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Abstract

Algorithm recognition, which is the problem of verifying whether a program
implements a given algorithm, is an important topic in program analysis. This
work is in the continuity of the framework for algorithm recognition in binary
code defined in [25]. This article describes a transformation based approach
to compare algorithms written in Horn clauses. We propose a decompiler that
translate Java bytecode programs (.jar) into a declarative CLP representation
based on Horn clauses. The first purpose of this decompiler is to act as the
front-end of the framework described in [25]. The particularity of the approach
presented here is that we propose a direct translation between bytecode instruc-
tions and the declarative representation (i.e. without an intermediate represen-
tation).
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Chapter 1

Introduction

In this work we propose a decompiler that translates Java Virtual Machine
bytecode into a universal declarative representation. Having a declarative rep-
resentation of a program is very useful to perform various analysis on that
program. The decompiler proposed in this work was developed to act as a part
of a framework for algorithm recognition in binary code [25].

Being able to perform some algorithm recognition analysis can have multiple
applications. Thanks to the universal representation provided by our decom-
piler, one would be able to extract the algorithmic core of a program. Thus, we
could assert that two programs that seems different by their structure of their
code have the same algorithmic core. An evident application of this process
is plagiarism detection [27]. A comparison could also be done between various
versions of a program. During the evolution of a program, it could be interesting
to compare its different versions in order to ensure that a given algorithm is not
altered by some code modifications. This kind of regression test would be partic-
ularly interesting for debugging and to verify the consistency of a program with
respect to some specifications [27]. More generally, algorithm recognition could
also help for program comprehension, at the basis of some reverse engineering
processes [2] [27]. It is also possible to optimise a program by replacing the code
of a known algorithm by a more efficient implementation of this algorithm [27].

Algorithm recognition is just one possible application of our work. Various
analyses can be performed from the declarative representation of a program.
Indeed, analysis tools have been largely developed for declarative representa-
tions and various breakthroughs have been achieved in this domain [11]. Some
analysis tools also plays a role when it comes to deliver proper software. Several
program analysis tools have emerged in the recent past years to tackle the issue
of the so called software crisis. Those tools can really help with the automa-
tion of related concerns. For instance, we can find analysis tools that ensure
automatically that a program meet its requirements by verifying some specified
properties [11].
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With respect to that, we can assert that our work on the declarative repre-
sentation of Java compiled programs and the produced decompiler could be at
the very basis of numerous analyses in a wide range of domains.

1.1 Context & Motivations

1.1.1 The framework

The work presented in this paper is part of a wider approach that aims to de-
velop a framework for algorithm recognition in binary code [25]. A large range of
applications could take advantages of verifying whether a program implements
a given algorithm or not [26]. Indeed, algorithm recognition is an important
topic in program analysis [25] and numerous applications can be found in di-
verse areas such as plagiarism detection [29], malware detection [28] and even
more advanced analyses and optimisations [18].

The approach proposed by the framework is fully described in [25]. This
approach first translates binary code into Horn clauses. Two programs are con-
sidered as implementing the same algorithm if their Horn clauses representations
can be reduced to a single common set of Horn clauses by means of a sequence
of transformations [25].

The framework was created to study the process of algorithm recognition
from the angle of binary code for good reasons. Even if other approaches based
on source code can be totally justified and are sufficient in certain cases such
as programming tutoring - ie. assessing whether students have correctly imple-
mented a particular algorithm [23] - they become useless without any access to
source code. As an example, if we imagine the case where a company wants
to verify if a competitor’s software program uses a given algorithm. Then the
competitor’s software is might be written in a different programming language
and is probably only available as binary code. Therefore, the verification must
be performed directly over the competitor’s software binary code [25] [29].

It is important to note that the notion of two algorithms being the same
is not easily defined and remains subject to debate [8]. It is often considered
that programs implement the same algorithm if it is possible to reduce one to
another by a given sequence of syntactical transformations [8].
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A particularity of the framework surrounding the work that will be pre-
sented here is that it uses Horn clauses to represent a model of the algorithm
as well as of the compiled code under scrutiny. Horn clauses are simply a dis-
junction of literals with a most one negated literal. Every logic program clause
is a Horn clause [27]. Using Horn clauses has several advantages. This univer-
sal intermediate language is a suitable abstraction between binary code and a
more high-level programming language. Moreover, Horn clauses are an already
well-known formalism that has proven itself to be suitable for a lot of different
program analysis. [25].

More detailed information about the general framework can be found in [25].

1.1.2 Extending the framework to handle Java Bytecode

The framework was first developed to work with Android binary code (Dalvik)
as a starting point, but with the idea that the approach could be extended to
other assembly languages [25]. This is where our work fits in. We developed
an independent decompiler which is able to translate a subset of Java Byte-
code programs into a universal Horn clauses representation. Due to this, the
framework is no longer limited to a subset of Android programs and can handle
some Java programs as well. From a scientific point of view it was interesting
to encounter problems related to direct linking between Java Bytecode and an
executable declarative representation. One of the roles of this paper is to report
those problems as well as methods used to resolve them (section 3.1). An ad-
vantage of this extension is that Java programs are much easier to set up than
Android programs if one wants to create some test cases for the framework.
Android development is a little bit more complex as it requires some extension
libraries. In addition, Android applications have special lifecycles, there is no
main function and the application contains activities with special functions that
must be overwritten. In the Java settings, one doesn’t have to worry about all
the mobile-related settings surrounding the core of the application. Another
great contribution to the framework described in [25] is that the tool developed
for Java Bytecode decompilation handles a larger scope of input programs in
terms of features than the original Dalvik decompiler (section 1.2.2).

Thus, the work presented here is basically the development of a tool to
decompile Java Bytecode into Horn clauses. A great part of this work was dedi-
cated to the redefinition and adaptation of a declarative formalism to represent
bytecode instructions. However our decompiler is not aimed to be a full-featured
application, only a subset of Java programs were meant to be taken in account.
Indeed, not all Java Bytecode instructions were considered. Here we focus
on programs that work only with numbers (all Java’s primitives types except
’char’). We also deliberately put aside thread and exceptions related instruc-
tions as well as bitwise operators.

The decompiler has been developed for the purpose of algorithm recognition
and similarity analyses. In this respect, the produced output had to be suitable
for further transformations. Series of transformations to perform analysis often
require a lot of CPU time [27]. Thus, an effort has been made to minimize the
complexity of produced clauses and some optimisations have been developed
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(chapter 5). However, it is not because the decompiler has been developed in
the first place as an extension to the algorithm recognition framework [25] that
it is limited to this scope. Our decompiler may have numerous other uses thanks
to the popularity of the CLP formalism for the specification and verification of
program properties. Automated verification of properties of imperative pro-
grams with the help of Horn clauses is studied by many researchers [11] and we
hope this tool will be exploited in a wider context than the algorithm recogni-
tion framework [7].

1.2 State of the art

1.2.1 From imperative languages to declarative
representations

When it comes to program analysis it turns out that logic programming is pre-
dominant in this field [7]. Since analysis specifications are generally written in
a declarative style, as a system of constraints [3] [13] [21] or as a type inference
rules [12] [1], in order to develop tools to verify specifications or termination of
imperatives programs, researchers often rely on previous works based on Horn
clauses [11] [20] [7] [10]. As a result, transformations from an imperative rep-
resentation to a declarative one is often the first step of the process. In this
section we review some of those transformations that have been made in differ-
ent contexts but still similar to our work. However, a major difference between
works presented here and the concrete implementation of our decompiler is that
translations to declarative clauses are always made by the means of an interme-
diate representation. To the best of our knowledge, our decompiler is the first to
propose a direct mapping between each single instruction of the Java Bytecode
and a declarative clause (chapter 3).

An example of transformation from an intermediate representation of Java
Bytecode to a declarative representation is the front-end of DIMPLE [7]. In
short, DIMPLE is a fully-featured declarative analysis framework for Java. In
order to provide a total round-trip solution to analysis design and evaluation
DIMPLE features a system for encoding an intermediate representation of Java
Bytecode as a database of facts [7]. This is the part of the work which interests
us. The front-end translates from Java bytecode to the DIMPLE-IR : a set of
Prolog relations that fully describe the input application and library classes. It
is implemented as a whole-program transformation that extends the Scoot [24]
compiler framework. As mentioned above, it is not a direct translation, the
translation is made in two steps. First, Scoot converts from stack-based byte-
code to a type three-address representation (Jimple) and generates a conserva-
tive method call graph. Then the Jimple’s abstract syntax is transformed to
the concrete syntax of a database of DIMPLE IR relations. In the DIMPLE IR
Java classes are represented in terms of subtyping relationships, set of method
declarations and sets of field declarations. Methods are represented as a set
of statements and all inter-procedural control flow is explicit and is modeled
by a control-flow graph for each method. See [7] for further information about
DIMPLE.
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DIMPLE is just one of the numerous analysis frameworks that rely on a
declarative representation. Another approach, closer to the declarative repre-
sentation used in our compiler, is the one used in the front-end of VeriMAP [11].
Indeed this approach based on transformations of Horn clauses with constraints
- constrained Horn clauses (CHC). Although the proposed architecture is para-
metric with respect to the programming language, the VeriMap system imple-
ments this approach for C programs. The translation from C to CHC is based on
the C Intermediate Language (CIL) infrastructure [11]. Again, the translation
from the source language to the CHC encoding is not direct and goes through
intermediate representations. The C Intermediate Language, that provide a set
of tools that ease source to source transformations of C programs is primarily
a high level intermediate representation. It aims to break down complicated
constructs of C into simpler ones [19].

1.2.2 Rundroid

A much more related work that should be discussed is Rundroid, the initial
front-end developed for the framework of algorithm recognition in binary code
presented in [25]. The Rundroid front-end has been developed in order to work
with the Dalvik Virtual Machine (DVM) bytecode and thus works with Android
compiled programs. More specifically the role of this decompiler is to translate
Dalvik binary code into Horn clauses. Indeed, as mentioned above, the frame-
work uses Horn clauses as a universal representation to model algorithms as well
as compiled code [25].

Android programs are written in Java before they get compiled to Google’s
Dalvik Virtual Machine (DVM) bytecode format. Contrary to the Java Virtual
Machine bytecode format discussed in section 2.1 we only give a brief descrip-
tion of the DVM, see [25] for a more detailed presentation. The main difference
between the Java Virtual Machine and the Dalvik Virtual Machine is that the
JVM is stack-based while the Dalvik virtual Machine is register-based. In a
stack-based Virtual Machine (VM), operands are stored in a stack date struc-
ture and operations are carried out by popping or pushing data from the stack
(section 2.1). In a register-based VM operands are stored into registers hence
instructions need to contain addresses of operand registers. There are no more
push or pop operations to be performed. A particularity of the DVM registers
is that they are statically typed, hence the Dalvik bytecode is a strongly typed
assembly language. However, in our work only integers are considered as value
of basic types [25].

The Dalvik Virtual Machine runs a bytecode program by keeping a stack
of activation frames. Each method call creates a new frame that exists dur-
ing the entire method call and dies upon return. Each frame also contains its
own registers and a method can only operate in the scope of its frame. The
number of registers contained in a frame depends on the static definition of the
method, thus the number of registers used by a method is statically known [25].
Objects are contained in the memory of the system, connected through pointers.
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The goal of this section is to give an informal intuition about the repre-
sentation in constrained Horn clauses (CHC) that is largely inspired by the
representation used for our decompiler described in chapter 3, see [25] for a
complete formal presentation of the DVM to CHC translation. As for the Java
bytecode, many Dalvik bytecode instructions are similar and only differ in the
type or size of their operands thus we work with generalized (typeless) instruc-
tions which exemplifies the translation process.

Fig 1.1 describes a few simple representatives rules used to decompile DVM
instructions into clauses. Dalvik bytecode instructions work over frames and
their execution affects the registers in the frame or the memory. Rules for com-
piling the instructions have the form q : ins → E where q denotes a program
point and E is the set of clauses resulting from the compilation of instruction
ins occurring at q. A predicate symbol pq is assigned to each program point q

of the program P . In atoms of the form pq(Ṽ ,M,M ′), Ṽ represents a sequence
of r variables that represents the registers just before executing the instruction
ins at q. M and M’ denote the memory before and upon termination of the
method where pq occurs. Th reader should also note that Ṽ = V0, ..., Vr−1
where V0, ..., Vr−1 represents individual values of the frame’s registers where r is
the number of registers used by the method where ins occurs. In each rule Ṽ ′,
denotes the states (values) of the registers after executing ins. id denotes the
sequence (V0 = V0, ..., Vr−1 = Vr−1) and id−i (where i ∈ [0, r-1]) the sequence
(V0 = V0, ..., V i− 1 = Vi−1, Vi+1 = Vi+1, ..., Vr−1 = Vr−1). Modifications be-
tween Ṽ and Ṽ ′ are visible through constraints of the rule. With respect to
that, the reader should have a good intuition about the the mechanisms of our
clauses. For instance, const d, c writes constant c into register d, so in Fig
1.1 the output register variable Vd is set to c while the other register variables
remain unchanged (modeled with id−d).

Theses previous works have been useful in the development of our decom-
piler. Although the Rundroid implementation is limited to basic instructions
and does not deal with all the features proposed by our decompiler, the Run-
droid tool was a great example of what needed to be done with Java bytecode. A
comparison of pertinent implemented features is shown in Tab 1.1 for informa-
tion. It is also profitable that [25] gave a first formal definition of the universal
representation that has been put in place. Even if this representation had to be
modified on many points (chapter 3), the general structure of clauses remains
unchanged.
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Features Rundroid Our compiler

Basic instructions 3 3

Method calls 7 3

Memory related instructions 7 3

Exceptions handling 7 7

Thread related instructions 7 7

Table 1.1: Comparison of implemented features

q : const d, c→ {pq(Ṽ ,M,M ′)← {V ′d = c} ∪ id−d, pq+1(Ṽ ′,M,M ′)}
q : add d, s, c→ {pq(Ṽ ,M,M ′)← {V ′d = Vs + c} ∪ id−d, pq+1(Ṽ ′,M,M ′)}

q : goto q′ → {pq(Ṽ ,M,M ′)← id, pq′(Ṽ
′,M,M ′)}

Figure 1.1: Compilation of some simple DVM bytecode instructions
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Chapter 2

Overview of used
formalisms

This chapter describes different formalisms discussed in the following sections.
The purpose of this chapter is to give the reader a sufficient amount of knowledge
about the Java Virtual Machine and the CLP paradigm to fully understand the
different parts of the the document. It is obvious that all subtleties of theses
technologies cannot be covered in this single chapter and that’s not the aim
of the chapter. A remainder on the basic operative of a LIFO stack is also
explained in order to understand Java bytecode execution. We assume that the
reader has basic notions from object-oriented and logic programming.

2.1 Java Virtual Machine and
bytecode execution

The Java programming language is a general-purpose, concurrent and object-
oriented language. Initially developed to address problems of building software
for networked consumer devices, the Java platform proposes compiled code that
is made to survive transport across networks. The main characteristic of the
Java platform is that it is initially designed to support multiple host archi-
tectures [16]. Although the Java Programming language is a very interesting
topic, it is not relevant for our needs. We will rather focus on the Java Virtual
Machine and bytecode execution. The Java Virtual Machine (JVM) is an ab-
stract computing machine that forms the cornerstone of the Java platform. As
a virtual machine, it has an instruction set and manipulates various memory
areas at runtime. The main purpose of a virtual machine is to provide hardware
and operating system independence [16]. The JVM knows nothing about the
Java programming language, the virtual machine manipulates binary files that
respect the well structured class file format [16].
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Inside the Java Virtual Machine

A JVM is a stack-based machine. Each Java virtual Machine thread has a
private Java Virtual Machine Stack, created at the same time as the thread.
A Java Virtual Machine stack stores frames (Fig 2.1).The frame holds local
variables and partial results, and plays a part in method invocation and return.
An important detail for our Horn clauses representation is that the Java Virtual
Machine stacks can be of a fixed size. Each method’s frame is composed of
an operand stack, an array of local variables, and a reference to the runtime
constant pool of the class of the current method. The size of the local variable
array and the operand stack are determined at compile-time and are supplied
along with the code for the method associated with the frame. Each time
a method is invoked a frame is created in the method’s thread environment.
The JVM deals with classical primitives types such as byte, short, int, long,
float, etc. Reference types are also used to reference class instances, interfaces
or arrays [16] [5]. Within the context of our work we are only concerned by
numerical and references types.

Local variables

Operand stack

Constant
Pool

Figure 2.1: A JVM stack frame

As the name suggests, the constant
pool contains constant definitions.
For each class, the class file of the
frame method’s class contains a rep-
resentation of the constant pool ta-
ble. The constant definitions are
composable, meaning the constant
might be composed from other con-
stants referenced from the same ta-
ble. It contains several kinds of con-
stants, ranging from numeric literals
known at compile time to method
and field references that must be
resolved at run-time. The con-
stant pool also contains references
to methods to be invoked and vari-
ables to be accessed via symbolic
references. These symbolic method
references are translated into con-
crete method references via the dy-
namic linking process. This process
consists in loading classes as nec-
essary to resolve as-yet-undefined
symbols, and translates variable ac-
cesses into appropriate offsets in
storage structures associated with
the run-time location of those vari-
ables (section 4.2) [16] [5].
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Parameters of the method are stored in the local variable table which is basi-
cally an array of local variables that hold the values of the local variables and the
parameters. The number of local variables plays an obvious role in the size of
the stack frame. The length of this array is also determined at compile-time and
supplied in the binary representation of a class or interface. Each element of the
array typically stores a value of a primitive type except for primitive types long
and double that need a pair of consecutive local variables to hold their values.
Local variables are addressed by indexing and values of type long or double may
only be addressed using the lesser index. The JVM uses the local variable array
to pass parameters on method invocation. Parameters are passed in the n first
consecutive elements starting at index 1 and 0 is always used to pass the a ref-
erence to the object on which the instance method is being invoked (this) [16] [5].

The Last part of the JVM stack frame to be discussed is the operand stack.
As a reminder, a stack is a very simple idea. A stack is a data structure that has
two fundamental operations, push and pop. The push operation is used to store
something on the top of the stack, and the pop operation retrieves something
from the top of the stack. The operand stack is a last in first out (LIFO) stack
used to push and pop values. Certain instructions load values from local vari-
ables or fields onto the top of the operand stack, others take values from the top
of the operand stack, perform an operation on them and push the result back
onto the operand stack in order to respect the LIFO principle. The maximum
depth of the operand stack of a frame is determined at compile time and is
supplied along with the bytecode of the method. Knowing the maximum depth
of the operand stack will be very useful to make our constrained horn clauses
translations (chapter 3). The operand stack also plays a role when receiving
method results and preparing parameters to be passed in the local variable ta-
ble of the called method [16] [5].

The Java Virtual Machine also contains a heap that is shared between all
JVM threads. The heap is the run-time data area from which memory for all
class instances and arrays is allocated [16] [5]. It is reclaimed by an automatic
storage management system that will not be discussed here as it is not modeled
by our Horn clauses representation.

The Java bytecode and its execution

The Java bytecode is the intermediate representation of the Java programming
language. It must be structured with respect to the class file format in order
to be executed inside the JVM. The model of computation of Java bytecode
is that of a stack-oriented programming language. As the name implies, Java
bytecode consists of one-byte instructions. An instruction is followed by zero or
more operands [16]. Java bytecode is strongly typed, instructions are composed
from a type prefix and the operation name [5]. The fact that operations are
replicated in multiple instructions depending on the their types implies the ex-
istence of a great number of bytecode instructions. Instructions can be classified
into several groups depending on their nature [5] :

14



• control flow instructions

• Stack manipulation instructions

• Arithmetics and type conversion

• Object manipulation and method invocation

• Specialized thread related and exception throwing instructions

However, as mentioned in section 1.1.2 our decompiler is more a proof a concept
than a full-featured application. Thus, not all the Java bytecode instructions
are taken in account. Globally we focus on the whole Java bytecode instruction
set, except for the specialized thread related, exception throwing instructions
and bitwise operators. Also we only consider number manipulations and put
apart the char primitive type. As a consequence we cannot treat Java objects
like String other objects that make use of the char primitive type. In the case
our decompiler is confronted with an instruction that is not taken in account,
we simply signal that a non-implemented instruction is part of the program
and signal its position in the CLP output. Also, calls to external libraries not
provided in the input jar file are translated into a predicate call that contains
the explicit name of the external call and that always returns true. Thus it is
possible to keep a trace of external calls into the CLP representation. This is
useful when comparing two different programs, in order to be able to know if
they use the same libraries. In order to be complete we now provide a list of
the different bytecode instructions that are not handled by our decompiler :

• Exceptions related instructions
{athrow}

• Char related instructions
{caload, castore,i2c}

• Bitwise operators
{iand,ior,ishl,ishr,iushr,ixor,land,lor,lshl,lshr,lushr,lxor}

• Others
{ breakpoint,dup2,imdep,instanceof,invokedynamic,
jsr,monitorenter,monitorexit,ret,tableswitch,wide}

The translation and the full description of rest of the bytecode instruction
set is discussed in chapters 3 and 4.
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To understand the Java bytecode computation model we start with a very
basic example. First, let us consider a trivial bytecode fragment that simply
computes the sum of 1 and 3 :

i c o n s t 1
i c o n s t 3
iadd

The i prefix at the beginning of each instruction indicates that the instruc-
tion manipulates an integer. Bytecode is evaluated sequentially, in the instruc-
tions’ arrival order. The first two instructions push constants 1 and 3 on the
operand stack, respectively. The third instruction computes the sum of the two
values by popping these 2 values and pushing the result of the operation to the
stack (Fig 2.2). One should note that the stack grow upward.

...

1iconst 1

...

(i)

...

3iconst 3

1

...

(ii)

...

4iadd

...

(iii)

Figure 2.2: Step by step execution of a bytecode fragment
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2.2 The CLP paradigm

In order to understand the representation provided by our decompiler it is re-
quired to introduce the key features of the Constraint Logic Programming (CLP)
paradigm. This section defines the basic notions of Constraint Logic Program-
ming that will be used. As a reminder, the CLP paradigm is used to represent
the Java bytecode instructions translated by our decompiler.

A logic program consists of a set of Horn clauses and can be used to ex-
press a query on relational data bases [6]. A Horn clause is simply a disjunction
of literals with at most one unnegated literal, they are the basis of logic pro-
gramming. CLP represents a successful attempt to merge the best features of
logic programming and constraint solving. This combination helps make CLP
programs both expressive and flexible [15]. A constraint is just a restriction im-
posed over the combination of values of some variables of the program. Solving
a problem with constraints means finding a way to assign values to all its vari-
ables such that all constraints are satisfied [14]. As it is a declarative formalism
the programmer only has to define the constraints, then some constraint solvers
are used to automatically find a good variable assignment.

A CLP program is a finite set of clauses or rules of the form A ← c,B
where A is an atom, c is a constraint and B is a goal [10]. A CLP clause is
just like a Logic Programming (LP) clause, except that its body may contain
also constraints of the considered sort [14]. The semantics of a CLP program
is defined as its least model [10]. Rules may be recursive and there may be
multiples rules in the definition of a predicate [17]. Constraints are added to
logic programming by considering a specific constraint sort (e.g linear equations
over the real numbers). Moving from LP to CLP, the concept of unification is
generalized to constraint solving : the relationship between a goal and a clause
can be described not only via term equation but via more general statements,
i.e. constraints. This allows for a more general and flexible way to control the
flow of the computation [14].
An example of a CLP clause could be [14]:

p(X,Y )← {X < Y + 1}, q(X), r(X,Y, Z).

This clause states that P (X,Y ) is true if q(X) and r(X,Y, Z) are true, and if
the value of x is smaller than that of y + 1. From an operational point of view,
in a LP resolution step, we have to check the existence of a most general unifier
between the selected sub-goal and the head of a clause. In CLP, we also have
to check the consistency of the current set of constraints with the constraint in
the body of the clause [14]. In CLP computation we accumulate substitutions
and constraints during a computation. On a syntactic level, note that we write
the constraints of a clause between { and } in order to distinguish them from
the goal of the body.
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Chapter 3

From bytecode instructions
to clauses

This chapter aims at describing the decompilation process that has been put
in place and some implementation details of our decompiler. We also introduce
the way basics Java bytecode instructions are translated into CLP clauses.

3.1 The decompilation process

We now describe the work-flow of our decompiler.

Our decompiler produces a Horn clause representation of a given jar file.
A jar file is a package file format used to aggregate many Java class files and
associated meta-data and resources. In the context of our work we are only
interested in the set of class files contained in the jar. A class file contains the
definition of a single class or interface and consists of a stream of 8-bit bytes [16].
Although the class files follows a well defined structure, we have chosen to work
with the mnemonic representation rather than the binary (hexadecimal) one.
Providing our own implementation of a lexer for the hexadecimal representation
was considered unproductive. Indeed, some tools provide a convenient way to
read Java class files. For the purpose of this project we used the Byte Code
Engineering Library (BCEL) reference in order to switch from the hexadecimal
representation of the class files into a mnemonic one (Figure 3.1). This transla-
tion is the first step of our decompilation process. We apply this transformation
to every class file contained in the give jar file in order to have a collection of
convenient class file representations. The mnemonic representation of the Java
bytecode is the one briefly illustrated in section 2.1.
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Figure 3.1: Switching from hexadecimal to mnemonic representation (BCEL)

The next step of our decompilation process is to handle the mnemonic rep-
resentation of the class files produced by BCEL. In order to be able to perform
a sequential translation of each bytecode instruction for the program we have to
store some information about their context. We construct a graph that contains
all the information needed. The graph contains information about the struc-
ture described by the class files and also computed information. This graph
should not be confused with a classical abstract syntax tree or parse tree that
are found in traditional compilers. As we work with machine code, each in-
struction performs a very specific task and is executed sequentially. Thus the
syntactic structure is rather simple and does not justify the construction of a
tree to represent theses constructs. However, a graph with some information
about methods and class fields still useful to simplify the translation phase.

The graph is composed of a node for each class of the jar file. Attributes
of the classes are described in each class node and heritage relations are also
encoded in the graph. For each method of the class, the produced graph also
contains positions and offsets of bytecode instructions that compose the method.
Local variables positions and offsets as well as the signature of the method are
also part of the graph. For each method, the maximum needed stack size is also
added to the graph. A representation of the constant pool described in section
2.1 is necessary to fully translate the mnemonic representation of bytecode in-
structions.

Once all this information is retrieved and structured into the graph the trans-
lation phase takes place. As mentioned in the previous sections, this translation
phase is sequential. The decompiler, with the help of a sliding windows goes
through each method of each class file and translates the bytecode instructions
one by one relatively to their static context. In the case of the default decom-
pilation process, the size of the sliding window is set to 1. In that way the
decompiler simply goes through the instructions one by one and translates each
of them into a single CLP predicate. The fact that the size of the sliding window
is configurable is justified in chapter 5 where some optimisations are discussed.

19



Figure 3.2: The decompilation process
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3.2 Ensuring the correctness of the
decompilation

In order to ensure the correctness of our decompilation process we put in place a
testing module. The principle behind our test process is pretty simple. Given a
batch of compiled Java programs and expected results (verified by an execution
of the jar) associated with each of those programs, the automated test module
decompiles the Java programs one by one and executes their decompiled (clp)
versions. Then executions results are compared with their expected results and
we get detailed information of each execution flow. The test process is illus-
trated in Figure 3.3.

Figure 3.3: Illustration of the test process

Currently our testing pool is composed of about fifty Java programs and their
associated expected results and covers the whole set of bytecode instructions
presently handled by our decompiler. This allows us to ensure that future
modifications or extensions of the decompiler still produce consistent outputs.

3.3 Basic instructions

We now describe the rules that are applied for the translation of each type of
instruction. As our Horn clause representation is a level of abstraction above
bytecode representation we can generalize some instructions. For instance we
can group descriptions of bytecode instructions that compute the same opera-
tions for different types. Indeed, although this differentiation is relevant inside
the Java Virtual Machine, our representation does not make any distinction
between numeric types. In order to develop our decompiler we grouped similar
bytecode instructions into meta-instructions. Each of these groups corresponds
to a particular type of clause in our decompiler.
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We first describe the decompilation rules that apply for the set of instruc-
tions related to stack manipulations, arithmetic operations and control flow.
Those instructions are considered simple as they do not directly involve object
manipulations or method calls. Each instruction is located at a program point
that can be seen as the instruction’s position in the file. The execution of an
instruction at program point q is modelled by a predicate pq. Rules have the
form q : ins → E where E is the set of clauses resulting from the compilation
of instruction ins occurring at the program point q. We generate clauses with
constraints on integers. As mentioned in section 2.1, the Java Virtual Machine
is stack-based . The JVM stores a stack frame for each method invocation.
Most of the bytecode instructions directly work with the operand stack and the
local variables table of its method’s stack frame. Hence, the operand stacks and
local variables of the corresponding method are represented in each instruction’s
clause. We represent the local variables table and the operand stack as a set of
constrained variables ( ˜IV ) present as arguments in the head of the clause. We
let ˜IV = IV0, ..., IVn+m−1 and ˜IV ′ = IV ′0 , ..., IV

′
n+m−1 be sequences of distinct

variables. For each i ∈ [0, n+m− 1], variable Vi (resp. V ′i ) denotes the value of
variable i before (resp. afer) executing ins. The first n variables of the set rep-
resent the local variables table and the m following variables model the operand
stack. The structure of ˜IV is represented in Figure 3.4.

IV0 IV... IVn IVn+1 IV... IVn+m

Local variables Operand stack

Figure 3.4: The ˜IV structure

In reality, the operand stack size continually changes during the execution
steps, thus the value of m is based upon the maximum stack size. This num-
ber is statically known and retrieved from the class file. We let id denote the
sequence (V ′0 = V0, ..., V

′
n+m−1 = Vn+m−1) and id−i (where i ∈ [0, n + m − 1])

the sequence (V ′0 = V0, ..., V
′
i−1 = Vi−1, V

′
i+1 = Vi+1, ..., V

′
n+m−1 = Vn+m−1).

In order to simulate the JVM behaviour and navigate in our operand stack we
also represent the stack pointer as an argument (SP ). Each clause also contains
five arguments H,HO,HS,HSO and R. H and HO represent the Heap before
and after the execution of instruction pq respectively. HS and HSO represent
the heap size before and after the execution of pq respectively. R represent the
return value of the instruction’s method. Those representations are detailed
in sections 4.1 and 4.2. With respect to that we can determine the arity of
each predicate. Predicate of clauses that represent the instructions of a sin-
gle method have the same arity. The arity of pq is s + 6 where the s is size of
˜IV and is only determined by the method from which the instruction was taken.

In an atom of the form

pq( ˜IV , SP,H,HO,HS,HSO,R)
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the parameters correspond to the state of the system just before executing
the instruction at q except for HO (heap out) and HSO (heap size out) that
represent the state of the Heap after the execution of pq.

In order to simulate the stack-based mechanism of bytecode instructions we
introduced two predicates read and write. Those predicates are defined as fol-
lows :

read(I, ˜IV , Vi)← {I = i}.

write(I, ˜IV , ˜IV ′, V )← {I = i, V ′i = V } ∪ id−i.

∀i ∈ [0, n + m− 1]

The read predicate is used in its mode read(IN, IN,OUT ). For a given
index number (e.g. I) and a set of variables (e.g. ˜IV ), the predicate returns
the value of the variable of the set indexed by the constrained variable (ṼI).

The write predicate is used in its mode write(IN, IN,OUT, IN)). for a
given index number (e.g I), a set of variables (e.g. ˜IV ) and a constrained vari-
able V , the predicate returns the set ˜IV ′ where ˜IV ′ = (V ′0 = V0, ..., V

′
I−1 =

VI−1, V
′
I = V, V ′I+1 = VI+1, ..., V

′
n+m−1 = Vn+m−1).

Those read and write predicates could seem excessive. However, having such
mechanisms to read and write ˜IV variables is necessary. The fact that a clause
can be evaluated multiple times during a program execution implies a dynamic
mechanism to read and write elements on the stack to handle the fact that the
actual stack size is not necessary the same for two evaluations of a predicate.
As an example, a loop mechanism is represented by a branch to an instruction
defined higher-up in the sequence, hence the instructions located between the
branched instructions and the branching instructions will be evaluated multiple
times (body of the loop). However, nothing garanties that the stack size does
not change during this time. By dynamic mechanism we refer to the fact that
the index variable (e.g. I) is not statically established in the clause. The reader
should note that the top of the current stack is represented by VSP . As a re-
sult, a push operation of the value contained by the variable V on the operand
stack is represented by the predicate write(SP, ˜IV , ˜IV ′, V ) associated with an
incrementation of the stack pointer, where ˜IV contains the operand stack with
the pushed value.

We now describe the idea behind each of our representations for the different
groups of bytecode instructions. In this chapter, each bytecode instruction is
identified by a program point q and is translated in a predicate pq.
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3.3.1 Stack manipulation instructions

This section describes representations used to model the Java bytecode instruc-
tions that are dedicated to retrieve and store values on the operand stack and
the local variable table.

• CONST {lconst n,iconst n,dconst n,fconst n,ldc2 w, bipush}

Push a specified constant value on the top of the operand stack.

q : CONST d→ {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ V = d, SP ′ = SP + 1} ,
write(SP ′, ˜IV , ˜IV ′, V ),
pq+1( ˜IV ′, SP ′, H,HO,HS,HSO,R).
}

The CONST meta-instruction defines the push of a constant d on the top
of the stack. In order to represent this operation we constraint a variable
V to be equal to the value d and write it to the top of the stack. The
stack pointer is incremented by one as we added an element on the stack.

• LOAD {aload n,aload,fload,fload n,iload,iload n,lload,lload n}

Push a value from a specified local variable on the top of the operand stack.

q : LOAD d→ {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ I = d, SP ′ = SP + 1} ,
read(I, ˜IV , V ),
write(SP ′, ˜IV , ˜IV ′, V ),
pq+1( ˜IV ′, SP ′, H,HO,HS,HSO,R).

}

The LOAD meta-instruction groups all bytecode instructions that retrieve
an element from the local variables and push it on the top of the operand
stack. In order to represent this operation a variable I is constrained to
the value d which represents the index of the local variable to retrieve in
the local variable table. The read predicate is used to read the value at
index d and places it in the variable V . The retrieved value is pushed onto
the top of the operand stack via the write predicate. The stack pointer is
incremented by one as we added an element on the stack.
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• STORE {astore n,astore,dstore n,dstore,fstore n,fstore,istore n,istore,lstore n,lstore}

Store the value from the top of the operand stack into a specified local vari-
able and pop the value.

q : STORE d→ {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ I = d, SP ′ = SP − 1} ,
read(SP, ˜IV , V ),
write(I, ˜IV , ˜IV ′, V ),
pq+1( ˜IV ′, SP ′, H,HO,HS,HSO,R).

}

The STORE meta-instruction defines an operation that retrieves the first
element from the operand stack and stores it in a given slot of the local
variables table. In order to represent this operation an index variable I is
constrained to be equal to d. The read predicate is used with SP as the
first argument in order to retrieve the last value from the operand stack,
variable V is constrained to be equal to this value.the write predicate is
used to store this value in the variable Vd. The stack pointer is decre-
mented for the next instruction as we popped an element from the stack.

• DUP {dup}

Duplicate value at the top of the stack in accordance with a specified
scheme.

q : DUP → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP + 1} ,
read(SP, ˜IV , V ),
write(SP ′, ˜IV , ˜IV ′, V ),
pq+1( ˜IV ′, SP ′, H,HO,HS,HSO,R).

}

The DUP meta-instruction is used to duplicate the first element of the
operand stack (i.e. element at the top of the stack). To perform this
operation the read predicate is simply used to retrieve the top value of the
operand stack (with SP as the index). The stack pointer is incremented
and the value retrieved by the read is pushed on the operand stack.
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Now, lets us consider the following Java program to illustrate some of those
stack manipulation instructions :

public class DEMO {

public stat ic void main ( St r ing [ ] a rgs ){
int a = 10 ;
int b = a ;
}

}

(a) Source code version

0 : bipush 10
2 : i s t o r e 1
3 : i l o a d 1
4 : i s t o r e 2
5 : r e turn

(b) Bytecode version (main)

Figure 3.5: A very simple Java program

Figure 3.5 shows that the initializations and assignment of variables is mainly
performed by stack manipulation instructions. The first instruction of the main
method is represented by the first two bytecode instructions 0 and 2 that push
a constant (10) on the top of the operand stack and subsequently pop this value
into the first variable of the local variable table. The second assignment is per-
formed by the bytecode instructions 3 and 4 that push the value of the variable
on the top of the operand stack and then pop this value into the second variable
of the local variable table. The bytecode return statement is ignored for now.

The application of our decompilation rules on the Java bytecode sequence
described by Figure 3.5b result in the CLP program defined in 3.1.

Even with this very simple example, we can already notice that the decom-
piled CLP version is much more verbose than the original source code. A first
explanation for this gap is that the number of instructions introduced by the
bytecode version is much higher than in the original source code. A lot of oper-
ations are necessary because of the stack-based mechanism of the JVM. Many
of these operations are unnecessary, and could be bypassed in our decompiled
declarative version. Chapter 5 aims to describe how our decompiler optimises
and aggregates those representations.

The reader should note that Java variables a and b from the Java source
code presented in Figure 3.5a correspond to CLP variables V 1 and V 2, respec-
tively. The CLP variable V 0 handles the reference towards the array of String
passed as parameter of the method. The parameter passing mechanism will
be described in section 4.2. The operand stack is entirely described by the V 3
CLP variable as the maximum possible stack size for this method is one. The
stack pointer SP is constrained at 2 in the first predicate of the method, which
corresponds to the zero level of the operand stack. The stack pointer should
always be initialized to the size of the local variable table in the first predicate
of each method.
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Listing 3.1: A very simple Java program (Decompiled)

% 0 : bipush 10
p1 1 0 (V0 , V1 , V2 , V3 , SP ,H,HO,HS,HSO,R) :−

{SP=2,V=10,SP0=SP+1} ,
wr i t e (SP0 , V0 , V1 , V2 , V3 ,W0,W1,W2,W3,V) ,
p1 1 1 (W0,W1,W2,W3,H,HO,HS,HSO,R) .

% 2 : i s t o r e 1
p1 1 1 (V0 , V1 , V2 , V3 , SP ,H,HO,HS,HSO,R) :−

{ I =1,SP0=SP−1} ,
read (SP , V0 , V1 , V2 , V3 ,V) ,
w r i t e 1 ( I , V0 , V1 , V2 , V3 ,W0,W1,W2,W3,V) ,
p1 1 2 (W0,W1,W2,W3, SP0 ,H,HO,HS,HSO,R) .

% 3 : i l o a d 1
p1 1 2 (V0 , V1 , V2 , V3 , SP ,H,HO,HS,HSO,R) :−

{ I =1,SP0=SP+1} ,
read ( I , V0 , V1 , V2 , V3 ,V) ,
wr i t e (SP0 , V0 , V1 , V2 , V3 ,W0,W1,W2,W3,V) ,
p1 1 3 (W0,W1,W2,W3, SP0 ,H,HO,HS,HSO,R) .

% 4 : i s t o r e 2
p1 1 3 (V0 , V1 , V2 , V3 , SP ,H,HO,HS,HSO,R) :−

{ I =1,SP0=SP−1} ,
read (SP , V0 , V1 , V2 , V3 ,V) ,
w r i t e 1 ( I , V0 , V1 , V2 , V3 ,W0,W1,W2,W3,V) ,
p1 1 4 (W0,W1,W2,W3, SP0 ,H,HO,HS,HSO,R) .

% 5 : re turn
p1 1 4 (V0 , V1 , V2 , V3 , SP0 ,H,HO,HS,HSO,R) :−

{HS = HSO, un i fy (H,HO) } .

3.3.2 Arithmetic operations

This section describes representations used to model from bytecode’s arithmetic
operations as addition, subtraction, division, modulo and multiplication. Incre-
mentation and negation instructions that are derived from theses arithmetic
operations are also described.

• ADD{dadd, fadd, iadd, ladd}

Add the two top stack values, pop them and push the result.

q : ADD → { pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP − 1, V R = V 1 + V 2} ,
read(SP, ˜IV , V 1),
read(SP ′, ˜IV , V 2),
write(SP ′, ˜IV , ˜IV ′, V R),
pq+1( ˜IV ′, SP ′, H,HO,HS,HSO,R).

}
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We illustrate the representation of the ADD meta-instruction. The ADD
meta-instruction groups the definition of the (d|f |i|l)add bytecode instruc-
tions. The ADD models popping two values from the operand stack and
the push of their sum. This is represented by two calls to the read pred-
icate with SP and SP ′(= SP − 1) as indexes. The constrained variables
V 1 and V 2 returned by the read predicate are used to constrain a third
variable V R to be equal to the sum of V 1 and V 2. The write predicate is
used to model the push of the sum (V R) on the top of the operand stack.
The representation of the ADD meta-instruction is very similar to the
other representation used to model the SUB,DIV,MODULO and MUL
meta-instructions, that is why they are not described here.

• IINC{iinc}

Increment a specified local variable by specified a constant.

q : IINC i, n → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ I = i, V R = V + n} ,
read(I, ˜IV , V ),
write(I, ˜IV , ˜IV ′, V R),
pq+1( ˜IV ′, SP,H,HO,HS,HSO,R).

}

The IINC meta-instruction is special case of addition that is defined for
optimisation purposes inside the JVM. As the incrementation of a vari-
able is frequently used in Java programs the JVM is designed to deal
more efficiently with this type of operation. Without this optimisation,
incrementing a variable would involve loading a constant (CONST ) and
a specified variable (LOAD) followed by an addition (ADD).

The two arguments i and n represents the index of the local variable to
increment and the integer to add to this variable. The read predicate is
used to read the value of the local variable to increment (Vi) and con-
straint the variable V to be equal to this value. A new variable V R is
introduced in order to be constrained to be equal to the sum of V and
n. The write predicate is used to store the new value of V ′i into the local
variable table.
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• NEG{dneg,fneg,ineg, lneg}

Pop the value at the top of the stack and push the negated value.

q : NEG → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ V R = −V } ,
read(SP, ˜IV , V ),
write(SP, ˜IV , ˜IV ′, V R),
pq+1( ˜IV ′, SP,H,HO,HS,HSO,R).

}

The NEG meta-instruction is used to negate a given value at the top of
the operand stack. The description of this representation is pretty simple
to understand. The read predicate pops the value located at the top of
the operand stack and constrains the variable V to be equal to this value.
A new variable V R is introduced and constrained to be equal to −V . The
write predicate pushes the negated value (V R) on the top of the operand
stack.

We can now extend our previous example and deal with some arithmetic
operations.

public class DEMO {

public stat ic void main ( St r ing [ ] a rgs ){
int a = 10 ;
int b = a + 5 ;
a++;
}

}

(a) Source code version

0 : bipush 10
2 : i s t o r e 1
3 : i l o a d 1
4 : i c o n s t 5
5 : iadd
6 : i s t o r e 2
7 : i i n c 1 , 1
10 : r e turn

(b) Bytecode version (main)

Figure 3.6: A simple Java program

The first instruction is the same as in our previous example. We replaced
the second instruction of the Java program by an addition and added a third
incrementation operation. The (int b = a + 5;) Java statement is compiled into
bytecode instructions 3,4,5 and 6. The value of the variable a is first pushed
onto the operand stack (iload 1), then the constant 5 (iconst 5) is pushed onto
the stack. Then, the iadd performs the addition of those two values and the
result is stored in the local variable table via istore 2. The (a++;) statement
is directly translated as an optimised iinc bytecode instruction.
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The application of our decompilation rules over the Java bytecode sequence
described by the Figure 3.6b result in the following CLP program :

Listing 3.2: A simple Java program (Decompiled)

% 0: bipush 10
p1 1 0 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{SP=2,V=10,SP0=SP+1} ,
wr i t e (SP0 ,V0 ,V1 ,V2 ,V3 ,W0,W1,W2,W3,V) ,
p1 1 1 (W0,W1,W2,W3,W4,H,HO,HS,HSO,R) .

% 2 : i s t o r e 1
p1 1 1 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{ I=1,SP0=SP−1} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V) ,
wr i t e 1 ( I ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 2 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSOS,R) .

% 3 : i l o a d 1
p1 1 2 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{ I=1,SP0=SP+1} ,
read ( I ,V0 ,V1 ,V2 ,V3 ,V4 ,V) ,
wr i t e (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 3 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 4 : i c o n s t 5
p1 1 3 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{V=5,SP0=SP+1} ,
wr i t e (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 4 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 5 : iadd
p1 1 4 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{SP0=SP−1,VR=V1+V2} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V1) ,
read (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,V2) ,
wr i t e (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,VR) ,
p1 1 5 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 6 : i s t o r e 2
p1 1 5 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{ I=2,SP0= SP−1} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V) ,
wr i t e ( I ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 6 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 7 : i i n c 1 1
p1 1 6 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{ I=1,VR=V+1} ,
read ( I ,V0 ,V1 ,V2 ,V3 ,V4 ,V) ,
wr i t e ( I ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,VR) ,
p1 1 7 (W0,W1,W2,W3,W4, SP ,H,HO,HS,HSO,R) .

% 10 : re turn
p1 1 7 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{HS = HSO, un i fy (H,HO) } .

3.3.3 control flow instructions

We now describe the representation of the bytecode instructions that impact
the flow of the program. Those instructions are mainly simple branches and
conditional branches.
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• COMPARE {dcmpl, fcmpl, lcmpl}

Compare the to top values on the top of the stack, pop them and push 1,0
or -1 depending on the comparison’s result.

q : COMPARE → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP − 1, V 1 > V 2} ,
read(SP, ˜IV , V 1),
read(SP ′, ˜IV , V 2),
write(SP ′, ˜IV , ˜IV ′, 1),
pq+1( ˜IV ′, SP ′, H,HO,HS,HSO,R).

pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP − 1, V 1 = V 2} ,
read(SP, ˜IV , V 1),
read(SP ′, ˜IV , V 2),
write(SP ′, ˜IV , ˜IV ′, 0),
pq+1( ˜IV ′, SP ′, H,HO,HS,HSO,R).

pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP − 1, V 1 < V 2} ,
read(SP, ˜IV , V 1),
read(SP ′, ˜IV , V 2),
write(SP ′, ˜IV , ˜IV ′,−1),
pq+1( ˜IV ′, SP ′, H,HO,HS,HSO,R).
}

We illustrate the representation of the COMPARE statement for (d|f |l)cmpl
bytecode instructions. The (d|f |l)cmpl (compare less) instructions pop
and compare the top two values of the operand stack and push a value
depending of the comparison result. The comparison operates over two
values V1 and V2 where V1 is the first value to be popped from the sack
and V2 the second. The result pushed onto the stack is either 1,0 or -1
depending if (V1 > V2), (V1 = V2) or (V1 < V2) respectively. The repre-
sentation is similar for (d|f |l)cmplg (compare greater).

The representation is divided into three predicates, one for each possible
case of the comparison. As those three cases are mutually exclusive, only
one of the three predicates is evaluated for a given state of the operand
stack. Predicates differ from each other only in the constraint for the com-
parison of V1 and V2 part and the associated write value. Each predicate
consists of two read invocations that retrieve the first two values, and
a write instruction that push the comparison’s result on the top of the
stack. The stack pointer is decremented by one for this instruction as the
operation pop two values but pushes also a value on the operand stack.
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• GOTO{goto}

Branch to the specified instruction.

q : GOTO x → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ } ,
px( ˜IV , SP,H,HO,HS,HSO,R).

}

The representation of the GOTO instruction is pretty straightforward.
There is no constraint for this representation. The evaluation of the pred-
icate pq branches directly to the evaluation of the predicate px

• IF COMPARE {if icmpge}

Compare the top two values at the top of the stack, pop them and branch
to the specified instruction or not depending on the comparison result.

q : IF COMPARE x → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP − 1, SP ′′ = SP − 2, V 2 < V 1} ,
read(SP, ˜IV , V 1),
read(SP ′, ˜IV , V 2),
pq+1( ˜IV ′, SP ′′, H,HO,HS,HSO,R).

pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP − 1, SP ′′ = SP − 2, V 2 >= V 1} ,
read(SP, ˜IV , V 1),
read(SP ′, ˜IV , V 2),
px( ˜IV ′, SP ′′, H,HO,HS,HSO,R).

}

We illustrate the representation of the IF COMPARE meta-instruction
for if icmpge bytecode instructions. The if icmpge (compare if greater or
equals) instruction pops and compares the two top values of the operand
stack and branches towards a specified instruction or not depending on
the result. The representation is similar for the if acmp(eq|ne) and
if icmpeq|ne|lt|le) bytecode instructions. The representation is divided
into two mutually exclusive predicates. The constraint parts of the two
predicates differ from each other only for the comparison of V1 and V2. The
next predicate to be evaluated is either the next instruction’s predicate
(pq+1) or the specified instruction’s predicate (px) depending if (V2 < V1)
or (V2 >= V1), respectively.
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• IF {ifle}

Branch to the specified instruction or not depending on the top stack value.
Top stack value is popped in the same time.

q : IF x → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP − 1, V > 0} ,
read(SP, ˜IV , V ),
pq+1( ˜IV ′, SP ′, H,HO,HS,HSO,R).

pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP − 1, V <= 0} ,
read(SP, ˜IV , V ),
px( ˜IV ′, SP ′, H,HO,HS,HSO,R).

}

The IF meta-instruction defines an operation that redirects the execution
flow towards a specified instruction or not depending on the value at the
top of the operand stack. This meta-instruction is often associated with
the COMPARE meta-instruction. We illustrate the representation of IF
for the if le byecode instruction (if less or equal). The representation is
similar for the if(eq|ge|gt|lt|ne|nonnull|null) bytecode instructions.

This representation is very similar to the IF COMPARE representation.
It is also divided into two mutually exclusive predicates. The difference
is that only one value (V ) is popped from the operand stack. The next
predicate to be evaluated is either the next instruction’s predicate (pq+1)
or the specified instruction’s predicate (px) depending if (V > 0) or (V <=
0) respectively.
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• LOOKUPSWITCH {lookupswitch}

Branch to one of the specified instructions depending on the top stack
value. Top stack value is popped in the same time.

q : LOOKUPSWITCH d (v, r) (w, s) (x, t) → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP − 1, V = v} ,
read(SP, ˜IV , V ),
pr( ˜IV , SP ′, H,HO,HS,HSO,R).

pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP − 1, V = w} ,
read(SP, ˜IV , V ),
ps( ˜IV , SP ′, H,HO,HS,HSO,R).

pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP − 1, V = x} ,
read(SP, ˜IV , V ),
pt( ˜IV , SP ′, H,HO,HS,HSO,R).

pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP − 1} ,
pd( ˜IV , SP ′, H,HO,HS,HSO,R).

}
The last representation of the control flow operations defines the
LOOKUPSWITCH instruction. This representation is a bit more com-
plex than the previous control flow instructions. This instruction is the
bytecode level equivalent of the switch statement in Java. The principle
is that the execution flow is redirected towards a specified instruction de-
pending on the value of a specified variable. The instruction takes two
arguments; The default instruction to branch to (d) and a list of pairs of
the form (value, instruction number). If the specified variable matches
one of the defined values, the execution flow is redirected towards the
corresponding instruction. Otherwise, the execution flow is redirected to-
wards the default instruction.

We present here the representation of the LOOKUPSWITCH meta-
instruction in the case of 3 defined values but generalize easily for the case
of n values program point pairs. The reader should note that the order in
which Prolog tries to evaluate the clauses is important for this represen-
tation. Indeed, this representation assumes that the clauses are evaluated
in the order they are written. With respect to that, the default case is
only evaluated if no other case matches and we are free to not specify any
constraint for the evaluated variable V .
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We assume that the value of the variable that determines the execution
flow is stored on the top of the stack. As this representation handles 3
possible cases for the value of the variable, it is represented by four pred-
icates. One predicate for each possible value of the variable plus one for
the default case. The first three predicates are almost identical. The read
predicate is used to retrieve the actual value located at the top of the
operand stack. They only differs in the constraint part when testing the
value retrieved in the variable V . If the constraint (V = v) is respected,
the first clause is executed and the control flow goes towards predicate
pr with a decremented stack pointer. The second and thrid clauses are
similar. For the fourth clause (default case), as there is no actual con-
straint on previously constrained variable the clause is always executed
when evaluated.

Back to our example, we now illustrate some of the control flow instructions
described in this section.

public class DEMO {

public stat ic void main ( St r ing [ ] a rgs ){
int a = 10 ;
int b = 0 ;
i f ( a > 5){

b = a + 5 ;
} else {

b = a − 5 ;
}

}
}

(a) Source code version

0 : bipush 10
2 : i s t o r e 1
3 : i c o n s t 0
4 : i s t o r e 2
5 : i l o a d 1
6 : i c o n s t 5
7 : i f i c m p l e 17
10 : i l o a d 1
11 : i c o n s t 5
12 : iadd
13 : i s t o r e 2
14 : goto 21
17 : i l o a d 1
18 : i c o n s t 5
19 : i sub
20 : i s t o r e 2
21 : r e turn

(b) Bytecode version (main)

Figure 3.7: A Java program

The application of our decompilation rules over the Java bytecode sequence
described by the Figure 3.6b results in the following CLP program :
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Listing 3.3: A Java program (Decompiled)

% 0: bipush 10
p1 1 0 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{SP=2,V=10,SP0=SP+1} ,
wr i t e (SP0 ,V0 ,V1 ,V2 ,V3 ,W0,W1,W2,W3,V) ,
p1 1 1 (W0,W1,W2,W3,W4,H,HO,HS,HSO,R) .

% 2 : i s t o r e 1
p1 1 1 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{ I=1,SP0=SP−1} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V) ,
wr i t e 1 ( I ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 2 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 3 : i c o n s t 0
p1 1 2 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{V=0,SP0=SP+1} ,
wr i t e (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 3 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 4 : i s t o r e 2
p1 1 3 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{ I=2,SP0=SP−1} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V) ,
wr i t e 1 ( I ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 4 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 5 : i l o a d 1
p1 1 4 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{ I=1,SP0=SP+1} ,
read ( I ,V0 ,V1 ,V2 ,V3 ,V4 ,V) ,
wr i t e (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 5 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 6 : i c o n s t 5
p1 1 5 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{V=5,SP0=SP+1} ,
wr i t e (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 6 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 7 : i f i cmp l e −> 12
p1 1 6 (V0 ,V1 ,V2 ,V3 ,V4 , SP0 ,H,HO,HS,HSO,R) :−

{SP0=SP−1,SP1=SP−2,V2>V1} ,
read (SP , IV0 , IV1 , IV2 , IV3 , IV4 ,V1) ,
read (SP0 , IV0 , IV1 , IV2 , IV3 , IV4 ,V2) ,
p1 1 7 (V0 ,V1 ,V2 ,V3 ,V4 , SP1 ,H,HO,HS,HSO,R) .

p1 1 6 (V0 ,V1 ,V2 ,V3 ,V4 , SP0 ,H,HO,HS,HSO,R) :−
{SP0=SP−1,SP1=SP−2,V2=<V1} ,
read (SP , IV0 , IV1 , IV2 , IV3 , IV4 ,V1) ,
read (SP0 , IV0 , IV1 , IV2 , IV3 , IV4 ,V2) ,
p1 1 12 (V0 ,V1 ,V2 ,V3 ,V4 , SP1 ,H,HO,HS,HSO,R) .

% 10 : i l o a d 1
p1 1 7 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{ I=1,SP0=SP+1} ,
read ( I ,V0 ,V1 ,V2 ,V3 ,V4 ,V) ,
wr i t e (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 8 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 11 : i c o n s t 5
p1 1 8 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{V=5,SP0=SP+1} ,
wr i t e (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 9 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 12 : iadd
p1 1 9 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{SP0=SP−1,VR=V1+V2} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V1) ,
read (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,V2) ,
wr i t e (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,VR) ,
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p1 1 10 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .
% 13 : i s t o r e 2
p1 1 10 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{ I=2,SP0=SP−1} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V) ,
wr i t e 1 ( I ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 11 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 14 : goto −> 16
p1 1 11 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{} ,
p1 1 16 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) .

% 17 : i l o a d 1
p1 1 12 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{ I=1,SP0=SP+1} ,
read ( I ,V0 ,V1 ,V2 ,V3 ,V4 ,V) ,
wr i t e (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 13 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 18 : i c o n s t 5
p1 1 13 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HS,R) :−

{V=5,SP0=SP+1} ,
wr i t e (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 14 (W0,W1,W2,W3,W4, SP0 ,H,HS,R) .

% 19 : i sub
p1 1 14 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{SP0=SP−1,VR=V1−V2} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V1) ,
read (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,V2) ,
wr i t e (SP0 ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,VR) ,
p1 1 15 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 20 : i s t o r e 2
p1 1 15 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{ I=2,SP0=SP−1} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V) ,
wr i t e 1 ( I ,V0 ,V1 ,V2 ,V3 ,V4 ,W0,W1,W2,W3,W4,V) ,
p1 1 16 (W0,W1,W2,W3,W4, SP0 ,H,HO,HS,HSO,R) .

% 21 : re turn
p1 1 16 (V0 ,V1 ,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) :−

{HS = HSO, un i fy (H,HO) } .
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Chapter 4

Heap representation and
method calls

4.1 Heap representation

We now describe how we model bytecode instructions related to Java object ma-
nipulations. Those manipulations include the creation of an object, retrieving a
value from a field or modify this value. Java arrays are treated as objects with
one particular field to store the length of the array in our CLP representation.
Hence, we also describe array-related operations in this section.

A particularity of the heap is that we don’t always know its size at com-
pile time. Indeed, for some programs, it is not always possible to know how
many objects will be created during the execution. A simple program in which
the number of created objects depend on the user’s inputs should convince the
reader. Moreover, in a Java program, due to the heritage and polymorphism
mechanisms, the type of an object is not always known at compilation time
neither. Again those mechanisms reinforce the fact that it is impossible to stat-
ically compute the size of the heap as the type of the object impact also its
size. Thus, we need a dynamic mechanism to represent the heap and the cre-
ation of the different objects. We developed two internal representations for
objects, a first representation using the assert− retract mechanisms of Prolog
and a second representation using Prolog lists. Even if the two representa-
tions are functional, the representation via Prolog lists was more convenient for
the analysis tools of our framework. We now present those two representations :

The representation of a a single object is the same for the two representa-
tions. An object is represented by a group of facts. A fact represents a field of
a given object. Those facts are of the form object(R,F, V ). where R ∈ Z is
the (id) reference of the object’s field. The variable F ∈ Z represent the (id)
number of the field represented by the fact inside the object. V is the value of
the field. Thus, a field is referenced via its object id reference and its own field
number inside the object.
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First internal representation of the heap (assert-retract) :

The assert-retract version of our heap representation works by adding and
removing facts from the Prolog database. The writeMemory predicate should
always be used in its writeMemory(IN, IN, IN) mode. The writeMemory
predicate is divided in two cases :

The first definition of the predicate handles the case where the value of the
field is modified. As the field of the given object is already initialized in the
Prolog database, this definition of the writeMemory predicate first removes the
corresponding fact with a retract statement. Then we insert the new object fact
into the Prolog database with the assert statement.

The second definition is simpler. This definition of the predicate is executed
if the retract statement of the first definition fails. This would mean that
no object fact with the same R and F values where previously added to the
Prolog database. Thus, we only need to insert the new object fact in the Prolog
database.

• Write Memory

writeMemory(R,F, V )←
{ } ,
retract(object(R,F, )),
assert(object(R,F, V )).

writeMemory(R,F, V )←
{ } ,
assert(object(R,F, V )).

The definition of the readMemory predicate is pretty straightforward.
The predicate should be used in its readMemory(IN, IN,OUT ) mode.
Given an object id and a field id, the predicate returns the value of the
corresponding field.

• Read Memory

readMemory(R,F, V )←
{ } ,
object(R,F, V ).

Second internal representation of the heap (Prolog lists) :

Our second heap representation uses lists to handle the pool of objects rather
than adding and removing facts from the Prolog database during the execution.
This solution has the advantage to be more convenient for analysis tools. How-
ever, this representation of the heap requires to initialize an empty list at the
start of each program and to pass this list from predicate to predicate.
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• Write Memory

This definition of the writeMemory predicate should always be used in
its writeMemory(IN,OUT, IN, IN, IN) mode. The predicate is of the
form writeMemory(HI,HO,R, F, V ) where HI is the Prolog list that
represents the heap before the execution of the writeMemory predicate
and HO this list after its execution. The R,F ,V variables represents the
reference of the object’s field, the number of the field represented by the
fact inside the object and the value of the field, respectively.

The first clause handles the modification case with the select statement. If
the field that we try to add to the list is already an element of this list, the
first clause of the predicate removes this element and call writeMemory
again.

If no element of the HI list have the same R value and the same F value
as the element we try to insert, the select statement from the first clause
fails and the second clause is executed. The second clause simply adds the
object element at the beginning of the list.

writeMemory(HI,HO,R, F, V )←
{ } ,
select(object(R,F, ), HI,HO1),
writeMemory(HO1, HO,R, F, V ).

writeMemory(HI, [object(R,F, V )|HI], R, F, V ).

• Read Memory

The readMemory predicate should always be used in its readMemory(IN, IN, IN,OUT )
mode. The predicate basically runs through the elements of the list until
it finds an element with the corresponding object field id’s and returns the
associated value.

readMemory([object(R,F, V )|HS], R, F, V ).

readMemory([object(RR,FF, )|HS], O, F, V )←
{OO 6= O || FF 6= F} ,
readMemory(HS,O, F, V ).

The following representations of bytecode instructions are defined for the
Prolog list representation of the heap. However, the modification to switch
from one representation is minor as we introduced an abstraction layer via
readMemory and writeMemory.
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• NEW{new}

Create a new object. Reference of the object is pushed on the top of the
stack.

q : NEW c → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP + 1, HS′ = HS + 1, C = c} ,
write(SP ′, ˜IV , ˜IV ′, HS),
writeMemory(H,H ′, HS, 0, C),
writeMemory(H ′, H ′′, HS, 1, 0),
pq+1( ˜IV ′, SP ′, H ′′, HO,HS′, HSO,R).

}

The NEW meta-instruction defines the bytecode instruction that creates
a new object into the heap. We illustrate here the representation of a new
instruction for the creation of an object of class c. We assume that the
objects of class c have only one field.

The write predicate pushes the reference of the created object on the top
of the operand stack. Two items are added to the list H that represents
the heap via the writeMemory predicate. The first call to writeMemory
initializes the field 0 of the object with the id of its class, which is a spe-
cial field that is present in every object. This field is used to retrieve the
actual type of an object. The second field of the object is initialized via
the second call to writeMemory. The value of a field is set to zero by
default. The HS variable, which represents the heap size is incremented
by one as we added an object to the heap.

• GETFIELD {getfield}

Fetch specified field of the referenced object by the poped top stack value.

q : GETFIELD i → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ I = i} ,
read(SP, ˜IV ,R),
write(SP, ˜IV , ˜IV ′, F ),
readMemory(H,R, I, F ),
pq+1( ˜IV ′, SP,H,HO,HS,HSO,R).

}
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The GETFIELD representation illustrates how to retrieve the value of a
non-static object field. The JVM assumes that the reference of the object
is on the top of the operand stack before executing the instruction. The n
argument indicates the number of the field from which we want to get the
value. The read predicate is used to constraint variable R to the value of
the object reference. The readMemory predicate is used to retrieve the
field value F from the list that represents the heap (H). The retrieved
field value F is pushed on the top of the operand stack via the write pred-
icate.

The definition of the GETSTATIC meta-instruction is similar to this
one.

• PUTFIELD{putfield}

Set specified field of a referenced object. The two popped top stack values
must be the object reference and the value to be set. The field is specified
via an instruction argument.

q : PUTFIELD i → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ I = i, SP ′ = SP − 1, SP ′′ = SP − 2} ,
read(SP, ˜IV , F ),
read(SP ′, ˜IV ,R),
writeMemory(H,H ′, R, I, F ),
pq+1( ˜IV , SP ′′, H ′, HO,HS,HSO,R).

}

The PUTFIELD operation changes the value of a given field in a given
object. We assume that the reference of the object and the value to be
assigned to the field are on the top of the operand stack before executing
the instruction. The argument indicates the number of the field we want
to assign. The value to be assigned to the field (F ) and the reference of the
object (R) are retrieved via the read predicate. The object representation
is modified via writeMemory. the stack pointer is decremented by two
as we popped the values of R and F from the operand stack.

The definition of the PUTSTATIC meta-instruction is similar to this
one.
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• NEWARRAY{newarray}

Create a new array. The length of the array is determined by the popped
top stack value. Reference of the array is pushed on the top of the stack.

q : NEWARRAY → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ HS′ = HS + 1} ,
read(SP, ˜IV , V ),
write(SP, ˜IV , ˜IV ′, HS),
writeMemory(H,H ′, HS,−1, V ),
pq+1( ˜IV ′, SP,H ′, HO,HS′, HSO,R).

}

The NEWARRAY meta-instruction is very similar to the NEW meta-
instruction with the particularity that we also initialize the size of the
array. This operation requires that the length of the array (V ) is at the
top of the operand stack. The size of the array is retrieved via the read
predicate. The size of the array is encoded at special field -1 via the
writeMemory predicate. The size of the heap is incremented by one as
arrays are a special form of object in our representation.

• ARRAYLENGTH {arraylength}

Pop the top stack value that must be an array reference and pop the length
of this array.

q : ARRAY LENGTH → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ } ,
read(SP, ˜IV ,R),
readMemory(H,R,−1, L),
write(SP, ˜IV , ˜IV ′, L),
pq+1( ˜IV ′, SP,H,HO,HS,HSO,R).

}

ARRAY LENGTH is an array specific instruction that allows to get the
size of a given array. This representation assumes that the reference of the
array is on the top of the operand stack. The reference of the array R is
retrieved via the read predicate. As the length of the the array is stored
in a special field at index -1 at the creation of the array, the length L is
simply retrieved via the readMemory predicate. The length is popped on
the top of the operand stack via the write predicate.
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• ARRAYLOAD {iaload,laload,saload,faload,aaload,daload}

Load a value from an array. The array reference and index of the element
to retrieve must be at the top of the stack and are popped.

q : ARRAY LOAD → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′ = SP − 1 } ,
read(SP ′, ˜IV ,R),
read(SP, ˜IV , I),
readMemory(H,R, I, V ),
write(SP, ˜IV , ˜IV ′, V ),
pq+1( ˜IV ′, SP ′, H,HO,HS,HSO,R).

}

The ARRAY LOAD meta-instruction group bytecode instructions that
aim to retrieve a value located at a specified index in a given array. The
retrieved value is pushed on the top of the operand stack. This operation
assumes that the reference of the array R and the index I are on the top
of the operand stack before the execution of the ARRAY LOAD meta-
instruction. The value of those two variables are popped via the read
predicates. The value is retrieved via the readMemory predicate and
pushed on the operand stack via the write predicate. the stack pointer
is decremented by one as we popped two R and I but pushed only the
retrieved value from the array.

• ARRAYSTORE {iastore,lastore,sastore,fastore,aastore,dastore}

Store a value into an array. The first three top stack values must be the
array reference, index and the value to be stored at the given index and
are popped during the operation.

q : ARRAY STORE → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ SP ′′′ = SP − 3, SP ′′ = SP − 2, SP ′ = SP − 1 } ,
read(SP ′′, ˜IV ,R),
read(SP ′, ˜IV , I),
read(SP, ˜IV , V ),
writeMemory(H,H ′, R, I, V ),
pq+1( ˜IV , SP ′′′′, H ′, HO,HS,HSO,R).

}
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The ARRAY STORE meta-instruction group bytecode instructions that
aim to store a given value at a specified index of an array. This represen-
tation assumes that the references of the array, the index and the value to
be stored are on the top of the operand stack. Those values are retrieved
via read predicates. The writeMemory predicate is used to store assign
the value to the given index of the array. The stack pointer is decremented
by 3 as we popped the R,I and V values from the operand stack.

• MULTINEWARRAY{multinewarray}

Create a new multidimensional array. The number of dimensions is de-
termined via an instruction argument and the length of each dimension is
from the n first popped top stack values. Reference of the array is pushed
on the top of the stack.

MULTINEWARRAY allows to create multidimensional arrays. The
number of dimension of the array is passed as an argument to the instruc-
tion whereas the length of the respective dimensions are assumed to be
on the top of the operand stack. We illustrate the representation of the
MULTINEWARRAY for a two dimensions array.

(Example for 2 dimensions array : d = 2)

q : MULTINEWARRAY d → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ D = d, SP ′ = SP−1, AR1 = HS+1, AR2 = HS+2, HS′ = HS+3} ,
read(SP ′, ˜IV , V 1),
read(SP, ˜IV , V 2),
write(SP ′, ˜IV , ˜IV ′, HS),
writeMemory(H,H ′, HS,−1, D),
writeMemory(H ′, H ′′, AR1,−1, V 1),
writeMemory(H ′′, H ′′′, AR2,−1, V 2),
pq+1( ˜IV ′, SP ′, H ′′′, HO,HS′, HSO,R).

}

The two lengths of the respective dimensions are retrieved in the variables
V 1 and V 2 via the read predicates. The reference of the multidimensional
array is pushed on the top of the operand stack via the write predicate. A
multidimensional array of n dimensions is represented as an array of length
n that contains references to other arrays. That’s how a multidimensional
array is represented as an array of array. Thus, the respective dimensions
are stored into the -1 fields of each array via the writeMemory predicates.
The stack pointer is decremented by one as we popped the two dimensions
values but pushed the reference of the new multidimensional array.
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4.2 Method calls

We now describe how method calls are handled. This section also explains how
the dynamic linking process works and how it is handled by our representation
in CLP.

Java provides a great number of possibilities when it comes to method calls.
The way methods are handled depends on their access and non-access modifiers.
Moreover, the heritage mechanism provided by Java also elaborates the method
call mechanism. There are two major types of methods. The most simple case
are static methods, which do not require to know the concrete object instance
on which they are executed to be executed. As a consequence, for static meth-
ods, the definition of the method to execute is always known at compile time.
The second type of methods are called instance methods. Those methods re-
quire to know the concrete object on which they are executed to be executed
and the definition of the method to be executed depends of the actual type of
the instance (i.e. not the declared type). Hence, the definition of the method
to be executed could change from one execution to another. Due to this, we
need to provide a static lookup mechanism that is able to choose dynamically
the right definition of method to execute, depending on the actual type of the
instance at the execution time [16].

• INVOKE
{invokestatic,invokespecial,invokeinterface,invokevirtual}

Invoke a specified method. Arguments are popped from the stack.

The invoke bytecode instructions all take a constant pool entry as ar-
gument. Those entries have to be symbolic references methods. As the
invoke instructions are a bit more complex than the previous bytecode
instructions we detail our INV OKE meta-instruction for the different
categories. The symbolic references have to be resolved differently de-
pending on the invocation type.

The invokestatic bytecode instruction is used to invoke static methods,
their definition is always known at compile time. The mechanism used to
resolve the symbolic reference in this case is called static binding. The
symbolic reference describes the name of the class in which the method
to invoke is located and the signature of the method. As it is a static
method, information is sufficient to know which definition a method must
be called [16].
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The invokespecial instruction is particular invocation statement for some
instance methods. Invokespecial is used to call constructors, private
methods and methods that are called via the super keyword. In those
cases, even if those methods are instance methods, they require a static
binding mechanism. A dynamic binding applied on those cases would lead
to wrong results.

The invokeinterface and invokevirtual instructions are used to invoke
the other instance methods. For those cases, the symbolic reference con-
tains the name of the declared type of the instance and the signature of the
method. This is where the dynamic linking mechanism process operates.
The symbolic references point out to the declared type of the instance,
however it is the actual type of the instance that determines the definition
of method to invoke. In order to resolve this reference a lookup mecha-
nism is established. A clause is generated for the declared type and each
of its subclasses.Allowing to cover every potential types of the instance.
for each subclass, the definition of the method to be called is statically
defined by pointing to the first method that matches the signature when
going upwards in the class hierarchy. We now give our representation of
the invokevirtual instruction when invoking a non void method m from
an instance declared of type C :

q : invoke→



pq( ˜IV , SP,H,HO,HS,HSO,R)←
{
SPi = SP − (n− i),
SP CALL = m,
CLASS ID = class id
},
read(SPi, ˜IV ,Ai),

read(SP, ˜IV ,REF ),
readMemory(H,REF, 0, CLASS ID),

pxc
(REF, Ã, SP CALL,H,HOCALL, HS,HSOCALL, R

′),

write(SPn, ˜IV , ˜IV ′, R′),

pq+1( ˜IV ′, SPn, HOCALL, HO,HSOCALL, HSO,R).

Where

n = nb args of m
m = nb of local variables of m
∀ class id is a subclass id of C
∀ i ∈ [0..n]

The representation when invoking a void method is similar except we don’t
push the returned R variable to the operand stack of the calling method.
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• RETURN{iretrun,dreturn,lreturn,sreturn,areturn}

Return a value from non-void method or return from method.

The representation of the RETURN meta-instruction is pretty straight-
forward. We assume that the value to be returned by the method is on
the top of the operand stack. This value is simply written in variable R.

q : RETURN → {
pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ HSO = HS, unify(H,HO)} ,
read(SP, ˜IV ,R).

}

Our DEMO example can now be modified to include some object manipu-
lations and method calls. We introduce a new class ARIT that holds 3 fields
a,b and result. We also add two methods that make a computation over the
variables a and b and stores the result in the result variable.

public class DEMO {

public stat ic void main ( St r ing [ ] a rgs ) {

int sum res = 0 ;

ARIT o = new ARIT( ) ;
o . sum ( 5 , 3 ) ;
sum res = o . r e s u l t ;
}

}

public class ARIT {
int r e s u l t ;

public void sum( int a , int b){
r e s u l t = a + b ;

}
}

(a) Source code version

//DEMO.MAIN
0 : i c o n s t 0
1 : i s t o r e 1
2 : new #2; //ARIT
5 : dup
6 : i n vok e sp e c i a l #3; //ARIT.”< i n i t >”:()V
9 : a s t o r e 2

10 : a load 2
11 : i c o n s t 5
12 : i c o n s t 3
13 : i n vok ev i r t ua l #4; //ARIT. sum : ( I I )V
16 : a load 2
17 : g e t f i e l d #5; //ARIT. r e s u l t : I
20 : i s t o r e 1
21 : r e turn

//ARIT.SUM
0 : a load 0
1 : i l o a d 1
2 : i l o a d 2
3 : iadd
4 : p u t f i e l d #2; // r e s u l t : I
7 : r e turn

(b) Bytecode version (main)

Figure 4.1: A Java program with methods

The application of our decompilation rules over the Java bytecode sequence
described by the Figure 4.1b result in the following CLP program :
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Listing 4.1: A Java program with methods (Decompiled)

%METHOD ARIT.SUM
% 0 : a load 0
p1 1 0 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP=2,SP’=SP+1} ,
read (0 ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V) ,
wr i t e (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,V) ,
p1 1 1 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 1 : i l o a d 1
p1 1 1 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP+1} ,
read (1 ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V) ,
wr i t e (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,V) ,
p1 1 2 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 1 : i l o a d 2
p1 1 2 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP+1} ,
read (2 ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V) ,
wr i t e (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,V) ,
p1 1 2 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 3 : iadd
p1 1 3 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP−1,VR=V1+V2} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V1) ,
read (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V2) ,
wr i t e (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,VR) ,
p1 1 4 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 4 : p u t f i e l d 2
p1 1 4 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP−1, SP’ ’=SP−2} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V1) ,
read (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V2) ,
writeMemory (H,H’ ,V2 , 1 ,V1) ,
p1 1 5 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ’ ’ ,H’ ,HO,HS,HSO,R) .

% 7 : re turn
p1 1 5 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{HS = HSO, un i fy (H,HO) } .

%METHOD DEMO.MAIN
% 0 : i c o n s t 0
p2 1 0 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP=2,SP’=SP+1} ,
w r i t e 1 (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5, 0 ) ,
p2 1 1 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 1 : i s t o r e 1
p2 1 1 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP−1} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V) ,
wr i t e (1 ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,V) ,
p2 1 2 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 2 : new 2
p2 1 2 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP+1,S’=HS+1} ,
wr i t e (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,HS) ,
writeMemory (H,H’ ,HS, 0 , 1 ) ,
writeMemory (H’ ,H’ ’ ,HS’ , 1 , 0 ) ,
p2 1 3 (W0,W1,W2,W3,W4,W5, SP ’ ,H’ ’ ,HO,HS’ ,HSO,R) .

% 5 : dup
p2 1 3 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP+1} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V) ,
wr i t e (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,V) ,
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p2 1 4 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .
% 6 : i n vok e sp e c i a l 3
p2 1 4 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V) ,
p1 0 0 (V, 0 , ,H,H CALL,HS,HS CALL,R) ,
p2 1 5 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H CALL,HO,HS CALL,HSO,R) .

% 9 : a s t o r e 2
p2 1 5 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP−1} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V) ,
wr i t e (2 ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,V) ,
p2 1 6 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 10 : a load 2
p2 1 6 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP=2,SP’=SP+1} ,
read (2 ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V) ,
wr i t e (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,V) ,
p1 1 7 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 11 : i c o n s t 5
p2 1 7 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP=2,SP’=SP+1} ,
w r i t e 1 (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5, 5 ) ,
p2 1 8 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 12 : i c o n s t 3
p2 1 8 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP=2,SP’=SP+1} ,
w r i t e 1 (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5, 3 ) ,
p2 1 9 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 13 : i nvok ev i r t u a l 4
p2 1 9 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP−2,SP’ ’=SP−1,ClassID = 1} ,
read (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V1) ,
read (SP ’ ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V2) ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V3) ,
readMemory (H,V1 , 0 , ClassID ) ,
p1 1 0 (V1 ,V2 ,V3, 0 , 0 , 0 ,SP CALL,H,H CALL,HS,HS CALL,R) ,
p2 1 10 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,H CALL,HO,HS CALL,HSO,R) .

% 16 : a load 2
p2 1 10 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP+1} ,
read (2 ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V) ,
wr i t e (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,V) ,
p2 1 11 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 17 : g e t f i e l d 5
p2 1 11 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V) ,
wr i t e (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,FV) ,
readMemory (H,V, 1 ,FV) ,
p2 1 12 (W0,W1,W2,W3,W4,W5, SP ,H,HO,HS,HSO,R) .

% 20 : i s t o r e 1
p2 1 12 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP−1} ,
read (SP ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,V) ,
wr i t e (1 ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,V) ,
p2 1 13 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 21 : re turn
p2 1 13 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{HS = HSO, un i fy (H,HO) } .
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Chapter 5

Optimisations

As mentioned in chapter 3 our default representation is pretty verbose and the
one-to-one mapping between bytecode instructions and CLP clauses leads to
Prolog programs that are not particularly efficient. Even if efficiency is not our
main interest for this work, in order to reduce the amount of code processed by
analysis tools we developed an optimization phase in our decompilation process.
This chapter aims to describe the applied optimisations.

Virtual machines (VM) allow developers to create program executables that
are not directly linked with the physical architecture of the processor. Thus,
Virtual Machines allows their programs to be easily interpreted or compiled
on different platforms as they make few assumptions about the target hard-
ware(registers, CPU features). The Java Virtual Machine discussed in this
work, uses a virtual stack architecture, rather than the register architecture
that dominates in real processors. The stack-based architecture allows smaller
VM code so less code must be fetched inside the Virtual Machine by VM in-
struction executed [22]. In addition, stack-code is gradually easier to generate
in the compiler than register code and eliminates the need for a complicated
register allocator [9] [4] [22].

On the other hand, stack machines require more VM instructions for a given
algorithm to be expressed. In general, a given computation can often be ex-
pressed using fewer register machine instructions than stack instructions. As
an example, the local variable assignment b = a + b would be translated in the
following pseudo Java bytecode sequence :

i l o ad a
i l o ad b
iadd
i s t o r e b

Where a register based machines could directly put the sum of two registers in
the desired destination register.
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From those observations, we decided to provide some optimisation mecha-
nisms in order to reduce the amount of code (and reduce its complexity) pro-
duced by our decompiler for a given program. For this purpose we developed an
approach based on the detection and transformation of Java bytecode patterns
during the sequential decompilation. The following sections explain this process
and associated results.

5.1 pattern detection

In the stack-based JVM, operands are pushed from local variables onto the
operand stack before they can be used, and results must be retrieved from the
stack to local variables. However, in our CLP representation, the local variable
table and the operand stack are both represented as a set of Prolog variables.
Due to this representation, most of these stack push and pop operations are re-
dundant in our CLP representation, instructions can directly use local variables
with no additional cost.

As our default decompilation process is a one-to-one mapping between byte-
code instructions and CLP clauses, our CLP representations are basically the
declarative representation of each instruction. Hence, reducing the number of
unnecessary push and pop operations would directly reduce the number of CLP
clauses for a given program. This optimisation is fairly interesting as it is as-
sumed that more than 40% of executed instructions in common Java benchmarks
consists of loads and stores between local variables and the stack [22].

Moreover, our CLP representation models access and modification of the
stack by the read and write predicates presented in chapter 3. Indeed, we need
to provide a dynamic stack pointer mechanism to access and store values of the
operand stack. However, as described in section 3.3, this dynamic mechanism
implies to copy the ˜IV set each time an element is pushed on the top of the
stack or in the local variable table. Numerous calls to those predicates could
then present a problem of efficiency for analysis tools.

Even if we can’t dispense with the read and write predicates, it is possible to
reduce their use. After having inquired some Java bytecode program examples,
one can rapidly observe that recurrent patterns are used to accomplish some ma-
nipulations. Furthermore, for some of those patterns, it is possible to statically
know where a given value will be written in the stack. Thus, for those special
cases we can totally bypass the read and write dynamic predicates mechanisms.

Within the context of our work, we provided two optimisations related to
pattern detection to our decompiler.

• Initialisation of a variable.

• Arithmetic operation with two operands.
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We now describe the mechanisms behind each of those pattern based opti-
misations. The goal here is to detect some patterns in a sequence of bytecode
instructions. As our decompilation process is sequential, the default process is
to take instructions one by one in the order of occurence and to translate each
instruction in its CLP form. However, within the context of our optimisation
module we put in place a kind of sliding window mechanism in order to analyse
the n following instructions to come. The size of the sliding windows should be
the number of instruction of the longest defined pattern in order to detect all
developed patterns. However, allowing the user to define the size of the sliding
window via some optimisation levels can be useful in certain cases in order to
allow or exclude some optimisations.

ins ins ins ins ins ins ins

sliding window (n = 4)

Figure 5.1: Illustration of the sliding windows mechanism

The mechanism behind the sliding window is pretty simple. During the
sequential translation of a given sequence of bytecode instructions, the decom-
piler analyses the n following instructions to come. At a given instruction i, if
a pattern of length x is detected from instruction i in the sliding window, the
x following instructions are translated into their respective pattern representa-
tion. Figure 5.1 represents the case where a pattern consisting of 3 instructions
has been detected in a sliding window of size 4.

5.1.1 Initialisation of a variable

Variable initialisation operations are quite frequent in any programming lan-
guage. In Java bytecode, initialisations of variables are always performed in the
same way. First, a constant is pushed on the top of the stack. Then the value
that was just pushed on the top of the stack is copied into a specified slot of the
local variable table.

Even if a great number of combinations are possible when it comes to initial-
ize a variable in Java bytecode (i.e. iconst 5 → istore 2, bipush 10 → istore 3,
fconst 3 → fstore 10, ..), all those combinations follow the same pattern in our
CLP representation thanks to our well defined meta-instruction groups. Those
combinations are all defined as a CONST meta-instruction directly followed by
a STORE meta-instruction.

ins CONST STORE ins ins ins ins

Sliding window

Figure 5.2: Initialisation of a variable pattern
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The pattern allows us to not work with the operand stack any more to per-
form this operation. Indeed, as we see those two instructions as a whole, we
simply have to put a given value in a specified slot of the local variable table.
Thus, when representing this pattern by a single CLP clause, we don’t need to
deal with dynamic read and write predicates at all. We now give the definition
of our initialisation variable pattern :

• INITVAR {CONST c → STORE i}

q : INITV AR c, i → {

pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ V ′i = c} ∪ id−d,
pq+2( ˜IV ′, SP,H,HO,HS,HSO,R).

}

Besides grouping the two meta-instructions CONST and STORE into a
single CLP clause, this optimised representation dispenses us from making 3
calls to read and write predicates for each variable initialisation.

5.1.2 Arithmetic operation with two operands

The way arithmetic operations are performed in Java bytecode is pretty heavy
weight. Each basic arithmetic operation (i.e. addition, subtraction, modulo,
etc..) requires at least four bytecode instructions. Two load instructions are
first required to push the two operands of the operation on the top of the stack.
Then the operation is actually performed with a corresponding instruction and
the result is stored into the local variable table via a store instruction.

Once again, the number of possible combinations is even more important
than for the initialisation of a variable. But once more, our CLP representation
allows us to take in account all those combinations by a simple sequence of meta-
instructions. Considering that the meta-instructions ADD, SUB, DIV, MODULO,
MUL could be regrouped under a same meta-meta-instruction ARIT OP .
The arithmetic operations are represented by the
LOAD → LOAD → ARIT OP → STORE sequence.

ins LOAD LOAD ARIT OP STORE ins ins

Sliding window

Figure 5.3: Arithmetic operation with two operands
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By grouping those four instructions into a single CLP clause, this pattern
prevents us from using read and write dynamic predicates. When considering
the sequence of instructions a whole, we get the two operand locations. There
is no need to push operands on the top of the operand stack as the operation
is also performed in the CLP clause. Finally we need to store the result of the
operation in a specified field of the local variable table. As our representation
allows us to directly manipulate values from the local variable table, we don’t
need to interact with the operand stack. The CLP representation of our arith-
metic operation pattern is defined as follows :

• ARIT OP PATTERN {LOAD v → LOAD w → ARIT OP → STORE i}

q : ARIT OP PATTERN c, i → {

pq( ˜IV , SP,H,HO,HS,HSO,R)←
{ V ′i = Vv op Vw} ∪ id−d,
pq+4( ˜IV ′, SP,H,HO,HS,HSO,R).

}

Where op is the operation sign depending on the arithmetic operation rep-
resented by ARIT OP . Once again, besides grouping four CLP clauses into a
single clause we save 9 calls to read and write predicate each time an arithmetic
operation of this type is performed.

5.1.3 Some results

We now present an example from our decompiler that aims to illustrate how
the optimisations presented in the previous sections can reduce the complexity
of a given program. Our example consists of a method that simply initialises
two variables and assigns the sum of those two variables to the first variable.
The following figure illustrates the original Java program and its corresponding
bytecode sequence.
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public class DEMO {

public stat ic void main ( St r ing [ ] a rgs ) {
int a = 18 ;
int b = 2 ;
a = a + b ;
}

}

(a) Source code version

0 : bipush 18
2 : i s t o r e 1
3 : i c o n s t 2
4 : i s t o r e 2
5 : i l o a d 1
6 : i l o a d 2
7 : iadd
8 : i s t o r e 1
9 : r e turn

(b) Bytecode version (main)

Figure 5.4: A last Java program

The application of our default decompilation rules over the Java bytecode
sequence described by the Figure 5.4b result in the following CLP program;
represented in Listing 5.1 :

Listing 5.1: A last Java program with no optimisations (Decompiled)

% 0: bipush 18
p1 1 0 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP+1,SP=2} ,
w r i t e 1 (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5, 1 8 ) ,
p1 1 1 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 2 : i s t o r e 1
p1 1 1 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP−1} ,
r ead 1 (SP , IV0 , IV1 , IV2 , IV3 , IV4 ,V) ,
wr i t e 1 (1 ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,V) ,
p1 1 2 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 3 : i c o n s t 2
p1 1 2 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP+1} ,
w r i t e 1 (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5, 2 ) ,
p1 1 3 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 4 : i s t o r e 2
p1 1 3 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP−1} ,
r ead 1 (SP , IV0 , IV1 , IV2 , IV3 , IV4 ,V) ,
wr i t e 1 (2 ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,V) ,
p1 1 4 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 5 : i l o a d 1
p1 1 4 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP+1} ,
r ead 1 (1 , IV0 , IV1 , IV2 , IV3 , IV4 ,V) ,
wr i t e 1 (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,V) ,
p1 1 5 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 6 : i l o a d 2
p1 1 5 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP+1} ,
r ead 1 (2 , IV0 , IV1 , IV2 , IV3 , IV4 ,V) ,
wr i t e 1 (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,V) ,
p1 1 6 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 7 : iadd
p1 1 6 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP−1,VR=V1+V2} ,
r ead 1 (SP , IV0 , IV1 , IV2 , IV3 , IV4 ,V1) ,
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read 1 (SP ’ , IV0 , IV1 , IV2 , IV3 , IV4 ,V2) ,
wr i t e 1 (SP ’ ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,VR) ,
p1 1 7 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 8 : i s t o r e 1
p1 1 7 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{SP’=SP−1} ,
r ead 1 (SP , IV0 , IV1 , IV2 , IV3 , IV4 ,V) ,
wr i t e 1 (1 ,V0 ,V1 ,V2 ,V3 ,V4 ,V5 ,W0,W1,W2,W3,W4,W5,V) ,
p1 1 8 (W0,W1,W2,W3,W4,W5, SP ’ ,H,HO,HS,HSO,R) .

% 9 : re turn
p1 1 8 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{HSO = HS, un i fy (H,HO) } .

The application of our optimised decompilation rules on the same program re-
sult in the CLP program given in Listing 5.2:

Listing 5.2: A last Java program with optimisations (Decompiled)

%VARIABLE INITIALISATION \ index { pattern } pattern {0 : bipush 18 −> 2 : i s t o r e 1 }
p1 1 0 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HS,R) :−

{SP = 2} ,
p1 1 2 (V0, 18 ,V2 ,V3 ,V4 , SP ’ ,H,HO,HS,HSO,R) .

%VARIABLE INITIALISATION \ index { pattern } pattern {3 : i c o n s t 2 −> 4 : i s t o r e 2 }
p1 1 2 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{} ,
p1 1 4 (V0 ,V1 , 2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) .

%BINARY OPERATOR \ index { pattern } pattern {5 : i l o a d 1 −> 6 : i l o a d 2 −>
7 : iadd −> 8 : i s t o r e 1 }
p1 1 4 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{RES = V1+V2} ,
p1 1 8 (V0 ,RES,V2 ,V3 ,V4 , SP ,H,HO,HS,HSO,R) .

% 9 : re turn
p1 1 8 (V0 ,V1 ,V2 ,V3 ,V4 ,V5 , SP ,H,HO,HS,HSO,R) :−

{HSO = HS, un i fy (H,HO) } .

The reader should note that the optimised program is much more efficient
and concise than the original one.

57



5.2 Some performance results

We now illustrate some performance results for the set of programs given as
examples in chapters 3 and 4. This section aims to compare execution times
and the number of lines for the different decompiled programs with or without
the optimisations. In order to simplify the presentation we named the programs
as follow :

• prog1

Denotes the Java program illustrated in Figure 3.5.
It is a very simple Java program that initialises two integers. This pro-
gram was introduced in order to illustrate stack manipulation instructions.

• prog2

Denotes the Java program illustrated in Figure 3.6.
It is a simple Java program that performs some additions. This program
was introduced in order to illustrate arithmetic related instructions.

• prog3

Denotes the Java program illustrated in Figure 3.7.
It is a Java program that was introduced in order to illustrate some control
flow instructions. The body of the program is composed of an if-then-else
structure.

• prog4

Denotes the Java program illustrated in Figure 4.1.
This Java program was introduced in order to illustrate object-related
instructions and method calls. This program is composed of two classes.
A first class initialize an object of the type of the second class and call
some methods on that object.
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5.2.1 Execution time

One first thing to be considered when discussing the performance results is the
execution time of the respective program representations. Figure 5.5 and 5.6
presents the execution times for JVM and CLP representations respectively.
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Figure 5.5: JVM executions times
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Figure 5.6: CLP executions times
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One first thing that the reader should note by comparing Figures 5.5 and 5.6
is that there is a huge difference between the execution times of the bytecode
representations and the CLP representations. Bytecode versions of programs
take much more time to execute than the CLP representations. However, this
great difference is caused by the loading of the JVM in order to execute the
bytecode instructions.

However, a relevant comparison to analyse is the one of the Figure 5.6. The
graph presented in this figure compares the execution times of the different pro-
grams in the CLP representation for the optimised and non-optimised versions.
For prog1 and prog2 the execution times does not differ between the optimised
and non-optimised version. However, a consequent improvement of the execu-
tion time can be observed for prog2 and prog3. This difference is due to the
fact that the patterns used for our optimisations are less present in programs 1
and 2 than programs 2 and 3.

5.3 Number of lines
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Figure 5.7: CLP executions times

60



Another relevant measure to compare the optimised and non-optimised ver-
sions of our CLP representations is the number of lines of the CLP program.
Figure 5.7 illustrates the number of lines for the representation of the main
method in CLP for each program. Even if for prog1 and prog2, the number of
removed lines of the optimised version is not very satisfying, the number of lines
of prog2 and prog3 are almost divided by two in their optimised versions.

Prog2 and prog3 give more interesting results than prog1 and prog2 because
implemented bytecode patterns are more present in those two programs. It is
important to note that those results are obtained with a set of only two opti-
misation patterns. The following section gives some ideas to extend the list of
optimisation patterns.

5.4 Other possible optimisations

The ideas behind the pattern mechanism defined in sections 5.1.1 and 5.1.2
could easily be extended to other constructs. This would help to greatly reduce
the number of calls to read and write predicates as well as unnecessary stack
interactions. As an example we give some object-related patterns that could be
implemented following the same mechanisms.

A first recurrent object-related pattern is the sequence of bytecode instruc-
tions that appear when creating an object. Indeed, objects are often created in
Java and are always represented by the following sequence of meta-instructions :

NEW
DUP
INVOKESPECIAL
STORE

Figure 5.8: Sequence of bytecode instructions related to object creation

As illustrated by this sequence of instructions, in order to create an object,
we first have to define a reference for the new object to be created and push
this reference on the top of the operand stack. This is realised via the NEW
meta-instruction. Next, the new object reference is always duplicated on the
top of the stack. The reference is duplicated so that the two following meta-
instructions (invokespecial and store) can pop this object reference. In the case
of an object creation, the INVOKESPECIAL meta-instruction always calls a
constructor of the object. A first copy of the new object reference is used by
this meta-instruction. Finally, the second copy of the object reference is popped
by the STORE meta-instruction in order to store the new object reference in the
local variable table of the current method. This sequence of bytecode instruc-
tions could be translated by a single CLP predicate to extend our optimisations
patterns.

Another object-related operation that leads to a recurrent pattern is the
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assignment of a local variable with an object’s field value. Figure 4.1 illustrates
this operation with sum res = o.result; instruction. As this kind of operation
is also represented by a same sequence of meta-instructions in Java bytecode it
could also be part of our pattern optimisations. This operation is represented
by the following sequence of bytecode instructions :

LOAD
GETFIELD
STORE

Figure 5.9: Sequence of bytecode instructions related to the affectation of a
variable with an object field

This sequence of instruction illustrates the fact that in order to perform
this operation, the reference of the object is first pushed on the top of the
operand stack with the LOAD meta-instruction. Then the field of the object
is retrieved via the GETFIELD meta-instruction and the value of the given
field is stored in a variable via the STORE meta-instruction. As this sequence
of meta-instructions is always the same when performing an operation of this
type, it could have been included in our pattern optimisations.

A last example of recurrent patterns found in Java bytecode is the pattern
that occurs when calling a method. As there are different types of method
calls in Java, the related bytecode patterns obviously differs with the type of
call. Here we illustrate the Java bytecode pattern that appears when calling a
non-static void method with two constants passed as arguments. This type of
operation is illustrated in Figure 4.1 with the operation o.sum(5, 3);. This type
of call is represented by the instructions sequence :

LOAD
CONST
CONST
INVOKEVIRTUAL

Figure 5.10: Sequence of bytecode instructions related to the call of a non-static
void method with two constants passed as arguments

As it is a non-static method, the reference of the object on which the method
is called is first pushed on the top of the operand stack with LOAD.Next, the
two arguments are passed to the method via two consecutive CONST meta-
instruction that both push a constant on the top of the operand stack. It is
clear that the number of CONST meta-instruction directly depends of the num-
ber of arguments of the method. Thus, the pattern could be easily generalized
for the same type of call with an undefined number of arguments. Finally, the
method is invoked via the INVOKEVIRTUAL meta-instruction. This type of
sequence could be turned in a single CLP predicate that would directly load all
necessary items on the top of the operand stack at once, thus avoiding unnec-
essary read and write calls.
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It should be clear that those three examples are only illustrations of what
future optimisation patterns could be. We think that there is a great number
of optimisation patterns to be implemented, allowing to produce more efficient
and more concise CLP programs.

Patterns are not the only optimisations that could be done, the stack rep-
resentation presented in section 3.3 could be implemented more efficiently. Be-
cause this project has been developed in parallel with the similarity analysis
tool presented in [27], we consciously chose to represent the operand stack as
a sequence of variables. We restricted ourselves to this representation because
it was not clear if the analysis tool could be able to handle Prolog’s list mech-
anism or not. The Prolog list mechanism would certainly have provided us
with a way to handle stack interactions more concisely than with the read and
write predicates. However, we can now confirm that the similarity analysis tool
could be able to handle Prolog lists [27]. Hence, a possible way to improve our
CLP representation would be to add a stack representation with list mechanism.

The fact that certain analysis tools may have some trouble with Prolog lists
is also the reason why we provide two representations for the heap (section
4.1). Working in this way grants us to be compatible with a greater number of
analysis tools.
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Chapter 6

Conclusions

The work presented in this document has been developed as a part of an algo-
rithm recognition framework in binary code. The approach of the framework is
to first translate binary code into Horn clauses. Then, for two given programs,
they are considered as implementing the same algorithm if their Horn clause
representations can be reduced to a single common set of clauses by means of
a sequence of transformations. The main goal of our work was to develop a
Java bytecode decompiler that translates Java bytecode programs into a CLP
declarative representation that is compliant with the framework as well as with
some other analysis tools. This decompiler acts as the front-end of the frame-
work. Hence, in order to provide a universal representation, a major part of
the work was dedicated to the adaptation of the CLP declarative representation
presented in [25] for the Dalvik virtual machine.

Our work proposes some answers to the direct linking between Java bytecode
and an executable declarative representation. We limited the scope of our work
to Java programs that manipulate numbers only, in fact the only primitive type
that we do not take in account is ’char’. The extension to this type is not difficult
but is not relevant for the current version of the framework. Also, some of the
Java bytecode instructions are not taken in account almost all of them are han-
dled by our decompiler. We deliberately put aside thread and exception related
instructions as well as bitwise operators to focus all the other constructs of Java.

The particularity of our work is that the transformation from bytecode to
the declarative representation is the result of a direct mapping between Java
bytecode and the declarative clauses. Other known approaches that transform
Java bytecode to a declarative representation are not direct translations and
pass through intermediate representations (section 1.2.1). However, those pre-
vious works have been very useful for the elaboration of our decompiler.
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The decompilation process that we put in place is pretty straightforward.
The decompiler performs a sequential translation of a sequence of bytecode in-
structions that composes the program with respect to its context. Each of the
proposed CLP representation for the bytecode instructions are defined around
a same structure that allows to represent and manipulate the local variables,
the operand stack and the heap as defined by the Java Virtual Machine. As
our CLP representation is a level of abstraction higher than the Java bytecode
instructions, a single CLP clause can generally translate a set of bytecode op-
erations that belong to the same family (i.e. the four bytecode instructions
that perform an addition are represented by the same CLP construct). Our
decompiler implements all the decompilation rules that were described in this
paper. The operand stacks and local variable table are represented via a set of
variables. We also proposed two representations for the heap, a first approach
based on assert-retract Prolog mechanisms, and a second approach based on
Prolog lists.

The fact that the Java Virtual machine is a stack based machine typically
implies a substantial number of bytecode instructions in order to model a given
algorithm. This is a weakness of our default approach (i.e. without optimi-
sations), as each bytecode instructions of a program is translated in its CLP
equivalent, our resulting CLP programs contains at least as many clauses as
the number of instructions of the original program. As our decompiler has been
developed to produce CLP programs that could be easily handled by analysis
tools, the produced output had to be suitable for transformations. Series of
transformations often require a lot of CPU time, thus some optimisations have
been developed over our default decompilation process. Those optimisations are
based on bytecode patterns. We presented optimisations based on the pattern
behind variable initialization and arithmetic operations. The idea behind those
optimisations is that for certain constructs(i.e. sequence of bytecode instruc-
tions) it is possible to translate that sequence of bytecode instructions into a
single CLP clause that is much more efficient that the sequential translation
of each bytecode instruction of the sequence. The examples illustrated in the
paper show that this type of optimisation can really reduce the complexity of
the produced CLP programs.Those two optimisations are implemented by our
decompiler and extension to other patterns is pretty easy.

As mentioned in chapter 5, other optimisations could have been made to
reduce the complexity of our decompiler. Future work could consist in studying
alternative representations of the operand stack and extend the list of pattern-
based optimisations.

With respect to that, we think that future work should first focus on reduc-
ing the complexity of the produced CLP programs rather than extending the
approach to non-numerical aspect of Java programs.
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