
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Advanced XFG language: Extending XFG language with Energy-Aware Timed
Requirement Properties
Kang, Eun-Young; Schobbens, Pierre

Publication date:
2013

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Kang, E-Y & Schobbens, P 2013, Advanced XFG language: Extending XFG language with Energy-Aware Timed
Requirement Properties..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. Nov. 2024

https://researchportal.unamur.be/en/publications/7df99eec-c992-4a4f-a0a6-3498a0243340

Advanced XFG language: Extending XFG Language
with Energy-Aware Timed Requirement Properties

Eun-Young Kang and Pierre-Yves Schobbens

PReCISE Research Centre
Computer Science Faculty, University of Namur, Belgium

{eun-young.kang,pierre-yves.schobbens}@fundp.ac.be

Abstract. This report presents an advanced XFG (extended function-block graphs)
formal specification language, which can be used as interchange format for Timed
Automata-based input modeling languages and model checkers. In particular,
XFG is designed to provide support for modeling and analyzing energy-aware
real-timed (ERT) systems. In comparison to our early version of XFG, an en-
riched XFG language is defined with the XFG temporal logic, consisting of tim-
ing and energy-constrained modalities: Section 1 informally represents a general
introduction to the advanced XFG. The concrete E-BNF syntax rules complying
with the extension are presented in Section 2. Section 3 defines complete syntax
and semantics of the langauge. Section 4 gives a running example of the Brake-
By-Wire (BBW) system and part of the XFG specification of the system. In sec-
tion 5 we study how to obtain computer-aided analytical leverage through well
established analysis tools. This study will provide a basis for automatic model
transformations between XFG, and (Timed-Automata based) specification lan-
guages for model checkers.

1 Advanced XFG (Extended Function-block Graphs) Language

In regard to modeling and analysis support for ERT system behaviors, XFG allows the
specification of executional constraints on system functions (A.K.A processes, block
graphes, components, e.g., their internal state transitions) at high level. To facilitate the
guarantee of system safety, correctness and performance, it is expected that XFG as an
interchange modeling format language would form the basis for eliciting, validating,
and consolidating various kinds of behavioral concerns. For example, such behavioral
concerns can be related to requirements specifications and elicitation, the design of veri-
fication and validation cases. From a system design point of view, the behavioral issues
of particular concern should include not only the executions of system functions and
function structuring, but also the definition of system operational situations, require-
ments specifications and refinements.

With the previous versions of XFG, application specific behavioral concerns (e.g.,
the definitions of executional behaviors on an function process) can only be treated
in textual or graphical implementations. This is considered as a point of extension, as
the provision of precise specifications of the issues mentioned above is fundamental
of many overall design decisions including requirements elicitation and refinements,
function structuring, the obtainment of its analytical leverage through well established
analysis methods and tools. Indeed, nevertheless the actual ERT behaviors of system

functions are captured in XFG, there is still a need of explicitly annotating the appli-
cation requirements with related bounds (e.g., invariants of data, timing and energy
constraints).

To address such challenges, an advanced XFG language has been developed. We
introduce the definitions of related key concepts in following sections. The aim of the
enriched XFG is to enable a more precise specification of various behavioral concerns
and to provide a gateway for supporting model transformations from XFG to well es-
tablished analysis methods and tools for ensuring the analytical leverage.

1.1 System Specification Language

An XFG (eXtended Function-block Graphs) language is an extension of timed automata
[2]. It is a formal specification interchange format language for modeling and analysis
of energy-aware real-time (ERT) systems. The XFG format is a textual description lan-
guage and it captures the axiomatic and operational specification of function aspects,
and ERT behavior. The XFG language aims to establish interoperability of various tools
by means of model transformations to and from XFG: The XFG is designed as an en-
gineering language for formal specification and verification, serving as the Hybrid and
Timed Automata (TA) [2, 1] based input modeling language for various model checkers
such as UPPAAL series tool [4, 16], KRONOS [8, 7], and HYTECH [11, 10, 12], etc.

An XFG system consisting of a number of graphes (processes) provides a simple
representation for high-level specification languages and is suitable for modeling in-
terprocess communication by value or signal passing though data channels. The basic
building blocks for an XFG system are presented by processes and two basic construc-
tions of the process in XFG are locations and edges. The process in XFG system rep-
resents a single thread of execution. Interprocess communication is represented by the
synchronous edges. They communicate by means of shared variables or by synchronous
value passing.

The XFG process permits two-way synchronization communication (rendezvous-
style) on complementary input and output actions, as well as broadcast actions. An
edge labeled with a synchronization l!v with another labeled l?v or an arbitrary number
of receivers l?v, where l is a synchronization channel name and v is a share variable.
Any receiver can synchronize in the current state must do so. If there are no receivers,
then the sender can still execute the l! action, i.e. sending is never blocking.

The XFG language extends classical TA with energy consumption information both
on locations and edges of an XFG process (which is seen as a timed automaton). The
energy label on a location represents the rate of energy consumption (continuous energy
consumption) per time unit for staying in that location. The energy label on an edge
represents the discrete energy consumption for taking the edge. Thus, every run in the
XFG process has a energy consumption, which is the accumulated energy (either energy
rate or discrete energy consumption) along the run of every delay (continuous) and
discrete edge. The energy consumption variable in the XFG process can be viewed
as an hybrid variable1, therefore the XFG processes are special cases of liner hybrid
automata [1], in which all continuous variables are clocks, except the energy, which is
never used for the executions in the XFG system.

1 An hybrid variable is a variable which can have different slops on different locations

Urgency

Procressing
c<3
𝑐𝑝 =0

 buff := data
 [c == 3]
cp := cp+2

[c >= 5] Idle
c<=10
𝑐𝑝 =3

system example

state
 disc [1,3] data;
 cont real energy := 0;

processes
 Receiver receiver; Sender sender;

composition receiver || sender

graph
 state clock c:= 0;
 disc buff:=0;

ports in receive;

init Idle

locations
 Idle inv (c<=10){ ……..
 ……..}

receive?data
c:=0

(a) XFG graphical form (b) XFG textual form

Fig. 1. A combination of XFG attributes: A receiver component as an XFG

Particular key features of XFG are that: 1. It provides a general form of urgency.
Edges can either be urgent or non-urgent. Urgent edges marked with a small dot (see
Urgency location in Figure 1) indicate that they have to be executed immediately once
the location has been enabled without letting time pass. This form allows easy modeling
of edge that triggers on data and time conditions; 2. It allows information for continuous
or discrete consumption of resources, e.g., energy, on both locations and transitions.
Locations are guarded with invariants, which forces control out of a location by taking
an enabled edge as soon as the location of the process and the invariant are inconsistent.

Figure 1 shows a simple XFG graph representation of a single process in the XFG
system, both in its graphical (Fig.1.a) and textual (Fig.1.b), that receives messages and
puts the message into a buffer. A message is received (from another process, not visual-
ized here) through the receive input action. It receives data between 5 and 10 seconds
then immediately goes through the Urgency location. Because of the urgency seman-
tics, the edge at the source location (Urgency location) will be taken without any delay.
This edge is indicated by the keyword prompt in Listing 1.1 (in line 14) and by the
black dot at the source of the edge in Figure.1.(a). Afterwards, it takes three seconds to
process the message.

The message is subsequently placed in a buffer, modeled by the data element buff.
The delay is enforced by the clock c. The system will leave the Processing location
when the moment c becomes three, which is exactly three seconds after the location
was entered. We put a constraint c ≥ 3 on the edge from Processing to Idle.

1 Init
2 Idle
3

4 locations
5 Idle inv(c<=10){ when (c<=10 && c>=5)
6 do c:=0;
7 goto Urgency
8
9 when not(c>=5 && c<=10)

10 do dot energy := 3;
11 goto Idle
12 }
13
14 Urgency { when true prompt
15 goto Processing
16 }
17
18 Processing inv(c<3){ when true
19 do dot energy:=0;
20 goto Processing
21
22 when c==3
23 do buff := data;
24 energy := energy+2;
25 goto Idle
26 }

Listing 1.1. XFG Process and its edges on Idle, Urgency and Process locations

The receiver process has a certain energy consumption, captured both in its graph-
ical XFG (with ċp or cp in Fig.1.a) and its textual representations (with dot energy
or energy in Listing 1.1 in lines 10, 19, 24), where ċp is a rate of energy consump-
tion per time unit during a stay in the Idle location, whereas cp is a discrete energy
consumption allocated on the edge as an update.

As soon as the receiver process is triggered (modeled by the Idle location) the
value energy grows with rate 3 (ċp = 3), until the actual receiver is taking a place
in the location Processing. With no continuous energy consumption in the location
Processing (rate 0), it will be ready to receive data from other processes. In that case
a two-units (discrete) energy is consumed on the edge from Processing to Idle.

1.2 Property Specification Language

In regard to specifying application requirements, which should comply with require-
ment constraints (i.e., application specific behavioral concerns), and validating the cor-
rectness of such application requirements (A.K.A application system properties), we
introduce the XFG logic which consists of timing and energy constrained modalities.

The specification language for properties is a temporal logic based on CTL (Compu-
tational Tree Logic) and TCTL (Timed CTL) [6] and WCTL (Weighted Computation
Tree Logic) [5]. TCTL variants are real-time extensions of CTL and WTCL extends
CTL with cost constraints. These extensions are categorized by either augmenting tem-
poral operators with time bounds or using a cost function:

– Temporal operators with time bounds: Temporal operators of CTL like E[φ1Uφ2],
EFφ and so on, can be equipped with a time constraint in a succinct way. For in-
stance, the formula A[φ1U≤7φ2] intuitively means that along way any path starting
from the current state, the property φ1 holds continuously until within 7 time-units
φ2 becomes valid. It can be defined by z in A[(φ1 ∧ z ≤ 7)Uφ2]. Alternatively, the
formula EF≤5φ means that along some path starting from the current state, the
property φ becomes valid within 5 time-units, and is defined by z in EF(z≤ 5∧φ).

In other words, EF≤cφ denotes that a φ -state is reachable within in c time-units.
The dual expression, AF≤cφ is valid if all executions lead to a φ -state within c
time-units.

– Cost function: In a consideration of the energy consumption on the XFG system,
i.e., a cost of resource such as memory, CPU, etc., we can analyze if a certain re-
source consumption on all possible behaviors of the system within the available re-
source provided. A cost constraint or cost function is the accumulated resource con-
sumption. For instance, the formula AFcost≤minφ means that for all execution paths,
the φ -state is eventually reached within min cost. The dual expression EFcost≤maxφ

denotes that there is a path in which the φ -state is reached within a maximum re-
source cost max.

In our CTL in XFG language setting, called CTLXFG (or CTL as a simple way), we
use a similar approach mentioned above to our property specification in XFG language
(namely XFG property) by adapting both time- and cost-bounds constraints. Indeed we
use the reset operator followed by a path quantifier. The reset operator is expressed
by assignments to clocks, energy consumption functions, and variables of the XFG
property. In our CTL variant (z := 0)&(EF(z≤ 5∧φ)) expresses that z in EF(z≤ 5∧φ)
and EF≤5. Furthermore, (cost := 0)&(EF(cost ≤ max∧φ)) denotes EFcost≤maxφ .

Notice that it is not allowed to write a bounded response time property like ”there
exist some unknown time t such that if φ1 holds, then before time t property φ2 holds”.
For instance,

∃ t. z in (AG≥0(φ1⇒ AF(z < t ∧φ2)))

This formula can be expressed in our XFG property as below. However, such quantifi-
cations over time makes analysis undecidable. Therefore, in our XFG property a clock
constraint should be defined by an assignment with its time-bound t, which ranges over
R:

AG(φ1 ⇒ (z := 0)&AF(z < t ∧φ2))

The core syntax defines two temporal operators, AU and EU . The formula Aφ1Uφ2
is satisfied in a state if for all paths starting from the state, the property φ1 holds con-
tinuously until φ2 holds. Eφ1Uφ2 is satisfied if there at least one such computation path
exists. From those two main operators, we have several derived operators:

– EGφ : There is a path in which every state satisfies φ

– EFφ : There is a path on which a state satisfies φ

– AGφ : For all paths, along way any path starting from the current state, every state
satisfies φ

– AFφ : For all paths, along way any path starting from the current state, some state
satisfies φ

Our atomic proposition have two types and such expressions are defined:

– Boolean value expressions that specify conditions on values of variables and clocks
of the system (states) and the property;

– Allocation expressions that specify conditions on locations of the system (states)
and denoted as Proc#loc, where Proc is an identifier of a single XFG process and
loc is an identifier of the current location where the XFG process is allocated. In
other words, a single XFG process of the XFG system is currently allocated at the
location loc. An allocation expression evaluates whether or not for a single XFG
process in an XFG system control is at some specified location. Thus, Proc#loc
will be true if for process graph Proc control is at location loc.

Finally, the enriched XFG textual presentation of the example is given in Listing
1.2, where the specification of properties and the XFG of sender process are imple-
mented. This advanced XFG is combined with the XFG of receiver shown in Listing
1.1 and constitutes a whole XFG system example where the sender and receiver pro-
cesses communicate through the synchronization port channels. (The graphical details
are omitted)

1 system example
2
3 % variables used in property are defined here
4 property variables
5 clock c1, clock c2;
6 disc int data, buffer ;
7
8
9 % property specification is given here

10 properties
11
12 EF(sender.data == receiver.buffer) % data correspondence -- positive
13
14 AG((sender#Idle and (5<=c1 and c1<=10)) imply (receiver#Processing)
15 % location correspondence -- positive
16
17 AG(c1:=0&EF(c1>1)) % non-zenoness -- positive
18
19 state disc [1,3] data;
20 cont real energy :=0;
21
22 % define processes (executable block graph)
23 processes
24 Receiver receiver;
25 Sender sender;
26
27 composition sender || receiver
28
29 block graph sender
30
31 state clock c1 :=0;
32 disc int data:=0;
33
34 ports out send;
35
36 Init
37 Idle
38
39 locations
40 Idle inv(c<=10){
41 when (c1<=10 && c1>=5 && data <=3)
42 synch send!data;
43 do c1:=0;
44 data:=0;
45
46 goto Idle
47

48 when not(c1>=5 && c1<=10 && data<=3)
49 do dot energy := 2;
50 data := data+1;
51 goto Idle
52 }

Listing 1.2. Advanced XFG with Property Specification

2 The concrete XFG syntax, notation, and grammar

The concrete E-BNF grammar rules are presented in syntax charts. End symbols are
presented with under-bars such as

� terminal1 � terminal2 �

The terminal symbols present the ascii representation of the keywords of the XFG lan-
guage. Each rule is labeled with its defining nonterminal symbol.

� nonterminal �

The start symbol of the grammar is the nonterminal ”system”. A system specification
in XFG is composed of the six main parts, System Definition, User Definition, State
Definition, Process Definition, Behavior Definition and Process Type Definition. Each
part will be investigated more detail in the following sections.

2.1 System Definition

The system definition clause specifies the global variables of the system. All variables
have to be initialized:

• system definition
� system � ident �
� userde f s � type �
� propertyvariables
� properties �
� statede f �
� processde f s �
� behaviorde f �
� processtypes �

– the system heading part, formed by the keyword system and a unique identifier.
– userdefs : the user defined types.
– propertyvariables : the specification variables used in the property specification.
– properties : the properties specifications.
– statedef : the global state definition and all global variables.
– processdefs : the process definitions, defining the processes in the system together

with their types.
– behaviordef : the behavior definition, defining how the processes in the system are

composed.
– processtypes : the process type definitions, defining the structure of the process.

2.2 User Definition

The user definition clause presents one kind of user-defined type, constant type:

• userdefs

� define � (� ident � , � constant �) � ; �

• ident
� letter �

• letter
� a �
� . . .�
� z �
� A �
� . . .�
� Z �

2.3 Property Variables

The property variables clause defines the property specification variables where the
variables can be used in the properties. Thus, these variables are not part of the system:

• propertyvariables

� property variables � type � ident � ; �

2.4 Properties

The properties clause specified the properties to be verified:

• properties
� properties � property � ; �

• property

� property � and � property �
� property � or � property �
� not � property �
� EG � property �
� EF � property �
� AG � property �
� AF � property �
� (� property � EU � property �) �
� (� property � AU � property �) �
� (� ident � := � vexpr �) � & � property �
� ident � # � ident �
� relation �
� (� property �) �

For the model checkers the allowed value expressions could be more limited than what
is specified below. Only expressions of the following form are allowed: x− y ∼ c, x ∼
y and x ∼ c, where ∼ ∈ { <, ≤, >, ≥, == }, x and y are variables and c is a constant.
The state reference is only used in properties to refer to local variables:

• vexpr
� unary � vexpr �
� binary � vexpr � +� vexpr �
� binary � vexpr � −� vexpr �
� binary � vexpr � /� vexpr �
� binary � vexpr � ∗� vexpr �
� primary � ident �
� state re f erence � ident � # � ident �
� (� vexpr �)�

• boolexpr
� relation � relation �
� combination � boolexpr � and � boolexpr �
� combination � boolexpr � or � boolexpr �
� negation � not � vexpr �
� constant � true �
� constant � f alse �
� (� boolexpr �)�

• relation
� vexpr �==� vexpr �
� vexpr � ! =� vexpr �
� vexpr �<� vexpr �
� vexpr �>� vexpr �
� vexpr �≤� vexpr �
� vexpr �≥� vexpr �

2.5 State Definition

The state definition clause specifies the global variables of the system. All variables
have to be initialized:

• statedef

� state �
� vartype � type � [� vexpr � , � vexpr �] �

� ident � :=� vexpr � ; �
• vartype

� disc �
� cont �
� clock �

• type
� integer �
� real �
� clock �

2.6 Process Definition

The process definition clause states the processes of the system. Each process is defined
by a unique identifier and a process type. It is not allowed to use a dot (’.’) in an iden-
tifier in the process definition. However the dot can be used in the transition definition
as a special continuous variable, i.e., cost rate in terms of the clock. In this case that
transition should be the delay transition.

• processdefs

� processes � ident1 � ; � ident2 � ; � . . .� identn � ; �

2.7 Behavior Definition

The behavior definition clause specifies how the processes, which are specified in the
previous clause, communicate. This is done using parallel composition:

• behaviordef

� composition � ident1 � ‖� ident2 � ‖� . . .� identn �

2.8 Process Type

The process type clause defines the structure of the processes. A process (type) is de-
fined by elements:

– a name.
– a state definition, defining the local variables. Variables have to be initialized.
– a set of communication ports. For each port, a direction is specified in or out, and

its type (possibly empty).
– an initial location.
– a set of location definitions.

• processtypes

� block graph � ident �
� state � vartype � type � ident � :=� vexpr � ; �
� ports � in � ident � ; �
� ports � out � ident � ; �
� init � ident �
� locations � locationde f �

A location is defined by its name and a set of outgoing transitions. An invariant can be
specified for a state, limiting the allowed data values for this location. Furthermore, a
location can be declared committed, meaning that it has to be left immediately upon
entering, without any other transitions interfering:

• locationdef
� committed � ident �
� ident � inv � boolexpr �
� {� transitionde f � }�

A transition is defined by a guard. It defines when a transition is enabled, an optional
state update, i.e., a set of assignments to local and global state variables, an optional
communication definition, and a destination location. The prompt keyword defines tran-
sitions to be urgent:

• transitiondef

� when � boolexpr � prompt �
� synch � ident � ? � ident � ; �
� synch � ident � ! � vexpr � ; �
� broadcast � ident � ! � vexpr � ; �
� do � ident � :=� vexpr � ; �
� dot � ident � :=� vexpr � ; �
� f unctionde f � ; �
� goto � ident �

• functiondef
� ident � ()� {�
� if � (� boolexpr �)�

� ident � :=� vexpr � ; �
� }�

3 XFG complete syntax and semantics

3.1 Core syntax and semantics: XFG process

We define first a core syntax for an XFG system, on which the dynamic semantics is
based. In core syntax, an XFG system is defined as a single, global graph. Also at core
syntax level we do not worry about static semantics issues like type correctness. In the
following, we use some abstract syntax domains that are assumed to be provided by the
data model:

Definition 1. A data language provides the following syntactic domains:

– V : a finite set of variables,
– Vc ⊆V : a subset of clock variables,
– Expr: value expressions (over the set V of variables),
– Bexpr ⊆ Expr: the subset of Boolean expressions.

An XFG consists of a fixed, finite number of processes. The control part of any
process is described as a finite state machine. The full state space is given by a set of
variables (which can be local to the process or shared between processes), communica-
tion channels, clocks, and energy consumption functions. Edges of an XFG process can
be marked as urgent, implying that they should be taken as soon as they are enabled.
Processes of an XFG are executing asynchronously in parallel. They communicate by
means of shared variables or by synchronous value passing. The XFG process permits
two-way synchronization communication (rendezvous-style) on complementary input
and output actions, as well as broadcast actions.

Definition 2. An XFG process is a tuple 〈Dtype, Init, L, l0, I, E, H, U, CP〉 where

– Dtype : V → {disc,cont,clock} assigns to each variable a dynamic type: discrete,
continuous, or clock. The sets Vdisc, Vcont , and Vc are defined as Vt = {v ∈ V |
Dtype(v) = t} for t ∈ {disc,cont,clock},

– Init ∈ Bexpr indicates the initial condition for the process. A set of dotted variables
V̇ ∈Vdisc represents different rates of increasing energy,

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– I : L→ Bexpr assigns an invariant to each location,
– H is a finite set of synchronizing action labels,
– E ⊆L×Bexpr×2V×Expr×H×L is a set of edges, represented as tuples 〈l,g,h,u, l′〉

where

• l ∈ L is the source location,
• g ∈ Bexpr is the guard,
• h ∈ H is a label for synchronization {h!x,h?x|{x} ⊆ Expr,{v} ⊆ V}, where x

and v are either empty or sequences of expressions or variables,
• u⊆V ×Expr is an update,
• l′ ∈ L is the destination location.

Note that an assignment is defined as a set of pairs 〈v,x〉 where v is a variable and x
is an expression whose value is to be assigned to the variable. Each variable should
appear at most once in the update set.

– U ⊆ E identifies the subset of urgent edges.
– CP : L∪E→ R≥0 assigns to each location and edge an energy consumption

The semantics of the XFG process is defined in terms of timed structures.

Definition 3. A timed structure is a tuple 〈S,S0,T 〉 where

– S is a set of states,
– S0 ⊆ S is the subset of initial states, and
– T ⊆ S× (R≥0∪{µ})×S is a transition relation.

A run of a timed structure is an infinite sequence

π = s0
λ0−→ s1

λ1−→ s2 . . .

where s0 ∈ S0 is an initial state and 〈si,λi,si+1〉 ∈ T is a transition for all i ∈ N.

Timed structures distinguish two kinds of transitions: time-passing transitions are
labeled by a non-negative real number that represents the amount of time that has
elapsed during this transition. Discrete transitions model state changes and have a spe-
cial label µ . To define the dynamic semantics of XFG, the following evaluation function
is needed.

Definition 4. We assume a universe Val of values that includes the set R≥0 of non-
negative real numbers and the Boolean values tt and f f . A valuation is a mapping
ρ : V →Val from variables to values such that ρ(c)∈R≥0 for all c∈Vc. For a valuation
ρ and δ ∈ R≥0 we write ρ[+δ] to denote the environment that increases each clock in
Vc by δ :

ρ[+δ](v) =
{

ρ(v)+δ if v ∈Vc
ρ(v) otherwise

We assume given an evaluation function

[[_]]_ : Expr→ (V →Val)→Val

that associates a value [[x]]
ρ

with any expression x ∈ Expr and valuation ρ . We require
that [[x]]

ρ
∈ {tt, f f} for all x ∈ Bexpr.

Definition 5. Operational semantics of an XFG process is given as a timed transition
system 〈S,s0,T 〉 where

– S = 〈l,ρ〉 ∈ L×ρ[+δ](v)
– s0 = 〈l0,ρ0〉
– T ⊆ S× (E ∪R≥0)×S such that:

• For any e = 〈l,g,h,u, l′〉 ∈ E and {〈l,ρ〉.〈l ρ ′[u]〉} ⊆ S: 〈l,ρ〉 e−→ 〈l′,ρ ′[u]〉
• For any δ ≥ 0 and any {〈l,ρ〉,〈l′,ρ ′[+δ]〉} ⊆ S: 〈l,ρ〉 δ−→ 〈l,ρ[+δ]〉
• To each such transition step, we associate an energy consumption defined by{

CP(〈l,ρ〉 e−→ 〈l′,ρ ′[u]〉) =CP(e)

CP(〈l,ρ〉 δ−→ 〈l,ρ[+δ]〉) =CP(l) ·ρ[+δ]

A run π of the XFG process is a finite of infinite sequence of steps with no time-
stuttering. The energy consumption of π denoted CP(π) is the accumulated consump-
tion of steps along the run. An XFG system is a finite set of XFG processes. With any
XFG we associate a timed structure, allowing continuous and discrete energy consump-
tion, whose states are given by the active locations of the XFG and the valuations of the
underlying variables. Detail syntax and semantics will be defined in the next section.

3.2 Complete syntax and semantics: XFG system

The aforementioned semantics gives a meaning to a global XFG system consisting of a
set of XFG’s single graphs (processes) together with a set of shared data variables and
a st of communication channels between the individual XFG’s. To define the commu-
nication channels, the concept of value passing expression is defined.

Definition 6. Let H = {h1,h2, . . . ,} be a set of communication (synchronization ac-
tion) labels, and let H = {h1,h2, . . .} denote a set of complementary labels. A value
passing expression is a tuple 〈ch, ia,oa〉 where

– ch ∈ H ∪H identifies a communication channel,
– ia ∈Vτ is a possible empty tuple of variables, and

– oa ∈ Exprτ is a possible empty tuple value expressions over V .

Let V P denote the set of possible value passing expressions, and V PV those that range
over variable set V . Two communication labels are referred to as complementary, if one
is an overlined version of the other, i.e. h and h are complementary.

In concrete syntax a value passing expression 〈〈v1,v2, . . .〉,〈x1,x2, . . .〉〉 is written
as h?v1?v2, . . . , !x1!x2, where v1,v2, . . . denotes variables, and x1,x2, . . . denote value
expressions. Mostly, value expressions only transfer single value or no value at all. In
the latter case, they become pure synchronization. Value passing expressions come with
a notion of direction, implemented by label names. Only value passing expressions with
complementary label can be matched for actual communication.

Definition 7. An XFG system is a tuple X = 〈GV,GInit,G,Ch,GCP〉, where

– GV =GVc∪GVcont∪GVdisc is a set of global variables, where each GVc,GVcont ,GVdisc
is a set of global clock, continuous, and discrete variables,

– GInit defines the initial condition of X ,
– G = 〈P1, . . . ,Pn〉 is a tuple of X ,

– Ch : EE → (V P∪{⊥}), where EE =
n⋃

P∈G

E provided that Ch(e) ∈ {⊥,V Pv} for

each P ∈ G and e ∈ E,
– GCP : LL∪EE → R≥0, where LL is a location vector, is a function mapping loca-

tion vectors or EE to energy consumptions,
– For each e,e′ ∈ EE with Ch(e) = 〈l, 〈v1, . . . , vn〉, 〈x1, . . . , xm〉〉 and Ch(e′) = 〈l′,
〈v′1, . . . , v′n′〉, 〈x

′
1, . . . , x′m′〉〉, if l and l′ are complementary then n = m′ and m = n′

and ∀ i ∈ {1, . . . ,n}.TV [[vi]] = [[x′i]] and ∀ i ∈ {1, . . . ,m}.TV [[v′i]] = [[xi]] where
• TV [[_]] : (Expr∪V)→P(Val) is an evaluation function associates a type with

each value expression and variable where P(Val) denotes the powerset of Val,
• Types are interpreted as sets of possible values and we assume type correctness

of value expressions: ∀x ∈ Expr.∀ρ ∈ (V →Val).[[x]]
ρ
∈ TV [[x]]

Thus an XFG system is defined by a global state GV , a set G of single XFG’s, and
a function Ch assigning value passing expressions to some of the edges of the XFG
processes. If Ch(e) =⊥ then no value passing is associated with e. The final constraint
in the definition only serves to ensure that value expressions with matching labels have
matching types. We assume that the identifiers used for locations and local variables are
globally unique.

Let an XFG system X , this X can be extended with an additional automaton that
does not communicate with the XFG processes in X . This simple form of extension is
formalized below.

Definition 8. Given an XFG system X = 〈GV,GInit,〈P1, . . . ,Pn〉,Ch,GCP〉, and an
XFG process P, the extension of X with P = 〈Dtype, Init, L, l0, I, E, H, U, CP〉 is
defined to result in the XFG system X ′ = 〈GV,GInit,〈P1, . . . ,Pn,P〉,Ch′,GCP〉 where

Ch′(e) =
{
⊥ if e ∈ E
Ch(e) otherwise

If l = 〈l1, . . . , ln〉 is a location of the global graph corresponding to X , and l′ is a
location of P, then we let l + l′ denote the location 〈11, . . . , ln, l′〉 of the global graph
corresponding X ′.

Definition 9. Let vp1 = 〈l,〈v1, . . . ,vn〉,〈x1, . . . ,xm〉〉 ∈ V PV and let vp2 = 〈l′, 〈v′1,
. . ., v′n′〉,〈x

′
1, . . . ,x

′
m′〉〉 ∈ V PV ′ . Then the function synch(vp1,vp2) ∈ (P((V ∪V ′)×

ExprV∪V ′)∪{⊥}) is defined as follows:

synch(vp1,vp2) =

⋃

i∈{1,...,n}
〈vi,x′i〉∪

⋃
i∈{1,...,m}

〈v′i,xi〉 if l and l’ are complementary

⊥ otherwise

synch(vp1,vp2) returns ⊥ if vp1 and vp2 do not match, which is the case if the
synchronization labels are not complementary. If the two value passing expressions
match, then an update is produced that is the result of combining the two expressions.
Note that in that case it follows from Definition 7, that n = m′ and m = n′.

The most common operator for composing hybrid and TA is parallel composition.
There are no compatibility requirements for the parallel composition of XFG process
(seen as automata): Any pair of XFG process can be composed by the parallel compo-
sition operator. The parallel composition operator synchronizes on all external actions
that the arguments share and allows interleaving of any other actions (under the con-
dition that they maintain the consistency of the other process). The external variables
that are shared by the argument processes need to have the same values. The formal
semantics of the operator is defined in a structured operational semantics style below.

Definition 10. Given an XFG system X = 〈GV,GInit,〈P1, . . . ,Pn〉,Ch,GCP〉 with a
single XFG process Pi = 〈Vi, Initi, Li, l0i, Ii, Ei, Hi, Ui, CPi〉, the global graph corre-
sponding to X is an XFG = 〈V , Init, L, l0, I, E, H, U, CP〉 where

– V =
⋃

i∈{1,...,n}
Vi ∪ GV ,

– ∀v ∈V .Init =
{

Initi if v ∈Vi i ∈ {1, . . . ,n}
GInit if v ∈ GV

– L =
n

∏
i=1

Li

– l0 = 〈l10, . . . , ln0〉
– ∀〈11, . . . , łn〉 ∈ L.I(〈11, . . . , l0〉) =

∧
i∈{1,...,ln}

Ii(li)

– E,H and U are defined as follows: For any i, j ∈ {1, . . . ,n}, and for any urg ∈
Bexpr,

∃e1 = 〈1i,g,h,u, l′1〉 ∈ Ei.
Ch(e1) =⊥.H(e1) =⊥ and
U(e1) = urg

⇔
∃e = 〈〈11, . . . , ln〉,g,h,u,〈l′1, . . . , ł′n〉〉 ∈ E.

(∀k ∈ ({1, . . . ,n}\{i})⇒ lk = l′k) and
H(e) =⊥ and U(e) = urg

∃e1 = 〈1i,g1,h1,u1, l′i〉 ∈ Ei.
∃e2 = 〈1i,g2,h2,u2, l′j〉 ∈ E j.

synch(Ch(e1),Ch(e2)) ,⊥.
H(e1) ,⊥ . H(e2) ,⊥ and
U1(e1)∨U j(e2) = urg

⇔

∃e = 〈〈11, . . . , ln〉,g,h,u,〈l′1, . . . , ł′n〉〉 ∈ E.
(∀k ∈ ({1, . . . ,n}\{i, j})⇒ lk = l′k) and
g = g1∧g2 and h = h1∪h2 and
u = u1∪u2∪ synch(Ch(e1),Ch(e2)) and
H(e) = H(e1)∪H(e2) and U(e) = urg

– CP = 〈CP1, . . . ,CPn,GCP〉

The definition of E, H, and U need additional explanation: An edge in the global
graph (XFG system) originated either from one edge of one of the constituent graphs
(processes) or from two matching edges from two different graphes (processes) as a
consequence of synchronization. In the first case, the original edge must not have a
value passing expression associated with it, since edges with a value passing expression
are require to synchronize.

The resulting global edge is then given the guard, the synchronization (with an
empty condition) and the urgency attribute from the local edge. In case the edge is
the result of a synchronization, the two value passing expressions must have matched.
Then the guard of the global edge is the conjunction of those of the local edges. The
synchronization action label of the global edge is a combination of the synchronization
action labels of the local edges. The update of the global edge is a combination of the
updates of the local edges and the update that results from the synchronization. The
global edge is urgent, if either one of the local edge is.

In case there is one sender-graph (process), which has an edge labeled with h!v, can
synchronize with an arbitrary number of receiver-graphs (processes) having h?v, where
h is a synchronization channel name and v is a share variable, then any receiver can
synchronize in the current state must do so. If there are no receivers, then the sender
can still execute the l! action, i.e. sending is never blocking. This broadcasting type of
synchronization is defined as follows.

Definition 11. Assume an order P1, . . . ,Pn of processes given by the order of the pro-

cesses in the XFG system X . We have a transition 〈l, l1, . . . , lm,ρ〉
µ∗−→ 〈l′, l′1, . . . , l′m,ρ ′〉

(see Definition 12) if there is an edge e = 〈l, l′〉 and m edges ei = 〈li, l′i〉 for 1 ≤ i ≤ m
such that

– e,e1, . . . ,em are in different processes,
– e1, . . . ,em are ordered according to the process ordering P1, . . . ,Pn,
– e has a synchronization label h! = {h!x|{x} ⊆ Expr,h ∈ H} and e1, . . . ,em have

synchronization labels h? = {h?v|{v} ⊆V}, where h is a broadcasting channel,
– ρ satisfied the guards of e,e1, . . . ,em,
– For all location l ∈ 〈l, l1, . . . , lm〉 not a source of one of the edges e,e1, . . . ,en, all

edges from l either do not have a synchronization label h? or ρ does not satisfy the
guard on the edge,

– ρ ′ is obtained from ρ by first executing the updated label given on e and then the
updated labels given in ei for increasing order of i,

– ρ ′ satisfies I(〈l′, l′1, . . . , ł′m〉)

In the following we define the operational semantics of the XFG system consisting
of a set of XFG processes.

Definition 12. Let X be an XFG with processes P1, . . . ,Pn. The timed structure T =
〈S,S0,T 〉 generated by X is the transition structure such that

– S0 consists of all tuples 〈l1,0, . . . , ln,0,ρ〉 where li,0 is the initial location of process
Pi and [[Initi]]ρ = tt for the initial conditions Initi of all processes Pi.

– For any state s = 〈l1, . . . , ln,ρ〉 ∈ S, any i ∈ {1, . . . ,n}, and any edge 〈li,g,h,u, l′i〉 ∈
Ei of process Pi such that [[g]]

ρ
= tt, T contains a transition 〈s,µ∗,s′〉 ∈ T where

s′ = 〈l′1, . . . , l′n,ρ ′〉 and l′j = l j for j , i, and where

ρ
′(v) =

{
[[e]]

ρ
if 〈v,e〉 ∈ u

ρ(v) otherwise

provided that [[I(l′j)]]ρ ′ = tt for all j ∈ {1, . . . ,n}. A set of pairs 〈v,e〉 is an assign-
ment where v is a variable and e is an expression whose value is to be assigned to
the variable.

– For a state s = 〈l1, . . . , ln,ρ〉 ∈ S and δ ∈R≥0, T contains a transition 〈s,δ ,s′〉 ∈ T
where s′= 〈l1, . . . , ln,ρ[+δ]〉 provided that for all 0≤ ε ≤ δ , the location invariants
evaluate to true, i.e. [[I(li)]]ρ[+ε] = tt, and that for all 0≤ ε < δ , the guards of any
urgent edge 〈li,g,h,u, l′i〉 leaving an active location li of state s evaluate to false,
i.e. [[g]]

ρ[+ε] = f f .
– To each such transition step, an energy consumption is associated by GCP(〈l0, . . . , ln,ρ〉

µ∗−→ 〈l′1, . . . , l′n,ρ ′[u]〉) = GCP(µ∗)

GCP(〈l0, . . . , ln,ρ〉
δ−→ 〈l0, . . . , ln,ρ[+ε]〉) = GCP(〈l0, . . . , ln〉) ·ρ[+ε]

Discrete transitions correspond to edges of one of the XFG processes. They require
the guard of the edge to evaluate to true in the source state. The destination state is
obtained by activating the target location of the edge and by applying the updates as-
sociated with the edge. Time-passing transitions uniformly update all clock variables;
time is not allowed to elapse beyond any value that activates some urgent edge of an
XFG process. In either case, the invariants of all active locations have to be maintained.

A run of X is a path in the underlying transition system. Given a run π = s0
c0
−→

s1
c1
−→ s2 . . .

cn−1
−→ sn, its ith-energy consumption is GCPi(π) =

n−1

∑
j=0

c j
i . A position along

a run π is an occurrence of a state 〈l0, . . . , ln,ρ〉 along π . Let ∆ be such a position,
then π[∆] denotes the corresponding state, whereas π ≤ ∆ denotes the finite prefix of π

ending at position ∆ .

3.3 Property Specification Language

For the definition of the property specification language, a mapping which relates the
compositional control state to the current global state. Let XFGProc_ID be a set of
identifiers of XFG processes in the XFG system (also named XFG_ID), XFG_LocID
be a set of identifiers of locations of XFG processes. We define the mapping Allocation
: LocID → (XFG_ID → LocID) that holds for each global location a mapping from
XFG processes to (local) locations. For location expressions, some new structures are
needed.

Definition 13. Given an XFG system X = 〈GV,GInit,〈Proc1, . . . ,Procn〉,Ch,GCP〉
with a single XFG process Proci = 〈Vi, Initi, Li, l0i, Ii, Ei, Hi, Ui, CPi〉. A location
expression of X is a construct Proci#loc, where Proci ∈ {Proc1, . . . ,Procn} and loc ∈
Li. Let LEX be the set of possible expressions for X . Given an X , we define the

evaluation function for location expressions LX [[_]] : LEX → (
n

∏
i=1

Li→ B) as follows:

LX [[Proc#loc]] (〈l0, . . . , ln〉) =
{

true if ∃i ∈ {1, . . . ,n}.Proci = Proc and li = loc
false otherwise

A location expression evaluates if a single XFG process in an XFG system control is at
some specified location. Thus, Proc#loc will be true if the single XFG process Proc is
at location loc.

Definition 14. Let X be an XFG system, i.e., a global XFG system, consists of a set of
XFG processes. Then a property of XFG specification, called XFG property, is a tuple
〈 VP, φ〉, where VP is a set of property variables, having a subset VPc ⊆ VP of clock
variables and a subset VPp ⊆ (VP \VPc) of parameters, and φ is a CTL [6] formula
augmented with either time or energy constraints. Valid XFG property CTL formulae
are defined by the following syntax:

φ ::= a | Proc#loc | Proc.v | ¬φ | φ ∨φ | EφUα∼β φ | AφUα∼β φ | (v := e)&φ

where

– a ∈ Bexpr(VP∪GV) is a Boolean value expression ranging over both variables from
the system and those of the property,

– Proc#loc∈ LEX expresses a location of the XFG process identified by Proc, where
Proc ∈ XFG_ID, and loc ∈ XFG_LocID,

– Proc.v expresses a variable of the XFG process in which Proc identifies a block
graph from the system and v a variable in Proc where v ∈VP,

– A and E are the universal and existential quantifiers, Uα∼β is the ”until” temporal
modality,

– α is either a clock variable c ∈VPc or an energy consumption function CP,
– β ranges over R,
– ∼ ∈ {<,≤,≥,>},
– v ∈ VP and e ∈ ExprVP∪GV , then v := e denotes an update of a property variable.

Note that any property specification variable v ∈ VP occurs in a Boolean value
expression or in the right-hand side of an update, it has to be in the scope of a
property update that binds v to some value.

In XFG property CTL update operators have precedence over temporal operators and
temporal operators have precedence over Boolean operators. In concrete syntax we
write property updates defined y a single assignment as (v := e)&φ , while non-singleton
property updates are written as {v1 := e1,v2 := e2}&φ

The transformation of derived CTL operators to core syntax is defined by the fol-
lowing rules:

– EF φ = true EU φ

– AG φ = ¬EF ¬φ

– AF φ = true AU φ

– EG φ = ¬AF ¬φ

– AX φ = ¬EX ¬φ

– φ1∧φ2 = (¬φ1)∨ (¬φ2)
– φ1⇒ φ2 = (¬φ1)∨φ2

Given an XFG system X , let the extension of X with VPc and VPp denote an
advanced XFG system X ′, derived from X by adding VPp to the set of variables,
and VPc to the set of clocks. An XFG system X satisfies a property specification 〈
VP, φ〉 if the initial state s0 of the transition system defined by the extension of X
with VP satisfies φ , written as s0 |= φ . The satisfaction relation is inductively defined in
definition 15.

The definition below gives the semantics for XFG CTL property, which is similar
to those found in literature and partly based on [6] and [5].

Definition 15. Let M = 〈S,S0,T 〉 be a transition system generated by an XFG system
X . Let 〈VP,φ〉 be an XFG property specification, and let 〈l,ρ〉 ∈ S be a state from
M. Then we write 〈l,ρ〉 |= φ to denote that φ is satisfied at a state 〈l,ρ〉 of M. Then
〈l,ρ〉 |= φ if and only if 〈l,ρ,θ〉 |= φ , where θ is an arbitrary initial valuation for the
property variables and the satisfaction relation 〈l,ρ,θ〉 |= φ is inductively defined as
follows:
〈l,ρ,θ〉 |= true
〈l,ρ,θ〉 |= a ⇐⇒ [[a]](ρ,θ) = true
〈l,ρ,θ〉 |= Proc#loc ⇐⇒ LX [[Proc#loc]](l) = true

(≡ (Allocation(l)(Proc) = loc))
〈l,ρ,θ〉 |= Proc.v ⇐⇒ [[Proc.v]](ρ,θ) = true
〈l,ρ,θ〉 |= ¬φ ⇐⇒ not〈l,ρ,θ〉 |= φ

〈l,ρ,θ〉 |= φ1∨φ2 ⇐⇒ 〈l,ρ,θ〉 |= φ1 or 〈l,ρ,θ〉 |= φ2
〈l,ρ,θ〉 |= Aφ1Uα∼β φ2 ⇐⇒ f or all runs π ∈∏Proc starting from 〈l,ρ,θ〉,

π |= φ1Uα∼β φ2
〈l,ρ,θ〉 |= Eφ1Uα∼β φ2 ⇐⇒ f or at least one run π ∈∏Proc starting

f rom 〈l,ρ,θ〉, π |= φ1Uα∼β φ2
〈l,ρ,θ〉 |= (v := e)&φ ⇐⇒ 〈l,ρ ′,θ′〉 |= φ with (ρ ′,θ′) = [[v := e]](ρ,θ) = true

v:=e denotes a property update
π |= φ1Uα∼β φ2 ⇐⇒ there exists ξ > 0 position along π such that

π[ξ] |= φ2 with θ[+δ (ξ)],
f or all positions ξ ′ ≥ 0 before ξ on π ,
π[ξ ′] |= φ1 and θ[+δ (ξ ′)],
and α ∼ β , where α =CP[π ≤ ξ]

In order to be able to deal with the property variables on XFG CTL, an additional
valuation θ is introduced for hold values for these variables. Having such a property
variable valuation, the semantics of the update operator becomes evident. Given θ, (v :=
e)&φ is satisfied in case φ is satisfied given an updated property valuation in which the
update v := e has been applied.

The semantics of φ1Uφ2 can be explained more: it has to ensure that the property
specification clocks are increased with the amount of time that elapses. Whenever a
subproperty (φ1 or φ2) is evaluated against a state along a path then θ has to be updated
such that the clocks in θ reflect the time that has elapsed. This is described by adding
δ (ξ).

4 Running example: Brake-by-Wire System

Our running example is a Brake-by-Wire (BBW) system, which is modeled in EAST-
ADL [9] based on a use case provided by VOLVO using Papyrus UML [15] within the
ATESST2 project [3]. Figure 2 depicts a simplified schematic view of the BBW system
with Anti-lock Braking System (ABS) function, where no mechanical connection exists
between the brake pedal and the actuators applied to the four wheels.

The BBW consists of seven components (seen as function blocks): the BBW is il-
lustrated as FunctionAnalysisArchitecture with �analysisFunctionType�
in Figure 2. Each construction of the BBW has�analysisFunctionProtptype�.
One component can communicate with the others through ports and connectors. Here-
after, the FunctionAnalysisArchitecture associated with�analysis Function
Type�will be called FT and the function blocks associated with�analysis Function
Protptype� will be called FP.

– Brake Pedal Sensor (pSensor) : The position of the brake pedal is measured by
this sensor and information derived from it is the basis for computing the applied
brake force.

– Brake Calculator (bCal): Based on each brake pedal position, a desired torque
(force) command is sent to the Brake Controller, i.e., each pedal angle is converted
to its corresponding torque and the desired global torque is calculated based on the
received torque. Afterwards, the calculated global torque is transferred to the Brake
Controller.

– Brake Controller (bCtr): This FP computes the desired torque required for each
wheel based on the value received from the Brake Calculator, and it sends the com-
puted torque to the ABS at each wheel.

– ABS (abs) : This FP controls the braking to prevent the locking of wheels to avoid
skidding. It calculates ABS commands based on the referenced brake torque (from
the Brake Controller) and inputs from Vehicle Speed Sensor and Wheel Speed Sen-
sor.

– Vehicle Speed Sensor (vSensor): The speed of the vehicle is measured and trans-
ferred to the ABS

– Wheel Speed Sensor (wSensor): The speed of the wheel is measured and trans-
ferred to the ABS.

– Brake Actuator (actuator): This FP performs the actual braking by applying the
brake pad to the brake disc, i.e., brake force is translated into voltage.

Each behavior inside FP (called intra-behavior), is visualized in an XFG process.
Moreover, the interactions between FPs through the ports and connectors (namely inter-
behavior) are captured by synchronization actions between XFG processes in the XFG
system (XFG global graph). In addition to modeling such executional intra- and inter-
behaviors of FPs in XFGs, the application requirements properties comprised of timing

<<analysisFunctionType>>
FunctionalAnalysisArchitecture

<<analysisFunctionPrototype>>
+pSensor: Brake Pedal Sensor

<<analysisFunctionPrototype>>
+bCal: Brake Calculator

<<analysisFunctionPrototype>>
+bCtr: Brake Controller

<<analysisFunctionPrototype>>
+vSensor: Vehicle Speed Sensor

<<analysisFunctionPrototype>>
+wSensor: Wheel Speed Sensor

<<analysisFunctionPrototype>>
+abs: ABS

<<analysisFunctionPrototype>>
+actuator: Brake Actuator

Position PositionAngle PositionAngle ReqTorque GlobalTorque

BrakeReference

BrakeReference

BrakeForce

VehicleSpeedABS

WheelSpeedABS

VehicleSpeed

WheelSpeed WSpeedRpm

VSpeedRpm

BrakeForceCmd

BrakeForceOut

Fig. 2. Schematic view of the BBW system in EAST-ADL

and energy constrained modalities that are formally specified in the advanced XFG
language.

For example, Figure 3 illustrates an XFG graphical representation, which simulates
the intra-behavior of ABS FP. The XFG textual implementation (XFG code) of ABS
is denoted as block graph ABS in Listing 1.3 (lines 185 – 293). Urgent edge marked
with a small round blob (line 289 with prompt keyword) on the S5 location describes
that no time unit is allowed on the synchronization action, in particular regarding the
value passing through the synchronization channel (lines 289 – 292). Furthermore, the
application requirements BBW system, in particular ABS, Brake Controller, and Actu-
ator, must satisfy are specified (lines 19 – 79). The ABS has three modes of being:

1. Receiving data from Vehicle Speed Sensor, Wheel Speed Sensor, and Brake Con-
troller processes through each synchronization channel Vspeed_ABS?, Wspeed_ABS?,
and BrakeCtr_ABS?, which are defined in lines 199 – 200 respectively. A set of lo-
cations {Idle, S1, S2, S3} and edges between them which are associated with rel-
evant channels model the ”receiving data” behaviors. The required functions for re-
ceiving data are illustrated as ABS_vehicle_speed_f(), ABS_wheel_spin_f(),
and ABS_Brake_torque_f() in Figure 3. They are defined in lines (217, 233),
(224, 246), and (210, 263) respectively as assigning the received data to the local
variables of ABS.

2. Computing required commands based on the received data from the three processes.
A location S4 and the incoming edges to the S4model “calculating slip value”. The
ABS controls the wheel braking in order to prevent locking the wheel, based on the
slip value (a variable for this value is defined as continuous type in line 89). The slip

Idle

S1

S2

S3

 S4
t<=3

dot energy
:= wabsS4

BrakeCtr_ABS?brake_torque

ABS_brake_torque_f() t:=0 g1:=1

ABS_vehicle_speed_f()
 t:=0 g1:=1

Vspeed_ABS?vehicle_sensor_speed

Vspeed_ABS?vehicle_sensor_speed

ABS_vehicle_speed_f()
 t:=0 g2:=1

BrakeCtr_ABS?brake_torque

ABS_brake_torque_f()
 t:=0 g1:=1

[(g1+g2+g3) >= 3]

slip_f() t:=0

Wspeed_ABS?wheel_sensor_spin

slip_f() t:=0 g3:=1

[(g1+g2+g3) >= 3]

[(g1+g2+g3) >= 3]

slip_f() t:=0

Wspeed_ABS?wheel_sensor_spin

ABS_wheel_spin_f()
 t:=0 g3:=1

Wspeed_ABS?wheel_sensor_spin

ABS_wheel_spin_f()
 t:=0 g3:=1

ABS_Actuator!bforce_cmd
S5

[t >= 3]
 g1:=0
 g2:=0
 g3:=0
 t:=0

bforce_cmd_f_()
energy := energy + dabs

Fig. 3. XFG graphical representation of the ABS

value is calculated by the equation, slip = (v−wr)/v where v is the vehicle speed,
w is the wheel speed, and r is the wheel radius which are defined in lines 90 – 93.
This equation is illustrated as a function slip_f() and defined straightforwardly
in lines 238, 254, and 268. The friction coefficient of the wheel has a nonlinear
relationship with slip:

– When slip increases from zero, the friction coefficient also increases and the
value reaches the peak when slip is around 0.2. After that, further increase in
slip reduces the friction coefficient. For this reason, if slip is greater than 0.2
the Brake Actuator is released and no brake is applied, otherwise the requested
brake torque is used.

The required ABS commands for the Brake Actuator are controlled (computed) by
the variable slip. Thus, from the location S4, based on the current slip value (slip),
the ABS braking force command (bforce_cmd) is computed during a given clock
constraint t ≤ 3 (lines 273 – 286). The required function for this computation is
given as bforce_cmd_f() in Figure 3 and defined in line 284. Furthermore, the
ABS has two energy consumption types:

– Consumption of continuous energy (dot energy) expressed by its derivative
(wabs) that gives the rate on the location S4 where the ABS process consumes
energy at the rate of wabs per one time unit (line 275 – 276).

– Consumption of discrete energy allocated on the edge from the location S4 to
the S5 that is expressed as a usual update, e.g., energy += dabs where dabs
is a discrete type integer (line 280 – 281).

3. Sending out the computed commands to the Brake Actuator via the synchronization
channel ABS_Actuator!, which is defined in line 201. The location S5 and its
outgoing edge, which returns to the initial location Idle, model the ”sending data”
behavior.

An interchange format XFG expressed in structured operational semantics for for-
mal modeling and analysis of ERT system is introduced based on the hybrid and timed
automata theory. The XFG language can provide a sound basis for modeling interdis-
ciplinary (intra- and inter-block behaviors) semantics of systems in EAST-ADL in par-
ticular. In our early studies [14, 13], we first modeled the intra- and inter-behaviors of a
system in EAST-ADL at the UML level then automatically translated the UML model
into the XFG model by model transformation. In this way, developers can use familiar
notations, while benefiting from formal specification and verification.

To enable an automatic and visualizing analysis of the XFG models derived from
EAST-ADL models, we study how to obtain computer-aided analytical leverage through
well established analysis tools. This study will provide a basis for automatic model
transformations between EAST-ADL, XFG, and (Timed-Automata based) specification
languages for model checkers. Our objective model checkers are Uppaal series tools,
KRONOS and HYTECH. Details will be investigated in the following section.

1 % This is the Brake by Wire System
2 system BBW
3
4 %global constants , variables assignment are added here
5 define(radius, 10); % define wheel radius
6 define(wabsS4, 3); % define weighted energy of ABS
7 define(wgbc, 5); % define weighted energy of Global Brake Controller
8 define(wact, 3); % define weighted energy of Actuator
9 define(dabs, 2); % define discrete energy of ABS

10 define(dgbc, 2); % define discrete energy of GBC
11 define(dact, 2); % define discrete energy of Actuator
12 define(rt, 100) % define end-to-end reaction time
13 define(sr, 10) % define slip rate bound
14 define(mgbc, 100) % define maximum energy assigned for GBC
15 define(mabs, 150) % define maximum energy assigned for ABS
16 define(min, 500) % define minimum energy consumed for the entire system BBW
17
18 % define property variables
19 property variables
20 clock t, c, clk, tl;
21 cont real get_torque , slip, bforce_cmd;
22 cont real energy, cost_abs , cost_gbc;
23
24
25 % define properties (mainly related to ABS)
26 AG(abs#S5 imply ((clk:=0)&AF(clk < rt and actuator#S2)))
27 % End-To-End reaction time property between ABS and Actuator
28
29
30 AG((abs#S1 or abs#S2 or abs#S3) and abs.slip>sr)
31 imply (actuator#S1 and actuator.bforce_cmd2==1))
32 % In case ABS slip rate exceeds its given bound (sr),
33 % the brake actuator is on the release mode and no brake is applied.
34
35
36 AG(abs#S5 imply (0<= abs.t and abs.t <=3)
37 % ABS local execution time property
38
39
40 AG((energy:=0)&EF(energy <=min and abs#S5))

41 % total accumulated energy of which the BBW consumes until
42 % it reaches to the ABS’s location S5.
43 % it can be verified by uppaal-cora reachability analysis
44
45
46 AG(abs#S5 imply (abs.cost_abs <= mabs))
47 % ABS local energy consumption property
48
49
50 AG(abs#S4 imply ((cost_abs:=0)&EF(cost_abs <= mabs-dabs)))
51 % local energy consumption of which ABS is at the location S4
52
53
54 AG(Bctr#S1 imply (Bctr.cost_gbc <= mgbc))
55 % GBC local energy consumption property
56
57
58 %lead-to properties: location/data correspondence check
59 AG(abs.S1 or abs.S2 or abs.S3) imply AF(abs.S5))
60 % whenever the abs has received a signal from any of the GBC, wheel sensor,
61 % vehicle Sensor, it eventually sends the torque command to the actuator
62
63 AG(Bctr.Idle imply AF(Bctr.S2))
64 % whenever the GBC has received a signal from the pedal sensor,
65 % it eventually sends the computed torque to the ABS
66
67 AG(Bctr.brake_torque == 0 imply AF(Bctr.brake_torque != 0))
68 % each pedal angle data is eventually converted to the brake torque
69
70 AG(abs.slip == 0 imply AF(slip != 0))
71 % the slip rate is eventually computed based on
72 % the each brake torque received from the GBC
73
74 %data correspondence check
75 EF(abs.bforce_cmd == actuator.get_torque)
76 % the abs sends out a value of its torque command then
77 % the value should be received by the actuator
78
79 EF(Bctr.brake_torque == abs.abs_brake_torque)
80 % the GBC sends out a value of its brake torque then
81 % the value should be received by the ABS
82
83
84
85 state
86 clock time:=0 ;
87 cont real energy:=0;
88
89 cont real [0,20] slip ;
90 cont real [1,41] wheel_spin ;
91 cont real [1,41] wheel_sensor_spin ;
92 cont real [1,121] vehicle_speed ;
93 cont real [1,121] vehicle_sensor_speed ;
94 cont real [1,30] bforce_cmd ;
95 cont real [1,46] pedal_pos ;
96 cont real [1,46] pedal_sensor_pos ;
97
98 disc int [1,3] brake_torque ;
99 disc int [0,3] bforce_cmd2 ;

100
101 % define processes here (function block)
102 processes
103 Pedal_Sensor Psensor;
104 Brake_Calculator Bcal;
105 Brake_Controller Bctr;
106 WheelSpeed_Sensor Wsensor;
107 VehicleSpeed_Sensor Vsensor;
108 ABS abs;

109 Actuator actuator;
110
111
112 % define process composition behavior
113 composition
114 Psensor || Bcal || Wsensor || Vsensor || abs || actuator || Bctr
115
116
117 % each function block process is defined here
118
119
120 % define Global Brake Controller process type here
121 block graph Bctr
122
123 % define local variable assignments
124 state
125 clock tl:=0 ;
126 cont real cost_gbc := 0;
127 disc int request_torque := 0;
128 disc int brake_torque :=0 ;
129
130 % all the input and output ports are defined here
131 ports
132 in Psensor_BrakeCtr;
133 out BrakeCtr_ABS;
134
135 % define initial state
136 init
137 Idle
138
139 % define locations
140 locations Idle {
141 when true
142 synch Psensor_BrakeCtr?pedal_sensor_pos;
143 do request_torque := pedal_sensor_pos;
144 energy := energy+dgbc;
145 %accumulated discrete energy consumption for the whole BBW system
146 cost := cost+dgbc;
147 %local discrete energy consumption for the GBC
148 tl:=0;
149 goto S1
150 }
151
152 % invariant is defined if it is necessary
153 S1 inv (tl <= 5) {
154 when not(tl>=3 && tl<=5)
155 do dot energy := wgbc;
156 %accumulated continuous energy consumption for the whole BBW system
157 dot cost_gbc := wgbc;
158 %local continuous energy consumption for the GBC
159 goto S1
160
161 when (tl>=3 && tl<=5)
162 do out_torque()
163 {
164 if (request_torque <=15 && request_torque >=0)
165 brake_torque := 1 ;
166
167 if (request_torque <=30 && request_torque >=15)
168 brake_torque := 2 ;
169
170 if (request_torque <=45 && request_torque >=30)
171 brake_torque := 3 ;
172 }
173 tl:=0;
174 goto S2
175 }
176

177 S2{
178 when true prompt
179 synch BrakeCtr_ABS!brake_torque;
180 do cost_gbc := 0;
181 goto Idle
182 }
183
184 % define ABS process type here
185 block graph ABS
186
187 state
188 clock t:=0 ;
189 disc int g1:=0;
190 disc int g2:=0;
191 disc int g3:=0;
192 disc abs_brake_torque := 0;
193 cont real cost_abs := 0;
194 cont real abs_vehicle_speed := 0;
195 cont real abs_wheel_spin := 0;
196 cont real bforce_cmd : =0 ;
197 cont real slip := 0;
198
199 ports
200 in Vspeed_ABS , Wspeed_ABS , BrakeCtr_ABS;
201 out ABS_Actuator;
202
203 init
204 Idle
205
206 locations Idle {
207 when true
208 synch BrakeCtr_ABS?brake_torque;
209 do g1:=1;
210 abs_brake_torque := brake_torque;
211 t:=0;
212 goto S1
213
214 when true
215 synch Vspeed_ABS?vehicle_sensor_speed;
216 do g2:=1;
217 abs_vehicle_speed := vehicle_sensor_speed;
218 t:=0;
219 goto S2
220
221 when true
222 synch Wspeed_ABS?wheel_sensor_spin;
223 do g3:=1;
224 abs_wheel_spin := wheel_sensor_spin;
225 t:=0;
226 goto S3
227 }
228
229 S1 {
230 when not (g1+g2+g3 >= 3)
231 synch Vspeed_ABS?vehicle_sensor_speed;
232 do g2:=1;
233 abs_vehicle_speed := vehicle_sensor_speed;
234 t:=0;
235 goto S2
236
237 when (g1+g2+g3 >= 3)
238 do slip := (abs_vehicle_speed -abs_wheel_spin*radius)/abs_vehicle_speed;
239 t:=0;
240 goto S4
241 }
242
243 S2 {
244 when not (g1+g2+g3 >= 3)

245 synch Wspeed_ABS?wheel_sensor_spin;
246 do g3:=1;
247 abs_wheel_spin := wheel_sensor_spin;
248 t:=0;
249 goto S3
250
251 when (g1+g2+g3 >= 3)
252 synch Wspeed_ABS?wheel_sensor_spin;
253 do g3:=1;
254 slip := (abs_vehicle_speed -abs_wheel_spin*radius)/abs_vehicle_speed;
255 t:=0;
256 goto S4
257 }
258
259 S3 {
260 when true
261 synch BrakeCtr_ABS?brake_torque;
262 do g1:=1;
263 abs_brake_torque := brake_torque;
264 t:=0;
265 goto S1
266
267 when (g1+g2+g3 >= 3)
268 do slip := (abs_vehicle_speed -abs_wheel_spin*radius)/abs_vehicle_speed;
269 t:=0;
270 goto S4
271 }
272
273 S4 inv (t <= 3) {
274 when true
275 do dot energy := wabs;
276 dot cost_abs := wabs;
277 goto S4
278
279 when not (t <= 3)
280 do energy := energy + dabs;
281 cost_abs := cost_abs + dabs;
282 t:=0;
283 g1:=0; g2:=0; g3:=0;
284 bforce_cmd := slip * abs_brake_torque;
285 goto S5
286 }
287
288 S5 {
289 when true prompt
290 synch ABS_Actuator!bforce_cmd;
291 do cost_abs : =0;
292 goto Idle
293 }
294
295 % Actuator process is defined
296 block graph Actuator
297
298 state
299 clock c;
300 cont real get_torque = 0;
301 disc bfprce_cmd2 := 0;
302
303 ports
304 in ABS_Actuator;
305 out Actuator_Wdynamic;
306
307 init
308 Idle
309
310 locations
311
312 Idle {

313 when true
314 synch ABS_Actuator?bforce_cmd;
315 do c:=0;
316 get_torque := bforce_cmd;
317 goto S1
318 }
319
320 S1 inv (c <= 10) {
321 when (c >=2 && c <= 10)
322 do dot energy := wact;
323 actuator_torque_f() {
324
325 if (get_torque >=31)
326 bforce_cmd2 := 1 ;
327
328 if (get_torque <=30 && get_torque >=15)
329 bforce_cmd2 := 2 ;
330
331 if (get_torque <=15 && get_torque >=1)
332 bforce_cmd2 := 3 ;
333 };
334 c:=0;
335 goto S2
336
337 when not (c>=2 and c<=10)
338 do energy := energy + dact;
339 goto S1
340 }
341
342 S2{
343 when true prompt
344 synch Actuator_Wdynamic!bforce_cmd2;
345 goto Idle
346 }

Listing 1.3. XFG Textual Specification

5 Verification

The ERT behaviors in EAST-ADL can be specified in XFGs based on Behavior constraints
with the addition of resource-usage information. To enable computer-aided graphical
modeling, formal analysis of the ERT behaviors, and even automatic code generation,
the XFGs are represented in Uppaal-Cora PTAs2 by semantic anchoring.

Application requirements on the system expressed in XFG CTL properties are rep-
resented as Uppaal-Cora CTL statements, and that can be verified by Uppaal-Cora.
We have been developing conversion algorithms transform the all prototypes in XFG
language to Uppaal-Cora process type declarations. In case an additional observation
is required to dispatch an XFG process, the dispatcher XFG simply sends a triggering sig-
nal to the channel trigger. The transformation procedure also created the Uppaal-Cora
trigger process that initializes the active objects of all processes types and issues trig-
gers to them, as well as the application requirements are converted to the Uppaal-Cora
CTL expressions.

The XFG system X consisting of those XFGs is considered as a network of PTA and
expressed as a composition of the PTAs: We consider two types of resource consump-
tion analysis:

2 Uppaal-Cora is a branch of the Uppaal tool for cost optimal reachability analysis. For more
details we refer the reader to www.uppaal.org

– Feasibility analysis to verify if the accumulated resource consumption on the actual
behavior execution of FP meets the available resource provided by the platform, and
its corresponding formula:
• AFcp≤min Proc#loc

which states that for all execution runs, the loc location in the XFG process is even-
tually reached within min resource-usage where cp is an energy consumption func-
tion;

– Optimization of resource consumption analysis to compute an optimal resource-
aware run for the overall consumption of resources that formalized:
• EFcp≤max Proc#loc

which denotes there is a run which the loc location in the XFG process is reached
within a maximum resource-usage max

In our present experiment, we assume memory is a critical resource needs to be
checked, and our particular concern is to analyze the optimal resource-consumption
reachability problem for computing the minimum memory-usage on a corresponding
run generated with the help of Uppaal-Cora, i.e., one can identify a sequence of event
occurrences of BBW that costs the minimum memory. As an example, we find an opti-
mal memory-usage sequence satisfying the property:

– EF(ABS#abs_cal)

which means that the torque command calculated based on the computed slip rate value
is eventually sent to the actuator. This property is equivalent to the XFG property speci-
fication expressed in Listing 1.3 (line 40). The execution run is found by Uppaal-Cora
is presented in Figure 5, and the best solution for its memory-usage (the lowest memory
consumption) has been presented as 1870.

According to the safety concern, in addition to the optimal resource reachability
analysis, the quality requirements are also formalized like the following which are es-
tablished as valid over the BBW system network PTA model:

1. The brake pedal is activated, the actuator reacts timely under its given time bound
(rt) as a failsafe. This is equivalent to checking the BP’s FP is invoked, it should
not reach the f ail location of the observer XFG (Obs), which violates the bounded
response time condition, while the actuator is executing.

– AG(Psensor#pedal⇒ ((clk := 0)&EF(clk ≤ rt ∧ACT #active)))
≡ AG(Psensor#pedal⇒ (¬Obs# f ail∧ACT #active))

The Obs XFG contains an observer clock constraint as an invariant. This observer
restricts the time bound of response time. By applying this observer XFG in our
experiment, we successfully evaluate end-to-end response time properties (see line
26 in Listing 1.3) in a way that the fail location, which violates the bounded time
condition, is never reached from any location of the main actual system model.

2. In case the ABS slip rate variable exceeds its given bound (sr), the brake actuator
is on released mode (rmode) and no brake is applied (bcmd == 1), which is equiv-
alent to the XFG property specification in Listing 1.3 (line 30 – 31)

– AG((ABS#abs_cal∧ (slipRate > sr))⇒ (ACT #rmode∧ bcmd==1))

3. Execution time property: each FP and its corresponding XFG should execute within
its given local execution time, lower ≤ clock ≤ upper (equivalent to the XFG prop-
erty on line 36)

– AG(ABS#cal⇒ (lower ≤ ABS.clock ≤ upper))

4. Lead-to property: whenever the ABS has received a signal from the GBC, it even-
tually sends the torque command to the actuator. Other lead-to properties (line 59
– 70 in Listing 1.3) are also successfully evaluated.

– AG(ABS#get_torque⇒ AF(ABS#abs_cal)

5. Data correspondent check: the ABS sends out a value of its torque command then,
the value should be received by the actuator. (line 75 – 79 in Listing 1.3)

– EF(ABS.b f orce_cmd == ACT.get_torque)

Search order is breadth first and uses conservative space optimization for such safety
properties checking. Verifying properties takes an average of around 2 seconds per ver-
ified property on an Intel T9600 2.80 GHz processor.

References
1. R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: An algorithmic

approach to the specification and verification of hybrid systems. In Hybrid Systems, volume
736 of LNCS, pages 209–229. Springer-Verlag, 1993.

2. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. Advancing Traffic Efficiency and Safety through Software Technology Phase 2 (European
project), 2010. http://www.atesst.org.

4. Gerd Berhmann, Alexandre David, Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi.
Developing uppaal over 15 years. Software - Practice and Experience, December 2010.

5. Thomas Brihaye and Cois Raskin. Model-checking for weighted timed automata. In In
Proceeding of FORMATS-FTRTFTŠ04, LNCS 3253, pages 277–292. Springer, 2004.

6. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. The MIT Press,
2000.

7. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid Systems III,
volume 1066 of LNCS, page ... Springer-Verlag, 1996.

8. C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with KRONOS. In
Proceedings of the 7th International Conference on Formal Description Techniques, pages
227–242. Chapman and Hall, 1995.

Fi
g.

4.
O

pt
im

al
se

qu
en

ce
of

ev
en

to
cc

ur
re

nc
es

in
B

B
W

9. EAST-ADL Consortium. East-adl domain model specification v2.1.9. Technical report,
Maenad European Project, 2011.

10. T.A. Henzinger and P.-H. Ho. algorithmic analysis on nonlinear hybrid systems. In Proceed-
ings 7th International Conference on Computer Aided Verification, CAV’95, volume 939 of
LNCS, pages 225–238. Springer-Verlag, 1995.

11. T.A. Henzinger and P.-H. Ho. HyTech: The cornell hybrid technology tool. volume 1019 of
LNCS, pages 29–43. Springer-Verlag, 1995.

12. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to hytech, 1996.
13. Eun-Young Kang, Gilles Perrouin, and Pierre-Yves Schobbens. Towards formal energy and

time aware behaviors in east-adl: An mde approach. In QSIC, pages 124–127, 2012.
14. Eun-Young Kang, Gilles Perrouin, and Pierre-Yves Schobbens. XFG language and its pro-

file for modeling and analysis of energy-aware and real-timed behaviors. Technical report,
PReCISE Research Centre, Belgium, 2012.

15. Open Source Tool for Graphical UML2 Modeling, 2010. http://www.papyrusuml.org.
16. UPPAAL CORA, 2012. http://people.cs.aau.dk/∼adavid/cora/language.html.

