdhZK837A) on cell divi-

sion. GdhZK837A was stable in vivo and purified GdhZK837A displayed

no detectable GDH activity in vitro in contrast to wild-type GdhZ

(Supplementary Fig S7A). We found that gdhZK837A phenocopied

DgdhZ in terms of (i) growth and cell division defects (Supplemen-

tary Figs S1, S7B and S7C), (ii) synthetic interaction with ftsZE79K

(Supplementary Fig S7C), and (iii) premature GFP-FzlC recruitment

at midcell (Supplementary Fig S7D and data not shown). In addition,

GdhZK837A did not affect FtsZ dynamics (Supplementary Fig S6D and

E), even if it could still pull down FtsZ (Supplementary Fig S7E).

These results further support the idea that GDH activity is strictly

required for GdhZ to control cell division but not to mediate interac-

tion with FtsZ.

GdhZ abundance oscillates over the cell cycle

The abundance of FtsZ and several of its regulators (FtsA, FzlA,

FtsQ, or KidO) was previously shown to oscillate during the cell

cycle in order to coordinate cell division events (Kelly et al, 1998;

Martin et al, 2004; Goley et al, 2010; Radhakrishnan et al, 2010).

To determine whether GdhZ is also cell-cycle-regulated, we moni-

tored GdhZ abundance over the cell cycle in a synchronized popula-

tion of Caulobacter cells in which the native copy of gdhZ was

replaced by a functional 3FLAG-gdhZ fusion. As illustrated in

Fig 5A, 3FLAG-GdhZ oscillated throughout the cell cycle, reaching

the highest level in swarmer and late predivisional cells and the

lowest level in stalked cells. This cell cycle fluctuation was also

observed in the wild-type strain using polyclonal anti-GdhZ anti-

bodies (Fig 5B). Thus, GdhZ starts to disappear in differentiating

stalked cells (i.e. when the Z-ring is built up) and reappears in late

predivisional cells (i.e. when the Z-ring starts to be disassembled)

(Fig 5A and Supplementary Fig S8A).

Several evidence support that GdhZ might be subjected to a cell

cycle-dependent proteolysis. First, adding a 3FLAG tag or GFP at

GdhZ C-terminus (GdhZ-3FLAG or GdhZ-GFP) or substituting the

last two alanine residues by two aspartate residues (GdhZAA::DD)

completely abrogated oscillation (Fig 5C and Supplementary Fig

S8B and data not shown). This is reminiscent of that seen for

other cell-cycle-regulated proteins degraded by the ClpXP protease

(Domian et al, 1997; Radhakrishnan et al, 2010; Abel et al, 2011).

Indeed, GdhZ has a C-terminal end homologous to the proteolytic

SsrA peptide tag (Fig 5D) known to deliver substrates to ClpXP.

Masking or mutating this conserved motif could block proteolysis as

it is the case for CtrA or KidO (Domian et al, 1997; Radhakrishnan

et al, 2010; Abel et al, 2011). Second, the steady-state level of GdhZ

increased in the absence of the ClpP peptidase subunits (Fig 5E).

Third, 3FLAG-GdhZ did not oscillate anymore in mutants (DcpdR,
DrcdA, and DpopA) unable to degrade ClpXP-dependent substrates

(Supplementary Fig S8C) (Iniesta et al, 2006; McGrath et al, 2006;

Duerig et al, 2009). Together these results suggest that, similar to

KidO, GdhZ undergoes a ClpXP-dependent degradation throughout

the cell cycle.

The reappearance of GdhZ in late predivisional cells could

be due to the transcriptional activation of gdhZ by the response
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regulator CtrA, as described for KidO (Radhakrishnan et al, 2010).

Indeed, CtrA, known to modulate the transcription of cell-cycle-

regulated genes (Laub et al, 2000), has recently been shown to

tightly bind the promoter region of gdhZ (PgdhZ) (Fumeaux et al,

2014). To test this hypothesis, the transcription of gdhZ was moni-

tored with a PgdhZ::lacZ transcriptional fusion in strains in which

CtrA is either underactivated (DpleC) or overactivated (DdivJ or

divKcs) (Supplementary Fig S9A). We found that PgdhZ activity was

reduced by ~25% in DpleC cells and increased by ~25% in DdivJ or
divKcs cells in comparison with wild-type cells (Supplementary Fig

S9B). Accordingly, the steady-state level of GdhZ was increased in

divKcs cells and decreased in a strain expressing a thermosensitive

loss-of-function mutant of ctrA (Supplementary Fig S9C). These

results strongly suggest that CtrA~P directly activates the transcrip-

tion of gdhZ.

Overall, we propose that GdhZ uses the same regulatory network

as KidO to oscillate throughout the cell cycle, very likely to limit its

abundance during the S phase of the cell cycle, that is, when the

Z-ring has to be built up. Taken this into consideration, the localiza-

tion of GdhZ-GFP at the midcell during S phase (stalked and early

predivisional cells), depicted on Fig 3E, very likely resulted from the

stabilization of the fusion protein. Therefore, we can postulate that

GdhZ is recruited to the division site in late predivisional cells, very

likely to trigger Z-ring disassembly.

KidO inhibits lateral interactions between FtsZ protofilaments

By inhibiting Z-ring formation in swarmer cells (G1) and stimulating

Z-ring disassembly in late predivisional cells (G2), GdhZ would play

a role similar to the one already proposed for KidO (Radhakrishnan

et al, 2010). However, the exact mechanism by which KidO, once

bound to NAD(H), interferes with FtsZ remains unknown. To

address this question, KidO was purified and its effect on the poly-

merization of FtsZ was measured in vitro. In contrast to GdhZ with

its substrates, KidO alone (Fig 6A) or with its cofactor (NAD+ or

NADH, Fig 6B) did not substantially affect the GTPase activity of

FtsZ. At a 2:1 KidO:FtsZ ratio, KidO slightly increases the GTP

hydrolysis rate of FtsZ (~30%) in the presence of either NADH or

NAD+ (compare Figs 6B and 4B). However, EM analyses revealed

that, in the presence of NADH but not NAD+, KidO drastically

FtsZ ± GdhZ

400

20

40

60

80

100

120

140

160

180

2010 30
Time (min)

µM
 P

i

50

C

FtsZ FtsZ + GdhZ

D

FtsZ + GdhZ + NAD+/glutamate

E

A B

FtsZ  (3.1/min)
GdhZ/FtsZ 1:2 (3.6/min)
GdhZ/FtsZ 1:1 (4/min)
GdhZ/FtsZ 2:1 (4.1/min)

FtsZ  (1.7/min)
GdhZ/FtsZ 1:2 (2.8/min)
GdhZ/FtsZ 1:1 (4.8/min)
GdhZ/FtsZ 2:1 (7.8/min)
GdhZ + NAD+/glutamate

40

FtsZ + NAD+/glutamate ± GdhZ

0 20

20

0301

40

60

80

100

120

140

160

180

Time (min)

µM
 P

i

Figure 4. Active GdhZ promotes FtsZ’s GTPase activity in vitro leading to filaments disassembly.

A Inorganic phosphate (Pi) release over time by FtsZ (0.5 lM) incubated with 1 mM GTP in the presence of 0, 0.25, 0.5, or 1 lM GdhZ, respectively. The rates of
GTPase (Pi released per FtsZ molecule per min) are indicated for each condition.

B Stimulation of FtsZ’s GTPase activity with active GdhZ. Inorganic phosphate (Pi) release over time by FtsZ (0.5 lM) incubated with 1 mM GTP, 100 mM glutamate,
5 mM NAD+ in the presence of 0, 0.25, 0.5, or 1 lM GdhZ, respectively. The rates of GTPase (Pi molecules released per FtsZ per min) are indicated for each
condition. Note that GdhZ with its substrates (100 mM glutamate, 5 mM NAD+) does not display any detectable GTPase activity on itself.

C–E Negative-stain electron microscopy of FtsZ (0.5 lM) incubated with 1 mM GTP in the absence (c) or presence of 0.5 lM GdhZ alone (d) or together with 100 mM
glutamate and 5 mM NAD+ (e). Scale bar, 100 nm.

Source data are available online for this figure.
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reduced FtsZ bundling without interfering with single protofila-

ments (Fig 6D). These results suggest that KidO bound to NADH

hampers lateral interactions between FtsZ protofilaments rather

than stimulating FtsZ’s GTPase activity. This observation is consis-

tent with the drastic increase of bundling capacity that we observed

for the KidO-resistant mutant FtsZE79K (Supplementary Fig S6F). In

comparison with wild-type FtsZ, FtsZE79K assembled in vitro into

larger and longer polymeric structures (compare Supplementary Fig

S6E and F), very likely by increasing lateral interactions between

FtsZ protofilaments. In that case, the reduced GTPase activity of

FtsZE79K would therefore be an indirect consequence of the

increased bundling. On the other hand, the fact that GdhZ and KidO

use different molecular mechanisms to control cell division explains

the sensitivity of the KidO-resistant mutant FtsZE79K to active GdhZ

(Supplementary Fig S6C) as well as the synthetic interactions

observed between ftsZE79K and DgdhZ or gdhZK837A (Fig 2B and

Supplementary Fig S7C). The robust Z-rings formed in vivo by

FtsZE79K could not be properly disassembled without the GdhZ-

dependent stimulation of FtsZ GTPase activity.

Thus, GdhZ and KidO might control FtsZ by using different and

complementary mechanisms to trigger Z-ring disassembly.

KidO and GdhZ work in synergy to trigger Z-ring disassembly

As both GdhZ and KidO (i) inhibit Z-ring assembly/stability in

swarmer and late predivisional cells, (ii) share the same regula-

tory network to oscillate throughout the cell cycle, and (iii) use

NAD(H) as a cofactor, we wondered whether KidO and GdhZ

could act in coordination to control Z-ring dynamics. To test this

idea, we created a C. crescentus strain in which both proteins

were stabilized, that is, not anymore proteolyzed by ClpXP. If

both proteins disassemble FtsZ polymers, we predict that their

presence at the onset of the S phase would interfere with Z-ring

formation. As expected, this strain (gdhZ-gfp kidOAA::DD) exhibited

a strong filamentation, much stronger than the strain expressing

either gdhZ-gfp or kidOAA::DD (Supplementary Fig S10A and B).

Interestingly, this filamentation was completely abolished when

glucose was added to the medium (data not shown), supporting

that GdhZ and/or KidO are controlled by nutrient availability. We

then tested whether KidO could enhance the effect of active GdhZ

on the GTPase activity of FtsZ. As shown on Fig 6C, the presence

of KidO increased the stimulation of FtsZ GTPase activity by

active GdhZ (~30%) although NADH was only generated by GDH

activity. The NADH produced by GdhZ could therefore be directly

delivered to KidO to disassemble FtsZ bundles. In support of this

idea, GdhZ and KidO co-purified in a pull-down assay suggesting

that both proteins are part of the same complex (Supplementary

Fig S10C).

These results suggest that GdhZ and KidO act in synergy to

stimulate depolymerization of the Z-ring, KidO-NADH dissociating

FtsZ bundles and active GdhZ stimulating GTPase activity of newly

available FtsZ protofilaments.

A

C

D

B

E

Figure 5. The ClpXP protease is responsible for the cell cycle oscillation
of GdhZ.

A Immunoblotting of protein samples extracted from synchronized 3FLAG-
gdhZ (RH743) cells to follow 3FLAG-GdhZ, FtsZ and CtrA abundance
throughout the cell cycle.

B Immunoblotting of protein samples extracted from synchronized
wild-type (RH50) cells to follow GdhZ and CtrA abundance throughout
the cell cycle.

C Immunoblotting of protein samples extracted from synchronized gdhZ-
3FLAG (RH728) cells to follow GdhZ-3FLAG and KidO abundance throughout
the cell cycle.

D Alignment of the C-terminal extremity of GdhZ, CtrA and SsrA tag. The last
two hydrophobic amino acids (Ala-Ala) are essential for degradation of
substrates by ClpXP.

E Steady-state levels 3FLAG-GdhZ and MreB in clpP depletion (RH991, left
panel) or deletion (RH1672 and RH1675, right panel) strains revealed by
immunoblots (level of 3FLAG-GdhZ increased ~threefold and ~twofold,
respectively). DclpP PxylX::clpP 3FLAG-gdhZ cells were grown in PYE
supplemented with 0.1% xylose to mid-exponential phase and then
washed and resuspended in PYE without xylose. Deletion clpP is known to
be viable in strain deleted for the toxin–antitoxin system socAB (Aakre et al,
2013). DsocAB (RH1672) and DsocABDclpP (RH1675) cells were grown in PYE
to mid-exponential phase.

Source data are available online for this figure.
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Discussion

Here, we found that the NAD-dependent glutamate dehydrogenase

GdhZ coordinates metabolism with cell division in C. crescentus.

GdhZ directly stimulates the GTPase activity of FtsZ, and this regu-

lation requires GdhZ catalytic activity. The central position of GDH

reaction between the TCA and nitrogen cycles makes GdhZ an

excellent candidate and as a metabolic regulator of the cell cycle

(Figs 1B and 7). So far, the best characterized bacterial metabolic

regulators of cell division are UgtP in Bacillus subtilis and OpgH in

Escherichia coli; both are glucosyltransferases using UDP-glucose as

a substrate (Weart et al, 2007; Hill et al, 2013). These proteins

coordinate growth with cell division to adapt cell size according to

nutrient availability. In contrast to C. crescentus, E. coli and
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Figure 6. NADH-bound KidO prevents lateral interactions between FtsZ protofilaments.

A Inorganic phosphate (Pi) release over time by FtsZ (0.5 lM) incubated with 1 mM GTP in the presence of 0, 1, 2.5, or 5 lM KidO, respectively. The rates of GTPase
(Pi released per FtsZ molecule per min) are indicated for each condition.

B KidO does not strongly stimulate GTPase activity of FtsZ in the presence of NADH. Inorganic phosphate (Pi) release over time by FtsZ (0.5 lM) incubated with 1 mM
GTP, 5 mM NADH in the presence of 0, 0.5, 1, or 2.5 lM KidO, respectively. The rates of GTPase (Pi molecules released per FtsZ per min) are indicated for each
condition. Similar results were obtained when NAD+ was used instead of NADH (data not shown).

C KidO enhances the effect of GdhZ on the GTPase activity of FtsZ. Inorganic phosphate (Pi) release over time by FtsZ (0.5 lM) incubated with 1 mM GTP, 100 mM
glutamate, 5 mM NAD+, in the absence or presence of 0.5 lM KidO, or 0.5 lM GdhZ, or both 0.5 lM KidO and 0.5 lM GdhZ. The rates of GTPase (Pi molecules
released per FtsZ per min) are indicated for each condition.

D Negative-stain electron microscopy of FtsZ (0.5 lM) incubated with 1 mM GTP, in the presence of 1 lM KidO without NAD(H) (i), or with 5 mM NAD+, (ii) or 5 mM
NADH (iii). Scale bar, 200 nm. Note that neither NADH nor NAD+ does affect FtsZ polymerization.

Source data are available online for this figure.
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B. subtilis can indeed adjust their cell size depending on their

growth rate (Sargent, 1975; Campos et al, 2014). Similar to UgtP

and OpgH, GdhZ directly interferes with FtsZ. However, in contrast

to GdhZ, UgtP and OpgH do not require their substrates to inhibit

FtsZ polymerization in vitro. The cell division control by UgtP or

OpgH is rather driven by their steady-state levels, which, in turn,

are determined by nutrient availability. In addition, GdhZ mainly

stimulates the GTPase activity of FtsZ, while UgtP inhibits FtsZ

single-filament formation and OpgH sequesters FtsZ monomers

preventing them from assembly (Weart et al, 2007; Hill et al, 2013).

KidO is another metabolic regulator of cell division in C. crescen-

tus, described to stimulate the disassembly of the Z-ring in a NAD

(H)-dependent manner (Radhakrishnan et al, 2010), during the G1

and G2 phases of the cell cycle. We showed that GdhZ and KidO

share the same regulatory network. First, ClpXP degrades both

proteins at the G1-to-S transition, to ensure that they mainly disap-

pear when the Z-ring needs to be assembled at the division site

(early S phase). Second, the master regulator CtrA positively regu-

lates the transcription of gdhZ and kidO, and this coregulation

allows reaccumulation of both proteins in G2 phase to stimulate

the rapid depolymerization of the Z-ring during cytokinesis

(Fig 7). Change in NAD(H) levels during the cell cycle has been

initially proposed to drive KidO-dependent cell division control

(Radhakrishnan et al, 2010). Alternatively, GdhZ might directly deliver

NADH to KidO in the vicinity of the Z-ring, through its catabolic

activity (Fig 7). This “substrate channeling-like” process (Schendel

et al, 1988; Arentson et al, 2012; Dunn, 2012) would coordinate

GdhZ and KidO activities on the Z-ring during the G2 phase of the

cell cycle, in order to facilitate Z-ring disassembly and cytokinesis.

Similar to KidO, GdhZ also prevents premature Z-ring formation

during the G1 phase. Indeed, time-lapse experiments showed that

DgdhZ predivisional cells could assemble a new Z-ring at the

division site of future daughter cells prior to the completion of cell

division (Fig 3B). In addition, a DgdhZ mutant gives birth to small

swarmer progeny cells that have already built up a Z-ring (Fig 3A).

On the basis of these observations, we propose a model (Fig 7) in

which GdhZ and KidO coordinately prevent premature assembly of

the Z-ring in G1 swarmer cells. Then, the ClpXP-dependent proteolysis

of GdhZ and KidO at the G1-S transition allows the building of the

Z-ring. Later in the cell cycle (G2 phase), both proteins reaccumulate

to reach their maximal levels at the late predivisional stage of the

cell cycle. At that time, KidO destabilizes lateral interactions

between FtsZ protofilaments, thereby increasing filament sliding,

while active GdhZ stimulates the GTPase activity of FtsZ to ensure

that the Z-ring does not reach a too condensed state that could block

cytokinesis (Szwedziak et al, 2014). The concomitant recruitment of

two negative regulators of the Z-ring at the onset of the G2 phase

could therefore be responsible for the 2-step motion of cytokinesis

(first slow, then rapid) described for C. crescentus (Holden et al,

2014).

GdhZ
FtsZ
KidO
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NAD+ NADH+H+
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Figure 7. Model for the coordination of cell division with metabolism through the concomitant and synergic action of GdhZ and KidO.
GdhZ andKidO abundance oscillate throughout the cell cycle to reachmaximal levels duringG1 andG2phases. Localization of GdhZ andKidO to the Z-ring allows both proteins
to accumulate in the vicinity of the division site, at the constriction step. Each protein can, independently of each other, avoid premature Z-ring assembly in G1 swarmer
cell and promote Z-ring disassembly in G2 predivisional cells. As being part of the same complex, we propose that GdhZ could locally provide KidO with NADH thanks to
glutamate catabolism. This “substrate channeling-like” mechanism could enhance Z-ring disassembly. According to nutrient availability, the synergic action of both GdhZ
and KidO could be responsible for the rapid constriction observed during G2 phase (Holden et al, 2014). In starving conditions, GdhZ and KidOwould not stimulate constriction,
therefore delaying cell division and preventing the release of the swarmer progeny cells without enough energy and nutrients to colonize new environments.

The EMBO Journal ª 2015 The Authors

The EMBO Journal Metabolic control of bacterial cell division François Beaufay et al

10



Although DgdhZ cells spend significantly more time to proceed to

cytokinesis, a DgdhZ cell population contains many tiny cells smaller

than the smallest wild-type G1 swarmer cells, a phenotype usually

attributed to polar cell division events (Lutkenhaus, 2007). Surpris-

ingly, it is unlikely to be the case for DgdhZ cells as the Z-ring still

assembles at midcell in the vast majority of cells (Fig 3A). Instead, it

probably arises from a miscoordination between metabolism/growth

and cell division. Indeed, the premature Z-ring assembly in G1 swarmer

cells coupled to a slow growth rate could lead to smaller pre-

divisional cells, which could in fine generate smaller progeny cells.

The kinetic parameters determined for GdhZ (high S0.5 for gluta-

mate and low Km for NAD+) suggest that the catabolic activity of

GdhZ would be mainly controlled in vivo by glutamate availability

rather than by NAD+ levels. In oligotrophic environments, amino

acids could serve as a major carbon source for bacteria such as

C. crescentus. High GDH activity could therefore be sensed as a

signal of plenty for the cell division apparatus, allowing the release

of daughter cells with sufficient nutrient/energy supplies. Such a

mechanism would favor the survival of swarmer progeny cells in

poor nutrient environments. The conservation of GdhZ among

a-proteobacteria also suggests that amino acids catabolism could be

another common feature for these bacteria. In support of this idea,

an in-frame deletion of gdhZ homolog in Brucella abortus (DgdhZBa),

an intracellular pathogen of cattle, led also to growth and cell divi-

sion defects (data not shown). Moreover, DgdhZBa cells failed to

sustain efficient intracellular replication in murine macrophages (F.

Beaufay and R. Hallez, unpublished results), strongly suggesting that

amino acids could be a major carbon source encountered by Brucella

during infection, as it is the case for other intracellular pathogens

(Zhang & Rubin, 2013). Altogether these data suggest that cell divi-

sion control mediated by GdhZ could be conserved among a-proteo-
bacteria. The suppression of DgdhZ defects by the addition of a

GdhZ-independent carbon source (e.g. glucose) raises the possibility

that (an)other enzyme(s) regulate(s) cell division according to the

main carbon source encountered in the environment. It is worth to

note that a connection between glycolysis and cell division has been

recently highlighted in B. subtilis (Monahan & Hajduk, 2014). The

authors proposed that pyruvate levels control Z-ring assembly

thanks to the pyruvate dehydrogenase (PDH) activity (Monahan &

Hajduk, 2014). As the final product of hexose (e.g. glucose) catabo-

lism, it would be interesting to check whether pyruvate and/or PDH

controls cell division in C. crescentus grown in the presence of

glucose or other complex hexoses.

As a metabolic enzyme, GDHs are subjected to various post-trans-

lational regulations (Minambres et al, 2000; Commichau et al, 2007;

Oliveira & Sauer, 2012). Our in vitro analysis also revealed that GDH

activity of GdhZ is inhibited by TCA intermediates (e.g. citrate) and

stimulated by some amino acids such as arginine (data not shown).

We also observed that GdhZ auto-assembles into ordered structures

(F. Beaufay and R. Hallez, unpublished results), even we do not

know whether this self-assembly has any effect on GDH activity or

cell division control. Self-assembly of glutamate dehydrogenase has

been described for a long time in various organisms (Josephs &

Borisy, 1972; O’Connell et al, 2012). It is worth noting that UgtP’s

oligomerization state was shown to play an important role in the

control of cell division in B. subtilis (Chien et al, 2012).

A single protein harboring multiple functions is referred to as a

“moonlighting protein” (reviewed in Huberts & van der Klei, 2010).

Moonlighting proteins are commonly found among metabolic

enzymes; for example, 7 out of the 10 proteins in the glycolytic

pathway and 7 out of the 8 proteins in the TCA cycle display a

moonlighting function. Because of their interaction with cell

metabolites and the subsequent conformational change induced upon

substrate binding, metabolic enzymes constitute good candidates for

signal transduction (Huberts & van der Klei, 2010).

How cells coordinate growth with cell cycle according to nutrient

availability and energy supplies remains an exciting open question.

Although we have now uncovered a new bifunctional enzyme that

couples cell division with amino acids catabolism, further work is

needed to highlight other links between metabolism and cell cycle.

Materials and Methods

Bacterial strains and growth conditions

Escherichia coli Top10 was used for cloning purpose and grown

aerobically in Luria–Bertani (LB) broth (Sigma) (Casadaban &

Cohen, 1980). Electrocompetent cells were used for transformation

of E. coli. All Caulobacter crescentus strains used in this study are

derived from the synchronizable wild-type strain NA1000 and were

grown in peptone–yeast extract (PYE,) or synthetic M2 glucose

(M2G) or xylose (M2X) media at 28–30°C. Growth was monitored

by following the OD (600 nm) during 24 h in an automated plate

reader (Bioscreen C; Lab Systems) with continuous shaking at 30°C.
When indicated, media were supplemented with glucose (G), xylose

(X), vanillate (Van), and alanine (A) at a final concentration of

0.2%. Genes expressed from the inducible vanA promoter (PvanA)

were induced with 0.5 mM vanillate; genes expressed from the

inducible xylX promoter (PxylX) were induced with ≤ 0.05% xylose

in a DxylX background or with 0.1% xylose in xylX+ background.

For FtsZ depletion experiments, cells were grown in the presence of

0.05% xylose for induction, then washed and resuspended in PYE

liquid media without xylose. Generalized transduction was

performed with phage ФCr30 according to the procedure described

in Ely (1991).

For E. coli, antibiotics were used at the following concentrations

(lg/ml; in liquid/solid medium): ampicillin (50/100), kanamycin

(30/50), oxytetracycline (12.5/12.5), spectinomycin (100/100),

streptomycin (50/100), and hygromycin (100/100). For C. crescen-

tus, media were supplemented with kanamycin (5/20), oxytetra-

cycline (1/2.5), spectinomycin (25/50), or streptomycin (5/5),

where appropriate.

Escherichia coli S17-1 and E. coli MT607 helper strains were used

for transferring plasmids to C. crescentus by respectively bi- and

tri-parental mating. In-frame deletions were created by using the

pNPTS138-derivative plasmids, by following the procedure

described in Thanbichler and Shapiro (2006).

Strains and plasmids used in this study are listed in Supplemen-

tary Tables S2 and S3, together with construction details provided in

the Supplementary Materials and Methods.

Y2H screen

Y2H screen was performed using a N-terminal fragment of C. cres-

centus ftsZ (ftsZ1-324) fused to Gal4BD as bait, and a library of
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random genomic DNA (gDNA) fragments of C. crescentus fused to

Gal4AD as prey (Davis et al, 2013). The library was transformed into

Saccharomyces cerevisiae strain Y187 (Clontech) and selected onto

synthetic medium without leucine (SD-L). The pGBKT7-ftsZ1–324

(pHR284) plasmid was transformed into S. cerevisiae strain Y2H

Gold (Clontech) and selected onto synthetic medium without trypto-

phan (SD-W). Y2H screen was performed essentially as proposed by

the manufacturer (Clontech). Both yeast strains were grown sepa-

rately either in SD-L or in SD-W, washed, and allowed to grow

together in complex rich medium supplemented with adenine for

24 h at 30°C with slow shaking. More than 1 × 107 diploids were

screened either on SD-LWH supplemented with 5 mM 3-Amino-

1,2,4-triazole (3-AT) or on SD-LWA. Isolated prey plasmids were

transformed into E. coli strain Top10 and the inserts identified by

DNA sequencing.

Immunoprecipitation

Caulobacter crescentus strains were grown in PYE liquid media

(OD660 ~0.7), harvested by centrifugation for 15 min at 6,000 × g,

4°C and resuspended in 5 ml ice-cold phosphate buffer saline (PBS)

containing 0.05% Triton X-100, complete EDTA-free anti-proteases,

20 mg/ml lysozyme, 10 U/ml DNase I. Cells were first lysed by

sonication, and then, zirconium beads were added and cells were

disrupted by FastPrep cycles (5 × 20 s) and harvested by centrifuga-

tion for 30 min at 14,000 × g, 4°C. Cell pellets were discarded, and

1 mg of protein lysates was mixed to 50 ll of anti-FLAG M2

magnetic beads (Sigma) resuspended in PBS 20 mg/ml BSA and

incubated at 4°C for 1 h. Beads were pelleted by using magnets and

washed six times in PBS containing 0.05% Triton X-100. Beads were

then resuspended in 100 ll SDS-loading containing 0.5 mg/ml of

3×Flag peptides (Sigma). Lysates and eluates were analyzed by

Western blot. For Co-IP analysis with KidO, 0.05% xylose was

added to the culture 1 h before harvesting cells, to allow kidO-

mcherry expression.

Immunoblot analysis

Proteins crude extracts were prepared by harvesting cells from expo-

nential growth phase (OD660 0.1–0.4). Cells were resuspended in

SDS–PAGE loading buffer and lysed by incubation at 90°C for

10 min. Proteins were then subjected to electrophoresis in a

4–15% SDS–polyacrylamide gel, transferred onto a nitrocellulose

membrane, and immunoblotted for ≥ 1 h with primary antibodies:

a-FtsZ (1:20,000), a-FLAG (1:5,000) (Stratagene), a-CtrA (1:5,000),

a-MreB (1:5,000), a-KidO (1:2,000) (Radhakrishnan et al, 2010),

a-GdhZ (1:10,000), and a-DsRed (Clontech) (1:1,000). Membranes

were then immunoblotted for ≤ 1 h with secondary antibodies:

1:10,000 anti-mouse (for a-FLAG) or 1:7,500 anti-rabbit (for all the

others) linked to peroxidase (GE Healthcare), and visualized thanks

to Western Lightning Plus-ECL chemiluminescence reagent (Perkin-

Elmer) and ImageQuant LAS400 (GE Healthcare).

Synchronization of cells

For synchrony, cells were grown in 200 ml of PYE to OD660 0.6,

harvested by centrifugation for 15 min at 6,000 × g, 4°C, resus-

pended in 60 ml of ice-cold phosphate (PO3"
4 ) buffer, and combined

with 30 ml of Ludox LS Colloidal Silica (30%) (Sigma-Aldrich)

(Jenal & Shapiro, 1996). Cells resuspended in Ludox were centri-

fuged for 40 min at 9,000 × g, 4°C. Swarmer cells, corresponding to

the bottom band, were isolated, washed twice in ice-cold PO3"
4

buffer, and finally resuspended in prewarmed PYE media for growth

at 30°C. Samples were collected every 15 min for Western blot,

microscopy, and FACS analyses.

Light and fluorescent microscopy

All strains were imaged during exponential growth phase after immo-

bilization on 1% agarose pads (Ely, 1991). For time-lapse experi-

ments, cells were grown in PYE, transferred onto freshly prepared

PYE 1.5% agarose pads, covered, and sealed with 1:1:1 mixture of

paraffin, lanolin, and vaseline. Microscopy was performed using

Axioskop microscope (Zeiss), Orca Flash 4.0 camera (Hamamatsu),

and Zen 2012 software (Zeiss). Images were processed with ImageJ.

Microbetracker and matlab analysis

Cell identification and analysis were obtained using the Matlab-

based open-source software MicrobeTracker. Further quantitative

analyses from cell meshes were performed with Matlab software

(The MathWorks Inc., Natick, MA). Demographic representations

were created using scripts derived from Hocking et al (2012).

Briefly, each cell was sorted by length and segmented, and fluores-

cence in each segment was integrated, normalized to the brightest

segment, and plotted as a heat map from 0 (no fluorescence) to 1

(maximum fluorescence). Polar and midcell signals were considered

when a maximal fluorescence (≥ 1.5-fold of the mean fluorescence)

was localized up to 0.1 from each pole (0–0.1; 0.9–1) or from 0.4 to

0.6, respectively.

Proteins purification

FtsZ purification was performed as described in Thanbichler and

Shapiro (2006).

GdhZ purification was performed essentially as described in

Minambres et al (2000) with the exception of GdhZ overproduction.

Escherichia coli BL21 (DE3) was transformed with plasmid pHR354

(pET-21b-gdhZ) or pHR573 (pET-21b-gdhZK837A) and grown to an

OD600 of ~0.6 in LB medium (2 L) at 37°C. Isopropyl-b-D-thiogalac-
toside (IPTG) was added to a final concentration of 1 mM and incu-

bated for 4 h. Cells were harvested by centrifugation for 30 min at

5,000 × g, 4°C. Following purification, samples were dialyzed in

50 mM HEPES, pH 7.2, 50 mM KCl, 10 mM MgCl2, 10% glycerol,

5 mM b-mercaptoethanol, and aliquoted, snap-frozen in liquid N2,

and stored at "80°C. Purified GdhZ was also used to immunize a

rabbit in order to produce a-GdhZ polyclonal antibodies.

To purify KidO, E. coli BL21 (DE3) was transformed with

pHR624 (pET-21b-kidO) and grown to an OD600 of 0.6 in LB

medium (2 L) at 37°C. IPTG was added to a final concentration of

1 mM and incubated for 4 h. Cells were harvested by centrifugation

for 30 min at 5,000 × g, 4°C. Cells were resuspended in 20 ml of

buffer A (50 mM Tris, pH 8.5, 1 mM ethylenediaminetetraacetic

acid (EDTA), 10% glycerol, 100 lg/ml phenylmethylsulfonyl fluo-

ride (PMSF) containing 10 U/ml DNase I and complete EDTA-free

anti-proteases (Roche)). Resuspended cells were then disrupted by
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sonication and cell debris pelleted by centrifugation for 30 min at

37,000 × g, 4°C. The supernatant was then passed through HiTrap

DEAE Fast Flow columns (Sigma, 2 × 5 ml) equilibrated with buffer

A. Columns were washed with 100 ml of buffer A, and elution was

carried out with buffer A2 (buffer A + 80 mM KCl). Aliquots of 3 ml

were collected at a flow rate of 3 ml/min. Fractions containing the

KidO were detected by SDS–PAGE and Coomassie blue staining.

These fractions were pooled, dialyzed for 24 h in 50 mM HEPES,

pH 7.5, 50 mM KCl, 10 mM MgCl2, 10% glycerol, 5 mM b-mercap-

toethanol, and aliquoted, snap-frozen in liquid N2, and stored at

"80°C.
In order to immunize rabbits for production of specific polyclonal

antibodies, His6-MreB142-347, FtsZ-His6, and His6-CtrA were purified

according to published works (Quon et al, 1996; Quardokus et al,

2001; Figge et al, 2004).

GTPase assay

The GTPase activity of FtsZ was assayed with the GTPase Assay Kit

(Innova Biosciences, high fidelity) following the manufacturer’s

protocol. GTPase assays were performed with 0.5 lM FtsZ or

FtsZE79K in polymerization buffer (50 mM HEPES pH 7.2, 50 mM

KCl, 0.1 mM EDTA, 1 mM b-mercaptoethanol, 10 mM MgCl2). Reac-

tions were started by the addition of 1 mM GTP before adding KidO

and/or GdhZ or GdhZK837A. When present, NAD+ and glutamate

were used at a final concentration of 5 mM and 100 mM, respec-

tively. Hydrolysis rates were calculated from the slope of the Pi values

plotted according to time. Pi values were normalized according to

corresponding blank conditions containing all reagents except GTP.

Electron microscopy

As for GTPase assays, reactions were performed with 0.5 lM FtsZ

in polymerization buffer and initiated by addition of 1 mM GTP.

Polymerization mixtures were incubated for 5 min at RT. Samples

were then applied to glow-discharged carbon-coated grids, stained

with 2% uranyl acetate for 1 min, washed with a drop of distilled

water, blotted, and air-dried. Images were taken at 80 kV on a

TECNAI 10 transmission electron microscope with a Gatan 967

slow-scan, cooled CCD camera.

b-Galactosidase assay

Cells resuspended in 800 ll of Z buffer (60 mM Na2HPO4, 40 mM

NaH2PO4, 10 mM KCl, 1 mM MgSO4) were lysed with chloroform.

After the addition of 200 ll ONPG (4 mg/ml), reactions were incu-

bated at 30°C until color turned yellowish. Reactions were then

stopped by the addition of 500 ll of 1 M Na2CO3, and absorbance at

420 nm was measured. Miller units are defined as (OD420 × 1,000)/

(OD660 × t × v), where “OD660” is the absorbance at 660 nm of the

cultures before the b-galactosidase assays, “t” is the time of the reac-

tion (min), and “v” is the volume of cultures used in the assays

(ml). All the experiments were performed with three biological

replicates and were normalized according to the wild-type strain

harboring the PgdhZ-lacZ fusion cultivated at 30°C.

Supplementary information for this article is available online:

http://emboj.embopress.org
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