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Drawing from the advanced mathematics of noncommutative geometry, we model a “classical” Dirac
fermion propagating in a curved spacetime. We demonstrate that the inherent causal structure of the model
encodes the possibility of Zitterbewegung—the “trembling motion” of the fermion. We recover the well-
known frequency of Zitterbewegung as the highest possible speed of change in the fermion’s “internal
space.” Furthermore, we show that the bound does not change in the presence of an external
electromagnetic field and derive its explicit analogue when the mass parameter is promoted to a Yukawa
field. We explain the universal character of the model and discuss a table-top experiment in the domain of
quantum simulation to test its predictions.
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I. INTRODUCTION

The introduction of the Dirac equation [1] was a
prodigious step towards the unification of quantum and
relativistic principles. Surprisingly enough, the differential
operator engaged in the Dirac equation turned out to play a
pivotal role in differential geometry [2]. Moreover, it lies at
the heart of Connes’ theory of noncommutative geometry
[3], which extends such classical notions as differentiation,
distance [3], or causality [4] to an abstract algebraic
setting. Nowadays, noncommutative geometry centered
around the concept of the Dirac operator provides a
compelling framework for the study of fundamental
interactions [5], yielding concrete testable predictions in
the domain of elementary particles [6,7] and gravitational
physics [8].
Building upon Connes’ ideas [9], we model a single

massive Dirac fermion with the help of an almost commu-
tative spacetime [6]. The latter turns out to provide a
geometric explanation of one of the peculiarities of Dirac
theory—the Zitterbewegung [10]. We show that the inher-
ent causal structure of the almost commutative spacetime
puts an explicit bound on the frequency of the “trembling
motion.” We expound the universality of this feature and
outline its consequences for quantum gauge theories.
Finally, we explain how the concept of quantum simulation
[11] can be promoted to emulate almost commutative
spacetimes, thus opening the door to a direct experimental
test of Connes’ theory.

II. ZITTERBEWEGUNG

The Dirac equation,

ðiℏγμ∂μ −mcÞψ ¼ 0; ð1Þ

reveals a number of striking facts about the nature of
massive fermions. One of them concerns the velocity
operator in the Heisenberg picture, v̂kðtÞ ≔ ∂x̂kðtÞ∂t , which
turns out to have eigenvalues �c for all moments of time
[12]. This suggests that the instantaneous velocity of a
massive fermion is always�c, which seems paradoxical. A
more detailed analysis unveils that both the velocity and the
position operators in the Heisenberg picture have a part that
oscillates in time, hence the name Zitterbewegung—“the
trembling motion” [10].
For an initial state with vanishing average momentum,

the expectation value of the position operator oscillates
with the period [13–15]

TZB ¼ πℏ
mc2

: ð2Þ

The original explanation of the mechanism behind
Zitterbewegung given by Schrödinger [10], and refined
by several authors [12,15,16], relates it to the interference
between the positive and negative energy parts of the Dirac
wave packet. Indeed, if the initial state ψ is a purely positive
(or negative) energy state then the expectation value
hψ ; x̂kðtÞψi does not exhibit oscillations [10,12].
The tangibility of Zitterbewegung for actual fermions,

being par force positive-energetic excitations of a quantum
field, is generally questioned [17] (see however [18]). On
the other hand, the realness of this effect has been
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confirmed in various Dirac-like systems [14,19,20] and
found applications, most notably, in graphene [21].
There exists an alternative viewpoint on Zitterbewegung

(known also under the name of “chiral oscillations”
[22,23]) relating it to the spin components of the fermionic
wave function [13,24–26]. Any Dirac spinor can be
uniquely decomposed as a sum of two Weyl spinors
ψ ¼ ψþ þ ψ−, where ψ� ¼ P�ψ , with P� ¼ ð1� γ5Þ=2
[26]. The Weyl spinors ψ�, as eigenstates of the chirality
operator γ5 with γ5ψ� ¼ �ψ�, have opposite chirality. By
acting with the projector P� on Eq. (1) we obtain
iℏγμ∂μψ� ¼ mcψ∓, which can be seen as two coupled
equations for Weyl spinors ψ�, one acting as a source of the
other [26]. Since Weyl spinors are massless, they move
with the speed of light and one obtains a “zigzag picture” of
a massive fermion (Fig. 25.1 of [25]). In the fermion’s rest
frame, the period of oscillations between the two eigen-
states of chirality equals precisely (2) [24].
The two points of view on Zitterbewegung are closely

related in the Dirac wave-packet formalism [23]. In
particular, purely positive/negative energy solutions to
the Dirac equation also do not exhibit chiral oscillations
[22]. Hestenes contended [13,24] that the “chiral” inter-
pretation of Zitterbewegung is more natural, as the origin of
the effect resides in the geometry of spacetime. In the
present article we support this claim, although we argue
that the very notion of geometry needs to be refined.

III. NONCOMMUTATIVE GEOMETRY
AND CAUSALITY

The basic objects of noncommutative geometry [3] are
spectral triples ðA;H;DÞ consisting of a (dense subalgebra
of a) C�-algebra A, a Hilbert space H with a faithful
representation of A, and an unbounded self-adjoint oper-
ator D acting on H. The original framework was designed
to describe spaces of Euclidean signature and has recently
been extended to encompass the Lorentzian ones [4,27]. In
the latter case, the main conceptual change consists in
endowing the Hilbert space H with an indefinite inner
product, turning it into a Krein space K [28].
Example 1. Let M be a globally hyperbolic spacetime

with spin structure; then ðAM;KM;DÞ is a Lorentzian
spectral triple, with AM ¼ C∞

c ðMÞ, i.e., the algebra of
smooth compactly supported functions on M,
KM ¼ L2ðM; SÞ, i.e., the space of square summable sec-
tions of the spinor bundle S over M, and D ¼ −iγμ∇S

μ, i.e.,
the (curved) Dirac operator associated with S. If h·; ·i stands
for the Hermitian inner product on L2ðM; SÞ, then the
indefinite inner product on KM can be defined as ð·; ·Þ ¼
h·γ0; ·i with γ0 being the Hermitian first flat gamma matrix.
Even-dimensional spacetimes induce an additional

structure on the associated spectral triple—a chirality
operator γM ¼ γ5, splitting the space KM ¼ Kþ

M ⊕ K−
M,

with γMψ� ¼ �ψ� for ψ� ∈ K�
M.

The most important examples of spectral triples from the
viewpoint of physical applications are the almost commu-
tative geometries [6,7].
Example 2. Let ðAF;HF;DFÞ be a finite spectral

triple, i.e., AF ¼ MnðCÞ, HF ¼ Cn, and DF ¼ D†
F ∈

MnðCÞ for some n ∈ N, and let ðAM;KM;DÞ be as in
Ex. 1 with dim M being even. Then, ðA;K;DÞ ¼
ðAM ⊗ AF;KM ⊗ HF;D ⊗ 1þ iγM ⊗ DFÞ forms a
Lorentzian spectral triple.
Causality is one of the most fundamental principles

underlying physical theories. Within Einstein’s theory it is
defined as a partial order relation on the set of events:
p ≼ q means that q lies in the future of p. However,
noncommutative spaces typically admit only a global
description and the very notion of an event does not
make sense. This raises a question: what is the scene for
causal relations and what is the operational meaning of a
“noncommutative spacetime”?
In [4] we advocated the idea that noncommutative

spacetime ought to be understood as the space of (pure)
states on a, possibly noncommutative,C�-algebra (cf., [29],
p. 188). The motivation behind this step is twofold: First, if
the algebra at hand is of the form AM ¼ C∞

c ðMÞ (see
Ex. 1), then its pure states PðAMÞ are in one-to-one
correspondence with the events on M [4]. Secondly,
C�-algebras provide a unified framework for an operational
formulation of both classical and quantum physics [30–32].
In this context, states on a C�-algebra of observables can be
understood as the actual states of a given physical system.
For instance, ifAF ¼ MnðCÞ (see Ex. 2), then pure states in
PðAFÞ are precisely the n-qubits, whereas mixed states
SðAFÞ correspond to density matrices [32].
In [4] we have shown that such a noncommutative

spacetime admits a sensible notion of a causal structure
associated with a Lorentzian spectral triple. To this end, one
has to identify a specific subset C of “causal elements,”
named the “causal cone.” Concretely, C is the cone of all
Hermitian elements a of a preferred unitization A ⊃ A
respecting ∀ϕ ∈ K; ðϕ; ½D; a�ϕÞ ≥ 0 (see [4,33,34] for the
details).
Definition 3. Let ðA;K;DÞ be a Lorentzian spectral

triple and let C be the causal cone. We say that two
states ω; η ∈ SðAÞ are causally related with ω ≼ η iff
∀a ∈ C;ωðaÞ ≤ ηðaÞ.
In the classical case of ðAM;KM;DÞ (see Ex. 1) one

recovers the usual causal structure on spacetime M, via the
Gel’fand duality PðAMÞ≃M [4]. Note also that Def. 3
determines a rigorous partial order on the full space SðAÞ of
mixed states. We exploit this fact when discussing the
experimental setup.
The space of pure states on an almost commutative

geometry, which deserves the name of an “almost com-
mutative spacetime,” has a particularly pellucid physical
interpretation: Let A ¼ AM ⊗ AF as in Ex. 2; then
PðAÞ≃M × F for some finite space F . In other words,
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all pure states on A are separable [32]. Hence, an almost
commutative spacetime is the Cartesian product of the
spacetime M and an “inner” space of states of the model.
Definition 3 guarantees that, if ðp; ξÞ; ðq; χÞ ∈ PðAÞ are
such that ðp; ξÞ ≼ ðq; χÞ, then p ≼ q within the spacetime
M [34]. This result attests that Einstein’s causality in the
spacetime component is not violated. On the other hand, in
[33] and [35] we discovered that the extended causal
structure imposes highly nontrivial restrictions on the
evolution in the “inner” space of the model. We now apply
the mathematical results obtained in [35] to lift the veil on
the origin of Zitterbewegung.

IV. MODELING A “CLASSICAL”
DIRAC FERMION

LetM be a globally hyperbolic spacetime of dimension 2
or 4. We associate to it a Lorentzian spectral triple
ðAM;KM;DÞ in a canonical way (see Ex. 1). As a finite
spectral triple we take AF ¼ C ⊕ C, HF ¼ C2,
and DF ¼ ð 0μ� μ0Þ, for some μ ∈ Cnf0g. The product triple

thus reads A ¼ C∞
c ðMÞ ⊕ C∞

c ðMÞ, K ¼ L2ðM; SÞ ⊗ C2,
D ¼ D ⊗ 1þ iγM ⊗ DF (see [35] for the details).
Noncommutative geometries are equipped with a natural

fermionic action defined as SF ¼ ðψ ;DψÞ, for ψ ∈ K0 ⊂ K
[36,37]. If the finite spectral triple is even, which is the case
here, one encounters the “fermion doubling problem” [38].
A consistent prescription to avoid the overcounting of
fermionic degrees of freedom has been worked out in [36]
and consists in projecting the elements of K onto the
physical subspace K0. We have K0 ¼ PþK, with
Pþ ¼ 1

2
ð1þ γÞ, γ ¼ γM ⊗ ð1

0
0
−1Þ. A vector in K0 can thus

be written as K0 ∋ ψ ¼ ψþ ⊗ ð1
0
Þ þ ψ− ⊗ ð0

1
Þ, with ψ�

denoting the chirality eigenstates. The fermionic action of
the model therefore reads

SF ¼ ðψþ;DψþÞþðψ−;Dψ−Þ− iμðψþ;ψ−Þþ iμ�ðψ−;ψþÞ

¼
Z
M
½ψ̄−Dψ−þ ψ̄þDψþþmðψ̄−ψþþ ψ̄þψ−Þ�; ð3Þ

with the choice μ ¼ im ∈ iRþ. This is indeed the action
describing a single Dirac fermion of massm propagating in
a curved spacetime M.
With A ¼ AM ⊗ AF we have PðAÞ≃M ⊔ M ≔

M × f−;þg and the “inner” space of the model consists
of just two points. Since the two pure states on AF are
precisely the vector states associated with ð1

0
Þ; ð0

1
Þ ∈ HF

[35], it is justified to identify the two points of the model’s
“inner” space as states of definite chirality. We thus arrive at
the interpretation of the space of physical states PðAÞ as the
space of states of a “classical” fermion—the component
M defines its position in spacetime and F ¼ f−;þg
corresponds to its chirality.
Connes first observed [9] that the (Euclidean version of

the) above almost commutative model provides a geometric

viewpoint on Zitterbewegung. However, Connes’ remark
was only qualitative and focused on regarding the Higgs
field as a gauge boson operating on the finite space f−;þg
(see also [39]). We discovered that taking into account the
Lorentzian aspects of this model reveals a deeper, quanti-
tative, connection between geometry and the “trembling
motion” of fermions (cf., [35], Theorem 9).
Theorem 4. Let τðγÞ be the proper time along a causal

curve onM. Two states ðp;−Þ; ðq;þÞ ∈ PðAÞ are causally
related with ðp;−Þ ≼ ðq;þÞ if and only if there exists a
causal curve γ yielding p ≼ q on M and such that
τðγÞ ≥ π=ð2jμjÞ.
Restoring the physical dimensions in the model (which is

unambiguous as D has the dimension L−1; thus DF must
have so), we arrive at

ðp;−Þ ≼ ðq;þÞ⇔ p ≼ q and τðγÞ ≥ πℏ
2jμjc2 : ð4Þ

The number on the rhs of (4) is precisely the half of the
Zitterbewegung period (2) of a Dirac fermion of mass
jμj ¼ m.
It is striking to realize that the possibility of

Zitterbewegung is encoded in the geometry of a purely
classical model. The bound on the frequency of the
fermion’s quivering is of kinematic origin—we have
invoked the action (3) only to identify the relevant degrees
of freedom. The apparent abrupt change of state implied by
Th. 4 becomes more transparent when one considers the
subspace of mixed states of indefinite chirality. In the space
M × ½−1;þ1� ⊂ SðAÞ the boundary of the causal cone
becomes a continuous surface (Fig. 2 of [35]) permitting a
smooth evolution of the expectation value of chirality.
The advantage of the presented model is its general

covariance, which guarantees that Th. 4 applies in any
globally hyperbolic spacetime M. But the framework of
noncommutative geometry is even more flexible and allows
one to accommodate other fields interacting with the
fermion via the fluctuations of the Dirac operator [7].
Let A and K be as they were previously in this section

and let DA ¼ ðDþ AÞ ⊗ 1þ iγM ⊗ ð 0
Φ�

Φ
0
Þ, where A ¼

γμAμ with Aμ ¼ A�
μ ∈ AM and Φ ∈ AM; then ðA;K;DAÞ

is still a Lorentzian spectral triple [35]. The fermionic
action (3) now reads

SFðDAÞ ¼
Z
M
½ψ̄−ðDþ AÞψ− þ ψ̄þðDþ AÞψþ

þ ψ̄−ð−iΦÞψþ þ ψ̄þðiΦ�Þψ−Þ�: ð5Þ
We thus see that Aμ is a vector field on M, for instance the
electromagnetic one, minimally coupled to the fermion,
whereas Φ is a complex scalar field interacting via a
Yukawa coupling [7].
The space of pure states of the interacting model is still

M × f−;þg as the algebra remains unaltered. On the other
hand, the causal cone (and a fortiori the causal structure)
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does change when D is modified. The analogue of Th. 4
reads ([35], Theorem 16)
Theorem 5. Two pure states ðp;−Þ; ðq;þÞ ∈ PðAÞ

are causally related with ðp;−Þ ≼ ðq;þÞ if and only if there
exists a causal curve γ giving p ≼ q on M such that

Z
1

0

dsjΦðγðsÞÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _γμðsÞ_γνðsÞ

q
≥
π

2
: ð6Þ

An immediate consequence of Th. 5 is that there is no
impact of the vector field on the causal relations in the
almost commutative spacetime at hand. In particular, it
implies that the upper bound on the Zitterbewegung
frequency is not altered by the presence of an electromag-
netic field. On the other hand, the scalar field Φ affects
causality in a more complicated way—the lhs of inequality
(6) can be seen as a weighted proper time. Indeed, if Φ is
constant and equal to μ, formula (6) reduces to (4). Such a
field Φ could for example be related to the variation of the
mass of a pointlike particle in the Einstein frame of a
tensor-scalar theory [40]. It is amusing to observe that the
impact of Φ on the causal structure is equivalent to a
conformal rescaling of the metric on M by jΦj−1. We note
that the connection of the Higgs field with conformal
transformations of the space(-time) in the context of non-
commutative geometry was discussed in [41], but at the
level of the action.
For an actual, quantum, fermion neither the concept of

localization nor that of the proper time is well defined
[42]; hence formulas (4) and (6) cannot be applied directly.
Nevertheless, one can elicit some phenomenological
consequences from the presented model by exploiting
the fact that the causal order extends to the full space of
states SðAÞ.

V. SIMULATING ALMOST
COMMUTATIVE SPACETIMES

In an (analogue) quantum simulation some aspects of the
dynamics of a complicated quantum system are mimicked
in a simpler one, which is under control [11]. Given an
almost commutative spectral triple ðA;K;DÞ, together with
the action (3), one can extend this concept to probe almost
commutative spacetimes in table-top experiments. The
dynamics of vectors in the physical spaceK0 ⊂ K governed
by the action (3) always takes the form of a Dirac equation
with some external fields. The latter can be rewritten as a
Schrödinger equation once a suitable frame has been
chosen. If one succeeds in finding a quantum system with
the analogous dynamic, then one disposes of an invertible
map f∶Hsim → K, which determines the correspondence
between the observables and the states of the system [43].
Concretely, any state of the simulator system φðtÞ ∈ Hsim
at time instant t in the laboratory frame defines a state on
the algebra of the emulated almost commutative spectral
triple ρφðtÞ ∈ SðAÞ,

ρφðtÞðaÞ¼
Z
Σt

fðφðtÞÞ†ðt;xÞaðt;xÞfðφðtÞÞðt;xÞdStðxÞ. ð7Þ

Σt is the t-slice determined by the chosen laboratory frame
and x refers to the continuous degrees of freedom of the
simulator system, corresponding to the space variable on
Σt ⊂ M.
We claim that, within the domain of applicability of the

simulation, the intrinsic geometry of the almost commu-
tative spacetime should manifest itself in the simulator
system. In particular, we expect the evolution of states to be
causal in the sense of Def. 3, i.e.,

ρφðsÞ ≼ ρφðtÞ; ð8Þ

for s ≤ t and any initial state φð0Þ ∈ Hsim. The details on
the application of the abstract Def. 3 in the wave-packet
formalism are explained in [44].
The quantum simulation of a single free Dirac fermion in

flat two-dimensional spacetime has been successfully
accomplished with cold atoms [14], trapped ions [19],
and photonic systems [20]. Furthermore, a suitable exper-
imental setup has been proposed using superconductors
[45], semiconductors [46], and graphene [47]. In the
trapped-ion setting [19,48], the mass of the simulated
fermion can be introduced dynamically, which enables a
simulation of a Dirac fermion coupled to a (real) scalar
field. Moreover, a possibility of studying the impact of an
external electromagnetic field on Zitterbewegung using the
framework of [19] was suggested in [49].
In the presented almost commutative model, the general

formula (8) is less explicit than the ones derived for the pure
states: (4) and (6). It reflects the fact that Zitterbewegung
in the wave-packet formalism is not a single-frequency
oscillation [15]. Nevertheless, given concrete initial and
final states of a simulator system one can unravel the
consequences of formula (8) drawing from the fact that the
causal cone is completely characterized in [35] and suitable
computational tools to handle mixed states were devised in
[50]. One immediate upshot is that the causal relation (8)
does not depend on the electromagnetic field (cf.,
Th. 5). Note also that the lack of Zitterbewegung for
purely positive-energy states is consistent with (8) [51].

VI. OUTLOOK

We have shown that the possibility of Zitterbewegung is
encoded in the geometry of an almost commutative
spacetime of a “classical” massive Dirac fermion. The
presence of an electromagnetic field and a Yukawa scalar
field affects the geometry, with the latter modifying the
bound on the frequency of the fermion’s quivering. We
argued that the consequences of this model can be tested in
a suitable quantum simulation.
For a free electron the period of Zitterbewegung (2) is of

the order of 10−20s, which is far beyond the currently
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available experimental time resolution. Moreover, to model
a genuine electron one would need to employ the quantum
field theoretic description, which seems to exclude
Zitterbewegung [17], at least in flat spacetimes [18]. The
scheme presented in this article suggests, however, that the
very foundations of quantum gauge theories might need to
be refined. The principle of microcausality—requiring the
observables in spacelike separated regions to commute—is
at the heart of all axiomatic approaches to quantum field
theory [30,52]. If the fields have additional degrees of
freedom then their background geometry is that of an
almost commutative spacetime. Consequently, when con-
structing a quantum theory of fields, one should take into
account its inherent causal structure, what might lead to a
modified algebra of local observables.
The concept of causality in the space of states is at the

core of the presented model. When applied to other almost
commutative spacetimes (see [33] for another gauge
model), it might cast a new light on such perplexing
phenomena as quark mixing or neutrino oscillations, which
also involve a “motion” in the fermion’s internal space.
Finally, one can reach beyond the almost commutative

setting and study the causal structure of genuinely non-
commutative spacetimes [53]. This perspective suggests
that, contrary to the common belief [54,55], causal struc-
ture need not break down at the Planck scale, but the very
notion of spacetime geometry needs to be refined.
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