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An OO interpretation of graphs as
meta-CASE’s meta-meta-model

Vincent Englebert !

Computer Science Department
The University of Namur
Namur, Belgium

Abstract

This paper presents the meta-meta-model of a meta-CASE that is largely based
on graphs. Nevertheless, the graph aspects have been hidden behind an extended
object-oriented model that makes easier the modeling task: the generalization of
meta-models into meta-classes as well as the possibility to edit the inheritance
relationships at the instance level makes this approach both simple and expressive.

1 Introduction

CASE (Computer Aided Software Engineering) tools are invaluable to support
software engineers. Indeed, verification, generation of code, simulation, or re-
verse engineering tasks are very frequent and often cumbersome. Moreover,
applications become larger, more complex and have to meet new requirements
such as certification, metrics, etc. The apparition of UML (Unified Modeling
Language) as a franca lingua has made companies more aware of the need of
methodologies and of tools to carry out large projects. Nevertheless, CASE
tools generally support a limited set of models and do not allow us to extend
them with new notations, new models, and new functionalities. For this rea-
son, researchers have proposed the concept of meta-CASE tools since the 90’s
to respond to those criticisms [1]. Such tools add an extra abstraction level
in the general architecture of a CASE tool with the result that they are no
more hard-coded, but are just the result of an interpretation of some higher
level that can be edited on the fly, and by way of consequence, their specifi-

cation can evolve. To date, about ten operational architectures are available
[10,11,15,17,18].
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This paper describes a new architecture that makes it possible to represent
the information managed by a CASE tool as a graph with an interpretation
that is close to the OO concepts. This graph will be the core repository of
our meta-CASE which is presented in section 2. Section 3 explains how can
some transformations be subsumed in the repository semantics. Section 4 will
describe the global architecture along with the Voyager I+ programming lan-
guage and the Grasyla visual language. Before concluding this paper, we will
show the expressiveness of our concepts on a case study (modeling distributed
architectures).

2 Repository

Our experience with CASE tools [4,8] shows that a modeling task leads to
a lot of specifications that can be related together to form complex graphs
where some nodes can be exploded in other graphs. We explain in the next
paragraphs how we have derived an OO meta-meta-model to represent these
graphs.

If we investigate a single graph, we can observe a strong analogy between
the concepts of node/edge and resp. meta-class/meta-relation. Adding meta-
properties to meta-classes allows us to decorate the nodes with values. Meta-
classes can also have methods written in Voyager 114+ — the language is pre-
sented in the sequel. It remains to identify a graph with a meta-model to close
this first step. So, a meta-model is made of meta-classes described with meta-
properties and methods and linked together by meta-relations. To achieve
an OO meta-meta-model, we endow the meta-classes with the possibility to
inherit from other meta-classes (multiple-inheritance with possible disjoint
specializations).

The second step consists in modeling the possibility to explode a node into
another graph. Indeed, so far, we have just modeled “flat” graphs. The more
natural way to proceed is to define meta-models/graphs as specializations of
meta-classes/nodes. By doing so, meta-classes can be meta-models, that are
themselves described in terms of meta-classes, and so on. Moreover meta-
models can inherit from other meta-models or meta-classes?.

Although the relationship between a meta-model and its constituents (i.e.,
its definition) is close to the concept of aggregation (cfr. UML), our semantics
includes the meta-relations. Moreover, contrary to UML, a meta-model (say
M) has one alone definition that can be extended to other meta-classes in pos-
sible subtypes of M. The aim of this new “aggregation” is to make possible the
complete automation of its behaviour in the tool. For instance, only the more
specialized definition can be instantiated. Let us imagine a Temporal E/R3

2 Meta-classes can not inherit from meta-models.
3 i.e. Entity/Relationship diagram with temporal annotations.
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Fig. 1. Meta-Meta-Model This E/R schema shows the definition of our meta-
-meta-model. Technical details have been erased for pedagogic reasons. The Models
and RelDomain relationships denote the possible constituents of a meta-model. The
meta-relation instances are not shown, they have been hard-coded for efficiency
purpose.

meta-model that would be a specialization of the E/R meta-model. Then, the
tool would permit us to “project” temporal ER schemata to a “normal” E/R
meta-model by removing all the concepts that do not belong to the definition
of the E/R meta-model definition.

The E/R schema? of Fig. 1 depicts the static diagram of our repository.
The reader will find the main concepts explained so far, as well as a descrip-
tion of the instances (Instance, Specification and OmegaSpec). The Omega
entity is a singleton and denotes a special meta-model which encompasses all
the other ones, this corresponds to what OODBMS call a root. This special
meta-model has only one instance (the OmegaSpec’s instance).

Figures 2 and 3 show how to use this meta-meta-model to define the meta-
model of statecharts and how this can be instantiated to produce the state-
chart of a switch. The lasso (dotted and thick lines) shows the meta-model
definition.

The generalization of meta-models to meta-classes makes it possible to
define advanced concepts quite elegantly. Let us make our statecharts a little
more realistic by adding OR and AND states. They are states that can be
refined resp. by either one or several parallel statecharts. It is easy to keep
this requirement into consideration in our approach. Firstly, we define a new
meta-model OR-state which is a subtype of the state meta-class and that
encompasses meta-classes state, init, final, transition, AND-state and
OR-state (i.e., it-self). Secondly, we define a new meta-model (AND-state)

4 We use the graphical notation of the DB-MAIN case tool (http://www.db-main.be).
Triangles denote specialization relationships, and P,D, T letters stand for Partition, Disjoint,
and Total.
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Fig. 2. Meta-Model This meta-model describes simple statecharts in terms of
concepts of our meta-meta-model. To help the reader to understand this diagram,
we have added stereotypes a la UML which shows the type of every element. The

lasso shows the definition of the Statechart meta-model.
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Fig. 3. Specification This diagram is a possible visualization of a specification
which complies with the Statechart meta-model.
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Fig. 4. Statechart Meta-Model This schema depicts three meta-models:
OR-state, AND-state and statechart. AND-states comprise only statecharts al-

though OR-states may contain every kind of state.

as a subtype of state. It is defined just in terms of statecharts. The resulting
meta-model is depicted in Fig. 4. Our aim is not to present a brand-new
statechart meta-model (the reader can read [2] or [14] for more information),
but to show that usual notations can be easily modeled with our approach.
Last but not least, our tool is able to exploit those concepts to manage such

specifications automatically.
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Fig. 5. Integration of meta-models

The last example of this section shows other benefits of our approach.
In complex architectures, a same concept can often appear at several places
with distinct semantics. For instance, a table of a relational DBMS could
be presented as a CORBA interface on some ORB bus and be implemented
by a Java skeleton. We have thus three “objects” that denote essentially
the same thing. Their definition must obviously be synchronized oneway or
another. We can easily model the common properties of these objects in a
meta-model (Abstract Module) that will capture their essence. This meta-
model can be declined/specialized in three versions: relational, CORBA and
Java. Each one will extend the concepts of the abstract module with its own
characteristics: the CORBA meta-model will precise if methods are oneway or
synchronous and the relational meta-model will specify if columns are optional
ornot null. Figure 5 describes meta-models which permit us to define one or
more specifications sharing common information such as the customer entity
that can be “conjugated” in a SQL table, a CORBA interface or a Java
interface.

Moreover, our meta-meta-model allows meta-properties to be contextual.
This means that one instance can have several values for a same meta-property
which depend on the specification the instance belongs to. In our example,
attribute.name and attribute.type are such meta-properties. Indeed, the
type of an attribute could be char(30) in SQL, wstring in CORBA, and
String in Java.

Of course, the semantics of this repository is more complex and we have
just presented its main lines of force. [3] presents a more detailed definiton
as well as a comparison with other meta-CASEs. Our aim is to show that
it is possible to reach a great expressiveness with just few concepts (meta-
class, meta-model, ...). In the scope of this workshop, it is also interesting
to compare our framework with other approaches such as GXL[9] — even if
their objective are different. Contrary to GXL, nodes can be shared between
several graphs with specific information that depends on the graph it belongs



Fig. 6. Dynamic specialization and inheritance

to (context attributes, non-disjoint specialization) and can have a behaviour.
Nevertheless, our model of “edge” is weaker, we do not propose hyperedge or
explosion of edge into graphs, etc. Such features must be emulated.

The next section explains how some transformations can be naturally ex-
pressed in our approach.

3 Transformations

In forward/reverse or re-engineering, transformations are natural steps be-
tween distinct levels of abstraction (conceptual, physical, analysis, design,

..) [7,13]. Many efforts have been done to identify or to formalize such
transformations and they constitute a real added value for CASE tools [6,13].
The OMG has recently placed this principle at the heart of its MDA (Model
Driven Architecture) policy. But in many cases, transformations pose a prob-
lem to ensure the traceability between origin and target specifications, since
generally either the specification is really transformed and the argument spec-
ification is destroyed® or we preserve the argument without keeping the links
between them ¢ .

Our semantics allows the method engineer to specify many transformations
as a dynamic specialization of objects inside the hierarchy of its meta-classes.
Contrary to most modern languages, such specializations may occur a poste-
riori, once the object has already been instantiated. For instance, a concept
that has been identified as a component must often been transformed to a class
in the design phase, and to a stub (resp. a skeleton) in order to distribute
it in the system and to a relational table to save its state. In the same way,
in UML, a transformation could refine a static diagram to generate methods
from all events that have been identified in a statechart or a collaboration
diagram. For such transformations, the hierarchy of types defined in Fig. 6

® Unless some kind of versioning mechanism has been activated [10].
6 Some tools keep a journal that makes it possible to retrieve this link a posteriori [16].



suffices to support them automatically in our meta-CASE. Indeed, the type
of an object (i.e. its meta-class) can mutate inside its type hierarchy, and
moreover, an object can have distinct types in each specification it belongs to.
Hence, the same object (for instance the customer concept) could be defined
as a component, and next be refined into a class in a static diagram, into a
stub and a skeleton in some deployment diagram, into a table in a relational
schema and some of its methods could be merged with events from a state-
chart in creating a common supertype. Moreover, the meta-CASE can exploit
this semantics to automatically propose tools to help the engineer in his task
(i.e. to transform).

So with a simple magic wand, the traceability is automatically maintained
and the life cycles of these objects are synchronized. Of course, this mech-
anism is not the universal panacea. Many transformations are beyond this
principle, but we believe that for simple transformations (and more particu-
larly refinement transformations) this solution is simpler and more elegant.

4 Architecture

Although this article is focused on the repository, a presentation of the gen-
eral architecture of our tool is necessary to understand its main strong points.
The repository only describes the static part of a meta-model (as well as some
constraints such as identifiers), we have not yet a specific language to de-
scribe advanced integrity constraints. Nevertheless, the tool is endowed with
a programming language (Voyager I1+) that permits us to write predicates,
triggers, or any other program (import/export, checking, ...). Voyager II+ is
a modular Pascal-like language endowed with garbage collected lists, declara-
tives queries, a lexical analyzer and meta-facilities.

Another key component in our architecture is the Grasyla (Graphical Sym-
bolic Language) interpreter. The crucial idea behind this language is: what-
ever is the way the method engineer has defined a meta-model, it should be
possible to define Grasyla rules to present specifications according to the re-
quirements of another engineer or some standard. All the concurrent works
lack this feature — they generally associate a meta-class with the concept of
“visual node”. This make their meta-models more sophisticated because they
must reflect in some way visual criterions or requirements. In our approach,
engineers can specify sophisticated views (such as the UML notations) by
writing less than 50 lines of declarative code. The rules can be edited even
while the tool is running.

Finally, the tool presents the meta-meta-model as a simple meta-model
that acts as a proxy for the first one. This characteristic permits us to boot-
strap all the tools that are required to edit/extend/visualize the meta-meta-
model.
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Fig. 7. Case study.
5 Case Study: modeling distributed architectures

Modeling distributed architectures is a crucial need and most methodologies
still neglect this aspect [6]. Indeed, we find either very informal descriptions
(UML devotes only a few pages to that [14]) or more formal description such as
the Architecture Description Languages (ADL [12]), but that last approaches
are mainly a posteriori techniques to model and check systems once the archi-
tecture is already well defined. Our research group is investigating the defi-
nition of a methodology that would encompass the whole cycle from informal
descriptions to design and implementation phases. We will use this context
to illustrate a representative except that uses concepts from ADL to define
component types (for instance pipes and filters), components (an analyzer, a
parser and a semanticizer) as well as their interfaces and their deployment on
the physical architectures (network and nodes).

The four specifications shown in Fig. 7 illustrate how our approach allows
engineers to specialize (and thus to transform) conceptual components (we
have used the concepts of the ACME language [5] for this purpose — the
“distributed parser” window) to IDL interfaces (the “compiler” window)
that are next deployed on nodes borrowed from the specification of some



physical network (the “CNRS-FUNDP” window). The concept of “compiler” is
thus unique (i.e. a single node) but has several specializations. All these views
are obviously synchronized, since they have been obtained by specialization
— the kind of transformation we wanted to illustrate.

6 Conclusion

We have presented a meta-repository that is both very simple to understand
and expressive enough for complex and realistic needs in the software engineer-
ing realm. Meta-modeling experiments have been done with database models,
statecharts, ADL constructs, security models, organizational structures, etc.
Moreover, the dynamic generalization of meta-models into meta-classes allows
one to treat homogeneously advanced mechanisms such as refinement and ex-
plosion processes. A prototype has been developed in C++ and the reader
can view several screenshots on our site” .
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