
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

The Nature of Data Reverse Engineering

Hainaut, Jean-Luc; Henrard, Jean; Hick, Jean-Marc; Roland, Didier; Englebert, Vincent

Published in:
Proc. of Data Reverse Engineering Workshop 2000 (DRE'2000)

Publication date:
2000

Link to publication
Citation for pulished version (HARVARD):
Hainaut, J-L, Henrard, J, Hick, J-M, Roland, D & Englebert, V 2000, The Nature of Data Reverse Engineering. in
Proc. of Data Reverse Engineering Workshop 2000 (DRE'2000).

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. May. 2025

https://researchportal.unamur.be/en/publications/43380580-97b1-4d38-aca7-382ea661ef1e

��������

����������	��
��
����
���
	���	���
�
��
�������
���	�	�
�������
����
�������
���
�
����������
��
���������������
���
�������������������	�	�������������������	���
	�����
�
������	���
���������	
���������	��	�����	�����
���
�
������
	������ ��������� ��������� �	������ �	� �����
 ��	� ���� ����	
����	���
����������������
�����	�	�������	��
���!�������
�����	����������������
��!�����������
�������������������
�
���� 	������
	� ��
�
���!� ���� ����� 	��������� ����������
"��
�
��!� �����
��������� �����
�� ����������� ����	�� � ���������
��	��
��	� ���� �
	��		�	� �� ���������� �����		� ������ ����

����
�
�	�������
�����		�	�����������	!����
��	���
��������
�
 ��	���������	������	����������������		�	�

�	
����
������

Data reverse engineering is that part of Information Sys-
tem Engineering that addresses the problems and tech-
niques related to recovering of abstract descriptions of files
and databases of legacy systems. In this paper, we try to
put into light the main aspects that make this engineering
domain a discipline of its own.

�	�	 ���������������������������������

First of all, we have to delineate the application domain
of this discipline. Data reverse engineering concerns #���
����$�������
���%�	���	. According to [7], the latter can
be defined as �����
����	
�������
���
��	!�	�����	���	
��		
	�	���	���	�������������	���� ����	���	��������� �
��	� ���
�����	�!������	
��
�
���������	
	�����
�
���
��	�����������	.

The objective of data reverse engineering can then be
sketched as follows: to recover the technical and concep-
tual descriptions of the permanent data of a legacy infor-
mation system, i.e., its database, be it implemented as a set
of files or through an actual database management system.

By �����
���� ��	��
��
��, we mean the statement of
what are the files, the record types, the fields and their data
types, the relationships and the constraints. The technical
description is formally expressed in the so-called #��
���
	�����. Practically, this is the precise description of the
structures and time-independent properties of the data that
would be required by a programmer in order to develop a

new application on the legacy data in a reliable way. As we
can guess, this description encompasses, but can go well
beyond, the data structures explicitly declared by the DDL1

specifications of the system.
The ����������� ��	��
��
�� of the data is an abstract

(that is, independent of the data management system)
expression of what these data structures mean, i.e., its
semantics. This description is expressed as a Conceptual
schema.

�	�	
���������������������������������������

���������

When one analyzes the commercial offering in CASE
support for data reverse engineering, one gets the feeling
that the problem has been strongly exaggerated. Indeed,
this problem often is presented as follows. Considering the
DDL code below,

create table CUSTOMER (
 CNUM .. not null,
 CNAME ..,
 CADDRESS ..,
 primary key (CNUM))
create table ORDER (
 ONUM .. not null,
 SENDER .. not null,
 ODATE ..,
 primary key (ONUM),
 foreign key (CNUM) references CUSTOMER))

... we derive the conceptual schema of Figure 1 that
expresses its semantics in an abstract way:

��������	�A naive view of data reverse engineering

1 The Data Description Language (DDL) is the part of the database
management system facilities intended to declare or build the data
structures of the database.

1-10-N sender

ORDER
ONUM
ODATE
id: ONUM

CUSTOMER
CNUM
CNAME
CADDRESS
id: CNUM

���� ���������������������������������

Jean-Luc Hainaut, Jean Henrard, Jean-Marc Hick, Vincent Englebert, Didier Roland
$�	�
�����&$�������
 ��!�'�
���	
������(����

����)�����������!�*+���,�-...�(������,���
�����• �/��0
���������������

If data reverse engineering were that simple, it would
not require much research nor sophisticated tool develop-
ment. Unfortunately, ���� data reverse engineering is much
closer to the following scenario, in which this chunk of
COBOL code . . .

select CF008 assign to DSK02:P12
 organization is indexed
 record key is K1 of REC-CF008-1.

select PF0S assign to DSK02:P27
 organization is indexed
 record key is K1 of REC-PFOS-1.

fd CF008.
 record is REC-CF008-1.
 01 REC-CF008-1.
 02 K1 pic 9(6).
 02 filler pic X(125).

fd PF0S.
 records are REC-PF0S-1,REC-PF0S-2.
 01 REC-PF0S-1.
 02 K1.
 03 K11 pic X(9).
 03 filler pic 9(6)
 02 filler pic X(180).
 01 REC-PF0S-2.
 02 filler pic X(35).

. . . has to be interpreted as the implementation of the con-
ceptual schema of Figure 2.

��������	�A more realistic view of data reverse engineering.

No miracle here: getting such a result needs additional
sources of information, which will prove much more diffi-
cult and tedious to analyze than mere DDL sections.

�	!	 �����������������������������

Data reverse engineering is not the most exciting engi-
neering activity. Indeed, diving during weeks and even
months into a muddy sea of tricky COBOL, RPG or Basic
code cannot be as exhilarating as building a new web site
adorned with nice dancing Java applets.

Basically, DRE seldom is a goal
��	�, but most often is
the first step in a broader engineering project. It is gener-
ally intended to redocument, convert, restructure, maintain
or extend legacy applications. Here follow some of the
most frequent objectives of database reverse engineering.

1��������� �� �
	
�
���
�� 	�	���������������. During
the development of a new system, one of the early phases
consists in gathering and formalizing users requirements

from various sources such as user interviews and corporate
document analysis. In many cases, some partial implemen-
tation of the future system may exist already, for instance
in the form of a user-developed small system, the analysis
of which can bring early useful information.

%�	������
��������. Fixing bugs and modifying system
functions require understanding the concerned component,
including, in data-centered systems, the semantics and the
implementation of the permanent data structures.

%�	���������
����
��. Reengineering a system is chang-
ing its internal architecture or rewriting the code of some
components without modifying the external specifica-
tions. The overall goal is to restart with a cleaner imple-
mentation that should make further maintenance and
evolution easier. Quite obviously, the technical aspects as
well as its functional specifications have to be clearly
understood. The same will be true for the other three
objectives whose description follows.

%�	���� �����	
��. This term designates changing and
augmenting the functional goals of a system, such as add-
ing new functions, or its external behavior, such as improv-
ing its robustness.

%�	���� �
����
��. Migrating a system consists in
replacing one or several of the implementation technolo-
gies. IMS-to-DB2, COBOL-to-C, monolithic-to-Client-
server, centralized-to-distributed are some widespread
examples of system migration.

%�	����
�������
��� Integrating two or more systems
yields a unique system that includes the functions and the
data of the former. The resulting system can be physical, in
which case it has been developed as a stand-alone applica-
tion, or it is a virtual system in which a dynamic interface
translates the global queries into local queries addressed to
the source systems. The most popular form of virtual inte-
grated system is the federated database architecture.

2���
��� �		�		����. Analyzing the code and the data
structures of a system in some detail can bring useful hints
about the quality of this system, and about the way it was
developed. M. Blaha observed that assessing the quality of
a vendor software database through DBRE techniques is a
good way to evaluate the quality of the whole system [5].

����� �������
��3������	
��. In some situations, the
only component to salvage when abandoning a legacy sys-
tem is its database. The data have to be converted into
another format, which requires some knowledge on its
physical and semantic characteristics. On the other hand,
most data warehouses are filled with aggregated data
extracted from corporate databases. This transfer requires
a deep understanding of the physical data structures, to
write the extraction routines, and of their semantics, to
interpret them correctly.

�����4��
�
	����
��. DBRE is also required when one
develops a data administration function that has to know

0-N
Qty
produces PNUM

PNAME
CATEGORY
id: PNUM

PRODUCT
CNUM
CNAME
CADDRESS
id: CNUM

COMPANY

0-N

and record the description of all the information resources
of the organization.

5��������� ���	�. In emerging system architectures,
reverse engineering allows developers to identify, extract
and wrap legacy functional and data components in order
to integrate them in new systems, generally through ORB
technologies [29] [30].

�	"	 ����������������������������#�����$���������
�����������

Of course, reverse engineering encompasses a much
broader domain than data alone. Hence the question: what
are the relations between 	�������������	�����
����
�� and
����� �����	�� ���
����
��? We will just point out two
observations.

1. It is impossible to fully understand a (business) pro-
gram until the main data structures, and particularly the
file and database structures it uses, are fully understood.

2. As will be discussed in this paper, it is impossible to
fully understand the data structures of a set of files or of
a database without a clear understanding of the program
sections that manipulate them. This is particularly true
for the sections that are in charge of checking the cor-
rectness of the data before their being stored in the data-
base.

Despite this elegant symmetry, program reverse engineer-
ing and data reverse engineering appear to differ substan-
tially as far as their objectives are concerned.

The goal of program RE basically is to extract abstrac-
tions or specific patterns from the programs in order to
understand some of its aspects. Hence the common term of
�������������	����
��. Recovering full functional speci-
fications (e.g., in terms of pre- and post-conditions) must
be considered as unreachable in the general case.

On the contrary, the very objective of data reverse engi-
neering is to recover the (hopefully) complete technical
and functional specifications of the data structures.

�	%	 &'��������(���'�����$�

Recovering conceptual data structures can prove much
more complex than merely analyzing the DDL code of the
database. Untranslated data structures and constraints, non
standard implementation approaches and techniques and
ill-designed schemas are some of the difficulties that the
analysts encounter when they try to understand existing
databases from operational system components. Since the
DDL code no longer is the unique information source, the
analyst is forced to refer to other documents and system
components that will prove more complex and less reliable.
The most frequent sources of problems have been identi-

fied [2], [4], [18], [26], [27] and can be classified as fol-
lows.

6��7��		�����,8%������	: The logical model provided
by the DMS can express only a subset of the structures and
constraints of the intended conceptual schema.

$���
�
�� 	��������	: Some constructs have intentionally
not been explicitly declared in the DDL specification of the
database.

9��
�
"��� 	��������	: For technical reasons, such as
time and/or space optimization, many database structures
include non semantic constructs.

4�7�������	
��: Not all databases were built by experi-
enced designers. Novice and untrained developers, gener-
ally unaware of database theory and database methodology,
often produce poor or even wrong structures.

9�	���������	�����	: Some parts of a database have been
abandoned, and ignored by the current programs.

5��		�������
��������: Some relational databases are
actually straightforward translations of IMS or CODASYL
databases, or of COBOL files.

. . . and, of course, �������������
��!

�	 �����������	
����	
��	�'�����$

A large part of the difficulties data reverse engineer
have to face is eliciting implicit constructs. By this expres-
sion, we mean data structures or data properties, such as
integrity constraints, that are an integral part of the data-
base, though they have not been explicitly declared in the
DDL specifications. Let us explain this concept through
two implementation patterns.

�������	
��
�������	
��
����
����

The following fragment of SQL-DDL code defines two
tables that are explicitly linked by a foreign key2. The lat-
ter declares that, for any row of ORDER, the column
OWNER references a row in table CUSTOMER.

create table CUSTOMER (
 CNUM integer primary key,
 C_DATA char 80)
create table ORDER(
 ONUM integer primary key,
 SENDER integer
 foreign key (SENDER) references CUSTOMER)

In the implicit pattern, no foreign key has been declared.
Instead, the application programs include code fragments
that obviously ensure that data states violating the referen-
tial integrity are identified as being wrong.

2 A IRUHLJQ�NH\ is a field (or column), or a sequence of fields, whose
value is used to reference a record in another file (or table). The prop-
erty of foreign key values forming a subset of the values of the unique
key of the target record type (table) is called UHIHUHQWLDO�LQWHJULW\.

create table CUSTOMER (
 CNUM integer primary key,
 C-DATA char(80))
create table ORDER (
 ONUM integer primary key,
 SENDER integer)
...
exec SQL
 select count(*) in :ERR-NBR
 from ORDER
 where SENDER not in
 (select CNUM from CUSTOMER)
end SQL
...
if ERR-NBR > 0
 then display ERR-NBR,
 ’referential constraint violation’;

�������	
��
�������	
�����
�	
��	�
�
��
�

���
�
	���

Normally, all the fields that are used in application pro-
grams are identified and given meaningful names, such as
in the following COBOL fragment.

01 CUSTOMER.
 02 C-KEY.
 03 ZIP-CODE pic X(8).
 03 SER-NUM pic 9(6).
 02 NAME pic X(15).
 02 ADDRESS pic X(30).
 02 ACCOUNT pic 9(12).

Using implicit structures consists in coding the record
type, or parts of it, as anonymous or unstructured fields,
such as through the following code.

 01 CUSTOMER.
 02 C-KEY pic X(14).
 02 filler pic X(57).

Of course, the application programs can recover the
actual structure by storing records in local variables that
have been given the correct detailed decomposition.

!	 ������������'�������$�
������������
�������������������

Considering the amount of scientific and technical pro-
posals in the realm of DBRE, we obviously need a general
framework, hereafter called the ���������������, in which
each of them can be positioned and its contribution evalu-
ated. The general architecture of the reference DBRE pro-
cess model is outlined in Figure 3. It shows clearly the
three main processes that will be described in the next sec-
tions.

During the �
����	
�
���
�	��� phase, the main sources
of information are identified and classified into three cate-
gories:
� explicit DDL code (��
�ddl)

� sources that control the implicit constructs (��
�ext),
such as programs and triggers,

� other sources (�)∆* that can give evidence of implicit
constructs, such as database contents and documenta-
tion.
The ��	�
�	
��	�
�
��	
��	��� aims at recovering the

description of the data structures (the Logical schema) as
seen and used by the programmer (relational, files, IMS,
CODASYL, etc.).

The ��	�
�	
��	�
�
������	������	��� consists in inter-
preting the data structures in abstract terms pertaining to
the application domain (the Conceptual schema).

We want to make clear what we call �����		 should be
considered as a consistent and homogeneous knowledge
domain that addresses an identified type of problems and is
given a specific goal, such as DDL� ����� ���	
��, ����
�����	
	 or %������������
"��
��.

"	 �����&����������+��������

This process aims at rebuilding a complete logical
schema in which all the explicit and implicit structures and
properties are documented. The main source of problems
is the fact that many constructs and properties are implicit,
i.e., they are not explicitly declared, but rather are con-
trolled and managed through, say, procedural sections of
the programs. Recovering these structures uses DDL code
analysis, to extract explicit data structures, and data struc-
ture elicitation techniques, that lead to the recovery of
implicit constructs. We identify four processes (Figure 4).

1. ��#������
������
��. Automatic parsing of the code
to extract explicit data structures.

2. :��	
���� $�������
��. Merging multiple views of the
same data sets.

�������!	�The main processes of data reverse engineering.

3URMHFW�3UHSDUDWLRQ

'6�([WUDFWLRQ

'6�&RQFHSWXDOL]DWLRQ

(Optimized)
Logical schema

(Normalized)
Conceptual schema

FRGHddl FRGHext (�∆�

3. %������ ���
������. Recovering the implicit data
structures and constraints.

4. %������5����
��. Removing physical constructs that
bears no semantics.

Due to its importance and its complexity, we will
describe the Schema Refinement process in further detail.

"	�	 &���$��������$���

The organization of the process is sketched in Figure 5,
that shows the main information sources. Some of them
are discussed below.

"	�	������������$�������������
We will mention the main information sources from

which the analyst can extract evidence of implicit con-
structs.

�������	���
�
��
���
The way data are used, transformed and managed in the

programs brings essential information on the structural
properties of these data. Programs require specific analysis
techniques and tools. Dataflow analysis, dependency anal-
ysis, programming ��
��; analysis and program slicing are
some examples of useful program processing techniques
from the domain of program understanding.

��
������
��
���
	
�����	
A screen form or a structured report can be considered

as derived views of the data. The layout of the output data
as well as the labels and comments can bring essential
information on the data.

��	�
���
��	�
���	����
���
���
����

�����	�
���
Third-party or in-house data dictionary systems allow

data administrators to record and maintain essential
descriptions of the information resources of an organiza-
tion, including the file and database structures. The same
can be said of CASE tools, that can record the description
of database structures at different abstraction levels.

��	�
The data themselves can exhibit regular patterns, or

uniqueness or inclusion properties that provide hints that
can be used to confirm or disprove structural hypotheses.
The analyst can find evidence that suggests the presence of
identifiers, foreign keys, field decomposition, optional
fields or functional dependencies.

 ��!��	�"���
���
���
Small volumes of data can be implemented with general

purpose software such as spreadsheet and word processors.
In addition, semi-structured documents are increasingly
considered as a source of complex data that also need to be
reverse engineered. Indeed, large text databases can be
implemented according to representation standard such
SGML, XML or HTML that can be considered as special
purpose DDL.

#��$�������$������
����	
��	�
There can be some correlation between logical con-

structs and their technical implementation. For instance, a
foreign key is often supported by an index. Therefore, an
index can be an evidence that a field could be a foreign key.

And of course, 	$�
��

��	
�������	�	���, if any.

"	�	 &�$��������������������,���

These sources can be processed manually (i.e., visu-
ally), but they ideally should be analyzed through tool-sup-
ported specific elicitation techniques. We briefly describe
some of them.

��$���
��������

Constructs and constraints can be inferred from existing
structural patterns. For instance, names can suggest roles
(identifier, foreign key), data types or relationships
between data.

�
��
��
��������
Through pattern seeking, one can find instances of prog-
ramming ��
��;	 that suggest implicit constraints such as
identifiers, foreign keys or exclusive fields.

�������"	�Development of the Data Structure Extraction
process.

raw users viewsraw users views

''/�FRGH�([WUDFWLRQ

3K\VLFDO�,QWHJUDWLRQ

6FKHPD�5HILQHPHQW

6FKHPD�&OHDQLQJ

raw physical schemas

view codeddl

schema codeddl

explicit physical�sch.

complete physical�sch.

codeext E(∆)

(Optimized)
Logical schema

�

Frequently, such patterns will be found just before storing
data, in data validation sections.

��	����%
��������
Analyzing the data flow among the variables of a pro-

gram can give valuable information on semantic or struc-
tural properties of these variables. For instance, variables
that share common values at run time should have similar
structures and meaning.

�
��
��
�������
This technique consists in computing the sequence of

statements that contribute to the state of an object at a pro-
gram point, therefore reducing the search space of, e.g., a
specific programming pattern.
������: the program slice
of a record computed at a writing statement should include
all the data validation statements.

��	�
��������
This technique aims at finding relationships and patterns

in file and database contents. In many cases, it will be used
to confirm or disprove hypotheses.
������	: finding
uniqueness constraints, testing candidate foreign keys,
determining enumerated domains.

"	!	 ���
�����$'��������������-���

In this section, we apply some of these techniques to the

⇓

�������.	�Eliciting an implicit foreign key.

elicitation of implicit foreign keys3. The example to which
we will apply these techniques is sketched in Figure 6.

��$���
��������
From structural properties of the schema, we can guess

some relationships between fields ORDER.O-CUST and
CUSTOMER.CID. In particular,
� the name O-CUST suggests that of CUSTOMER;

� O-CUST and the identifier of CUSTOMER (CID) have

�������%	�The main information sources and techniques used in the Schema Refinement process.

(�∆�

FRGH
H[W

explicit physical�sch.

complete physical�sch.

6FKHPD
5HILQHPHQW

6FKHPD

$QDO\VLV

3URJUDP
$QDO\VLV

)RUPV�6FUHHQ
$QDO\VLV

([WHUQ��6SHFLILF�
$QDO\VLV

,QWHUYLHZ
$QDO\VLV

'DWD�$QDO\VLV

([WHUQ��GRFXPHQWV
$QDO\VLV

([SHULPHQWDWLRQ

DMS generic code

Programs

HMI proc. fragments

Check
Triggers

St. Procedures

Screens Reports Forms

Documentation

Extern. Data Diction.

CASE repositories

Users interviews

Develop. interviews

Experts interviews

Data

Worksheets
Formatted texts

Prog. execution

3 Implicit FK can be found in any databases, including, surprisingly,
SQL, IMS and CODASYL ones. Moreover actual databases include
non standard foreign keys as well, such as multivalued, alternate,
multi-target, conditional, overlapping, embedded, or transitive FK.

25'(5

O-ID: num (6)
O-DATE: date (10)
O-CUST: num (5)
id: O-ID

acc
acc: O-CUST

&86720(5

CID: num (5)
NAME: char (22)
ADDRESS: char (32)
id: CID

acc

25'(5

O-ID: num (6)
O-DATE: date (10)
O-CUST: num (5)
id: O-ID
ref: O-CUST

&86720(5

CID: num (5)
NAME: char (22)
ADDRESS: char (32)
id: CID

the same type and the same length;
� O-CUST is supported by an index, which is frequent for

foreign keys.

�
��
��
��������
The following pseudo-code section represents a typical

access pattern that uses a foreign key to get dependent
records.

read-first ORDER(O-CUST=CUSTOMER.CID);
while found do
 process ORDER;
 read-next ORDER(O-CUST=CUSTOMER.CID)
end-while;

��	����%
��������
Considering the following COBOL program:

DATA DIVISION.
 FILE SECTION.
 FD F-CUSTOMER.
 01 CUSTOMER.
 02 CID pic 9(5).
 02 NAME pic X(22).
 02 ADDRESS pic X(32).
 FD F-ORDER.
 01 ORDER.
 02 O-ID pic 9(6).
 02 O-DATE pic 9(8).
 02 O-CUST pic 9(5).
 WORKING-STORAGE SECTION.
 01 C pic 9(5).
 01 OI pic 9(6).

PROCEDURE DIVISION.
 ...
 display "Enter order number ".
 accept OI.
 move 0 to IND.
 call "SET-FILE" using OI, IND.
 read F-ORDER invalid key go to ERROR-1.
 ...
 if IND > 0 then move O-CUST of ORDER to C.
 ...
 if C = CID of CUSTOMER then
 read F-CUSTOMER invalid key go to ERROR-2.
 ...

we can build the data flow diagram of Figure 7. It suggests
that the fields ORDER.O-CUST and identifier CUS-
TOMER.CID can have the same value at some execution
time point, what suggests that O-CUST can be a foreign
key.

��	�
��������
Let us suppose that we suspect ORDER.O-CUST to be

a foreign key to CUSTOMER. We could check the validity
of this hypothesis by evaluating the following query4. The
result should be 0 for O-CUST to be a foreign key.

select count(*) from ORDER
where O-CUST not in (select CID from CUSTOMER)

�������/	�A dataflow diagram.

%	 �����&���������0����'�����1�����

This step extracts a conceptual schema from the logical
schema made available at completion of the Data Structure
Extraction phase. In short, it consists in interpreting the
technical structures in terms of the underlying semantics.
After an optional preparation phase, which mainly consists
in removing non semantic constructs (such as dead parts
and non data constructs) and renaming data objects, two
main phases have to be carried out, namely basic conceptu-
alization and normalization (Figure 8).

�������2	�The main processes of the Data Structure
Conceptualization phase.

&����
������	������	���
This process produces a raw conceptual schema through

de-optimization and untranslation. It must be noted that
the latter must not be seen as two independent processes,
but rather as two classes of specific problems, reasoning
and techniques. In actual DBRE projects, they form a
unique process.4 To simplify the presentation, and without loss of generality, we write

this query in SQL instead of COBOL.

03&�45��	0
� 0

4����	4603&�

(Optimized)
Logical schema

(Normalized)
Conceptual schema

Raw conceptual sch.

 ��$���1�����

#��'�������

��6�'��$�1�����

3������������

(
��
��

0
��
��
'�
��
��1
��
��
�

��6�'��$�1�����
This activity consists in identifying and processing opti-

mization constructs. These constructs were incorporated in
the schema for performance reasons. They bear no seman-
tics and can be discarded or transformed without loss of
information. Merging and splitting record types, denor-
malizing, removing redundant structures are the main tech-
niques that are used to clean a schema from its
optimization aspects.

3������������
Untranslating a logical schema consists in retrieving the

source conceptual structure of each implementation con-
struct. One of the best examples is the replacement of a
foreign key with the intended relationship type.

 �
������	���
The raw conceptual schema is reshaped to gain readabil-

ity, minimality and expressiveness. This process is quite
similar to that of forward database design [3].

.	 ������������������������������

There is no commercial specific Data-oriented CARE5

tools so far. This is not a drawback anyway, since the
reverse engineering process shares much, in terms of mod-
els and techniques, with standard engineering activities.
Unfortunately only limited DBRE functions can be found
in current CASE tools such as Power-Designer, AMC-
Designor, Rose or Designer 2000. At best, they include
elementary parsers for SQL DB, foreign key elicitation
under very strong assumptions (PK and FK having same
names and types) and some primitive standard foreign key
transformations. None can cope with complex reverse
engineering projects.

#$�
�&!'��
����
����
�����	
This set of tools, developed since 1993, is intended to

support the major database application engineering activi-
ties, including reverse engineering. Besides standard func-
tions that can be found in most data-oriented CASE
environment, it includes several processors dedicated to the
processes described in this paper. One of its strongest fea-
tures is its extensibility, among others through the Voyager
2 language, which allows analysts to develop their own
processors to plug into the environment. We will briefly
describe some of the functions and processors. More detail
can be found in [19] and [14].

�����
	
��

	$�
��	�
�	
��	�
�
��	
��	���
�
�����
Code parsers are available for SQL, COBOL, CODA-

SYL, RPG and IMS source programs; other parsers can be
developed in Voyager 2.

Programs can be analyzed through specific tools: an
interactive and programmable text analyzer, a dataflow and
dependency graph builder and analyzer, a program slicer.

Schema can be processed through a name processor, a
programmable schema analyzer, a programmable foreign
key discovery assistant and a schema integrator.

�����
	
��

	$�
��	�
�	
��	�
�
������	������	���
�
�����
This process is based on schema transformation tech-

niques. The environment includes a toolbox of about 30
semantics-preserving schema transformations, a name pro-
cessor, a conceptual schema integrator and a programmable
schema transformation assistant (Figure 9).

������� 7	�The Global transformation assistant. The script
shown is intended to conceptualize COBOL data structures.

/	 �������8�������������

Measuring the effort that will be necessary to complete
a reverse engineering project is a most challenging prob-
lem. Indeed, this effort directly depends on the goal of the
process, on the complexity of the final schema and on the
quality of the information sources. These properties can
only be estimated at the completion of the project. Any-
way, we can suggest some figures for a typical database
made up of 100 files/tables and about 2,000 fields/col-
umns6. We consider three different goals and we evaluate
the effort as the time one skilled analyst needs to complete
the project.

1. 2���
��� �		�		����. The objective is to evaluate the
quality of a database as a measure of the quality of the
whole application. No completeness is required, so
that, according to [6], such a task can be completed in �
9��-.

5 Computer-Aided Reverse Engineering
6 By the way, the current champion seems to be SAP internal database,

with 16,000-30,000 tables and 200,000+ columns.

2. �����������	
��. This task, that consists in migrating
the contents of a data base to another database, possibly
with another schema, is more complex, since it requires
the understanding of the structure and of a part of the
semantics of the data. However, the elicitation of the
integrity constraints can be skipped. We can evaluate
the effort to .�9��-�.

3. �����
����
��. The objective is to build a new system
that is functionally equivalent to the old one, but that is
given a better architecture. Now, the whole semantics,
including all the integrity constraints, must be elicited7.
The effort can be evaluated to �.�9��-�8.

The effort also depends on the quality of the source. In
the following table, we consider three situations, and we
compare the effort (the figures are tentative).

2	 0����������

Considering the scope of this paper, the best conclusion
should discuss the state of the art and draw some recom-
mendations on what remains to be done.

So, what could be considered as available at present
time? We can agree on the fact that most problems have
been identified, and that many elicitation techniques and
heuristics have been proposed in the scientific literature.
Many popular CASE tools now include (limited) data
reverse engineering functions. Powerful analysis tools
have been developed in laboratories, but they have not
been integrated in more general environments (that is the
case for program understanding tools for instance).

Of course, much remains to be done. On the �	��������

��� side, sensitizing actions among practitioners are
needed. The message must be: data reverse engineering is
useful and can be carried out. On the other hand, results are
not guaranteed to be 100% complete and the process can
prove resource intensive, not only in time and money, but
also in preliminary training. As a consequence, method-
ological material must be developed, such as technical text-
books, tutorials and seminars.

Despite the number of elicitation techniques available,
many still need to be evaluated on real applications, and
particularly on large-size ones to prove their scalability.
They must be refined in order to reduce their noise and
silence scores.

Current commercial tools are poor and not scalable with
this respect. Proprietary tools are powerful but unavail-
able. Effort need to be done to build both popular ��

powerful CARE tools.

DRE is an important part of system reverse engineering,
but it is only a part. Its integration into large scope reengi-
neering methodologies and tools has not been addressed so
far. In particular, developing techniques for reengineering
legacy systems into distributed components architectures
still need much work, despite some local success records.

Most research work has addressed RDB reverse engi-
neering (Figure 10). However, most needs concern less
attractive but more critical problems: redocumenting old
COBOL, RPG or Business Basic applications, based on
standard files or IMS/CODASYL databases.

��������:	�Distribution of 40 recent research publications
according to the data model.

7	 (��������'��

[1] Aiken, P. 1996. ����� �����	��
��
����
��!� %���
��
����#������������, McGraw-Hill.

[2] Andersson, M. 1994. Extracting an Entity Relation-
ship Schema from a Relational Database through Reverse
Engineering, in :����� ��� ���� +<��� $���� 5����� ���
�
4�������, Springer-Verlag

[3] Batini, C., Ceri, S., Navathe, S. 1992. 5���������
������	����	
�����4��
��
��������
��	�
��4�������, Ben-
jamin/Cummings

[4] Blaha, M.R., Premerlani, W., J. 1995. Observed Idio-
syncrasies of Relational Database designs, in :�����������
*���$

�6��7
���5�������������	��
��
����
��, Toronto,
July 1995, IEEE Computer Society Press

[5] Blaha, M., 1998. On Reverse Engineering of Vendor
Databases, in :����� ��� ���� -��� $

� 6��7
��� 5����� ��
�����	��
��
����
��, Honolulu, October 1998, IEEE Com-
puter Society Press

7 Example: recovering about 200 implicit foreign keys in a Part inven-
tory IMS database took 60 working days (with DB-MAIN v3).

8 This ratio has been observed in a project consisting in rebuilding the
complete logical schema of a 80-file COBOL application with the help
of DB-MAIN v5.

��������� ������

Well documented, normalized relational DB C

Undocumented, poorly designed IMS DB 5 x C

Undocumented, poorly designed COBOL files 10 x C �����������'� ;�'�'���

Standard files �/	%

Hierarchical databases (e.g., IMS) 12.5

Shallow databases (Total and Image) 2.5

Network databases (mainly CODASYL) 10.0

Relational databases %�	%

OO databases 5.0

[6] Blaha, M., The Case for Reverse Engineering, $

$��:����		
����, March-April, 1999

[7] Brodie, M., Stonebraker, M. 1995. 8
����
���#�����
%�	���	, Morgan Kaufmann.

[8] Campbell, L., Halpin, T. 1994. The reverse engineer-
ing of relational databases, in :�����=���$����6��7�����54%

(1994).

[9] Casanova, M., A., Amaral De Sa. 1984. Mapping
uninterpreted Schemes into Entity-Relationship diagrams:
two applications to conceptual schema design, in $,8� >�
��	��?���������, 28(1)

[10] Chiang, R., H., Barron, T., M., Storey, V., C. 1996. A
framework for the design and evaluation of reverse engi-
neering methods for relational databases, ���������1�����
�����
��
����
��, Vol. 21, No. 1 (December 1996)

[11] Comyn-Wattiau, I., Akoka, J. 1996. Reverse Engi-
neering of Relational Database Physical Schema, in :����
+-��� $���� 5����� ��� 5����������8����
��� �
�4�, Cottbus,
LNCS 1157, Springer Verlag

[12] Davis, K., H., Arora, A., K. 1988. Converting a Rela-
tional Database model to an Entity Relationship Model, in
:����� ���
��
��������
��	�
�� 4�������@� �� ,�
���� ��� ���
'	��, 1988

[13] Davis, K., H. 1996. Combining a Flexible Data Model
and Phase Schema Translation in Data Model Reverse
Engineering, in :����� ��� ���� $

� 6��7
��� 5����� ��
�����	��
��
����
��, Monterey, Nov. 1996, IEEE Com-
puter Society Press

[14] �����,�84$(�������	��
��
����
��54%
�����������
	
���-�� ��A����
��	�9����
��, DB-MAIN Technical man-
ual, December 1999, Institut d’informatique, FUNDP;
available at http://www. info.fundp.ac.be /~dbm/
references.html

[15] Edwards, H., M., Munro, M. 1995. Deriving a Logical
Model for a System Using Recast Method, in :�����������
*��� $

� 65� ��� �����	��
��
����
��, Toronto, IEEE
Computer Society Press

[16] Fonkam, M., M., Gray, W., A. 1992. An approach to
Eliciting the Semantics of Relational Databases, in :�������
B���$����5��������4�������$�������
���%�	���	�
��
�����

�� - CAiSE’92, pp. 463-480, Springer-Verlag, 1992

[17] Hainaut, J-L., Chandelon M., Tonneau C., Joris M.
1993a. Contribution to a Theory of Database Reverse Engi-
neering, in :����� ��� ���� $

�6��7
��� 5����� ��������	�

��
����
��, Baltimore, May 1993

[18] Hainaut, J-L, Chandelon M., Tonneau C., Joris M.
1993b. Transformational techniques for database reverse
engineering, in :����� ��� ���� +*��� $���� 5����� ���
�
4�������, Arlington-Dallas, E/R Institute and Springer-
Verlag, LNCS

[19] Hainaut, J-L, Roland, D., Hick J-M., Henrard, J.,
Englebert, V. 1996. Database Reverse Engineering: from
Requirements to CARE tools, >����������4���������%����
�����
��
����
��, Vol. 3, No. 1 (1996).

[20] Hainaut, J.-L., ������	�� �����	��
��
����
��, DB-
MAIN Research report, Namur, 1999 (133 p.); available at
http://www.info.fundp.ac.be/~dbm /referen-
ces.html

[21] Johannesson, P., Kalman, K. 1990. A Method for
Translating Relational Schemas into Conceptual Schemas,
in :����� ��� ���� C���
�4� ����������, Toronto, North-Hol-
land,

[22] Joris, M., Van Hoe, R., Hainaut, J-L., Chandelon M.,
Tonneau C., Bodart F. et al. 1992. PHENIX: methods and
tools for database reverse engineering, in :����� -��� $���
5����� ��� %��������
��
����
��� ���� 4���
���
��	, Tou-
louse, December 1992, EC2 Publish.

[23] Kalman, K. 1991. Implementation and critique of an
algorithm which maps a relational database to a conceptual
model, in :������������54
%
•D+�����������.

[24] Markowitz, K., M., Makowsky, J., A. 1990. Identify-
ing Extended Entity-Relationship Object Structures in
Relational Schemas, $

�����	�����%��������
��
����
��,
Vol. 16, No. 8

[25] Navathe, S., B., Awong, A. 1988. Abstracting Rela-
tional and Hierarchical Data with a Semantic Data Model,
in :��������
��
��������
��	�
��4�������@���,�
����������
'	��
[26] Petit, J-M., Kouloumdjian, J., Bouliaut, J-F., Toumani,
F. 1994. Using Queries to Improve Database Reverse Engi-
neering, in :�������� ���� +<��� $����5����� ���
��4�������,
Manchester, Springer-Verlag

[27] Premerlani, W., J., Blaha, M. R. 1993. An Approach
for Reverse Engineering of Relational Databases, in :����
�������$

�6��7
���5�������������	��
��
����
��, IEEE
Computer Society Press

[28] Signore, O, Loffredo, M., Gregori, M., Cima, M.
1994. Reconstruction of ER Schema from Database Appli-
cations: a Cognitive Approach, in Proc. of the +<��� $���
5��������
��4�������, Manchester, Springer-Verlag

[29] Sneed, H.S. 1996. Object-Oriented COBOL Recy-
cling. :����� ��� ���� <��� $

� 6��7
��� 5����� ��� �����	�

��
����
��, Monterey, Nov. 1996, IEEE Computer Soci-
ety Press.

[30] Thiran, Ph., Hainaut, J-L., Bodart, S., Deflorenne, A.
1998. Interoperation of Independent, Heterogeneous and
Distributed Databases. Methodology and CASE support:
the InterDB Approach. in :�������� ����$����5������������
5�������
���$�������
���%�	���	 (CoopIS-98), New-York,
August 1998, IEEE Computer Society Press

