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Abstract 

Since 1957, broad proton beam radiotherapy with a spread out Bragg peak has been used for 

cancer treatment. More recently, studies on the use of proton therapy in the treatment of non-

small-cell lung cancer (NSCLC) were performed and, although the benefit of using protons 

for the treatment of NSCLC is recognized, more work is needed to gather additional data for 

the understanding of cell response. Human A549 cell survival was evaluated by colony 

forming assay 11 days after 10 keV/µm proton beam irradiation at 0.1 and 1 Gy/min. The 

residual energy of the proton beam at the location of the irradiated cells was 3.9 MeV. In 

parallel, early effects on the cell viability and DNA damage were assessed and DNA 

synthesis was measured. The survival curve obtained was fitted with both the Linear and the 

Induced-Repair models as a hyper-radiosensitivity was evidenced at very low doses. Above 

0.5 Gy, a linear shape was observed with the  parameter equal to 0.824 ± 0.029 Gy
-1

. Early 

cell death and cell proliferation arrest were highlighted. Moreover, a clear correlation 

between DNA damage and surviving fraction was observed. Finally, comparisons with X 

results indicate that proton irradiation at 10 keV/µm enhances the tumor radiosensitivity with 

a significant dose-dependent decrease in the survival fraction. The RBE value of 1.9 ± 0.4 

obtained for a 10% survival supports this observation. This is the first study to show that low 

LET proton irradiation of lung cancer cells evidenced hyper-radiosensitivity with a high RBE 

value. 

 

Keywords 

A549 cells, surviving fraction, linear and LQ model, relative biological effectiveness, hyper-

radiosensitivity 
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Introduction 

Lung cancer is the leading cause of cancer-related death both in the US and Europe (1). 

Besides traditional treatment of this disease, such as surgery or chemotherapy and/or 

radiotherapy, new modalities are under investigation like radio-immunotherapy (RIT) (2, 

3) or external radiotherapy with heavy charged particles like protons. The idea to use 

protons for medical applications was first suggested by the physicist Robert R. Wilson in 

1946, recognizing that the unique physical properties of protons would have distinct 

advantages over photon radiation (4). Since this date, the use of proton beams in 

radiotherapy has considerably increased. The major difference between radiotherapy with 

photons vs. protons is the spatial distribution of the absorbed dose. Indeed, for photons, 

the maximum dose is deposited close to the entrance surface of the irradiated matter, 

while, for protons, the maximum dose deposition occurs within the so-called Bragg peak, 

at a depth depending on the incident beam energy. This increased accuracy in the dose 

distribution allows the treatment of tumors localized in the vicinity of vital and 

radiosensitive organs as the deposited dose to the surrounding normal tissues can be 

reduced. Currently, proton beams are used for the treatment of pediatric tumors for which 

the greatest potential benefit is expected, but also for adult tumors in the head and neck 

region, the skull base, the orbit, the brain and extra-cranial sites as well as for prostate 

cancer (5-7). More recently, studies on the use of proton therapy in the treatment of non-

small-cell lung cancer (NSCLC) have been performed and reviewed in (8-10). In these 

papers, authors present the benefit of using protons for the treatment of NSCLC but 

emphasize that more data are needed to better understand the cell response to proton 

beam irradiation. This is one of the goals of this paper. 
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Another contribution of this work is in relation to the measurement of RBE at low LET. 

It is generally accepted that high energy protons have the same effect as megavoltage X-

rays, with a mean RBE observed in vivo of 1.10 (11). However, LET variations appear 

within the tumor volume due to continuous energy loss along the proton track (from 

fraction of keV/µm to 85 keV/µm) and the associated RBE may be higher or lower than 

the one used in treatment planning. Today, the Treatment Planning Systems (TPS) are 

only considering a constant RBE of 1.1 according to ICRU78 (2007). But, it is 

recognized that this is an oversimplification and studies are in progress to implement 

RBE variation along the proton track in current TPS. For that purpose, one needs to 

evaluate the cell response at various LET.  

 

Within this context, the in vitro irradiation station developed at the University of Namur 

for broad beam radiobiological experiment was used to study the response of A549 

human lung carcinoma cells irradiated with protons. Cells were irradiated at 0.1 and 1 

Gy/min with a broad proton beam with an incident energy of 4 MeV corresponding to a 

LET of 10 keV/µm. The clonogenic survival was evaluated, and highlighted a higher 

biological effect compared to photons, but also a hyper-radiosensitivity at low doses. In 

parallel, early effect on the cell viability, DNA damage as well as DNA synthesis were 

assessed.  
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Material and Methods 

Cell Cultures 

Human A549 human alveolar adenocarcinoma cells (ATCC) were grown in MEM 

(Minimum Essential Medium) (Invitrogen) containing 10% (v:v) fetal calf serum (FCS) 

(Invitrogen) at 37°C in a humidified atmosphere incubator containing 5% CO2. 

Proton Beam Irradiation and Dosimetry 

Cells are seeded in home-made irradiation chambers, that fit into the linear accelerator on 

a Kapton foil; as a drop of 30 µl containing 100,000 cells. Twenty-four hours after 

seeding, confluent monolayers of A549 cells were irradiated with a broad proton beam 

with an incident energy of 4 MeV, corresponding in to an energy at the cell entrance of 

3.9 MeV. The energy of the proton beam after the cell monolayer is 3.75 MeV. The 

proton broad beam was produced with a 2MV Tandem accelerator (High Voltage, 

Netherlands). More details on irradiation facility and cell preparation for the irradiation 

are described in (12).  

For an ion beam, the dose-rate is given by: 

 ̇           
                              

        
        

  

(1)                                                                               

where  ̇ is Gy/s,     i   h  lin     n        n f  ,   i   h  flu   nd   i   h    ll density. 

Following equation (1), LET and flux must be controlled over the entire irradiation field 

and throughout the irradiation of the cells.  
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Knowing the incident proton beam energy precisely (for the energy calibration of the 

accelerator see (13) the beam energy and the energy spread were experimentally 

evaluated at the entrance of the cell monolayer (after the kapton foil) using a calibrated 

PIPS detector (Passivated Implanted Planar Silicon). The LET value was then calculated 

with the SRIM program (14) to  10 keV/µm LET (± 1%). 

  

The flux is measured with the PIPS detector placed in front of the beam. The flux must be 

controlled over the irradiation field and during the irradiation, thus variations are related 

to spatial inhomogeneity and beam current fluctuation. Both of them were checked and 

the variation was evaluated to be about 5 %. Finally, the induced dose-rate error related 

to energy spread, beam inhomogeneity and current fluctuation was evaluated to be 6 %. 

For more details on the beam characterization see (12). This error was used to calculate 

the dose error for the surviving fraction curve presented in this paper. Note that the 

contribution of backscattered protons to the dose-rate is below 5 x 10
-3 

% and thus can be 

ignored. Two different dose-rates were used to achieve the chosen doses with a good 

accuracy: 0.1 Gy/min for doses ranging from 0.02 to 0.5 Gy and 1 Gy/min for doses 

ranging from 0.2 to 3 Gy. Note that, for all experiments, the doses 0.2 and 0.5 Gy were 

performed at both dose-rates to detect a possible effect of the dose rate. 

Colony Forming Assay 

After irradiation, cells were detached using trypsin, counted and seeded in 6-well plates 

(9.40 cm²) at desired concentrations. Eleven days after seeding, the number of visible 

colonies (containing more than 50 cells) was counted after staining with violet crystal in 

2% ethanol. The plating efficiency (PE) was determined for each dose and the surviving 



 

 8 

fraction was calculated as the ratio of the PE for the irradiated cells to the control cells 

(12). The survival curve has been drawn from three independent experiments performed 

on three different days. For each experiment, two radiation chambers were used for one 

dose and one dose-rate and the trypsinized cells from each chamber were seeded in 6 

different wells, to be stained with violet crystal at the end of the experiment. The errors 

were evaluated as standard deviation. Control cells were sham-treated cells that 

underwent all procedures except the radiation exposure.  

Cell Viability 

After irradiation, cells were detached using trypsin, counted, and 1500 cells were seeded 

in 96-well plates (0.32 cm²). 24 hours post-irradiation, cell viability was assessed using 3-

(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The optical density 

was measured at 570 nm. The percentage of metabolically active irradiated cells was 

obtained as the ratio of the optical density of the irradiated cells to the optical density of 

the control cells. Three independent experiments were performed for each dose and dose-

rate.  

DNA Synthesis 

After irradiation, cells were detached using trypsin, counted, and 1000 cells were seeded 

in 96-well plates (0.32 cm²). At 0 h, 24 h or 48 h post-irradiation, 10 µl of [
3
H]-thymidine 

solution (10µCi/ml) was added to the 96-well for 24 hours. A scintillation counter was 

used to measure the incorporation of [
3
H]-thymidine as described in (15). In parallel, the 

same quantity of cells was seeded in another 96-well plates to assess the number of cells 

at the moment of the [
3
H]-thymidine incorporation, as measured by Pierce BCA protein 
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assay (Thermo Scientific). DNA synthesis obtained in the control cells was normalized to 

100% and the percentage of DNA synthesis in the irradiated cells compared to the control 

was then obtained. Three independent experiments were performed for each dose.  

 

Nuclear Morphology 

After irradiation, cells were detached using trypsin, counted, and about 1000 cells were 

seeded on sterilized coverslips placed in 24-well plates (1.88 cm²). At 24 h or 72 h post-

irradiation, DAPI (4,6-diamidino-2-phenylindole-dihydrochloride) staining was 

performed. Cells were fixed for 15 min in 4% paraformaldehyde (Merck). After three 

PBS washes, cells were permeabilized in PBS + 0.2% triton X100 (Merck) for 5 minutes 

at room temperature. Cells were stained with DAPI (Sigma, 100 ng/ml) for 15 min in 

dark at 37°C. After one PBS wash, coverslips were mounted in Mowiol (Sigma). 

The analysis consisted of counting the number of nuclei with normal or abnormal 

phenotypes. Examples of abnormal nuclei scored included small and condensed apoptotic 

nuclei with a bright fluorescence due to chromatin condensation (16), and large and 

uncondensed mitotic catastrophe nuclei (17). Non-irradiated cells were used as controls. 

The percentage of nuclei with non-normal morphology was obtained in irradiated cells as 

well as in the non-irradiated control cells. Results are expressed as the value obtained by 

subtracting the percentage obtained in the non-irradiated control cells from the 

percentage obtained for irradiated cells. Three independent experiments were performed 

for each dose and dose-rate.  
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-H2AX immunofluorescence staining 

At 15 minutes, 2 hours and 24 hours after irradiation, cells were fixed, permeabilized and 

stained for -H2AX. The immunofluorescence staining was performed as described in 

(18). Primary antibody is rabbit anti-phospho-histone H2AX (#9664 Cell Signaling) at 

1/400 dilution. Alexa Fluor-488-conjugated anti rabbit IgG antibody (Molecular Probes) 

was used at 1/1000 dilution. Nuclei were staining with ToPro-3. The images obtained by 

confocal microscopy using a constant photomutiplier (Leica SP5) were analyzed with the 

measure RGB plugin of the ImageJ software. The fluorescence intensity was quantitated 

in about 100 cells for each condition of time and dose. The threshold value was deduced 

from control non-irradiated cells. Cells with a higher fluorescence intensity than the mean 

value + one standard deviation were considered as positive cells.  

Survival Curve Analysis 

The results obtained with the colony forming assays were analyzed with the Linear-

Quadratic (LQ) model and the Induced-Repair model (IndRep). The LQ model allows the 

d     in  ion of  h   wo   dio  n i ivi              α  nd β   

²)( DDeS    

where S is the surviving fraction and D is the deposited dose (Gy). The LQ model 

considers that lesions induced by radiation may interact in the cell to cause cell death. 

 h    l  ion         ul  f o     in l         v n   d    ib d b  α  o  b   wo 

ind   nd n          d    ib d b  β   Fo      i l   wi h hi h        h n       l  ionizin  

radiations, the surviving fraction curve p    n     lin     h     nd  h  β           f o  

the LQ model is set to zero leading to a linear model. Even if widely accepted, literature 
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has shown that deviation between experimental data and this model can be observed. For 

example, at low dose, deviation can be due to hyper-radiosensitivity (HRS) (19, 20). To 

obtain a better approximation of the data at low doses, the Induced-Repair model has 

been suggested to match this HRS as well as the induced radioresistance observed in 

doses up to 1 Gy.  

²))1(1( DDe cD

D

r

s
r

eS





 



  

 h  IndR    od l i   n  d     ion of  h   Q  od l  h    llow  h  α            o v    

with the dose (21).  h   od l d fin   fou            : αr (r for resistance, characterizing 

the region at doses higher than the dose region for HRS)  nd β ob  in d wi h  h   Q 

 od l; αs (s for sensitive, characterizing the low dose region) and Dc (c for conversion, 

corresponding to the dose for which the conversion from αs to αr is 63% complete) 

characterizing the HRS. The surviving fraction was fitted using Origin 7.5 (OriginLab) 

with chi square minimization method. 

Irradiations of A549 lung cancer cells with 1.2 MeV protons (LET=25 keV/µm) have 

been performed in a previous work and published in (12). In parallel, 250 kV X-rays 

irradiations were also performed using the same irradiation conditions with the same cell 

line using a Philips Medical Systems RT 250 X-ray unit. The experimental data obtained 

for X-rays in our laboratory are presented in (22).  

The calculated radiosensitivity parameters of the surviving fraction obtained with colony 

forming assay are also used for comparison to calculate the relative biological 

effectiveness (RBE) for irradiations with each proton bean energy and LET (10 keV/µm 

and 25 keV/µm).  
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Statistical Analysis 

Statistical analyses were carried out using ANOVA 1 using Sigma Stat. 

Results 

Dose surviving fraction curve after 4 MeV broad proton beam irradiation 

Irradiations were performed for doses ranging from 0.02 to 3 Gy in three independent 

experiments. For the low dose region (0.02 to 0.5 Gy) the dose-rate was set to 0.1 

Gy/min, while the dose-rate was set to 1 Gy/min for the higher doses (0.2 to 3 Gy). The 

doses of 0.2 and 0.5 Gy were performed using both dose-rates. 11 days after irradiation, 

the surviving fraction was assessed with colony forming assays (figure 1A). No 

difference was seen in the surviving fraction obtained at 0.2 and at 0.5 Gy for both dose-

rates. The experimental data have been fitted with LQ, linear and IndRep models.  h  α 

 nd β              l ul   d wi h  h  LQ model were 0.839 ± 0.126 Gy
-1

 and -0.005 ± 

0.046 Gy
-2

 ,        iv l   A         d,  h  qu d   i        β  ob  in d i  v       ll in 

 o    i on  o  h  lin          α   Fu  h   o  ,  h  β un     in   i  l       h n  h  

parameter value itself. The Linear model was thus preferred to fit the experimental data, 

i.e., the  parameter was set to zero as a linear shape was observed for the higher doses. 

The linear model gave an  parameter equal to 0.824 ± 0.029 Gy
-1

. At low doses, from 

0.02 to 0.2 Gy, a deviation between experimental data and the LQ model was observed 

(inset of figure 1A). This deviation is due to HRS and is highlighted by linearization of 

the surviving fraction, i.e. –ln(S)/D where S is the surviving fraction and D is the dose 

(figure 1B). A better approximation of the data at low doses was obtained with the 
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IndRep model (see fit in figure 1A and 1B). The additional values obtained with this 

model were 11.6 ± 5.2 Gy
-1

 and 0.052 ± 0.015 Gy for s and Dc respectively.  

Cell viability 24 hours after irradiation 

In order to highlight early effects on cell viability after 10 keV/µm proton beam 

irradiation, MTT assays were performed 24 hours after the irradiation. The results 

obtained for different doses at dose-rates of 0.1 and 1 Gy/min were compared to control 

cells (figure 2). A slight decrease in viability, that did not reach statistical significance, 

was observed for doses of 0.075 and 0.1 Gy. These results are consistent with the HRS 

observed in the surviving fraction curve (figure 1). A significant decrease in viability was 

observed for doses of 1.5 and 2.5 Gy. No difference was seen in the viability obtained 

between the two dose-rates for the 0.2 and 0.5 Gy doses. 

DNA synthesis 

To assess the DNA synthesis rate,[
3
H]-thymidine incorporation was evaluated after 

irradiation of A549 cells. [
3
H]-thymidine incorporation during 24 hours was measured at 

0, 24 and 48 hours after irradiation. This corresponds to time intervals of [0-24h], [24-

48h] and [48-72h]. Results are presented in figure 3. At the lowest dose (0.2  Gy), the 

proportion of cells that were still synthesizing DNA was not significantly different from 

the control cells 48-72 hours after irradiation: the relative [
3
H]-thymidine incorporation 

reached 100 %. Furthermore, for 0.5 Gy, at the first 0-24 hours after irradiation, the 

proportion of DNA synthesizing cells was significantly lower than for control cells. It 

was also the case for the experiment in which DNA synthesis was assessed between 24-

48 hours after irradiation. Interestingly, the proportion of the DNA synthesizing cells 48-
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72 hours after irradiation was not significantly different from control cells. This 

observation may indicate a recovery of cell proliferation. For higher doses, the fraction of 

the cells that were still synthesizing DNA was much lower than for control cells and no 

increase was observed with time. At the higher dose of 3 Gy, this fraction decreased to 

less than 20% 48-72 hours after irradiation, indicating that the most of cells still present 

in the sample were no longer able to grow to form colonies. 

 

Nuclear morphology after irradiation 

Apoptotic cells and cells undergoing mitotic catastrophe can be distinguished by DAPI 

nuclear staining. The staining was performed 24 hours and 72 hours after the irradiation. 

Results are presented in figure 4. At 24 hours post-irradiation (figure 4A), from 2 to 6 % 

of apoptotic cells can be observed with a trend toward a higher level of apoptosis with 

higher doses. In addition, 2 to 5 % of cells displayed large and uncondensed nuclei for 

doses higher than 0.1 Gy, suggesting that they underwent mitotic catastrophe. At 72 

hours post-irradiation (figure 4B), small nuclei with bright fluorescence were no longer 

present, and, the fraction of mitotic catastrophe nuclei increased with the dose from 0.2 to 

3 Gy up to represent more than 20 % of the cells for 3 Gy. These observations are in 

agreement with the results obtained from the MTT tests and the [
3
H]-thymidine 

incorporation measurements. No difference was seen in the observed nucleus 

morphology between the two dose rates for the 0.2 and 0.5 Gy doses. 

 

DNA damage after irradiation 
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DNA damage induced by proton radiation were detected using -H2AX 

immunofluorescence staining. We assessed overall DNA damage using a FACS-like 

analysis with the integration of the intensity of the fluorescent signal for each cell. 

Results showed that the percentage of cells harboring DNA damage increased with the 

dose as well as with time of recovery: about 80 % of the cells were positive for -H2AX 

staining 24 hours after irradiation with 2 Gy (figure 5A). Although, the proportion of 

more fluorescent cells seemed to be stable over time, the average fluorescence intensity 

for these cells decreased with time indicating cell repair (data not shown). A correlation 

(r² = 0.94) could be observed between the number of -H2AX-positive cells estimated 24 

hours after irradiation and the surviving fraction (figure 5B). Finally, the fact that there 

was not a lower number of positive cells at 0.075 Gy in comparison to 0.5 Gy is 

consistent with the HRS observed on the survival curve (figure 5C). 

 

Dose survival curve comparison 

In order to compare these data with data obtained for other types of irradiation, we 

compiled data obtained by our group using the same cell line and the same protocol. 

Results are presented in figure 6 for irradiations performed with 10 keV/µm protons, 25 

keV/µm protons and 250 kV X-rays (22). The curve of Bromley et al. (23) is used for 

comparison with data from the literature. On one hand, we observe that the two proton 

 u v       lin      h  β           w        o     
-2
  wi h  h  α        er equal to 0.824 ± 

0.029 and 1.26 ± 0.03 Gy
-1

 for 10 keV/µm and 25 keV/µm respectively. On the other 

hand, the X-ray curves are shouldered as expected and are very similar one to each other. 
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The radiosensitivity parameters are 0.332 ± 0.045 Gy
-1

 and 0.018 ± 0.005 Gy
-2

 for 250 

kV X-rays and 0.2432 Gy
-1

 and 0.0257 Gy
-2

 for 6 MV X-rays from (23).  

We have calculated, from data we generated for X-rays, the RBE for 10% survival and 

we obtained 1.9 ± 0.4 and 2.9 ± 0.5 for the 10 keV/µm and 25 keV/µm proton irradiation. 

RBE values that we calculated from our data regarding proton irradiation were compared 

to the results of Bromley et al. for 6 MV X-rays are 2.1 ± 0.4 and 3.1 ± 0.6 respectively 

(23).Moreover, for the lowest surviving fraction within the HRS region for 10 keV/µm 

proton irradiation, i.e. 77%, the RBE values are equal to 10.7 ± 3.3 and 3.6 ± 0.6 for 10 

keV/µm and 25 keV/µm proton irradiation respectively.  
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Discussion 

In May 2011, the Particle Therapy Co-Operative Group reported that 38 particle therapy 

facilities are in operation. Statistics on hadron-therapy show that about 74,000 out of a 

total of 84,500 patients have been treated with protons since particle beam therapy began 

in 1954. Since 1957, broad beam radiotherapy with a spread out Bragg peak (SOBP) was 

used to cover larger tumors. In this case, beams with different intensity and energy (or 

range) are added to obtain a composite curve of relative dose with a desired shape at a 

desired depth. Although proton therapy is generally used for tumors in the region of vital 

or radiosensitive organs like head and neck tumors or for pediatric tumors, studies on the 

use of proton for the treatment of lung show promising results but more data are needed 

to better understand the cell response. Moreover, during SOBP patient irradiation, the 

variation and especially the increase in the LET at the end of the particle track may lead 

to local overdosage. 

In this work, human A549 cells were irradiated with a 4 MeV broad proton beam at dose-

rates of 0.1 and 1 Gy/min for doses ranging from 0.02 to 3 Gy. Different biological 

endpoints were studied: clonogenicity, direct mortality, apoptosis, DNA damage and 

DNA synthesis. For the 0.2 and 0.5 Gy doses, the experiments were performed with the 

two dose-rates and no effect of dose-rate was detected. Indeed, both in the surviving 

fraction and in the cell viability assessment no difference was seen between the results 

obtained for 0.1 Gy/min and 1 Gy/min. This indicates a dose-rate independent cell 

response in this range of doses and dose-rates. 

The surviving fraction obtained 11 days after irradiation showed two different behaviors 

in the shape of the curve. On one hand, at higher doses (from 0.5 to 3 Gy), a linear shape 
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(characteristic of high LET radiations) was observed with a surviving fraction at 2 Gy of 

~20%, which decreased to less than 10% at 3 Gy. On the other hand, at lower doses (from 

0.02 to 0.2 Gy), a deviation showing higher cell sensitivity was observed: this is the so-

called hyper-radiosensitivity (HRS) observed in many tumor cells lines (19), but mostly 

for sparely ionizing radiation. 

The decrease in the surviving fraction for the high doses region can be linked to both 

direct mortality and cell proliferation arrest. On one hand, the results obtained 24 hours 

after the irradiation showed a significant decrease in the fraction of metabolically active 

cells (MTT test). This is in agreement with the presence of a low percentage of apoptotic 

cells observed in figure 4A. This range of apoptotic cells percentage is within the range 

observed by others for proton irradiation (24, 25). Similarly to the results of Dunne et al. 

(25), we observed that later than 24h post-irradiation, the number of apoptotic cells 

decreased. Our results are also in accordance with the activation of apoptotic pathways 

found for A549 lung cancer cells irradiated with low energy protons early after 

irradiation (26). On the other hand, an arrest in the cell proliferation was observed for 

higher doses, with the proportion of cells able to divide decreasing to fractions smaller 

than 70% to 40% for doses from 0.5 to 3 Gy. Even after long recuperation time (48h and 

72h), this proportion of proliferating cells that have been irradiated at high doses never 

increased and we observed a significant decrease in the [
3
H]-thymidine incorporation 

over time at 3 Gy. This is in good accordance with the high number of cells undergoing 

mitotic catastrophe at 72 hours post-irradiation for higher doses. However, at 0.5 Gy, we 

can see that the proliferation increased to reach values comparable to the control cells. 
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This indicates the potential repair of the remaining cells as the fraction of proliferating 

cells increased with time for this dose.  

DNA damage was assessed through -H2AX staining. Proton irradiation has already been 

shown to induce DNA double strand breaks (27). An increase in DNA damage was 

observed with increasing doses. A linear correlation between DNA damage positive cells 

assessed 24 hours post-irradiation and surviving fraction was observed as it was already 

published for X-ray irradiation (28). 

Regarding the low dose region, we did observe HRS. HRS on A549 lung cancer cells was 

also observed in one of our previous works, after irradiation with low dose-rate beta 

particles (29). Moreover, this was also evidenced for the same cell line by Enns et al. (30) 

but for irradiation with gamma rays from 
137

Cs at a dose-rate of 0.22 Gy/min. The HRS 

was observed at ~0.1 Gy and was due to apoptotic death happening during the first cell 

cycle post-irradiation. In comparison with our results, HRS also seems to be related to 

direct mortality, as indicated by the MTT results for 0.075 and 0.1 Gy as well as by the 

higher proportion of cells with non normal nuclei (figure 5). Moreover, a high proportion 

of positive cells for DNA damage assessed at 24 hours for the low dose 0.075 Gy also 

supports the HRS. 72 hours post-irradiation, there was no difference regarding DNA 

synthesis for 0.2 Gy, which means that the remaining cells were still able to grow to form 

colonies and thus this may indicate that cells were not in a senescent state.  

Although there is an extensive amount of data in literature about HRS for cancer and 

normal cells, it mainly concerns X or gamma rays irradiations. However a few studies 

report HRS for low-LET and high-LET ions. In the work of Schettino et al. (31), V79 

cells were irradiated with counted protons from a charged-particle microbeam at 3.2 MeV 
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and 1 MeV (around 11 and 24 keV/µm respectively). HRS was observed in the low dose 

region for both experiments but was more pronounced for the lower LET. By contrast, 

Cherubini et al. (32) never observed HRS for V79 cells irradiated with 0.8 and 5 MeV 

broad proton beams (28.5 and 7.7 keV/µm respectively). However, they reported low 

dose hypersensitivity ( / 1.1s r   ) for T98G human cells irradiated with 28.5 keV/µm 

protons. HRS with broad beams of 
4
He ions has been reported by Tsoulou et al. (33). V79 

cells were irradiated by α-particles of various linear energy transfers (58.9, 79.3 and 

101.7 keV/µm) and showed increased HRS in the low dose region with an increasing 

LET. Finally, Böhrnsen et al. have observed a significant HRS after irradiation of V79 

cells with 27.5 keV/µm carbon ions (34). 

In summary, for the low dose region, HRS leads to a decrease in the surviving fraction 

through cell death occurring immediately after irradiation. However, the remaining cells 

seem to be able to repair and grow into colonies. For higher doses, direct mortality after 

24 hours is observed in parallel with a strong decrease in the cell DNA synthesis, 

indicating that cells were not able to repair and stopped proliferating.  

The surviving fraction curve obtained in this work with a 10 keV/µm proton beam shows 

a linear shape with the lowest surviving fraction equal to ~8% at the highest dose tested. 

Although the quadratic term was set to zero, we can not exclude that for higher doses (i.e. 

lower surviving fraction), the curve starts to bend, leading to a ß parameter higher than 

zero. 

The surviving fraction obtained at 2 Gy with 10 keV/µm proton beam can be compared to 

the one obtained after either gamma or X-ray irradiation from other published work: our 

work: SF2Gy= 0.199 ± 0.045; 0.7 for 
137

C  γ i   di  ion      22     in (30); 0.55 for 



 

 21 

6MV X-rays (23); 0.61 ± 0.004 with 
137

C  γ i   di  ion    4 5     in (35). If one 

considers that the surviving fraction obtained at 2 Gy characterizes the tumor 

radiosensitivity, i.e. reflects the clinical radioresponsiveness of the tumors from which the 

cell lines are derived (36), these comparisons show that proton irradiation at 10 keV/µm 

enhances the tumor radiosensitivity by a factor of 3 compared to photon irradiation. In 

figure 6, a comparison is made between survival curves obtained for protons at 10 

keV/µm, 25 keV/µm, and 250 kV X-rays and 6 MV X-rays (23). Although the curve is a 

little more shouldered for the 6 MV X-rays, a good agreement can be observed between 

the two X-rays irradiations performed on the same cell line but in two different labs. The 

radiosensitivity parameters ( and ) for 250 kV X-rays are 0.332 ± 0.045 Gy
-1

 and 0.018 

± 0.005 Gy
-2

 while for protons the  parameter is zero and the  parameter is 0.824 ± 

0.029 Gy
-1

 and 1.26 ± 0.03 Gy
-1

 for 10 keV/µm and 25 keV/µm, respectively. The 

calculated RBE, for a surviving fraction of 10%, is equal to 1.9 ± 0.4 for 10 keV/µm and 

2.9 ± 0.5 for 25 keV/µm. The comparison with the X-ray results of Bromley et al. (23) 

led to RBE values of 2.1 ± 0.4 and 3.1 ± 0.6 for 10 keV/µm and 25 keV/µm, respectively. 

Moreover, within the HRS region, the RBE values calculated for a 77% survival are 

equal to 10.7 ± 3.3 and 3.6 ± 0.6 for 10 keV/µm and 25 keV/µm respectively. These 

values, evaluated for A549 lung cancer cells, are notably higher than the averaged ones 

used in clinical trials i.e. 1.1 (11). If we consider the last millimeter crossed by a proton 

beam during patient irradiation, due to the Bragg peak, the LET varies from 5 to about 30 

keV/µm. In this work, the proton energy used corresponded to the one found at the end of 

the proton track, i.e. with a much higher LET, hence the results highlight more marked 

effects and a higher RBE value. Thus, these different values of RBE according to LET 



 

 22 

indicate that there is an increasing dose response effect at the track end of each beam 

composing the SOBP used for the patient treatment. Although the dose deposited at the 

track end of each beam is relatively low compared to the total deposited dose, the 

increased dose response due to this high LET region may lead to unexpected effect at the 

cellular level. 

This higher RBE as well as the HRS highlighted in this work could indicate that both 

treatment planning and proton therapy systems should take into account these increased 

effects and that the beam intensity should be adapted to decrease the dose deposited in 

the surrounding healthy tissues. In parallel, one can imagine to take advantage of the 

HRS in order to improve the clinical outcome of proton therapy of lung cancer. Indeed, if 

the lack of HRS in normal tissue is demonstrated, the use of such low doses may lead to a 

diminution of the normal tissue complication leading to an increased therapeutic ratio. 
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Figure 

 

Figure 1: Dose-dependent A549 cell surviving fraction obtained 11 days after irradiation 

with a 4 MeV broad proton beam.  A549 cells were irradiated at a dose-rate of 1 Gy/min 

for doses from 0.2 to 3 Gy, and at 0.1 Gy/min for doses from 0.02 to 0.5 Gy.  The 

experimental data were obtained with colony forming assays. 

(A) Experimental data (filled square); linear model fit (dashed line) and IndRep model fit 

(straight line) are displayed. The inset is an enlargement of the data obtained at low 

doses. Results are expressed as means ± S.D. (n=3). 

(B) Experimental data (filled square), linear model (dashed line) and IndRep model 

(straight line) linearization. 
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Figure 2: Dose-dependent cell viability 24 hours after irradiation of A549 cells with a 4 

MeV broad proton beam. A549 cells were irradiated at a dose-rate of 1 Gy/min for doses 

from 0.2 to 3 Gy and at 0.1 Gy/min for doses from 0.02 to 0.5 Gy. 24 hours after 

irradiation, a MTT test was performed. The optical density obtained for the control cells 

was normalized to 100 %. Results are expressed as means ± S.D. Statistical analysis was 

carried out with an ANOVA 1 was used to compare values to their respective controls: 

++, 0.05>p>0.01. 
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Figure 3: Dose-dependent DNA synthesis rate of A549 cells after a 4 MeV proton beam 

irradiation. A549 cells were irradiated at a dose-rate of 1 Gy/min for doses ranging from 

0.2 to 3 Gy. [
3
H]-thymidine incorporation was measured from 0 to 24 hours, 24 to 48 

hours, 48 to 72 hours post-irradiation and divided by the number of cells assessed by a 

protein assay.  The value obtained for the control cells was normalized to 100%. Results 

are expressed as means ± S.D.  Statistical analysis was carried out with an ANOVA 1 to 

compare values to their respective controls: ++, 0.05>p>0.01, +++(***), p<0.001.  
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Figure 4: Dose-dependent changes in the percentage of apoptotic or mitotic catastrophe 

nuclei after irradiation of A549 cells with a 4 MeV proton beam. A549 cells were 

irradiated at a dose-rate of 1 Gy/min for doses from 0.2 to 3 Gy and at 0.1 Gy/min for 

doses from 0.02 to 0.5 Gy.  

(A) DAPI staining was performed 24 hours post-irradiation. The percentage of apoptotic 

cells and cells in mitotic catastrophe are presented. These values were obtained after 

subtracting the corresponding values from control cells. 

(B) DAPI staining was performed 72 hours post-irradiation. The percentage of apoptotic 

cells and cells in mitotic catastrophe are presented. These values were obtained after 

subtracting the corresponding values from control cells. 
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Figure 5: Dose-dependent -H2AX immunofluorescence staining after irradiation with a 

4 MeV broad proton beam. A549 cells were irradiated at a dose-rate of 1 Gy/min for the 

doses 1 and 2 Gy and at 0.1 Gy/min for the doses 0.075 and 0.5 Gy. -H2AX staining 

was performed at 15 min, 2 hours and 24 hours after irradiation. Cells were considered as 

positive if the intensity of the -H2AX staining was higher than the threshold obtained for 

control cells. (A) Experimental data. Results are expressed in percentages of positive. 

Error bars are calculated as statistical errors (n > 100 cells). 

(B) Relationship between the surviving fraction and the percentage of -H2AX positive 

cells 24 hours after irradiation of A549 cells with a 4 MeV broad proton beam. Filled 

square: experimental data; straight line: linear fit. 

(C) Relationship between the percentage of -H2AX positive cells 24 hours after 

irradiation of A549 cells with a 4 MeV broad proton beam and the dose. 

 

 

 

Figure 6: Comparison of A549 lung cancer cell dose-dependent surviving fraction 

obtained after exposure to X-rays or protons. Bold straight line: 4 MeV proton beam (10 

keV/µm); dashed-dotted line:  1.2 MeV proton beam (25 keV/µm); bold dashed line:  250 

kV X-rays (~ 1keV/µm); dotted line: Bromley et al. (6 MV X-rays). 
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