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Abstract

We review several theoretical and experimental methods of modeling and investigating
granular matter far from equilibrium. The theoretical methods include an extension of the
classical Boltzmann equation to inelastic gases, scalar internal degrees of freedom, and
Hamiltonian-like grain—grain interactions; the experimental technique is concerned with
thermal properties of electrically conducting clusters. We discuss the results, focusing on
phenomena nonexistent in physics of gases, fluids or solids, e.g. anomalous temperature
gradients or electric resistance. One of the models is used to study the interplay between
classical and self-organized criticality.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Granular models of complex systems; Self-organized systems

1. Introduction

Granular matter is made of a large number of macroscopic solid entities, whose
size ranges from that of dust (in powders) to that of rocks (in planetary rings). They
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are ubiquitous in nature and play an important role in a large number of industrial
processes. Moreover, the theory of such systems can be applied to many phenomena
that are traditionally not associated with granular matter, e.g. the motion of flux
lines in superconductors [1], traffic flow, film growth, galaxy clustering, crystal
agglomeration and sintering, company merging, and slow relaxation dynamics in
glasses and flux lattices [2].

Granular systems have a very rich phenomenology, and their behavior often
differs qualitatively from that observed in solids, liquids or gases. As an example,
consider storage of cereals in silos. One might naively assume that to calculate the
pressure at the silo walls, the hydrostatic approximation can be safely used.
However, in reality, an irregular stress net is formed through the grains, and the local
pressure at the walls can assume such a huge value that the silo may even break.
Another example is the problem of controlling the mixing and segregation of
powdered chemicals in pharmaceutical industry. Attempts toward understanding
and controlling both static and dynamic properties of granular materials are thus of
highest interest to many fields of physics, applied sciences and engineering.

For a physicist, a natural way to investigate granular matter is to construct
relatively simple models and, whenever possible, compare their predictions with
experimental data from mechanical, thermal, electric or magnetic measurements.
Here we present a short review of several such models.

One way of constructing a physical model is to start from a well-known, much
studied one and introduce to it some interactions that can be regarded as a
perturbation. An example of this approach, consisting in generalization of the
Boltzmann equation to the case of inelastic collisions, is briefly presented in Section 2
(see Refs. [3,4] for more comprehensive texts). An open problem in physics of
granular matter is how to take into account interactions between individual grains.
In Section 3 we introduce the magnetic ballistic deposition (MBD) model [5] of
granular piles with the Ising-like interactions between grains, and we use it to discuss
the impact of contact energy, grain anisotropy and an external field on the stress net
and the cluster formation. Another concept related to granular matter is the so called
self-organized criticality (SOC), first introduced by Bak, Tang, and Wiesenfeld in
their famous sandpile model [6,7]. In Section 4 we discuss how the SOC phenomena
are related to the standard criticality of statistical physics. Then, in Section 5, we will
report an anomalous behavior of the electrical resistivity and the thermoelectric
power (TEP) in densely packed conducting grains. Finally, Section 6 is devoted to
conclusions.

2. Granular gases

In this section we focus on a dilute assembly of grains that interact through
inelastic collisions (the so-called inelastic gas) in the limit of very low grain
concentration. In this limit inelasticity can be treated as a small perturbation to the
classical kinetic theory. Following this idea, one usually starts from writing down the
inelastic Boltzmann equation [8], which is the classical Boltzmann equation with
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some corrections reflecting inelasticity of collisions. Two new phenomena appear in
this approach: irreversible dynamics and energy dissipation (Fig. 1). These effects are
taken into account through an inelasticity parameter o €]0, 1]:

(&vy)" = —olevy) , (D

where v; =V, —V;, I =1; —1;, ¢ =r;/|r;]; the asterisk marks the post-collision
quantities, while the unleashed symbols correspond to the pre-collisional quantities.
The elastic limit is recovered for o« = 1.

In real-world granular matter, o depends on v;; [9]. However, it is natural to start
building a theory for such systems from disregarding this dependence [4]. However,
this simplification has a dramatic consequence in MD simulations, the so-called
collapse phenomenon [10], which is an extreme expression of the clustering
instability specific to inelastic fluids and consists in the occurrence of an infinite
number of collisions in a finite time.

Dissipativity of collisions contributes to an anomalous exploration of the phase
space. The system kinetic energy is transferred to the internal degrees of freedom of

Original
velocities

I
—

Reversed
velocities

Fig. 1. Collision between inelastic hard spheres. Inelasticity makes the post-collisional velocities more
parallel as compared to an elastic collision. Figures on the right illustrate the irreversibility of the
microscopic dynamics: the reversed trajectories are no longer the same as the original ones.
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the grains, and this renders the dynamics irreversible. As a consequence, some
regions in the phase space are favored by the dynamics. This can lead to clustering of
trajectories and heterogeneity of their density (Fig. 2). Moreover, if no external
energy is transferred to the system, its evolution tends toward a perfectly resting
state, in which the total kinetic energy vanishes. The system becomes non-ergodic
and before it reaches the state of a complete rest, it passes through different
intermediate states that usually depend on initial conditions. Let us stress that this
expression of metastability does not rest on equilibrium-like mechanisms. The study
of inelastic gases made it also possible to identify the main inelastic effects that alter
the macroscopic dynamics: an anomalous coupling between the local energy and the
local density, and a new time scale associated with the dissipative cooling.

One of macroscopic consequences of inelasticity in granular gases is anomalous
transport. By applying the Chapman—Enskog procedure to the inelastic Boltzmann
equation [11], one can derive a generalized Fourier law for the heat flux of a
granular fluid

q=—u0 T — kOn 2

and identify the mechanisms that make x##0. On the one hand, k#0 is a
manifestation of the coupling between density and temperature which occurs in
granular media: the local cooling rate depends on the local temperature. This non-
local behavior discriminates the temperature dependence of neighboring hydro-
dynamic cells and couples the density field to the heat transport process, leading to
an additional term ~0,n, and to a positive contribution to x. On the other hand,
additional contributions to the heat flux come from the shape of the reference
velocity distribution. This zeroth-order state in the Chapman—Enskog procedure (the
homogeneous cooling state) is a homogeneous state which remains homogeneous,
and whose time dependence occurs only through the granular temperature. It usually
plays the role of the equilibrium state in the statistical description of granular gases.
This contribution can be either negative or positive, depending on the variation to
the Maxwellian.

A striking consequence of the generalized Fourier law is the phenomenon of
temperature inversion in vibrated granular systems. It occurs in systems subject to
gravitation and constant supply of energy through a vibrating bottom wall. Because

Fig. 2. Aggregation tendency and emergence of clustering in a freely cooling granular gas. The system is
composed of 5000 inelastic discs and o = 0.9 in Eq. (1).
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of the energy injection, the inelastic fluid tends to an asymptotically stationary
distribution with non-vanishing, non-uniform granular temperature [12,13] which
develops a minimum at some distance from the bottom. Hence, the granular
temperature can increase with height. This phenomenon has been predicted
using (2) and verified both experimentally and numerically [4]. An open question
remains whether the Fick and Ohm equations also have to be appropriately modified
in their own context. Another question pertains to the validity of the Onsager
relations.

Non-Maxwellian velocity distributions are another interesting property of
inelastic gases. Their tendency toward overpopulated, “fat” high-energy tails is
non-trivial, and their specific shape depends on the details of the model. However,
overpopulation seems to be a generic feature of inelastic gases [8]. This property has
been predicted theoretically and numerically, and observed experimentally in a large
number of situations, see Ref. [4]. Maxwell models, which are simple kinetic models
with a simplified collision operator in the inelastic Boltzmann equation, have been
introduced to study the formation of the fat tails. Usually, two kinds of asymptotic
velocity distributions are considered: (i) scaling solutions, which occur when the
grains evolve freely, without external forcing, and correspond to a homogenecous
cooling state, and (ii) heated stationary solutions, which are obtained by injecting
energy into the system to counterbalance the energy loss. The energy is usually
introduced by stochastic forces, often of Langevin type, to mimic the vibro-fluidized
granular media. Another class of asymptotic solutions—stationary solutions of the
unforced case—has been studied in Ref. [4]. By using similarities between the
Maxwell model and a random walk in velocity space, it was shown theoretically and
numerically that stationary solutions do exist. This means that the core of these
distributions is stationary for an arbitrary time interval, while the system total
energy decreases exponentially. These solutions correspond to truncated Lévy
distributions.

Finally, let us recall the granular Demon experiment, conceived to visualize the
above-mentioned energy—density coupling. In this experiment, a box is divided into
two equal compartments by a vertical wall starting from the bottom of the box. The
wall has a hole that allows the grains to pass from one compartment to the other.
The box is filled with inelastic identical particles submitted to gravitation. Energy is
supplied by a vibrating bottom wall. This simple system exhibits an order—disorder
transition. Indeed, for a high energy input, the system presents a homogenecous
steady state, while for a lower energy input, a phase transition occurs and an
asymmetric steady state prevails. This transition was explained by Eggers’ effusive
model [14]. This system has been also studied in Ref. [4], where a stochastic urn
model of Lipowski [3,15] was used. Several generalizations of the original Maxwell
Demon experiment have been considered, and have led to a rich phenomenology: (i)
systems with an arbitrary number of compartments (metastable states); (ii) systems
where the energy is input asymmetrically (hysteresis and strong similarity to a
ferromagnetic system in a external magnetic field); (iii) the original experiment
applied to mixtures (horizontal segregation and emergence of non-stationary
oscillations called granular clocks).
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3. Ballistic magnetic deposition model

At higher densities, granular media lock into piles. In modeling them, it is crucial
to remember that even if the grains can be thought of as made of hard matter [16],
like rice or sand grains [17,18], hardly ever can they be assumed to be spherical and
slide friction-free on each other. The contact forces between grains are responsible
for specific angles of repose [19], jams and arches [20].

We have introduced the magnetically controlled ballistic rain-like deposition
(MBD) model [5,21,22] of granular piles of interacting entities and numerically
investigated its static properties in 2D. The grains are characterized by a two-state
scalar degree of freedom, a “nip”, which can represent the grain anisotropy or
position with respect to neighboring grains. The nip—nip interaction is introduced
through an Ising-like Hamiltonian. An external field of arbitrary origin is assumed to
forcefully make each grain rotate during its deposition. This effect is controlled
through a parameter gq.

The simulation algorithm creates a pile with a fixed probability ¢ for any grain
coming in the ballistic grain fall to choose the “up” direction (or +1 value). At each
time step the local energy gain E = —J Zg Tin; is calculated, where n; = £1 is the
nip value at j. If AE <0 or if the site just below is already occupied, the grain sticks to
the cluster immediately in its current “nip”” state. Otherwise the grain either sticks to
the cluster with a probability p, = exp(—AE) or continues to fall down with the
probability 1 — p,.

The density and the order parameter (‘“‘niptization”) have been measured, as well
as fractal characteristics of clusters. Cluster size and specific size distributions were
found to depend on ¢ and J (Figs. 3 and 4). The stronger the nip—nip interaction, the
larger the difference between the piles [21,22].

Apparently the pile growth dynamics and structure depend on whether g<g, or
q>q. [22], where ¢, is a function of J. The two regimes can be identified through
analysis of the cluster-mass distribution function, which can be either exponential or
follow a power-law form. Most probably the regimes are distinguishable because of a
percolation-like transition at finite ¢,., with g, ~ 0.85 and ¢, ~ 0.75 for J<0 and
J >0, respectively. There is no theory to account for this at the moment.

3 3
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4 5 q=0.4 - [ 2 q=04 -—e-
% 10 lowqg, pJ=-50 g=03 - % 10 q=0.3 wme
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. 10° 2 10°
g ¥ E ©
5 5
S 10! gAY
2 2
3] 3
-3 102 =3 102 :
o " o

109 T T € o bl d Yoz . WU

5 10 15 20 25 30 35 40 45 50 10 20 30 40 50 60 70 80 90 100

(a) cluster mass (b) cluster mass

Fig. 3. Semilog plots of the cluster size distribution for low ¢ values: (a) fJ = =5, (b) fJ = 5. Observe the
exponential law-like behavior of the distribution.
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Fig. 4. Log-log plots of the cluster size distribution for high ¢ values: (a) fJ = -5, (b) fJ = 5. Notice the
power law-like behavior of the distribution.

It is of high practical interest to calculate the stress net in a pile. Although this is a
hyperstatic problem [23], we found that for hard disks deposited as in the MBD
model, the most frequent contact number is 4 [24]. In the case of elongated disks, the
stress net might be thus more easily determined in two dimensions (2D) than in 3D,
especially that it has been found to be unique in 2D. Moreover, the contact number
value of 4 seems to remove rotation-frustration constraints.

Extensions toward binary, polydispersed or more complex objects have not
received much attention, yet. However, recent studies on granular piles show
importance of such investigations [25].

4. Hybrid sandpile model

One of the phenomena most commonly associated with granular matter is the
formation of sandpiles, and one of the most interesting properties of sandpiles is
their ability to “‘self-organize” into a critical state in which various quantities, e.g.
avalanche size, mass and duration, are scale-free and exhibit power-law distribution
tails [7]. Although the relation between the ‘classical” and “‘self-organized”
criticality has been studied by many authors [26], the origin and precise definition
of the SOC phenomena, as well as its relation to its classical counterpart, remains
elusive.

We decided to tackle this problem by studying a hybrid model which, by
construction, is expected to exhibit both classical and self-organized -critical
phenomena. In defining such a model we follow ideas of Ref. [27] and build it
from two components. One of them is the Blume-Emery—Griffiths (BEG) [28]
model, which is a standard Hamiltonian lattice spin model with a rich phase
diagram. The other one is the Bak—Tang—Wiesenfeld (BTW) sandpile model [6],
which, owing to its elegant mathematical structure [29], has practically become a
paradigm for self-organized criticality studies. We combine these models by taking
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(short-range) interactions from the BEG model and the (non-local) constraints from
the BTW model.

The hybrid model is defined on a honeycomb lattice. Each of the lattice sites j is in
one of three states that can be regarded either as “spins” S; € {—1,0, 1} or local pile
heights 4; € {0,1,2}. The entities located at the lattice sites interact with their
neighbors through their spin representation and the BEG Hamiltonian

H=-JY 88-K) SiS;+D> S, )
(i) (&) i

where J, K, D are some parameters. However, in contrast to the original BEG model,
not all spin configurations are allowed in the hybrid model-—we assume that the
phase space is restricted to the so-called recurrent configurations of the BTW
sandpile model on the lattice. What are the recurrent states of the BTW model then?
The BTW model mimics the process of building a sandpile by adding to it grains one
by one. As more grains are added to the pile, now and then it becomes unstable,
which manifests itself through avalanches. In brief, the recurrent states of the BTW
model correspond to the stable states of the sandpile at criticality, see Ref. [29].
Alternatively, the hybrid model can be seen as an extension of the “nip” model of
Section 3: one continually adds grains to a pile, which may (but does not have to)
become unstable and reconfigure through an avalanche; in a stable configuration
grains interact through the BEG-like Hamiltonian and we are interested in the
equilibrium properties of this system. An example of an allowed configuration is
depicted in Fig. 5.

Here we report only a few major results for this model [30]. First, we have
calculated the temperature dependence of the specific heat for different lattice sizes
from energy fluctuations,

N
C= F(W) —w?), 4)

and found that C~T 2 for large T, which is typical of Ising-like spin systems. We
also found that for somewhat lower temperatures, C(7) develops a clear peak,
typical of a second-order phase transition. This finding was also confirmed by
studying the finite-size effects. Consequently, the SOC constraints do not affect
thermodynamics of the system.

Secondly, we investigated the impact of interactions on the self-organization of the
system. One signature of “criticality’”’ of the BTW sandpile model is a power-law
decay of two-point correlation functions Py,(r), of nodes at a distance r apart, having
heights k and /

Pk/(V)ZPkPl+Pk17_4+'-' 5

for k =1 =0 in the bulk [31] and for all 0<k, /<3 near the boundary of the system
[32]. We have examined the case k = / = 0. The results for a rather high temperature
T = 10, where the BEG interactions should not play a significant role, are presented
in Fig. 6. As can be seen, an algebraic fit is quite good. However, it is based on only
nine relevant points and an exponential fit cannot be ruled out. Since it is impossible
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Fig. 5. An example of an allowed configuration on a honeycomb lattice of linear size L = 4. Empty,
shadowed, and filled circles represent the nodes with heights #; =0,1,2 (or spins s; =0,—1,+1),
respectively. The arrows show an example of a pair of boundary nodes that interact via Hamiltonian (3).
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Fig. 6. Probability Py(r) of finding two empty lattice nodes r units apart for L = 40 and 7 = 10. The
dotted line is a fit calculated from (5). The inset presents the log-log plot of |(Pg)* — Poo(r)l.

to increase the number of relevant points significantly, we resort to physical insight.
If the decay of correlations is governed by interactions and thermal effects, it should
be exponential with the 7-dependent correlation length. If the correlations are
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controlled by the SOC constraints, the ratio (Py)* /Poo In (5) should be independent
of T. On checking these hypothesis for a wide range of temperatures, we found that
the system is in an SOC state at all 7> T'.. Note, however, that this has absolutely no
impact on the thermodynamic properties of the system! We draw the following
conclusion: while it is true that thermodynamic criticality implies power-law decay of
correlations, power-law decay of correlations does not imply thermodynamic
criticality.

In the above study, the lattice basis is a regular structure. It has been shown that
for fractal basis the avalanches present an extra feature, a log-periodicity, which
depends on the fractal dimension and connectivity of the lattice [18]. Translated into
a complex fractal dimension [33], the sandpile model can serve as an analogy to
endogenous financial crashes [34].

5. Conducting densely packed matter

Some granular materials are electrically conductive. An electric current running
through them may heat up and strongly modify the oxide layers that are often
formed at the grain surfaces [35], even up to welding. It is therefore important to
investigate the temperature dependence of electrically conductive packed materials.

Such systems are usually modeled as a disordered resistor network with the
electronic conduction occurring in a strongly localized regime. Their transport
properties depend on whether the system is above or below the percolation
threshold. Since the resistance is dominated by carrier hopping between grains,
electrically conducting GM displays features of the variable-range-hopping (VRH)
phenomenon observed in doped semiconductors. In particular, their electrical
resistivity obeys the fractional temperature dependence,

p(T) = poexpl(To/TY], (6)

where T is the temperature, T is a characteristic temperature, p = 1/(d + 1), and d is
the dimensionality of the system [30].

However, the electric current might avoid the oxide layer and penetrate the internal
structure of the grain. As this would invalidate the VRH mechanism, we synthesized
and compacted a crystalline granular metallic system, CaAl, [37], to obtain tiny
crystals. Chemical analysis indicates a complex microstructure inherent to the phase
diagram [38]. An EDX analysis shows that the system is made of Al-rich dendrites
embedded in an Al-poor matrix. The dendrites are made of CaAl,, while the matrix is
a mixture of CajzAlj4 and CagAls, according to the phase diagram. These phases
have been found to be metallic with a very similar electrical resistance [39].

We measured the electrical resistivity and thermoelectric power of a packed crystal
under standard conditions. As depicted in Fig. 7, their temperature dependence
shows three regimes. The resistivity was found to depend on T as p(T) ~ T—/* at
low temperatures (Fig. 7a). This can be interpreted as a thermal effect taking place
on geometrically disordered backbone that does not change with the temperature.
The 60—70 K break (or crossover) indicates the energy range at which the thermal
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packed granular Ciulli
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Fig. 7. (a) Electrical resistance R vs. temperature 7 of a densely packed granular CaAl, on a log-log plot,
with a low-temperature fit to R(7T) « T~3/*. (b) Thermoelectric power Q vs. temperature 7 of a densely
packed granular CaAl, with a square-root fit at low temperatures.

process takes over on the geometric disorder. At higher 7', the smooth decay of R(T)
can be attributed to further charge carrier delocalization resulting from the high-
temperature form of the Fermi—Dirac distribution.

The (positive) thermoelectric power [37] shows a bump near 60K, after an
unusual, square-root dependence on 7 at low temperature (Fig. 7b). Above 100K, a
log-log plot (not shown) reveals that Q(T) grows as T°/* rather than linearly, as
might be expected for metallic systems at high 7. Since a TEP measurement implies
no external electrical current, it is unlikely that some ““barrier ageing” or “hot spots”
occur in the investigated temperature range. Therefore both effects, an increase of
charge and heat conductivity with growing temperature and a large thermoelectric
effect at room temperatures, can be understood as a consequence of a delocalization
process that takes place on the intricate barrier network, with competing
characteristic mean free paths and weakening of the contact TEP due to the Fermi
surface widening. The three thermal regimes are thus a manifestation of competition
between geometric and thermal processes in weakly conducting clusters of densely
packed granular matter.

6. Conclusions

Except for some notable attempts by Faraday and Coulomb, it was not until quite
recently that granular systems started to attract attention of the physics community,
and now studies on their properties are considered as an important part of applied
physics and technology. There are several reasons for this new interest. One of them
arises from the fact that despite its apparent simplicity, granular matter exhibits
surprisingly rich and often counterintuitive behavior. For example, entropy effects
are often out-weighted by dynamics. Because of dissipative nature of collisions,
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exploration of the phase space is restricted, the system is non-ergodic and the
dynamics irreversible.

In this short review we have discussed several methods of introducing grain—grain
interactions to models of granular matter. We first focused on dilute systems, and
used this approximation to extend the classical kinetic theory to dilute assemblies of
inelastic grains (“‘inelastic gases’’). One of the most peculiar predictions of this theory
is a new term in the Fourier equation of heat conduction. Then we outlined a
model of gravitational deposition of interacting grains. We also showed how
sandpile models with interacting grains can be used to investigate similarities
and differences between self-organized and classical criticality. Finally, we have
discussed anomalous thermal properties of dense granular electrically conducting
clusters. These are only a few examples of a rapidly growing field of modeling
granular matter.
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