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1 Introduction

The best way to introduce the inverse shortest paths problem is probably by its following appli-

cation, drawn from mathematical traffic modelling.

In this field of applied mathematics, it is often assumed that the users of a given network

of roads tend to use the shortest route from the origin of their trip to its destination, the cost

of a trip being evaluated in time, distance, money or some other more complex measure. The

road network planners are obviously extremely interested in the repartition of the traffic flow

along those shortest routes. They have also an a priori measure of the cost of a given arc in the

network, and hence they could compute the shortest routes quite easily, using one of the well

developed algorithms for this problem (see [4], [5] and [14], for instance). However, the precise

assessment of the cost of a route (in the user’s mind) is complex and often different from that

used by the planners. It is therefore very useful to know some of the routes that are actually

used and then to incorporate this knowledge into the model, modifying the a priori costs as to

guarantee that the given route is indeed shortest in the modified network. Care must also be

exercised in avoiding large changes in the costs compared to their a priori values.

This is an instance of the inverse shortest paths problem. One is given a directed graph and a

set of nonnegative costs on its arcs. The question is to modify these costs as little as possible to

ensure that some given paths in the graph are shortest paths between their origin and destination.

Another interesting example is in seismic tomography (see namely [9], [10], [13] and [15]).

The network represents a discretization of the geologic zone to study into a large number of

“cells”, and the costs of the arcs represents the transmission time of certain seismic waves from

one cell to the next. Earthquakes are then observed and the arrival time of the resulting seismic

perturbations is recorded at various observation stations on the surface. The question is to

reconstruct the transmission times between the cells from the observation of shortest time waves

and a priori knowledge of the geological nature of the zone under study.

Obviously, the list of applications is far from being exhaustive: the determination of the

internal transmission properties of an inaccessible zone from outside measurements is a very

common preoccupation in many scientific fields. But we believe that, because of their practical

importance, the two examples above are enough to motivate the study of the inverse shortest

paths problem.

The authors are unaware of other methods specifically designed for solving inverse shortest

paths problems. As a consequence, no comparison will be presented in the section relative to

numerical experiments.

2 The inverse shortest paths problem

More formally, we describe the problem as follows.

We define a weighted oriented graph as the triple (V ,A, c), where (V ,A) is an oriented graph

with n vertices and m arcs, and where c is a set of nonnegative costs {ci}
m
i=1 associated with the

arcs. We denote the vertices of V by {vk}
n
k=1 and the arcs of A by {aj = (vs(j), vt(j))}

m
j=1, with

s(j) being the index of the vertex at origin of the jth arc and t(j) the index of the vertex at its
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end.

We assume that such a weighted oriented graph G = (V ,A, c̄) is given, together with a set of

acyclic paths

pj = (aj1 , aj2 , . . . , ajl(j)) (j = 1, . . . , p), (1)

where l(j) is the number of arcs in the jth path (its length), and where

t(ji) = s(ji+1) for i = 1, . . . , l(j)− 1. (2)

If we define c̄ as the vector in the nonnegative orthant of Rm whose components are the given

initial arc costs {c̄i}, the problem is then to determine c, a new vector of arc costs, such that

min
c
‖c− c̄‖ (3)

is achieved under the constraints that

ci ≥ 0 (i = 1, . . . ,m) (4)

and that the paths {pj}
p
j=1 are shortest paths in G+ = (V ,A, c).

Clearly, a number of interesting variants of this basic problem can be constructed by consider-

ing various norms in (3). In particular the ℓ1, ℓ2 and ℓ∞ norms seem attractive. In this paper, we

will restrict ourselves to the ℓ2 norm, or least squares norm, mostly because it is widely used and

leads to tractable computational methods. Other choices will be examined in future work. One

could also modify the problem by introducing other objective functions of the {ci} to minimize.

These objective functions may be linear, quadratic or generally nonlinear. Investigation of these

alternatives is again deferred to further research.

As a consequence, we can rewrite the problem (3) as

min
ci

1

2

m
∑

i=1

(ci − c̄i)
2 (5)

subject to (4) and the p shortest path constraints. These last constraints may be expressed as a

(possibly large) set of linear constraints of the type

∑

k|ak∈q

ck ≥
∑

k|ak∈pj

ck, (j = 1, . . . , p) (6)

where q is any path with the same origin and destination as pj . As a consequence, the set

of feasible costs, F say, is convex as it is the intersection of a collection of half spaces. The

problem of minimizing (5) subject to (4) and (6) is then a classical quadratic programming (QP)

problem. This QP is however quite special because its constraint set is (potentially) very large1,

very structured, and possibly involves a nonnegligible amount of redundancy. Also the problem

of minimizing (5) on the set F of feasible costs may be considered as the computation of a

projection of the unconstrained minimum onto the convex set F . Again, the special structure of

F distinguishes this problem from a more general projection.

1In general, the number of constraints can be exponential.
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3 Algorithm design

3.1 The Goldfarb-Idnani method for convex quadratic programming

The algorithm we present below is a specialization of the dual QP method by Goldfarb and Idnani

[7]. The idea of this method is to compute a sequence of optimal solutions to the quadratic

programming problems involving only some of the constraints that are present in the original

problem, that is a sequence of dual feasible points. An active set of constraints is maintained

by the procedure, that is, a set of constraints which are binding at the current stage of the

calculation. A new violated constraint is incorporated into this set at every iteration of the

procedure (some other constraint may be dropped from it), and the objective function value

monotonically increases to reach the desired optimum. This approach was chosen for two main

reasons.

• Since the Goldfarb-Idnani (GI) algorithm is a dual method, it is extremely easy to incor-

porate new constraints once a first solution has been computed. In our context, this means

that, if a new set of prescribed shortest paths is given, modest computational effort will be

required to update the solution of the problem.

• The GI method has an excellent reputation for efficiency, especially in the case where the

number of constraints is large and near-degeneracy very likely. In particular, the method

avoids slow progress along very close extremal points of the constraint set F .

Also, the GI method and its efficient implementation are discussed in the literature, by Goldfarb

and Idnani in their original paper, but also by Powell in [11] and [12], for example.

Because our method heavily relies on the GI algorithm, we now state this method in its full

generality. In this form, it is designed for solving the QP problem given by

minx f(x) = aTx+ 1
2x

TGx,

subject to Ei(x)
def
= nT

i x− bi ≥ 0 (i = 1, . . . , h),
(7)

where x, a and {ni}
h
i=1 belong to Rm, G is a m ×m symmetric positive definite matrix, b is in

Rh and the superscript T denotes the transpose. As indicated above, the GI algorithm maintains

a set of currently active constraints, A say, and relies on the matrix N whose columns are the

normals ni of the constraints in the active set A. The matrix N is thus of dimension m × |A|,

where |A| is the number of constraints in A. The algorithm also uses two additional matrices,

namely

N∗ def
= (NTG−1N)−1NTG−1, (8)

which is the Moore-Penrose generalized inverse of N in the space of variables under the transfor-

mation y = G1/2x, and

H
def
= G−1(I −NN∗), (9)

which is the reduced inverse Hessian of the quadratic objective function in the subspace of points

satisfying the active constraints. Using these notations, the GI algorithm may now be stated as

follows (see [7]).
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step 0: Find the unconstrained minimum.

Set x← −G−1a, f ← 1
2a

Tx, H ← G−1, A← ∅ and u←
(

0
)

.

step 1: Choose a violated constraint, if any.

Compute the constraint values {Ei(x)}
h
i=1. If all constraints are satisfied, the current x

is the desired solution. Otherwise, a violated constraint is chosen, that is, an index q is

selected in {1, . . . , h} such that Eq(x) < 0. Also set

u+ ←















(

u

0

)

if |A| > 0,

0 if |A| = 0.

(10)

step 2: Compute the primal and dual step directions.

These directions are computed by the relations

d = Hnq (11)

and, if |A| > 0,

r = N∗nq. (12)

step 3: Determine the maximum steplength to preserve dual feasibility.

Define

S = {j ∈ {1, . . . , |A|} | rj > 0}. (13)

The maximal steplength that will preserve dual feasibility is then given by

tf =











u+
ℓ

rℓ
= minj∈S

[

u+
j

rj

]

if S 6= ∅,

+∞ otherwise.
(14)

step 4: Determine the steplength to satisfy the qth constraint.

This steplength is only defined when d 6= 0, and is then given by

tc = −
Eq(x)

dTnq
. (15)

step 5: Take step and update the active set.

If tf =∞ and d = 0, then the original QP (7) is infeasible and the algorithm stops with a

suitable message.

Otherwise, if d = 0, update the Lagrange multipliers by

u+ ← u+ + tf

(

−r

1

)

(16)

and drop the ℓth constraint, that is A ← A \ {ℓ}, where ℓ has been determined in (14).

Then go back to step 2 after updating H and N∗.
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If d 6= 0, tc is well-defined, and one sets

t = min[tf , tc], (17)

x← x+ td, (18)

f ← f + t(
1

2
t+ u+|A|+1)d

Tnq (19)

and

u+ ←















u+ + t

(

−r

1

)

if |A| > 0,

u+ + t if |A| = 0.

(20)

If t = tc, then set u ← u+, add constraint q, that is A ← A ∪ {q}, and go back to step 1

after updating H and N∗. If, on the other hand, t = tf , drop the ℓth constraint, that is

A← A \ {ℓ} and go back to step 2 after updating H and N∗.

Note that u, the vector of Lagrange multipliers, has a dimension equal to the number of active

constraints.

We observe that the GI algorithm involves three types of possible iterations.

1. The first is when the new violated constraint is linearly independent from those already in

the active set, and all the active constraints remain active at the new solution of the QP

subject to the augmented set of constraints. This occurs when t = tc.

2. The second is when the new violated constraint is linearly dependent on those already in

the active set. This occurs when d = 0, or, equivalently, when Nr = nq. In order to

preserve independence of the active set (that is, linear independence of the columns of N),

an old constraint (the ℓth) is dropped from the set before incorporating the new one. As a

result, N is always of full column rank.

3. The third is when the solution of the QP subject to the augmented set of constraints is

such that one of these constraints is not binding. This occurs when t = tf , in which case

the ℓth constraint ceases to be binding. As one wishes to keep only binding constraints in

the active set, this constraint is dropped.

We refer the reader to [7] for further details on the general GI algorithm, and in particular for

the proof that it indeed solves the QP (7), provided a solution exists.

Our purpose, in the next paragraphs, is to specialize the GI algorithm to the inverse shortest

paths problem given by (5), (4) and (6). We will therefore examine the successive stages of the

algorithm presented above, where the structure of the problem allows some refinement.

3.2 Constraints in the active set

We first wish to analyze how to detect the violation of constraints (6), as required in step 1.
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3.2.1 Shortest paths constraints

For each of the given paths pj , we first define Pj as the set of vertices in V that are attained by

this path, that is

Pj
def
= {s(aj1), t(aj1), t(aj2), . . . , t(aj,l(j))}. (21)

The vertex s(aj1) is called the origin or source of the jth path, and denoted sj . For every such

path pj with source sj and for a given vector c of arc costs, it is then possible to compute all the

shortest paths in (V ,A, c) from the source sj to all the other vertices of Pj . We will then detect

a violated constraint if, for some vertex v ∈ Pj \ {sj}, one has that the predecessor of v on the

shortest path from sj to v is different from the predecessor of v in the path pj .

In this situation, it is easy to verify that there must be a vertex w ∈ Pj closest to v (possibly

sj), such that w is also on the shortest path from sj to v. Furthermore, there exist two distin-

guished paths from w to v, the first one, noted I+, being the shortest path and the second one,

noted I−, being given as a subpath of pj . The set of both these paths is called a violating island

and is denoted by I. The path I+ is called its positive shore while I− is called its negative shore.

Furthermore, the excess of the island, denoted by E, is defined as the cost of the positive shore

minus the cost of the negative shore. The constraint associated with the island I is therefore

violated when its excess is negative.

u u u u

u u u u

- - -

- - -? ? ? ?�
�
�
�
���

�
�
�
�
���

�
�
�
�
���

v1 v2 v3 v4

v5 v6 v7 v8

a1 a2 a3

a4 a5 a6 a7
a8 a9 a10

a11 a12 a13

Figure 1: A first example

On the small example given in Figure 1, we assume that the cost vector c is given by the

relation cj = j (that is the arc aj has a cost of j), while the constraint paths are given by

p1 = (a1, a5, a12, a13) and p2 = (a11, a12, a10). (22)

At this point, it is not difficult to verify that the shortest path from v1 to v8 is the path

(a1, a2, a3, a7). (23)

Hence a constraint related to the path p1 is violated at the vertex v8, because the predecessor

of v8 on its shortest path from v1, that is v4, is different from its predecessor on the constraint

path, which is v7. The vertex v above is then v8, while inspection shows that the relevant vertex

w is v2. The corresponding violating island is then

I = ((a2, a3, a7), (a5, a12, a13)) , (24)
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where I+ = (a2, a3, a7) is its positive shore, I− = (a5, a12, a13) its negative shore, and whose

associated excess E is (2 + 3 + 7) − (5 + 12 + 13) = −18. This violating island is not the only

one for this example. A second one, related to the path p2, is given for instance by

I ′ = ((a8, a2, a3), (a11, a12, a10)) , (25)

whose excess E′ is equal to -20.

A violated constraint of the type (6) therefore corresponds to a violating island in (V ,A, c).

When it is incorporated in the active set, the constraint is enforced as an equality and the costs

of its negative and positive shore are exactly balanced (see section 3.4). The corresponding island

is then called active.

3.2.2 Nonnegativity constraints and bounds on the arc costs

The nonnegativity constraints (4) must also be taken into account. When one of them is violated,

which is easy to detect, it may also be incorporated in the active set, along with the active islands.

These bounds are then also called active. They will be regarded in the sequel as active islands

with only one arc in the positive shore and no negative shore.

The active set at a given stage of the calculation will therefore contain a number of active

islands (with or without negative shore). This will be denoted by A = (V, Y ), where V is the set

of currently active islands with a negative shore and Y the set of active islands without negative

shore, that is the set of active bounds.

3.3 The dual step direction

The next stage of the specialization of the Goldfarb-Idnani algorithm to our inverse shortest

paths problem is the computation of the dual step direction r in (12). As in [7] and [12], this

calculation, which is equivalent to

r = (NTG−1N)−1NTG−1nq, (26)

can be performed by maintaining a triangular factorization of the matrix NTG−1N . However,

our problem has the very important feature that the Hessian matrix G of the quadratic objective

is the identity I. This obviously induces a number of useful algorithmic simplifications, the first

one being that (26) can be rewritten as

r = (NTN)−1NTnq. (27)

The matrix N∗ is then nothing but the unweighted Moore-Penrose generalized inverse of N .

Therefore, we will only maintain a triangular factorization of the form

NTN = RTR, (28)

where R is a upper triangular matrix of dimension |A|. Since N is of full rank, this is equivalent

to maintaining a QR factorization of N of the form

N =
(

Q1 Q2

)

(

R

0

)

def
= QU, (29)

7



as is the case in the numerical solution of unconstrained linear least squares problems. Indeed,

it is straightforward to verify that (27) may be reformulated as

min
r
‖Nr − nq‖2. (30)

The second useful simplification due to the special structure of the problem arises in the compu-

tation of the product NTnq in (27). The resulting vector indeed contains in position i the inner

product of the ith active constraint normal with the normal to the qth constraint. As both these

constraints may be interpreted as islands, the question is then to compute the inner product of

the new island, corresponding to the qth constraint, with all already active islands. We then

obtain the following simple result.

Lemma 1 The vector NTnq appearing in (27) is given componentwise by

[

NTnq

]

i
= |I+j ∩ I+q |+ |I

−
j ∩ I−q | − |I

+
j ∩ I−q | − |I

−
j ∩ I+q | (31)

for i = 1, . . . , |A| and j equal to the index of the ith active island.

Proof. Since
[

NTnq

]

i
= nT

i nq (32)

It is useful to note that, because of (4) and (6),

[nℓ]k =















+1 if ak ∈ I+ℓ ,

−1 if ak ∈ I−ℓ ,

0 otherwise,

(33)

for k = 1, . . . ,m and ℓ ∈ A∪ {q}. This equation holds for both types of islands (with or without

negative shore). Taking the inner product of two such vectors (for ℓ = j and ℓ = q) then yields

(31). 2

As a consequence, the practical computation of r may be organized as follows:

1. compute the vector y ∈ R|A| whose ith component is given by (31),

2. perform a forward triangular substitution to solve the equation

RT z = y (34)

for the vector z ∈ R|A|,

3. perform a backward triangular substitution to solve the equation

Rr = z (35)

for the desired vector r.

This calculation will be a very important part of the total computational effort per iteration in

the algorithm.
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3.4 Determination of the costs

We now examine the way in which changes in the costs may be computed. In the original

GI method, both primal and dual step directions are computed once a new constraint has been

selected for inclusion in the active set (as described in step 2). In our framework, the computation

of the new values of the primal variables may be completely deferred after that of the dual step in a

rather simple way, as will be shown now. This adaptation may be viewed as another consequence

of the fact that G = I for our problem.

Before stating this result more precisely, we introduce some more notation. In order to

complete the description of the set {1, . . . ,m} given an active set A = (V, Y ), we recall the

definition of Y as

Y
def
= {i ∈ {1, . . . ,m} | ci = 0} (36)

and we define the sets

X
def
= {i ∈ {1, . . . ,m} \ Y | ∃j ∈ V ai ∈ Ij} (37)

and

Z
def
= {1, . . . ,m} \ (X ∪ Y ) . (38)

The set X thus contains the indices of the arcs that are involved in one of the active islands of V

but are not fixed at their lower bounds. The set Z contains the indices of the arcs that are not

involved at all in the active constraints of A.

For i ∈ X, we also define

I+(i)
def
= {j ∈ V | ai ∈ I+j } and I−(i)

def
= {j ∈ V | ai ∈ I−j }. (39)

Hence, I+(i) (resp. I−(i)) is the set of active islands of V such that the arc ai belongs to its

positive (resp. negative) shore.

We finally define the logical indicator function δ[·] by

δ[condition] =

{

1 if condition is true,

0 if condition is false.
(40)

We can now state our lemma.

Lemma 2 Consider a dual feasible solution for the problem of minimizing (5) subject to the

constraints given by an active set A = (V, Y ). Assume furthermore that, among the Lagrange

multipliers {uk}
|A|
k=1, those associated with the active islands of V are known. Then the cost vector

c corresponding to this dual solution is given by

ci = δ[i ∈ X ∪ Z]c̄i + δ[i ∈ X]





∑

k∈I+(i)

uk −
∑

k∈I−(i)

uk



 (41)

for i = 1, . . . ,m.
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Proof. We first note that we can restrict our attention to the costs that are not at their

bounds (i ∈ X ∪ Z), because we know, by definition, that ci = 0 for i ∈ Y . Every active island

in V thus corresponds to a constraint of the form

∑

k|ak∈I+∧k 6∈Y

ck −
∑

k|ak∈I−∧k 6∈Y

ck = 0. (42)

The desired expression for ci (i ∈ X ∪ Z) immediately follows from the Lagrangian equation

∂L(c, u)

∂ci
= 0, (43)

where the Lagrangian function for the problem is given by

L(c, u) = 1
2

∑

i∈X∪Z(ci − c̄i)
2 −

∑|A|
k=1 uk

[

∑

i|ai∈I
+
k
∧i 6∈Y ci −

∑

i|ai∈I
−

k
∧i 6∈Y ci

]

= 1
2

∑

i∈X∪Z(ci − c̄i)
2 −

∑

i∈X ci

[

∑

k∈I+(i) uk −
∑

k∈I−(i) uk

]

,
(44)

where we restrict the last major sum to the set X because all other terms are zero. 2

The lemma simply means that the ith cost can be obtained from c̄i by adding to it all Lagrange

multipliers corresponding to active islands such that ai belongs to the positive shore of the island

and by substracting all the multipliers of active islands such that ai belongs to the negative shore.

Consider now the computation of the primal step direction d and of the inner product dTnq.

Note first that, when (15) is reached in the algorithm, the primal step direction d is nonzero

and nq is linearly independent from the columns of N . The value of dTnq is then given by the

following result.

Lemma 3 Assume the GI algorithm is applied to the inverse shortest paths problem under con-

sideration, and that it has reached the point where equation (15) should be evaluated. Assume

furthermore that A = (V, Y ) is the active set at this stage of the calculation. Then the primal

step direction d is given componentwise by

di = δ[ai ∈ I+q ]− δ[ai ∈ I−q ] + δ[i ∈ X]





∑

k∈I−(i)

rk −
∑

k∈I+(i)

rk



 (45)

for i = 1, . . . ,m. As a consequence,

dTnq = 1 +
∑

k∈I−(q)

rk −
∑

k∈I+(q)

rk (46)

in the case where the qth constraint is the lower bound on the qth cost, and

dTnq =
∑

i|ai∈I
+
q



1 +
∑

k∈I−(i)

rk −
∑

k∈I+(i)

rk



+
∑

i|ai∈I
−

q



1 +
∑

k∈I+(i)

rk −
∑

k∈I−(i)

rk



 (47)

in the case where the qth constraint is a violating island.

Proof. We first note that d, the change in the cost c corresponding to a unit step in the

dual step direction, can be viewed as the sum of two different terms d = nq −Nr. The first term
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corresponds to the incorporation of the qth constraint in the active set and its contribution to di

is +1 if ai belongs to the positive shore of the qth island, and is -1 if ai belongs to its negative

shore. This is because the (|A|+1)th component of the dual step direction, corresponding to the

qth constraint, is equal to +1. Hence we have that this first contribution is equal to

δ[ai ∈ I+q ]− δ[ai ∈ I−q ] (48)

for the ith arc. Note that only one of the indicator functions can be nonzero in (48). The second

contribution corresponds to the modifications to ci caused by the fact that ai may also belong to

islands that are already active. In other words, the nonzero components of −r have to be taken

into account. The equation (41) then implies that this second contribution from the Lagrange

multipliers associated with all constraints already in the active set must be equal to

δ[i ∈ X]





∑

k∈I−(i)

rk −
∑

k∈I+(i)

rk



 . (49)

Summing the contributions (48) and (49) gives (45).

Assume now that the qth constraint is a lower bound. In this case, one has that nq = eq, the

qth vector of the canonical basis in Rm. Hence the product dTnq is equal to dq. Equation (41),

the nonnegativity of the {c̄i}
m
i=1 and the fact that cq < 0 imply that q ∈ X, and (46) then follows

from (45). On the other hand, if the qth constraint is a violating island, the normal nq is then

given componentwise by (33) with ℓ = q. Hence we obtain (47) from (45). 2

3.5 Modifying the active set

The active set modifications (in step 5 of the GI algorithm) finally require the updating or

downdating of the triangular matrix R, as introduced above in (28).

Assume first that the ℓth constraint is dropped from the active set A. This amounts to

dropping a column of N in (29), which, in turn, is equivalent to dropping a column of the upper

triangular matrix R. The resulting matrix is therefore upper-Hessenberg, and a sequence of

Givens plane rotation is applied to restore the upper triangular form. This technique is quite

classical, and has already been used in the more general implementations of the GI method, both

in [7] and [12]. The reader is referred to those papers for further details in the context of the

GI algorithm and to [8] for general information on Givens plane rotations and their practical

computation.

If one now wishes to add the ℓth constraint to the active set, then N has one more column,

namely nq, and the resulting matrix U in (29) then has the form
(

R QT
1 nq

0 QT
2 nq

)

, (50)

where Q1 and Q2 are defined in (29). Again, this matrix should be restored to triangular form,

and again this can be done by premultiplying it by suitable orthogonal transformations. In

fact, the only necessary modification to (50) is the premultiplication of the vector QT
2 nq by an

orthogonal transformation T, say, such that

TQT
2 nq = ‖Q

T
2 nq‖e1, (51)

11



where e1 is the first vector of the canonical basis of Rm−|A|. Note also that

QT
1 nq = R−TNTnq = z, (52)

where z has already been computed in (35). Moreover, one has that

‖nq‖
2 = ‖

(

Q1 Q2

)T
nq‖

2 = ‖z‖2 + ‖QT
2 nq‖

2 = ‖z‖2 + ‖TQT
2 nq‖

2. (53)

Hence the updated matrix R is given by

Rupdated =

(

R z

0 α

)

, (54)

where α =
√

‖nq‖2 − ‖z‖2. The updating of the triangular factor R is therefore extremely cheap

to compute, mainly because of the fact that z is available from previous calculations. It is

also interesting to note that, because of the equivalence between (28) and (29), the technique

presented here is in fact identical to the computation of the Cholesky factor of (N+)TN+ using

the bordering method (see [6], for example), where N+ =
(

N nq

)

. A similar procedure is

also used in [7] and [12].

We finally note that d, the primal step direction, is zero if and only if the residual of the

problem (30) is zero, which, in turn, is equivalent to ‖nq‖ = ‖z‖. This last relation provides a

possible way for testing the equality d = 0 without explicitly computing d.

3.6 The algorithm

We are now in position to describe our algorithm for solving our inverse shortest paths problem, as

described by (5), (4) and (6). For this description, we use a small (machine dependent) tolerance

ǫ > 0 to detect to what extent a real value is nonzero, and we define the integer ν = |A|.

step 0: Initialization.

Set c← c̄, f ← 0, A← ∅, ν ← 0 and u← 0.

step 1: Compute the current shortest paths.

For j = 1, . . . , p, compute the shortest paths from sj to every vertex in Pj \ {sj}.

step 2: Choose a violated island or exit.

Select Iq, an island whose excess Eq is negative, if any. If no such island exists, then c is

optimal and the algorithm stops.

Otherwise, if ν = 0, then set α←
√

|Iq| and go to step 5.

Otherwise (that is if ν > 0) set

u←

(

u

0

)

. (55)
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step 3: Revise the triangular factor R.

3a: Add the previous constraint normal nq to N . If ν = 1 then set R = (α) and go

to step 4.

Otherwise (that is if ν > 1) update the upper triangular matrix R using (54) and go

to step 4.

3b: Drop nℓ from N . Remove from R the column corresponding to the ℓth island, and

use Givens rotations to restore it to upper triangular form, as described in Section 3.5.

step 4: Compute the dual step direction.

Compute the vectors z and r, using Lemma 1, (34) and (35). Compute also α according to

α =
√

‖nq‖2 − ‖z‖2. (56)

step 5: Determine the maximum steplength to preserve dual feasibility.

Determine the set S according to (13), tf (and possibly ℓ) using (14).

step 6: Determine the steplength to satisfy the qth constraint.

If α ≤ ǫ then go to step 7b.

Otherwise, compute tc according to (15), and d and dTnq as described in Lemma 3.

step 7: Take the step and revise the active set.

7a: Compute the steplength t as in (17), set c ← c + td, revise f according to (19) and u

using

u←















u+ t

(

−r

1

)

if ν > 0,

u+ t if ν = 0.

(57)

If t = tc, set A← A ∪ {q}, ν ← ν + 1 and go to step 1.

Otherwise (that is if t = tf ) set A← A \ {ℓ}, ν ← ν − 1 and to step 3b.

7b: If tf = +∞, then the problem is infeasible, and the algorithm stops with a suitable

message.

Otherwise, update the Lagrange multipliers according to (16). Set A ← A \ {ℓ},

ν ← ν − 1 and to step 3b.

Note that, in our current implementation of the algorithm’s second step, we choose the current

violated island as that whose excess is most negative. This technique appears to be quite efficient

in practice.
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3.7 Nonoriented arcs

An important variant of the basic problem occurs when some arcs in the graph are undirected.

In this case, it is quite inefficient to replace each of these arcs by two distinct arcs of opposite

orientation, because it increases both the dimension of the problem and the number of constraints.

Indeed, one has to impose that the two new oriented arcs have the same cost.

Fortunately, the algorithm described above can be applied to the case where arcs are nonori-

ented without any modification, provided the shortest paths method used in step 1 can handle

such arcs.

3.8 Note

Similar implementation techniques have been used by Calamai and Conn for solving location

problems with a related structure (see [1], [2] and [3]). Their technique is however different from

ours and a comparison of both approaches will be examined in future work.

4 Preliminary numerical experience

In order to verify the feasibility of the above described algorithm, a Fortran program was written

and tested on an Apollo DN3000 workstation, using the FTN compiler.

We present here a set of seven typical examples extracted from a large collection of tests.

The first five arise from the traffic modelling problem presented in Section 1, with graphs for two

different cities. The next one is obtained on a randomly generated graph while the last one is

built from the graph of a two dimensional rectangular grid. The problems’ characteristics are

reported in Table 1. We recall that n, m and p are the number of vertices in the graph, the

number of arcs and the number of shortest path constraints respectively.

n m p Graph type Constraint paths generation

P1 246 351 245 city 1 a tree in the graph

P2 246 351 600 city 1 all paths between a subset of the nodes

P3 246 351 6724 city 1 all paths from a node subset to another node subset

P4 822 1447 821 city 2 a tree in the graph

P5 822 1447 6806 city 2 all paths from a node subset to another node subset

P6 500 1469 100 random randomly generated paths

P7 3600 7063 650 2D grid all paths from one side of the grid to the other sides

Table 1: The test examples

We summarize the results of the tests in Table 2, where the following symbols are used:

iter. : the number of major iterations of the algorithm, that is, the number of full steps in the

primal space (adding a constraint in the active set and requiring the calculation of the

shortest paths and the choice of a new violated constraint)
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drops : the number of islands dropped at Step 7 of the algorithm, that is, the number of minor

iterations (partial and dual steps, involving only the computation of the step directions in

the primal and dual space)

|A∗| : the number of active islands at the solution.

We note that the first of these numbers is always one larger than the sum of the two others,

because one iteration is required for considering the empty active set.

iter. drops |A∗|

P1 35 2 32

P2 77 17 59

P3 167 34 132

P4 246 55 190

P5 468 238 229

P6 436 54 381

P7 171 8 162

Table 2: Results

Despite the limited character of these experiments, one can nevertheless observe the following

points.

• The algorithm is relatively efficient in the sense that it does not, at least in our examples,

add many constraints that are not active at the solution, with the necessity to drop them

at a later stage.

• One also observes in practice that a fairly substantial part of the total computational effort

is spent in calculating the necessary shortest paths in order to detect constraint violation.

Choosing a set of constraint paths from a single tree induces significant savings in the

determination of the most violated constraint, because only one shortest path tree is needed.

5 Complexity of the inverse shortest paths problem

During the refereeing period of this paper, an alternative formulation of the inverse shortest paths

problem was communicated to the authors by S. Vavasis. Representing the cost of the shortest

paths from node vi to node vj by the new variables wi,j for i, j = 1, . . . n, we may then add the

constraints

[s(aℓ) = vk and t(aℓ) = vj ] =⇒ wi,j ≤ wi,k + cℓ (58)

together with the equalities

wi,i = 0 (59)

for all i = 1, . . . , n. The constraints on the shortest paths (6) may then be rewritten as

wi,q ≥ cj1 + · · ·+ cjl(j) (60)
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for any path of the form (1) with s(aj1) = vi and t(ajl(j)) = vq.

There are at mostmn inequalities of type (58), n equalities of type (59) and p ≤ n2 inequalities

of type (60). Hence the total number of constraints in this formulation is polynomial. As a

consequence, the problem is solvable in polynomial time by an interior point algorithm.

This interesting observation is clearly of theoretical importance, but the inclusion of n2 addi-

tional variables could generate inefficiencies in practical implementations.

6 Conclusion and perspectives

In this paper, the inverse shortest paths problem has been posed and a computational algorithm

has been proposed for one of the many problem specifications, namely that where the variational

criterion used is the ℓ2 deviation from a priori known costs and where the constraints are given

as a set of shortest paths and nonnegativity constraints on the costs.

The proposed algorithm has been programmed and run on a few examples, in order to prove

the feasibility of the approach.

The possible extensions are many. Consideration of other norms and other types of constraint

specifications are of obvious interest. The authors are presently working on extending the existing

algorithm and program to handle general lower and upper bounds on the total cost of predefined

or shortest paths.

Applying the techniques described in this paper to practical situations, in urban traffic models

and tomography for instance, is also a challenging research area.
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