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Abstract

The engineering of a service-oriented system requires the specification

of functions that Web Services (wss) should provide, before wss are

built or selected. Written in a service description language, the service

specification instantiates concepts different than those used for Requirement

Engineering (re): the former speaks in terms of operations, metrics and

bindings, while the latter manipulates, goals, evaluations and domain

assumptions. It is, however, clear that functions expected of wss to select

or build will be relevant to the stakeholders if they satisfy the stakeholders’

requirements. As a result, there is a gap between the two specifications

which must be bridged in order to ensure that the ws system is adequate

w.r.t. requirements. This paper proposes mappings between the concepts

∗An initial version of this work was presented at the First International Workshop on the

Web and Requirements Engineering (were 2010, Sydney, Australia) [1].
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of requirements ontology and those of service taxonomy induced by the

wsld and the wsla languages. A working prototype is presented that

implements the mappings and is used to translate the instances of re

concepts into instances of wsld and wsla concepts. The mappings and

the prototype facilitate the engineering of ws systems, as fragments of ws

descriptions can be generated from requirements as a first specification of

a service request.

Keywords: Requirements Engineering for Service-oriented Systems, Ontol-

ogy Mapping

1 Introduction

Engineering and managing the operation of increasingly complex information

systems (is) is a key challenge in computing (e.g., [2, 3]). It is now widely

acknowledged that degrees of automation needed in response cannot be achieved

without distributed, interoperable, and modular systems. Among the various,

often overlapping approaches to building such systems, service-orientation stands

out in terms of its reliance on the World Wide Web infrastructure, availability

of standards for describing and enabling interaction between services, attention

to interoperability and uptake in industry.

A service, the central concept in Service-Oriented Computing (soc), is a

self-describing and self-contained modular application designed to execute a well-

delimited task, and that can be described, published, located, and invoked over

a network [4, 3]. A Web Service (ws) is a service that relies on standards such

as soap [5], wsdl [6] or uddi [7] to enable its use, and that can be invoked over

the World Wide Web. A ws is thus the technical implementation of the service

concept. wss are offered by service providers that ensure service implementations,

advertise service descriptions, and provide related technical and business support.

Service consumers have to find the appropriate ws among the wss available to

satisfy their requirements.

The engineering of service-oriented systems involves many issues treated in the

literature –among them, infrastructure for services (e.g., [5, 7, 8]), descriptions
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of services’ interfaces, capabilities, behaviours, and qualities (e.g., [6, 9, 10, 11]),

service discovery (e.g., [12]), service composition (e.g., [13, 14, 15, 16]), and

ontologies and ontology languages (e.g., [11, 17, 18, 19, 20, 21]). A considerable

part of the research focuses on service provision problems, i.e., “the current soa

[service-oriented architecture] is producer centric” [22]. In contrast, this paper

focuses on the service consumer side.

Problem statement. A service-oriented system will be satisfactory only if

it satisfies the requirements of the system’s stakeholders. The Requirements

Engineering (re) for such systems is a promising area of inquiry that already

attacked some of the key issues. re is usually defined as the process by which

the stakeholders of a system-to-be are identified, their requirements elicited

in order to model the specifications of the system-to-be, which should then

be implemented [23, 24, 25]. One pressing concern, which has received less

attention and is the focus of this paper, is: How to bridge the gap between a

specification of requirements and ws descriptions? A description of a ws specifies

the functions that the ws can provide. It is based on such a specification that

wss are developed, or sought among available ones. Specialized languages have

been designed for the description of wss using concepts of, e.g., operation and

binding, tailored to the ws description. On the other hand, requirements that

these services ought to satisfy are classified according to ontologies tailored to re,

which rely on concepts such as goal, task, and domain assumption. While clearly

the functions expected of wss will be relevant to the system if and only if they

satisfy the stakeholders’ requirements, the differences in the conceptualizations

that underlie ws descriptions and re specifications make it unclear how exactly

to translate the content of specific requirements into ws descriptions, hence the

gap.

Contributions. This paper is a first step towards addressing the gap between

re specifications and ws descriptions by mapping the concepts of the Core

Ontology for REquirements (core) [26] to the concepts of the Web Service

Description Language (wsdl) [6] proposed by the World Wide Web Consortium

(W3C) and the ibm’s Web Service Level Agreement (wsla) formalism [27]. Two
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contributions are made. Firstly, the mappings between the two representations

of requirements are presented both informally and in the Distributed Description

Logic formalism, and the rationale for the mappings is discussed. Once the

mappings are available and a specification of requirements is given, it is possible

to facilitate the writing of ws descriptions in wsla/wsdl by translating the

specification of the requirements captured by propositions into fragments of

wsla/wsdl descriptions. The second contribution is the working prototype tool

that implements the mappings, allowing thereby the translation of the instances

of re concepts into instances of wsla/wsdl concepts. The mappings and

the prototype facilitate the engineering of ws systems, as fragments of service

descriptions can be generated from requirements.

Organization. The remaining parts of this paper are structured as follows.

First, we discuss our technological choices and briefly present the selected

ontologies and technologies on which our mappings are built (§2). Then, the

formalization of the two conceptualizations is presented (§3), followed by the

mapping between them (§4). This mapping allows us to build a tool which

should help requirements engineers to specify the service consumers’ requirements

and translate them into initial ws descriptions (§5). Finally, we briefly relate

comparable research efforts (§6) before drawing up conclusions and summarizing

relevant directions for future work (§7).

2 Baseline

To bridge the gap between the requirements expressed by the service consumer

and the specifications of service requests, we use a requirements ontology (§2.2)

and we build a service taxonomy (§2.3). Below, we discuss our choices of the

ontologies (§2.1), namely core as the re ontology, while we work with the wsdl

and wsla languages at the service level.
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2.1 Choices of Ontologies

An ontology is a set of concepts and relations, where a concept defines the

properties that every member of its class should have, and a relation defines

joint properties of a set of members, each of which participants in the same

or different class. An ontology is thus an explicit specification of a particular

conceptualization shared by a community [28]. We ought to distinguish top-level

ontologies which “describe very general concepts [regardless of] a particular

problem or domain” [29]. They are shared by large communities of users. At the

second level, there are the domain ontologies and the task ontologies respectively

used for the vocabulary description of a generic domain, and the description of a

generic task/activity. A domain ontology or a task ontology specialize the terms

of the top-level ontologies in, respectively, a domain centric way or in a task

centric way. At the lower level, there are application ontologies which describe

“concepts depending on both a particular domain and task” [29]. Thus, these

low-level ontologies specialize both a domain ontology and a task ontology.

On the re side, our choice is core (cf., §2.1.1). This ontology specifies

the domain of requirements and their relations that stakeholders may express

concerning a system-to-be.

On the service side, we decide to build our own service taxonomy (cf., §2.1.2).

A taxonomy is a structured description of objects into classes related to a specific

domain. In the scope of our work, two relevant differences between an ontologies

and a taxonomy must be underlined. First, an ontology must be founded upon a

kind of formalism. In contrast, this is not required to build a taxonomy in which

definitions in natural language can be used. Secondly, while particular relations

between the concepts can be specified in an ontology, only two relations can

be used in taxonomies. Those two relations are the subsumption relation (is-a)

–the class A has the relation is-a with the class B means that A is a subclass

of B–, and the membership relation (is-of ) –the object c has the relation is-of

with the class C means that c can be classified in C.
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2.1.1 A conceptualization for requirements

The concept of requirement as well as some of its subconcepts, i.a., the notion of

goal, softgoal or assumption, have been discussed at length in the research on re

(e.g., [23, 25, 30, 31, 32, 33, 34]), core offers a simple set of essential concepts

for re, by covering the main notions that were previously identified and used,

and by defining them within a single ontology.

2.1.2 A conceptualization for service

There are two significant views on the service notion in the soc: a syntactical

view and a semantic view. This distinction comes mainly as a response to

the service interoperability problem [35], which is one of the most significant

issues in soc. The first view is mainly supported by ws technologies and Web

technologies such as wsdl [6], Universal Description Discovery and Integration

(uddi) [7], Hypertext Transfer Protocol (http) [36], soap [5], wsla [37] or Web

Service Agreement (ws-agreement) [38]. Most of the ws technologies are based

on the eXtensible Markup Language (xml) [39] which structures the information,

and describes it to allow an informal interpretation. The second view on a

service conceptualization is based on technologies using logic languages and

domain/task ontologies to describe the service capabilities, e.g., Web Service

Modeling Language (wsml) [40], QoSOnt [41], owl-s (previously named daml-

s) [42], wsdl-s [43] or sawsdl [44]. Their common objective is to make the

informational content amenable to processing by a computer.

In this work, we choose the syntactic view on the service-oriented paradigm1.

Therefore, all conceptualizations built within the semantic view are excluded.

Seeing that all service ontologies or taxonomies, e.g., wsmo, owl-s and the

Semantic Web Services Ontology (swso) [47], fit into the semantic view on

the service-oriented paradigm, we build our own ws taxonomy. This taxonomy

has to be wide enough to cover functional and non-functional characteristics

of wss. Given that there is not any syntactic technology, which satisfactorily

1We have discussed elsewhere [45, 46] the mapping based on a semantic view on the

service-oriented paradigm.
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covers all those characteristics, we need at least two technologies, one for the

functional features and one for the non-functional features of wss. There is

one attempt –the Web Service Offerings Language (wsol) [48]– to encompass

whole ws characteristics. However, wsol proves to be inefficient concerning

this targeted objective: this technology still needs wsdl to work and only

allows to specify some of the non-functional characteristics compared with, e.g.,

ws-agreement or wsla.

With regard to the functional characteristics, an Interface Definition Language

(idl) is needed [49]. An idl gives a framework to specify a machine-readable

interface for computational components, such as wss, independently of the

coding languages and underlying technologies used. The wsdl language, which

has the status of recommendation by the World Wide Web Consortium (w3c), is

an appropriate idl. The ws community uses and/or advises this language for the

engineering of Service-Oriented Architectures (soa) [35, 3, 50, 51, 52, 53]. This

technology is also applied in the computing industry (e.g., [54, 55, 56, 57, 58]).

In relation to non-functional characteristics, and thereby Quality of Service

(qos), the main technologies proposed in the literature are wsla [37], ws-

agreement [38], slang [59, 60] and Universal Service Description Language

(usdl) [61]. slang, which can describe the two involved parties and their

responsibilities during the ws use, divides Service Level Agreements (slas) into

horizontal contracts (e.g., between two equal parties) and vertical contracts (e.g.,

between entities in different layers). This language focuses on ws-based Internet

services such as Application Service Provision, Internet Service Provision and

Storage Service Provision. Moreover, slang does not allow to specify financial

terms associated with the sla. usdl can be used to specify slas for services –it

is thus not only focused on wss– which must be associated to another language

specific to the service oriented paradigm. The authors chose ws-agreement.

Clearly, slang and usdl do not answer to our needs. Concerning ws-agreement,

this technology has one drawback in comparison with wsla: it does not allow

to describe obligations of parties as wsla allows it. The obligation is an explicit

duty that a party has to achieve in regard to the service level objectives (slos)
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specified in the sla document. Furthermore, wsla is expressively built to

complete wsdl, our first choice on which we base our service taxonomy.

2.2 Overview of the Core Ontology for REquirements

The root concept of the core ontology is Communicated information2, specialized

as follows [62]:

1. Goal, specialized on Functional goal, Quality constraint and Softgoal;

2. Plan;

3. Domain assumption, specialized on Functional domain assumption, Quality

domain assumption and Soft domain assumption;

4. Evaluation, specialized on Individual evaluation and Comparative evaluation.

A basic idea in core is that requirements are communicated by the stakehold-

ers to the requirements engineer, so that the latter classifies requirements based

on what was communicated and how it was communicated. The Communicated

information concept is a catchall one; its instances are propositions communicated

by the stakeholders. Once an instance of that concept is available, the question

to ask is what mode was that proposition communicated in. The notion of

mode –or modus in linguistics– reflects the idea that we can distinguish between

the content of a communication and the intentional state it was communicated

in, whereby different kinds of mode correspond to different intentional states

of the stakeholder. If the stakeholder tells the engineer that she believes that

some condition holds in the operating environment of the system-to-be, then the

proposition stating the condition is an instance of the Domain assumption concept.

If she instead desires that the condition be made to hold by the system-to-be,

then the proposition is an instance of the Goal concept. In case an intention

to perform particular actions is conveyed, which may then be delegated to the

system-to-be, the engineer classifies the propositions describing these actions

2A core concept is written Concept and starting with an uppercase letter, while an

instance thereof starts with a lowercase letter instance.

8



as instances of the Plan concept. Since stakeholders can also indicate that they

prefer some goals to be satisfied than others, or that some of them must be

satisfied, while others are optional, core includes the concept of Evaluation.

Propositions belonging to this concept convey evaluations arising out of emotions

of the stakeholders.

core distinguishes three kinds of goals. The Functional goal concept refers to

a desired condition for which its satisfaction is verifiable, i.e., the comparison

scale is shared among the stakeholders and the requirements engineer(s), and

is binary, i.e., the functional goal is either satisfied or not. A quality constraint

defines the desired value of a non-binary measurable property of the system-

to-be (e.g., how many seconds it takes to answer a query). As functional goals

and quality constraints are not necessarily known at the very start of the re

process, the Softgoal concept is instantiated to capture requirements which refer

to vague properties of the system-to-be (e.g., a “fast” answer to the queries).

Same specialization applies to the Domain assumption concept, which has its

functional variant –a functional domain assumption refers to binary properties of

the system-to-be and/or its environment–, its quality variant, Quality domain

assumption, and its soft variant, Soft domain assumption. Finally, Evaluation

can qualify individual requirements through the Individual evaluation concept,

or compares goals, domain assumptions, and/or plans through the Comparative

evaluation concept.

2.3 Overview of the Web Service taxonomy

ibm’s wsla technology [27] intends to specify contracts, called sla’s. They state

constraints on qos properties of wss. While wsla focuses on the qos levels of

wss, wsdl [6], the second formalism chosen, allows to specify the functional

characteristics of wss3.

3Note wsdl allows managing some possible use failures by the specification of fault conditions

and repair actions, which certainly is relevant given that ws oriented systems are often

distributed and given potential Web server breakdowns. We leave out this aspect of wsdl for

future work (cf., §7.1).
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The wsla concepts are Party4, Service definition, Metric and Obligations. The

wsdl concepts are Operation, Binding and Service. We retain the following four

of these seven concepts:

1. Metric identifies an observable qos property of a ws, and indicates its

measurement directive(s), i.e., it specifies how that qos property can be

accessed and/or computed [37, 27].

2. The Obligations concept defines the guaranteed qos level of the ws identi-

fied in the service definition as well as constraints imposed on the metrics

and triggered actions [27, 37]. The two subconcepts of the Obligations are:

(a) Service level objective which defines the different qos levels regarding

the observable characteristics –described in a metric – of the ws, and

(b) Action guarantee which groups promises of the signatory parties

and/or of third parties concerning the achievement of an action

when a determined precondition occurs5.

3. Operation defines the interaction between the service provider and the

other parties involved in the interaction, as a sequence of input and output

messages [63, 6].

4. Binding specifies concrete message format and transmission protocol details

concerning the ws use [63].

Party, Service definition, and Service are not retained as concepts of our

wsla/wsdl taxonomy for the following reasons:

• Instances of Party identify the ws provider, the ws consumer and possible

third parties, which may be stakeholders expressing requirements w.r.t.

the service they would like to use. As the definition of the requirements

problem abstracts from these identifiers, we do not carry at the service

level the information on which stakeholder gave which requirement.

4An wsla or an wsdl concept is written as Concept and an instance of one of those concepts

is depicted as instance.
5Note the precondition can simply be always.
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• A Service definition instance is not directly evaluated by the ws consumer.

Its purpose is to link a wsla specification of a ws to a document which

describes the functional characteristics of that ws. As we use wsdl, the

ws consumer –i.e., the stakeholder– can directly evaluate the functional

characteristics through the wsdl document.

• Service is not relevant in the present discussion, as the actual Web location

of the ws is unimportant. Only its presence or absence is crucial. The

possible unresponsiveness of the ws could be evaluated through other

selected concepts, e.g., an obligations.

3 Formalization of CORE and WSLA/WSDL

In order to formalize the bridging of core with the wsla/wsdl taxonomy,

we use the description logic SIN [64] to rewrite each conceptualization. This

rewriting allows us to connect wsdl to wsla (to get what we refer to as

wsla/wsdl taxonomy), and then core to wsla/wsdl (see §4.3).

3.1 The CORE ontology in description logic

Table 1 is based on the definitions and axioms of the core ontology given

in §2.2. Line 1 defines the root concept of core. Requirements expressed

during the re process are classified into the four main classes of core, i.e., Goal,

Plan, Domain assumption and Evaluation, and finally in the leaves of core, i.e.,

Quality constraint, Soft domain assumption, Comparative evaluation, and so on (see

Lines 6, 11 and 14). Detailed informal definitions of the core concepts are

not repeated here. Unchanged softgoals and soft domain assumptions cannot be

propagated to the level of service descriptions: given their inexplicit nature, they

need to be replaced by more precise requirements. Just as, say, imprecise goals

are refined, so are softgoals and soft domain assumptions approximated [26, 62],

whereby their approximation involves the identification of quality constraints

and quality domain assumptions, while comparative evaluations may indicate how

alternative quality constraints or quality domain assumptions may be rated in terms
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of relative desirability. Lines 10 and 13 reflect this in the formalized ontology.

Table 1: The core ontology written in description logic SIN
1 : Communicated information ≡ Goal t Plan t Domain assumption t Evaluation

2 : ⊥ v Goal u Plan u Domain assumption u Evaluation

3 : refine ≡ refined-by−

4 : refined-by ≡ refine−

5 : > v ∀ refine.Communicated information

6 : ∀ refine.Goal ≡ Functional goal t Quality constraint t Softgoal

7 : ⊥ v Functional goal u Quality constraint u Softgoal

8 : approximate ≡ approximated-by−

9 : approximated-by ≡ approximate−

10: Softgoal v ∃approximate.Quality constraint

11: ∀ refine.Domain assumption ≡
Functional domain assumption t Quality domain assumption t

Soft domain assumption

12: ⊥ v
Functional domain assumption u Quality domain assumption u

Soft domain assumption

13: Soft domain assumption v ∃approximate.Quality domain assumption

14: ∀ refine.Evaluation ≡ Comparative evaluation t Individual evaluation

15: ⊥ v Comparative evaluation u Individual evaluation

3.2 The WSLA/WSDL taxonomy in description logic

Table 2 is based on publications about the wsla formalism [27, 37] and on the

W3C recommendations concerning wsdl 2.0 [6, 63, 65]. In Tables 2 and 4, the

prefixes “WSLA:” and “WSDL:” indicate that the concept respectively belongs

to wsla or to wsdl. In Table 4, the prefix “CORE:” indicates that the concept

belongs to the core ontology. Line 17 (wsla) states the use of the wsla

specification as a proposal or an agreement. The latter is the primary purpose of

wsla. A proposal could be suggested either by a ws consumer or a ws provider.

Requirements concerning non-functional ws properties are specified via wsla.

“Commitment”, used in Lines 18, 21 and 41, refers to a promise to achieve

(conditionally or not) a predetermined task. “SLA Parameter” is an observable

characteristic used to evaluate the qos of the ws as well as their measurement

process (Lines 34 and 37). Line 36 uses Distributed Description Logic (ddl) [66]

in order to bridge wsla with wsdl: in this context, the sign
v−→ means that the

“WSLA:Operation” concept subsumes the “WSDL:Operation” concept.

12



Line 44 has the same purpose as Line 17, but for the wsdl-oriented part of

the formalized taxonomy. Line 54 covers the Operation concept: by ordering the

messages exchanged between the ws provider and the ws consumer, it organizes

the data flow. Though this data exchange flow, the actual service provided by

the ws is structured. It enables to know what is the functionality of the service

provided.

4 Mapping of CORE with WSLA/WSDL

We introduce a simple but comprehensive case study (§4.1) first below. It will

be used to illustrate the mappings developed later (§4.2–§4.3) to relate the

requirements expressed as natural language statements, and the corresponding

instances of the service taxonomy concepts specified in the wsdl and the wsla

formalisms.

4.1 A scenario: the trucking company

An entrepreneur owns an express transport company and would like to optimize

the routes taken by his trucks. Orders and clients data are centralized in

his existing is where the routes of each truck are calculated depending on

urgent/deleted orders, truck breakdowns, delays, traffic jams, and so on. He has

equipped all his trucks with a navigation system based on both the gps and the

umts technologies. The gps device allows to locate the truck and to help the

driver in finding the appropriate route, while the umts technology allows his is

to exchange data with the system embedded in the trucks, which includes the

gps device. The company owner would like that an is sends the data needed

in real time to the trucks when the previous job is ending. To avoid wasting

time, the device can directly find the way with the coordinates (longitude and

latitude) of the client. However, his current is only stores the postal addresses of

the delivery locations given by the clients when they order a transport of goods.

In this way, the software engineer in charge of this improvement would like to

use a service available on the Web, i.e., a ws. The main functionality of this

13



Table 2: The wsla/wsdl taxonomy written in description logic SIN
Taxonomy for wsla

16: WSLA document ≡ Party u Service definition u Metric u Obligations
17: WSLA document ≡ WSLA Proposal t WSLA Agreement
18: WSLA Proposal ≡ ∃ proposed-by.(QoS Level u Commitment)
19: propose ≡ proposed-by−

20: proposed-by ≡ propose−

21: WSLA Agreement ≡ QoS Level u Commitment u ∀ agreed-by.WS Consumer u
∀ agreed-by.WS Provider

22: agree ≡ agreed-by−

23: agreed-by ≡ agree−

24: > ≡ ∀ proposed-by.Signatory party t
∀ agreed-by.Signatory party

25: Party ≡ Signatory party t Third party
26: Party ≡ ∀ involved-in.WS Use
27: involve ≡ involved-in−

28: involved-in ≡ involve−

29: Signatory party ≡ WS Consumer t WS Provider
30: Third party ≡ ¬Signatory party u∀ provide.Metric
31: provide ≡ provided-by−

32: provided-by ≡ provide−

33: Service definition ≡ Service object u Operation
34: Service object ≡ SLA Parameter u Metric
35: Operation w Service object

36: WSLA:Operation
v−→ WSDL:Operation

37: Metric ≡ ∀ measure.SLA Parameter
38: measure ≡ measured-by−

39: measured-by ≡ measure−

40: Obligations ≡ Service level objective t Action guarantee

41:
Service level

objective
v Commitment

42: Action guarantee v Promise u Action
Taxonomy for wsdl

43: Description ≡ Message types u Interface u Binding u Service
44: Description ≡ WSDL Proposal t WSDL Agreement
45: WSDL Proposal ≡ ∃ proposed-by.(Operation u Binding)
46: propose ≡ proposed-by−

47: proposed-by ≡ propose−

48: WSDL Agreement ≡ Operation u Binding u ∀ agreed-by.WS Consumer u
∀ agreed-by.WS Provider

49: agree ≡ agreed-by−

50: agreed-by ≡ agree−

51: > ≡ ∀ proposed-by.WS Actor t ∀ agreed-by.WS Actor
52: WS Actor ≡ WS Provider t WS Consumer
53: Interface w Operation
54: Operation v ≥ 2 order.Message
55: order ≡ ordered-by−

56: ordered-by ≡ order−

57: Binding ≡ Message format u Communication protocol
58: Service ≡ Web service endpoint

ws is to provide the coordinates, i.e., the longitude and the latitude, when it

receives a postal address.

Requirements related to this case study are refined and specified throughout

the next sections ( §4.2–§4.3).
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4.2 Bridging the service concepts with the four main CORE

classes

The first step to achieve is the classification of the wsla/wsdl concepts into one

of the four main classes of core, i.e., in Goal, Plan, Domain assumption and/or

Evaluation. Depending on how the consumer expressed the requirements, we

categorize them in the relevant core concept. Then, we verify if the wsla

or the wsdl specification allows the representation of what the requirement

conveys. Otherwise, some requirements could be lost during the mapping (cf.,

Requirement 9).

Table 3, based on the definitions of the core concepts and of the wsla/wsdl

concepts, illustrates this classification; explanations and illustrative requirements

based on the case study are given afterwards.6

Table 3: Classification of wsla and wsdl concepts into the first four core

concepts. The sign V means that the wsla or wsdl concept is mapped with the

corresponding core concept. Otherwise, the sign X is used.

wsla concept wsdl concept

Metric Obligations Operation Binding

Goal V V V V

Plan V V V V

Domain assumption V X X X

Evaluation X V X X

A goal captures conditions not yet satisfied that the service consumer desires

to see become true in the future [62]. Requirements 1, 2 and 3 are examples of

goals based on the developed scenario.

Requirement 1. goal: The owner wants that the average availability of the ws

6Complete examples showing the mapping of requirements to one concept of the service

taxonomy is given later (§4.3), where a complete mapping is developed.
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is measured.

Requirement 2. goal: The availability of the service must be high.

Requirement 3. goal: The service has to translate a postal address into

coordinates.

Goal is mapped with the four wsla/wsdl concepts. The consumer can

express her desire about the presence or absence of a particular observable

property, i.e., a metric, which can be included in the future electronic agreement

(e.g., Requirement 1). The ws consumer can also express her desire (i) to set

the value of a service level objective to a specific number (e.g., Requirement 2

once approximated), and/or (ii) that a party involved in the future agreement

achieves a particular action specified via an action guarantee. Those two kinds

of desires can be specified in an wsla proposal as obligations. Concerning the

Operation and Binding concepts, the service consumer can respectively indicate

her desire about a precise pattern of exchanged messages with particular input

and output (e.g., Requirement 3), and/or her desire about a particular message

format and a specific transmission protocol. These two requirements can be

specified inside an operation –where the important pieces of information for the

ws consumer is the output in which he sends his core data, and the input in

which he receives the relevant data for his business activity– or a binding.

A plan catches intentions that the service consumer intends to perform.

Requirement 4 is an example of a plan.

Requirement 4. plan: The is will communicate based on the soap-over-http

middleware.

The Plan concept is also mapped with all wsla/wsdl concepts. The ws con-

sumer can express her intention to perform the measurements of qos properties

via a metric and then deliver the results to other parties. The ws consumer can

aim at performing an action guarantee, instance of Obligation. The ws consumer

can also promise to send predetermined messages, which are specified inside an

operation, or to use particular message formats and/or communication protocols

which can be specified through a binding (e.g., Requirement 4).
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A domain assumption indicates that its content is believed true by the service

consumer, or that its content is made true by the service consumer’s speech act

as illustrated by Requirement 5.

Requirement 5. domain assumption: the truck company owner intends to

compute the average response time of the service use.

The Domain assumption concept is only mapped with Metric: a ws consumer

can suggest a description of an observable parameter that she believes true

regardless of the actual state of affairs. She also has the capacity to structure

and to organize herself the measurements of some observable parameters (e.g.,

Requirement 5). On the other hand, Domain assumption is not mapped with

Obligations, Operation and Binding respectively because (i) action guarantees

can only be promised or desired by a party and service level objectives result from

a negotiation so that a ws consumer is not expected to have beliefs about them,

and she cannot make them true alone, (ii) it seems inappropriate to assume that

a ws consumer would believe in particular messages sent by the ws provider

without any information about them neither about the (future) ws provider

and she cannot make the messages exchange pattern true alone, and (iii) a ws

consumer dealing with the communication protocol or the message format is

expected to have some basic knowledge about those kinds of technologies, and

she cannot make them true alone; otherwise, she is expected not to worry about

the way messages are formatted and sent.

An evaluation captures the preference, or the appraisal, of the ws consumer

about a single condition (e.g., Requirements 6 and 7), or between conditions

that may hold (e.g., Requirements 8 and 9).

Requirement 6. evaluation: A response time of 600ms is appraised.

Requirement 7. evaluation: A response time of 400ms is appraised.

Requirement 8. evaluation: A response time of 400 ms is preferred to a

response time of 600ms.

Requirement 9. evaluation: The use of the middleware soap-over-http is
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preferred to the middleware soap-over-jms.

During the re process, a ws consumer can express appraisals or preferences

of/between goals, domain assumptions and plans, i.e., the conditions evaluated by

the service consumers. Unfortunately, only appraisals and preferences about

obligations can be specified through the wsla/wsdl languages (e.g., Require-

ment 7, 6 and 8). This lack of expressiveness of the wsdl and wsla languages

compared to core leads to possible gaps: some evaluations could be lost during

their translation to the wsla/wsdl taxonomy. For example, Requirement 9

cannot be specified with the wsla and/or wsdl languages, although it can be

expressed by the truck owner, and more generally by any ws consumer. Given

the scope of this paper, we let the discussion of this issue for future work.

4.3 The mappings between CORE and WSLA/WSDL

In Table 4, we use ddl [66] to formalize the mapping between core and the

wsla/wsdl taxonomy. In the mappings, concepts are prefixed by the name of

the taxonomy they belong to. The sign
≡−→ means that the mapping is complete:

each instance of the core concept has a corresponding instance in the wsla

and/or wsdl concepts. The sign
w−→ indicates that an evaluation can be lost

because the scope of core is wider than the scope of wsla/wsdl (see §4.2).

We refine the mapping by comparing the definition of the subclasses of the four

main core concepts with the wsla/wsdl concepts.

Table 4: The mapping between core and the wsla/wsdl taxonomy formalized

with ddl

59: CORE:Functional goal
≡−→

WSLA:Metric t WSLA:Action guarantee t

WSDL:Operation

60: CORE:Quality constraint
≡−→ WSLA:Service level objective t WSDL:Binding

61: CORE:Plan
≡−→

WSLA:Metric t WSLA:Action guarantee t

WSDL:Operationt WSDL:Binding

62:
CORE:Functional

domain assumption

≡−→ WSLA:Metric

63: CORE:Individual evaluation
w−→ WSLA:Obligations

64: CORE:Comparative evaluation
w−→ WSLA:Obligations
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Table 3 indicates that Goal is bridged to all wsla/wsdl concepts. Lines 59

and 60 from Table 4 specialize it.

Line 59: Functional goal is linked to Metric, Action guarantee and Operation.

A metric specifies how the measurement of a qos property is achieved. The ws

consumer can desire the presence or absence of a specific metric. This desire

is not the representation of a quality, i.e., its evaluation is binary. An action

guarantee or an operation are the representation of a process to perform, and

they are not the representation of a quality. Requirements 10 (refined from

Requirement 1) and 11 (refined from Requirement 3) are functional goals. They

respectively correspond to a metric (see Specification 1) and an operation (see

Specification 2).

Requirement 10. functional goal: The owner of the truck company wants that

a third company, EvalCompany, measures the average availability rate of the

service.

Specification 1.

<S e r v i c eDe f i n i t i o n>

<Operation>

<SLAParameter name=”AvgAva i l ab i l i ty ” type=” f l o a t ” un i t=” percent ”>

<Metric>AverageAva i l ab i l i t yMet r i c</Metric>

</SLAParameter>

<Metric name=”AvgAva i l ab i l i tyMetr i c ” type=” f l o a t ” un i t=” percent ”>

<Source>EvalCompany</Source>

<MeasurementDirective x s i : t y p e=” Ava i l a b i l i t y ” resu l tType=” f l o a t ”>

<MeasurementURI>ht tp : //www. eva l . com/ a v a i l a b i l i t y</MeasurementURI>

</MeasurementDirective>

</Metric>

</Operation>

</ S e r v i c eDe f i n i t i o n>

Requirement 11. functional goal: The service must return the geographic

coordinates –longitude and latitude– when it receives a postal address.

Specification 2. “AddressTransmissionType” and “CoordinatesTransmissionType”

are defined in Appendix B.

< i n t e r f a c e>

<operat ion name=”Coord inatesTrans la tor ”

pattern=” ht tp : //www.w3 . org /ns/wsdl / in−out”
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s t y l e=” ht tp : //www.w3 . org /ns/wsdl / s t y l e / rpc ”>

<input messageLabel=” In” element=”AddressTransmissionType”/>

<output messageLabel=”Out”

element=”CoordinatesTransmissionType ”/>

</ operat ion>

</ i n t e r f a c e>

Line 60: Quality constraint is linked to Service level objective and Binding.

Seeing that the observable parameters are described into a metric, the Service

level objective’s quality space is common to the parties. The descriptions of the

communication protocol and of the message format are two qualities of, respec-

tively, the communication process and of the structure of the data exchanged.

Their respective quality spaces are shared among the parties. They can easily

notice the use of one or another protocol/data structure. Requirement 12 refines

Requirement 2. It corresponds to a service level objective which is specified in

Specification 3. Note Requirement 2 is actually a softgoal; it is thus approximated

by Requirement 12 in which the measurement scale is shared among the involved

parties.

Requirement 12. quality constraint: The average availability rate of the service

should be at least 97%.

Specification 3.

<Obl iga t i ons>

<Se rv i c eLeve lOb j e c t i v e name=” Ava i l a b i l i t y ”>

<Obliged>Provider</Obliged>

<Va l id i t y> . . . </ Va l i d i t y>

<Express ion>

<Pred icate x s i : t y p e=”Greater ”>

<SLAParameter>AvgAva i l ab i l i ty</SLAParameter>

<Value>0 .97</Value>

</ Pred icate>

</Express ion>

<EvaluationEvent>NewValue</EvaluationEvent>

</ Se rv i c eLeve lOb j e c t i v e>

</Obl i ga t i ons>

Line 61 does not add any information compared with Table 3 because Plan

has not subclasses in the core ontology. Requirement 13 refines Requirement 4;
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its specification captured inside a binding is proposed in Specification 4.

Requirement 13. plan: The is will communicate based on the soap-over-http

middleware.

Specification 4.

<binding name=”SOAPBinding” i n t e r f a c e=” tns : Inter faceName ”

type=” ht tp : //www.w3 . org /ns/wsdl / soap”

wsoap :protoco l=” ht tp : //www.w3 . org /2003/05/ soap/ b ind ings /HTTP/”>

<operat ion r e f=” tns :Coord ina t e sTrans l a to r ”

wsoap:mep=” ht tp : //www.w3 . org /2003/05/ soap/mep/soap−re sponse ”/>

</ binding>

Line 62: For the same reason as the refinement of the Goal concept –i.e., a

metric is not the representation of a quality–, Functional domain assumption is

mapped to Metric. Requirement 5 is refined by Requirement 14; the latter is

specified in Specification 5.

Requirement 14. functional domain assumption: The truck company owner

intends to compute himself –thanks to its own is– the average response time

based on the 50 last service uses.

Specification 5.

<S e r v i c eDe f i n i t i o n>

<Operation>

<Metric name=”AverageResponseTime” type=” f l o a t ” un i t=”m i l l i s e c ond s ”>

<Source>Customer</Source>

<Function x s i : t y p e=”Divide ” resu l tType=” f l o a t ”>

<Operand>

<Metric>SumResponseTime</Metric>

</Operand>

<Operand>

<Metric>Transact ions</Metric>

</Operand>

</Function>

</Metric>

<Metric name=”Transact ions ” type=”Q” uni t=” t r an s a c t i on s ”>

<Source>Customer</Source>

<Function x s i : t y p e=”QConstructor ” resu l tType=”Q”>

<Metric>SumTransactions</Metric>

<Window>50</Window>

</Function>

</Metric>
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<Metric name=”SumResponseTime” type=”sum” resu l tType=”double ”>

<Source>Customer</Source>

<Function type=”TSSelect ” un i t=”m i l l i s e c ond s ”>

<operand>

<metr ic>ResponseTimeTimeSeries</metr ic>

</operand>

<element>−49</ element>

</Function>

</Metric>

<Metric name=”ResponseTimeTimeSeries ” type=”TS” uni t=”m i l l i s e c ond s ”>

<Source>Customer</Source>

<Function x s i : t y p e=”TSConstructor ” resu l tType=”TS”>

<Schedule>MainSchedule</Schedule>

<Metric>SumResponseTime</Metric>

<Window>50</Window>

</Function>

</Metric>

<Metric name=”SumTransactions” type=” long ” uni t=” t r an s a c t i on s ”>

<Source>Customer</Source>

<MeasurementDirective type=” t r an sa c t i on ” resu l tType=” i n t e g e r ”>

<MeasurementURI>ht tp : //www. t ruckexpre s s . com/ t ransac t</MeasurementURI>

</MeasurementDirective>

</Metric>

<Metric name=”SumResponseTime” type=” long ” uni t=”m i l l i s e c ond s ”>

<Source>Customer</Source>

<MeasurementDirective type=” responseTime” resu l tType=”double ”>

<MeasurementURI>ht tp : //www. t ruckexpre s s . com/RespTime</MeasurementURI>

</MeasurementDirective>

</Metric>

</Operation>

</ S e r v i c eDe f i n i t i o n>

Note there is no mapping link between the Quality domain assumption concept

and an wsla/wsdl concept. Since “[...] domain assumptions concern what is

true [in the future IS and its environment]” [26], we expected to have only a few

mapping links for this class. Our application domain –the ws use process and its

environment– is specific because many characteristics are negotiable between the

involved parties. The few non-negotiable elements mainly concern the unreliable

network infrastructure used to exchange the data.

Lines 63 and 64 (of Table 4) refine the mapping between an evaluation and

an obligations. The use of a measurement scale based on the money allows the

ws consumer to express his emotions and feelings captured by evaluations. An
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action guarantee can be tied to the respect of one or more determined service

level objective(s). Through those action guarantees, service level objectives can be

linked to financial penalties and rewards [37]. A positive compensation reflects

his favour toward a service level objective; a negative one reflects his disfavour.

If the rewards (penalties) of two service level objectives are different, then the

ws consumer expresses a preference for the more expensive one: if he agrees to

pay more for a specific level of a qos characteristic, that means he prefers this

characteristic in comparison with other (cheaper) ones. Then, the ws discovery

tool has to find the accurate service which respects this slo for the price set by

the consumer.

Requirements 6 and 7 are refined as individual evaluation (see respectively

Requirements 15 and 16). Requirement 8 is refined as a comparative evaluation

(see Requirement 17). Requirements 16 and 17 are respectively reproduced in

Specifications 6 and 7.

Requirement 15. individual evaluation: A response time of 600ms is the maxi-

mum accepted.

Requirement 16. individual evaluation: A response time of 400ms is evaluated

to 0.02 monetary unit per use.

Specification 6. “PaymentType” is defined in Appendix A.

<Obl iga t i ons>

<Se rv i c eLeve lOb j e c t i v e name=”RP400ms”>

<Obliged>Provider</Obliged>

<Express ion>

<Pred icate x s i : t y p e=”ws l a :Le s s ”>

<SLAParameter>ResponseTime</SLAParameter>

<Value>400</Value>

</ Pred icate>

</Express ion>

<EvaluationEvent>NewValue</EvaluationEvent>

</ Se rv i c eLeve lOb j e c t i v e>

<ActionGuarantee name=”RewardRP400ms”>

<Obliged>consumer</Obliged>

<Not>

<Express ion>

<Pred icate x s i : t y p e=” ws l a :V i o l a t i on ”>

<Se rv i c eLeve lOb j e c t i v e>RP400ms</ Se rv i c eLeve lOb j e c t i v e>

23



</ Pred icate>

</Express ion>

</Not>

<EvaluationEvent>NewValue</EvaluationEvent>

<Qua l i f i edAct i on>

<Party>customer</Party>

<Action actionName=”RewardPayment” xsd : type=”PaymentType”>

<Debtor>Customer</Debtor>

<Amount>0 .002</Amount>

<CausingGuarantee>RP400ms</CausingGuarantee>

<Currency>USD</Currency>

</Action>

</Qua l i f i edAct i on>

<ExecutionModal ity>Always</ExecutionModal ity>

</ActionGuarantee>

</Obl i ga t i ons>

Requirement 17. comparative evaluation: a response time of 400 ms is preferred

to a response time of 600ms.

Specification 7.

<Obl iga t i ons>

<Se rv i c eLeve lOb j e c t i v e name=”RP600ms”>

<Obliged>Provider</Obliged>

<Express ion>

<Pred icate x s i : t y p e=”ws l a :Le s s ”>

<SLAParameter>ResponseTime</SLAParameter>

<Value>600</Value>

</ Pred icate>

</Express ion>

<EvaluationEvent>NewValue</EvaluationEvent>

</ Se rv i c eLeve lOb j e c t i v e>

<Se rv i c eLeve lOb j e c t i v e name=”RP400ms”> . . . [ See prev ious

s p e c i f i c a t i o n ] . . . </ Se rv i c eLeve lOb j e c t i v e>

<ActionGuarantee name=”RewardRP400ms”>

<Obliged>consumer</Obliged>

<Not>

<Express ion>

<Pred icate x s i : t y p e=” ws l a :V i o l a t i on ”>

<Se rv i c eLeve lOb j e c t i v e>RP400ms</ Se rv i c eLeve lOb j e c t i v e>

</ Pred icate>

</Express ion>

</Not>

<EvaluationEvent>NewValue</EvaluationEvent>

<Qua l i f i edAct i on>
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<Party>customer</Party>

<Action actionName=”RewardPayment” xsd : type=”PaymentType”>

<Debtor>Customer</Debtor>

<Amount>0 .002</Amount>

<CausingGuarantee>RP400ms</CausingGuarantee>

<Currency>USD</Currency>

</Action>

</Qua l i f i edAct i on>

<ExecutionModal ity>Always</ExecutionModal ity>

</ActionGuarantee>

</Obl i ga t i ons>

5 A tool operating thanks to the proposed map-

pings: STR@WS

A tool, named str@ws for Specifications Transcribed from Requirements in a ws

environment (hence the @ws in the name), has been implemented. It employs

the mappings developed in §4.3. In this section, we present str@ws. First,

we briefly state the technologies used to implement the tool (§5.1) followed by

a description of the tool architecture (§5.2). In §5.3, we illustrate how to use

str@ws. In order to refine the one-to-many mappings, we build decision trees

which are developed in §5.4.

5.1 The technologies used

Our tool is developed with the language Java o.o. We also use the jaxb api7

which allows us to translate xml document into Java object as well as marshalling,

unmarshalling and validating xml documents based on xsd or dtd documents.

5.2 The functionalities of STR@WS

str@ws is compounded of the five following modules:

1. RequirementsEditor allows a ws consumer to add and remove require-

ments about a service he is describing.

7https://jaxb.dev.java.net/
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Figure 1: The main window of str@ws and its menu

2. Translator bridges the requirements expressed by the ws consumer with

the wsla/wsdl concepts based on the mapping between core and the

wsla/wsdl specifications.

3. MappingRefinement helps refining the one-to-many mappings –see

Lines 59, 60 and 61 of Table 4. We build three decision trees, which

are used by the requirement engineering to refine the problematic map-

pings (See 5.4 for the development of these decision trees). str@ws

supports this process.

4. OpenFile enables to open a specification file or a requirements file which

has been saved with str@ws. The file format chosen is xml.

5. SaveFile enables to save a specification file or requirements file.

Fig. 1 shows the main window of str@ws as well as the tool menu.

5.3 The use of STR@WS through our scenario

We now go back to the scenario explained in §4.1 and discussed in §4.2 and

in §4.3. In this section, we illustrate how our tool uses the mappings between

core and the wsla/wsdl taxonomy and can help requirements engineers during

the development of a service-based system.

In Fig. 2, Requirements 10 to 15 are entered in the RequirementsEditor of

str@ws. Once the nature of the requirement is selected by the user –i.e., the

requirement is a functional goal for instance–, str@ws gives the corresponding
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Figure 2: Illustration of the definition of requirements with str@ws

concept of the wsla/wsdl taxonomy. This information is displayed in green

at the very right of the window. If the core concept has several corresponding

service concepts, then the message displayed in red is “One to Many” and the

Refine button is clickable. By clicking on it, a new window is opened. It allows

the user refining the one-to-many mappings according to the decision trees

described in §5.4. This window is shown in Fig. 3; the refinement of the first

functional goal is the example shown (the decision path followed is surrounded).

At the end of the refinement process, the right service concept is displayed in

green on the main window and that information is saved in the tool database

–see the first requirement of Fig. 2 which is the only one to have been refined.

str@ws allows the user to enter a requirement having its category set at “Raw”

if he does not yet know the right nature of this requirement.

The lower part of Fig. 2 depicts the translated file in which the requirements

are mapped to their corresponding concept in the service taxonomy. The

meaning of the tags used is as follows: <metric/> for metrics, <ag/> for action

guarantees, <op/> for operations, <slo/> for service level objectives, <bind/>

for bindings, <oblig/> for obligations and <unkw/> for unlinked requirements8.

8This last tag is used when a one-to-many mapping has not been refined, or if the requirement

engineer uses the “Raw” category.
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Figure 3: Illustration of the use of the decision trees through the refinement of a

functional goal as example

Fig. 4 shows a wsla extract of the individual evaluation entered in the main

window of str@ws which has been translated into a wsla/wsdl extract.

5.4 The decision trees for one-to-many mappings

The mappings formalized by Lines 59, 60 and 61 (Table 4) are one-to-many

relationships. For each of them, we build a decision tree in order to refine their

categorization in the accurate wsla/wsdl class. For each one-to-many mapping,

some questions related to the content of the involved requirement are asked

to the tool user; she only has to answer by ’Yes’ or ’No’. At the end of each

decision tree, the right category is proposed. Figs. 5(a), 5(b) and 5(c) illustrate

the decision trees developed below.

For the Functional goal requirements (Line 59), there are three possible

corresponding classes: Metric, Action guarantee and Operation. The structure of

the decision tree is shown in Fig. 5(a). Its content is as follows:
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Figure 4: Corresponding result of the mapping of the individual evaluation

1: Does the functional goal describe interaction(s) between the parties involved

in the service use?

If Yes, then link the requirement to the Operation class.

If No, then go to Question 1.1.

1.1: Does the functional goal describe how a qos property is measured?

If Yes, then link the requirement to the Metric class.

If No, then link the requirement to the Action guarantee class.

Concerning the Quality constraint (Line 60), there are two possibilities in the

mapping: Service level objective and Binding. The decision tree, illustrated in

Fig. 5(b), is as follows:

2: Does the quality constraint capture the needs about the format or the

technologies used to exchange data with the service provider?
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Does the functional goal describe
interaction(s) between the parties

involved in the service use?

Yes

Operation

No

Does the functional goal

describe how a qos
property is measured?

Yes

Metric

No

Action guarantee

(a) The decision tree for the one-to-many rela-
tionship implying the Functional goal class

Does the quality constraint capture the needs
about the format or the technologies used to
exchange the data with the service provider?

Yes

Binding

No

Service level objective

(b) The decision tree for the one-to-many relation-
ship implying the Quality constraint class

Does the plan describe
a process to follow?

Yes

Does the plan describe
how a qos property is

measured?

Yes

Metric

No

Operation

No

Does the plan state a
commitment of a party

involved in the service use?

Yes

Action guarantee

No

Binding

(c) The decision tree for the one-to-many relationship implying the
Plan class

Figure 5: Decisions trees for the one-to-many mappings

If Yes, then link the requirement to the Binding class.

If No, then link the requirement to the Service level objective class.

The last one-to-many relationship implies the Plan concept (Line 61) with
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four possible corresponding concepts: Binding, Metric, Action guarantee and

Operation. The decision tree, illustrated by Fig. 5(c), is as follows:

3: Does the plan describe a process to follow?

If Yes, then go to Question 3.1.

If No, then go to Question 3.2.

3.1: Does the plan describe how a qos property is measured?

If Yes, then link the requirement to the Metric class.

If No, then link the requirement to the Operation class.

3.2: Does the plan state a commitment of a party involved in the service use?

If Yes, then link the requirement to the Action guarantee class.

If No, then link the requirement to the Binding class.

6 Related work

Two tools [67, 68] and a method [69] have been proposed in order to ease

the ws discovery process. Based on textual requirements, wss matching the

ws consumer needs are suggested. However, these works exclusively focus on

functional requirements and the requirements are expressed without any re

structure. That makes the discovery task more demanding in methods for

extracting accurate information from the various requirements.

Rolland et al. [70] introduce a model for Intentional Service Modelling (ism):

ws providers have to describe their wss and ws consumers use an “intentional

matching mechanism” to select potential wss. This model requires new tech-

nologies for publishing, browsing and discovering services in comparison to the

most widespread ones, i.e., uddi and ebxml registries. The qos characteristics

of wss are not considered in the discussion. Another relevant paper [71] uses

the ism approach. The authors improve the work of Rolland and colleagues by

taking into account the qos levels of wss during the matching and selection step.

The Service-Based Applications (sba) must be modeled in terms of stakeholders’

requirements, and not in terms of technical and procedural aspects. Similar to
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the work of Rolland and colleagues, the use of ism requires that both the service

consumers and the service providers learn how this language has to be used.

Regarding the solutions of semantic matching between the ws descriptions

and the needs of the ws consumer, related work is often built on technical

languages and specifications. For instance, [72], [73] and [74] respectively use

usql (Universal Service Query Language), daml-s and bpol (Business Process

Outsourcing Language). The handling of those technologies requires thorough

knowledge of each of them. Works on semantic matching often concentrate on

the ws provider side, e.g., [75, 76, 77, 78]. In order to have a comprehensive

approach of the problem, we also need a user-friendly solution that eases the

requirements elicitation task at the ws consumer side.

In [79], the authors propose a method and a tool which allow the service users

to express their requirements. The tool analyzes them in order to help the users

during the requirements refinement process and in the errors or conflicts discovery.

The authors create their own meta-model for the four elements required in service

consumption (i.e., role, goal, process and service). The method and the tool are

very interesting. However, they are grounded in the ws literature turned towards

the service producer [22]. By grounding the re for services in a generic ontology

for requirements, we take the point of view of the service consumers. This is very

important to adopt the consumer point of view in order to build a comprehensive

method and/or tool supporting the whole re process for definition of service

requests.

The work of Zachos et al. [80] shares some similarities with ours. They create

a tool which is able to discover wss based on requirements expressed by the user

in natural language. The requirements elicitation process depends on use-case

analysis. Requirements related to the use-cases are then added in the system,

ucare, which follows the volere requirements shell. The scope of our work is

more restricted than theirs: we focus exclusively on the mapping between the

requirements of the ws consumer and wsla/wsdl. Our approach uses core

as the source of requirements concepts, rather than use cases. Moreover, we

formalize the mapping between the requirements, which could be expressed in
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natural language, and their specifications. First, it will allow to keep the track

of requirements when a ws is selected. If the system-to-be selecting wss cannot

replace a defective ws, it is able to identify too demanding requirements by

comparing the characteristics of the best fitted ws and the consumer requirements

contained in the service request. Secondly, it enables to directly analyze the

consequences of requirements changes in comparison with the (composite) ws

chosen. This is very important for requirements monitoring in an soa, as already

noted in [81]. With regards to works related to re monitoring in a service-

oriented environment [81, 82], proposed methods to elicit requirements are based

on re techniques. Our contribution could be complementary to those works in

order to improve the re process.

In [83], the authors propose a ws composition framework based on state

machines. Their system iteratively helps ws consumers to elicit their needs.

In case of problems during the ws composition, the causes are exposed to the

service consumer. Then, the system helps him to reformulate his needs. Seeing

that there is not ontological grounding for the requirements expressed by ws

consumers, the latter must know both the re and the service context, and relates

himself those two conceptualizations. Our view on the problem allows the ws

users and their software/requirements engineers to concentrate only on the re

issue.

The last significant paper [84] related to this work proposes an online moni-

toring of the ws requirements. The aim of the authors is to make the behaviour

of wss consistent with the requirements of the service consumer. In this way,

they design a novel language, the Web Service Constraint Description Language

(wscdl), with which values and events constraints are captured. As in many

other works, a new “standard” is once again proposed. Secondly, the content

of a wscdl file obviously comes from an re work. However, this is not clearly

underlined neither explained. Therefore, our work is complementary to their

research: we point out the origin of the service request content by bridging the

requirement types to the service concepts. It should improve the monitoring of

the requirements, and especially the understanding and the forecasting of the
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consequences of changes in the service consumer needs.

7 Conclusion

Service-oriented computing raises new issues, included the management of the

requirements: mainly, their elicitation, their capture, their analysis and their

specification into a service request. In the literature, authors often work with

pure technical specifications to capture and specify the service consumer’s

requirements. Adding a clear link between an ontology for requirements and

a service taxonomy allows (i) to move a step closer to the automation of the

creation of service requests based on the ws consumers’ requirements, (ii) to help

the ws composition system to identify easily non-suitable requirements asked by

the ws consumer, (iii) to know which requirements are no longer satisfied when

a ws provider fails to comply with the agreement and (iv) to know precisely

which part of an wsla and/or wsdl document must be modified when the ws

consumer changes some of his requirements. Creating and keeping this link is

enabled by the proposed mappings between the two conceptualization on the

problem tackled in this paper. The main original idea is to base the high level

representation from an ontology for re and translate it to ws descriptions.

7.1 Future work

Taking into account the possible faults of the service oriented system in its

actual operation is a priority for future work. Reinecke, Wolter and Malek’s

contributions [85] appear to be a relevant starting point towards that aim. They

propose an overview of the fault-models available both in ws technologies (e.g.,

wsdl, see §2.3), and in communication technologies (e.g., http).

On the re side, a requirement modeling language should be created or adapted

in order to capture the requirements expressed by the ws consumers. In order

to (automatically) reason on the requirements expressed, we have to structure

them. The requirements modeling language could be grounded on Techne [86].

This would also ease the translation of a re solution to a specification of the
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service request which is usable by discovery tools.

This paper does not cover the difference between hard and soft slos. ws

consumers often express their minimal requirements regarding the non-functional

characteristics of the ws as well as additional (soft) slos increasing their satis-

faction. It also avoids the issue of requirements concerning orchestration and

choreography. Before tackling this question, re for a single ws should be done

more suitably.

Taking into account the gaps (see §4.2) between the two levels of requirements

representation is also a future task. This can be done within a wider is composed

of our tool as well as other computational modules enabling the discovery and

the composition of wss based on the wsla/wsdl specifications.

The last point to improve is the process followed to refine the one-to-many

mappings. It could be enhanced by, e.g., adding a syntactic and/or semantic

matching based on the requirements content.
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A Appendix: Definition of PaymentType

Here is the xml Schema of the PaymentType element.

Specification 8.

<xsd:complexType name=”PaymentType”>

<xsd : sequence>

<xsd :e l ement name=”Debtor” type=” x s d : s t r i n g ”/>

<xsd :e l ement name=”Amount” type=” x s d : f l o a t ”/>

<xsd :e l ement name =”CausingGuarantee” type=” x s d : s t r i n g ”/>

<xsd :e l ement name =”Currency” type=” x s d : s t r i n g ”/>

</ xsd : sequence>

</xsd:complexType>

B Appendix: Definition of AddressTransmission-

Type and CoordinatesTransmissionType

Here are the xml Schema of the AddressTransmissionType element and of

the CoordinatesTransmissionType element.

Specification 9.

<types>

<element name=”AddressTransmissionType”>

<complexType>

<sequence>

<element name=” St r e e t ” type=” s t r i n g ”/>

<element name=”Number” type=” i n t e g e r ”/>
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<element name=”Box” type=” s t r i n g ”/>

<element name=”ZIP” type=” i n t e g e r ”/>

<element name=”City” type=” s t r i n g ”/>

<element name=”Country” type=” s t r i n g ”/>

</ sequence>

</complexType>

</ element>

<element name=”CoordinatesTransmissionType ”>

<complexType>

<sequence>

<element name=”Lat i tude ” type=”OneCoordinateType”/>

<element name=”Longitude ” type=”OneCoordinateType”/>

</ sequence>

</complexType>

</ element>

<complexType name=”OneCoordinateType”>

<sequence>

<element name=”Degree” type=” intDegree ”/>

<element name=”Minute” type=” in t2 ”/>

<element name=”Second” type=” in t2 ”/>

</ sequence>

</complexType>

<simpleType name=” intDegree ”>

<r e s t r i c t i o n base=” i n t e g e r ”>

<t o t a lD i g i t s va lue=”3”/>

<minInc lu s ive value=”−180”/>

<maxInc lus ive value=”180”/>

</ r e s t r i c t i o n>

</ simpleType>

<simpleType name=” in t2 ”>

<r e s t r i c t i o n base=” i n t e g e r ”>

<t o t a lD i g i t s va lue=”2”/>

<minInc lu s ive value=”−60”/>

<maxInc lus ive value=”60”/>

</ r e s t r i c t i o n>

</ simpleType>

</ types>
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