
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

From Micro-Analytical Method to Mass Processing - The Economic Challenge

Henrard, Jean; Hainaut, Jean-Luc; Hick, Jean-Marc; Roland, Didier; Englebert, Vincent

Published in:
Proc. of Data Reverse Engineering Workshop 2000 (DRE'2000)

Publication date:
2000

Link to publication
Citation for pulished version (HARVARD):
Henrard, J, Hainaut, J-L, Hick, J-M, Roland, D & Englebert, V 2000, From Micro-Analytical Method to Mass
Processing - The Economic Challenge. in Proc. of Data Reverse Engineering Workshop 2000 (DRE'2000).

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. May. 2025

https://researchportal.unamur.be/en/publications/d1db242e-3e69-4b3e-b6b4-c725f064ce48

1 18/2/2002

��������

��������� ��	����� �
��
����
�� ������ ��������� ��
����	��� ���� ����
����� �
�� ����
���� ������������
�� ��� ���
��������
���������� �
��������
������������������ ���������
��� ���� ��������
�� ������� ���� �����	���� ��� �� ��
���� ������

�����������������
�����������������������
���
��������������
�� �������	��������������������������
��������!�
������
�
����� �
� ������� ������� ��
� �
������ ��	����� ������
��� ��
��������� ��
��������� ����� ��
� ���	�� 	���� ������� ���
�������������������"�����

�	�
��
���������������������������������
��������������
�����������������������������������
��#������������
�����
���� �
������� ���� �������
����� ��� �
������
�� ������ ����
���
�
������
����

$
�������������
���������
������ ��������� ������
�����
�������������
� ����� ��������������� ���������
� ��������	%
�������
���
��
���%
�
�� ���� �
��������
� ������� ��� ��� �������� ���� ����� ��
�������������������������������������
��

&�
��� ���� �������'� ���� ��
� ��� ��������� ���� ������
�
�������%������ �
�� �
�������	�� ����� �������� �������
�������
������ ���������������������
����������(

�	
����������

��	����� �
��
����
� a piece of software consists,
among others, in recovering or reconstructing its functional
and technical specifications, starting mainly from the
source text of the programs. Recovering these specifica-
tions is generally intended to redocument, convert, restruc-
ture, maintain or extend legacy applications.

In information systems, or data-oriented applications,
i.e., in applications the central component of which is a
database (or a set of permanent files), it is generally consid-
ered that the complexity can be broken down by consider-
ing that the files or database can be reverse engineered
(almost) independently of the procedural parts, through a
process called ��������� ��	����� �
��
����
� (DBRE in
short).

This proposition to split the problem in this way can be
supported by the following arguments.
� The semantic distance between the so-called conceptual

specifications and the physical implementation is most
often narrower for data than for procedural parts.

� The permanent data structures are generally the most
stable part of applications.

� Even in very old applications, the semantic structures
that underlie the file structures are mainly procedure-
independent (though their physical structures may be
highly procedure-dependent).

� Reverse engineering the procedural part of an applica-
tion is much easier when the semantic structure of the
data has been elicited.
Therefore, concentrating on reverse engineering the

application data components first can be much more effi-
cient than trying to cope with the whole application.

Even if reverse engineering the data structure is ������
than recovering the specification of the application as a
whole, it is still a complex and long task. The elicitation of
implicit constructs (including hidden constraints) is both
complex and tedious. As an illustration of this complexity,
about fifteen essential constructs have been identified, and
more than ten major techniques have been proposed to
elicit them.

Currently DBRE problems are fairly well understood
and techniques are available to solve them. However, most
tools supporting these techniques are ��
�����, i.e., they
address one instance of a data structure pattern to be recov-
ered, so that the analyst has to apply them iteratively. For
example, when looking for foreign keys, (s)he has to apply
the ������
������������
� on each identifier to find the possi-
ble foreign keys that reference this identifier. These tools
and techniques can easily be applied to small projects (say,
50,000 LOC and 20 files). But they are unusable for larger
projects that can have several millions LOC and several
hundreds files or tables.

We can easily be convinced that the complexity of
DBRE projects is between $)� and $)��, where) repre-
sents some measure of the size of the legacy system. For

�� ����������
���� ��������!��������

J. Henrard, J.-L. Hainaut, J.-M. Hick, D. Roland, V. Englebert
*
��������+*
������� ����,
�	����������-����

����.��
����
�����/0�%��%1222�-�����%��������
���'�34/�50�6/7851�%���9'�34/�50�6/78:6

��%���
;�
�����
��������

2 18/2/2002

instance, each file/table can be semantically related with
any of the tables of the schema. Therefore, we have to
examine whether each couple of tables is linked through
one or several foreign keys. In addition, each potential for-
eign key requires the examination of the source code of the
programs. We can make the hypothesis that the huger the
application, the larger the database. This leads to a process
with complexity $)��, where) is the size of the applica-
tion, i.e. some measurement of the number of files/tables in
the database and the number of LOC. Fortunately, some
structures require a more lower complexity, so that we can
state that, considered as a whole, the data reverse engineer-
ing process has a complexity $)��.

The bad news is that the cost of a DBRE project, also is
a function of the square of), which lead to an unacceptable

high cost for large projects. One way to reduce this cost is
to automate the process. But as shown latter, this automa-
tion cannot be complete. Even in parts of the process that
can be automated, tools must be used with much caution
and with the analyst supervision.

This paper is organized as follows. Section 2 is a synthe-
sis of a generic DBMS-independent DBRE methodology.
Section 3 explains how to decide that a DBRE project is
finished. Section 4 and 5 present the need for automation
and its limits. In section 6, DBRE project evaluation is dis-
cussed. The economic challenge is presented in section 7.
Section 8 shows the evolution of the DBRE approach in
DB-MAIN project and CASE tool.

"	 ��#������������������$������������
�������� ����������

The reference DBRE methodology [3] is divided into
two major processes, namely ����������������9�������
 and
����� ���������� ��
��������<����
� (Figure 1, left). These
problems address the recovery of two different schemas
and require different concepts, reasoning and tools. In addi-
tion, they grossly appear as the reverse of the physical and
logical design usually considered in database design meth-
odologies [1].

"	�	 �����%��������� &��������

The first process consists in recovering the complete
DMS schema, including all the explicit and implicit struc-
tures and constraints, called the ��������������.

It is interesting to note that this schema is the document
the programmer must consult to fully understand all the
properties of the data structures (s)he intends to work on. In
some cases, merely recovering this schema is the main
objective of the programmer, who will find the conceptual
schema itself useless.

In this reference methodology, the main processes of
data structure extraction are the following (Figure 1, right):
� ��=�������
������: parsing the data structure declara-

tion statements to extract the explicit constructs and
constraints, thus providing a �������������������.

� >���������
��������
: when more than one DDL source
has been processed, several extracted schemas can be
available. All these schemas are integrated into one glo-
bal schema. The resulting schema (�����
������������
������) must include the specifications of all these par-
tial views.

��������	�������'���(����������$�������$��������)� ������������*��$�+�������������(������$�������������������
�&���������(�������*�����+	

Data structure
 extraction

Data structure
conceptualization

logical
schema

programs

physical
schema

conceptual
schema

DDL code
 analysis

Raw
physical schema

Physical
integration

Schema
refinement

Complete
physical schema

logical schema

Schema
cleaning

DDL schemaphysical sch. ... dataprograms

����������������&��������

DMS-DDL

data RWKHU

Augmented
physical schema

3 18/2/2002

� ?����������
���
�: the main problem of the data struc-
ture extraction phase is to discover and to make explicit
the structures and constraints that were either implicitly
implemented or merely discarded during the develop-
ment process. The physical schema is enriched with
implicit constructs made explicit, thus providing the
������������������������.

� ?����������
�
�: once all the implicit constructs have
been elicited, technical constructs such as indexes or

clusters are no longer needed and can be discarded in
order to get the ����������������������� (or simply the
logical schema).
The final product of this phase is the complete logical

schema, which includes both explicit and implicit struc-
tures and constraints. This schema is no longer DMS-com-
pliant for at least two reasons. Firstly, it is the result of the
integration of different physical schemas, which can
belong to different DMS. For example, some part of the
data can be stored into a relational database, while others
are stored into standard files. Secondly, the complete logi-
cal schema is the result of the refinement process that
enhances the schema with recovered implicit constraints,
which are not necessarily DMS compliant.

"	"	 �����%���������!����(�����,�����

The second phase addresses the conceptual interpreta-
tion of the logical schema. It consists for instance in detect-
ing and transforming or discarding non-conceptual
structures, redundancies, technical optimization and DMS-
dependent constructs.

The final product of this phase is the conceptual schema
of the persistent data of the application. More detail can be
found in [4].

"	-	 ��� &��(��

Figure 2 gives a DBRE process example. The files and
records declarations (2.a) are analyzed to yield the raw
physical schema (2.b). This schema is refined through the
analysis of the procedural parts of the program (2.c) to pro-
duce the logical schema (2.d).

This schema exhibits two new constructs, namely the
refinement of the field CUS-DESC and a foreign key. It is
then transformed into the conceptual schema (2.e).

-	 .�/����������������������������
�&���������������(����

The goal of the reverse engineering process has a great
influence on the output of the data structure extraction pro-
cess and on its ending condition.

The simplest DBRE project can be to recover only the
list of all the records with their fields. All the other con-
straints, such as identifiers, field domains and foreign keys
are ignored. This can be useful to make a first inventory of
the data used by an application in order to prepare another
reverse or maintenance project (as Y2K conversion). In
this kind of project, the partial logical schema is the final
product of DBRE.

On the other hand, we can try to recover all the possible
constraints to have a complete and precise schema of the

�������"	�������������������������������&��(��	

Select CUSTOMER assign to "cus.dat"
 organisation is indexed
 record key is CUS-CODE.
Select ORDER assign to "ord.dat"
 organisation is indexed
 record key is ORD-CODE
 alternate record key is ORD-CUS with duplicates.
FD CUSTOMER.
01 CUS.
 02 CUS-CODE pic X(12).
 02 CUS-DESC pic X(80).
FD ORDER.
01 ORD.
 02 ORD-CODE PIC 9(10).
 02 ORD-CUS PIC X(12).
 02 ORD-DETAIL PIC X(200).

a) the files and records declaration

ORD

ORD-CODE
ORD-CUS
ORD-DETAIL

id: ORD-CODE
acc: ORD-CUS

CUS

CUS-CODE
CUS-DESC

id: CUS-CODE

CUSTOMER

CUS

ORDER

ORD

01 DESCRIPTION.
 02 NAME pic x(30).
 02 ADDRESS pic x(50).

move CUS-DESC
 to DESCRIPTION.
...
accept CUS-CODE.
read CUSTOMER
 not invalid key
 move CUS-CODE
 to ORD-CUS
 write CUS.

b) the physical schema c) procedural fragments

d) the logical schema

e) the conceptual schema

+

DDL code analysis

schema refinement

DS conceptualization

ORD
ORD-CODE
ORD-CUS
ORD-DETAIL
id: ORD-CODE
UHI��25'�&86

CUS
CUS-CODE
&86�'(6&

1$0(

$''5(66

id: CUS-CODE

CUSTOMER

CUS

ORDER

ORD

1-10-N place

ORD
CODE
DETAIL
id: CODE

CUS
CODE
1$0(

$''5(66

id: CODE

4 18/2/2002

database. This schema contains records and fields decom-
position, the exact domains of the fields, foreign keys,
dependencies among fields, etc. For example, this can be
necessary in a reengineering project where we want to con-
vert a collection of standard files into a relational database.

Forward engineering process is finished when all the
required functions of the system are correctly imple-
mented. In DBRE, we don’t have such criteria. We don’t
have a reference schema with which the logical schema
produced by the data structure extraction process could be
compared and evaluated. We cannot prove that we have
elicited all the implicit constructs, since a more in-depth
analysis could lead to the discovery of a new one.

But we have to finish the process, so we need some end-
ing criteria. A possible criterion could be to decide in
advance which kind of constraints we are looking for,
which techniques/tools we will use to discover them and
which sources of information we will analyze. When we
have applied all the techniques/tools on all the information
sources, then we decide that the process is finished.

Of course this criterion does not guarantee that all the
constraints have been found. Moreover, determining which
kind of techniques/tools to apply, to elicit, in a given
project, all the constraints (s)he is looking for, relies on the
analyst.

In another approach, the analyst performs the extraction
by applying successively different techniques/tools and it is
his/her responsibility to decide that the schema is complete
and that all the needed constraints have been extracted.

This shows that DBRE heavily relies on the analyst
skills.

0	 ������������������

DBRE principles and methodologies published so far
are well understood and can be quite easily applied to small
and well structured systems. But when we trying to apply
them to real size complex systems, we have to face huge
volume of information to manipulate and analyze.

So automation is highly desirable to perform DBRE in
large projects within reasonable time and cost limits. It is
usually admitted that an analyst can manipulate (manually)
50,000 lines of code [9], but real projects can have ten to
hundred times more LOC.

When we speak of automation, this does not mean that
the complete DBRE process will be done automatically
without the analyst’s intervention. Instead, in most pro-
cesses, the analyst is provided with tools that help him in
his work. He has to decide which tool he want to use at a
given time and how to interpret the results. Many of the
tools are not intended to locate and find implicit construct,
but rather contribute to the discovery of these constructs by
focusing the analyst’s attention on special text or structural

patterns. In short, they narrow the search scope. It is up to
the analyst to decide if the constraint that he is looking for
is present. For example, computing a program slice pro-
vides a small set of statements with a �������
���������
���%
����
��������
� according to the construct that is searched
for (typically foreign keys or field decomposition). This
small program segment must then be examined visually to
check whether traces of the construct are present or not.

There are several automation levels.
� Some processes can be fully automated. For example,

during the schema analysis process, it is possible to have
a tool that detects all the possible foreign key that meet
some matching rules. Example: the target is an identifier
and the candidate foreign keys have the same length and
type as their target.

� Other processes can be partially automated with some
interaction with the analyst. For example, we can use the
dataflow diagram to detect automatically the actual
decomposition of a field. The analyst is involved in con-
flict resolution (e.g., two different decomposition pat-
terns for the same fields).

� We can define tools that generate reports so that the ana-
lyst can analyze them to detect the existence of a con-
straint. For example, we can generate a report with all
the fields that contain the key words “id” or “code” and
that are in the first position in their record layout. The
analyst must decide which fields are candidate identifi-
ers.

1	 2�������$���������������

Another reason for which full automation cannot be
reached is that each DBRE project is different. The sources
of information, the underling DBMS or the coding rules,
can all be different and even incompatible. So for each
project, we may need some specific tools to discover auto-
matically some very specific constraints in some projects.

As said in the previous sections the data structure
extraction process cannot be fully automated because this
process basically is decision-based. The discovery of for-
eign keys into a program source code is an example of con-
straint elicitation that can not be fully automated. To
discover a foreign key using program understanding tech-
niques, we are looking for data dependencies between the
fields of two records. But data dependencies do not neces-
sarily materialized a foreign key. It can be a functional
dependency between the two fields (as a price and the price
with VAT) or it can be some business rules (as the order
number is some function of the customer number and the
order date). So we can imagine a tools that find data depen-
dencies between database fields, but the analyst need to
qualify those dependencies.

5 18/2/2002

 But even in activities of the process that can be partially
or completely automatize, the tools must be used with
some precaution [10]. While tools are likely to provide bet-
ter results than unaided hand analysis, the analyst needs to
understand the strengths and weaknesses of the tools used.
There are still many cases in which tools either fail to cap-
ture some constraints (missed targets or ����
��) or show
constraints that do not really exist (false targets or
����).
The analyst must validate the results and it is his responsi-
bility to accept or not the constraints proposed by the tools
and to decide to look further to find other constraints.

Even if some tools can help the analyst, the tools alone
does not automatically lead to increased productivity.
Training and well defined methods are needed to get a real
benefit. Data structure extraction is a difficult and complex
task that requires skilled and trained analysts that know the
languages, DBMS, OS used by the legacy system and he
must also master the DBRE methodology, techniques and
tools (which include database engineering).

3	 �)� �(��'��������������

DBRE project evaluation can be a critical problem when
the DBRE is an explicit process in a project or when it is
the project by itself. The customer wants to evaluate the
work of the analyst to know if it was well done and if the
results can be used as input for another project (as data
migration or reengineering).

Unlike classical engineering projects, where the final
result is “concrete”, i.e., some piece of software that the
customer can use and test to check if it meets the initial
specification. In DBRE projects, the final result is an
abstract specification, made up of logical and conceptual
schemas. The customer can find very difficult to evaluate
these schemas.

One of the only way to be sure that the DBRE is com-
plete and correct would be to use its results to migrate the
application to the new database schema and to check if the
new application has the same behavior as the old one. This
������������ approach is only realist when the DBRE is a
first step in a migration process and the same team carries
out the whole process. We can conclude that reverse engi-
neering projects are more difficult to evaluate than engi-
neering ones.

A realistic approach could be, as suggested above, to
agree, at the beginning of the project, on the constraints
that are looked for and the techniques and tools used. It is
also important to explain to the customer the strengths and
the weakness of the chosen approach so that he can evalu-
ate the quality of the result he can be expected.

The critical process with respect to the quality of DBRE
is the data structure extraction. Indeed, the quality of the
conceptual schema depends mainly on the quality of the

logical schema because it is obtained by semantic preserv-
ing transformations. The quality of the data structures
extracted depends on the analyst skills and tools, on quality
of the information sources but also on the time spend dur-
ing the analysis. Not surprisingly, the quality of the results
is thus an economic issue.

4	 ���� ��������!��������

Despite the power of the supporting tools, the discovery
of, say, a foreign key through the analysis of half a million
lines of code is not a trivial job. One have to find state-
ments that perform the checking of the constraint, or that
rely on this implicit foreign key, and these statements can
be spread in all the program and the same constraint can be
checked at several locations, possibly with a different algo-
rithm. This analysis takes times and need to be repeated for
each constraint. Considering that an actual schema can
include several thousands of implicit constructs, DBRE can
prove very costly for medium and large projects. We have
two solutions to reduce the cost of a DBRE project: to
increase the automatic parts of the process or to decrease
the completeness, and therefore the quality, of the results.

Let) be some measure of the DBRE project size. The
DBRE cost can be expressed as a function of this size: �)�.
As already discussed, this function has complexity $)2�.
We can also express the cost as the sum of the manual and
the automatic part of the effort:

where represents the cost of the manual part and
 the cost of the automatic part. They are also both

polynomial in), but �P increases faster that �D. Those func-
tions depend on the level of automation used and vary from
one project to the other.

�������-	�!��(��������$�����������$��)� �(��'����	

As an example, Figure 3.a sketches those functions for
projects of different size carried out mainly manually and
the Figure 3.b represents the cost for the same projects,
with a highest level of automation as possible.

f V() fm V() fa V()+=

fm V()
fa V()

size

cost

size

cost

V0V0
b) automatica) manual

�

�D

�P
�

�D

�P

6 18/2/2002

Those graphs show that for small projects the manual
solution is acceptable and can be less expensive than the
automated one (if the size is under)�). But when the size
of the project increases, the cost of the manual processing
increases very fast. When we use an automated solution,
there is an important initial cost (independent of the size)
that represents the research of the best tools, the customiza-
tion or creation of tools. When all this is done, the cost
increases very slowly with the size of the project.

As an example, if we took a small application (one pro-
gram of 1K LOC and 3 record types). An analyst can
recover the complete schema of this application manually
in half a day. If we took a medium size application (150
programs of 200K LOC and 200 record types). To reverse
engineer this application we have adapted our program
understanding tools (10 days), it took only three hours to
the tools to analyze all the programs and then the analysts
need to validate the results (detect 1000 foreign keys and
functional dependencies) in 10 days. It is very difficult to
do this project manually, because the programs call each
other and it is impossible to recover the database schema
by analyzing independently each program. To analyze this
application the analyst has to follow the inter-program
calls. If the analyst takes only one hour to discover each
foreign key or functional dependency, it will take about 40
days to complete the projects.

So we can reduce the cost of big project, if we can find
or create tools that maximize the assisted part of the pro-
cess.

The other solution to reduce the cost is to decide to do
only partial reverse engineering, thus obtaining an incom-
plete schema, i.e., we are only looking for the constraints
that are the easiest (and cheapest) to find. This partial
reverse engineering leads to an incomplete schema with a
lot of missing constructs (silence) and perhaps some noise.
The drawback of this solution is that it can lead to incorrect
results, if it is used as input for a data migration, dataware-
house or reengineering projects. These incorrect results can
produce very high cost late in the projects. For example if
we try to migrate the data into a new database where the
customer and the order are mixed in the same record type
and the application is not aware of such characteristics.
When the user asks for the customer’s list then orders also
appear, so he spends a lot of time to find the customer
among the order.

The partial reverse engineering can be very useful if we
want a first inventory of the records of the database or if
the programmer how develop the application is still present
and can complete (correct) our schema. It is very important
that the analyst and the customer to be aware of weakness
of the schema produce by this partial reverse engineering.

So the analyst has to find, with the customer, the right
level of completeness of his (her) result with respect to the

possible automation, the cost and the precision needed.
One of the possible solutions is to proceed step by step. At
each step, we decide if we go further and if we continue,
we define what we are looking for in the next step. One of
the
�%�� criteria, can be the number of constraints dis-
cover during the previous step. This is equivalent to stop
when discovering new constraints becomes too expensive.

5	 %�������������������)���
6��)� �
�((�����

Several industrial projects have proved that powerful
techniques and tools are essential to support DBRE, espe-
cially the data structure extraction process, in realistic size
projects [9]. These tools must be integrated and their
results recorded in a common repository. In addition, the
tools need to be easily extendible and customizable to fit
the analyst's exact needs.

DB-MAIN is a general-purpose database engineering
CASE environment that offers sophisticated reverse engi-
neering toolsets. DB-MAIN is one of the results of an R&D
project started in 1993 by the Database Engineering Labo-
ratory of the Computer Science department of the Univer-
sity of Namur (Belgium). Its purpose is to help the analyst
in the design, reverse engineering, migration, maintenance
and evolution of database applications.

DB-MAIN offers the usual CASE functions, such as
database schema creation, management, visualization, vali-
dation, transformation, as well as code and report genera-
tion. It also includes a programming language ()������/)
that can manipulate the objects of the repository and allows
the user to develop its own functions. Further detail can be
found in [2] and [4].

DB-MAIN offers several functions that are specific to
the data structure extraction process [5]. The �9��������
extract automatically the data structures declared into a
source text. Extractors read the declaration part of the
source text and create corresponding abstractions in the
repository. The ������
� ���� �������
� is used during the
Refinement phase to find the possible foreign keys of a
schema.

>��������
������ tools include three specific program
understanding processors.
� A ������
�������
� engine searches a source text for a

definite pattern. Patterns are defined into a powerful
pattern description language (PDL), through which hier-
archical patterns can be defined.

� DB-MAIN offers a 	�������� ����
��
��� ����� tool.
The dependency graph itself is displayed �
���
��9�: the
user selects a variable, then all the occurrences of this
variable, and of all the variables connected to it in the
dependency graph are colored into the source text, both

7 18/2/2002

in the declaration and in the procedural sections. Though
a graphical presentation could be thought to be more
elegant and more abstract, the experience has taught us
that the source code itself gives much ������� informa-
tion, such as comments, layout and surrounding state-
ments.

� The �������� �����
� tool computes the program slice
with respect to the selected line of the source text and
one of the variables, or component thereof, referenced at
that line.
One of the lessons we painfully learned is that they are

no two similar DBRE projects. Hence the need for easily
programmable, extensible and customizable tools. The DB-
MAIN (meta-)CASE tool includes sophisticated features to
extend its repository and its functions. In particular, it
offers a 4GL language through which analysts can develop
their own customized functions.

�������0	�%��������������$�������7������������	�����
����������������������*����������������+��$�����$�������
7��	

Until 1997, we have developed techniques and tools for
��
����� problems, i.e., that address the recovery of one
instance of a construct at a time. Such tools can be called
�����%�
��������. Their usage is tedious in large projects
and the time needed to complete the process is dramatically
high.

Since 1997, we decided to encapsulate those tools into
some mass processing engines. Those engines apply micro-
techniques automatically and discover constraints or gener-
ate some reports.

We can take as an example the elicitation of candidate
foreign keys into a database schema.

Until 1997 (DB-MAIN v3), there were no specific tools
to support foreign key elicitation. The analyst had to ana-
lyze the whole schema and create the foreign keys manu-

ally. This was acceptable for small projects, but it became
tedious and error-prone for larger projects.

�������1	�����$�������7���������������������������	

In 1998 (DB-MAIN v4), we incorporated a semi-auto-
matic foreign key assistant. The analyst gave one side of
the foreign key (typically the target - Figure 4) and the tool
found all the possible foreign keys that could reference this
target. The analyst had to give the assistant the matching
rules to find the other side of the foreign key (see Figure 5).
Those rules can be: the two sides of the foreign key must
have the same type, same length, or same structure, the ori-
gin of the foreign key must contain some keywords or (a
part of) the name of the target, there is an index on the ori-
gin, etc.

In 1999 (DB-MAIN v5), the foreign key assistant is
fully automated. The analyst gives the tool the matching
rules as in the semi-automatic approach; i.e., rules that
determine if there is a foreign key between two (groups of)
fields (Figure 5). The tools needs also a criterion to find all
the possible targets of the foreign keys (Figure 6), other-
wise the search space will be too large, the number of ori-
gin-targets to compare is about . Where � is the
average number of fields per record type and � the number
of record types. �@ is the number of possible groups of fields
per records, so is the total number of groups of fields
in the schema. is the total number of possible for-
eign keys in the schema, if we take any group of fields as
the origin and as the target. Usually the target records are
the identifiers (the number of origin-targets to compare is
only about , because, generally, there is only one
identifier per record). The tool finds, for each target, all the
possible foreign keys and can generate a report. The ana-
lyst reads and modifies the report, which is analyzed by a
second tool that creates the foreign keys checked by the
analyst.

f! r×()2

f! r×
f! r×()2

f! r×() r×

8 18/2/2002

�������3	���������������$�������7������������	�����
������������������������������$���������������$�����$�������
7��	

The analyst needs to give the right matching rules. If too
restrictive rules are specified, the tool will generate silence
(does not discover some existing foreign keys). If the rules
are too loose, the tool will generate noise (suggesting spuri-
ous foreign key). Those rules vary from one project to the
other. A first (manual) analysis of the project is needed to
discover those rules. Sometimes, several sets of matching
rules are needed for the same project, for instance when
several teams were involved in the design of the database.
Another drawback is that the (semi)automatic tool cannot
be applied to projects where matching rules are impossible
to find or where the matching rules give to much noise or
silence. For example, this is the case for databases where
there is no meaningful field and record names and where
there are many fields (that are not foreign keys) with the
same type and length as the identifiers.

On the economic side, the manual approach can be very
expensive for big projects, as we saw above. With the
semi-automatic approach, the analyst only needs to dis-
cover the target of the foreign key and the matching rules
(only once per project) and the tool performs the rest of the
work (few seconds per target). The cost being the sum of
the manual analysis cost (linear w.r.t. project size) and of
the automatic analysis cost (also linear, but far less expen-
sive than the manual part). With the automatic approach,
the analyst only gives the matching rules (once for per
project) and the tool finds all the candidate foreign keys (in
a few seconds). Now the cost depends mainly on the auto-
matic analysis cost.

We are trying to increase the automated part of the pro-
cess to reduce the cost and to allow the reverse engineering
of larger projects. One of the problems we are addressing is

the validation procedure that ensures that automation does
not lead to a loss of quality.

8	 !���������

In this paper, we have shown the need for tools to auto-
mate reverse engineering. Even if complete automation is
impossible, some form of it is crucial to perform large
project reverse engineering in a reasonable time, at an
acceptable price.

On the other hand, the increased use of tools to auto-
mate the data structure extraction cannot lead to a loss of
quality of the resulting schema. Indeed poor quality recov-
ered schema induces high reengineering cost and unreliable
applications.

The role of the analyst is very important. Except in sim-
ple projects, he needs to be a skilled person, who masters
the DBRE tools, knows their strengths and weakness, is
competent in the application domain, in database design
methodology, in DBMS’s and in programming language
(usually old ones).

One of the major objectives of the DB-MAIN project is
the methodological and tool support for database reverse
engineering processes. We quickly learned that we needed
powerful program analysis reasoning and their supporting
tools, such as those that have been developed in the pro-
gram understanding realm. We also learned that tools had
to be used with much care and caution. We integrated these
reasoning in a highly generic DBRE methodology, while
we developed specific analyzers to include in the DB-
MAIN CASE tool.

An education version is available at no charge for non-
profit institutions (http://www.info.fundp.ac.be/~dbm).

�9	 ��$�������

[1] Batini, C., Ceri, S. and Navathe, S.B.: !�
����������������
�����
�%�A
��
����%�������
�����A�������, Benjamin/Cum-
mings, 1992.

[2] Englebert, V., Henrard J., Hick, J.-M., Roland, D. and Hain-
aut, J.-L.: “DB-MAIN: un Atelier d'Ingénierie de Bases de
Données”, Ingénierie des Système d’Information, 4(1), HER-
MES-AFCET, 1996.

[3] Hainaut, J.-L., Chandelon, M., Tonneau, C. and Joris M.:
“Contribution to a Theory of Database Reverse Engineer-
ing”, in Proc. of WCRE’93, Baltimore, IEEE Computer
Society Press, 1993.

[4] Hainaut, J.-L, Roland, D., Hick J-M., Henrard, J. and Engle-
bert, V.: “Database Reverse Engineering: from Requirements
to CARE Tools”, Journal of Automated Software Engineer-
ing, 3(1), 1996.

[5] Henrard, J., Englebert, V., Hick, J-M. , Roland, D. , Hainaut,
J-L.: “Program understanding in databases reverse engineer-
ing”, in Proc. of DEXA’98, Vienna, 1998.

9 18/2/2002

[6] Jerding, D., Rugaber, S.: “Using Visualization for Architec-
tural Localization and Extraction”, in Proc. of WCRE’97,
Amsterdam, 1997.

[7] Montes de Oca C., Carver D. L., “A Visual Representation
Model for Software Subsystem Decomposition”, in Proc of
WCRE’98, Hawai, USA, IEEE Computer Society Press,
1998.

[8] Sneed H.: “Economics of sofw������%�
��
����
�B��?�������
C��
��
�
��'�����������
��>�������, 3, 1991, pp 163-182.

[9] Tilley S: “A reverse-engineering environment frameword”.
Technical report CMU/SEI-98-TR-005, Carnegie Mellon
University, http://www.sei.cmu.edu/publications/documents/
98.reports/98tr005/98tr005abstract.html, 1998.

[10] Wilde, N.: “Understanding program dependencies”. Techni-
cal report CM-26, http://www.sei.cmu.edu/publications/doc-
uments/cms/cm.026.html, 1990.

