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Algorithm
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Abstract

A mechanism for proving global convergence in SQP-filter methods for nonlinear
programming is described. Such methods are characterized by their use of the
dominance concept of multiobjective optimization, instead of a penalty parameter
whose adjustment can be problematic. The main point of interest is to demonstrate
how convergence for NLP can be induced without forcing sufficient descent in a
penalty-type merit function.

The proof relates to a prototypical algorithm, within which is allowed a range
of specific algorithm choices associated with the Hessian matrix representation,
updating the trust region radius, and feasibility restoration.

Keywords nonlinear programming, global convergence, filter, multiobjective optimiza-
tion, SQP.
AMS(2000) subject classifications: 65K05, 49M37, 90C30, 90C26

1 Introduction

In Fletcher and Leyffer [5] a new technique for globalizing methods for nonlinear pro-
gramming (NLP) is presented. The idea is referred to as an NLP filter and is motivated
by the aim of avoiding the need to choose penalty parameters, such as would occur with
the use of [; penalty functions or augmented Lagrangian functions. Numerical experience
with the technique in a sequential quadratic programming (SQP) trust region algorithm
is reported in [5] and is very promising. However, no global convergence proof is given
in [5], although a number of heuristics are suggested to eliminate obvious situations in
which the method might fail to converge.

This paper shows that the filter technique does provide a mechanism for forcing global
convergence when used in an appropriate way. The proof relates to an NLP problem with
both equations and inequality constraints, and shows that there exists an accumulation
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point that satisfies first order (Kuhn-Tucker) conditions. The result requires that a
Mangasarian—Fromowitz constraint qualification holds at the accumulation point. Other
non-trivial assumptions that are made are that the Hessian matrices of the quadratic
programming (QP) subproblems are uniformly bounded and that a global solution of
the subproblem is found by the QP solver. None of these qualifications to the result are
readily circumvented.

The proposed algorithm contains an inner iteration for calculating a suitable trust
region radius. In some ways this resembles the use of a backtracking line search along a
piecewise linear trajectory. This approach enables us to guarantee that certain conditions
used in the convergence proof are met. To a large extent however, the approach allows
conventional ideas to be used of halving or doubling (say) the previous trust region radius.

An interesting feature of the proof is that various of the heuristics used in [5] are
shown to be unnecessary. These include the NW corner rule, the need to unblock the
filter in some cases, and the consequent decision to reduce the strict upper bound on
constraint infeasibility. In this paper we also use a slightly different way of defining the
sufficient reduction condition to that used in [5]. Another new feature of some interest
is that some points may be accepted by the algorithm, without a new entry in the filter
being made. This contributes to the non-monotonic properties of the algorithm. In
common with [5], we do use a feasibility restoration technique, but are not prescriptive
as to how this is done.

Subsequent to the work described in this paper, there have been a number of more re-
cent developments in regard to global convergence of filter-related methods for nonlinear
programming. The authors have contributed to other papers that prove global conver-
gence for different algorithmic structures such as an SLP-EQP approach or an approach
in which approximate solutions of the SQP step are used, based on a decomposition into
normal and tangential steps. Recent work of other authors proves global convergence of
filter-related methods in a variety of other contexts such as interior point and line search
barrier methods. A brief discussion of these developments is given in Section 4.

2 A Filter—SQP Algorithm

In this paper we consider an NLP problem of the form

minimize f(x)
P subject to  ¢;(x)

=0 1€&
Ci(X)SO

1 €1,

where the index sets € and I reference the equality and inequality constraints respec-
tively. We denote the cardinality of £ UZ by m. We assume for the purposes of our
convergence proof that all points that are sampled by the algorithm lie in a non-empty
closed and bounded set X. Because the points generated by our algorithm satisfy the
linear constraints of the problem, it is readily possible to ensure that this condition holds
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by including suitable simple upper and lower bounds on x amongst the constraints of P.
The QP subproblem in our algorithm depends upon the value of the current iterate x
and trust region radius p, (p > 0), and is defined by

e e LT 13T
ml(PEl]g}llze g(d):=g'd+ ;d* Bd

. T .
P(x, subject to ¢ +a;d =10 1€ &
QP(x.p) ¢ +ald <0 ieT
[dle0 < p-

where we denote g = V f(x), ¢; = ¢;(x) and a;, = V¢;(x). The [, norm is used to define
the trust region because it is readily implemented by adding simple bounds to the QP
subproblem. The QP subproblem also requires the specification of a matrix B, although
this plays a relatively minor part in the analysis of global convergence. For this reason
we do not make the dependence on B explicit in the notation. We let d denote the global
solution (if it exists) of QP(x,p). Then we denote

Ag=q(0)—qg(d) = —g'd — ;d"Bd (2.1)
as the predicted reduction in f(x) and

Af = f(x) = f(x +d). (2:2)

as the actual reduction in f(x). The measure of constraint infeasibility that we use in
this paper is

he) = llezll + lleells (2.3)

where ¢} = max(0, ¢;), using the notation that cg and ¢z are partitions of ¢ corresponding
to equality and inequality constraints, respectively.

The algorithm that we propose is iterative, and the index & is used throughout to refer
to the iteration number. The sequence of points accepted by the algorithm is referred
to by {x(®}, and quantities derived from x*) are superscripted in a similar manner, for
example h(¥) refers to h(c(x®)) and f*) to f(x*). The matrix B usually differs from
iteration to iteration and is generally referred to as B%¥). Within the inner loop of the
iterative process, B*) is a constant matrix.

We now turn to the definition of an NLP filter as introduced in [5]. The two aims in
an NLP problem are to minimize f(x), and to satisfy the constraints, that is to minimize
h(e(x)). In a filter we consider pairs of values (h, f) obtained by evaluating h(e(x)) and
f(x) for various values of x. A pair (h(), f()) obtained on iteration i is said to dominate
another pair (), f)) if and only if both 2() < hU) and f) < fU) indicating that the
point x() is at least as good as xU) in respect of both measures. The NLP filter is defined
to be a list of pairs (h(i), f(i)) such that no pair dominates any other. This is illustrated
by the solid lines in Figure 1. We use F*) to denotes the set of iteration indices j (J < k)
such that (h(j), f(j)) is an entry in the current filter. (In practice we do not need to store
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the index set F*), the notation is just for theoretical convenience.) A point X is said to
be “acceptable for inclusion in the filter” if its (h, f) pair is not dominated by any entry
in the filter. This is the condition that

either h < bW or f<f (2.4)

for all j € F*®). We may also wish to “include a point x in the filter”, by which we mean
that its (h, f) pair is added to the list of pairs in the filter, and any pairs in the filter
that are dominated by the new pair are removed. We use the filter as an alternative to a
penalty function as a means of deciding whether or not to accept a new point in an NLP
algorithm.

In fact this definition of a filter is not adequate for proving convergence as it allows
points to accumulate in the neighbourhood of a filter entry that has A > 0. This is
readily corrected by defining a small envelope around the current filter in which points
are not accepted. This idea is suggested in the original paper of Fletcher and Leyffer [5].
A similar acceptability test is analysed by Fletcher, Leyffer and Toint [6] in proving global
convergence of an SLP-filter algorithm. This is the condition that a point is acceptable
to the filter if its (h, f) pair satisfies

either A< pAY)  or  f< fU_4pl) (2.5)

for all j € F®) where 8 and ~ are preset parameters such that 1 > 8 > v > 0, with 3
close to 1 and v close to zero. Because 1 — 3 and ~ are very small, there is negligible
difference in practice between (2.5) and (2.4).

In fact, it has more recently become apparent that a slightly different form of the
acceptability test, due to Chin and Fletcher [2], allows stronger convergence results to
be proved, and it is this that we analyse here. In this test a pair (h, f) is acceptable if

either A <pBRY)  or  f4Ah < fW (2.6)

for all j € F®). This slanting envelope test ensures that pairs with the same f value have
the same envelope in the [ direction. This is illustrated in Figure 1, using the values
v = 0.1 and 8 = 1 — ~, although in practice a value of v much closer to zero would be
used. (Typical values that we have used are vy = 107> and 8 =1 —~.) The test provides
an important inclusion property that if a pair (h, f) is added to the filter, then the set of
unacceptable points for the new filter always includes the set of unacceptable points for
the old filter. This is not always the case for (2.5).

The left hand inequality in (2.6) and also in (2.5) is an obvious way of defining a
sufficient reduction in A. The right hand inequality in (2.6) asks for a sufficient reduction
in f, defined in such a way that it provides a mechanism whereby iterates are forced
towards feasibility. This is shown in the following lemma and its corollary.
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Figure 1: An NLP Filter with Slanting Envelope

Lemma 1 Consider sequences {h®)} and {f®)} such that h® > 0 and f*) is mono-
tonically decreasing and bounded below. Let constants B and v satisfy 0 <~y < g < 1. If,
for all k,

either  RFHD < gp®  or  fB) gl > L p(REY)

then h(®) — 0.

Proof If ht1) < Bh() for all k sufficiently large, then h(¥) — 0. Otherwise there exists
an infinite subsequence S on which f#) — fk+1) > ~pk+1)  Because f*) is monotoni-
cally decreasing and bounded below, it follows that ), ¢ R*+1) is bounded, and hence
RUH) — 0 for k € S. But R*+) < Bh%) holds for iterations k € S, so it follows that
h*) — 0 on the main sequence. q.e.d.

Corollary  Consider an infinite sequence of iterations on which (h*), f*)) is entered
into the filter, where h®) >0 and {f®)} is bounded below. It follows that h®) — 0.
Proof Consider the set K = {k | fU) > f®) Vv j > k}. For any k € K, it follows by
filter acceptability that AU) < BA®) for all j > k. If K contains an infinite number of
entries, then any k& € K has a successor kT € K which is the least j > k such that j € K.
It follows by filter acceptability that 2*%) < 8L*). Hence h® — 0 for k € K. But any
intermediate iterations j such that k < j < k% also have the property that AU) < ghk)
so it follows that A*) — 0 on the main sequence.



6 R. Fletcher, S. Leyffer and Ph. L. Toint

Conversely, if K is not infinite, we let K be the largest index in K (or K = 0 if
K is empty). Because K is finite, for any k& > K there exist indices j > k for which
) < f®) Thus we may define an infinite subsequence S as follows. The first index in
Sisk =K +1, and for any k € S its successor kT € S is the least value of j > k such
that fU) < f®) Thus {f*} is monotonic decreasing for k € S. Also it is a consequence
of the inclusion property that (h(k+), f(k+)) is acceptable to (h(k), f(k)), even if the latter
pair has been deleted from the filter on an intermediate iteration. Hence the conditions
of Lemma 1 are satisfied, so that A*) — 0 for k € S. Moreover, it also follows by filter
acceptability that hl) < BA®) for all j such that k < j < kT. Hence h¥) — 0 on the
main sequence. q.e.d.

It is also convenient to allow an upper bound
h(e(x)) < fu (2.7)

(u > 0) on constraint infeasibility, and this is readily implemented by initializing the filter
with the entry (u, —oc). Existence of this upper bound is not necessary to the proof of
convergence, but is a useful practical feature that can be used to prevent iterates from
becoming too infeasible. In practice we have set a large default value of v = 10*, which
usually has negligible impact on performace, but there are a few problems for which a
much smaller value is desirable, say u = 1.

A common feature in a trust region algorithm for unconstrained minimization is the
use of a sufficient reduction criterion

Af > oAq, (2.8)

where Ag is positive, and o € (0, 1) is a preset parameter. However, in an NLP algorithm,
Ag may be negative or even zero, in which case this test is no longer appropriate. A
feature of the algorithm in this paper is that it uses (2.8) only when Agq is positive. A
typical value of o that we have used is ¢ = 0.1.

We are now in a position to state our filter—SQP algorithm, which we do by means
of the flow diagram of Figure 2. We observe that at the start of iteration &, the pair
(™), f#)) is not in the current filter F*) hut must be acceptable to it. Tt can be seen
that there is an inner loop in which the trust region radius p is successively reduced until
either certain tests are satisfied, or the current QP subproblem becomes incompatible
(for clarity we avoid the use of the word ‘infeasible’ in this context). The inner loop is
initialized with any value of p > p°, where p° > 0 is a preset parameter. The inner loop
chooses a decreasing geometric sequence of values of p and generates corresponding values
of d, Aqand Af (unsubscripted). The inner loop contains a test “is x*) +d acceptable to
the filter and (h(k), f(k))”. By this we mean that x*) 4+ d has to be acceptable to the filter
formed of the current filter and (A(®), f(*)) so that if (A(¥), f(¥)) is subsequently entered
into the filter, then (h(k‘H), f(k"'l)) will still be acceptable to the new filter. When the inner
iteration terminates, the current values of p, d, Ag and Af are denoted respectively by



Global Convergence for Filter-SQP 7

p) d®) | Ag) and A fF). We observe that all points that are generated by the algorithm
lie in the region generated by the subset of linear constraints in the NLP problem.
Following our multiobjective thinking, we regard a step d that satisfies Ag > 0 as
being an f~type step (having the primary aim of improving f, and possibly allowing an
increase in k). If d is accepted and becomes d®, then an f-type iteration is said to have
occurred. In this case we insist that the sufficient reduction condition (2.8) is satisfied.
Thus a necessary condition for a step d to give rise to an f-type iteration is that both

Af > oAq and Ag >0 (2.9)

are satisfied. If Ag¢® < 0, or if the current QP subproblem is incompatible, then the
primary aim of the iteration is to reduce h (possibly allowing an increase in f) and
we refer to the resulting iteration as an h—type iteration. As p is reduced in the inner
loop, the value of Ag is reduced (a consequence of having found a global minimizer of
QP(X(k),p)). Thus the status of the test Ag > 0 may go from true to false, but not
vice-versa. Consequently, the inner loop always samples the possibility for an f-type
iteration before that of an h—type iteration. This is a key argument in the convergence
proof.

This algorithm differs in one important respect from that in [5] in that not all points

k) are included in the filter, even though they are acceptable to the filter. The point x(*)

x(
is included in the filter at the end of the iteration if and only if that iteration is an h—type
iteration. A consequence is that all the current filter entries have h) > 0, j € F®),
This is because if A*) = 0 then QP(x® | p) must be compatible and hence, if x*) is not
a KT point, then Ag > 0 holds. Thus if A%*) = 0, the resulting iteration is an f-type
iteration and x(*) is not entered into the filter. It is convenient to denote

78 = min AV > 0. (2.10)

jeF(k)

It can be seen that our algorithm includes the provision for a feasibility restoration
phase if the current QP subproblem becomes incompatible. Any method for solving
a nonlinear algebraic system of inequalities can be used to implement this calculation,
such as for example a Newton-like scheme for minimizing h(c(x)). The restoration phase
terminates if it finds a point that is both acceptable to the filter, and for which Q P(x, p)
is compatible for some p > p°. (Essentially the latter condition only requires that
QP(x™) 00) is compatible, since we can always take p = 0o.) There are various existing
algorithms that might be used to implement this calculation: that of Madsen [12] (with
suitable changes to include inequality constraints) has a convergence proof and is close to
the spirit of this paper. Alternatively we can make use of the ideas expressed in [5] which
have performed well in practice. Note that the restoration phase makes no demands on
the resulting value of f(x), which could be significantly worse than that at the previous
point. If the restoration phase does terminate, then the point of termination becomes
x5 +t1) and the resulting step from x*) to x(¥+1) is deemed to be an h-type iteration.

Of course it may not always be possible to find a point which satisfies both the above
conditions, and the restoration phase might converge to an infeasible point, for example
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if there exists a non-zero local minimum of A(e(x)). This is often an indication that
the original problem P is incompatible. This is the situation typified by case (A) of
Theorem 1 that follows in the next section. If, on the other hand, the restoration phase
is converging to a feasible point, then it is usually able to terminate. This is so because
(@ P(x,00) is usually compatible if x is sufficiently close to the feasible region, and because
7 > 0 allows such a point to be acceptable to the filter. However this outcome is not
guaranteed, as it is possible for () P(x,00) to be incompatible for any infeasible point
x. Such an example is the pathological problem min(z; — 1)? subject to 27 = 0 and
z3 = 0, starting from x = (1, 0)7. A Newton-like iteration for feasibility restoration is
likely to converge to the feasible point x = 0, which is not a solution of the NLLP, without
finding a point at which the QP subproblem is compatible. However such a pathological
problem (P) has the property that there exists an arbitrary small perturbation to P for
which P is incompatible. Thus in this paper we content ourselves with the possibility
that the restoration phase may fail to terminate, and regard this as an indication that
the constraints of P are incompatible (in a local sense) to within round-off error.

3 A Global Convergence Proof

In this section we present a proof of global convergence of the SQP—filter algorithm of
Figure 2 when applied to problem P. We make the following assumptions.

Standard Assumptions

1. All points x that are sampled by the algorithm lie in a non-empty closed and
bounded set X.

2. The problem functions f(x) and ¢(x) are twice continuously differentiable on an
open set containing X.

3. There exists an M > 0 such that the Hessian matrices B satisfy |B®)||, < M
for all k.

It 1s a consequence of the standard assumptions that the Hessian matrices of f and the
¢; are bounded on X and without loss of generality we may assume that they also satisfy
bounds ||[V2f(x)|l. < M, |[VZ¢i(x)|: < M,i€ EUT, for all x € X.

Our global convergence theorem concerns Kuhn-Tucker (KT) necessary conditions
under a Mangasarian-Fromowitz constraint qualification (MFCQ), (see for example,
Mangasarian [9]). This is essentially an extended form of the Fritz-John conditions for
a problem that includes equality constraints. A feasible point x° of problem P satisfies
MFCQ if and only if both (i) the vectors af, i € & are linearly independent, and (ii)
there exists a vector s that satisfies s”a? = 0,7 € £ and s”a? < 0,4 € A°, where A° CZ
denotes the set of active inequality constraints at x°. Necessary conditions for x° to solve
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P are that x° is a feasible point, and, if MFCQ holds, then the set of directions

{s | s'g°<0 (3.1)
sfal=0 icé& .
s"a? <0 i€ A} (3.3)

is empty. If x° solves P, and MFCQ holds, then these conditions are equivalent to the
existence of KT multipliers (although we do not use that result in this paper), and it has
been shown (Gauvin [8]) that the multiplier set is bounded.

Before proving our main theorem we need some results that describe the behaviour
of QP subproblems in the neighbourhood of a feasible point x° at which the vectors a?,
1 € & are linearly independent. First however we prove two simple lemmas that enable
us to handle the second order terms in the analysis.

Lemma 2 Consider minimizing a quadratic function ¢(a) (IR — IR) on the interval
a € [0,1], when ¢'(0) < 0. A necessary and sufficient condition for the minimizer to be
at a =1 1is ¢" 4+ ¢'(0) < 0. In this case it follows that ¢(0) — $(1) > —14/(0).

Proof Using ¢(a) = ¢(0) + a¢’(0) + j0?¢", the minimizer is at a = 1 either if ¢"” <0
or if ¢" > 0 and —¢'(0)/¢" > 1, from which the result follows. q.e.d.

Lemma 3 Let the standard assumptions hold, and let d be a feasible point onP(x(k), p).
It then follows that

Af > Ag—np*M, (3.4)
|ci(x(k) +d)| < %anM 1 €E, (3.5)

and
ci(x(k) + d) < %np2M 1 €71 (3.6)

Proof These results follow from the intermediate value form of Taylor’s theorem, for
example

Jx® +d) = 10 +gM7Td + §dTV [ (y)d

where y denotes some point on the line segment from x*) to x®) 4 d. Tt follows from
(2.2) and (2.1) that
Af=Aq+3d"(BY =V f(y))d,

and (3.4) follows from the Hessian bounds and the inequality ||d||3 < n|d|%, < np*
Also, for 1 € Z, it follows that

a(x® +d) = +2a7d 4+ 1dTV2e(yi)d < 1dTV¢(yi)d
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by feasibility of d, and (3.6) then follows in a similar way. The result (3.5) follows for
1 € € by regarding an equation as two opposed inequality constraints. q.e.d.

Lemma 4 Let standard assumptions hold. If d solves QP(x™®), p), then x(¥) +d is
acceplable to the filter if p* < 2875 [(mnM).

Proof It follows from (2.3), (3.5) and (3.6) that h(c(x®) +d)) < smnp*M. Tf p? <
26875 /(mnM), it then follows that h(c(x™ +d)) < A7*). Hence, by definition of 7(¥),
the filter acceptance test (2.6) is satisfied. g.e.d.

Lemma 5 Let standard assumptions hold and let x° € X be a feasible point of problem
P at which MFCQ holds, but which is not a KT point. Then there exislts a neighbourhood
N° of x° and positive constants ¢, u and k such that for all x € N° N X and all p for
which

uh(e(x)) < p < r, (3.7)

it follows that QP(x,p) has a feasible solution d at which the predicted reduction (2.1)
satisfies

Aq 2 3pe, (3.8)
the sufficient reduction condition (2.8) holds, and the actual reduction (2.2) satisfies

Af > yh(e(x+d)). (3.9)

Proof Since x° is a feasible point at which MFCQ holds, but not a KT point, it follows
that the vectors a7, « € £ are linearly independent, and there exists a vector s° for which
||s®||2 = 1 that satisfies (3.1), (3.2) and (3.3). We note that these conditions imply that
the cardinality |€] < n. We use the notation AT = (AT A)7' A" and let Ag denote the
matrix with columns a;, 1 € &€, evaluated at some point x. By linear independence and
continuity there exists a neighbourhood of x° in which A} is bounded. If £ is not empty,
we denote p = —A;TCE, which is the closest point in the linearized equality constraint
manifold to d = 0, and let p = ||p||2. Also we denote s = (I — AgAf)s®/||(1— Ac A})s|,
which is the closest unit vector to s° in the null space of AL, If £ is empty, we let p = 0,
p = 0 and s = s°. It follows from (3.1) and (3.3) by continuity that there exists a
(smaller) neighbourhood N° and a constant € > 0 such that

sflg<—c  and sfa;<—g, icA (3.10)
when g, a; and s are evaluated for any x € AN°. By definition of p, it follows that

p = O(h(c)) so we can choose the constant g in (3.7) sufficiently large so that p > p for
all x € N°.
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We now consider the solution of QP(x,p), and in particular the line segment defined

by
d,=p+alp—p)s, acl0,1], (3.11)

for a fixed value of p > p. We note that d,, satisfies the equality constraints cg + ALd = 0
of QP(x,p) for any value of a. Because the vectors p and s are orthogonal, it follows

that
ldullz = v/p? + (p = p)? = V/p? = 2pp + 2p? < p
since p > p. Consequently ||di||s < p, and hence d; satisfies the trust region constraint

of QP(x, p).
Next we look at inactive constraints i € Z/A°. If x € N°NX then there exist positive
constants ¢ and @, independent of p, such that

¢ < —¢ and aZ-TS <a

for all vectors s such that |[s||.c < 1, by continuity of ¢; and boundedness of a; on X. It
follows that
ci+ald< —é+pa i€IJA
for all vectors d such that ||d|lec < p. Thus inactive constraints do not affect the solution
to QP(x,p) if p satisfies p < ¢/a.
For active inequality constraints ¢ € A°, we have from (3.10) and (3.11) that

ci+aldi=c+alpt(p—pals<c+ap—(p—pec<0
if
p2p+(ci+alp)/e

By definition of p, the right hand side of this inequality is O(k(¢)) so we can choose
the constant g in (3.7) sufficiently large so that ¢; + aZle < 0,7 € A°. Thus d; is
feasible in Q) P(x, p) with respect to the active inequality constraints, and hence to all the
constraints, using results from above. Hence we have shown that Q P(x, p) is compatible
for all x € N° and all p satisfying (3.7) for any value of x < ¢/a.

Next we aim to obtain a bound on the predicted reduction Ag and hence show that

(3.8), (2.8) and (3.9) hold. First we consider the line segment (3.11) and define ¢(a) =
q(p + a(p — p)s). It follows that

#'(a) = (p—p)s"Va(p+alp —p)s) = (p — p)s" (g + B(p + alp — p)s))-
Hence, using (3.10), bounds on B and p, and p > p
#(0) = (p—p)s"(g+Bp) < (p—p)(s" Bp—¢) < (p—p)(Mp—2) < (p—p)(Mp—¢) <0
if p<e/M. Now ¢" = (p—p)?s"Bs < (p— p)*M so

"+ ¢0)<(p—p)’M+(p—p)(Mp—c)=(p—p)((p—p)M+ Mp—¢) <0
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if p <e/M. In this case, applying Lemma 2, the minimum value of ¢(a) occurs at o =1
and the reduction in ¢ satisfies ¢(0) — ¢(1) > —1¢/(0). After adding in a contribution
for the change in ¢ along p, we may express

9(0) = q(d1) = §(p — p)(e —s" Bp) + O(p) = jp + O(p).
Since d; is feasible and p = O(h(c)), it follows that the predicted reduction (2.1) satisfies
A2 Loz + Olh(e)) = Lpe — Eh(e)

for some ¢ sufficiently large and independent of p. Thus (3.8) is satisfied if p > 6£h(c)/e.
This condition can be achieved by making the constant y in (3.7) sufficiently large. It
follows from (3.4) and (3.8) that

/ 2 2

£>l—an>l—3an:1—3an.

Ag ~ Ag ~ pe €

Then, if p < (1 —o)e/(3nM) it follows that (2.8) holds.
Finally, we deduce from (2.3), (3.5), (3.6), (2.8) and (3.8) that

kR vhie(x+d)) = Af —yh(c(x +d)) > ope — %’ymnpzM >0

if p < 2oe/(ymnM). Thus we may define the constant £ in (3.7) to be the least of
2oe/(ymnM) and the values (1 — 0)e/(3nM), ¢/M and ¢/a, as required earlier in the
proof. g.e.d.

Now we proceed to analyse the algorithm of Figure 2. First we need a result that is
similar to Lemma 2 of [6]. Here x*) and B® are fixed and we consider what happens
to the solution of QP(x™, p) as p is reduced.

Lemma 6  Let the standard assumptions hold, then the inner ileration lerminates
finitely.
Proof 1If x(*) is a KT point of problem P then d = 0 solves QP(x*). p) and the
algorithm terminates. Otherwise, if the inner iteration does not terminate finitely then
the rule for decreasing p ensures that p — 0. Two cases need to be considered, depending
on whether A" > 0 or (%) = 0.

If h*) > 0 and i € £ UT is an index for which cl(-k) > 0 then for all d such that
|d||oc < p it follows that
(k

¢ +ad = — plallls > 0
if either Hal(-k)Hl =0orp< cl(-k)/HaZ(-k) ||1. Thus for sufficiently small p, constraint ¢ cannot

be satisfied and QP(x®), p) is incompatible. A similar conclusion obtains for 7 € & if
cz(-k) < 0. Thus the inner iteration terminates finitely if A*¥) > 0.
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If A" = 0, then by a similar argument, inactive constraints at x*) are inactive at
any point for which ||d]|s < p, for sufficiently small p. Thus we need only consider
constraints i € £ U A®, The rest of the proof is now similar to that of Lemma 5 in the
case p = 0. Because x®) is not a KT point, there exists a vector s, ||s||2 = 1, and an 5 > 0
such that sTg®) = —p, sTaZ(-k) =0,2€&, and sTaZ(-k) <0,ie A%, We consider the QP-
feasible line segment d, = aps for o € [0,1], and construct the function ¢(a) = ¢(d,).
It follows that ¢'(0) = —pn and ¢" = p*sTB®s < p?M. Hence if p < n/M, it follows
that ¢" 4+ ¢'(0) < 0. It then follows from Lemma 2 that ¢(0) —¢(1) > %pn. Therefore, by
global optimality of the solution d to QP(x™), p), the actual reduction Agq also satisfies
Aq > Spn, and if p < (1 —o)n/(2nM), it follows from (3.4) that Af > 0Ag > 0 and the
necessary condition (2.9) for an f-type iteration is satisfied. Also, from (3.4) (3.5) and
(3.6),

f® — f(x® +d) — yh(e(x® +d)) = Af — yh(c(x®) +d)) > Lopy — Jymnp*M >0

if p < on/(ymnM). In this case it follows that x(¥) +d is acceptable relative to (A, f(%)).
Finally, from Lemma 4, x®*) + d is acceptable to the filter if p? < 26T(k)/(7fLTLM). Thus,
if p is sufficiently small, all the conditions for an f-type step are satisfied and the inner
iteration terminates finitely. g.e.d.

We are now in a position to state our main theorem.

Theorem 1  [If standard assumplions hold, the outcome of applying the filter—SQP
algorithm of Figure 2 is one of the following.

(A) The restoralion phase fails to find a point x which is both acceptable to the filter
and for which QP(x,p) is compatible for some p > p°.

B) A KT point of problem P is found (d = 0 solves QP(x®, p) for some k).
p

(C) There exists an accumulation point that is feasible, and is either a KT point or fails

to satisfy MFCQ.

Proof We need only consider the case in which neither (A) nor (B) occurs. Because the
inner loop of each iteration is finite (Lemma 6), the outer iteration sequence indexed by
k is infinite. All iterates x®) lie in X, which is bounded, so it follows that the sequence
has one or more accumulation points.

First, we consider the case that the main sequence contains an infinite number of
h—type iterations, and we consider this subsequence. For an h—type iteration, (h(k), f(k))
is always entered into the filter at the completion of the iteration, so it follows from
the Corollary to Lemma 1 that 2*) — 0 on this subsequence. It must also follow that
7(¥) — 0. Moreover, only h—type iterations can reset 7(%), so there exists a thinner infinite
subsequence on which 711 = p(¥) < 7(*) is set. Because X is bounded, there exists
an accumulation point X* and a subsequence indexed by & € S of h-type iterations
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for which x®*) — x>, A*) — 0 and 7¢*t) = ) < 7*) One consequence is that
x> is a feasible point. If MFCQ is not satisfied at x*, then C is established in this
case. We therefore assume that MFCQ is satisfied and consider the proposition (to be
contradicted) that x* is not a KT point. In this case, the vectors aj°, ¢ € £ are linearly
independent, and the set defined by (3.1), (3.2) and (3.3) is not empty. For sufficiently
large k € S it follows that x(®) is in the neighbourhood N, as defined in Lemma 5. We
show that this leads to a contradiction.

Lemma 5 provides conditions on p which ensure that Q P(x*), p) is compatible, and
the resulting step d satisfies Af > 6Ag > 0 and f*) > f 4 yh, where f and h denote
f = f(x® +d) and h = h(e(x®) + d)), respectively. This shows that the necessary
condition (2.9) for an f-type step is satisfied, and the entry (h, f) is acceptable to (not
dominated by) (), f*)). Moreover, it follows from Lemma 4 that x*) +-d is acceptable
to the filter if p? < 287" /(mnM). Thus we deduce that if p satisfies

()
ph®) < p < min{ 267 ) KD} ) (3.12)

mnM

then (h, f) satisfies all the conditions for an f-type iteration.

Now we need to show that a value of p in this range will be located by the inner
iteration. Tt follows for k € & sufficiently large that 7(®) — 0 and the range (3.12)
becomes

2837(k)

) < < .
H =P = mnM

(3.13)

In the limit, because A% < 7(*) and because of the square root, the upper bound in (3.13)
is more than twice the lower bound. Now consider how the inner loop of the algorithm
works. Initially a value p > p° is chosen, which in the limit will be greater than the upper
bound in (3.13). Then, successively halving p in the inner loop will eventually locate a
value in the interval (3.13), or to the right of this interval, which provides the conditions
for an f-type step to occur. It is not possible for any value of p > ph® to produce an
h—type step since Ag decreases monotonically as p decreases (this is a consequence of the
global optimality of d). Thus if £ € S is sufficiently large, an f-type iteration will result.
This contradicts the fact that the subsequence is composed of h—type iterations. Thus
x> is a KT point and C is established in this case.

Next we consider the alternative case that the main sequence contains only a finite
number of h—type iterations. Hence there exists an index K such that all iterations
are f-type iterations for all & > K. Tt follows that (h*+V fk+1)) is always acceptable
to (h(k),f(k)), and also that Af*) > ¢A¢*) > 0, so that the sequence of function
values { f*)} is strictly monotonically decreasing for k& > K. It therefore follows from
Lemma 1 that A*) — 0, and hence that any accumulation point x*° of the main sequence
is a feasible point. Because f(x) is bounded on X it also follows that ), . AFH) g
convergent. As above, we now aim to contradict the proposition that there exists an
accumulation point at which MFCQ holds that is not a KT point.
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Because all iterations k > K are f-type, no filter entries are made and so 7¥) = 7(%)
is constant. For sufficiently large k£ > K it follows that x® is in the neighbourhood N
defined in Lemma 5. It follows as above that sufficient conditions for accepting an f-type

step are that p satisfies
2B 7(K)
,uh(k) Spgmin{\lrfgﬁ, li}. (3.14)

This time the right hand side of (3.14) is a constant, p say (p > 0) independent of £,
whilst the left hand side converges to zero. Thus, for sufficiently large k, the upper
bound must be greater than twice the lower bound. In this case, as p is reduced in the
inner loop, either it must eventually fall within this interval or a value to the right of
the interval is accepted. Hence we can guarantee that a value p(*) > min(3p, p°) will
be chosen. We then deduce from (2.8) and (3.8) that Af*) > toemin(3p, p°) which
contradicts the fact that >, Af® is convergent. Thus x* is a KT point and C is
established in this case also. q.e.d.

4 Discussion

Of course, the algorithm of Figure 2 is only a guide to what might be successfully 1m-
plemented in practice, and is incomplete in various ways. For example, it is necessary to
make a specific choice of algorithm to implement the restoration phase. Also the rule for
adjusting p in the inner iteration could be more intricate, based partly on interpolation.
Another possibility is to allow the pair (A¥)] f*)) to be entered into the filter on an f-
type step if A% > 7(8) a5 this does not affect the convergence proof. An overall strategic
decision is that of how to specify the matrix B*). One possibility is to use a Lagrangian
Hessian based on exact second derivatives and estimates of Lagrange multipliers. A dis-
advantage of this is that the matrices B%*) may be indefinite, in which case finding the
global minimizer of the QP subproblem is problematic. An alternative possibility is to
use some quasi-Newton formula to update B®*), in which case it might be possible to
ensure that B®*) is positive semi-definite, and hence any KT point of the QP subproblem
is a global solution. It is also not easy to prove that B*) is bounded. However, when
MFCQ holds, it can be expected that Lagrange multiplier estimates are bounded, and
hence that B®¥) is bounded. In practice, the algorithm has been implemented with an
exact Hessian with very satisfactory performance, akin to that reported in [5]. Prelimi-
nary practical experience with a quasi-Newton form of the algorithm is also promising.
There are other ways in which the potential difficulty of finding the global minimizer of
the QP subproblem might be avoided, whilst retaining the rapid convergence normally
associated with an SQP algorithm, and some of these are described later in the section.

The choice of an initial value of p for the inner iteration requires that the condition
p > p° is satisfied, but is otherwise unspecific. We envisage that in practice p° is close
to zero (say 107*) so that the effect of this restriction is small. Thus to a large extent
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the algorithm of Figure 2 allows the more usual trust region procedure in which one may
double or halve (say) the value of p from the previous iteration, only setting p = p°
if it would otherwise be less than p°. The potential danger of just taking p from the
previous iteration is that the existence of a successful f-type step may not be recognised.
By starting with p > p°, we ensure that p is greater than twice the lower bound ph® in
the limit, and hence that an f-type step will be taken if the range allows. Adjusting the
trust region in this sort of way has featured in other recent work, see for example [10],
[11] and references contained therein.

Another important aspect that we have not addressed in this paper is to consider
the asymptotic behaviour of the algorithm to ensure that the second order convergence
property of the SQP iteration is not compromised. We have already given some thought
to this, but is not yet clear how to make progress. The algorithm in [5] allows the use of a
second order correction step, although it is not clear in practice whether this is necessary
or even beneficial. We shall continue to study such issues in our future work.

The referees for the paper both make the point that the link between f and ¢ that
is implicit in the second inequality of (2.6) is undesirable. Aesthetically we agree that it
would be preferable not to have this link, although we submit that its effect is minimal.
We stress that the parameter v is intended to be close to zero (typically 107°) so that this
inequality is little different in practice to that in (2.4), in which case there is no linkage.
We have successfully implemented this type of algorithm in practice, with results of
similar quality to those in [5], and changing to f < fU) causes negligible difference to the
outcome. It may well be desirable to take the relative scaling of f and % into account,
but this is readily done.

In any event it 1s by no means clear how to avoid the linkage between f and e¢. The
step d that solves the QP subproblem is not a descent direction for f when Ag < 0 so
we cannot use any analogue of the Goldstein or Wolfe-Powell tests from unconstrained
optimization. We feel that our proposals are noteworthy in that they enable a convergence
proof to be made in such a way that the linkages between f and h are small and the
impact on practical performance is negligible.

The authors of this paper have also contributed to other papers that suggest filter-
type algorithms for which global convergence can be proved. One paper uses ideas akin
to those suggested by Fletcher and Sainz de la Maza [7], in which an LP trust region
subproblem is solved in order to obtain an estimate of the active set, which can then
be used in an equality QP calculation to determine a trial step. The theoretical and
practical properties of this approach have been investigated by a student C.M. Chin and
are reported in Chin and Fletcher [2], [3]. Another approach, suggested by Fletcher,
Gould, Leyffer and Toint [4], is a trust region SQP algorithm using a filter, but which
allows the use of an approximate solution d to the QP subproblem. The algorithm is
based on a decomposition of the step d into its normal and tangential components. A
proof of global convergence to a first order critical point is given. The proof is significantly
different from that in this paper, and provides a different outlook on the problem, more
related to the familiar Cauchy point decrease condition that appears elsewhere in the
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trust region literature (see, for example Conn, Gould and Toint [1]). It is an advantage
that the proof allows an approximate solution to the QP subproblem, but there is also a
disadvantage that it relies on certain conditions that may require an expensive projection
calculation to verify. Also the filter envelope (2.5) is used, rather than the slanting filter
envelope (2.6) used in this paper. No practical experience with the Cauchy-type of
algorithm is as yet available.

Global convergence proofs for other filter-related algorithms that do not use merit
functions have also been set out in recent papers. Ulbrich, Ulbrich and Vicente [14] use
a decomposition into normal and tangential components of a primal-dual interior point
step, and use a filter to decide on acceptability. The paper of Ulbrich and Ulbrich [13]
uses non-monotonic improvement conditions on both the normal and tangential steps and
obtains global convergence using an acceptance test based on comparing the normal and
tangential predicted reductions with a suitably chosen weighting parameter. Encouraging
numerical results of a preliminary MATLAB program on a range of CUTE test problems
are presented. Wachter and Biegler [15] described a line search method in which the NLP
problem is converted into equations and simple bounds, and a filter is used to balance
the contributions of a barrier function for the simple bounds and a constraint violation
function for the equations. Both [14] and [15] present additional results relating to second
order convergence.
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Initialize with a point x, k& =1,
and only (u, —o0) in the filter

enter restoration phase to find
a point x*) acceptable to the filter
such that QP(X(k),ﬁ) is compatible
for some p > p° and initialize p = p

initialize p > p°

try to solve QP(x®, p)

incompatible

include (hF), f*))
in the filter
(h—type iteration)

ki=k+1

solution d

if d = 0 then finish
(KT point)

evaluate f(X(k’) + d)
and c(x(k) +d)

is x) 1+ d acceptable to
the filter and (R, f(¥))?

no

yes

s Af <oAg and

yes

Ag > 07

no

p(k) =) d® —d
Aqh = Ag AFB = Af

if Ag*) <0 then include
(R F*)) in the filter
(h—type iteration)

Figure 2: A Filter-SQP Algorithm
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