
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Data Structure Extraction in Database Reverse Engineering

Henrard, Jean; Hainaut, Jean-Luc; Hick, Jean-Marc; Roland, Didier; Englebert, Vincent

Published in:
Proc. of International Workshop on Reverse Engineering in Information Systems (REIS'99, ER'99 Workshops)

Publication date:
1999

Link to publication
Citation for pulished version (HARVARD):
Henrard, J, Hainaut, J-L, Hick, J-M, Roland, D & Englebert, V 1999, Data Structure Extraction in Database
Reverse Engineering. in Proc. of International Workshop on Reverse Engineering in Information Systems
(REIS'99, ER'99 Workshops). vol. 1727, pp. 149-160. <http://www.info.fundp.ac.be/cgi-publi/pub-spec-
paper?RP-99-007>

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. Dec. 2024

https://researchportal.unamur.be/en/publications/331dbcda-1466-4dbd-b22a-4a13df9bdbbe
http://www.info.fundp.ac.be/cgi-publi/pub-spec-paper?RP-99-007
http://www.info.fundp.ac.be/cgi-publi/pub-spec-paper?RP-99-007


'DWD�VWUXFWXUH�H[WUDFWLRQ�LQ�GDWDEDVH�UHYHUVH�HQJLQHHULQJ
J. Henrard, J.-L. Hainaut, J.-M. Hick, D. Roland, V. Englebert

Institut d’Informatique, University of Namur
rue Grandgagnage, 21 - B-5000 Namur

db-main@info.fundp.ac.be

$EVWUDFW� Database reverse engineering is a complex activity that can be mod-
eled as a sequence of two major processes, namely data structure extraction and
data structure conceptualization.  The first process consists in reconstructing the
logical - that is, DBMS-dependent - schema, while the second process derives
the conceptual specification of the data from this logical schema.  This paper
concentrates on the first process, and more particularly on the reasonings and the
decision process through which the implicit and hidden data structures and con-
straints are elicited from various sources.  

� ,QWURGXFWLRQ

Reverse engineering a piece of software consists, among others, in recovering or
reconstructing its functional and technical specifications, starting mainly from the
source text of the programs.  Recovering these specifications is generally intended to
redocument, convert, restructure, maintain or extend legacy applications.

In information systems, or data-oriented applications, i.e., in applications the central
component of which is a database (or a set of permanent files), it is generally consid-
ered that the complexity can be broken down by considering that the files or database
can be reverse engineered (almost) independently of the procedural parts, through a
process called Database Reverse Engineering (DBRE in short).

This proposition to split the problem in this way can be supported by the following
arguments.
� The semantic distance between the so-called conceptual specifications and the

physical implementation is most often narrower for data than for procedural parts.
� The permanent data structures are generally the most stable part of applications.

� Even in very old applications, the semantic structures that underlie the file struc-
tures are mainly procedure-independent (though their physical structures may be
highly procedure-dependent).

� Reverse engineering the procedural part of an application is much easier when the
semantic structure of the data has been elicited.

Therefore, concentrating on reverse engineering the application data components first
can be much more efficient than trying to cope with the whole application.

Even if reverse engineering the data structure is "easier" than recovering the specifi-
cation of the application as a whole, it is still a complex and long task.  Many tech-
niques, proposed in the literature and offered by CASE tools, appear to be limited in



scope and are generally based on unrealistic assumptions about the quality and com-
pleteness of the source data structures to be reverse engineered.  For instance, they
often assume that all the conceptual specifications have been declared into the DDL
(data description language), so that all the other information sources are ignored.  In
addition, the schema has not been deeply restructured for performance or for any other
requirements, and names have been chosen rationally.

These conditions cannot be assumed for most large operational databases.  Since the
early nineties, some authors have recognised that the analysis of the other sources of
information is essential to retrieve data structures ([1], [4], [8], [9] and [10]).

The constructs that have been declared in the DDL are called H[SOLFLW�constructs.
On the opposite, the constraints and structures that have not been declared explicitly
are called LPSOLFLW constructs.  The analysis of DDL statements alone leaves the
implicit construct undetected.

Recovering undeclared, and therefore implicit, structure is a complex problem, for
which no deterministic methods exist so far.  A careful analysis of all the information
sources (procedural sections, documentation, database contents, etc.) can accumulate
evidences for those specifications.

)LJ����� The major processes of the reference DBRE methodology (left) and the development of 
the data structure extraction process (right).

This paper presents in detail the refinement process of our database reverse engi-
neering methodology.  This process extracts all the implicit constructs through the ana-
lyze of the information sources.  The paper is organized as follows.  Section 2 is a
synthesis of a generic DBMS-independent DBRE methodology.  Section 3 describes
the data structure extraction process. Section 4 discus how to refine a schema to enrich
it with all the implicit constraints.  Section 5 presents a DBRE CASE tool which is
intended to support data structure extraction, including schema refinement.

Data structure
 extraction

Data structure 
conceptualization

logical 
schema

programs

physical 
schema

conceptual 
schema

 

DDL code
 analyze

Raw
physical schema

 

Physical 
integration

 

Schema
refinement

Complete
physical schema

logical  schema

 

Schema
cleaning

DDL schemaphysical sch. ... dataprograms

'DWD�VWUXFWXUH�H[WUDFWLRQ

DMS-DDL

data ...

Augmented
physical schema



� $�*HQHULF�0HWKRGRORJ\�IRU�'DWDEDVH�5HYHUVH�(QJLQHHULQJ

The reference DBRE methodology [4] is divided into two major processes, namely
GDWD� VWUXFWXUH� H[WUDFWLRQ and GDWD� VWUXFWXUH� FRQFHSWXDOL]DWLRQ� (Fig. 1, left).  These
problems address the recovery of two different schemas and require different concepts,
reasoning and tools.  In addition, they grossly appear as the reverse of the physical and
logical design usually admitted in database design methodologies [2].

��� 'DWD�6WUXFWXUH�([WUDFWLRQ

The first process consists in recovering the complete DMS schema, including all the
explicit and implicit structures and constraints, called the ORJLFDO�VFKHPD.

It is interesting to note that this schema is the document the programmer must con-
sult to fully understand all the properties of the data structures (s)he intends to work
on.  In some cases, merely recovering this schema is the main objective of the pro-
grammer, who can be uninterested in the conceptual schema itself.

This process will be discussed in detail in section 3 and 4.

��� 'DWD�6WUXFWXUH�&RQFHSWXDOL]DWLRQ

The second phase addresses the conceptual interpretation of the logical schema.  It
consists for instance in detecting and transforming or discarding non-conceptual struc-
tures, redundancies, technical optimization and DMS-dependent constructs. 

The final product of this phase is the conceptual schema of the persistent data of the
application. More detail can be found in [5].

��� $Q�([DPSOH

Fig. 2 gives a DBRE process example.  The files and record declarations (2.a) are
analyzed to yield the physical schema (2.b).  This schema is refined through the analy-
sis of the procedural parts of the program (2.c) to produce the logical schema (2.d).
This schema exhibits two new constructs, namely the refinement of the field CUS-
DESC and the foreign key.  It is then transformed into the conceptual schema (2.e).

� 'DWD�6WUXFWXUH�([WUDFWLRQ

The goal of this phase is to recover the complete DMS schema, including all the
implicit and explicit structures and constraints.  The main problem of the data structure
extraction is to discover and to make explicit, through the refinement process, the
structures and constraints that were either implicitly implemented or merely discarded
during the development process.  In the reference methodology we are discussing, the
main processes of data structure extraction are the following (Fig. 1, right):



)LJ�����Database reverse engineering example.

� ''/�FRGH�DQDO\VLV: analysing the data structure declaration statements to extract
the explicit constructs and constraints, thus providing a UDZ�SK\VLFDO�VFKHPD.  This
is one of the simplest process in DBRE which can be automated easily (most data-
base-oriented CASE tools provide a collection of such analyzers).

� 3K\VLFDO�LQWHJUDWLRQ: when more than one DDL source has been processed, several
extracted schemas can be available.  All these schemas are integrated into one glo-
bal schema.  The resulting schema (DXJPHQWHG�SK\VLFDO�VFKHPD) must include the
specifications of all these partial views.

� 6FKHPD�UHILQHPHQW: the explicit physical schema obtained so far is enriched with
implicit constructs made explicit, thus providing the FRPSOHWH� SK\VLFDO� VFKHPD.
This process will be discused in section 4.

Select CUSTOMER assign to "cus.dat"
  organisation is indexed
  record key is CUS-CODE.
Select ORDER assign to "ord.dat"
  organisation is indexed
  record key is ORD-CODE
  alternate record key is ORD-CUS
    with duplicates.

FD CUSTOMER.
01 CUS.
  02 CUS-CODE pic X(12).
  02 CUS-DESC pic X(80).
FD ORDER.
01 ORD.
  02 ORD-CODE PIC 9(10).
  02 ORD-CUS PIC X(12).
  02 ORD-DETAIL PIC X(200).

a) the files and records declaration

ORD

ORD-CODE
ORD-CUS
ORD-DETAIL

id: ORD-CODE
acc: ORD-CUS

CUS

CUS-CODE
CUS-DESC

id: CUS-CODE

CUSTOMER

CUS

ORDER

ORD

01 DESCRIPTION.
 02 NAME pic x(30).
 02 ADDRESS pic x(50).

move CUS-DESC 
   to DESCRIPTION.

...

accept CUS-CODE.
read CUSTOMER 
  not invalid key
    move CUS-CODE 
      to ORD-CUS
    write CUS.

b) the physical schema c) procedural fragments

ORD
ORD-CODE
ORD-CUS
ORD-DETAIL
id: ORD-CODE
ref:ORD-CUS

acc

CUS
CUS-CODE
&86�'(6&

1$0(

$''5(66

id: CUS-CODE

CUSTOMER

CUS

ORDER

ORD

1-1

0-N

place

ORDER
CODE
DETAIL
id: CODE

CUSTOMER
CODE
NAME
ADDRESS
id: CODE

d) the logical schema e) the conceptual schema

+

DDL code analysis

schema refinement

D
S

co
nc

ep
tu

al
iz

at
io

n



� 6FKHPD�FOHDQLQJ: once all the implicit constructs have been elicited, technical con-
structs such as indexes or clusters are no longer needed and can be discarded in
order to get the FRPSOHWH�ORJLFDO�VFKHPD (or simply the logical schema).
The final product of this phase is the complete logical schema, that includes both

explicit and implicit structures and constraints.  This schema is no longer DMS-com-
pliant for at least two reasons.  Firstly, it is the result of the integration of different
physical schemas, which can belong to different DMS.  For example, some part of the
data can be stored into a relational DB, while others are stored into standard files.  Sec-
ondly, the complete logical schema is the result of the refinement process, that
enhances the schema with recovered implicit constraints.

The data structure extraction process is often easier for true database than for stand-
ard files.  Indeed, databases have a global schema (DDL text) that is immediately
translated into a physical schema.  On the contrary, each program includes only a par-
tial schema of standard files.  At first glance, standard files are more tightly coupled
with the programs and there are more structures and constraints buried into the pro-
grams. Unfortunately, all the standard file tricks have been found in recent applications
that use "real" database as well.  The reasons can be numerous: to meet other require-
ments such as reusability, genericity, simplicity, efficiency; poor programming prac-
tice; the application is a straightforward translation of a file-based legacy system; etc.

Some kind of integration can also be necessary later to integrate different compo-
nents of the schema that are represented by different structures (different record types
for example) but represent the same concept.  This can be discovered during the
schema refinement process that will be presented in the next section.

� 6FKHPD�UHILQHPHQW

The main problem of the data structure extraction phase is to discover and to make
explicit, through the refinement process, the structures and constraints that were either
implictly implemented or merely discarded during the development process.  The vari-
ety of implicit constructs can be very large, the main implicits structures and con-
straints we are looking for are the following: record types and fields desaggregation,
identifier, foreign keys, functional dependency, meaningful names, etc.

In this section, we analyse why we need different sources of information, we
describe the elicitation techniques, then we present a generic refinement methodology.
We conclude by the analysis of the automatization of the refinement process.

��� 7KH�,QIRUPDWLRQ�6RXUFHV

To discover an implicit construct the analyst cannot limit its analysis to one informa-
tion source.  On the contrary (s)he has to rely on all the possible information sources.
Those sources are for example: application programs, data, HMI procedural frag-

ments, screen and report layout, generic DMS code fragments1, existing documenta-
tion, interviews, domain knowledge, operation environment knowledge, etc.



(S)he needs to analyze several of those sources because none of them contains all
the hints for all the constraints.  For example, some constraints are not implemented in
the application program because they are verified by some environmental properties
(the input data are always correct, they come from another fully reliable application).
On the other hand, spurious constraints can be discovered in the data (for example, a
field is an identifier) because the set of data is too small.  Or constraints are not veri-
fied because there is some erroneous data.

Many data structures and constraints, that are not explicitly declared, are coded,
among other, as procedural sections of the programs.  For this reason, one of the most
important information source is the program text sources.

��� 7KH�5HILQHPHQW�7HFKQLTXHV

For each information source there exists a set of analysis techniques.  These techniques
can be very simple such as visual inspection of the data or more complex such as
dynamic analysis of executing programs.

)LJ�����Example of program slicing.

3URJUDP�XQGHUVWDQGLQJ is a very active area within the software engineering field.
It is the process of acquiring knowledge about an existing computer program [6].  The
main program understanding techniques are:
� searching the program source text for some patterns or clichés;

� dependency graph: the dependency graph is a graph where each variable of a pro-
gram is represented by a node and an arc represents a direct relation (assignment,
comparison, etc.) between two variables;

� program slicing: the slice of a program with respect to program point S and variable
[ consists of all the program statements and predicates that might affect the value [
at point S.  This concept was originally discussed by M. Weiser [11].  Fig. 3.a is a

1 Some DMS offer general functionality to enforce a large variety of constraints on the data.

FD CUSTOMER.
01 CUS.
  02 CUS-NUM PIC 9(3).
  02 CUS-NAME PIC X(10).
  02 CUS-ORD PIC 9(2) OCCURS 10.

      ...
01 ORDER PIC 9(3).

      ...
1 ACCEPT CUS-NUM.
2 READ CUS KEY IS CUS-NUM.
3 MOVE 1 TO IND.
4 MOVE 0 TO ORDER.
5 PERFORM UNTIL IND=10
6   ADD CUS-ORD(IND) TO ORDER
7   ADD 1 TO IND.
8 DISPLAY CUS-NAME.
9 DISPLAY ORDER.

a) COBOL program P

FD CUSTOMER.
01 CUS.
  02 CUS-NUM PIC 9(3).
  02 CUS-NAME PIC X(10).

1 ACCEPT CUS-NUM.
2 READ CUS KEY IS CUS-NUM.
8 DISPLAY CUS-NAME.

b) Slice of P with respect to CUS-
NAME and line 8



small COBOL program that asks for a customer number (CUS-NUM) and displays
the name of the customer (CUS-NAME) and the total amount of its order (ORDER).
Fig. 3.b shows the slice that contains all the statements that contribute to displaying
the name of the customer, that is the slice of P with respect to CUS-NAME at line 8.

)LJ�����An elementary abstract schema including a foreign key.  A1 is a identifier of table A and 
B2 is a foreign key targeting table A.

Sometimes it can be useful to have different visualization techniques for the same
information.  A program can be visualized as a text or as a call graph.

Data can be analyzed through queries that verify whether a constraint is present or
not.  For example, it is possible to write a query to verify that, in Fig. 4, B2 is a foreign
key targeting table A:

select count(*) from B where B2 not in (select A1 from A);
If the result is 0, then B2 could be a foreign key, otherwise it cannot.
 

)LJ�����The refinement method.

��� 6FKHPD�5HILQHPHQW�0HWKRG

Due to the large amount of information to manipulate, attempting an exhaustive search
for all the imaginable constraints is unrealistic.  We need a methodology that guide us
in our constraints investigation. This methodology will reduce the search space to the
possible constraints.  For example, it is not realistic to query the data to check for each
field combination of the database being an identifier.  We have to decide which fields
are potential identifiers depending of their name (containing key word as “code”, “id”,
“number”, etc.), their structure (mandatory), their position in the record (the first field
of the record), etc.

A1
A2
id: A1

A

B1
B2
ref: B2

B

Augmented
physical schema

 

Schema
analysis

Hypothesis

Validation
report

Information
source

none

at least one  

Hypothesis
validation

 

Schema
enhancement

hypothesis
proved?

exist
hypothesis? yes

no



Fig. 5 sketches a schema refinement method, where rectangles represent process,
ellipses represent the different products (schema, data passed from one process to the
other, ...), diamonts shapes represent decision points.  The execution flow is material-
ized by bold arrows and normal arrows represent product usage.  The VFKHPD�DQDO\VLV
process analyses the $XJPHQWHG�SK\VLFDO�VFKHPD to find missing constraints or con-
structs, called K\SRWKHVLV.  The domain knowledge and the database design knowledge
are also used to discover missing constraints during the schema analysis.  Then we
analyse the other sources of information to validate the hypothesis (K\SRWKHVLV�YDOLGD�
WLRQ).  If the hypothesis is validated then the VFKHPD�HQKDQFHPHQW process enriches the
schema with the validated constraint.  We iterate until no new hypothesis are generated
by the schema analysis.

This method can be instantiated for each DBRE project.  Schema analysis depends
on the constraints we are looking for and hypothesis validation change according to the
information source and the constraint we want to validate.  Indeed, database reverse
engineering basically is a loosely structured learning process which varies largely from
one project to another. We can sketch, as an example, the following principles for for-
eign key elicitation that can apply on relational databases managed by early RDBMS,
in which no keys were explicitly declared.  This example is based on the schema of the
Fig. 4.

It is a good practice to apply as many heuristics as we can.  Because if an heuristic
succeeds, it does not mean that the hypothesis is verified.  On the opposite, if a heuris-

3KDVH +HXULVWLFV 6KRUW�GHVFULSWLRQ

6FKHPD�
DQDO\VLV

name analysis

name analysis
domain knowledge

domain knowledge

technical constructs

Name of column B.B2 suggests a table, or an external id, 
or includes keywords such as ref, ...
Select table A based on the name of B2
Objects described by B are known to have some relation 
with those described by A
Find a table describing objects which are known to have 
some relation with those described by B
Search the schema for a candidate referenced table and id 
(with same type and length)

+\SRWKHVLV %�%��!!�$�$� ILHOG�%��RI�%�LV�D�IRUHLJQ�NH\�WR�LGHQWLILHU�$��RI�$

+\SRWKHVLV
3URYLQJ

technical constructs
technical constructs
dataflow analysis
usage pattern

usage pattern
usage pattern
usage pattern

usage pattern

There is an index on B2
B.2 and A.A1 are in the same cluster
B.2 and A.A1 are in the same dataflow graph fragment
A.A1 values are used to select B rows with same B2 val-
ues
B.2 values are used to select A row with same A1 value
A B row is stored only if there is a matching A row
When an A row is deleted, B rows with B2 values equal 
to A.A1 are deleted as well
There are views based on a join with B.B2 = A.A1

+\SRWKHVLV
'LVSURYLQJ

data analysis Prove that some B.B2 values are not in A.A1 value set



tics fails, the hypothesis is not necessarily disproved.  We can formalize this as fol-
lows:
� we formulate hypothesis K on the existence of an implicit construct &;

so far, K is stated with probability S� < 1;

� we apply heuristics +; K is now stated with probability S�:

� if + succeeds
S��!�S�; the existence of & is more certain, though S� < 1.  

For instance, in the example above, if there is an index on B2 it is one more
evidence that B2 is a foreign key to the identifier A1 of A, but we are not yet
completely certain.

� if + fails, one the three interpretations can hold:

� S�� ��; K is disproved, so that we accept that & does not exist.  
For example, if half of the value of B.B2 are not in A.A1 value set, we can
say that there is no foreign key from B.B2 to A.A1.

� S����S�; K is less certain, but could still be proved through other heuristics.
For example, if there is only one value of B.B2 (out of one million) that is
not in A.A1 value set, we can not conclude there is no foreign key, but it is
perhaps an error in the data.

� + does not contribute to the search; S�� �S�.  
For example, if we didn’t find that B.B2 and A.A1 are in the same dataflow
graph fragment.  This can be because we have chosen a program that does
not use the foreign key (a program that only manipulate B and not A).

The experience has shown that:
� Analysing all the information sources generally proves too expensive, so that the

analyst has to determine which sources to analyse.
� A hypothesis cannot be proved by heuristics alone, it is up to the analyst to decide

when (s)he is convinced the hypothesis is validated.
� This method considers that all the information are reliable, what about the result of

an heuristic applyied on unreliable information (corrupted data, programming
errors)?

� When we are validating an hypothesis, we can discovered other constraints that
must be added to the schema.  For example, when analyzing a program slice com-
puted to verify that a field is a foreign key, other constraints about this field can be
found, because the slice contains all the program instructions that influence the
value of the field.

��� +RZ�WR�'HFLGH�WKDW�5HILQHPHQW�LV�&RPSOHWHG

The goal of the reverse engineering process has a great influence on the output of
the refinement process and on its ending condition.  The simplest DBRE project can be
to recover only the list of all the records with their fields.  All the other constraints are
useless.  This can be useful to make a first inventory of the data used by an application



to prepare another reverse or maintenance project (as Y2K conversion).  In this kind of
project, the logical schema is the final product of DBRE.

On the other end, we can try to recover all the possible constraints to have a com-
plete view of the database.  This can be necessary in a migration project where we
want to convert a collection of standard files into a relational database.
It is the analyst’s responsibility to decide that the schema is complete and all the
needed constraints have been extracted.

��� 3URFHVV�$XWRPDWLRQ

The schema refinement process basically is a decisional activity that cannot be fully
automated.  Many analysis techniques are not intended to locate and find implicit con-
structs, but rather contribute to the discovery of these constructs by focusing the ana-
lyst’s attention on special text or structural patterns.  In short, they narrow the search
scope.  It is up to the analyst to decide if the constraint that is looked for is present or
not.  For example, computing a program slice provides a small set of statements with a
KLJK�GHQVLW\�RI�LQWHUHVWLQJ�SDWWHUQV according to the construct that is searched for (typ-
ically a foreign key).  This small program segment must then be examined visually to
check whether traces of the construct are present or not. 

Another reason for which full automation cannot be reached is that each DBRE
project is different.  The source of information, the underling DBMS or the coding
rules, can all be different and even incompatible.

Despite these restrictions, automation is highly desirable for large projects in which
huge volumes of information have to be explored.  Portfolios of more than 10,000 pro-
grams and databases of more than 500 files/tables are not unfrequent1.  

This automation can be of different kinds:
� Some processes can be fully automated.  For example, during the schema analysis

process, it is possible to have a tool that detects all the possible foreign key that
meet some matching rules (the target is an identifier and the candidate foreign keys
have the same length and type as their target).

� Other processes can be partially automated with some interaction with the analyst.
For example, we can use the dataflow diagram to detect automatically the fields
decomposition.  There is an interaction with the analyst to resolve conflicts (two
different decomposition for the same fields).

� We can define tools that generate reports so that the analyst can analyse them to val-
idate the existence of a constraint.  For example, we can generate a report with all
the fields that contain the key words “id”, “code” and are the first field of their
record.  The analyst must decide which fields are candidate identifiers. 

1 The complexity of DBRE projects is between O(N) and O(N2), where N is the number of
entity types of the schema.  Indeed, each new entity type can be related with all the entity
types of the schema. The analysis effort to process a 500-table database can be up to 100
times greater than for a 50-table database



� 7KH�'%5(�)XQFWLRQV�RI�'%�0$,1

Several industrial projects have proved that powerful techniques and tools are
essential to support DBRE, especially the data structure extraction process, in realistic
size projects.  These tools must be integrated and their results recorded in a common
repository. In addition, the tools need to be easily extensible and customizable to fit the
analyst’s exact needs.

DB-MAIN is a general-purpose database engineering CASE environment that
offers sophisticated reverse engineering toolsets.  DB-MAIN is one of the results of a
R&D project started in 1993 by the database team of the computer science department
of the University of Namur (Belgium).  Its purpose is to help the analyst in the design,
reverse engineering, migration, maintenance and evolution of database applications.  

DB-MAIN offers the usual CASE functions, such as database schema creation,
management, visualisation, validation, transformation, and code and report generation.
It also includes a programming language (9R\DJHU�) that can manipulate the objects of
the repository and allows the user to develop its own functions.  More detail can be
found in [3] and [5].

DB-MAIN also offers some functions that are specific to the data structure extrac-
tion process [6].  The H[WUDFWRUV extract automatically the data structures declared into
a source text. Extractors read the declaration part of the source text and create corre-
sponding abstractions in the repository. The IRUHLJQ�NH\�DVVLVWDQW is used to find the
possible foreign keys of a schema.  Giving a group of fields, that is the origin (or the
target) of a foreign key, it searches a schema for all the groups of fields that can be the
target (or the origin) of the first group.  The search is based on a combination of match-
ing criteria such as the group type, the length, the type and the name of the constructs.  

Other reverse engineering functions use three specific program understanding proc-
essors.  
� A SDWWHUQ�PDWFKLQJ engine searches a source text for a definite pattern.  Patterns are

defined into a powerful pattern description language (PDL), through which hierar-
chical patterns can be defined.

� DB-MAIN offers a YDULDEOH�GHSHQGHQF\�JUDSK tool.  The dependency graph itself is
displayed LQ�FRQWH[W: the user selects a variable, then all the occurrences of this var-
iable, and of all the variables connected to it in the dependency graph are coloured
into the source text, both in the declaration and in the procedural sections. Though a
graphical presentation could be thought to be more elegant and more abstract, the
experience has taught us that the source code itself gives much ODWHUDO information,
such as comments, layout and surrounding statements.

� The SURJUDP�VOLFLQJ tool computes the program slice with respect to the selected
line of the source text and one of the variables, or component thereof, referenced at
that line.
One of the great lessons we painfully learned is that they are no two similar DBRE

projects.  Hence the need for easily programmable, extensible and customizable tools.
The DB-MAIN (meta-)CASE tool is now a mature environment that offers powerful
program understanding tools dedicated, among others, to database reverse engineering,
as well as sophisticated features to extend its repository and its functions.



� &RQFOXVLRQ

In this paper, we have presented a generic methodology for the data structures extrac-
tion process.  We have shown that the schema refinement is a difficult task because it
cannot be fully automated and it can be very different from one project to another.

The role of the analyst is very important.  Except in simple projects, (s)he needs to
be a skilled person, who is competent in the application domain, in database design
methodology, in DBMS’s and in programming language (usually old ones).

One of the major objectives of the DB-MAIN project is the methodological and tool
support for database reverse engineering processes.  We have quickly learned that we
needed powerful program analysis reasoning and their supporting tools, such as those
that have been developed in the program understanding realm.  We integrated these
reasoning in a highly generic DBRE methodology, while we developed specific ana-
lyzers to include in the DB-MAIN CASE tool.  

An education version is available at no charge for non-profit institutions (http://
www.info.fundp.ac.be/~dbm).

� 5HIHUHQFHV

1. Anderson, M.: Reverse Engineering of Legacy Systems: From Valued-Based to
Object-Based Models, PhD thesis, Lausanne, EPFL (1997)

2. Batini, C., Ceri, S. and Navathe, S.B.: Conceptual Database Design - An Entity-Relationship
Approach, Benjamin/Cummings (1992).

3. Englebert, V., Henrard J., Hick, J.-M., Roland, D. and Hainaut, J.-L.: DB-MAIN: un Atelier
d'Ingénierie de Bases de Données, ,QJpQLHULH�GHV�6\VWqPH�G¶,QIRUPDWLRQ, V4 n°1, HERMES-
AFCET (1996).

4. Hainaut, J.-L., Chandelon, M., Tonneau, C. and Joris M.: Contribution to a Theory of Data-
base Reverse Engineering, in 3URF��RI�:&5(¶��, Baltimore, IEEE Computer Society Press
(1993).

5. Hainaut, J.-L, Roland, D., Hick J-M., Henrard, J. and Englebert, V.: Database Reverse Engi-
neering: from Requirements to CARE Tools, -RXUQDO�RI�$XWRPDWHG�6RIWZDUH�(QJLQHHULQJ,
�(1) (1996).

6. Henrard, J., Englebert, V., Hick, J-M. , Roland, D. , Hainaut, J-L.: Program understanding in
databases reverse engineering, in 3URF��RI�'(;$¶��, Vienna (1998).

7. Jerding, D., Rugaber, S.: Using Visualization for Architectural Localization and Extraction,
in 3URF��RI�:&5(¶��, Amsterdam (1997).

8. Joris, M., Van Hoe, R., Hainaut, J.-L., Chandelon, M., Tonneau, C. and Bodart, F. et al.:
PHENIX: Methods and Tools for Database Reverse Engineering, in Proc 5th Int. Conf. on
Software Engieering and Applications.  Toulouse, EC2 Publish (1992).

9. Petit, J.-M., Kouloumdjian, J., Bouliaut, J.-F. and Toumani, F.: Using Queries to Improve
Database Reverse Engineering, in Proc of the 13th Int. Conf. on ER Approach, Manchester.
Springer-Verlag (1994).

10.Montes de Oca C., Carver D. L., A Visual Representation Model for Software Subsystem
Decomposition, in 3URF�RI�:&5(¶��, Hawai, USA, IEEE Computer Society Press (1998).

11.Weiser, M.: Program Slicing, IEEE TSE, 10, 352-357 (1984).


