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Abstract

The non-abelian Einstein-Born-Infeld-Dilaton theory, which rules the dynamics of

tensor-scalar gravitation coupled to a su(2)-valued gauge field ruled by Born-Infeld

lagrangian, is studied in a cosmological framework. The microscopic energy exchange

between the gauge field and the dilaton which results from a non-universality of the

coupling to gravity modifies the usual behaviour of tensor-scalar theories coupled to

matter fluids. General cosmological evolutions are derived for different couplings to

gravitation and a comparison to universal coupling is highlighted. Evidences of cos-

mic acceleration are presented when the evolution is interpreted in the Jordan physical

frame of a matter respecting the weak equivalence principle. The importance for the

mechanism of cosmic acceleration of the dynamics of the Born-Infeld gauge field, the

attraction role of the matter fluid and the non-universality of the gravitational cou-

plings is briefly outlined.

1 Introduction

In the description of the very beginning of the universe, well before the Big
Bang nucleosynthesis, field theoretical models are to be considered instead of
the usual hydrodynamical description of matter. Those kinds of models, inspired
by high-energy physics, have lead to numerous progress in modern cosmology,
trying to solve various problems from cosmic acceleration or the flatness problem
to the magnitude of the cosmological constant or the existence of topological de-
fects. The motivation of this paper lies in two questions, amongst many others,
that raise from the description of the very first moments by high energy physics.

First is the question whether large scale massless gauge fields can play any
interesting role in cosmology. Indeed, such fields could have existed in the early
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universe before the phase transitions of spontaneous symmetry breaking but, if
they were ruled by usual Yang-Mills (YM) conformally invariant dynamics, their
primeval excitations have probably been swept away by inflation. This point
motivated some authors to study the impact of the Born-Infeld (BI) type mod-
ification of gauge dynamics, suggested by string theory, on cosmology (see [1]).
The BI lagrangian breaks down the scale invariance of the gauge fields beyond
some critical energy, and therefore it is not obvious to conclude directly on the
becoming of such gauge fields during and after an inflation period. Furthermore,
it was proved in [1] that such gauge fields of BI-type cannot provide any cosmic
acceleration on their own although they can mimic a fluid of negative pressure.
Before going further on this question, it is therefore of first importance to study
more deeply in a cosmological context the interaction between gauge and scalar
fields as suggested in models inspired by high-energy physics.
The second question is to see what happens to a possible scalar sector of grav-
itation during the cosmological evolution. Indeed, string theories predict the
existence of the dilaton [2], a Lorentz scalar partner to the tensor Einstein
graviton as low-energy limit of bosonic actions. This large theoretical frame-
work provides a physical background for tensor-scalar modification [3] of gen-
eral relativity, in which gravitation is mediated by long-range scalar field acting
in complement of the usual spin 2 gravity fields. Although this question has
been widely studied when dilaton - or more generally tensor-scalar theories -
is coupled to matter during radiation and matter dominated era, the case of a
microscopic field model which would not be coupled universally to gravity, as
suggested in string theory, has been less considered. In particular, how does the
interaction between scalar and gauge fields modify their respective dynamics
and the resulting cosmological evolution will be the main subject of the present
paper.

But before going any further, let us locate the present work in the existing lit-
terature. In this paper, we will focus on cosmological solutions of the Einstein-
Born-Infeld-Dilaton (EBID) equations for flat spacetimes. Cosmologies with
large scale massless homogeneous and isotropic gauge fields with gauge group
SU(2) and ruled by usual YM dynamics have been studied for a long time
([4, 5, 6, 7, 8]). The gravitational instability of flat spacetimes filled with such
gauge fields was studied in [9]. Generalisation to higher gauge groups have also
been studied [10, 11] in the case of flat and closed cosmologies. The Einstein-
Born-Infeld cosmology with non-abelian gauge fields deriving from gauge group
SU(2) has been studied thoroughly in [1] for flat, closed and open spacetimes
for any value of the cosmological constant. The minimal coupling of large scale
cosmological gauge fields and scalar multiplets has been studied in [12, 13].
The Einstein-Yang-Mills-Dilaton (EYMD) equations for flat cosmologies and a
special case of non-universal coupling to gravity, have been derived in [14, 15]
where the authors highlighted the energy exchange between the dilaton and the
gauge fields and briefly discussed its effects on inflation, entropy crisis and the
Polonyi problem (domination of a nearly massless dilaton at late times). How-
ever, they did not propose a complete solution to the EYMD field equations
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in the cosmological framework which could allow to address completely these
issues. Moreover, they did not discuss the general influence of non-universal cou-
pling to gravity as well. The EYMD system was also studied in [17] in the case
of closed Friedmann-Lemaitre-Robertson-Walker (FLRW) with a static gauge
field1 and vanishing dilaton potential and cosmological constant.

As we told before, tensor-scalar cosmologies have been widely studied, with
a large spectrum of applications for physical cosmology: inflation, primordial
nucleosynthesis, Cosmic Microwave Background, ... The question of the con-
vergence of tensor-scalar theories to general relativity during the cosmological
evolution has been widely studied in [18, 19, 20, 21] and references therein. For
the so-called “Einstein conformal frame”, where the gravitational and scalar
fields have pure spin 2 and spin 0 dynamics respectively, the scalar sector of
gravitation disappears naturally during cosmic expansion due to its coupling to
matter. The cosmological evolution of the dilaton emerging from string theory
has been studied in [22].

In this paper, we will consider the cosmological evolution of the dilaton coupled
directly to a large-scale non-abelian gauge field ruled by BI dynamics which go
beyond the scale invariance of YM theory. A non-universal coupling to gravity,
as suggested in preceding works, will lead to quite different results to the usual
coupling of tensor-scalar theories to a fluid. For example, when the gauge fields
are governed by YM scale-invariant dynamics, the scalar sector of gravitation
remains directly coupled to the gauge fields although they mimic a radiation
fluid. However, it is well-known that tensor-scalar theories decouple from radi-
ation (except during phase transition). Through both numerical computations
and analytical solutions, we will show how the dilaton evolution is modified by
non-universal coupling to the metric. This will lead to remarkable consequences
for cosmology.

The structure of this paper will be as follows. In section 2, we establish the
general field equations for the EBID cosmology. In section 3, we first remind
the reader about BI cosmology as was studied in [1]. The non-abelian BI cos-
mology can be split in two extreme regimes depending on the energy density of
the gauge field compared with a critical scale introduced in the BI theory. For
large energies, the gauge field is shown to mimic a fluid of negative pressure with
p/ρ = −1/3 while in the low-energy limit the scale-invariant YM dynamics is
retrieved and the gauge field looks like a radiation fluid. On the other hand, we
also remind the reader about dilaton cosmology, studied in [18, 22]. As the equa-
tions are to be established and solved with pure spin degrees of freedom in the
Einstein frame, the interpretation in terms of the Jordan physical frame is also
recalled. The case of universal coupling is solved there with usual properties of
tensor-scalar theories. In section 4, we will focus on the strong field limit of the

1 Due to this particular topology, the EYMD system does not reduce to pure Einstein-
Dilaton field equations when the gauge field is static.
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EBID system with general coupling to gravity and in section 5 the low-energy
limit which consists of a generalised version of the EYMD system appearing in
[14, 15] is treated. In section 6, we analyse a complete cosmological evolution
of the EBID system and present evidences for possible cosmic acceleration in
the physical Jordan frame. This frame is defined with respect to a pressureless
matter fluid that has been added to the gauge sector. The acceleration is shown
to resist to the attraction provided by matter and appears to be intrinsically
related to the non-universality of the coupling to gravity. Finally, we conclude
in section 7 by some perspectives to the present work.

2 Field Equations of Einstein-Born-Infeld-Dilaton Cosmology

Most of the interest of field models, for example deriving from string theory
in the low energy-limit, comes from their non-universal coupling to the gravity
fields gµν and its scalar counterpart φ (each type of matter field has in general its
own coupling function to the dilaton, see [22]). This results in a violation of the
weak equivalence principle and therefore the gravitational interaction of these
microscopic field models is different from an usual tensor-scalar theory where
the weak equivalence principle is usually assumed. Without imposing such a
violation of the weak equivalence principle at a microscopic scale, field models
would not be different than considering a tensor-scalar theory in presence of
a fluid with the equation of state of the considered fields. Therefore, we will
make use of a general form of the action for the non-abelian Einstein-Born-
Infeld-Dilaton system, that takes into account a possible violation of the weak
equivalence principle. This action writes down

S =

∫
{

− 1

2κ
R− 1

2
∂µφ∂µφ− V (φ) −A4 (φ)LBI

(

B2(φ)gµν , Aµ

)

}√
−gd4x

+Sm

[

ψm, C
2(φ)gµν

]

· (1)

In this action, the gravitational interaction is described by the scalar curvatureR
and the dilaton φ, κ being the “bare” gravitational coupling constant and A(φ),
B(φ) and C(φ) being three different coupling functions of the dilaton to matter.
The first two illustrate the coupling of the gauge sector to the volume form and
to the Einstein metric gµν inside the Born-Infeld lagrangian LBI (where Aµ are
the non-abelian gauge potentials) and the last coupling function C(φ) is related
to another type of matter ruled by the action Sm. Another parametrisations
of Einstein-Born-Infeld-Dilaton action were considered in the litterature, for
example with A = 1 and B = exp(k/2φ) in [14, 15, 16, 17] and with B =
A2 = exp(k/2φ) in [23]. The non-abelian gauge interaction is described by the
Born-Infeld lagrangian build upon the field strength tensor

Fµν = F a

µνTa,
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(with Ta are the generators of the gauge group under consideration2) and its
dual tensor F̃µν . Indeed, this lagrangian, denoted by LBI in (1), is defined as

LBI = ǫc (R− 1)

= ǫc

(
√

1 +
B−4(φ)

2ǫc
FµνFµν − B−8(φ)

16ǫ2c

(

Fµν F̃µν
)2

− 1

)

· (2)

where ǫc is the Born-Infeld critical energy and B(φ) is the dilaton coupling
function which is equal to ek/2φ when non-perturbative effects are not taken
into account (see [14, 15, 22]). In this case, k will be called the dilaton coupling
constant. Throughout this paper, we will assume the Planck system of units, in
which h̄ = c = 1 and G = m−2

Pl , with the Planck mass mPl = 1.2211× 1019GeV
and the gravitational coupling constant is κ = 8πG. We have also set the gauge
coupling constant to unity, as it actually defines a system of units for the dilaton
field φ, provided the dilaton being massless (V = 0). The Born-Infeld critical
energy ǫc defines the scale above which non local effects of string theory arise
and where the scale invariance of the gauge fields is broken. For example, in the
low-energy limit ǫc → ∞ of the Born-Infeld part of the action (1), we recover
the usual, conformally invariant, Yang-Mills (YM) lagrangian density for the
non-abelian gauge field:

√−gLY M = −√−gA4(φ)B−4(φ)
1

4
F a

µνF
µν
a

· (3)

In this paper, we will focus on cosmology and therefore we will adopt the pre-
scriptions of the cosmological principle which states that the spatial sections of
our Universe are homogeneous and isotropic. For the sake of simplicity, we will
also restrict ourselves to the case of flat space-times, which constitutes how-
ever a very nice approximation of the present universe and its early stages as
well. The metric describing such spacetimes is the one of Friedmann-Lemaitre-
Robertson-Walker (FLRW):

ds2 = −N2(t)dt2 + a2(t)
(

dr2 + r2dθ2 + r2 sin2 θdϕ2
)

(4)

where a(t) is the scale factor and N is the so-called lapse function of the hamil-
tonian Arnowitt-Deser-Misner approach to general relativity. This function can
be fixed by a specific choice of time coordinate (gravitational gauge freedom).
The symmetries prescribed by the cosmological principle we assume impose that
the dilaton scalar field φ depends only on time.

A remarkable fact about non-abelian gauge fields is that they admit non-trivial
homogeneous and isotropic configurations at the opposite of their abelian U(1)
counterparts (see [1, 5] and references therein for a complete discussion of the
SU(2) case). The main reason for that is because only the gauge invariant quan-
tities such as the field strength tensor have to exhibit the symmetries explicitly,

2 Gauge indices will be noted as bold latin letters.
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while the gauge potentials can be symmetric up to a gauge transformation (see
[24, 4] for more general gauge groups). As a result, the energy can be dis-
tributed amongst the different gauge degrees of freedom while the stress-energy
tensor remain compatible with the maximal symmetry of the space-time back-
ground. In this paper, we will restrict ourselves to the case of su(2)−valued
gauge potentials, for which the ansatz

A = Aa

µTadx
µ = σ(t)Tmdx

m (5)

of the connexion one-form A makes the gauge invariant quantities satisfying the
required symmetry (see [4, 5]). The remaining dynamical degrees of freedom of
the gauge potential are now expressed by the field σ(t). However, our results
will not depend on this particular choice as the ansatz above can be generalised
to higher gauge groups (see [10, 11]). In the equation above, the generators Tm

of the Lie algebra of the gauge group SU(2) are to be taken in the coordinate
dependent basis of the gauge degrees of freedom space as follows:

Tr = sin θ cosϕT1 + sin θ sinϕT2 + cos θT3

Tθ =
∂

∂θ
Tr

Tϕ =
∂

sin θ∂ϕ
Tr

with Ti = 1
2σi the usual basis of the Lie algebra su(2) (σi being the Pauli ma-

trices) with the following standard normalization conditions and commutation
relations:

tr (TaTb) =
1

2
δab, [Ta, Tb] = iǫcabTc

The ansatz (5) is of course independent of the particular choice of the action
for the gauge field, as was shown in [1].

The symmetries implied by the cosmological principle therefore allow us to
write down (1) as an effective one dimensional action, after integrating over R3

and dividing by the infinite volume of its orbits:

Seff =

∫

dt

{

− 3

κ

ȧ2a

N
+
φ̇2

2

a3

N
− V (φ)Na3 −Na3ǫcA

4(φ) (R− 1)

}

+ Sm (6)

where a dot denotes a derivative with respect to the time t and where R is given
by

R =

√

1 − 3
B−4(φ)

ǫc

(

σ̇2

a2N2
− σ4

a4

)

− 9
B−8(φ)

ǫ2ca
6N2

σ̇2σ4, (7)

where σ(t) is the gauge potential as defined in (5). Following [1], it is also
convenient to write R as

R =
√

1 − Γ
√

1 + ∆ (8)
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with

Γ =
3σ̇2B−4(φ)

ǫca2N2
, ∆ =

3σ4B−4(φ)

ǫca4
· (9)

From the action (6) and relation (7), it is straightforward to write down the field
equations for the Einstein-Born-Infeld-Dilaton system by varying this action
over the following degrees of freedom: N, a, φ and σ. First, the Euler-Lagrange
equation for the variable N gives the hamiltonian constraint

(

ȧ

a

)2

=
κ

3

[

φ̇2

2
+ V (φ) + ǫcA

4(φ) (P − 1) + ρm

]

(10)

which we will refer to as the Friedmann equation. In the previous equation, ρ∗
stands for the energy density of the matter fluid ruled by Sm and the function
P is defined in terms of Γ and ∆ in (9) as

P =

√

1 + ∆

1 − Γ
· (11)

The careful reader should have noticed that, after varying over N , we set the
gravitational gauge to N = 1, meaning that we work with the synchronous time
coordinate (another convenient choice for the study of the gauge dynamics in
the Yang-Mills regime is the conformal gauge N = a as it naturally exhibits the
conformal invariance). The Friedmann equation allows us to define the Born-
Infeld effective energy density of the gauge field as a generalisation of what was
proposed in [1]

ρBI = ǫcA
4(φ) (P − 1) . (12)

The Euler-Lagrange equation for the scale factor a gives the acceleration equa-
tion:

ä

a
=
κ

3

[

(

V (φ) − φ̇2
)

+ ǫcA
4(φ)

(

P−1 − 1
)

− 1

2
(ρm + 3pm)

]

, (13)

where pm stands for the pressure of the additional matter fluid. This allow us
to define the Born-Infeld effective pressure

pBI =
ǫc
3
A4(φ)

(

3 − P − 2P−1
)

(14)

and the equation of state

λBI =
pBI

ρBI
=

1

3

(

ǫcA
4(φ) − ρBI

ǫcA4(φ) + ρBI

)

(15)

for the gauge part of the EBID system as in [1]. Here we see that the su(2)−valued
gauge fields ruled by Born-Infeld lagrangian can be represented by a fluid with
an equation of state that varies continuously from − 1

3 , when the BI energy den-
sity is much larger that the ’critical field’ A−4(φ)ρBI ≫ ǫc, to 1

3 at low energies
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A−4(φ)ρBI ≪ ǫc. These two extreme regimes correspond to a gas of Nambu-
Goto strings in three spatial dimensions on one hand (strong field limit) and
radiations on the other (weak field limit). The transition between these regimes
occurs at vanishing pressure when the BI energy density is of order of the BI
critical energy scale ǫc. At low energies (ǫc → ∞), the gauge field behaves like
radiation as expected because the BI lagrangian reduces to the conformally in-
variant Yang-Mills one.

It is also important to notice that there is no cosmic acceleration with the
metric gµν as long as the dilaton is massless. Indeed, the highest value of ä that
can be achieved in this frame is identically zero (see 13), in the limit of the pure
Einstein-Born-Infeld system at high energies (φ̇ = 0, λBI = − 1

3 ). However, we
will see that cosmic acceleration may appear once we examine the behaviour in
another frame.

By varying the action (6) with respect to the dilaton φ, we find the Klein-
Gordon equation:

φ̈+ 3
ȧ

a
φ̇ = −dV (φ)

dφ
− 2ǫcA

4(φ)
[

β(φ)
(

P + P−1 − 2R
)

+ α(φ) (2R− 2)
]

−γ(φ) (ρm − 3pm) (16)

where α(φ) = d ln A(φ)
dφ , β(φ) = d ln B(φ)

dφ and γ(φ) = d ln C(φ)
dφ . The key point of

the physics in the EBID system lies in the fact that the dilaton field couples
differently to the gauge sector of the theory (last term) depending on the values
of the coupling functions A and B. Although the cosmological dynamics of the
gauge fields ruled by Born-Infeld lagrangian can be regarded as a fluid with an
equation of state given by (15), the coupled dynamics of the dilaton and the
gauge field does not reduce in general to a scalar-tensor theory with this fluid
as background. This is only the case when we have a universal coupling to the
metric gµν , i.e. when A = B. In the general case, there exists a non-trivial
energy exchange between the dilaton and the gauge sectors of the theory that
will dominate at late epochs as we shall see further.

Finally, the Euler-Lagrange equation for the gauge field σ gives the Born-Infeld
equation that rules the gauge potential dynamics:

σ̈+2
σ3

a2
P−2−2

ȧ

a
σ̇

(

1

2
− P−2

)

+2φ̇σ̇

[

2α(φ)
R
P − β(φ)

(

2
R
P + 1 − P−2

)]

= 0 ·
(17)

This equation is essentially the same that in [1] except from the coupling term
proportional to φ̇ which accounts for the direct energy exchange at the micro-
scopic level between the fields. It is important to notice that we did not assume
any direct coupling between the gauge field and the additional matter fluid,
which will allow to treat them separately.
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Indeed, from equation (17), and following [1], it is possible to derive an en-
ergy conservation equation for the BI density :

˙ρBI = −2
ȧ

a
ρBI

ρBI + 2ǫcA
4(φ)

ρBI + ǫcA4(φ)
+ 4α(φ)φ̇ǫcA

4(φ) (R− 1)

−2β(φ)φ̇ǫcA
4(φ)

(

∆ + Γ

R − 2P + 2R
)

· (18)

Now that we have derived the complete set of the EBID field equations for
cosmology, we propose the reader to briefly review some basic features of Born-
Infeld cosmology on one hand and dilaton cosmology on the other. In the
rest of this paper, we will only consider a massless dilaton (i.e., vanishing self-
interaction potential V (φ) = 0).

3 Born-Infeld and Dilaton Cosmologies

3.1 Non-Abelian Born-Infeld Cosmology

The Non-Abelian Born-Infeld cosmology in various spacetimes with different
values of the curvature and the cosmological constant was described in detail in
[1]. The field equations governing these models are those of the previous section
with a vanishing dilaton φ = φ̇ = 0, constant coupling functions A = B = 1 and
no additional matter fluid ρm = 0. The equation (18) for BI energy conservation
can be written as

˙ρBI = −2
ȧ

a
ρBI

ρBI + 2ǫc
ρBI + ǫc

(19)

which admits a first integral:

a4ρBI (ρBI + 2ǫc) = C (20)

where C is a positive constant. In the strong field limit, ρBI ≫ ǫc, the BI energy
density redshifts as ρBI ≈ a−2 while in the weak limit, ρBI ≪ ǫc, we retrieve
the radiation behaviour ρBI ≈ a−4 characteristic of the conformal invariance of
the gauge field at such energies. This allows to treat separately the spacetime
evolution and the dynamics of the gauge field. Although the complete analyti-
cal solutions for both gravitational and gauge sector were derived in [1], let us
illustrate simply the main features of this cosmological model.

First, the strong field limit ρBI ≫ ǫc corresponds to P ≫ 1. In this limit,
the acceleration equation (13) reduces to

ä

a
= −κ

3
ǫc

whose general solution is

a(t) = a∗ sin

(
√

κǫc
3
t

)
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where we set a(0) = 0 and a∗ is the value of the scale factor at the time

t∗ =
√

3
κǫc

π
2 (in Planck units). Therefore, the cosmic expansion starts with a

zero acceleration at the singularity. Then, setting P ≫ 1 in equation (17) brings

σ̈ − ȧ

a
σ̇ = 0

which shows that σ̇ scales as a. Near the singularity, the behaviour of the gauge
field is therefore

σ(t) = ∓
√

3ǫc
3

a∗ cos

(

(

√

κǫc
3
t

)

,

and the gauge potential σ starts at rest.

Then, in the weak field regime, ρBI ≪ ǫc and P ≈ 1 (ǫc → ∞). This limit
corresponds to the Einstein-Yang-Mills cosmological solution studied in [5]. The
conformal invariance of the gauge field in that regime yields that the scale factor
behaves like in the radiation-dominated era : a(t) ≈

√
t (in synhronous time).

On the other hand, the energy conservation equation (18) now reduces to

a2σ̇2 + σ4 =
C

3ǫc

which can be integrated in terms of the Jacobi elliptic function. Moving to the
conformal time coordinate dt = adη, we find

σ(η) = E1/4cn
(

E1/4η;−1
)

,

where cn(u, k) is the Jacobi elliptic function and E = C

3ǫc

. In synchronous time,
the gauge potential σ oscillates with a fixed amplitude and a growing period.

More generally, it is possible to derive a general solution for the gauge potential.
Let us rewrite the first integral (20) in terms of P as

P =

√

1 +
C
ǫ2ca

4
· (21)

Using the definitions (11) and (9), the previous equation may be integrated
to give the gauge potential (in the conformal gauge dt = adη):

σ(η) = a2
0

√
ǫccn

(

P−1η;−1
)

·

Figure 1 illustrates the evolution of the scale factor, the gauge potential and the
equation of state during the expansion of a non-abelian Born-Infeld universe.
The figures correspond to the numerical integration of equations (13) and (17)
with φ = φ̇ = 0 and A = B = 1. During numerical evolution, we monitor the
violation of the hamiltonian constraint (10) (see the appendix for more details
on integrating the EBID system). In this case, this violation does not exceed a
part on 10−12. Initial conditions at ti = 0 were assumed such as ρBI(ti) = 100ǫc,
a(ti) = ai = 1 and σ̇(ti) = 0 (ǫc = 10−4 ×m4

Pl).
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Fig. 1: Illustration of Non-Abelian Born-Infeld cosmology : a) scale factor b)
gauge potential c) equation of state of the Born-Infeld “fluid”

3.2 Dilaton Cosmology

Dilaton cosmology can retrieved from our fundamental equations by setting
σ equal to 0. Indeed, tensor-scalar theories can be written in the so-called
“Einstein” conformal frame:

S =
1

2κ

∫

d4x
√−g∗ {R∗ − 2gµν

∗ ∂µϕ∂νϕ} + Sm

[

ψm, C
2(ϕ)g∗µν

]

, (22)

where κ is therefore the “bare” gravitational coupling constant, Sm is the action
for the matter fields ψm, ϕ =

√

κ/2φ and g∗µν the “Einstein” metric tensor
which corresponds to basic gravitational variables with pure spin 2 propagation
modes. This metric is measured by using purely gravitational rods and clocks
and allows to account for the dynamics in a simpler way3 than a observable
frame in which the metric tensor g̃µν is universally coupled to matter fields ψm.
This frame is called the “Jordan-Fierz” frame in which the action (22) can be
written

S =
1

2

∫

d4x
√

−g̃
{

ΦR̃− ω (Φ)

Φ
g̃µν∂µΦ∂νΦ

}

+ Sm [ψm, g̃µν ] , (23)

where R̃ is the curvature scalar build upon the physical metric g̃µν which is
measured using non-gravitational rods and clocks and where ω (Φ) is called
the coupling function. The scalar field Φ now gives the effective gravitational
coupling constant. In this frame, matter fields evolves in the same way that they
could do in general relativity because the action of matter does not depend

3 In particular, this frame represents gravitation with its pure scalar and tensor degrees of
freedom and the limit of general relativity is not singular.
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explicitly on the scalar field φ, as matter couples universally to the physical
metric g̃µν . Einstein and Jordan frames can be linked together through the
conformal transformation

g̃µν = C2 (ϕ) g∗µν (24)

and the following relation between the scalar field φ in the Einstein frame (pure
spin 0 dynamics) and its counterpart Φ in the Jordan physical frame:

Φ−1 = κC2 (ϕ) , (25)

with ϕ =
√

κ/2φ. The energy density and pressure of the matter fluid in both
frames are related by

ρm = C4ρ̃m (26)

pm = C4p̃m, (27)

where ρm and pm represent these quantities expressed in the Einstein frame. At
the opposite of scalar-tensor theories, we did not assume here an universal cou-
pling to the metric tensor gµν . Indeed, the action (1) reduces to a tensor-scalar
theory in the Einstein frame (22) only when A(φ) = B(φ) = C(φ), i.e. when
the weak equivalence principle applies. Let us now remind the reader about
the behaviour of such tensor-scalar theories in the presence of a background
cosmological fluid. When the matter fields ψm are represented under the ap-
proximation of a perfect fluid, the dynamics of the scalar field is ruled by (see
[18, 19, 20, 21]):

2

(3 − ϕ′2)
ϕ′′ + (1 − λ)ϕ′ + (1 − 3λ)γ(ϕ) = 0, (28)

where γ(ϕ) = d ln C(ϕ)
dϕ and λ = ρ/p is the equation of state for the cosmological

fluid. In the previous equation, a prime denotes the derivative with respect to
the variable p = ln(a/ai). The action of the cosmological fluid is thus to damp
the dynamics of the scalar field while it is rolling down some effective potential
depending on the coupling function. Furthermore, the scalar field now has an
effective, velocity-dependent, mass of

m(ϕ) =
2

(3 − ϕ′2)
(29)

where the field has a limiting speed ϕ′ ≤
√

3 for which its effective mass diverges.
This relativistic limit corresponds to the case where the energy density of the
background fluid is negligible compared to the kinetic energy of the scalar field
(the universe is dominated by the kinetic energy of the scalar field).

3.3 The universal coupling for EBID cosmology

Let us now turn back to the EBID system we wrote in the previous section
and focus on the gauge sector only by setting Sm = 0. If we now assume a
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universal coupling to the metric gµν by setting A = B, we now have for the
dilaton equation (16):

φ̈+ 3
ȧ

a
φ̇+ α(φ) (ρBI − 3pBI) = 0, (30)

where
ρBI − 3pBI = 2ǫcA

4(φ)
(

P + P−1 − 2
)

.

In this case of universal coupling, we recognize the equation for the scalar field in
presence of a background fluid for general tensor-scalar theories4. The equations
(10), (13) and (16) can be simply solved in the Jordan frame by using the results
on the non-abelian Born-Infeld cosmology (previous paragraph). The equation
(17) for the gauge field in the Einstein frame can also be written

σ̈ + 2
σ3

a2
P−2 − 2

ȧ

a
σ̇

(

1

2
− P−2

)

− 2α(φ)φ̇σ̇
(

1 − P−2
)

= 0 · (31)

Therefore, in the weak energy regime ρBI ≪ ǫc (P ≈ 1), the gauge field under-
goes a conformally invariant dynamics (non-abelian radiation, ρBI = 3pBI) and
decouples from the scalar field.

In a radiation-dominated universe, where the equation of state is λ = p/ρ =
1/3, the dynamics of the scalar field is given by the following solution to (28)
(cf. [18, 19, 21]):

ϕ(p) = ϕ∞ −
√

3 ln
[

Ke−p +
√

1 +K2e−2p
]

, (32)

where the integration constant K is determined from the initial velocity ϕ′(p =
0) = ϕ′

0:

K =
ϕ′

0

3 − ϕ
′2
0

·

This should correspond to the low-energy limit of the Born-Infeld field equa-
tions when a universal coupling is assumed: the scalar field velocity in p-time
should be damped to zero by the cosmological expansion. It should be noticed
that when there is no universal coupling A 6= B, we do keep an energy exchange
between the dilaton and the gauge fields and the usual dynamics of tensor-scalar
theories will be modified. Moreover, when there is no universal coupling, the
energy exchange between the gauge potentials and the dilaton field will prevent
the dynamics to be purely dictated by the solution (32). As we shall see in sec-
tion 5, this solution will accurately describe the early epochs of evolution when
the field is almost relativistic. However, at late times, energy transfer between
dilaton and gauge fields will substantially alter the dynamics.

Once again, let us assume a universal coupling and consider the strong field

4 We also have ρBI = A4 ˜ρBI (see 12) for the relation between the energy density expressed
in the Einstein and Jordan frames (quantities with a ·̃).
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limit of the Born-Infeld system where we have λ = −1/3. The dilaton equation
(28) now becomes

ϕ′′

3 − ϕ′2
+

2

3
ϕ′ + α(ϕ) = 0 · (33)

Let us now write down for the dilaton coupling function

A2 (φ) = ekφ (34)

ω(Φ) =
2κ− 3k2

2k2
(35)

α(ϕ) =
k√
2κ

(36)

|3 + 2ω(Φ)| = α−2(ϕ) (37)

and face the simplest tensor-scalar theory of Brans-Dicke type (ϕ =
√

κ/2φ).
Using CONVODE [25], it is possible to find an analytic solution for ϕ′ under
the following implicit form when we use the coupling function (34):

(

6A2 − 8
)

(p+ p0) =
√

3A ln

(∣

∣

∣

∣

∣

ϕ′ −
√

3

ϕ′ +
√

3

∣

∣

∣

∣

∣

)

− 2 ln

(

ϕ
′2 − 3

(3A + 2ϕ′)
2

)

(38)

where A = k/
√

2κ and p0 some integration constant. When p→ ∞, there is an
attractor for ϕ′, namely

ϕ′(p→ ∞) = −3

2

k√
2κ

· (39)

Therefore, there is also a maximum value for the dilatonic coupling constant
k for which the attractor corresponds to the relativistic limit for the dilaton
(|ϕ′

∞| →
√

3):

kmax =

√

8κ

3
· (40)

In the non-relativistic limit |ϕ′| ≪
√

3, equation (33) now becomes

ϕ′′ + 2ϕ′ + 3A = 0,

which can be solved easily to give

ϕ(p) = −3

2

k√
2κ

(

p+
1

2
e−2p − 1

2

)

, (41)

where we assumed ϕi = 0. We can see that, due to the constant potential term
in equation (33), the value of the dilaton field goes to −∞ (+∞ if k < 0) with
the time-variable p. However, the gauge energy density will also decrease with
time and finally the assumption of strong field will be no longer true as ρBI

becomes less than the critical energy ǫc. At the end of the evolution, we should
retrieve the radiation case for which the solution in case of universal coupling
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was described above. Once again, a non-universal coupling to the metric yields
modification of these behaviours as we shall see further.

Now that we have recalled the main features of Born-Infeld and dilaton cos-
mologies as well as EBID system with universal coupling, let us now discuss
how the non universal coupling in the general EBID system will modify a tensor-
scalar cosmological picture. This will be done in three steps: in the following
section, we will focus on the strong field limit where the gauge field mimics a
Nambu-Goto string gas ; then on the low-energy limit which corresponds to the
Yang-Mills regime for the gauge fields and finally to the general cosmological
evolution where transition between both regimes occurs.

4 The Strong Field Regime

As we have seen earlier, the strong field limit is reached when the BI critical
energy ǫc can be neglected with regards to the gauge field energy density. Setting
P ≫ 1 into the EBID field equations (10), (13) and (16) and (17) with ρm =
pm = 0 and V = 0, we find:

(

ȧ

a

)2

=
κ

3

[

φ̇2

2
+ ǫcA

4(φ)P
]

(42)

ä

a
= −κ

3

[

φ̇2 + ǫcA
4(φ)

]

(43)

φ̈ + 3
ȧ

a
φ̇+ 2ǫcA

4(φ)P [−β(φ) + 2α(φ)] = 0 (44)

σ̈ − ȧ

a
σ̇ + 2φ̇σ̇ [2α(φ) − 3β(φ)] = 0· (45)

where we used R

P
= 1−Γ and assumed Γ ≪ 1 which will be verified afterwards

by the agreement between analytical and numerical solutions.

In the following, we will assume the exponential coupling function (34) for the
sake of simplicity. However, the qualitative analysis will be valid for any cou-
pling functions.

In terms of the new time variable

p = ln

(

a

ai

)

(where ai defines the initial zero value for p) we can combine equations (42) to
(44) to obtain

ϕ′′

3 − ϕ′2
+

2

3
ϕ′ + (−β(ϕ) + 2α(ϕ)) = 0, (46)
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where ϕ =
√

κ/2φ· In order to particularise, we can set now α = 0 (A = 1) and

B(ϕ) = exp(k/
√

2κϕ) and find for the dilaton equation

ϕ′′

3 − ϕ′2
+

2

3
ϕ′ − k√

2κ
= 0 (47)

which admits a solution similar to the case of a tensor-scalar theory with Nambu-
Goto string gas (33):

(

6A2 − 8
)

(p+ p0) = −
√

3A ln

(
∣

∣

∣

∣

∣

ϕ′ −
√

3

ϕ′ +
√

3

∣

∣

∣

∣

∣

)

− 2 ln

(

ϕ
′2 − 3

(3A− 2ϕ′)
2

)

, (48)

where A = k/
√

2κ· When p → ∞, the attractor for ϕ′ is now exactly the
opposite of the universal coupling case:

ϕ′(p→ ∞) =
3

2

k√
2κ
. (49)

The maximum value for the dilatonic coupling constant k is the same as before
(equation (40)) and the non-relativistic limit can be obtained from (41) with
an opposite sign. The constant potential term in equation (46) is negative so
that the value of the dilaton field is pushed toward +∞ (−∞ if k < 0) with
the time-variable p, as long as the gauge field remains in the strong field limit
ρBI ≫ ǫc.

Figure 2 a) illustrates the evolution of the dilaton velocity with respect to
the time variable p in the strong field limit. The trajectory has been com-
puted numerically (solid line in Figure 2 a)) from the integration of the full
EBID system with the initial conditions indicated in the caption (with A = 1
and B(ϕ) = exp(k/

√
2κϕ)). Also shown is the analytical approximation of the

strong field limit given by equation (48) represented by big dots.

Figure 2 b) gives the evolution of the dilaton field along the cosmic expansion
for the case A = 1 and B(ϕ) = exp(k/

√
2κϕ). Starting with a negative velocity,

the dilaton is damped to a minimum before being accelerated to infinite values
(with k > 0). Fortunately, as the BI energy density will decrease with time,
the strong field limit ρBI ≫ ǫc will soon be no longer valid. We shall see fur-
ther that, in the Yang-Mills limit, the same coupling to gauge fields will bring
the dilaton to infinitely negative values. Of course, similar conclusion can be
found when k is negative. Figure 2 c) gives the behaviour of the scale factor
in the case discussed here. As the dilaton field is relativistic at infinitely-low
times p→ −∞ and therefore dominates the energy content of the universe, the
expansion starts with an infinite rate, breaking the “renormalisation” that was
done in simple BI cosmologies. Finally, let us focus on the gauge sector of the
EBID system. In the strong field limit, the features of Born-Infeld cosmologies
for the gauge field are conserved: it starts at rest, damped by the cosmic ex-
pansion, before entering the oscillation regime of the weak energy Yang-Mills
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Fig. 2: Evolution of the EBID system in the strong-field regime with the p-time
variable a) ϕ′ b) dilaton field φ c) scale factor a(t) d) Energy density of
the BI gauge field (ai = 1, ρBI(ai)/ǫc = 1010, ǫc = 10−4 ×m4

Pl, k = 5,
φ′i = −1.73, δH/H < 10−13)
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limit. Figure 2 d) illustrates the evolution of P for the numerical solution (solid
line) with dilaton compared to the evolution in a simple BI universe with same
initial BI energy density (dash-dotted line). This holds for the particular cou-
pling A = 1 and B(ϕ) = exp(k/

√
2κϕ). If we now transpose A and B, it is

easy to see from (46) that the attracting value for ϕ′ will be twice the value of
the universal coupling (39). Therefore, when the coupling to the volume form
is weaker than the coupling to the metric5, the scalar field behaves just the
opposite way than in the universal coupling (with λ = −1/3). Up to this point,
we have obtained both analytical and numerical solutions for the strong field
limit, ρBI ≫ ǫc, of the EBID system. We have also explained qualitatively the
effects of non-universal coupling to the Einstein metric gµν on the dynamics of
the scalar field. Let us now turn to the weak field regime in which the gauge
sector is ruled by Yang-Mills lagrangian.

5 The Weak Field Regime: solutions of the

Einstein-Yang-Mills-Dilaton system

The weak field regime of the EBID system is reached when the BI energy density
A4(ϕ)ρBI becomes much smaller than the critical energy ǫc. In this case, the
lagrangian ruling the gauge sector takes the usual Yang-Mills form (3), which
gives for the spatially homogoneous and isotropic gauge potentials (5):

LY M = −3

2

(

σ4

a4
− σ̇2

N2a2

)

· (50)

Taking into account the limit ǫc → ∞ (and P ≈ 1) into the EBID field equations
(10), (13), (16) and (17) (with V = 0), we obtain:

(

ȧ

a

)2

=
κ

3

[

3

2
A4(φ)B−4(φ)

(

σ̇2a2 + σ4

a4

)

+
φ̇2

2

]

(51)

ä

a
= −κ

3

[

3

2
A4(φ)B−4(φ)

(

σ̇2a2 + σ4

a4

)

+ φ̇2

]

(52)

φ̈ + 3
ȧ

a
φ̇− 6A4(φ)B−4(φ) (α(φ) − β(φ))

(

σ̇2a2 − σ4

a4

)

= 0 (53)

σ̈ + 2
σ3

a2
+
ȧ

a
σ̇ + 4φ̇σ̇ (α(φ) − β(φ)) = 0· (54)

These equations constitute the Einstein-Yang-Mills-Dilaton system, and the spe-
cial case of A = 1 and B(φ) = exp(k/2φ) can be found in [14, 15]. In this paper,
the authors highlighted the importance of the energy exchange between the dila-
ton and the Yang-Mills field. Indeed, this coupling yields a new force term in the
field equation for the dilaton (53) and the gauge field (54) which disappear in
case of universal coupling (A = B and α = β). With non-universal coupling the

5 For example, in the case A = 1 and B(ϕ) = exp(k/
√

2κϕ) we just discussed.
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gravitation is now sensitive to the force term when it is coupled to Yang-Mills
radiation although its equation of state is those of radiation (see (28)). Let us
now describe the dynamics of the different fields in the EBID system for this
low-energy regime.

First, let us move to the p-time variable p = ln(a/ai) and use the accelera-
tion and Friedmann equations (52), (51) to rewrite (53) as

ϕ′′

3 − ϕ′2
+
ϕ′

3
− 2 (α(φ) − β(φ))

σ̇2a2 − σ4

σ̇2a2 + σ4
= 0, (55)

with

ϕ =

√

κ

2
φ·

The energy exchange term in σ̇2a2 − σ4 inside relations (53) and (55) is in gen-
eral oscillating, due to the self-coupling of the non-abelian gauge field (term in
2σ3/a2 in (54)). A way to handle this easily is to replace it by an effective source
term which would account for the average effect of the gauge field oscillations.
Let us therefore proceed to the following replacement

σ̇2a2 − σ4

σ̇2a2 + σ4
≈ ℵ (56)

with ℵ some constant expressing the effectiveness of the energy exchange be-
tween dilaton and gauge fields in the weak field regime. This constant ℵ can
for instance be estimated numerically by computing the average of the driving
term in (55) over one period. Equation (55) is the same field equation than (28)
for the tensor-scalar theory of the dilaton but now with a non-vanishing force
term due to our averaging of the gauge oscillations. By averaging the gauge
oscillations, we obtain a similar equation to the strong energy limit (equation
(46)) seen in the previous section. Therefore, we can use the same procedure as
before : if we set A = 1 and B(φ) = exp(k/2φ), we can propose the following
implicit solution for ϕ′:

(

6A2 − 2
)

(p+ p0) = −
√

3A ln

(∣

∣

∣

∣

∣

ϕ′ +
√

3

ϕ′ −
√

3

∣

∣

∣

∣

∣

)

− ln

(

ϕ
′2 − 3

(3A + ϕ′)
2

)

, (57)

where A = 2ℵk/
√

2κ. Once again, the p-time derivative of the dilaton field ϕ′

evolves towards the following attractor

ϕ′(p→ ∞) = −6
ℵk√
2κ
,

and the maximum value allowed for the dilatonic coupling constant k for which
the dilaton remains relativistic (ϕ′

∞ → −
√

3) is

kmax =

√

κ

6ℵ2
·
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It is important to notice the opposite sign between the attractors of the strong
and weak field regimes which will have important consequences on the cosmo-
logical evolution of the dilaton. In the non-relativistic limit, ϕ

′2 ≤ 3, we find
the following solution for the dilaton

ϕ = −3A
(

e−p + p− 1
)

+ ϕi (58)

and we see that the dilaton tends to −∞, if the dilatonic coupling constant is
positive (ℵ > 0).

Figure 3 compares our analytical solution (57) coming from an averaging ap-
proximation (dashed line) to a numerical solution of the full EBID system (solid
line). In the YM regime, the velocity of the dilaton ϕ′ appears oscillating,
around average values given by the approximation (57) with ℵ = 1/3. This
value numerically appeared to account for the average behaviour of the EBID
system in the low-energy limit for a wide range of parameters (k, ǫc, ϕi or ϕ′

i).
Therefore, averaging the oscillations of the source term to about a third of their
amplitude seems in very agreement with numerical solutions. Therefore, the
attractor for the p-time derivative of the dilaton is now

ϕ′(p→ ∞) = −2
k√
2κ
, (59)

while the maximum value allowed for the dilatonic coupling constant is

kmax =

√

3κ

2
· (60)

When A = 1 and B(φ) = exp(k/2φ), the p-time derivative of the dilaton ap-
pears to converge to a constant negative value which is directly given by the
non-relativistic approximation (58) which is valid when k is small compared
with

√

(κ) (dotted line). When B = 1 and A(φ) = exp(k/2φ), it is obvious
from equation (55) that the attractor has exactly the opposite value. Therefore,
the case of non-universal coupling A 6= B is quite different to what happens
in a usual tensor-scalar theory: in a radiation-dominated universe, the p-time
velocity of the dilaton freezes to zero (see the solution (32)). Indeed, this will
make the dilaton field diverging after an infinite amout of time as can be seen
in Figure 4. In this figure, we represented the evolution of the dilaton in the
numerical solution with A = 1 and B(φ) = exp(k/2φ) (solid line) to the solu-
tion (32) for the same field in a radiation-dominated universe. More precisely,
the dilaton tends to −∞. As a conclusion, although the gauge field looks like
radiation at a large-scale level, the non-universal microscopic coupling between
dilaton and gauge sectors finally dominates at large redshift and freezes the en-
ergy contribution of both sectors in such a way that none of these components
completely dominates. Figure 5 presents the evolution of the gauge field veloc-
ity σ̇ with the scale factor. The gauge field appear to be damped by its coupling
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Fig. 3: Evolution of ϕ′ as a function of the p-time variable in the weak field
limit (ai = 1, ρBI(ai)/ǫc = 10−3, ǫc = 10−4 × m4

Pl, k = 1, φ′i = 0.1,
δH/H < 10−7)
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Fig. 4: Evolution of the dilaton field φ as a function of the p-time variable in
the weak field limit (Same parameters as above)



5 The Weak Field Regime: solutions of the Einstein-Yang-Mills-Dilaton system 22

5 10 15 20 25 30

−2

−1

0

1

2
x 10

−4

a

dσ
/d

t (
m

P
l) 

Fig. 5: Evolution of the gauge field velocity as a function of the scale factor in
the weak field limit (Same parameters as above)

to the dilaton and in fact the whole gauge sector looses energy at a rate fixed
by (18).

Figure 6 shows the departure of the scale factor from the radiation solution:

∣

∣

∣

∣

a

arad
− 1

∣

∣

∣

∣

for the numerical solution presented in this section. We see that the departure
is important when the scalar field is dominating at early times (t < 5× 104tPl)
then finally converges to a slightly less strong expansion at late times (a ≈
0.99 × arad), when the equilibrium has been reached.

Before going further, let us summarise the cosmological evolution of the
fields constituting the EBID system in the YM regime. First, the dilaton is
damped until its velocity is attracted to a negative (resp. positive) value for the
particular coupling A = 1 and B(φ) = exp(k/2φ) and k > 0 (resp. B = 1 and
A(φ) = exp(k/2φ)). However, it should have been damped to rest if it would
have been plunged in a radiation-dominated universe with universal coupling.
Because its velocity has been attracted to a negative value, the dilaton field
will eventually diverge linearly to −∞ (k > 0). This is exactly the opposite
situation of the strong field limit that was presented before where the coupling
term drives the dilaton to infinitely high values. In a general situation where the
gauge field starts with an energy much higher than the BI critical energy and
then cools down to YM dynamics, one should expect that the dilaton reaches
some extremum value (ϕ′ = 0) during the transition. This will be treated in
the next section.
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Fig. 6: Evolution of the departure from a radiation-dominated universe of the
weak field limit during expansion (Same parameters as above)

6 General Cosmological Evolution

Let us follow in detail some typical cosmological evolutions of the EBID system
for various couplings. Starting at singularity, the dilaton is in general relativis-
tic (|ϕ| → ∞ and ϕ′2 → 3). The expansion therefore begins at a = 0 with an
infinite rate and the gauge field dynamics is dominated by the non-local effects
induced by the BI non-linearity (ρBI ≫ ǫc). As energy is exchanged between
the dilaton and the gauge field in the strong-field regime, the dilaton velocity
is attracted to some value depending on the coupling functions, as illustrated
in figure 7. During this phase, the velocity of the dilaton in p-time is indeed
a positive (negative) constant when A = 1 and B(φ) = exp(k/2φ) (B = 1 and
A(φ) = exp(k/2φ) or the universal coupling A = B). When the gauge energy
density has decreased to the BI critical energy (ρBI ≈ ǫc), the dilaton veloc-
ity leaves the strong-field attractor to enter the YM low-energy regime. The
epoch of this transition varies according to the coupling functions considered
(see Figure 7). It then moves to the low-energy attractor by accomplishing
damped oscillations around the analytical solutions proposed in the previous
section (with A 6= B) or is damped to vanishing velocities when there is univer-
sal coupling (see section 3). With non-universal coupling (A 6= B), the value
of the dilaton field reaches some extremum (ϕ′ = 0) on its way to the second
attractor. This extremum is unavoidable as we have seen that the attractors of
the dilaton velocity in the strong and weak field regimes are of opposite signs
and its velocity will therefore vanish at some time during the transition between
these two attracting regimes. It is also interesting to examine the evolution of
the gauge field energy density. Figure 8 represents the gauge field energy den-
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sity (P − 1) related to the curves in Figure 7. With universal coupling A = B,
we retrieve a cosmological evolution given by equation (19) and its first integral
(20): ρBI ≈ a−2 in the strong field regime and ρBI ≈ a−4 at low energies. The
assumption of non-universal coupling now leads to different evolutions of the
gauge field energy density, which in fact are given by the more general energy
conservation equation (18). The differences between the evolutions comes from
the particular trajectories illustrated in Figure 7.

Now that we have reviewed the main features of a general full cosmological
evolution from high to low energy regimes, it is also important to discuss the
evolution of the observed cosmological parameters like the scale factor, the Hub-
ble expansion rate or the accelerating parameter in the Jordan physical frame.
In order to define such a frame, we will introduce an additional matter pressure-
less fluid which will verify the weak equivalence principle. The energy density
ρm of this fluid in the Einstein frame is related to the physical energy density
ρ̃m through the relation (26). The coupling function C(φ) to ordinary matter
defines now our “observable” Jordan frame by

g̃µν = C2(φ)gµν · (61)

In the Jordan frame obtained by the previous conformal transformation, the
energy density ρ̃m of the matter fluid is ruled by the same conservation laws as
in general relativity. This is true because there is no direct interaction between
the gauge sector and the additional matter fluid and therefore they decouple
from each other. The field equation for the gauge potential σ does not need to
be modified as we do not assume any direct coupling with the pressureless fluid.
We will now consider the field equations for the EBID system we have written
in section 2 for the Einstein metric gµν with a pressureless fluid pm = 0.

The observable scale factor in the Jordan frame will be given by

ã = C(φ)a, (62)

while the synchronous time in the Jordan frame is denoted by

dt̃ = C(φ)dt · (63)

Then, the Hubble expansion rate can be derived directly

H̃ =
dã

ãdt̃
= C−1(φ)

(

H + γ(φ)φ̇
)

, (64)

where H = ȧ/a is the Hubble parameter in the Einstein frame, a prime de-
noting a derivative with respect to p = ln(a/ai) (Einstein frame) and γ(φ) =
d lnC(φ)/dφ. The acceleration parameter q̃ in the Jordan frame can be written

q̃ =
¨̃aã

˙̃a
2 = a

(

dγ(φ)

dφ
φ̇2a+ γ(φ)φ̈a+ γ(φ)φ̇ȧ+ ä

)

(

ȧ+ aγ(φ)φ̇
)−2

(65)
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where a dot over a quantity expressed in the Jordan frame means a derivative
with respect to the synchronous time t̃ in that frame. Although there is no
possibility of a cosmic acceleration (q > 0) in the Einstein frame (unless one
considers a non-vanishing potential, see relation (13)), this does not rule out
a possible acceleration for the observable scale factor given by (62). Indeed,
the existence of fluid (constituted by our Born-Infeld non-abelian gauge field)
that violates the weak equivalence principle will result in a possibility of cosmic
acceleration. To show that this is actually the case even in presence of matter
fluid which would make the tensor-scalar theory converging to general relativity
if taken alone, we will use the coupling function γ(ϕ) = ϕ. Figure 9 illustrates
evolutions of the acceleration parameter in the Jordan frame q̃(p̃), given by (65)
as a function of the Jordan scale factor ã. The solutions presented here are
expanding universes (H̃ > 0). Four different couplings have been considered,
including the simple case of A = B 6= C which corresponds to different couplings
of gravitation to the gauge and the matter sector. The pressureless fluid energy
density at start has been chosen to dominate the BI energy density by more than
one order of magnitude. As the gauge field starts in the strong field regime, its
energy density will scale approximately with a−2, depending on the coupling
functions (see also Figure 8). Therefore, the gauge sector rapidly dominates
the energy content of the universe. The dynamics of the dilaton is as described
earlier: after having moved to the strong field regime attractor, the transition to
YM dynamics occurs and the dilaton quickly moves to the low-energy attractor.
During this transition, acceleration appears in the Jordan frame defined by the
pressureless fluid as indicated in Figure 9. We see also that any violation of the
weak equivalence principle (here by taking C 6= A, C 6= B or C 6= A = B) lead
to cosmic acceleration even with tensor-scalar theory that would alone converge
to general relativity. An important condition for cosmic acceleration is to have
a repulsive force term in the dilaton equation. Therefore, the EBID system with
a non-universal coupling to gravitation offers the interesting possibility to build
a scenario for dark energy or inflation. For the curves represented here, the
acceleration periods are shorter than in a usual LCDM or quintessence model6.
and therefore a more complete study should be done to determine if it is possible
to explain distance-redshifts measurements with EBID fields. It should also be
noticed that an EBID dark energy scenario would predict a finite period of
acceleration. Indeed, as the gauge field will recover a YM dynamics at the
end of its evolution, its energy density will finally scales as a−4 and will finally

6 To give an idea on how these universes accelerate, we remind the reader about the following
values of the acceleration parameter for various energy content:

q(radiation) = −1

q(relativistic φ) = −2

q(Λ) = 1

q(ghost) = 2

where Λ tends for the cosmological constant (the de Sitter solution to which inflation is usually
matched as an exponential expansion).
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be dominated by a pressureless fluid. Therefore, the questions whether cosmic
acceleration (q̃ > 0) can occur, with which intensity and for how long seems
to depend on both initial energy distribution, the value of the dilaton coupling
constant and the critical BI energy scale ǫc. More work should focus on that
point to see if it would be possible to build a physically relevant quintessence
model with the EBID field equations. However, the perspectives of cosmic
acceleration in the Jordan frame do exist and this looks particularly interesting
for our view of modern cosmology.

7 Conclusion

The non-abelian Einstein-Born-Infeld-Dilaton model provides an interesting frame-
work, motivated by string theory, to study the impact of large scale non abelian
gauge fields on tensor-scalar theories of the gravitational interaction. In this pa-
per, we focused on the cosmological evolution of an homogeneous and isotropic
configuration of these fields in a flat background. The microscopic coupling
between the dilaton and gauge fields induced by non-universal coupling to the
metric leads to an energy exchange between both gravitational and gauge sec-
tors that will alter the usual dynamics of tensor-scalar theories (for which the
coupling is universal).
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As in non-abelian Born-Infeld cosmology, we considered two different regimes
depending on the gauge energy density compared to the critical energy that
parametrizes the Born-Infeld lagrangian. We have derived both analytical and
numerical solutions to describe the cosmological evolution of the whole system.
In the case of non-universal coupling, the gravitational scalar field no more de-
pends on the equation of state of the gauge field and the dynamics is altered as
follows.

In the particular case of a Brans-Dicke theory, in which non-perturbative terms
for the dilaton are not considered, we have shown that the energy exchange
resulting from the particular couplings damps the dilaton to a frozen non-
vanishing velocity. In the high energy regime of the gauge dynamics, the at-
tracting value for the velocity is positive when the gauge field couples more
to the metric than to the volume form. The opposite situation happens in
the low-energy regime where the gauge field is ruled by Yang-Mills lagrangian.
Therefore, in a general cosmological evolution where the gauge field cools down
to low-energies, there is a transition between the two attractors. Their values
are directly proportional to the value of the dilatonic coupling constant.

However, it is well-known from experimental tests of the gravitational theory,
especially the determination of the post-newtonian parameter γ̄, that the value
of the coupling ω0 is at least of order 500, roughly 10−3 for α0 (see [26] for
a recent estimation of the post-newtonian parameter γ). The influence of the
dilaton potential is also important to consider. Furthermore, the constraints on
the weak equivalence principle obtained by the tests on the universality of free
fall exclude a violation of this principle that would exceed a part in 10−12. One
can therefore argue that the effect of such non-universal couplings should be
neglected. But, if the violation of the weak equivalence principle only applies
to large-scale fields which do not couple to ordinary matter and whose distri-
bution is roughly homogeneous, their energy density on our scales is far beyond
experimental reach and the violation could be hard to exhibit.

The interesting possibility introduced by such a violation is a cosmic accel-
eration in the physical frame associated to ordinary matter. In this work, we
build a first simple model based on our treatment of the EBID field equations
that exhibits periods of accelerations in presence of ordinary matter verifying
the weak equivalence principle. The acceleration has been shown to resist to
the attracting property of the accompanying matter and seems to be a general
feature of a non-universal coupling to gravitation. Furthermore, this model re-
spects the weak energy condition ρ+3p > 0 in the frame of the physical degrees
of freedom (the Einstein frame). The Born-Infeld dynamics of the gauge field
plays a crucial role in this kind of dark energy model by ensuring a late aris-
ing of this mechanism (when the gauge field mimics a Nambu-Goto string gas)
and even predicts an end to the dark energy domination (when the gauge field
looks like radiation). An interesting perspective to this work would be to use
this remarkable feature of non-abelian Born-Infeld gauge fields to build physical
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models for quintessence and, maybe, inflation.

In conclusion, we can say that our study of non-abelian Born-Infeld gauge fields
coupled to to tensor-scalar gravity opens new and interesting perspectives for
the question of the attraction to general relativity as well as other crucial topics
of modern cosmology such as inflation or dark energy.
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Appendix : numerical integration of the EBID system

Here we give some details of the numerical integration of the full EBID system
we use to illustrate this paper. In order to integrate the system of equations
(13), (10), (16) and (17), we choose the following procedure. First, we rewrite
equations (13), (16) and (17) as a system of six first-order ODE’s and keep the
hamiltonian constraint (10) to check the consistency of the numerical compu-
tation. Then, let us redefine the fields in such a way that they will be approxi-
mately of the same order of magnitude (this will avoid stiffness problems in the
integration):

a =
A

ai

φ = ΦmPl

σ = ΣmPl,

(66)

where A, Φ and Σ will be the fields to integrate. It is also useful to set k =
K/mPl and ǫc = ǫ′cm

4
Pl. Once the equations have been rewritten under these

considerations, we choose the initial conditions as follows: ai is set to 1 and
φi to zero (we therefore start with a “bare” gauge coupling constant equal to
unity in the Einstein frame). We choose the ratio ρBI(a = ai)/ǫc = r so that we
can control the type of gauge dynamics (BI, YM or transition) we start with.
Then, we choose the value of φ′(ai) = φ′i so that the initial expansion rate will

be given by H2
i = κ/3ρBI(ai)/(1 − κφ

′2
i /6). This gives also φ̇i as it is equal to

Hiφ
′
i. Then, without loss of generality, we can assume σi = 0 and determine σ̇i

from the postulated value of ρBI(a = ai). Numerical integration of the system
of six ODE’s is performed using the standard method of Shampine-Gordon [27].
To monitor the accuracy of the numerical solution, we compute the absolute
violation of the hamiltonian constraint (10):

δH

H
=

∣

∣

∣
H − Ȧ/A

∣

∣

∣

H
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all along the integration. The numerical integration makes the violation of the
hamiltonian constraint diverging exponentially with time and we indicated in
the previous figures the final absolute error reached for each of the numerical
solution that were presented.
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