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Random teleportation is a necessary evil for ranking and clustering directed networks based on random walks.
Teleportation enables ergodic solutions, but the solutions must necessarily depend on the exact implementation
and parametrization of the teleportation. For example, in the commonly used PageRank algorithm, the
teleportation rate must trade off a heavily biased solution with a uniform solution. Here we show that teleportation
to links rather than nodes enables a much smoother trade-off and effectively more robust results. We also show
that, by not recording the teleportation steps of the random walker, we can further reduce the effect of teleportation
with dramatic effects on clustering.

DOI: 10.1103/PhysRevE.85.056107 PACS number(s): 89.75.Fb, 89.65.Ef

I. INTRODUCTION

Random walks play a preponderant role in network theory
[1] and are at the heart of popular metrics measuring the
effect of network topology on patterns of flows through the
nodes. Defined as the expected density of random walkers on
a node at stationarity, PageRank provides a nonlocal measure
of centrality and is perhaps the most important and influential
application of random walks [2]. First introduced to rank
pages on the Web, PageRank [2,3], or variations of it [4–6],
has now been adopted to rank the importance of nodes in
a broad range of systems, e.g., in citation networks [7,8],
food-webs [9], and sports [10]. Similarly, in the field of
community detection, more and more methods are based on
the notion that networks often describe systems characterized
by flow and the intuitive idea that random walkers should be
trapped for long times in good communities. This idea led to
the design of quality functions for network partitioning such
as the so-called map equation [11] or stability [12], which
naturally take into account the constraints imposed by network
topology on dynamical processes.

Random walk-based methods are appealing because of
their nice mathematical properties, their ability to explore
the system at multiple scales, and their intuitive interpretation
of how real flows of people, money, information, etc. take
place in empirical networks [13,14]. However, most methods
suffer from an important drawback: they are defined only at
stationarity, a state that is either trivial, nonuniquely defined, or
never reached in a majority of empirical systems. To circum-
vent this problem, mathematical tricks have been proposed to
make the dynamics ergodic, even when the underlying network
is not strongly connected. The most prominent procedure
allows walkers to randomly teleport across the system, and
thus to occasionally free themselves from the actual topology.
Unfortunately, teleportation brings its own share of problems.
For example, with teleportation, the ranking of nodes or their
clustering into communities depend not only on the topological
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properties of the system, but also on the exact implementation
of the artificial teleportation process.

The goal of this paper is to propose and evaluate different
ways to minimize the effect of teleportation on random walk-
based metrics and methods. To do so, we explore two different
but related possibilities for smart teleportation. In order to
make rankings more robust, our first approach modifies the
targets of teleportation steps, the so-called preference vector.
In order to make clusterings more robust, our second approach
modifies which steps contribute to transition rates between
nodes and only counts steps along links and not teleportation
steps.

Figure 1 describes the different teleportation schemes.
In general, the probability of landing on a node after a
teleportation depends on some of the topological properties of
the network. Standard teleportation, which we call recorded
node teleportation, is recovered when the preference vector is
uniform, i.e., the probability to land on each node is the same
[see Fig. 1(a)]. In this paper, for ranking we argue for the use
of recorded link teleportation, where the preference vector is
proportional to the in-strength of the nodes [see Fig. 1(b)],
and is equivalent to teleporting to links instead of nodes.
For clustering we argue for the use of teleportation without
recording. No teleportation steps are recorded when walkers
teleport uniformly to nodes in unrecorded node teleportation
[see Fig. 1(c)] and to nodes proportionally to their out-strength
in unrecorded link teleportation [Fig. 1(d)].

The difference between the recorded and unrecorded
schemes stems from the fact that only steps along links
contribute to transition rates between nodes, which we will
show to be crucial for improving community detection. Below,
we study the mathematical relations and differences between
the four teleportation schemes illustrated in Fig. 1. We show
that the incorporation of appropriate topological elements into
teleportation leads to desirable properties in different limit
scenarios, and provides an interesting connection between
local and nonlocal centrality measures. Numerical simulations
also confirm that the effect of teleportation on ranking and clus-
tering can be significantly reduced, with important applications
for mining the large-scale organization of complex networks.
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(a) Recorded node teleportation (b) Recorded link teleportation

(c) Unrecorded node teleportation (d) Unrecorded link teleportation

FIG. 1. (Color online) Common and smart teleportation in
networks. (a) Recorded node teleportation is the commonly used
teleportation scheme. Both steps along links and teleportation steps
contribute to node visit rates for ranking and transition rates for
clustering, and nodes are the targets of teleportation. (b) In recorded
link teleportation, all steps contribute and links are the targets of
teleportation. (c) In unrecorded node teleportation, only steps along
links (solid lines and filled circles) contribute, and not those due
to teleportation (dashed line and open circle). (d) In unrecorded link
teleportation, only steps along links contribute and links are the targets
of teleportation.

II. MATHEMATICS OF TELEPORTATION

We focus on weighted and directed networks described by
the N × N adjacency matrix Wij , where N is the number of
nodes in the system and Wij is the weight of the link from
j to i. The total in- and out-strengths of node i are defined
as win

i = ∑
j Wij and wout

i = ∑
j Wji , respectively. The total

weight of all links W is given by W = ∑
i w

out
i = ∑

i w
in
i .

In the case of unweighted networks, the adjacency matrix is
equal to 1 if there is a link going from j to i and 0 otherwise.
Moreover, win

i and win
i correspond to the in- and out-degrees

of node i.

A. Standard teleportation

The dynamical properties of an unbiased random walker
on a network are determined by the spectral properties of
the transition matrix Tij = Wij/w

out
j , which drives the time-

evolution of the expected density pi of walkers at node i,

pi;t+1 =
∑

j

Tijpj ;t . (1)

The steady-state density of walkers is given by the dominant
eigenvector of Tij , denoted by πi , which defines the PageRank
of node i. Asymptotic convergence toward this solution and
its uniqueness are ensured only if the network is strongly
connected and aperiodic, a situation that rarely occurs in
empirical networks. In order to regularize this situation, several
tricks have been proposed in the literature, the most common
being to allow for teleportations through the network. In its
simplest instance, walkers either follow links with probability
α or teleport to a random location with probability 1 − α.

Random walks with teleportation are driven by the rate
equation

pi;t+1 = α
∑

j

Tijpj ;t + (1 − α)vi, (2)

where the preference vector vi , subject to the constraint∑
vi = 1, determines the frequency at which walkers teleport

to node i. In general, the random process (2) converges toward
a unique steady-state solution for any α < 1. Moreover, the
stationary solution of Eq. (2) is a function of vi and of the
teleportation probability 1 − α, formally given by

πi;α = (1 − α)
∑

j

(I − αT )−1
ij vj , (3)

where the dependence on α has been made explicit. This
solution can be Taylor expanded in terms of α to provide
the expression [15,16]

πi;α = vi +
∞∑

k=1

αk
∑

j

(
T k

ij − T k−1
ij

)
vj , (4)

an expression that clearly shows the nonlocal nature of
PageRank, as it is made of terms associated with paths of
any length k in the network.

In the above expressions, we have implicitly assumed that
each node has at least one outgoing link, such that wout

i > 0,
∀i, and that the transition matrix Tij preserves probability, i.e.,∑

i Tij = 1. In systems where this condition is not fulfilled, it is
usual to impose a teleportation step every time a walker arrives
on a dangling node j without out-links. Mathematically, this
corresponds to replacing the j th column of Tij , only made of
zeros, by the preference vector vi . For the sake of simplicity,
but without loss of generality, in the following mathematical
analysis we will assume that the system does not contain
dangling nodes.

1. Limitations of standard teleportation

Random walks with teleportation have the advantage of
making the dynamics ergodic and thus ensure the existence of a
well-defined, asymptotic, steady-state solution. However, due
to its artificial nature and the extra parameter, the teleportation
process also raises a series of fundamental questions [15].
While a random walk is a good proxy for diffusion in a
broad range of networked systems, teleportation can only be
viewed as a mathematical trick in the absence of real-world
interpretation. Moreover, even when such an interpretation
is plausible, e.g., for individuals browsing the Web and
occasionally jumping to a new page without following a
hyperlink, selecting a proper value of α and an expression
for vi is problematic.

Most research tends to overlook these issues and use
the standard value α = 0.85 and the uniform preference
vector vi = 1/N , i.e., a walker randomly teleports on any
node, independent of any intrinsic or topological properties.
This choice of preference vector leads to the recorded node
teleportation illustrated in Fig. 1(a). Yet it has been shown
that the stationary solution πi can radically change when α

is modified [17–19]. This dependence is clear when rewriting
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the formal solution (4) with vi = 1/N ,

πi;α = 1

N
+

∞∑
k=1

αk

N

∑
l

T k−1
il

∑
j

Tlj

(
win

l − wout
j

win
l

)
. (5)

The leading contribution for small α makes PageRank uniform,
thereby diluting the structural differences between nodes,
whereas differentiation emerges when α is increased. The
contribution of each path of length k is proportional to
the difference between in- and out-strengths around links,
i.e., win

l − wout
j . If the network is strongly connected, it is

instructive to note that all of these contributions vanish only
when the network is regular, i.e., win

i = wout
i = W/N , ∀i. This

version of PageRank is thus expected to depend on α except in
this trivial case. For these reasons, it is important to improve
our understanding of the sensitivity due to teleportation and
to identify adequate values of α. So far, the rule of thumb has
been to choose values close to 1, in order to minimize the
effect of teleportation on the random walk process, but not too
close, because calculations become prohibitively expensive
and unstable in this limit. Similarly, the importance of the
preference vector vi is ignored in a majority of studies, despite
the fact that, in general, no individual choice is better than
any other one, and that different choices seem more realistic
in different types of systems [9,20]. For instance, in systems
where the size of the nodes is heterogeneous, e.g., scientific
journals publish different numbers of articles, the preference
vector can be chosen proportional to the size of the nodes [7].

B. Smart teleportation

Teleportation can be seen as a mean-field process where
walkers jump toward any node i with a probability vi ,
independent of the underlying network topology. Our aim is to
reduce the noise induced by teleportation in order to produce
a more faithful description of the system, and to minimize its
dependence on the value of α.

1. Recorded link teleportation

Our first approach takes advantage of the ability to choose
an appropriate preference vector to improve the stability of
πi;α . In the PageRank literature, the preference vector vi

has been introduced as a way to incorporate nonstructural
properties into the algorithm and to fine-tune PageRank to
the particular taste or interest of a user. Here we propose
instead to select a preference vector based on topological
properties of nodes, with the aim of minimizing the effect
of teleportation on dynamics. In the ideal case of a strongly
connected and aperiodic network, an appealing solution is to
take vi proportional to πi , solution of Eq. (1). In that case,
πi is well defined and it is easy to show that πi;α = πi for all
values of α. The question of picking a particular value of α

thus becomes unimportant.
The previous example is trivial because teleportation is not

necessary to make the original dynamics ergodic. Nonetheless,
it provides useful hints on how to address the general problem:
one should aim for a preference vector likely to be close to πi .
To do so, we propose the use of

vi = win
i

W
, (6)

inspired by the observations that in-strength is statistically
correlated to PageRank in random networks and that both
quantities are equivalent, up to an additive constant, in the
mean-field approximation [21,22]. This process is equivalent
to selecting a link at random proportional to its weight during
teleportation, hence the notation recorded link teleportation.

Introducing Eq. (6) into the formal solution (4) leads to the
expression

πi;α = win
i

W
+

∞∑
k=1

αk

W

∑
j

T k
ij

(
win

j − wout
j

)
, (7)

which differs from Eq. (5) in several ways. At zeroth order,
PageRank for recorded link teleportation is not uniform
anymore, and it is simply given by in-strength, which is itself
a standard and widely used centrality measure. kth-order con-
tributions are made of a weighted average of contributions at
path of length k. The contribution of each node, instead of each
link for Eq. (5), is the difference between its in-strength and its
out-strength, win

j − wout
j . As expected, nodes concentrating the

flow of probability, win
j > wout

j , give a positive contribution,
while nodes diluting this flow, win

j < wout
j , give a negative

contribution. Equation (7) thus interpolates between local and
nonlocal centrality measures when tuning α. By construction,
Eq. (7) also has the interesting property that the PageRank
vanishes for leaves, i.e., nodes whose in-strength is equal to
zero, for any α < 1, in agreement with PageRank’s original
philosophy that votes come from in-neighbors.

Recorded link teleportation offers a range of interesting
mathematical properties that make it an ideal candidate for
our purpose. Contrary to recorded node teleportation (5), in
which PageRank depends on α except in trivial situations,
Eq. (7) has the advantage of being independent of α when
the network is undirected or when the network is Eulerian
(win

i = wout
i , ∀i), as Eq. (7) obviously reduces to πi = win

i /W

in those cases. Additionally, it is straightforward to show that
PageRank is also given by πi = win

i /W for any α in the mean-
field approximation, where the adjacency matrix takes the form
Wij ≈ win

i wout
j /W , as can be checked from Eq. (2),

win
i

W
= α

∑
j

win
i wout

j

Wwout
j

win
j

W
+ (1 − α)

win
i

W
. (8)

This result is expected to hold in large, well-mixed networks,
where mean-field approximations are known to provide rea-
sonable predictions. Taken together, these results thus suggest
that recorded link teleportation, by blending the directed and
the undirected solutions instead of trading off the directed
solution with the uniform solution, provides rankings that are
more robust to the exact value of the teleportation rates.

2. Unrecorded teleportation

Despite its apparent success at minimizing the effects of
teleportation on the value of PageRank, recorded link telepor-
tation suffers from an important limitation: all transitions are
treated equal. This property has unwanted consequences when
using random walks to uncover communities in a network,
as teleportation tends to create artificial connections between
nodes in different communities, and thus to water down
structures present in the system. In order to circumvent this
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FIG. 2. (Color online) Robust clustering with unrecorded tele-
portation in directed benchmark networks. In the blue region, the
benchmark solution with multiple modules minimizes the map
equation for recorded (a) and unrecorded teleportation (b). In the
gray region, the one-module solutions is optimal for recorded (a) and
unrecorded teleportation (b). We used Infomap to minimize directed
LFR benchmark networks with 1000 nodes and 7500 links with
between 20 and 50 nodes in the communities [25]. Results do not
depend on the teleportation target in the benchmark networks without
degree-degree correlations and with uniform out-degree.

limitation, we propose the concept of unrecorded teleportation,
where only steps along links are considered when performing
a measure of the network [7,23].

The stationary solution of a random walk with unrecorded
teleportation process can easily be calculated by applying
an extra step without teleportation to the solution for the
corresponding recorded teleportation

πunrec
i;α =

∑
l

Tilπl;α, (9)

which leads to the expression

πunrec
i;α = (1 − α)

∑
l

Til

∑
j

(I − αT )−1
lj vj , (10)

and to the Taylor expansion

πunrec
i;α =

∑
l

Til

⎛
⎝vl +

∞∑
k=1

αk
∑

j

(
T k

lj − T k−1
lj

)
vj

⎞
⎠ , (11)

the behavior of which depends on the choice of vj . In the fol-
lowing, we consider two versions of unrecorded teleportation.

In the first version, shown in Fig. 1(c), called unrecorded
node teleportation, the preference vector is uniform. Unfor-
tunately, this version does share the aforementioned robust
properties of recorded link teleportation for PageRank. It is
nonetheless interesting to note that the leading contribution
for small values of α is given by

πunrec
i;α =

∑
j

Tij + O(α), (12)

which simply counts the weight of incoming links normalized
by the out-strength of the neighbor. This centrality measure
finds potential applications in bibliometrics, as it takes into
account the variability in the number of references (out-links)
per article, and should facilitate comparisons of scientific
journals and authors across scientific fields [24].
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FIG. 3. (Color online) Unrecorded teleportation strongly reduces
the influence of the teleportation rate. The top panes show the
normalized mutual information between the benchmark partition
at low module mixing rate (a) and high module mixing rate (b),
and partitions generated by Infomap for four different teleportation
schemes: without encoding of teleportation steps to links (Unrec link)
and nodes (Unrec node) and with encoding of teleportation steps to
links (Rec link) and nodes (Rec node). The bottom panes show the
code length of the map equation for different partitions of benchmark
networks at low module mixing rate (c) and high module mixing rate
(d): the code lengths associated with unpartitioned networks (with
and without encoding of teleportation steps) and the code lengths
associated with the benchmark partition and the partition generated by
Infomap (with and without encoding of teleportation steps). Results
are based on same data as in Fig. 2.

Unrecorded link teleportation, shown in Fig. 1(d), is defined
by a preference vector proportional to out-strength. This
choice has the advantage of effectively leading to a sampling
of the links proportional to their weight in the network.
Indeed, selecting a node with a probability proportional
to its out-strength and following one of its links before
recording is equivalent to selecting a link at random in the
network. This equivalence ensures that the stationary solutions
of random walks with recorded link teleportation and with
unrecorded link teleportation are identical, and are given
by Eq. (7). Unrecorded link teleportation thus presents the
same robustness, e.g., independence of PageRank on α for
undirected networks, in the mean-field approximation, etc. As
we will see in simulations in the next section, unrecorded
link teleportation has the further advantage of stabilizing the
outcome of community detection algorithms applied to real
and artificial benchmark networks.

3. Smart teleportation and clustering

To explain why unrecorded teleportation gives much more
robust partitions than recorded teleportation, we have parti-
tioned unweighted directed benchmark networks with known
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partitions and tunable module mixing rates μ [25]. Figure 2
shows that Infomap either finds the benchmark solution or
leaves the benchmark unpartitioned in one single module for
all teleportation schemes. Since the random walker movements
between modules are only marginally affected by the target
of teleportation in the benchmark networks without degree-
degree correlations and with uniform out-degree, results
obtained from link teleportation and node teleportation are
practically the same. But clustering obtained with unrecorded
or recorded teleportation makes all the difference as shown
in Fig. 2. If teleportation steps are not encoded, the results
become independent of teleportation rate for a given module
mixing and Infomap recovers the benchmark solution for all
module mixings up until μ = 0.7. At the same mixing rate,
with 70% of each node’s links connecting to nodes outside its
own cluster, recorded teleportation hits the limit for which no
low teleportation rate can generate the benchmark solution.
Above module mixing rate μ = 0.7, the community structure
of the benchmark network is smeared out by any teleportation
rate. For module mixing rates approaching zero, Infomap can
recover the benchmark solutions at increasing teleportation
rates.

Figure 3 explains what partition Infomap will find at
different module mixing and teleportation rates. As the figure
shows, Infomap finds the benchmark partition as long as
the benchmark partition provides a shorter description length
than the unpartitioned network. The sharp transition from the
benchmark solution with multiple modules to the unpartitioned
one-module solution happens without any intermediate solu-
tions at teleportation rate 1 − α = 0.6 for module mixing rate
μ = 0.2, as shown in Figs. 3(a) and 3(c), and at teleportation
rate 1 − α = 0.2 for module mixing rate μ = 0.6, as shown in
Figs. 3(b) and 3(d). Consequently, for recorded teleportation,
the total module mixing from links and teleportation deter-
mines which solution provides the shortest description of the
random walker on the network. For unrecorded teleportation,
however, the code length becomes almost independent of
teleportation rate and the module mixing from links determines
the clustering result.

In the next section, we will demonstrate the advantages
of using smart teleportation over standard teleportation for
ranking and clustering real-world networks. Contrary to the
benchmark networks analyzed above, real-world networks
have modules with varying degree of mixing. Therefore, we
will not see the sharp transition from a single multimodule
solution to the unpartitioned one-module solution. Instead, we
will see a gradually decreasing normalized mutual information
as the increased teleportation rate smears out the boundaries
of weak clusters.

III. SMART TELEPORTATION IN
REAL-WORLD NETWORKS

A. Ranking of scientific journals

In this section we explore the effect of teleportation on
ranking and clustering in real-world networks. We begin
with an illustrative example of ranking. We ranked 7940
journals connected by 9.2 million citations aggregated in 1.2
million weighted links [26] with the four different teleportation

Teleportation rate

(a) Recorded node teleportation

Nature 1.98
PNAS 1.95

Science 1.82
JBC 1.74

PRL 0.895 Science 0.0577
Nature 0.0567
PNAS 0.0528
JBC 0.0427
PRL 0.0327

Teleportation rate

(b) Recorded link teleportation

PNAS 2.36
Nature 2.35

JBC 2.19
Science 2.12

PRL 1.09

PNAS 1.62
JBC 1.62
Nature 1.49
Science 1.40
PRL 1.07

Teleportation rate

(d) Unrecorded link teleportation

PNAS 2.36
Nature 2.35

JBC 2.19
Science 2.12

PRL 1.09

PNAS 1.62
JBC 1.62
Nature 1.49
Science 1.40
PRL 1.07

Teleportation rate

(c) Unrecorded node teleportation

Nature 2.10
PNAS 2.07

Science 1.92
JBC 1.84

PRL 0.947

Science 0.935
Nature 0.915
PNAS 0.836
JBC 0.629
PRL 0.424

0.05 0.95 0.05 0.95

0.05 0.95 0.05 0.95

FIG. 4. (Color online) Link teleportation reduces the influence
of teleportation rate on top-ranked scientific journals. Reported
in percent, the journal visit rates obtained with recorded node
teleportation in (a), recorded link teleportation in (b), unrecorded
node teleportation in (c), and unrecorded link teleportation in (d).

schemes for different teleportation rates 1 − α and reported
the node visit rates for five top journals: Nature, Science,
Proceedings of the National Academy of Sciences (PNAS), The
Journal of Biological Chemistry (JBC), and Physical Review
Letters (PRL) (see Fig. 4). The choice of teleportation scheme
affects not only the absolute node visit rates, but also the
relative node visit rates between the journals, and therefore
also the rank order. Teleportation to links, whether recorded
or unrecorded, dramatically reduces its undesirable damping
effect. Ranking with link teleportation is less sensitive to the
choice of teleportation rate, but the rank order nevertheless
depends on whether only the local neighborhood of a node
for high teleportation rates or the entire network for low
teleportation rates is considered. For example, Figs. 4(b)
and 4(d) show that Nature ranks higher than The Journal of
Biological Chemistry only when the entire network structure
is taken into account.

Similarly, we find that the choice of teleportation scheme
dramatically affects the clustering results. For example, when
we clustered the scientific journals with the Infomap method
[11], we obtained nontrivial solutions for teleportation rates
below 50% for recorded node teleportation and below 75%
for recorded link teleportation. For unrecorded teleportation,
however, we obtained nontrivial solutions for all teleportation
rates.

B. Data description

To quantitively compare the ranking and clustering results
between standard and smart ranking in a more systematic way,
we analyzed eight real-world networks. We selected networks
of widely different sizes, topologies, and origins:
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Coathorship is a weighted undirected network included
for reference that describes more than 2500 coauthorships
between about 500 network scientists [23].

US airports is a weighted directed network that describes
about 18 000 connections weighted by passenger flow between
close to 500 airports in the US in 2007 [23].

US political blogs is an unweighted directed network that
describes about 19 000 hyperlinks between almost 1500 blogs
on US politics collected in 2005 [27].

Swe political blogs is a weighted directed network that
describes about 13 000 connections between more than 1000
political blogs in Sweden in 2010 [23].

Journal citations is a weighted directed network that
describes more than a million connections formed by around
10 million citations between close to 8000 scientific journals
in 2007 [28].

Call graph is a weighted directed network that describes
more than 7000 calls between about 2500 functions in the
cross-platform library GLib [23].

Stanford web is a directed network that describes 2.3 million
hyperlinks between almost 300 000 web pages in the domain
stanford.edu [29].

Google web is a directed network that describes 5.1 million
hyperlinks between more than 700 000 web pages from the
Google Programming Contest in 2002 [29].

For each network, we analyzed ranking and clustering
robustness of the four different teleportation schemes depicted
in Fig. 1: recorded teleportation to nodes and to links and
unrecorded teleportation to nodes and to links. We quantified
the robustness of the results to variations in the teleportation
rate by measuring the similarity between results obtained at the

commonly used teleportation rate 1 − α = 0.15 with results
obtained at lower and higher teleportation rates.

C. Robust ranking

We used the power iteration method to derive the node
visit frequencies for the four different teleportation schemes.
When located on a node with kout

i = 0, a random walker
automatically performs a teleportation, as in the original
formulation PageRank. To obtain the node visit frequencies
for the unrecorded teleportation scheme, we first calculated
the node visit frequencies with the recorded teleportation
scheme and then performed an extra step without teleportation
followed by normalization. We are interested in the robustness
of both the node rank sizes and the node rank order. There are
several ways to measure the similarity between the sizes and
orderings of two node rankings, but we opted for two simple
metrics.

For rank size comparisons between different node visit rates
πi;x and πi;y obtained by different teleportation rates 1 − αx

and 1 − αy , we used the commonly used cosine similarity

S =
∑

i πi;xπi;y√∑
i π

2
i;x

√∑
i π

2
i;y

. (13)

Figure 5 shows the cosine similarity measured between the
node rank sizes obtained at teleportation rate 1 − α = 0.15 and
the node rank sizes obtained at lower and higher teleportation
rates. As for the top-ranked journals in Fig. 4, for all tele-
portation schemes the results depend on the teleportation rate
and the similarity is only perfect at the reference teleportation
rate 1 − α = 0.15. But for all networks, link teleportation is
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FIG. 5. (Color online) Robust rank size with smart teleportation in real-world networks. We measured the cosine similarity between the
node rank sizes obtained at teleportation rate 1 − α = 0.15 and the node rank sizes obtained at lower and higher teleportation rates. When
teleportation steps were included in the node visit rates of the random walker, teleportation to links (Rec link) is more robust than uniform
teleportation to nodes (Rec node). When teleportation steps were not included in the node visit rates, the rank size is overall more robust and
link teleportation (Unrec link) is again more robust than node teleportation (Unrec node). Note that recorded and unrecorded link teleportation
by definition give the same rank size. See main text for details about the networks.
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equally or more robust than node teleportation, and unrecorded
teleportation is equally or more robust than recorded telepor-
tation. The commonly used recorded teleportation to nodes is
by far the least robust teleportation scheme.

For comparing different node rank orders, we measured the
mutual information between node-pair comparisons sampled
from the rankings. That is, we sampled pairs i,j of nodes
proportional to the node rank sizes πi;x,πj ;x from the ranking
obtained at teleportation rate 1 − αx and measured the reduc-
tion of uncertainty about which of the two nodes X = {i,j}
has the highest rank after observing the order Y of the other
ranking obtained at teleportation rate 1 − αy . In general, with
joint probability distribution p(x,y) and marginal probability
distributions p(x) = ∑

y p(x,y) and p(y) = ∑
x p(x,y), the

mutual information is given by

I =
∑
x,y

p(x,y) log

(
p(x,y)

p(x)p(y)

)
. (14)

With the unit step function

θ (z) =
{

1 if z � 0,

0 if z < 0,
(15)

the joint probability of, for example, X = i and Y = j , is

p(i,j ) =
∑
i,j

θ (πi;x − πj ;x)θ (πj ;y − πi;y)πi;xπj ;x. (16)

The factor πi;xπj ;x , obtained by picking nodes proportional
to their visit frequencies, guarantees that the order between
highly ranked nodes weighs higher in the comparison. If one
ranking provides no information about the other ranking, one
bit of information would be necessary to determine which of

two nodes is the one with the highest rank. Therefore, the
mutual information cannot be larger than one bit. But because
some pair of nodes in general can have the same rank, we
normalize the mutual information by dividing by the maximum
entropy of X and Y . With the entropy given by

−
∑

x

p(x) log p(x), (17)

the normalized mutual information takes the form

R = I (X; Y )

max [H (X),H (Y )]
. (18)

We normalize by dividing by the maximum entropy of X and
Y rather than the commonly used average to avoid rewarding
simplistic solutions with many or all nodes of equal rank.
Figure 6 shows the normalized mutual information between
the node rank order obtained at teleportation rate 1 − α = 0.15
and the node rank obtained at lower and higher teleportation
rates. For all networks, rank order is the same for unrecorded
and recorded teleportation when teleporting to links as shown
in Fig. 1. The rank order generated by node teleportation is
more robust in the strongly directed call graph, but more often
the rank order generated by link teleportation is more robust.
For example, all link teleportation rates generate the same rank
order in the undirected coauthorship network, whereas the rank
order is influenced by node teleportation rates. Teleportation to
links can take advantage of possible bidirectional connections
between nodes.

D. Robust clustering

When clustering nodes in networks based on random
walks, not only the node visit rates, as for ranking, but
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FIG. 6. (Color online) Robust rank order with smart teleportation in real-world networks. We measured the mutual information between
the node rank order obtained at teleportation rate 1 − α = 0.15 and the node rank order obtained at lower and higher teleportation rates. In
general, there is no advantage in not counting teleportation steps (Unrec) over counting teleportation steps (Rec), but link teleportation (link) is
again more robust than node teleportation (node). Note that recorded and unrecorded link teleportation by definition give the same rank order.
See main text for details about the networks.
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FIG. 7. (Color online) Robust clustering without encoding of teleportation steps in real-world networks. We measured the mutual information
between the obtained partitions at teleportation rate 1 − α = 0.15 and the obtained partitions at lower and higher teleportation rates. Not encoding
teleportation steps (Unrec) is always better than encoding teleportation steps (Rec). The robustness of teleportation to nodes (node) or links
(link) depends on the network. Each data point corresponds to the average over 100 pairwise comparisons between partitions generated with
the Infomap method [11]. See main text for details about the networks.

also the transition rates between nodes affect the result.
Therefore, and as the example with scientific journals above
demonstrates, the teleportation scheme and teleportation rate
have dramatic effects on clustering. To quantitatively compare
the teleportation schemes, we clustered the eight real-world
networks with the information-theoretic clustering method
Infomap [11]. Infomap searches for the network partition that
minimizes the description length of a random walker guided
by the links of the network. By altering the dynamics of the
random walker, for example, by altering the teleportation rate,
Infomap may consequently identify different partitions. To test
how much the partitions change when the teleportation rate is
altered, we used the normalized mutual information applied
to cluster comparisons [30]. In this way, we can compare
the robustness associated with the different teleportation
schemes.

The mutual information between two network partitions
measures how much we learn about one network partition
by studying the other one. We always used the network
partition obtained at the commonly used teleportation rate
1 − α = 0.15 as reference. To avoid undesirable effects that
singletons can cause, we sampled the nodes proportionally to
their visit frequencies rather than uniformly when calculating
mutual information. In this way, we also put emphasis on
correct assignments of important nodes. For fair comparisons
between partitions obtained at different teleportation rates, we
used the node visit frequencies of the reference partition. By
normalizing by the maximum entropy of the two partitions
rather than the average of the two, we naturally penalize for
overfitting and avoid rewarding for underfitting.

With sx for the total visit rate of all nodes in module x and
sxy for the total visit rate of all nodes that are jointly partitioned

in module x and module y, the entropy takes the form

H (X) = −
∑

x

sx log sx, (19)

the mutual information

I (X; Y ) =
∑
x,y

sxy log
sxy

sxsy

, (20)

and the normalized mutual information as in Eq. (18).
Figure 7 shows that unrecorded teleportation gives more

robust clustering for all tested networks and, in general, link
teleportation gives more robust results than node teleportation.
Recorded teleportation gives robust results in a window
around teleportation rate 1 − α = 0.15, but the normalized
mutual information quickly drops to zero outside this win-
dow. Contrarily, for unrecorded teleportation, the normalized
mutual information stays relatively high for all values of the
teleportation rate.

IV. CONCLUSIONS

When ranking and clustering nodes in networks, we have
demonstrated analytically and numerically that we can dras-
tically reduce undesirable and parameter-dependent effects of
standard teleportation with unrecorded teleportation to links.
Because this smart teleportation scheme takes advantage of
the topology of the network—blending the directed and the
undirected solutions instead of trading off the directed solution
with the uniform solution—results are more robust to the exact
value of the teleportation rates. In particular, we have shown
analytically that ranking results are exact and independent of
teleportation rates for undirected and well-mixed networks,
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and for all the real-world networks we have analyzed, smart
teleportation is as good as or better than standard teleportation.

When clustering networks with Infomap based on the
movements of a random walker on the network, not recording
the teleportation steps makes the results of real-world net-
works dramatically more robust. Because smart teleportation
eliminates mixing between network communities, results
of benchmark networks are practically independent of the
teleportation rate. The advantages of smart teleportation

over standard teleportation makes it interesting to explore
the benefits in other flow-based clustering algorithms and
variations of PageRank.
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