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Nonlinear cosmological spherical collapse of quintessence
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1Namur Centre for Complex Systems (naXys), University of Namur, B-5000 Namur, Belgium
2Departamento de Matemática Aplicada, Universidad de Valencia, E-46100 Burjassot, Spain

(Received 30 September 2015; published 17 February 2016)

We present a study of the fully relativistic spherical collapse in the presence of quintessence using on
numerical relativity, following the method proposed by the authors in a previous article [Phys. Rev. D 91,
024025 (2015)]. We ascertain the validity of the method by studying the evolution of a spherically
symmetric quintessence inhomogeneity on a de Sitter background and we find that it has an impact on the
local expansion around the center of coordinates. We then proceed to compare the results of our method to
those of the more largely adopted top-hat model. We find that quintessence inhomogeneities do build up
under the effect that matter inhomogeneities have on the local space-time, yet remain very small due to the
presence of momentum transfer from the over-dense to the background regions. We expect that these might
have an even more important role in modified theories of gravitation.

DOI: 10.1103/PhysRevD.93.043533

I. INTRODUCTION

In a companion paper [1], we proposed a method based
on techniques of numerical relativity to compute the
collapse of a matter over-density on the expanding
space-time background. In the present article, this method
is extended in order to incorporate the effects of quintes-
sence modeled as a real scalar field.
The late-time acceleration of the expansion of the

Universe is validated by many independent observations
including the type Ia supernova diagram [2–6], angular
fluctuations of the cosmic microwave background [7,8] and
galaxy redshift distortion [9]. One can explain this accel-
eration by fine-tuning the value of a cosmological constant
Λ. There is, however, a number of conceptual problems
[10] associated with this that have led many to consider
other options. Among these is the hypothesis that the late-
time acceleration is due to the dynamics of a new variety of
energy called quintessence [11–13]. In this framework, the
study of the formation of large-scale structure performed
with N-body simulations is a very interesting topic as it
allows one to draw important conclusions on the dynamics
of the homogeneous Universe and the nature of the
quintessence component [14–16]. All of these studies rely
on simplified models of collapse of local inhomogeneities.
Some groups have investigated the collapse in the

presence of quintessence using the top-hat formalism1

[17–22]. Some investigated the case where quintessence
is due to a real scalar field [23–25]. However, the top-hat
model can only be somewhat motivated as a limit case of
the Lemaître-Tolman-Bondi (LTB) solution valid for

pressureless matter only and, in spite of its successes, is
not a rigorous solution of Einstein’s equations in the
general case.
In most works, it is argued that quintessence should not

cluster on astrophysical scales and contributes only to the
background dynamics. The method that we have developed
allows us to test this hypothesis. It also allows us to
investigate the evolution and effects of the anisotropic
stress due to the presence of quintessence on the formation
of structure beyond the perturbation level which constitutes
a good test on the nature of quintessence [26,27]. The fully
relativistic nonperturbative approach proposed uses tools
from numerical relativity applied to the evolution of
cosmological space-times with a scalar field following
the early work by Shibata et al. [28] as well as more
recent works in the field [29,30]. We highlight the role
played by the momentum transfer associated with the
quintessence field.
The paper is organized as follows. In Sec. II, we review

the top-hat model with quintessence. The formalism that
we used to solve for the fully relativistic solution is adapted
from our previous work [1] and is detailed in Secs. III and
IV. The validity of this is first tested in the case of a de Sitter
universe filled with inhomogeneities in quintessence only.
This is the subject of Secs. V and VI, which are concerned
with a comparison with the top-hat model and a more
detailed study that goes beyond the results from the top-hat
model, respectively. Conclusions and perspectives are
discussed in Sec. VII.

II. THE TOP-HAT MODEL

In the top-hat model, space-time and the matter distri-
bution are kept piecewise homogeneous. The universe is
divided into an inner and an outer region each following
its own Friedmann equation [17,31,32]:

*jeremy.rekier@observatory.be
1By “top-hat” we understand a certain type of model in which

the total energy density profile remains a step function throughout
the whole evolution. The whole space-time consists only of two
parts at all times and not just initially.
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�
_a
a

�
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ρ̄; ð1Þ

�
_R
R

�2

¼ 8π

3
ρ̄ð1þ δÞ − k

R2
; ð2Þ

where aðtÞ and RðtÞ are, respectively, the outer and inner
scale factors and · denotes the time derivative. The density
of the inner region is written in terms of the background
density ρ̄ and the density contrast δ. It is customary to
assume that the background space-time is spatially flat.
Note that the spatial curvature of the inner space-time k
cannot in general be assumed to be a constant [32]. The
energy densities inside and outside of the over-dense region
each follow a conservation equation:

d
dt

ρ̄þ 3
_a
a
ðρ̄ð1þ wÞÞ ¼ 0; ð3Þ

d
dt

ðρ̄ð1þ δÞÞ þ 3
_R
R
½ρ̄ð1þ δÞð1þ wÞ� ¼ Γ; ð4Þ

where the species is assumed to follow an equation of state
of the form p ¼ wρ. The function Γ is an adjustable
parameter depending on whether the considered species
is allowed to cluster. Many researchers have argued that the
quintessence component of the universe should remain
homogeneous at all times [23,33,34]. This argument is
based on the equation for the evolution of scalar field
perturbations in the matter-dominated era [34],

δϕ̈þ 3Hδ _ϕþ ðk2=a2 þ V;ϕϕÞδϕ ¼ _ϕ_δm; ð5Þ

where ϕ, δϕ, δm, V, and V;ϕϕ are, respectively, the
quintessence scalar field, the field perturbation, the matter
over-density, the scalar field potential, and its second
derivative with respect to ϕ. Equation (5) shows that there
is a characteristic comoving mode kJ=a ∼ V;ϕϕ below
which the perturbations grow exponentially, corresponding
to a typical length λJ ∼ 1=

ffiffiffiffiffiffiffiffi
Vϕϕ

p
, sometimes referred to as

the Jeans length. As for most quintessential potentials, this
length is larger than the horizon, and it is generally assumed
that quintessence does not cluster. However, the process
preventing the clustering is not explained.
Returning to the top-hat equations, in the case where the

energy density is that of a scalar field with potential V,
Eq. (4) reduces to

ϕ̈loc þ 3
_R
R
_ϕloc þ

dV
dϕ

¼ Γ= _ϕloc; ð6Þ

where ϕloc is the local value of the field within the
over-dense region. To prevent the field from collapsing,
the phenomenological functional parameter Γ must be set
to [23]

Γ ¼ −3
�
_a
a
−

_R
R

�
_ϕ2
loc: ð7Þ

This makes the equation for the field inside the over-dense
region strictly equivalent to that for the outside region, thus
forcing ϕ ¼ ϕloc. In practice, this amounts to demanding
that the field within the local region couples to the value
taken by the expansion factor outside the region rather than
the local _R

R.
The top-hat model is purely phenomenological and not a

rigorous solution of the equations of general relativity. In
the presence of dust matter only, the spherically symmetric
cosmological solution of Einstein’s equations is the
LTB metric of which the top-hat model is a limit case
[1]. This model is not valid in the case of a general fluid
with pressure momentum transfer. Such is the case for
quintessence.
The fully consistent relativistic treatment calls for

numerical methods. Lasky et al. have made a step toward
the generalization of the LTB solution by formulating the
problem as an initial value problem [35]. We follow another
approach based on the many successes of numerical
relativity.

III. FORMALISM

Following the work presented in Ref. [1], we use the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism
[36–38] and write the spherically symmetric squared line
element as

ds2 ¼ −ðα2 − β2Þdt2 þ 2βdtdr

þ ψ4a2ðtÞðâdr2 þ b̂r2dΩ2Þ; ð8Þ

where αðt; rÞ is the lapse, βðt; rÞ is the radial component of
the shift βμ, and â and b̂ denote the nonzero components of
the diagonal conformal 3-metric. ψ2a is the conformal
factor.2 We have factored out the cosmological scale factor
aðtÞ which follows its own dynamics that serves as
dynamical background. The extrinsic curvature is split into
its trace K and its conformally scaled trace-free part Âμν,

Kij ¼
1

3
γijK þ ψ4a2Âij; ð9Þ

with γij being the spatial 3-metric. Due to spherical
symmetry, Âij has only two nonzero components: Aa ≔
Âr
r and Ab ≔ Âθ

θ. As Âij is traceless, one further has
Aa þ 2Ab ¼ 0. The BSSN formalism ensures that

2The denomination of ψ
ffiffiffi
a

p
as the conformal factor is custom-

ary in general relativity (see, e.g., Refs. [39,40]). It differs from
the usual expression ḡμν ¼ Ω2ημν with Ω being the conformal
factor (see, e.g., Ref. [41]) by a power of 2. Both definitions are
used interchangeably in Ref. [42].
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detðγijÞ=ðψ2aÞ3 ¼ detðfijÞ at all times, where fij is the flat
metric which here translates to âb̂2 ¼ 1.
For our purpose, we shall limit ourselves to the zero-shift

gauge β ¼ 0. There is no formal difficulty in choosing
a different gauge. This one however allows us to
perform comparisons between cosmological models more
straightforwardly. The normal vector which is tangent
to the worldline of the Eulerian observer reads
nμ ¼ ð−α; 0; 0; 0Þ. The set of dynamical and constraint
equations was given in Ref. [1]. The source terms are

E ≔ nαnβTαβ;

ji ≔ −γiαnβTαβ;

Sij ≔ γαiγβjTαβ; ð10Þ

where E is the energy density as seen by the Eulerian
observer, ji is the momentum transfer, and Sij is the
stress tensor. In spherical symmetry and using adapted
coordinates

Sij ¼

0
B@

Srr
Sθθ

Sθθ

1
CA; ji ¼ ðjrðt; rÞ; 0; 0Þ: ð11Þ

We further define Sa ≔ Srr and Sb ≔ Sθθ. The dynamics of
the quintessence field is given by the Klein-Gordon
equation

∂μðð−gÞ1=2∂μϕÞ ¼ ð−gÞ1=2∂ϕV; ð12Þ

where g ¼ detðgμνÞ, the determinant of the complete
metric. In order to write this as a first-order system, one
defines [29]

Π ≔ nμ∂μϕ; ð13Þ

Ψi ≔ ∂iϕ: ð14Þ

Assuming spherical symmetry, the evolution equations for
the quintessence field and the related variables (13) and
(14) can be written as (using the shorthand Ψ≡Ψr)

£nϕ ¼ Π; ð15Þ

£nΨ ¼ 1

α
∂rðαΠÞ; ð16Þ

£nΠ ¼ KΠþ 1

α
DrðαΨÞ − dV

dϕ
: ð17Þ

In the presence of both matter and a scalar field, the energy
source functions have two components. The expressions for
the scalar field components read

Eϕ ¼ 1

2

�
Π2 þ Ψ2

ψ4a2â

�
þ V; ð18Þ

Sϕa ¼ 1

2

�
Π2 þ Ψ2

ψ4a2â

�
− V; ð19Þ

Sϕb ¼ 1

2

�
Π2 −

Ψ2

ψ4a2â

�
− V; ð20Þ

jϕr ¼ −ΠΨ: ð21Þ

In the zero-shift gauge, the evolution equations reduce to
(making use of âb̂2 ¼ 1).

∂tΠ ¼ αKΠ −
1

ψ6a2r2
∂r

�
α
ψ2r2

â
Ψ

�
− α

dV
dϕ

; ð22Þ

∂tΨ ¼ ∂rðαΠÞ; ð23Þ

∂tϕ ¼ αΠ: ð24Þ

The numerical solution for the dynamics is obtained in a
way similar to what was presented in Ref. [1] using a
second-order partially implicit Runge-Kutta (PIRK)
method [43,44]; more details can be found in the
Appendix. The radial dimension is approximated by a
uniformly discretized cell-centered grid, and radial deriv-
atives are computed with a fourth-order finite difference
scheme. We use fourth-order Kreiss-Oliger dissipation. A
few virtual points of negative radius are added to the
numerical grid to ensure that the numerical profiles have
the correct parity throughout the integration.
The entire code used to produce the simulations pre-

sented in this work has been made publicly available on the
web at http://github.com/jrekier/FORTCosmoSS.
The evolution of the background follows the Friedmann

and acceleration equations

1

α2bkg

�
_a
a

�
2

¼ 8π

3
ρ̄; ð25Þ

1

α2bkg

ä
a
−

_a
a

_αbkg
αbkg

¼ −
8π

6
ρ̄ð1þ 3wÞ; ð26Þ

where αbkg is the background value of the lapse function.
We impose radiative conditions at the outer boundary

∂tf ¼ ∂tfbkg − v∂rf −
v
r
ðf − fbkgÞ; ð27Þ

where v is the speed of propagation of the variable f on the
grid. This is inferred by considering the characteristic
structure of the variables of the evolution system of
equations. fbkgðtÞ denotes the spatially homogeneous
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asymptotic cosmological value of the variable f and ∂tfbkg
is its first time derivative.
We work in natural units with G ¼ c ¼ 1. In order for

the complete set of units to be dimensionless, we further
impose the value of the Hubble factor measured today to be
equal to some adjustable parameter, H0 ¼ xt−1scale. A com-
parison with the experimental value ∼70 km=s=Mpc fixes
the time scale. The length and mass scales are then obtained
from lscale ¼ ctscale and mscale ¼ ðc3=GÞtscale. One can
dispose of the need to specify the particular set of scales
employed within a computation by expressing these in
terms of H0.
We consider two different dark energy models besides

the simplistic ΛCDM. The first one is the inverse power-
law Ratra-Peebles (RP) model [12] characterized by the
potential

VðϕÞ ¼ M4þn

ϕn ; ð28Þ

where n and M are constants. This produces late-time
cosmological acceleration. In the general case where the
field is not at rest initially, the slow-roll conditions are not
satisfied at initial time as the field starts with a small value
corresponding to a steep region of the potential. When it is
present, the dust matter density dominates over the energy
density and the universe assumes a power-law expansion in
time, a ∼ t2=3, during which ϕ rolls down its potential. The
field eventually comes to the flat tail region of the potential
where the weak energy condition (w < −1=3) is violated
leading to a de Sitter expansion phase. If the field is initially
at rest, the evolution proceeds in the same way but starts
with another de Sitter phase.
The other quintessence model considered is the pseudo-

Nambu-Goldstone boson model (PNGB) [45]. While the
RP model is an example of a freezing model where the
violation of the weak energy condition happens at late
time, the PNGB is classified within the set of thawing
models in which this violation happens at early times [46].
The analytical expression for the PNGB potential is

VðϕÞ ¼ μ4 cos ð1þ ϕ=fÞ: ð29Þ

IV. SCALAR FIELD EVOLUTION

In order to test the stability and convergence properties
of our method, we start by considering the evolution of a
spatial distribution of scalar field in a way similar to what
was performed for the analysis of the gauge dynamics in
Rekier et al. [1]. The purpose of the background dynamics
of this section is merely to allow us to test our method on a
de Sitter background and is by no means to reproduce the
measured expansion. The initial quintessence profile is

ϕ ¼ ϕbkgð1þ δϕÞ; ð30Þ

δϕðt ¼ 0; rÞ ¼ δϕ0r2

1þ r2

"
e
−ðr−riÞ2

σ2
i þ e

−ðrþriÞ2
σ2
i

#
; ð31Þ

where δϕ0 sets the initial amplitude of the pulse, ri is its
initial position, and σi is its spatial extension. The back-
ground value is chosen as the solution of

H2
i ¼

8π

3
VðϕbkgÞ; ð32Þ

which is just the Friedmann equation with α ¼ 1.
The initial data are set after imposing

âðt ¼ 0Þ ¼ b̂ðt ¼ 0Þ ¼ 1; ð33Þ

Kðt ¼ 0Þ ¼ −3Hi; Aaðt ¼ 0Þ ¼ Abðt ¼ 0Þ ¼ 0:

ð34Þ

This reduces the Hamiltonian constraint to

a−2ψ−5
�
∂2
rψ þ 2

r
∂rψ

�
þ 6H2

i ¼ 16πEϕ; ð35Þ

which is solved at initial time as a boundary value problem.
We perform two simulations with each one corresponding
to a different value of the initial expansion factor. These are
performed with the RP potential with n ¼ 2. The mass
scale M is chosen in order for the field to reproduce the
behavior of a cosmological constant when the field has a
value around ϕ0 ∼

ffiffiffiffiffiffi
8π

p
[46]:

8πVðϕ0Þ ¼ Λ: ð36Þ
The initial amplitude of the scalar field inhomogeneity
parameters are δϕ0 ¼ 5 × 10−4, σ ¼ 2, and ri ¼ 20. The
field is assumed to be initially at rest [Πðt ¼ 0Þ ¼ 0].
Equation (35) then turns into

a−2ψ−5
�
∂2
rψ þ 2

r
∂rψ

�
þ 6H2

i

¼ 8π

�
Ψ2

ψ4a2â

�
þ 16πVðϕÞ: ð37Þ

We first study the evolution of the field in the case where
the initial expansion factor is of the order of the present-day
Hubble factor (Hi ¼ 5H0). The evolution of the scale factor
and the homogeneous part of the scalar field are shown in
Fig. 1. The universe starts off in a phase of de Sitter
expansion as the slow-roll conditions are met at initial time.
The field rapidly unfreezes as it rolls down its potential,
leading to a milder expansion rate before assuming a long-
lasting slow-roll regime until it eventually freezes out again
at very late time. The scalar pulse propagation happens
within the early de Sitter phase. The potential part of the
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field energy density dominates over the term proportional
to the gradient of the scalar field Ψ at initial time. The
evolution of the scalar field profile in the geodesic slicing is
shown on Fig. 2. The scalar pulse separates into two parts.
The inward-traveling pulse gets reflected from the origin of
coordinates and then travels outward. The apparent dynam-
ics is very similar to what we encountered in Ref. [1] in the
study of a gauge pulse. However, the physical situation here
is very different as we are now dealing with a nonvanishing
distribution of energy. The situation here can be seen as the
evolution of a spherical shell initially placed at a radius ri.
After the shell has bounced from the origin, the central
value of the field returns to its homogeneous asymptotical
value leaving no effect on the local expansion.
The violation of the Hamiltonian constraint profile is

shown in Fig. 3 for the evolution in the geodesic slicing

gauge and for three values of the resolution. The inner plot
shows a close-up of the outer plot around the radius
corresponding to the initial position of the scalar field
pulse. A similar plot is shown for the result of the evolution
in the Bona-Masso slicing with f ¼ 0.333 in Fig. 4.

FIG. 1. Long-term cosmological evolution of the scale factor
(upper panel) and background scalar field (lower panel) for a
universe filled with quintessence for the Ratra-Peebles potential
of Eq. (28) with n ¼ 2 and the initial condition given by Eq. (36)
(Hi ¼ 5H0). The field assumes a long-lasting slow-roll regime
corresponding to an exponential growth of the scale factor. It is
chosen to freeze out completely at very late time corresponding to
ϕ ∼

ffiffiffiffiffi
8π

p
(not shown in the figure).

FIG. 2. Evolution of the radial profile of a Gaussian quintes-
sence scalar pulse on a de Sitter background (Hi ¼ 5H0) for four
different times (t ¼ 0, 0.27, 0.55, and 0.82 Gyr).

FIG. 3. Hamiltonian constraint violation profile resulting from
the propagation of a Gaussian pulse in geodesic slicing for three
values of the grid resolution at t ∼ 0.78 Gyr, after the second
scalar pulse has been reflected from the center of coordinates
(Hi ¼ 5H0). The violation is maximal at the center of coordinates
yet remains controlled throughout the integration. The rescaling
of the constraint violation with resolution demonstrates that the
convergence of the numerical scheme is above second order. The
inset plot shows a close-up representation of the same quantity
around the second scalar pulse after it has been reflected from the
center of coordinates.

FIG. 4. Hamiltonian constraint violation profile resulting from
the propagation of a Gaussian pulse in Bona-Masso slicing for
three values of the grid resolution at t ∼ 0.78 Gyr, after the
second scalar pulse has been reflected from the center of
coordinates (Hi ¼ 5H0). The violation is maximal at the center
of coordinates yet remains controlled throughout the integration.
The rescaling of the constraint violation with the resolution
demonstrates that the convergence of the numerical scheme is
above second order.
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This choice of gauge is made in order for the coordinate
speed of light to remain finite throughout the integration
[29]. Incidentally, setting f ¼ 1=3 makes the Bona-Masso
slicing equivalent to the conformal time gauge. In both
slicings, the convergence of the method is beyond second
order. The error is maximal at the center of coordinates but
remains controlled throughout the integration.
We now study the case where the initial expansion factor

is Hi ¼ 20H0, which is 1 order of magnitude larger than
the Hubble factor today. The evolution of the scale factor
and the homogeneous asymptotical value of the scalar field
are shown in Fig. 5. The milder expansion between the two
de Sitter phases happens earlier. As opposed to the previous
case, the dominant part of the initial energy density is
proportional to the gradientΨ which in fact leads to a value
of the density smaller than its asymptotical value. Figure 6
shows the evolution of the pulse on the spatial domain. The
central value of the field does not return to its asymptotical
value after the pulse is reflected. We have used geodesic
slicing. The Hamiltonian violation profile is shown in
Fig. 7. The convergence is again above second-order.

The fact that the central value of the field is different
from the asymptotical value at late time has an impact on
the local expansion around the center of coordinates.
Figure 8 shows the trace of the extrinsic curvature tensor
which is proportional to the opposite of the local isotropic
expansion of space-time after the pulse has been reflected
from the center. This shows how the expansion rate is
smaller than that of the background at the center of
coordinates which causes the local expansion to fall behind
that of the background, thus creating a spherical space-time

FIG. 5. Long-term cosmological evolution of the scale factor
(upper panel) and background scalar field (lower panel) for a
universe filled with quintessence (Hi ¼ 20H0).

FIG. 6. Evolution of the radial profile of a Gaussian quintes-
sence scalar pulse on a de Sitter background (Hi ¼ 20H0) for
four different times (t ¼ 0, 0.27, 0.55, and 0.82 Gyr).

FIG. 7. Hamiltonian constraint violation profile resulting from
the propagation of a Gaussian pulse in geodesic slicing for three
values of the grid resolution at t ∼ 0.78 Gyr, after the second
scalar pulse has been reflected from the center of coordinates
(Hi ¼ 20H0). The violation is maximal at the center of coor-
dinates yet remains controlled throughout the integration. The
rescaling of the constraint violation with resolution demonstrates
that the convergence of the numerical scheme is above second
order. The inset plot shows a close-up representation of the same
quantity around the second scalar pulse after it has been reflected
from the center of coordinates.

FIG. 8. Radial profile of the trace of the extrinsic curvature
resulting from the propagation of a scalar pulse on a de Sitter
background (Hi ¼ 20H0) at coordinate time t ∼ 0.82 Gyr.
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inhomogeneity region of mild expansion around the center
of coordinates, an effect that is persistent and remains
visible after the pulse is reflected.

V. COMPARISON WITH THE TOP HAT

We now turn to the comparison of our method to the top-
hat model of spherical collapse. This is done for ΛCDM as
well as the two quintessence models discussed earlier. The
background evolutions are chosen as qualitatively similar
to the evolution of our Universe, yet—as the fitting of the
models onto the observed data is not our primary concern—
the quintessence model parameters are chosen in order to
display a significant departure from the ΛCDM model.
Figure 9 shows the evolutions of the scale factor, the
components of the energy density, and the equation-of-state
parameter of the three considered backgrounds. The initial
value of the scale factor is a ¼ 1 in all models. The vertical
dashed line corresponds to the point of zero redshift where
the value of the Hubble factor equals the value measured
today. The shaded regions of each plot correspond to times
of negative redshift. The quantities ρm, ρΛ, and ρϕ corre-
spond to the value of the background energy density
associated to dust, the cosmological constant, and quintes-
sence, respectively. These are given in units in which

H0 ¼ 10−3. wm, wΛ, and wϕ denote the corresponding
equation-of-state parameters.
The cosmological parameters used for each model are

shown in Table I. The model-specific parameters for the RP
potential are

n ¼ 2;

M ¼ 2

5

�
3H2

0

8π

�
1=ð4þnÞ

ð8πÞ n
8þn: ð38Þ

The parameters of the PNGB model are

f ¼ 15π=
ffiffiffiffiffiffi
8π

p
;

μ ¼ 6

�
3H2

0

8π

�
1=4

: ð39Þ

These are chosen in order to produce acceleration at times
close to the present day.
The comparison between the fully relativistic solution

obtained by solving the complete set of BSSN equations and
the top-hat solution is first studied by looking at the central
value of the local scale factor defined as aψ2ðt; r ¼ 0Þ in the
BSSN coordinates. The quintessence field is assumed to be

FIG. 9. Time evolution of the cosmological scale factor aðtÞ (first column), the background densities associated to dust ρm, the
cosmological constant ρΛ, and quintessence ρϕ versus the cosmological scale factor (second column), and the time evolution of the
corresponding equation-of-state parameters (third column) for the study of spherical collapse in the presence of quintessence. The upper
row corresponds to the ΛCDM model, the middle row to the RP model of Eq. (28), and the lower row to the PNGB model of Eq. (29).
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homogeneous at initial time. The only perturbation to the
homogeneous background comes from the matter energy
density. We write the initial matter density contrast, δm ≔
ðρm=ρ̄m − 1Þ with ρ̄m being the background matter density,
as a step-like function in order to be close to the distribution
of matter in the top-hat model:

δmðt ¼ 0; rÞ ¼ δ0m

�
1

2
−
1

2
tanhðkðr − rspanÞÞ

�
; ð40Þ

where δ0m is the value of the density contrast at the center of
coordinates and rspan is the radius at which it drops to half
of its maximum value. The parameter k adjusts the steepness
of the profile.
We take rspan ∼ 20 Mpc, which is of the order of the size

of superclusters formed at late time in the history of the
Universe. This can be considered as small compared to
the size of the horizon yet sufficiently large to consider the
inner value of the energy density to be homogeneous. As
we have pointed out, the quintessence component should
cluster very little on such scales. Our method allows us to
test this ab initio. We compare the results of our compu-
tation with two realizations of the top-hat model in which
the clustering parameter Γ is zero corresponding to a case
where the quintessence is fully allowed to cluster (later

referred to as “top-hat w.c.”) and when it takes the form of
Eq. (7) allowing no clustering at all (later referred to as
“top-hat n.c.”). We use geodesic slicing with zero shift, thus
allowing a direct comparison of the metric components and
ensuring identical time coordinates in both models.
The evolution of the background and central values of

the scale factor for the ΛCDM model are shown in Fig. 10
along with the density contrast at the center of coordinates.
The initial value of the latter is fixed to δmðr ¼ 0Þ ¼ 0.16.
In spite of the conceptual limitations of the top-hat model,
this reproduces the correct relativistic predictions remark-
ably as far as the scale factor and contrast density are
concerned. The correspondence is close to being exact up

TABLE I. Initial cosmological parameters employed to produce
the simulations of Fig. 9.

Model ΛCDM RP PNGB

Ωi
m 0.9997 0.9 0.999

Ωi
Λ 1 − Ωi

m 0 0
Ωi

ϕ 0 1 − Ωi
m 1 − Ωi

m
Hi 50H0 30H0 100H0

wi
Λ=ϕ −1 0.8 −1

FIG. 10. In the left panel, we show the time evolution of the
central value of the scale factor for the fully relativistic solution
(dotted line), the central value for the top-hat solution in the
ΛCDM model (dashed line), and the cosmological scale factor
(solid line). In the right panel, we show the time evolution of the
central value of the density contrast for the fully relativistic
solution (dashed line) and the central value for the top-hat
solution in the ΛCDM model (solid line).

FIG. 11. In the left panel, we show the time evolution of the
central value of the scale factor for the fully relativistic solution
(dashed line), the central value for the top-hat solution in the RP
model with complete clustering (short-dashed line) and without
clustering (dotted line), and the cosmological scale factor (solid
line). In the right panel, we show the time evolution of the central
value of the density contrast for the fully relativistic solution
(solid line) and the central value for the top-hat solution with
complete clustering (dashed line) and without clustering (dotted
line) in the RP model.

FIG. 12. In the left panel, we show the time evolution of the
central value of the scale factor for the fully relativistic solution
(dashed line), the central value for the top-hat solution in the
PNGB model with complete clustering (short-dashed line) and
without clustering (dotted line), and the cosmological scale factor
(solid line). In the right panel, we show the time evolution of the
central value of the density contrast for the fully relativistic
solution (solid line) and the central value for the top-hat solution
with complete clustering (dashed line) and without clustering
(dotted line) in the PNGB model.
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to very deep within the nonlinear growth regime of δm. The
same quantities are shown in Fig. 11 and Fig. 12 for the
Ratra-Peebles and PNGB models, respectively, with initial
density contrasts δm ¼ 0.3 and δm ¼ 0.15. The evolution of
both the scale factor and the density contrast is really close
to the top-hat solution at early time when the matter
dominates over the quintessence field. When quintessence
starts to dominate, the naive top-hat model with clustering
predicts a quicker collapse than the relativistic solution.
This solution remains close to the solution in both top-hat
models without clustering at all times. The small departure
from the top-hat model that is observed at late time for the
PNGB potential could be an effect of a small yet nonzero
late-time clustering of quintessence.
Figure 13 shows the central value of the quintessence

density contrast, δϕ ≔ ðρϕ=ρ̄ϕ − 1Þ, with ρ̄ϕ, for the top-hat
model with clustering of quintessence and for the BSSN
simulation for both models of quintessence. The top row
corresponds to the PNGB model, while the second row
corresponds to a Ratra-Peebles model. No ad hoc
assumption is made regarding the Jeans length of the
scalar field. We can see that the growth of the quintessence
over-densities reaches its nonlinear regime while remaining
bounded yet nonzero.

VI. BEYOND THE TOP-HAT MODEL

The method that we have developed allows us to explore
the physical reasons behind the fact that quintessence
clusters very little. The top-hat model—regardless of
whether it allows quintessence to cluster—assumes that

the over-dense region has the symmetries of the Friedmann-
Lemaître-Robertson-Walker space-time. This forbids, in
particular, the existence of anisotropic pressures and
momentum transfers. While this is not a problem when
only dust matter is present, this is rather arbitrary in the
presence of quintessence. In the latter case, anisotropic
pressure terms do build up values that are comparable to
the inhomogeneous part of the isotropic pressure. However,
the latter are themselves kept very small for other reasons.
In this section, we investigate the evolution of anisot-

ropies during the collapse process for the PNGB and Ratra-
Peebles models.
Spherical symmetry forbids any anisotropic quantities

from being along directions other than the radial one.
The momentum transfer associated to a scalar field is given
by Eq. (21). It is useful to think of the scalar field as an
imperfect fluid in order to identify the radial anisotropic
pressure term as

πϕ ≔ πϕrr ¼ ðSϕa − SϕbÞ: ð41Þ

This comes out as πϕ ¼ Ψ2

ψ4a2â. It is zero in the background
space-time, as it should be due to the vanishing of the
quintessence gradient.
In order to understand why the field does not cluster, it is

best to consider why it should collapse in the naive top-hat
model (Γ ¼ 0) in the first place. As it turns out, most of the
difference in the energy density of the field comes from a
difference in kinetic energy. Figure 14 shows the evolution
of the effective quintessence equation-of-state parameter
inside and outside of the over-dense region in this model for
both the RP and PNGBmodels. This increases very quickly
at early time, but this has a limited impact as dust matter is
still the dominant component of the energy density. The
corresponding increase in the quintessence kinetic energy is
reinforced at the turnover when the over-dense region stops
expanding and starts to collapse. This can be understood by
considering Eq. (22) describing the evolution of the field
momentum, which in the spatially homogeneous case
reduces to

FIG. 13. Evolution of the central value of the quintessence
energy density contrast during the collapse for the potentials of
Eqs. (28) and (29). The left column shows the growth in the top-
hat model with complete quintessence clustering. The right
column shows the growth of the same quantity from the fully
relativistic computation. The first row corresponds to the PNGB
model, and the second row to the RP model.

FIG. 14. Evolution of the central (dashed lines) and background
(solid lines) values of the equation-of-state parameter in the RP
(left panel) and PNGB (right panel) models in the naive top-hat
picture in which quintessence fully clusters.
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∂tΠ ¼ KΠ −
dV
dϕ

: ð42Þ

A collapsing space corresponds to K > 0, leading to a
positive feedback on the growth of Π which can hardly be
counterbalanced by the gradient of the potential, especially
when the latter is very flat such as is the case in slow-roll
expansion. The amount of kinetic energy built up within the
over-dense region causes the quintessence field to act as
stiff matter which accelerates the collapse.
The faulty part of this picture lies in the fact that the two

parts of the space-time are completely disjoined and there is
no possibility of momentum transfer between both regions.
This transfer is made possible in the complete picture
through the second term of Eq. (22). The modified top-hat
model with no clustering reproduces this coupling artifi-
cially through the term proportional to Γ. This induces a
loss of momentum proportional to the difference between
the extrinsic curvatures of the inner and outer regions of
space that effectively compensates the positive feedback
effect described above. In reality, this term is purely
phenomenological but is also nonlocal and Eq. (6) does
not correspond to a solution of the equations of general
relativity.
The method that we have developed to solve for the

complete relativistic dynamics allows us to investigate what
actually happens at the local scale.
The upper rows of Fig. 15 and Fig. 16 show the evolution

of the field density contrast profile as a function of time

along with the radial momentum transfer from the stress-
energy tensor jϕr for the RP and the PNGB models,
respectively. These figures were obtained with the same
parameters as in the previous section. The results are
presented in natural units with the Hubble constant value
set to H0 ¼ 0.001.
As the over-dense region gets closer to the turnover, the

momentum transfer increases to a large positive value
corresponding to an outward transfer. This is responsible
for balancing the kinetic energy inside and outside of the
over-dense region. This transfer is maximal around the
boundary of the over-dense region which is the place where
the gradients of the scalar field and metric variables are
maximal.
The decrease in the momentum of the field adjusts the

equation-of-state parameter at the center of coordinates to
its background value. As the universe approaches the
vacuum-dominated era, this may either result in a more
rapid or a delayed collapse depending on the shape of the
potential. The PNGBmodel has a positive equation-of-state
parameter at late time, resulting in a facilitated collapse
which in turn increases the small value of the quintessence
density contrast. In both models, this small yet nonzero
density contrast induces a small difference of pressure
inside the over-dense region. The bottom rows of Fig. 15
and Fig. 16 show the evolutions of the gradient of isotropic
pressure between the over-dense and background regions
(left panel) and the anisotropic pressure profiles (right
panel). One sees that the isotropic pressure value dominates

FIG. 15. Evolution of the anisotropies in the RP model. Top row: Field energy density contrast (left) and momentum transfer (right).
Bottom row: Isotropic (left) and anisotropic (right) part of the field pressure.
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over the isotropic pressure, yet the latter is 1 order of
magnitude less than the anisotropic pressure around the
boundary of the over-dense region where it is maximal.
For completeness, we ought to provide an explanation for

the colors in the plots of Fig. 15 at early time. These are a
consequence of the transient behavior following the evolu-
tion of the particular set of chosen initial conditions. At
initial time, the field starts off in a very steep region of its
potential. This results in a large gain of momentum at the
center of coordinates which is not yet counterbalanced by the
negative feedback of expansion or the momentum transfer
which is initially null. The small increase in δϕ that results,
along with a positive equation of state wϕ ∼ 1, lead to a
temporarily high pressure difference that overshoots the
color scale of the plot. The effect is rapidly counterbalanced
by expansion and momentum transfer. The small initial
“jump” in the contrast density is perceivable in the two
bottom plots of Fig. 13. One understands how the contrast
density decreases more slowly in the top-hat picture with
clustering as the only effect is the negative feedback from
initial expansion. These transient behaviors have little effect
on the overall evolution as these happen at a time when the
matter energy density is dominant. However, these encour-
age us to look for more general initial conditions.

VII. CONCLUSION AND PERSPECTIVES

In this work we have proved the validity of a new method
for solving the equations of evolution of a spherically

symmetric cosmological space-time filled with a real
quintessence scalar field. We have proved the stability
and validity of our method by studying the evolution of a
spherical distribution of quintessence inhomogeneity on a
de Sitter background. This allowed us to study the deviation
of the local expansion around quintessence over-densities
in formation and opens perspectives of more detailed study
of the backreactions of local distributions of energy on the
cosmological expansion.
We have shown how the method can be used to study the

impact of quintessence on the spherical collapse of a matter
over-density. We have undertaken this study for three
different cosmological backgrounds and compared our
results to those obtained in the top-hat picture. It turns
out that the top-hat model predicts evolutions of the scale
factor relatively close to the solution obtained using the
fully relativistic method when the quintessence field is
artificially kept homogeneous. The solution diverges
slightly at the end of the integration when small over-
densities do build up. We have identified the cause of the
overall great homogeneity of the quintessence field as the
existence of a non-null momentum transfer and anisotropic
pressure component of the stress-energy tensor that are
maximal at the boundary of the spherical over-density.
We see the present work as a first step towards a more

systematic study of the impact of the shape of the
quintessence potential on the physics of galaxy clusters.
It would be interesting to look at the evolution of geodesics

FIG. 16. Evolution of the anisotropies in the PNGB model. Top row: Field energy density contrast (left) and momentum transfer
(right). Bottom row: Isotropic (left) and anisotropic (right) part of the field pressure.
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near the boundary of the forming object. Even though the
anisotropic terms are small, we expect that these might have
an effect in the context of scalar-tensor theories where these
are expected to couple directly to space-time curvature.
In most treatments of spherical collapse, the top-hat model
is assumed to be valid up to a time when it is assumed that
the structure gets virialized. The top-hat model does not
allow one to account for the process and the argument
of virialization is used as a workaround and not as a
prediction. We did not need this assumption in the present
work. A generalization of our method to varieties of
energies with more general equations of state would be
an interesting task that could ultimately allow us to
investigate the physics of the very late stages of the
evolution, just before the collapse.
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APPENDIX: PIRK OPERATOR SPLITTING FOR
SCALAR FIELD EQUATIONS

The operator splitting for the space-time quantities is the
same as the one used in Ref. [1]. The Ψ function is evolved
explicitly. The Π function is evolved semi-implicitly using
the following splitting:

L2ðΠÞ ¼
α

a2ψ4â
Ψ

�
2

r
−
∂râ
â

þ ∂rα

α
þ 2

∂rψ

ψ

�
; ðA1Þ

L3ðΠÞ ¼ αKΠþ α

a2ψ4â
∂rΨ − α

dV
dϕ

: ðA2Þ

These quantities are evolved prior to the auxiliary BSSN
quantity Δ̂r, the evolution scheme of which remains
unchanged.
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