
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Feature-based Elicitation of Cognitively Efficient Visualizations for SPL Configurations

Sauvage-Thomase, Céline; Biri, Nicolas; Perrouin, Gilles; Genon, Nicolas; Heymans, Patrick

Published in:
Human Centered Software Product Lines

Publication date:
2017

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Sauvage-Thomase, C, Biri, N, Perrouin, G, Genon, N & Heymans, P 2017, Feature-based Elicitation of
Cognitively Efficient Visualizations for SPL Configurations. in J-S Sottet, AG Frey & J Vanderdonckt (eds),
Human Centered Software Product Lines. Springer Verlag, pp. 107-129.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Feb. 2025

https://researchportal.unamur.be/en/publications/8e6f012b-5d33-4517-8c1d-609659cfaefc


Feature-based Elicitation of Cognitively Efficient
Visualizations for SPL Configurations

Céline Sauvage-Thomase, Nicolas Biri, Gilles Perrouin, Nicolas Genon, and
Patrick Heymans

Abstract Configuring a SPL is a cognitively difficult activity that requires a deep
understanding of the features and their constraints to be performed effectively. To
this end, SPL configurators have been equipped with various visualizations to assist
users in their tasks. However, there are many ways to visualize data: the process of
associating an efficient visualization to a given (configuration) task is neither well-
understood nor systematically applied, resulting in confusing visualizations yielding
configuration errors. In this chapter, we offer such a process, based on theories of the
visualization community for data representation. The first step consists in choosing
the data to be visualized. This selection induces restrictions on the types of visualiza-
tion that are then computed based on the data characteristics and best practices from
semiology and visual languages. Designers can then select an efficient visualization
for the intended task. Our process is supported by feature models and FAMILIAR
to merge and constrain the set of applicable visualizations.
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1 Introduction

The activity of configuring a product in the context of a Software Product Line (SPL)
is cognitively challenging. Indeed, the engineer has for instance to understand the
complex relationships of the features involved in the configuration of his product.
Even if solving these dependencies can be automated (e.g. by using a SAT solver in
the back-end), it does not help regarding configuration understanding. To this end,
current configurations tools integrate some visualization supports intended to help
users in their tasks. However there is more than a single way to visually represent
a configuration [16] and we argue in this paper that the process of associating a
visualization to a given task is not well-understood and mostly results in generic
visualizations. These visualizations are clearly sub-optimal to perform some tasks
such as the understanding of propagations during configuration.

To provide dedicated visualizations, we present a method to explicitly model and
guide visualization choices in terms of feature models (FM) and relate them with the
kind of data involved for a particular task. The kinds of data involved in the config-
uration task (e.g. features, constraints) are defined on a first FM named dataset FM.
The possible visualization designs (e.g. trees, maps, etc.) are also represented with
FMs, one by visualization design, named visualization designs FMs. The dataset FM
configuration induces restrictions on the possible configurations of the visualization
design FMs thanks to a set of mapping rules. These rules are based on the types of
the configured data and their possible representations by the visual properties [2] of
the visualization designs where a visual property is a graphical element that can be
perceived by the human eye (e.g color, shape, size). Each visualization design FM
offers different choices for visual properties assignment. To ease the configuration
task, these visualization FMs are merged using the FAMILIAR environment [1] in
a single visualization FM and configuration constraints are automatically generated.
Hence, the valid configurations of the visualization FM forms thus the set of appro-
priate visualizations for the considered input data.

The remainder of this chapter is organized as follows: Section 2 illustrates our
approach on a configuration task issue example. Section 3 describes the different
steps of our method. Section 4 applies the method through our running example.
Section 5 provides an overview of the visualization designs guidance approaches
existing in the literature. Finally, Section 6 concludes this paper by wrapping up our
contributions and highlighting some future perspectives.

2 Example

To illustrate the challenge of visualization choice, we focus on issues occurring
during product configuration in SPL. In an industrial environment, feature models
tend to be complex, involving an important number (thousands) of features and
complex crosstree constraints [20, 18].
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In [4], Deelstra et al. pointed out that in large feature models involving a lot of
complex cross-tree constraints, engineers can not accurately see how their choices
impact other features. This difficulty is twofold: on the one hand, numerous cross-
tree constraints make the consequences of a choice difficult to forecast, on the other
hand, a large number of features can make the configuration impact difficult to spot.
Our task is thus to select an adapted visualization to ease the comprehension of a
feature selection during the configuration of the FM.

Fig. 1 Feature IDE configuration views

We take the Graph Product Line (GPL) [7] as a running example of product line
configuration throughout this chapter. On the GPL feature model, we start a con-
figuration with the selection of the following features Gpl, MainGpl, Test,
StartHere and Base. From this point, we continue with the selection of the
feature StrongC. In Figure 1, the screenshots on the left hand side and on the right
hand side display respectively the configuration before and after the feature selec-
tion in the Feature IDE configuration tool. Similarly, in Figure 2, the screenshots on
top and on bottom show respectively the state of the S2T2 configuration tools before
and after the selection. The distinction of the feature names in Figures 1 and 2 is not
important. The focus is on the fact that a feature is selected/rejected.



4 C. Thomase-Sauvage et al.

Fig. 2 S2T2 configuration views

First, we must acknowledge that none of the proposed tools explicitly claims to
tackle the choice understanding issue. Nevertheless, none of the two editors makes
a visual difference between the features that are selected or rejected before the
StrongC selection and those becoming selected or rejected after the selection.
As a consequence, it is difficult to figure out the differences before and after the
selection. S2T2 differentiates the user choices from constraint propagation, which
can partially support the user, but it does not directly address the issue.

In Section 4, we will apply our visualization selection method to this example and
show how we can explicitly represent the choice consequences in a both immediate
and meaningful way.

3 Visualization elicitation
method

We propose an SPL-backed method that guides the selection of an appropriate vi-
sualization for the data involved in a configuration user task. Though the models
offered are dedicated to the support SPL configuration tasks, the method can be
adapted to any data visualization needs.

The method follows a traditional two-fold SPL approach [13]. First, the domain
engineering phase, led by a visualization domain engineer, consists in the definition
of the FMs that will support the selection of the visualization. Second, the appli-
cation engineering phase, led by the configuration visualization engineer that will
configure these models and fine tune the selected visualization that will be provided
to the end-user. The process is illustrated in Figure 3.
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Fig. 3 Visualization engineering process

3.1 Visualization domain engineering

The visualization domain engineering phase consists in the formalization of two fea-
ture models. A dataset FM, specific to an application domain, which allows the con-
figuration of the dataset to visualize, and the visualization FM, a variability model
that represents all the visualization possibilities that the visualization domain engi-
neer will offer to the configuration engineer. This second model is data agnostic and
thus can be reused from one domain to the other.

3.1.1 Dataset FM

During this phase, the visualization domain engineer defines a FM that represents
the datasets that can potentially be interesting to provide insight to the end user.

The definition of the dataset FM is built on the multidimensional concepts for-
malised in the context of OnLine Analytical Processing (OLAP) research [14].
These concepts contain the notions of dimensions and measures. A dimension is
somehow a concern on the data. More precisely it defines an analysis axis formed
by a set of data with the same datatype, providing a base on which the other data are
analyzed. A measure describes data that have to be analyzed over the dimensions.
Bearing in mind these definitions, the dataset FM is set with three subtrees (see Fig-
ure 4). One for the set of dimensions involved in a configuration process, another
for the set of measures associated with these dimensions and the last for the set of
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Fig. 4 Dataset FM

derived measures deduced from these measures.

To ease the mapping with visual solutions, we also need to precise the datatypes
associated to the data constituting the dimensions and measures. To do so, we use
the four types of measurement scale cited by Stevens in [21], which provide precise
types of scale for the dimensions and the measures [24]. The first type is nominal
and defines the possibility for elements to be distinguishable. The second type is
ordinal and means that the elements can be sorted depending on a rank order. The
third type is named interval and adds the capacity to calculate the difference between
two elements. Finally, the type ratio is the more expressive. It defines the additional
possibility to calculate a ratio between two elements. These datatypes are defined on
the leaf features of the three subtrees dimensions, measures and derived measures.
It has to be noticed that several types can be associated with the same feature to let
the possibility to represent a dimension, a measure or a derived measure with a less
expressive datatype than initially needed. The prefixes Interval, Ordinal and
Nominal of the leaf features will be used as types to restrict the possibilities in the
visualization models during the application engineering phase (see section 3.2.3).

In the following paragraphs, we will detail the set of dimensions, measures and
derived measures with their associated datatypes that are involved in a configuration
process.

Dimensions

Configuring a feature model means making successive choices on features in ac-
cordance with the constraints expressed on the feature model. From this definition,
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three dimensions can be deduced and expressed on the data feature model by the
visualization domain engineer.

Features dimension. Given that a configuration is carried out by selecting
features, the set of features forms an obvious dimension which is identified as
Features in Figure 4. The dimension Features has three children in the
dataFM: NominalF, OrdinalF and HierarchyF. The HierarchyF child is
defined to reflect the hierarchical organization of the features on a feature model.
Actually, the notion of hierarchy encompasses a mandatory parent-child relation-
ship (LinkF in the dataset FM) and an optional rank of the elements inside the
hierarchy (RankF in the dataset FM), this decomposition is motivated by the visual
representation of hierarchy detailed in Section 3.1.2. The parent-child relationship
has a nominal datatype (NominalLinkF in the dataset FM) because the informa-
tion to convey is the existence of a relationship between the linked elements. The
rank requires an ordinal datatype (NominalRankF in the dataset FM) as there
is a specific order between the ranks of the hierarchy (i.e., rank 1 ¡ rank 2 ¡ ...).
However, a representation of this hierarchical organization is not always necessary.
The children NominalF and OrdinalF define the datatypes nominal and ordinal
and allow to represent only the feature names or respectively an ordered list of the
feature names.

Constraints dimension. The feature choices are restricted by the feature model
constraints. Thus, another relevant dimension is the Constraints. The constraints
dimension is composed by two types of constraints. The first type is formed by the
hierarchical constraints between the child nodes and the parent nodes of the feature
tree. The second type is the cross-tree constraints scattered over the whole feature
model. All the constraints can be represented with an algebraic tree where the inter-
nal nodes are logical operators and the leafs are logical literals involving a feature.
Resultantly the constraints dimension has also a hierarchical organization and
its datatypes are defined in the same way as those of the constraints dimension.

Time dimension. During a configuration process successive choices are made.
The Time dimension allows the analysis of the configuration process at different
points in time. We consider that the configuration process is constituted by a set of
configuration steps where each step contains a user choice which may be followed
by an automatic propagation of constraints. The Time dimension is formed with this
set of configuration steps. The relevant associated datatype for the time dimension
is interval, named as IntervalT in the dataset FM. However if the time differ-
ence between two time data does not need to be represented, the datatype ordinal is
adequate and the feature ordinalT is selected. Similarly, if the representation of
the order between two time data is not useful, the feature NominalT representing
the datatype nominal is chosen.

Measures

The visualization domain engineer defines on the dataset FM the set of measures that
are involved during a configuration process. As previously mentioned, the measures
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are associated with one or more dimensions. To visualize a measure, at least one
of its dimensions must also be present in the dataset. Consequently, to ensure the
data feature model consistency, cross-tree constraints are needed expressing that the
measures can not exist without at least one of their dimensions. Hence, for each
measure added in the data feature model, a cross-tree constraint is created involving
the measure and its associated dimensions.

Feature state. This measure is straightforward as it denotes the state of a feature
during a configuration. A feature is selected, rejected or choice free. Its associated
dimensions are the Time and the Features. Its datatype is nominal. In Figure 4
this measure is identified as FeatureState and its datatype as NominalFS.

Constraint state. This measure identifies the state of a constraint which can be
resolved or not resolved during a configuration process. Its associated dimensions
are Time and Constraints. Its datatype is nominal. This measure is named as
ConstraintState, its datatype as NominalCS.

Feature state origin. This measure distinguish whether a feature is selected or
rejected following a user action (chosen) or following an automatic propagation
of constraints (deduced). Its associated dimensions are Time and Features. Its
datatype is nominal. This measure is named as OriginOfAFeatureState and
its datatype as NominalOFS.

Feature-constraint involvement. This measure determines if a feature is part of
a given constraint. Its associated dimensions are Constraints and Features.
Its datatype is nominal. This measure is identified as PresenceOfAFeature and
its datatype as NominalPF.

The derived measures

These measures are deduced from the main measures that we have just described. It
has to be noticed that this list of deduced measures is not exhaustive.

Feature state change. This measure allows to know whether a feature becomes
selected or rejected between two given configuration steps. It is deduced from the
measure FeatureState by identifying the feature states which are modified be-
tween the two given configuration steps. Thus, it is associated with the same dimen-
sions: Time and Features. Its datatype is nominal. In Figure 4, this measure is
named as FeatureStateChange and its datatype as NominalFSC.

Set of selected features. This measure shows the set of selected features at
a given configuration step. It is deduced from the measure FeatureState.
Resultantly, it is associated with Time and Features. Its datatype is nomi-
nal. This measure is named as SetOfSelectedFeatures and its datatype as
NominalSF. According to the measure semantics, this measure is irrelevant with-
out the selection of the Features dimension. Consequently, while for the other
measures one of the dimensions associated with is indifferently mandatory, for this
measure the Features dimension is specifically mandatory. The following con-
straint is added to the feature model:
SetOfSelectedFeatures⇒ Features.
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Set of resolved constraints. This measure defines the set of resolved constraints
at a given configuration step. It is deduced from the measure ConstraintState
Thus, it is associated with with Time and Constraints. Its datatype is nominal.
This measure is named as SetOfSelectedConstraints and its datatype as
NominalSC. Similarly to the measure SetOfSelectedFeatures, the follow-
ing constraint is added to the feature model:
SetOfResolvedConstraints⇒ Constraints.

3.1.2 Visualization FM

The second task of the visualization domain engineer is to characterize the visual-
izations in the form of a FM called the visualization FM. In the following, a visual-
ization refers to a complete visualization design. A treemap [6] illustrated in Figure
5 or a sunburst [19] illustrated in Figure 6 are some examples of visualization de-
signs. A visualization design is defined in accordance with a set of visual properties
and a series of constraints. The visualization FM is defined in several steps. First,
we will define a FM that characterizes the set of visual variables and their capacity
expression in terms of data. Then, on this base, the visualization domain engineer
provides, for each proposed visualization design, a visualization design FM allow-
ing the configuration of the visual properties. Finally, the set of defined visualization
design FMs are merged to obtain the visualization FM unifying the set of valid con-
figurations of each visualization design FM.

Fig. 5 Treemap designed with Calluna, a LIST visualization solution

FM for visual variables. We start with the definition of a reference FM to de-
scribe the levels of measurement of each of the visual properties. The level of mea-
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Fig. 6 Sunburst (depiction of a file hierarchy [19])
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surement denotes the highest datatype that the property can express. There exists
several classifications of the visual properties according to their levels of measure-
ments [2, 3, 9, 8, 23]. We settle on Bertin’s proposal [2]. At the current stage, we
do not claim the FM to be complete, and we define it in a scalable way to support
further extensions of the mapping rules.

Fig. 8 The 8 visual variables defined by Bertin [2]

Bertin defines 8 visual variables that are the building blocs to design any sym-
bol (see Figure 8). The variables spread out into 2 categories: the planar vari-
ables (x and y position on a 2D plan) and six retinal variables (shape, color,
orientation, size, texture and value (aka., brightness)). Each visual variable is
suitable to express a certain level of measurement. More precisely, this refer-
ent FM maps the dimensions and measures datatypes onto the visual variables’
levels of measurement. As represented by Figure 9, the root of this FM is the
Mapping feature. This feature has seven children that denote each of the vi-
sual variables (except for the planar variables that are gathered under the feature
Position). The Shape, Orientation and Color have respectively one child
that indicates a nominal level of measurement (i.e., the features NominalShape,
NominalOrientation and NominalColor). Texture and Value are or-
dinal variables and hence have respectively two children: NominalTexture,
OrdinalTexture and NominalValue, OrdinalValue. The variables of
Size and (x,y) Position have the highest level of measurement: each of them
have four children that correspond to the nominal, ordinal, interval and ratio levels
of measurement.

The hierarchy notion elicited in Section 3.1.1 has no immediate correspondence
to the levels of measurement of the visual variables. However, as the hierarchy is
expressed in the dataset FM with a mandatory nominal datatype and an ordinal
datatype, it can be mapped to a pair (nominal, ordinal) of visual variables’ levels of
measurement or to a simple nominal level. For example, in the usual representation
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of FM, the hierarchy is expressed by the shape and y position visual variables: parent
elements are linked to each child element by a line that is depicted with some shape.
Moreover, the parent elements are located on the top of the diagram, while their
children lie below, which corresponds to distinct y positions (and every elements of
a same rank have the same y position).

FMs for visualization designs. The second step aims at defining, with the sup-
port of the reference mapping FM, a FM specific to each visualization designs that
the visualization domain engineer wants to integrate. For example, the FM specific
to the classical tree designs is represented in Figure 7. They describe the different
visual variables contained in the visualization and their associated datatypes follow-
ing the FM for visual variables. Features marked as optional correspond to visual
variables that can be used in such visualizations but are not mandatory. For exam-
ple, a treemap can be colored but it’s not a requirement. On the contrary, to be a
meaningful choice, the size of treemap elements must carry an information, thus the
size is required for this visualization.

Fig. 10 Visualization Mapping FM (exported from FAMILIAR)

FM for Visualization. The third step is a merge operation of all the FMs specific
to each visualization design. This operation is managed by the Familiar tool [1]
and allows to obtain a single FM that integrates all the variability of the involved
FMs. The use of Familiar in this case is particularly interesting as it provides a
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straightforward solution to propose different FMs for different visualization subsets.
The Figure 10 illustrates the result of the merge of the treemap FM, the classical
tree FM and the sunburst FM, as depicted by Familiar. Some constraints allowing to
manage the variability of the visual variables depending on the type of visualization
designs have been generated by the tool. The merge resulting FM is the visualization
FM that the designer has to configure to select the adapted visualization design.

3.2 Visualization application engineering

Once the visualization domain engineering is complete, the visualization applica-
tion engineering phase consists mainly in the configuration of the different feature
models. The phase is composed of the following steps:

1. The configuration visualization engineer will decide which subset from the orig-
inal dataset must be present in the resulting visualization.

2. The visualization FM is automatically restricted thanks to extra-constraints to
reduce the configuration space. Consequently, it allows only visualizations that
are relevant for the selected data subset.

3. The configuration visualization engineer configures the restricted visualization
FM to choose the visualization and its details among those that are still available.

4. The configuration visualization engineer maps the selected data to the adequate
visual variables.

3.2.1 Data-subset configuration

The configuration visualization engineer configures the dataset FM defined during
the visualization domain engineering phase (see Section 3.1.1) depending on the di-
mensions and measures involved in the specific configuration user task considered.
The result is a subset of the data with their corresponding datatypes.

3.2.2 Visualization domain restriction

This phase is performed automatically by the system after the data subset config-
uration. The configuration of the dataset FM leads to establish a combination of
different datatypes to visualize. Resultantly, it is necessary to generate constraints
on the visualization FM about the datatypes that are mandatory following the con-
figuration of the dataset FM.

The generation of the additional constraints is based on the subset of datatypes
contained in the valid configuration of the dataset FM. The subset of datatypes is
defined as follows:
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Definition 1 (Datatypes subset). Given a configuration C , the datatypes subset DC

of this configuration is the tuple {n,o, i,r} (with n,o, i,r ∈ N) where:

• n is the number of features in C prefixed by Nominal;
• o is the number of features in C prefixed by Ordinal;
• i is the number of features in C prefixed by Interval;
• r is the number of features in C prefixed by Ratio;

Having x features of a given datatype in the data subset implies that the designer
must choose x visual variables that support the same datatype in the visualization
feature model to obtain a valid configuration. Suppose that the visualization feature
model holds y features being of this datatype, the designer must form a combination
of x elements out of y (with y ≥ x) for this datatype. The number of the possible
combinations is consequently

(y
x

)
.

Given a visualization feature model V and a datatype d, the set of visual features
for this datatype, V{V,d} is the set of features of V that are prefixed by the datatype
name d.

Given a set of features F we define C(F,n) as the disjunction of all the conjunc-
tions of n distinct elements of F .

With these definitions, the set of generated constraints is defined as follow:

Definition 2 (Datatypes subset constraints).
Given a datatype subset DC = {n,o, i,r} and a visualization feature model V , the

datatypes subset constraints of DC and V is the following:

{C(V{V,Nominal},n),C(V{V,Ordinal},o),C(V{V,Interval}, i),
C(V{V,Ratio},r)}

As example, let NominalViz the set of features representing a Nominal
datatype in the visualization FM:
NominalViz= (NominalTexture,NominalColor,

NominalShape)

If the configuration visualization engineer chooses 2 Nominal datatypes in the
dataset FM, he has to choose exactly 2 features among NominalViz. The number
of possible combinations is

(3
2

)
. The constraint can be expressed as follows:

(NominalTexture∧NominalColor∧¬NominalShape)
∨(NominalTexture∧NominalShape∧¬NominalColor)
∨(NominalColor∧NominalShape∧¬NominalTexture)

Once the data subset constraints are generated, they are inserted into the visu-
alization FM with Familiar and the configuration visualization engineer can then
configure the visualization FM.

For a given datatype, the configuration visualization engineer can select in the
dataset FM a number of features representing this datatype greater than the num-
ber of existing visual variables expressing this datatype in the visualization FM. In



Feature-based Elicitation of Cognitively Efficient Visualizations for SPL Configurations 15

a such situation, none of the proposed visualizations would fit his needs. Thus, ei-
ther the configuration visualization engineer needs to narrow the data subset or the
visualization domain engineer needs to extend the visualization catalog with new
visualization designs in order to obtain a visualization FM with valid configurations
for the generated constraints.

3.2.3 Visualization configuration

The constraints induced by the configuration of the data feature model and the con-
straints resulting from the merge of the feature models specific to each visualization
designs (see Figure 10) restrict the possible configurations of the visualization FM.
The configuration visualization engineer chooses his visualization design among the
visualization designs which are still available after this restriction.

3.2.4 Data mapping

The configuration of the visualization FM allows to determine the visualization de-
sign, its visual variables and the datatypes that can be expressed by these visual
variables. We can define a matrix for each datatype involved: along one axis, we
find the candidate visual variables for this datatype, and along the other axis, the
data of this type that were selected during the configuration of the dataset FM. The
configuration visualization engineer has to designate for each matrix how the data
are mapped to the visual variables.

To support this task, the configuration engineer can rely on the length of the
visual variables. Each visual variable has a specific length, which is the number of
distinct values that it can take and that can be effectively perceived by the human’s
perceptual system. The length of each variable is given in Figure 8. The designer has
to ensure that the length of the selected variable is equal or larger than the number
of elements of its mapped datatype. Stated another way, the visual variables must
at least be able to depict all the elements of the datatype. By applying this rule, the
number of candidate variables can be reduced.

Another factor that can reduce the set of candidate variables is the choice of vari-
ables that are deliberately not bind to any selected data from the data feature model.
This choice is supported by the fact that the configuration engineer wants to keep
free some of the visual variables to allow extra information to be added later on the
diagram. Indeed, every variable that is mapped to a datatype cannot be easily reused
to convey a new meaning on the same diagram. The set of free variables forms the
secondary notation, while the primary notation is defined by the set of bound visual
variables. For instance, if we consider that it would be important to be able to point
out one or several specific elements on a diagram, the variable color should be kept
free. Color is a variable that is easily and almost instantly perceived. Moreover, the
human’s perceptual system is able to isolate all occurrences of a given color on a
diagram, and hence the color is really appropriate for pointing out elements.
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4 Application

In this section we apply our approach on the GPL product line introduced in section
2. In particular, we want to select an appropriate visualization for the following task:
“understanding the consequences of feature selection”.

4.1 Visualization domain engineering

The visualization domain engineering phase consists in the definition of the dataset
FM and the visualization FM. The dataset FM and the visualization FM used for this
application case are those illustrated in Figure 4 and in Figure 10. The visualization
FM allows to configure a classical tree visualization design, a treemap or a sunburst
but can be extended to accommodate new visualizations.

4.2 Visualization application engineering

The same steps as those described in section 3.2 have to be followed in order to
complete the visualization application engineering phase for our example.

4.2.1 Data-subset configuration

This step consists in selecting only the features on the dataset FM which are useful
for the analysis of the consequences of a feature choice on the other features. Un-
derstanding the consequences of a choice implies to visualize the FM and to be able
to detect the feature states that become selected or rejected following this choice.

We describe the features selected on the dataset FM as dimensions, then the fea-
tures selected as measures and finally, the features selected as derived measures.

Dimensions. As we need to visualize the FM, the Features dimension is nec-
essary. Consequently the set of following features are selected:
{DataFM,Dimensions,Features,HierarchyF,
LinkF,NominalLinkF,RankF,OrdinalRankF}

Measures. In order to know the state of the features after the choice, the measure
FeatureState has to be selected on the dataset FM. Consequently, the following
features are selected:
{Measures,FeatureState,NominalFS}

The derived measures. Finally, to be able to detect a feature state that become
selected or rejected, the derived measure FeatureStateChange is needed. The
following features are thus selected:
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{DerivedMeasures,FeatureStateChange,NominalFSC}

4.2.2 Visualization domain restriction

The configuration of the dataset FM leads to the generation of some constraints on
the visualization FM in accordance with the explanations given in 3.2.2. They imply
that the final configuration of the visualization FM contains exactly three visual
variables representing a nominal datatype and one representing an ordinal datatype.

4.2.3 Visualization configuration

The visualization domain restriction does not restrict the choices of global visual-
ization designs in the visualization FM. Hence, in Figure 10, the three children of
the feature Visu (ClassicalTree, Treemap, Sunburst) can be selected. We
select the ClassicalTree feature in order to compare the design resulting from
our methodology with the classical tree visualization of the existing configuration
tools. As explained in Section 3.1.2, in the classical tree design, the relationship be-
tween the parent and the children is usually mapped to the shape as nominal. The
rank is usually mapped to the Position visual variable as ordinal. Resultantly, we
select these visual variables in order to map them to the features LinkF and RankF
of the dataset FM. The constraints generated in 4.2.2 require three visual variables
to be able to express the nominal datatypes. Given that Shape and Position are
already selected, we need to select two other visual variables among Texture,
Color, Value and Size. We choose Texture and Color. The constraints re-
quire also one visual variable to depict the datatype ordinal. This constraint is al-
ready resolved due to the previous selection of the Position visual variable as
ordinal. Finally, we obtain the following configuration:
{MappingDimensionsToVisu,Visu,ClassicalTree,
Mapping,Shape,NominalShape,
Texture,NominalTexture,
Position,OrdinalPosition,
Color,NominalColor}

4.2.4 Data mapping

As described in Section 3.2.4, for each datatype existing in the visualization con-
figuration, we define a matrix with, along one axis, the possible visual variables for
the datatype concerned and along the other axis, the set of features of this type that
were selected during the configuration of the dataset FM.

We decided in 4.2.3 to map the feature LinkF to the Shape visual variable.
Consequently, concerning the datatype nominal, two features from the dataset FM
have to be mapped to the visual variables Texture and Color: FeatureState
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and FeatureStateChange. The matrix obtained is illustrated in Figure 11 and
the crosses indicate the resulting mapping. Given that the length of the visual vari-
ables Texture and Color (see Figure 8) are both adapted to represent the mea-
sures FeatureState and FeatureStateChange, we could choose another
mapping.

Concerning the datatype ordinal, we decided in 4.2.3 to map the feature RankF
to the Position visual variable. Hence, a matrix definition is irrelevant for the
type ordinal.

Texture Color
Feature State ×
Feature State Change ×

Fig. 11 Mapping Nominal Datatype/Visual Variables

4.3 Resulting visualization

The dataset FM configuration, the visualization FM configuration and the data map-
ping lead us to build a visualization design holding three essential characteristics.

The first characteristic is that the visualization design is a classical tree repre-
senting the feature dimension. We choose to represent a feature by a circle with an
affixed text label indicating the feature name.

The second characteristic is the color of the node circle circumference that rep-
resents the measure FeatureState. We choose the green and the red color to
visualize the feature state selected and respectively rejected. We take a light blue
for the feature state free.

The third characteristic is the circle circumference line texture that indicates the
measure FeatureStateChange. We choose to design a solid line when a fea-
ture state becomes selected or rejected after the choice and a dashed line when a
feature state was already selected or rejected before the choice.

By following our method with the aim to visualize the impacts of a feature
choice, we obtain the visualization design illustrated in Figure 12. The Figure
presents the FM configuration view after the selection of the feature StrongC as
detailed in 2.

We can compare our result with the configuration views proposed by the con-
figuration tools Feature IDE and S2T2 illustrated in Figures 1 and 2. Whereas on
our configuration view, the impacts of the feature StrongC selection are clearly
identifiable due to the use of the color and texture on the feature nodes, the impacts
are not pointed out on the two other configuration views. S2T2 offers an animation
to get a glimpse of the impacts when the stakeholder selects a feature. However,
this furtive glimpse is not suitable for the analysis of the selection consequences,
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Fig. 12 FM configuration view

particularly if all the consequences are not visible on the same space screen. Feature
IDE uses the red and green colors to represent the feature state but does not make
the distinction between a selection/rejection of features before/after a given feature
choice.
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5 Related work

Among the common existing configuration tools, some contain basic FM configu-
ration views [22], others are the result of specific research aiming to integrate more
visual support in the configuration tools. They offer additional views [11, 10] or ad-
vanced configuration views in order to help the stakeholders to make their choices.
S2T2, the tool presented in [12] and illustrated in Figure 2 offers several interest-
ing visualization mechanisms such as, for example, different tree layouts, zoom and
pan mechanism, or color usage to indicate the configuration progress. Whilst the
designed choices are well documented, there is, to the best of our knowledge, no ex-
plicit method to support them. The objective of our method is to (at least partially)
automate the reasoning process that leads to such design choices, as shown in the
example.

These various visual propositions for the configuration tools reveal a growing in-
terest among SPL researchers to find adapted visualization techniques for the con-
figuration tasks.

For its part, the visualization community has come up with approaches intended
to guide the designer towards a solution visualization. In [9], Mackinlay bases his
work on the expressiveness and effectiveness of a set of primitive graphical lan-
guages. He presents a framework for the development of tools which are able to
automatically generate a design for relational information. Whereas the algorithm
presented decides on a unique relevant visualization design, our approach leaves the
final decision to the configuration visualization engineer, given that several visual-
izations may satisfy constraints. A methodology based on a connection between the
data interpretation aims and the data representation possibilities is presented in [15].
In [24], Zhang gives a classification of relational information displays that can guide
the designers to select a visualization solution. More recently, [5] presented a tool
that allows to select a visualization design in accordance with the data characteris-
tics and the user’s objectives. This study intends to be used in a visual data mining
context where the user’s objectives are to discover interesting structure inside the
data. In contrast, the general aim of a user in your case study is to take the right
configuration decision. For that purpose, a clear display of the appropriate data and
of their existing intrinsic relationships is needed. Based on these considerations, our
approach is suitable for our goal.

6 Conclusions

In this chapter, we presented a SPL approach guiding the visualization engineer to
a cognitively optimal visualization design choice for SPL configuration tasks. By
following the method described, the engineer is not restricted to a specific visual-
ization solution but can choose among a set of suitable designs for the input data
involved. Moreover, the visualization solution thus designed ensures consistency in
terms of mapping between the visual variables and the data depicted.
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Behind the interest for the engineers of a such approach, the use of feature mod-
els to support it deserves to be pointed out. Indeed, this particularity allows an easy
extensibility of the basic principles we laid down. Moreover, by adapting the dataset
FM, our approach can be useful for application domains other than the SPL config-
uration tasks. Finally, the fact that FMs can be encoded as formal decision models
opens the possibility to partial automation of the approach as applied with FAMIL-
IAR in this paper.

Future work will consist in improving the method according to three different
aspects. The first concerns the dataset FM. An extension of its definition is necessary
in order to take into account the configuration tasks carried out on FMs with a greater
expressiveness (i.e. attributes, cardinalities). Moreover, we would like to integrate
some quantitative metrics such as the size of the FM and manage the consequences
on the resulting visualizations.

The second aspect relates on the visualization solutions proposed. At the current
step of our approach, the design depends only on the data involved in the considered
user task. As explained in [24], we need to take into account the user task character-
istics to improve our propositions of solutions. Furthermore, the dynamic parts of
the visualization solutions were deliberately set aside.

The third aspect concerns the improvement of the approach itself by adding guid-
ance to the decisions left at the moment to the visualization engineer. Additionally,
we would like to validate our approach by performing an empirical study as de-
scribed in [17].
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