
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Engineering Configuration Graphical User Interfaces from Variability Models

Boucher, Quentin; Perrouin, Gilles; Davril, Jean-Marc; Heymans, Patrick

Published in:
Human Centered Software Product Lines

Publication date:
2017

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Boucher, Q, Perrouin, G, Davril, J-M & Heymans, P 2017, Engineering Configuration Graphical User Interfaces
from Variability Models. in J-S Sottet, AG Frey & J Vanderdonckt (eds), Human Centered Software Product
Lines. Springer, pp. 1-46.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Feb. 2025

https://researchportal.unamur.be/en/publications/9aa36410-a61b-4da2-a290-0a477da315dc


Engineering Configuration Graphical User
Interfaces from Variability Models

Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

Abstract In the past, companies produced large amounts of products through mass
production lines. Advantages of such an approach are reduced production costs and
time-to-market. While it is (still) appropriate for some goods like food or household
items, customer preferences evolve to customised products. In a more and more
competitive environment, product customisation is taken to the extreme by compa-
nies in order to gain market share. Companies provide customisation tools, more
commonly called product configurators, to assist their staff and customers in decid-
ing upon the characteristics of the product to be delivered.

Our experience reveals that some existing configurators are implemented in an
ad-hoc fashion. This is especially cumbersome when numerous and non-trivial con-
straints have to be dealt with. For instance, we have observed in two industrial
cases that relationships between configuration options are hard-coded and mixed
with GUI code. As constraints are scattered in the source code, severe maintenance
issues occur.

In this chapter, we present a pragmatic and model-driven way to generate con-
figuration GUIs. We rely on feature models to represent and reason about the con-
figuration options and their complex relationships. Once feature models have been
elaborated, there is still a need to produce a GUI, including the integration with
underlying reasoning mechanisms to control and update the GUI elements. We
present a model-view-presenter architecture to design configurators, which sepa-
rates concerns between a feature model (configuration option modelling), its asso-
ciated solver (automated reasoning support) and the presentation of the GUI. To fill
the gap between feature models and configuration GUIs, the various constructs of
the feature model formalism are rendered as GUI elements through model trans-

Quentin Boucher,
CETIC, Avenue Jean Mermoz, 28, 6041, Charleroi, Belgium
e-mail: quentin.boucher@cetic.be
Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans
PReCISE Research Centre, University of Namur, Rue Grandgagnage 21, 5000 Namur, Belgium
e-mail: firstname.lastname@unamur.be

1



2 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

formations. Those transformations can be parametrised through beautification and
view languages to derive specific configuration GUIs. We illustrate our approach on
an IPv6 addressing plan configurator.

1 Introduction

In the past, companies produced large amounts of products through mass produc-
tion lines. Advantages of such an approach are reduced production costs and time-
to-market. While it is (still) appropriate for some goods like food or household
items, customer preferences evolve to customised products. Even car production
which was a major example of mass production has moved to the customisation cat-
egory. Henry Ford played a pioneering role in the mass production of cars. Fordism
aimed to achieve higher productivity by standardizing the output, breaking the work
into small well specified tasks, and using conveyor assembly lines. However, Ford’s
quote “Any customer can have a car painted any colour that he wants so long as it is
black” already illustrates the limitations of mass production, back in 1923.

In a more and more competitive environment, product customisation is taken to
the extreme by companies in order to gain market share. Companies provide cus-
tomisation tools, more commonly called product configurators, to assist their staff
and customers in deciding upon the characteristics of the product to be delivered.
This trend is further strengthened by the ever-growing presence of such configura-
tors on the Internet.

The key idea behind configurators is to provide end-users with an easy-to-use
Graphical User Interface (GUI) where they can select the desired options and cus-
tomise their product. The result of the configuration is then used by the manufacturer
in order to produce the final product with the required options. Generally, the user is
guided by the GUI in her process. That guidance manifests itself in different ways.
First, configuration can be broken down into steps. Typically, a step represents a
set of logically linked configuration options. That set depends on different param-
eters such as user requirements, application domain, etc. Constraint verification is
another guidance mechanism. Selecting an option might, for example, require the
inclusion or exclusion of another one. Many more constraints examples are available
around us. Configurators should preclude inconsistent activation or deactivation of
configuration options to avoid frustration on the user side and technically unrealistic
products on the manufacturer side. Furthermore, constraints are of different natures.
Some are of technical nature while others originate from business rules. Both may
change over time.

Our experience reveals that some of those existing configurators are implemented
in an ad-hoc fashion. This is especially cumbersome when numerous and non-trivial
constraints have to be dealt with. For instance, we have observed in two indus-
trial cases [47] that relationships between configuration options are hard-coded and
mixed with GUI code. In other words, the configuration logic is not separated from
the rest of the application code. As constraints are scattered in the source code, se-



Engineering Configuration Graphical User Interfaces from Variability Models 3

vere maintenance issues occur. For example, engineers are likely to introduce errors
when updating or adding new constraints between options in the configurator. More-
over, as recognized by our industrial partners developing such configurators, the
correctness and the efficiency of the reasoning operations are not guaranteed. More
reliable and maintainable solutions are thus needed, especially for safety-critical
systems.

We propose a pragmatic and model-driven way to generate configuration GUIs [18].
We rely on Feature Models (FMs) to represent and reason about the configura-
tion options and their complex relationships. FMs have been extensively studied in
academia during the last two decades, primarily in the software product line com-
munity [53]. FMs are now equipped with formal semantics [80], automated reason-
ing operations and benchmarks [4, 12], tools [7, 14, 55] and languages [9, 24]. In
essence, an FM aims at defining legal combinations of features authorised or sup-
ported by a system. In our case, configuration options are modelled as features and
each configuration (specification of a product) authorised by the configurator cor-
responds to a valid combination of features in an FM. A strength of FMs is that
state-of-the-art reasoning techniques, based on solvers (e.g., SAT, SMT, CSP), can
be reused to implement decision verification, propagation, and auto-completion in
a rigorous and efficient way [9, 12, 50]. Therefore FMs are a very good candidate
to pilot the configuration process during which customers decide which features are
included in a product.

Once FMs have been elaborated, there is still need to produce a GUI, includ-
ing the integration of underlying reasoning mechanisms to control and update
the GUI elements. On the one hand, some FM-based configuration GUIs rely on
solvers [7, 14, 55]. But such GUIs do not consider presentation concerns and their
generation process is rigid, avoiding the derivation of customised GUIs [44]. Fur-
thermore existing graphical representations of FMs (e.g., FODA-like notation or
tree-views) are not adapted to user-friendly configuration [70]. On the other hand,
model-based approaches for generating GUIs simply produce the visual aspects of
a GUI [15, 16, 26, 43]. This is not sufficient for configurators since constraint veri-
fication is paramount for their usability and performance.

Our approach is to combine the best of both worlds, i.e., correct configurations
together with user-friendly generated GUIs. We present a model-view-presenter
(MVP) architecture to design configurators, which separates concerns between an
FM (configuration option modelling), its associated solver (automated reasoning
support) and the presentation of the GUI. To fill the gap between FMs and con-
figuration GUIs, the different constructs of the FM formalism are rendered as GUI
elements through model transformations. The transformations are based on a meta-
model for TVL [20, 24], a textual language for feature modelling. Transformations
can be parametrised through beautification and view languages to derive specific
configuration GUIs.

The rest of the chapter is organized as follows. First, in Section 2 we give some
background information about feature models and GUIs. The existing work link-
ing feature models and GUIs is also addressed. In Section 3, an overview of our
approach is proposed. Then, in Section 4, we present the implementation of the ap-



4 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

proach. It includes three different languages as well as a Web configurator generator.
All the concepts are illustrated with throughout an IPv6 addressing plan configura-
tion example. Finally, before concluding, we present the lessons learned in Section 5
and discuss some perspectives to our work in Section 6.

This book chapter is essentially based on a PhD thesis presented by the first
author in September 2014 at the University of Namur (Belgium). For more detailed
information about the approach, the interested reader may refer to [18].

2 Background

Here, we introduce the background required to understand the contents of this chap-
ter as well as existing approaches that we compare to ours. Feature models being
the starting point endeavour, we introduce them in Section 2.1. Then, in Section 2.2,
we introduce UI-related concepts and generation.

2.1 Feature Modelling

Software Product Line Engineering (SPLE) is an increasingly popular software en-
gineering paradigm which advocates systematic reuse across the software lifecycle.
Central to the SPLE paradigm is the modelling and management of variability, i.e.,
“the commonalities and differences in the applications in terms of requirements, ar-
chitecture, components, and test artefacts” [71]. Variability is typically expressed
in terms of features, i.e., first-class abstractions that shape the reasoning of the en-
gineers and other stakeholders [25].

Feature models were introduced as part of the FODA (Feature Oriented Domain
Analysis) method 25 years ago [53]. They were introduced as graphical notations
whose purpose is to document variability. Since their introduction, FMs have been
extended and formalised in various ways [30, 80] and tool support has been pro-
gressively developed [42]. The majority of these extensions are variants of FODA’s
original tree-based graphical notation.

Graphical FM notations based on FODA [53] are by far the most widely used.
Most of the subsequent proposals such as FeatuRSEB [45], FORM [54] or Genera-
tive Programming [29] are only slightly different from the original graphical syntax
(e.g., by adding boxes around feature names).

A number of textual FM languages were also proposed in the literature. Table 1
compares them against the following criteria: (i) human readability, i.e., whether
the language is meant to be read and written by humans; (ii) support for attributes;
(iii) decomposition (group) cardinalities; (iv) basic constraints, i.e., requires, ex-
cludes and other Boolean constraints on the presence of features; (v) complex con-
straints, i.e., Boolean constraints involving values of attributes; (vi) mechanisms for



Engineering Configuration Graphical User Interfaces from Variability Models 5

structuring and organising the information contained in an FM (other than the FM
hierarchy); (vii) formal and tool-independent semantics, and (vii) tool support.

Table 1: Existing textual variability modelling languages

Language H
um

an
re

ad
ab

le

A
tt

ri
bu

te
s

C
ar

di
na

lit
ie

s

B
as

ic
C

on
st

.

C
om

pl
ex

C
on

st
.

St
ru

ct
ur

in
g

Fo
rm

al
se

m
an

tic
s

To
ol

su
pp

or
t

FDL [32] X X X

FMP [7] X X X X X

GUIDSL [9] X X X

FAMA [13] X X X X X

pure::variants [14] X X X X X

SXFM [61] X X X

VSL [78] X X X X X

KConfig1 X X X X X

We should note that all these languages are remotely related to constraint pro-
gramming, and several implementations use constraint solvers internally. Moreover,
as pointed out by Batory [9], FMs can be seen as simplified grammars where prod-
ucts correspond to sentences. Similarly, FMs with attributes can be seen as a form
of attribute grammar, albeit without the distinction of synthesised or inherited at-
tribute [56, 8]. What distinguishes FMs from constraint programming and attribute
grammars is their domain-specific nature and independence from any of these tech-
nologies.

2.2 User Interface Modelling and Generation

This section is decomposed into two sub-sections. In the first one, we give a short
description of major user interface description languages which could be used as tar-
get languages for our generation approach. In the second, existing work combining
variability models (more exactly FMs) and GUIs is presented.

2.2.1 User Interface Description Languages

In the Human-Computer Interaction (HCI) research domain, automation of UI de-
velopment is an important topic. A whole spectrum of approaches ranging from
purely manual design to completely automated approaches have been proposed.



6 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

Manual design is of no interest to us as we seek to automate the generation of in-
terfaces. On the other hand, fully automated approaches generate moderately usable
GUIs, except for domain specific applications [65].

Most approaches propose a partially automated process which uses extra in-
formation about the UI stored in models. They are all grouped under the Model-
based User Interface Development (MBUID) denomination, generally supported
by an MBUID environment (MBUIDE). It can be defined as “a suite of software
tools that support designing and developing UIs by creating interface models” [43].
Each MBUIDE defines its own set of models to describe the interface. The different
MBUIDEs and the associated models have been surveyed by Gomaa et al. [43] and
the W3C [87]. Here, we give a summary of User Interface Description Languages
(UIDLs) used in MBUID. XML-based UIDLs have also been surveyed by several
authors [41, 81]. Such languages can be used to represent the generated GUIs at a
more “abstract” level. They are grouped in four categories.

The first category groups all languages based on the Cameleon Reference Frame-
work (CRF) [22]. There, the UI development is decomposed into four abstrac-
tion levels: Task and Concepts (T&C), Abstract User Interface (AUI), Concrete
User Interface (CUI) and Final User Interface (FUI), the last being the most
concrete one. T&C is computing independent, AUI is modality independent and
CUI is platform independent. This framework is globally well accepted by the
UI community as shown by the numerous MBUID approaches which, directly or
indirectly, rely on it to define their models and development processes. Among
them, we can mention the Software Engineering for Embedded Systems using a
Component-Oriented Approach [33, 74], Model-based lAnguage foR Interactive Ap-
plications XML (MARIA XML) [66], or USer Interface eXtensible Markup Lan-
guage (UsiXML) [59]. Among all those approaches/languages, the last one is prob-
ably the most mature while most others seem abandoned.

The User Interface Markup Language (UIML) [6, 46] and its derivative, the Di-
alog and Interface Specification Language (DISL) [63] make part of the second
category. UIML has been defined by the OASIS consortium2 which seeks to de-
velop standards for e-business and Web services. The language must be combined
with other techniques such as user task modelling or transformation algorithms in
order to be able to generate a full-fledged UI. In UIML, look-and-feel, interaction
and connexion of the UI with application logic can be defined.

The third category contains Web-application languages. Initially, XForms [86]
was defined for HTML-XHTML documents by the W3C. Its purpose is to separate
presentation from data in Web forms in order to improve re-use. Now, XForms can
be used with any markup language. XForms is not an UIDL per se but allows to de-
fine GUIs at an abstract level. Second, XICL [82] is meant to develop user interface
components for browsers. Lastly, the eXstensible user-Interface Markup Language
(XIML) [73] represents interaction data for Web pages and applications at abstract
and concrete levels.

2 See https://www.oasis-open.org/



Engineering Configuration Graphical User Interfaces from Variability Models 7

Finally, we can also mention the following languages which do not fit into any
of the above categories. The Generalized Interface Markup Language (GIML) is
an UIDL used in the Generalized Interface Tool Kit (GITK) project [57]. The Mul-
tiple Device Markup Language (MDML) supports four target environments [52]:
desktop, mobile, Web and voice. Similarly, the Simple Unified Natural Markup
Language (SunML) [67] supports several target environments such as PCs, PDAs
or voice. The Adaptable & Mergeable User INterface (AMUSINg) IDE provides
tool support to edit SunML models and generate Swing software [67]. Finally, in
TADEUS-XML [64], a UI description is made of two parts: a presentation compo-
nent and a model component (or abstract interaction model).

None of the approaches proposed with these languages addresses the specific
issues that arise when generating configurators like the integration of underlying
reasoning mechanisms for controlling and propagating user choices in the GUI.
Modelling techniques have been developed to support adaptations of interfaces at
runtime [15, 16]. In the same way, configurators should be adapted to reflect the
user interactions (i.e., selections/deselections). In our context, the kind of modifica-
tions applied to the configurator interfaces are typically lightweight (e.g., some val-
ues are greyed) and can be predicted. Moreover, we can take advantage of planned
variability to make use of efficient solvers to manage the configuration process.

Table 2: Existing user interface description languages

Language G
U

Is

O
th

er
U

Is

M
ai

nt
ai

ne
d

To
ol

sd
ev

el
op

ed

To
ol

sa
va

ila
bl

e

UsiXML [59] X X X X

UIML [6, 46] X X

XForms [86] X X X X

GIML [57] X X

MDML [52] X X X

SunML [67] X X X

TADEUS-XML [64] X X

2.2.2 Feature Models and GUIs

In most variability-related tools, FMs are represented and configured using tree-
views. We can, for example, mention pure::variants [14], FeatureIDE [55] or Fea-
ture Modeling Plug-in [7]. Those tools have a graphical interface in which users can
select/deselect features in a directory-tree like interface where constraints are auto-



8 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

matically propagated. Several visualization techniques have been proposed to repre-
sent FMs [70], but they are not dedicated to end users which are more accustomed to
standard interfaces such as widgets, screens, etc. Generating such user-friendly and
intuitive interfaces is the main goal of our work. An exception is the AHEAD tool
suite of Grechanik et al. [44]. Simple Java configuration interfaces including check
boxes, radio buttons, etc. are generated using beautifying annotations supported by
the GUIDSL syntax used in the tool suite.

Pleuss et al. combine SPLs and the concepts from the MBUID domain to inte-
grate automated product derivation and individual UI design [69]. An AUI is de-
fined in the domain engineering phase and the product-specific AUI is calculated
during the application engineering. The final UI is derived using semi-automatic
approaches from MBUID. Some elements like the links between UI elements and
application can be fully automatically generated while others like the visual appear-
ance are also generated automatically, but can be influenced by the user. While we
share similar views regarding MBUID, our overall goals differ. Pleuss et al. aim at
generating the UI of products derived from the feature model while our interest is
on generating the interface of a configurator allowing end users to derive product
according to their needs. We are therefore not concerned with product derivation
but rather with the link between feature model configuration and UIs.

Schlee and Vanderdonckt [79] also combined FMs with GUI generation. Rely-
ing on the generative programming paradigm, the authors represent the UI options
with an FM which will be used to generate the corresponding interface. Their work
illustrates a few transformations between FM and GUI constructs which can be seen
as patterns. Yet, they do not consider sequencing aspects which we believe to be a
critical concern for complex UIs. Gabillon et al. extended that work by supporting
multi-platform UIs built from FMs representing UI options [39]. However, they do
not tackle UIs which allow the configuration of an FM.

Quinton et al. proposed a model-driven framework called AppliDE that bridges
the gap between an application FM and its mobile version [75]. Their main purpose
is to reduce the time-to-market between the design of the application and its avail-
ability on multiple platforms. Based on the meta-model of the configured product
and the one representing the capabilities of smartphones, they can deduce which
device is able to run the application. Similarly to us, they use model transformations
to finally generate GUIs. However, their approach does not focus on configurators
and is limited to mobile phone software.

Botterweck et al. developed a feature configuration tool called S2T 2 Con f igu-
rator [17]. It includes a visual interactive representation of the FM and a formal
reasoning engine that calculates consequences of the user’s actions and provides
formal explanation. This feedback mechanism is of importance to end users. Yet,
S2T 2 also presents a tree-like view on the configuration that we believe is not suited
to all kinds of end users.



Engineering Configuration Graphical User Interfaces from Variability Models 9

3 The MVP Configurator Pattern

Several architectural models have been introduced to structure modules such as the
GUI in an interactive application. Among them, the model-view-controller (MVC)
has wide acceptance in the development of GUIs. One reason is that it is one of the
first serious attempts to structure UIs, dating back to the late 1970’s. In December
1979 at the Xerox Palo Alto Research Laboratory (PARC), Trygve Reenskaug first
described the MVC pattern [77].

In this paradigm, Models represent knowledge. They could be a single object or a
structure of objects. Views are (visual) representations of their corresponding model.
They basically highlight some attributes and suppress others, acting as a “presenta-
tion filter”. Finally, Controllers act as the link between a user and the system. The
idea behind this pattern is to make a clear distinction between domain objects which
model real world elements, and GUI elements depicted on the screen.

The MVC architecture defined by Reenskaug is depicted in Figure 1. There, the
Model manages the data and behaviour of the application domain. It responds to
requests about its current state (usually from the View) or requests instructions
to change its state (usually from the Controller). The View simply manages
the layout of the information contained in the Model. This might require to query
the state of the Model. Finally, the Controller interprets inputs from the user
(keyboard, mouse, etc.) and informs the Model/View.

View Controller

Model

User
Sees Uses

ManipulatesUpdates

Notifies

Fig. 1: Model-view-controller architecture

In [21], Burbeck presents two variants of the MVC pattern where the role of
the model varies: active or passive. In the passive version, the model is exclusively
modified by the controller (i.e., it cannot be modified by any other source). As soon
as the controller detects a user action, it modifies the model and informs the view



10 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

that the model has changed and should be refreshed (Notifies dotted line in
Figure 1). In this scenario, the model is unaware of the existence of the view and the
controller. In the active version, the state of the model can be changed by an external
component. Since only the model can detect that it has been changed, it needs to
notify the view that it must be refreshed. The observer pattern [40] is generally used
to keep the model independent from the other components. Views subscribe to be
informed of the changes in the model.

We rely on an MVC variant – model-view-presenter (MVP) [72] – to propose
a generic architecture for configuration interfaces. It separates the responsibilities
for the visual display and the event-handling behaviour into two different compo-
nents named View and Presenter, respectively. The View detects changes in the GUI
and forwards the corresponding events to the Presenter. That component contains
the logic to handle those events. Centralizing the behaviour inside a single compo-
nent makes it easier to test, and its code can be shared between different views that
have the same behaviour. As for the MVC architectural pattern, MVP comes in two
versions: passive view and supervising controller. They are depicted in Figure 2.
In the passive version, interactions between the View and the Model are handled
exclusively by the Presenter. In the other one, the View can directly interact
with the Model for simple events, more complex ones still being handled by the
Presenter. In Figure 2, dashed lines correspond to interactions specific to the
supervising controller version.

Updates

View Presenter

Model
User

Sees Uses ModifiesSends
changes

Updates

Notifies

Notifies

Fig. 2: Model-view-presenter architecture

The key idea of our approach is to separate variability reasoning at the FM level,
event handling and the actual representation of the GUI. Thus, our architecture is
inspired by the passive view version of the MVP pattern and is decomposed into
three tiers (see Figure 3).

Here, we focus on the MVP-related models (shown in green in Figure 3) while
the supporting components (in blue) are considered as third-party software. The
roles involved in our adaptation of the pattern are as follows:

• Model: The model is an FM. The feature model is used to effectively engineer a
configuration GUI. It is connected to a reasoning engine which is responsible of
interactive configuration and is exposed through a generic API.



Engineering Configuration Graphical User Interfaces from Variability Models 11

• View: The view contains a description of the GUI to be displayed to the user.
This description is generated from the FM using transformation rules. Ideally,
rather than generating the interface in its implementation language a GUI model
should be generated for it. This has two advantages; i) GUI models are more
concise and thus easier to generate and ii) we can target several platforms from
the same GUI model.

• Presenter: The presenter is the central point of our architecture. It listens to user
actions, updates the FM and interacts with the reasoning engine to determine the
list of changes to be propagated to the GUI. Once this list is populated, it updates
the GUI model by adding, removing, hiding, making visible or updating elements
affected by the changes.

User action Update FM

NotifyUpdate GUI
Forward
updateChanges

Configuration
API

SAT/SMT
Solver

Reasoning layerControl layerPresentation layer

PresenterView model

Feature model

Translate

1 2

34

56

Fig. 3: An MVP architecture for configurators

From a dynamic perspective, interaction between components works according
to the numbered arrows. The preliminary step is to translate the FM in a format
compatible with the SAT/SMT solver. This translation is made once and allows
efficient reasoning by exploiting this robust technology. Once an instance of the
FM is encoded within the solver, the configurator can be used interactively. For
example, ticking a check box in the GUI will trigger an event through the view
model and will be propagated to the presenter ( 1 User action). Depending on
the nature of this action, the presenter will generate an update request ( 2 Update
FM) for the configuration API. This API will in turn update the FM instance (e.g.,
by setting a Boolean variable corresponding to the feature associated with the check
box to true via 3 Forward update). The solver will compute the new list of
features to be (de)selected as a result ( 4 Changes). This result will be transferred
to the presenter ( 5 Notify) that will make decisions regarding changes in the
GUI. The GUI is then updated ( 6 Update GUI) accordingly.

Our architecture does not use the supervising presenter version of the original
MVP pattern in the sense that there is no direct link between the FM and the view



12 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

model. The main reason is that interactive configuration can induce complex GUI
updates for which a specific behaviour has to be provided. Since most of this be-
haviour can be made generic, presenters can be reused amongst different GUIs.

4 From Feature Models to MVP Configurators

4.1 Illustration

In this section, we illustrate the different languages and components of our approach
by modelling a configurator for computer network topologies and IPv6 addressing
plans. Preparing an IPv6 addressing plan is an important task for network managers
who need to deploy IPv6 in their organizations.

One of the core networking aspects found in addressing plans is the practice of
dividing a computer network into multiple networks called subnets. The computers
that belong to the same subnet have their IP addresses prefixed by a common bit-
group and the exchange of traffic between different subnets is supported by routers.
The purpose of an addressing plan is to logically divide the network into subnets
based on the structure of the organization so that the IPv6 addresses can be ef-
fectively managed in groups. This split can greatly simplify the management of
networks, especially within large organizations.

Throughout the remainder of this section, we present the different models sup-
porting the generation of GUIs for a configurator that can assist practitioners in their
preparation of an addressing plan. We also introduce the required computer network
concepts for understanding this domain-specific configuration task.

4.2 Variability Modelling

4.2.1 General Principles & Language

As previously mentioned, FMs are the base models of our approach. However, while
they are the de-facto standard for representing the variability in the scientific com-
munity, our industry partners, discussions at the 2010 variability modelling (Va-
MoS) workshop [11] as well as literature reviews [23, 49] suggest that in the indus-
trial world, in contrast, FMs appear to be used rarely. In [47], some of the authors of
this chapter identified their shortcomings. To overcome those shortcomings, these
authors also designed TVL (Textual Variability Language), a text-based FM lan-
guage. The idea of using text to represent variability in SPLE is not new [8, 32]
but seems to be recently gaining popularity [3, 28]. In terms of expressiveness, TVL
subsumes most existing dialects. The main goal of designing TVL was to provide
engineers with a human-readable language with a rich syntax to make modelling



Engineering Configuration Graphical User Interfaces from Variability Models 13

easy and models natural. Further goals for TVL were to be lightweight (in contrast
to the verbosity of XML for instance) and to be scalable by offering mechanisms
for structuring the FM in various ways.

Basically, the TVL language has a C-like syntax: it uses braces to delimit blocks,
C-style comments and semicolons to delimit statements. The rationale for this syn-
tax choice is that nearly all computing professionals have come across a C-like syn-
tax and are thus familiar with this style. Furthermore, many text editors have built-in
facilities to handle this type of syntax.

In TVL, the root keyword is used for the root feature and each decomposition is
introduced by the group keyword, which is followed by the decomposition type. The
and, or, and xor decomposition types were renamed to allOf, someOf and oneOf in
TVL. These names are inspired by [32] and make the language more accessible to
people not familiar with the Boolean interpretation of decomposition. The decom-
position type can also be given by a cardinality. Cardinalities can use constants, nat-
ural numbers, or the asterisk character (which denotes the number of children in the
group). The decomposition type is followed by a comma-separated list of features,
enclosed in braces. If a feature is optional, its name is preceded by the opt keyword.
Each feature of the list can declare its own children. If each feature lists its children
this way, the tree structure of the FM will be reproduced in TVL with nested braces
and indentation. This can become a scalability problem for deep models, something
we experienced in industrial cases. To this end, TVL allows one to declare a feature
in the decomposition of its parent by just providing a name. A declared feature can
then be extended later on in the code. Besides the group block, a feature can contain
constraint and attribute declarations, all enclosed by a pair of braces. If there is only
a group block, braces can be omitted. This reduces the number of braces in a pure
decomposition hierarchy. To model a Directed Acyclic Graph (DAG) structure (as
in FORM [54]), a feature name can be preceded by the shared keyword, meaning
that it is just a reference to a feature already declared elsewhere.

Attributes can be defined inside the body of a feature. They are declared like
variables in C, in order to be intuitive for engineers. The attribute types supported
by TVL are integer (int), real (real), Boolean (bool), and enumeration (enum) whose
values set is specified with the in keyword. TVL further provides syntactic sugar to
define the domain and the value of an attribute. If the value of an attribute depends
on whether its parent feature is selected or not, the ifIn: and ifOut: keywords can be
used. Furthermore, to concisely specify cases in which the value of an attribute is an
aggregate of another attribute that is declared for each child, an aggregation func-
tion can be used in combination with the children and selectedChildren keywords
(followed by an ID denoting the attribute).

In TVL, constraints are Boolean expressions inside the body of a feature. There
is also syntactic sugar for guarded constraints. Constraints can be guarded using
the same ifIn: and ifOut: guards as for attributes.The ifIn: guard means that the
constraint only applies if the parent feature is selected. To facilitate specifying con-
straints and attribute values, TVL comes with a rich expression syntax. The syntax
is meant to be as complete as possible in terms of operators, to encourage writ-
ing of intuitive constraints. For instance, to restrict the allowed values of an enum,



14 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

the set-style in operator can be used. For enum e in {a, b, c, d, ..}, the
constraint e in {b, c} serves as syntactic sugar for e != a && e != d &&
.., which is much less readable.

TVL offers two mechanisms that can help engineers structure large models. The
first is the include statement, which takes as parameter a file path. As expected,
an include statement will include the contents of the referenced file at this point.
Includes are in fact preprocessing directives and do not have any meaning beyond
the fact that they are replaced by the referenced file. Modellers can thus structure
the FM according to their preferences. The second structuring mechanism, hinted at
before, is that features can be defined in one place and be extended later in the code.
Basically, a feature block may be repeated which adds constraints and attributes to
the feature. These mechanisms allow modellers to organise the FM according to
their preferences and can be used to implement separation of concerns [83]. This
way the engineer can specify the structure of the FM upfront, without detailing the
features. Feature attributes and constraints can be specified in the second part of
the file, or in other files using the include statement. The only restriction is that the
hierarchy of a feature can only be defined at one place (i.e., the group keyword can
only be used once for each feature).

More detailed information about TVL can be found in [20, 24].

TVL2

Hereabove, we introduced TVL as we initially defined it [20, 24]. In the meantime,
the language has been extended by other researchers in our laboratory. The purpose
of those extensions is to support all constructs found in industrial cases. Basically,
three main constructs were added, string attributes, feature cardinalities and feature
references.

A string attribute is defined using the string keyword. Similarly to other attribute
types, an ID is then given to the attribute. The naming convention is the same, the at-
tribute ID has to start with a lower case letter. For example, “string myString”
is a valid attribute declaration. It is also possible to define string constants in TVL2.

In the original TVL syntax, each feature can be configured (at most) once. Like
most existing languages, ours lacks a construct that allows to duplicate a sub-tree of
the FM to configure a product. TVL2 now supports so-called feature cardinalities.
Their semantics is defined elsewhere [62] and will not be addressed here. Syntac-
tically, feature cardinalities are represented in a similar way to group cardinalities,
with bounds between brackets. The cardinality directly follows the name of a fea-
ture. If it is not defined, the [1..1] cardinality is assumed. Furthermore, the root
feature cannot have a cardinality, i.e., it still has to be unique. Bounds can be either
an integer value or a constant, or the asterisk character. Here, the asterisk character
means that the number of feature instances is unlimited.

A feature reference is an attribute which value identifies an instance of a multi-
feature. It is declared by using the keyword shared and the type of the targeted
multi-feature. For example, “shared F myFeatureRef” represents a feature



Engineering Configuration Graphical User Interfaces from Variability Models 15

reference which name is myFeatureRef and which type is F. If we assume that
the cardinality of F is [0..2], then the value of myFeatureRef can be either F-0
or F-1 which represent the two potential instances of F.

4.2.2 Addressing Plan Example

We present a TVL model for the configuration of subnets and the allocation of IPv6
addresses. The model is visible in Listing 1. There, constraints have been removed in
order to keep the code as compact as possible. The root feature is decomposed into
four sub-features. The feature named Subnet (lines 18-23) contains information
related to a subnet such as its name or its IPv6 prefix. It also contains two feature
references that targets the sibling features UseType (lines 24-27) and Location
(lines 28-31). These two features represent the groups that are defined within an
addressing plan and that determine how IPv6 address blocks will be distributed in
the organization. For example, in the case of a university campus, the groups could
be defined by a set of use types such as student, staff or professors which refer
to the different types of users on the network, and by a set of locations such as
computer sciences or economics which refer to the different faculty buildings on
the campus. By identifying each subnet by a pair of use-type and location, the ad-
dressing plan guarantees that the IPv6 addresses will be consistently distributed. For
example, it can ensure that all students in economics will be assigned an IP address
from the same subnet. Below the root feature, there are six attributes (lines 6-15).
The attribute spacePrefix represents the IPv6 prefix of the network. The at-
tribute groupingStrategy indicates whether subnets are primarily identified
by use types or by locations. useTypes indicates the total number of use types
for the addressing plan and futureUseTypes represents the number of new use
types that could emerge in the future. Likewise, locations indicates the total
number of locations and futureLocations indicates the number of potential
future locations. The feature Host (lines 32-56) contains information related to
hosts on the network. The attribute subnet represents the subnet which the host
belongs to. The feature Interface (lines 36-48) represents the communication
interfaces through which the host sends packets to other hosts on the network. The
feature ConnectedInterface (lines 44-46) represents the interfaces that be-
long to neighbor hosts and which the host can directly send packets to. Finally, the
feature RoutingTableEntry (lines 49-54) represents lines in the routing table
of the host. The attribute destination represents the addresse(s) that must be
eventually reached by the sent packets. The attribute sendingInterface rep-
resents the local interface from which the host sends packets, while the attribute
nextHop represents the neighbor interface which the host must forward the pack-
ets to.

Listing 1: TVL model (excl. constraints) for the IPv6 addressing plan configurator
1 enum G r o u p i n g S t r a t e g y in { L o c a t i o n F i r s t , U s e T y p e F i r s t } ;
2
3 roo t A d d r e s s P l a n {



16 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

4
5 / / Address s p a c e
6 s t r i n g n e t w o r k P r e f i x ;
7 G r o u p i n g S t r a t e g y s t r a t e g y ;
8
9 / / Use t y p e s

10 i n t useTypes ;
11 i n t f u t u r e U s e T y p e s ;
12
13 / / L o c a t i o n s
14 i n t l o c a t i o n s ;
15 i n t f u t u r e L o c a t i o n s ;
16
17 group someof {
18 Subne t [ 0 . . ∗ ] {
19 shared UseType useType ;
20 shared L o c a t i o n l o c a t i o n ;
21 s t r i n g subnetName ;
22 s t r i n g s u b n e t P r e f i x ;
23 } ,
24 UseType [ 0 . . ∗ ] {
25 s t r i n g useTypeName ;
26 s t r i n g u s e T y p e P r e f i x ;
27 } ,
28 L o c a t i o n [ 0 . . ∗ ] {
29 s t r i n g l oca t ionName ;
30 s t r i n g l o c a t i o n P r e f i x ;
31 } ,
32 Host [ 0 . . ∗ ] {
33 s t r i n g hostName ;
34 s t r i n g l o o p b a c k ;
35 group someof {
36 I n t e r f a c e [ 0 . . ∗ ] {
37 s t r i n g i n d e x ;
38 s t r i n g macAddress ;
39 r e a l d e l a y ;
40 shared Subne t s u b n e t ;
41 s t r i n g i p A d d r e s s ;
42
43 group a l l o f {
44 C o n n e c t e d I n t e r f a c e [ 0 . . ∗ ] {
45 shared I n t e r f a c e c o n n e c t e d I n t e r f a c e ;
46 }
47 }
48 } ,
49 R o u t i n g T a b l e E n t r y [ 0 . . ∗ ] {
50 s t r i n g d e s t i n a t i o n ;
51 i n t m e t r i c ;
52 shared I n t e r f a c e s e n d i n g I n t e r f a c e ;
53 shared I n t e r f a c e nextHop ;
54 }
55 }
56 }
57 }



Engineering Configuration Graphical User Interfaces from Variability Models 17

58 }

4.2.3 Widget Selection

When thinking about GUI generation, the first task that comes to mind is to trans-
late the different FM constructs into graphical widgets. In other words, the question
is: how should the different TVL constructs be rendered in a configurator? For this
purpose, we have analysed some existing software configurators [2]. More specifi-
cally, 111 Web-based configurators were investigated since they represent a signifi-
cant share of existing GUIs today. The (less formal) analysis of configuration GUIs
implemented in other technologies has confirmed most findings. “How are config-
uration options visually represented and what are their semantics?” is the research
question which helped us to identify the types of widgets, their frequency of use,
and their semantics (i.e., the corresponding FM constructs). In decreasing order,
the most popular widgets in Web-configurators are: combo box item, image, radio
button, check button and text box. Some of them are also combined with images,
namely check button, radio button and combo box item. In that case, option selec-
tion is performed either choosing the image or using the widget. Other less frequent
widgets are slider, label, file picker, date picker, colour picker, etc.

The most significant outcome of this empirical study is that the range of graphical
widgets is not very large. Actually, according to our analysis, only five of them seem
sufficient to represent most variability constructs. We could thus confine ourselves
to those widgets, but this would too drastically limit our approach which aims to
be generic. It is therefore necessary to propose a more flexible mapping in order
to meet user requirements. Nevertheless, we should also impose some restrictions
to ensure the generation of “coherent” GUIs. By coherent, we mean that a widget
representing a given variability construct should reflect its semantics. For example,
check boxes should be avoided to represent xor-decompositions to avoid confusion.
Note that this could be mitigated by adding a label warning the user that the choices
are mutually exclusive.

We thus proposed a mapping between FM constructs and GUI widgets. Cus-
tomization of the interface is made possible by offering several widgets for most
variability constructs. All those mappings are summarized in Table 3. It is di-
vided into 3 main categories: Groups, Attribute types, and Features &
Attributes. The second column represents the different constructs of each cat-
egory. The name of the different widgets associated to each construct are displayed
in the third column and illustrated in the HTML format in the last one.



18 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

Table 3: Graphical widgets mappings
Category Construct Widget HTML Example
Groups and Check button

(optional features) List box
Radio box

or List box

Check box

xor List box

Radio box

cardinality Check box

Attribute integer Text box

types Slider

real Text box

Slider
Boolean Check button

List box
Radio box

enumeration List box

Radio box

Features & feature/attribute Label

Attributes Image

4.3 View Definition

4.3.1 General Principles & Language

Previously, we presented mappings between FM constructs and GUI widgets. That
might be adequate for simple FMs but the limits of such a simple transformation are
rapidly reached. First, it does not take the different concerns that might be included
in an FM [83] into account. The groups of logically linked constructs vary from
person to person and should be taken into account while generating configuration
GUIs. Furthermore, the structure of the generated GUI will be strongly related to the
FM hierarchy. Indeed, during the generation process, the FM will, in most cases, be
traversed using a depth-first approach in order to generate a feature together with
its contents, thus resulting in “nested” and “staired” GUIs. Nested since the widgets
corresponding to the contents (attributes or group) of a feature will be displayed
inside (or under) the widget corresponding to the feature itself. Staired as the width



Engineering Configuration Graphical User Interfaces from Variability Models 19

of the generated GUI will depend on the depth of the FM assuming that an horizontal
offset between a feature and its contents exists in the GUI. This offset will be used
in most cases in order to depict the relationship between a feature and its contents.
The deeper the FM, the wider the generated GUI. While those staired GUIs may be
valuable in some cases, they quickly become cumbersome.

To break out of the FM hierarchy, we propose to use views on them. Views are “a
simplified version of an FM that has been tailored for a specific stakeholder, role,
task, or, to generalize, a particular combination of these elements, which we call
a concern. Views facilitate configuration in that they only focus on those parts of
the FM that are relevant for a given concern. Using multiple views is thus a way to
achieve separation of concerns in FMs” [51].

One of the benefits of views is that they allow to break the hierarchy defined in the
FM. However, in some cases this hierarchy is still valuable in the configuration GUI.
Consequently, the view definition language should allow to split the FM hierarchy
while providing mechanisms to keep the tree structure inherent to such models, at
least for sub-parts of it. In the following, some desirable characteristics of such a
language are pointed out:

• Full sub-tree – It should be possible to select a sub-tree of the FM. This selection
would preserve the structure of the original model. A sub-tree is composed of its
root (which can be the FM root or any other feature) and optionally a list of
features to exclude (incl. their sub-features and attributes) from the selection, a
so-called stop list. The full FM is a specific case where the root of the sub-tree is
the FM root and the feature stop list is empty.

• Partial sub-tree – Similarly, it should be possible to select elements in a given
sub-tree. This sub-tree would also be defined by a root feature and optionally a
stop list. Then, it would be possible to include or exclude some elements like
a feature and its contents, an attribute, all groups, all attributes, etc. Here, the
structure of the FM is not preserved since the purpose is to select some elements
inside a sub-part of it.

• Feature – It should be possible to select a feature and its contents. Mechanisms
to select only parts of feature’s contents should also be provided.

• Attribute – Selection of an attribute, and its sub-attributes for structured ones,
should also be possible.

We propose TVDL (Textual View Definition Language), a text-based view def-
inition language which presents those characteristics for TVL. However, it could
easily be applied to any other variability modelling language. As for TVL, the goal
of TVDL is to supply engineers with a human-readable and lightweight language.

In TVDL, a view model has to import a TVL FM and is composed of a collection
of Views. Basically, a view is given a name and has contents. Its name is a character
string starting either with an upper-case or lower-case character. This name must be
unique and can thus be used as ID for the view. The contents are then enclosed in
braces. Similarly to TVL feature extensions, there is no separator (e.g., semicolon)
between the different TVDL views.



20 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

We implemented the four different types of views introduced above in TVDL.
Additionally, we propose grouping views which are composed of a set of sub-views
previously declared. The name of grouping views is preceded by the dollar sign.
Each view is composed of one or several view expressions which can be combined
using the && symbol. And each view expression reference either a TVL feature or
attribute.

The first view expression type, full sub-tree, is defined using the asterisk charac-
ter. A so-called stop list can be defined to determine the branches of the FM which
are not covered by the view expression. The branch is thus pruned before the stop
list element, i.e., it is not included. A stop list is composed of stop elements which
are a TVL feature name or its (fully) qualified name preceded by the slash character.
A stop list is composed of at least one stop element.

In the partial sub-tree expression, the sub-tree is used as search space. Its pur-
pose is to select attributes only, to exclude some features or attributes, to exclude
all attributes or groups, etc. contained in a given sub-tree. In this kind of view, the
hierarchy is not preserved since one can exclude some elements, so breaking the
hierarchy and creating confusion about the semantics of the partial FM. The dif-
ference with full sub-tree views is the filter added to the partial sub-tree selection.
Three different sub-tree filters exist. They all start with the pipe character. The first
one is lists. A list can either be an inclusion or an exclusion (preceded by the excla-
mation mark) one. The coverage of an inclusion list is the union of elements covered
by each of the list elements. Conversely, the coverage of a sub-tree expression re-
fined by an exclusion list is the difference between the set of elements covered by
the sub-tree expression and the set of elements covered by the list elements. List
elements can be, regardless of the list type, IDs of TVL features or attributes, at-
tributes or groups keywords. Those elements can be mixed inside the same list and
TVL IDs must refer to constructs covered by the sub-tree expression. If a feature ID
is included in an exclusion list, this feature as well as all its contents (attributes and
group) will be excluded from the view. Conversely, in an inclusion list, the feature
and its contents only will be included in the view coverage. Attribute IDs included
in an exclusion (resp. inclusion) list will be excluded (resp. included) in the view
coverage, as well as sub-attributes for structured attributes. The groups keyword in
an exclusion (resp. inclusion) list will exclude (resp. include) all groups from the
view coverage. The same principle applies to the attributes keyword. Attributes are
the second kind of refinement for sub-tree expressions. The attributes keyword is
used for this purpose. It means that the view covers all attributes contained in the
sub-tree expression. It is also possible to further refine the view with a refinement
list which can either be an inclusion or exclusion one but, in this case can contain
only IDs of TVL attributes covered by the sub-tree expression. This refinement list
is also preceded by the pipe character. Finally, it is also possible to select all feature
groups contained in a sub-tree of an FM with the groups keyword. In this case, the
view coverage is a set of feature groups. It is possible to refine this groups expres-
sion with an inclusion/exclusion list (preceded by the pipe character). But, in this
case, the list contains TVL feature IDs only. We chose to allow features since it is
the only way to identify feature groups in TVL. If a feature is covered by an inclu-



Engineering Configuration Graphical User Interfaces from Variability Models 21

sion (resp. exclusion) list, its group will (resp. will not) be covered by the groups
expression.

In TVDL, it is also possible to select a single feature in a view. Similarly to
partial sub-trees, refinements exist for those feature selections. The only difference
is that the group keyword has to be used instead of groups in the case of partial
sub-trees given that each feature contains (maximum) one group in TVL. Finally,
refinement lists can also be defined on features. As for partial sub-trees, it can either
be an inclusion or exclusion list. This list can contain the TVL ID of the feature’s
attributes, and/or the group or attributes keywords. For inclusion lists, the view will
cover the feature itself plus the elements mentioned in the list.

The last kind of expression, namely attributes, is the simplest one. Indeed, we
have chosen to disallow their refinement. The only way to refine attributes would
be to select only some sub-attributes of a TVL structure attribute. But, given our
experience in variability modelling, it makes no sense to split such attributes. Indeed,
if they had to be split, they would have been represented as a feature with attributes.

4.3.2 Addressing Plan Example

The TVDLmodel for the addressing plan configurator is given in Listing 2. At line 1,
the TVL model previously introduced is imported before defining the four different
views. The first one, MainTab (line 3) contains the global properties of the ad-
dressing plan that is currently configured. The second view, SubnetTab (line 5),
displays information related to subnets and groups in the organization (i.e. use types
and locations). The third view, InterfaceTab (line 7), shows information re-
lated to the communication interfaces of the hosts that are on the network. Finally,
the fourth view RoutingTableTab (line 9) shows the routing table entries of
the interfaces. Stop lists are used for defining MainTab, InterfaceTab and
RoutingTableTab.

Listing 2: TVDL model for the addressing plan example
1 import ” a d d r e s s i n g p l a n d e m o . t v l ”
2
3 MainTab {A d d r e s s P l a n : ∗ / Subne t / UseType / L o c a t i o n / Host}
4
5 SubnetTab {Subne t && UseType && L o c a t i o n }
6
7 I n t e r f a c e T a b {Host : ∗ / R o u t i n g T a b l e E n t r y }
8
9 Rou t ingTab leTab {Host : ∗ / I n t e r f a c e }



22 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

4.4 Widget Selection

As for FM constructs, we propose a mapping between views and GUI widgets. Each
view can be depicted either as a Tab or as a Window. Tabs could be nested in other
Tabs or Windows, but not conversely.

4.5 Beautification

4.5.1 General Principles & Language

In the previous sections, our focus was on the direct translation of FM constructs
into GUI elements. Even if this translation is technically feasible, the result would be
rough as it is relies only on information contained in FMs which is rather technical.
For example, using feature and attribute names as label for the input fields might
not be expressive enough to understand their meaning.

A first solution would be to extend existing languages. Missing information
would be directly added in TVL and TVDL. At the first glance, this solution seems
to be the best one in the context of configuration GUI generation. All information
would be located in the same place. While this might help to design configuration
GUIs, variability and view models would be cluttered with GUI-related informa-
tion. This information is completely irrelevant in other contexts and might disturb
variability modellers. We want to keep TVL and TVDL languages independent of
the GUI generation process in order to preserve the separation of concerns [83]. For
all those reasons, we chose to propose a new language dedicated to GUI-specific
information.

This language plays the same role as CSS (Cascading Style Sheets) [85] for
HTML pages, i.e., it contains beautification information. For this reason, we called
our language FCSS, standing for Featured Cascading Style Sheets. As in usual CSS,
properties include layout information but also feature-specific visualisation strate-
gies. Other properties are related to the rendering of TVL attributes and groups,
and TVDL views. The availability of certain options may also depend on the target
language.

An FCSS Beautification Model refers to a TVL model and optionally
to a TVDL one. Then, it is composed of four different kinds of parts, namely
Global Properties, View Properties, Feature Properties and
Attribute Properties.

Global properties definition sections start with the dot character and are, like the
three other categories, delimited by curly braces. Several global sections can exist.
However each global property can only be defined once in the whole model, i.e., it
can neither be defined several times in the same global part nor in different global
parts.



Engineering Configuration Graphical User Interfaces from Variability Models 23

A property has a name, and a value separated by a colon. It is closed by a semi-
colon. Fourteen global properties exist, five are related to feature groups, four to
features, another four to attributes, and a single one for views.

Global Properties

A global group property exists for each kind of TVL decomposition. For and-
decompositions, it is named andGroup and can take a single value, namely textbox,
at the moment. Setting this property might thus be useless. Our intent is to extend
the language in the light of experience with Web configurators, requests from cus-
tomers, etc. It can be seen as a variation point whose variants still have to be defined.
orGroup is a second global group property which can take either listbox or check-
box as value. xorGroup is the third property and its available values are listbox and
radiogroup. The last kind of groups, card-decompositions, is represented by the
cardGroup property and can, at the moment, take a single value, namely checkbox.
Finally, the Boolean groupContainer property is used to determine whether groups
and their sub-features have to be visually grouped together in the rendered configu-
ration GUI. This is typically done with a bordered box.

The first property dedicated to features is simply called feature and determines
how they are rendered in the GUI. Available values are text and image. Those val-
ues speak for themselves. The optFeature property determines how optional features
have to be rendered. Three values exist, checkbox, listbox, and radiogroup. With a
check box, the optional feature is selected if (and only if) it is checked. The list-box
contains two values, true and false. Similarly the radio group contains two radio
buttons labelled with the same Boolean values. Note that, optional features are gen-
erally used with and-decompositions. That may help explain why the andGroup
property has a single value. unavailableContent is the third feature property. It can
take three values, hidden, greyed, or none. This value determines the strategy to ap-
ply with the contents of a feature when the latter is not selected. It can either not be
visible to the user (hidden), or visible but not editable (greyed), or visible and ed-
itable (none). With this last option, the user can select any option at any time. Given
the structure of an FM, setting the value of a construct (attribute or feature) will
automatically select all its ancestors in the configuration GUI. Finally, a selectFea-
ture property exists and can take the same values as optFeature, namely checkbox,
listbox, or radioGroup. In TVDL, we allow to not cover a group if all its sub-features
are covered. As a consequence, the group is not rendered in the configuration GUI.
Given that all its sub-features are depicted, we propose to use a selection widget in
front of all of them, similarly to optional features. In this way, the user is still able
to select group’s sub-features and the group cardinality will be verified by the solver
(the presenter in our architecture). The group is scattered all over the configuration
GUI but it is still possible to select its sub-features while sticking to its cardinality.

The four attribute properties correspond to the four attribute types available in
TVL. Their purpose is to determine the graphical widget of the corresponding type.
The intAttribute and realAttribute properties represent integer and real attributes.



24 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

They have the same set of values, namely textbox (a box containing the value) or
slider. The rendering of Boolean attributes is influenced by the boolAttribute prop-
erty. It can take three values, namely checkbox, listbox, or radioGroup. Note that
this set of values is the same as optional features given the Boolean type of both
constructs. The last attribute type available in TVL is enumeration. Its correspond-
ing global property is named enumAttribute and can take listbox or radiogroup as
values.

Finally, it is also possible to influence the rendering of views defined in the TVDL
model with the view property. As introduced in previous section, available values are
tab and window. The tab value means that all views will be represented by tabs in
the same window. With the other value, window, each view will be rendered in its
own window. In the latter case, navigation links between windows should be made
available in each window.

Properties defined inside this global part can be seen as “default” values which
can be overridden by other ones defined at a lower (i.e., more specific) level. As
a case in point, properties defined at the view level have priority over global ones.
Conversely, if a global property is not refined for a given construct, it will be used
as default behaviour to generate the corresponding widget in the configuration GUI.

View Properties

View-specific definition sections start with the dollar sign followed by the TVDL
ID of the corresponding view. The different properties can then be defined inside
the block delimited by curly braces. As for global properties, view-specific ones
end with a semicolon.We can classify view-specific properties into two categories:
those which apply to the view itself and those which apply to elements covered by
the view.

We propose four properties which directly relate to the view referenced in the
view-specific definition section (i.e., the TVDL view ID directly following the dollar
sign). Using the Boolean generate property, one can define whether or not a view
has to be rendered in the configuration GUI. This might, for example, be useful if
the user has defined a view which is relevant in some contexts (technical, commer-
cial, etc.) but should not be displayed in the GUI. It means that the TVDL model can
contain views which are irrelevant for GUI generation. We also propose to define
labels and help texts for views. Those properties are named label and help, respec-
tively. They both take a double quoted string as value. The label property makes it
possible to not use the view ID which might be too technical for the end-user. The
help text might help the user understand the meaning or the purpose of a view. It is
designer’s responsibility to choose the right words to help configuration GUI users
in their task. Finally, we propose the unavailable property which determines what
to do with the view contents when the view is not available. Values for this property
are hidden, greyed and none, and their meaning is the same as for the unavailable-
Content global property.



Engineering Configuration Graphical User Interfaces from Variability Models 25

The other category of view-specific properties is similar to the global properties.
Indeed, properties falling in this category will influence the rendering of constructs
covered by the view. For this reason, the proposed properties are exactly the same
as global ones presented earlier. The fourteen properties will not be recalled here
for the sake of conciseness. However, we would like to draw the attention to one of
them, view. As a reminder, this property allows to define the widget corresponding to
views. Setting this property will have an influence on the views contained in the view
corresponding to the view-specific definition section, not on that view itself. The
view property thus only makes sense for grouping views. In our opinion, all views
declared at the same level should be depicted by the same widget. This explains why
we did not propose a widget property in the first category. However, if needed, this
property could be easily added.

Feature Properties

The goal of this third category is to set properties for a given feature. Contrarily
to the two previous categories, this one covers a single element which is a TVL
feature. A feature-specific definition section starts with the ID of a feature in the
referenced TVL model. It is the single category which has no starting symbol (like
the dot character for global parts, or the dollar sign for views). Its contents are then
delimited by curly braces. Seven different feature-specific properties are available.

Among the seven feature-specific properties, three are shared with view-specific
ones, namely label, help, and unavailable. Available values and semantics are simi-
lar. For this reason, they will not be detailed here.

Four properties that are really specific to TVL features are given. widget is the
first one and allows to set the widget for the feature in the rendered configuration
GUI. It is the feature-specific counter-part of the feature global and view-specific
properties. The same two values are available at the moment, text and images. Sim-
ilarly, the opt feature-specific property has the same role as optFeature discussed
earlier. As a reminder, available values are checkbox, listbox, and radiogroup. The
role of this property is to determine the widget depicting the optionality of the fea-
ture in the GUI. This property only makes sense for optional features. The select
property is equivalent to featureSelect and takes the same three values, checkbox,
listbox, and radiogroup. Its role is to set the selection widget for features whose
group is not covered by TVDL views. It should thus only be defined for features
falling in this category.

The last feature-specific property, group, is a little more complex and has a differ-
ent syntax. It can contain other properties. In this sense, a parallel can be drawn with
TVL struct attributes. Its contents, replacing its value, are delimited by curly braces.
There, six properties can be defined. Three of them are the common ones, label,
help, and unavailable. Our experience with existing Web configurators and discus-
sions with industrial partners showed that, in some cases, it should also be possible
to define this information for groups. The widget property defines the widget for the
group. Available values are textbox, listbox, checkbox, and radiogroup. They will de-



26 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

pend on the decomposition type, textbox only for and-decompositions, listbox and
checkbox for or-decompositions, listbox and radiogroup for xor-decompositions,
and checkbox for card-decompositions. The Boolean container property has the
same role as the groupContainer global property, that is determine whether the
group and its sub-features have to be graphically enclosed together, for example
using a box. Finally, the default property defines which group’s sub-feature will be
selected in the configuration GUI. Available values will be the group’s sub-features.
Ideally, default values should be defined in another language which is out of the
scope of this thesis. For this reason, it is temporarily included in FCSS.

Attribute Properties

The last category of properties, attribute-specific ones, is the simplest one. This is
due to the nature of attributes which are the simplest TVL constructs. An attribute-
specific definition section starts with the # symbol directly followed by the TVL ID
of an attribute. The properties are then declared inside a block delimited, like other
categories, by curly braces.

The label, help, and unavailable properties are the same as the ones previously
discussed. A single property really specific to TVL attributes exists. It is called wid-
get and can take textbox, listbox, checkbox, radiogroup, and slider as value. As for
group widgets, values will depend on the attribute type. textbox and slider for int
and real TVL attributes, checkbox, radiogroup, and listbox for bool attributes, and
listbox and radiogroup for enumerations.

4.5.2 Addressing Plan Example

In our addressing plan example, the FCSSmodel contains only labels for views (e.g.
line 6), features (e.g. line 46) and attributes (e.g. line 49). Due to space constraints,
only the beginning of the FCSS model is visible in Listing 3. All other entries are
similar to those depicted in the code excerpt.

Listing 3: FCSS model for the addressing plan example
1 import ” a d d r e s s i n g p l a n d e m o . t v l ”
2 import ” a d d r e s s i n g p l a n d e m o . t v d l ”
3
4 / / Views
5
6 $MainTab {
7 l a b e l : ” main ” ;
8 }
9

10 $SubnetTab {
11 l a b e l : ” S u b n e t s and Groups ” ;
12 }
13



Engineering Configuration Graphical User Interfaces from Variability Models 27

14 $ I n t e r f a c e T a b {
15 l a b e l : ” I n t e r f a c e s ” ;
16 }
17
18 $Rou t ingTab leTab {
19 l a b e l : ” Rou t ing T a b l e s ” ;
20 }
21
22 / / F e a t u r e s and a t t r i b u t e s
23
24 A d d r e s s P l a n {
25 l a b e l : ” Address p l a n p r o p e r t i e s ” ;
26 }
27 # A d d r e s s P l a n . n e t w o r k P r e f i x {
28 l a b e l : ”Numero c l i e n t ” ;
29 }
30 # A d d r e s s P l a n . s t r a t e g y {
31 l a b e l : ” S t r a t e g y ” ;
32 }
33 # A d d r e s s P l a n . useTypes {
34 l a b e l : ”Number o f use t y p e s ” ;
35 }
36 # A d d r e s s P l a n . f u t u r e U s e T p e s {
37 l a b e l : ”Number o f f u t u r e use t y p e s f o r e x p a n s i o n ” ;
38 }
39 # A d d r e s s P l a n . l o c a t i o n s {
40 l a b e l : ”Number o f l o c a t i o n s ” ;
41 }
42 # A d d r e s s P l a n . f u t u r e L o c a t i o n s {
43 l a b e l : ”Number o f f u t u r e l o c a t i o n s f o r e x p a n s i o n ” ;
44 }
45
46 Subne t {
47 l a b e l : ” Subne t ” ;
48 }
49 # Subne t . useType {
50 l a b e l : ” Use t y p e ” ;
51 }
52 # Subne t . l o c a t i o n {
53 l a b e l : ” L o c a t i o n ” ;
54 }
55 # Subne t . subnetName {
56 l a b e l : ”Name ” ;
57 }
58 # Subne t . s u b n e t P r e f i x {
59 l a b e l : ” P r e f i x ” ;
60 }



28 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

4.6 Putting It All Together

4.6.1 General Principle

After having made the role of each model of our approach explicit, we explain here
how they fit together. Our vision is based on the decoupling of the FM and the
configuration GUI by combining separation of concerns [83] and generative tech-
niques [79]. The base process is sketched in Figure 4 and relies on the notion of
AUI [22]. According to the W3C [89], an AUI is “an expression of a UI in terms of
interaction units without making any reference to implementation neither in terms
of interaction modalities nor in terms of technological space (e.g., computing plat-
form, programming or markup language)”. In other words, an AUI is a language-
and target platform-independent description of the UI, which allows considering
mappings from the feature model in a unique and reusable manner. This AUI can be
directly generated from the FM with the possibility to use Views to tweak configura-
tion interface decomposition. The layout of the elements composing the UI can be
guided by a Property sheet containing beautification information. Once created, the
AUI can be then transformed into a CUI. Depending on the required sophistication
level of the interface, different combinations of views and property sheets can be
envisioned.

Feature
Model

Concrete 
User

Interface
Abstract User

Interface

Views

Property Sheet

Fig. 4: Interface generation process

Based on the FM (TVL) and the associated Property sheet (FCSS), an AUI can
be defined for the configurator. AUI languages describe UIs in terms of Abstract
Interaction Objects (AIOs). Those AIOs present the advantage of being independent
of any platform and any modality of interaction (graphical, vocal, virtual reality and
so on). In this way, we keep our approach as generic as possible. This AUI will
finally be translated into a CUI which is the implementation of the UI in a given
language for a specific platform. Views can also intervene in this generation process
(using TVDL). Once they have been defined, views-related beautifying information
similar to FM-related one can be defined in the Property sheet. It is meant to beautify



Engineering Configuration Graphical User Interfaces from Variability Models 29

the UI with views-related information like their display name, help text, colours and
styles.

4.6.2 Addressing Plan Example

Our original intent was to generate configuration GUIs encoded in a given UIDL.
They could then be transformed into multiple target implementations (e.g., HTML,
GWT, etc.). As mentioned in Section 2.2, UIDL support is still immature or pro-
prietary. As a reminder, we can mention that existing UIDLs either do not fit our
requirements or tool support for transforming models into final GUIs are not avail-
able to us. This last point is really important to evaluate the quality of the generated
configurators. Indeed, it is easier to show a final GUI than a model describing it to
an end-user.

We thus had to skip the UIDL model in our MDE transformation chain to pre-
fer a direct generation approach. For the target interface technology, we chose the
HTML5 language [88], the latest version of the HTML standard. As previously men-
tioned, a lot of configuration interfaces are Web-based, as illustrated by Cyledge’s
configurators database [27]. By choosing HTML, we thus cover a lot of configura-
tors. For other target languages, we depend on the availability of UIDLs, especially
UsiXML which is in the standardization process [84]. In addition to the HTML tar-
get language for the static part of configuration GUIs, the presenter is developed in
JavaScript, its natural complement.

No detail will be provided about the generator which is based on a model-to-
text approach. Interested reader can refer to [18]. Basically, our implementation of
model transformations takes the three models (TVL, TVDL, and FCSS) as input (see
Figure 5) and generates an HTML document.

Configuration
GUI

TVL Model

FCSS Model

TVDL Model

Fig. 5: Generation process with Acceleo



30 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

The HTML page generated by our Acceleo tool is depicted in Figures 6 to 9. Each
figure represents the same HTML file with a different tab selected. The content of
each page is automatically rendered by our generator.

Fig. 6: Address plan tab of the HTML configurator for IPv6 addressing plans

Fig. 7: Subnets and groups tab of the HTML configurator for IPv6 addressing plans



Engineering Configuration Graphical User Interfaces from Variability Models 31

The first view (see Figure 6) presents the user with the general properties of the
addressing plan. It allows her to specify the number of locations and use types that
are present in the organization, as well as the number of locations and use types that
may potentially arise in the future. It also allows the use to select which strategy
should be applied for the identification of the subnets that form the network.

The second view (see Figure 7) allows the user to configure subnets and groups.
She can instantiate use types, locations and associate them to subnets. The view
offers to specify the IP prefixes that will identify the subnets and their hosts. In the
example shown in Figure 7, which follows the creation of an addressing plan for a
university campus, all students from the faculty of economics will be grouped in the
subnet identified by the prefix 2000:de4:abe7:0001::/64.

Fig. 8: Interfaces tab of the HTML configurator for IPv6 addressing plans

The third view (see Figure 8) enables the configuration of hosts and their in-
terfaces. This is the view where the user can manage information related to hosts
on the network and where she can associate hosts to their subnets. The panel la-
belled “Connected interface” allows the user to configure the direct connections
between interfaces that belong to distinct hosts. Figure 8 also offers an example



32 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

of three nested features rendered into the panel labelled Host, Interface and
Connected interface.

Fig. 9: Routing table tab of the HTML configurator for IPv6 addressing plans

Finally, the fourth view (see Figure 9) addresses the configuration of routing
tables. In our example, the panel labelled “Routing table entry” shows a line in the
routing table that indicates how packets directed to hosts identified by the prefix
2000:de4:abe7:2::/56 should be routed.

5 Lessons learned

We applied our approach on several research (such as the IPv6 addressing plan) as
well as industrial cases3. Globally, our interlocutors were pleased with the generated
HTML interfaces even if none of them used the full power of the FCSS model.
We could thus conclude that the default behaviour of our generator matches the
expectations of our first partners. The ease and speed with which interfaces could
be generated allowed us to easily interact with people without variability modelling
background. The different models changed a lot over time and all required changes
were supported by the proposed languages. Some even challenged us and were not
able to find weak points for TVDL.

3 Unfortunately, these cases could not be reported here for confidentiality reasons



Engineering Configuration Graphical User Interfaces from Variability Models 33

However, our partners missed three things in the generated configuration Web
page. First, they would like an additional “summary” tab. Finalisation being case-
specific, we decided to not handle it in our generator. Instead, it should be developed
based on user requirements. A possible implementation would be a Web service
which, for a given configuration, returns the expected summary.

A much finer-grained handling of feature instances was also required by one
of our interlocutors. In the interfaces currently generated, the number of clones is
handled by a number input. Decreasing (resp. increasing) the number of feature
instances will delete (resp. add) the HTML code corresponding to those instances,
starting from the last. It is thus not possible to delete a given instance. This function-
ality can easily be added to our generator. Ideally, a button to create a new instance
should also be added after the current last one.

One of our partners required to be able to define features having several parents.
Theoretically, this request is supported by TVL through the shared feature construct.
Those constructs are also supported by our Acceleo generator. However, we did
not use them given that the current version of the solver does not support such
features. This specific case study allowed us to get accurate requirements for shared
constructs. The generator should be modified accordingly.

We now report our findings about the approach, including the solver, the TVL,
TVDL and FCSS languages, the presenter or the generated configurator based on
our collaborations.

Completeness of TVL.

In the biggest TVL model we had to produce so far, we count four duplicable fea-
tures. The same comment applies to string attributes added in TVL2 and used ten
times in the same case study, that is 17,9% of the attributes. Generally speaking,
TVL offered the required expressiveness. Shared features also proved relevant, even
if they are currently not supported by the underlying solver.

Completeness of TVDL.

The view definition language has been assessed. It turned out that it supports all
views required by our partners with one exception. To deal with this weakness, an
abstract feature was added right under the root feature. In the future, TVDL should
be extended in order to avoid such collateral effects on other models.

Completeness of FCSS.

We did not use a lot of FCSS properties and focused mainly on labels. On the
one hand, it does not allow us to thoroughly evaluate the language. On the other
hand, it implies that the default behaviour corresponds to actual user needs. There



34 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

is room for improvement. First, it should be possible to define the position of a
label, before or after the TVL construct with which it is associated. Second, several
FCSS properties should be made available for more fine grained TVL constructs.
For example, it is not possible to define a label for the values of an enum attribute.
The same comment applies to sub-attributes of structures. For such attributes, it is
even not possible to change the widget, which is somewhat restricting. Defining
the step for number attributes, the break point between radio groups and list boxes,
etc. worth exploring according to our interlocutors. Finally, colours could also be
defined for elements to be rendered in the GUI. An interesting feature would be to
generate the same interface in several languages with different FCSS models. For
this purpose, we could use the include mechanism of TVL in FCSS.

Communication with the solver.

The JavaScript presenter fulfils its role of interface between the HTML page and
the solver perfectly and behaves as expected. Behind the scene, this component is
probably the most complex one and should be simplified. At the moment, it handles
some behaviours which should be on solver side. Migrating them would make the
JavaScript much simpler and respect the separation of concerns. For example, the
presenter currently handles transactions. Changing the value of a select box repre-
senting a xor-decomposition is an example of such a transaction. It can be decom-
posed into two tasks: 1) unassign the previously selected value and 2) assign the
new one to true. After the first step, the solver randomly selects an option to comply
with the group cardinality and returns it to the presenter. That value is ignored by
the presenter as it knows that, in the second step, another value will be sent to the
solver. In the future, the solver should handle requests containing multiple changes.
The solver might be in an invalid state while the transaction is processed. At the end
of it, the solver should be in a valid state. Otherwise, it means that the transaction is
an invalid one.

Role of generated GUIs.

In our different use cases, the generated interfaces provided valuable input to initiate
discussion. Working only at TVL level seemed abstract for most of our interlocutors.
HTML interfaces generated in less than one minute made the process more interac-
tive. TVDL views were even tailored according to the audience. Indeed, high level
managers do not have the same concerns as technicians. As expected, none of our
interlocutors envisions to reuse the generated configuration GUI as-is in their final
products. There are several reasons for this, including the graphical charter, legacy
tools, etc. These reasons motivated us to focus on the correctness of the interface
(with respect to configuration) and its structure (tabs, views) and to not aim for
100% automation neither possible nor desirable.



Engineering Configuration Graphical User Interfaces from Variability Models 35

Propagation strategies.

In the current solution, there are two possible outcomes to user changes. Either it is
not valid and the previous state is reset, or it is acceptable and propagations are au-
tomatically applied in the GUI. While, in the first case, the implemented behaviour
seems the single viable one, several strategies should be made available for valid
changes. At the moment, the user is not informed of the consequences of her choices
which are automatically propagated in the interface. Providing an explanation mech-
anism could minimize user’s lack of comprehension concerning a propagated value.
Such information requires modifications at the solver level. Alternatively, the set of
propagations could be displayed to the user before applying them in the configu-
ration GUI. If she confirms her choice, the configuration is updated according to
the values in the set. Otherwise, the previous GUI state is reset, i.e., like for invalid
changes. The two behaviours can co-exist.

Source of propagations.

Initially, the presenter was able to handle values propagated by the solver in a spe-
cific way. In the prototype version, they were greyed out in order to prevent user
changes. But this approach was rather restrictive with respect to the results sent
back by the solver. For example, if a feature is selected, the propagation set contains
its parent which will be greyed out in the configuration GUI. While this behaviour
respects the semantics of FMs, it is not adapted to GUIs. In such a case, the user
would have to deselect all sub-features to unblock the parent one. Instead, it should
be possible to set the parent to false with the unassignment of child features as side
effect. We identify three categories of propagation sources: cross-tree, hierarchy, and
siblings constraints. The first category should trigger the disabling mechanism (e.g.,
grey out). The second one has been illustrated by the example earlier in this para-
graph. Finally, siblings constraints should be handled differently by the presenter
depending on the widget representing the group. For example, xor-decompositions
rendered as a list box or a radio group are automatically handled by the widget,
contrarily to those depicted by a set of check boxes. In the future, the solver should
return three propagation sets, differently handled by the presenter.

Display strategies.

A top-down strategy is applied in our generator. By this, we mean that the contents
of a feature are displayed in the configuration GUI as soon as it is selected. The
Web page is thus populated as the user makes choices. However, some configurators
might require a different display strategy. Theoretically, our approach can support
other strategies with mechanisms such as the unavailable property in the FCSS
model. We will require other case studies to evaluate the alternative behaviours.



36 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

6 Perspectives

6.1 Multiple Targets

We envision two solutions to target multiple output languages. The critical point
is to have a UIDL suited to our configuration needs. The first solution consists in
selecting a relevant subset of an UIDL like UsiXML to meet our requirements while
still taking advantage of existing code generators. The second approach is to define
our own UIDL dedicated to configuration GUIs. In that case, UI concepts would be
strongly connected to FM concepts.

6.2 Ordering Views

In the GUI generation approach, the different views are rendered in the GUI in the
same order as in the TVDL model. These views are all accessible to the user at
any time. Such a behaviour is not suited to all situations. In the future, generated
configurators should support explicit view ordering and activation/deactivation.

To describe those behaviours, feature configuration workflows [48] or multi-step
SPL configuration [91] could be used. There, the workflow defines the configuration
process and each view on the FM is assigned to a task in the workflow. A view is
configured when the corresponding workflow task is executed. A feature configura-
tion workflow is thus a combination of views on the FM, workflow and the mapping
between them. Up to now, feature configuration workflows focused on distributed
configuration among several stakeholders but one might easily adapt them to other
purposes like the dynamic behaviour of a GUI in our case.

After having defined views, the workflow representing the dynamic aspect of the
GUI thus has to be modelled and its tasks attached to the different views to create
a so-called FCW. FCW-related beautification information can also be stored in the
FCSS along with information related to the FM and views.

6.3 Re-engineering

In our previous empirical study of 111 Web configurators, we were able to identify
several common bad practices among online configurators, such as incomplete rea-
soning over configuration constraints, counter-intuitive representation of options or
the loss of all the user’s decisions when navigating backwards. The study reveals
that developing an online configurator like any other typical Web application (i.e.
without specific, adapted, and rigourous engineering methods) can lead to issues in
reliability, runtime efficiency, and maintainability. These issues could be addressed



Engineering Configuration Graphical User Interfaces from Variability Models 37

though the migration from a legacy ad-hoc configurator to a better model-driven
engineered configurator.

In this chapter, we focus on the creation of new configurators through the elabo-
ration of feature models and the generation of configuration GUIs. We believe that
our approach can also be useful in the context of re-engineering existing configura-
tors. The re-engineering process consists of two steps.

1. The configuration models of the existing configurator are recovered by applying
reverse-engineering techniques.

2. A new configurator is created from the recovered models.

The approach described in this chapter can be used to implement the second
step of this re-engineering process as it can support the engineering of configuration
GUIs from recovered feature models. As for the first step, Abassi et al. [1] propose
a supervised semi-automatic process for reverse-engineering TVL code from web-
based configurators. Their approach is depicted in Figure . The user starts with the
definition of variability data extraction patterns (vde patterns) which specify the
variability information to be extracted from a given Web page written in an HTML-
like language. A Web Wrapper is then used to extract the variability data from a
given page, based on a given a set of vde patterns, and save it into an XML format.
Some manual user configurations are also simulated in order to extract dynamic
content such as configuration constraints. The information extracted through steps
2 and 3 can be edited and transformed into a feature model. Typically, several FMs
are extracted from one Web configurator, e.g, one FM for each configuration step.
These FMs are merged by FAMILIAR, a tool-supported language to merge multiple
FMs into a single one [5].

Figure 10 presents the full re-engineering process, the contribution of this chapter
being represented on the right side by the forward-engineering steps. The interested
reader can refer to [19] for more detailed discussion of the re-engineering process.

6.4 Product Selection

The configuration model of a configurator is a concise representation of the technical
and functional properties of all variants for a product line. Typically, the configura-
tor is the system through which the particular requirements of the current user are
collected, and which exploits the configuration model to derive the product with the
properties meeting these requirements. This means that the system gradually refines
the features and attributes that will be included in the single final product at each
user interaction.

For some product lines, while the configuration process still consists in collecting
requirements from the user and verifying their consistency, the resulting configura-
tion is used to compute a set of candidate products which all meet the user’s expec-
tations. This can be the case when a customer needs to select a candidate product
from a catalogue, but is first asked to complete a configuration task in order to define



38 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

Forward Engineering

Original ad hoc 
configurator

source code

Configuration 
GUI

Extract 
variability data

Generate 
Configuration 

GUI
Validate 

variability model

Re-engineered 
Configurator

Reverse Engineering

Configuration
 solver instance

source code

Configuration
 GUI

Options

Descriptive 
information

Constraints

Documentation

Web objects

Variability model

Fig. 10: Re-engineering process for configurators

the environment in which it will be deployed. In this scenario, the purpose of this
first configuration task is to filter out the invalid products, that is those which do not
hold the properties that would make them suitable for the configured environment.
For such product lines, the process of choosing the final product can thus be divided
into two phases. Firstly, a configuration phase that determines the valid products.
Secondly, a selection phase through which the user selects one final product among
all valid products. Figure 11 illustrates the two phases for a catalogue of servers.

In the previous sections, we propose a generative approach for supporting config-
uration tasks. An interesting research direction would be the extension of our work
to the engineering of selection phases in order to help users rank competing valid
products and evaluate trade-offs. In the remainder of this section, we discuss prod-
uct comparators and knowledge-based recommender systems, two types of systems
which could benefit from a model-driven development approach.

Fig. 11: The configuration phase and the selection phase for a catalogue of servers.



Engineering Configuration Graphical User Interfaces from Variability Models 39

Product Comparators

Product comparators aim at assisting customers during the evaluation of product
assortments. These systems help their users to visualize the similarities and differ-
ences between competing products within product comparison matrices (PCM). A
PCM offers a tabular representation of the characteristics of competing products that
helps customers to rapidly compare them and evaluate trade-offs between them.

While the structure of PCMs may appear simple, they can contain heterogeneous
data and be frequently updated as new products and features emerge. For these rea-
sons, practitioners can benefit from a model-driven approach for maintaining PCMs.

The interested reader can refer to Bécan et al. [10]. The authors propose a meta-
model for PCMs and discuss model-based techniques as well as automated tools for
developing PCMs.

Knowledge-based Recommender Systems

Like product comparators, a recommender system aims at helping customers to nav-
igate competing product ranges. Knowledge-based recommender systems (KBRS)
are a particular type of recommender systems that share common characteristics
with configurators. Indeed, they also collect requirements from their users and
exploit knowledge about the products to provide purchase recommendations (see
Felfernig et al. [36] for a more detailed coverage of KBRS). Similarly to configu-
rators and their configuration models, KBRS operate a knowledge base which syn-
thesizes the knowledge about the product properties and their relationships with
customer requirements.

Oftentimes the development of KBRS gives rise to a domain knowledge acqui-
sition bottleneck, a challenge also encountered by developers of configurators. This
problem refers to the need for practitioners to encode knowledge about the products
into the formalism used within the knowledge base of the system. This acquisition
phase is critical as the resulting knowledge base will determine the behaviour of the
system. The term bottleneck refers to the fact that this phase often proves to be both
time-consuming and error-prone. It thus requires particular effort and cautiousness
from practitioners when searching product documentation or engaging with domain
experts in order to ensure the completeness, accuracy and consistency of the knowl-
edge base.

This challenge has lead to previous research effort. Felfernig et al. [35] discuss
an environment for engineering KBRS and their user interfaces. The motivation
for a model-driven approach is to accelerate the acquisition of domain knowledge
through fast prototyping, and to reduce maintenance costs.



40 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

6.5 Recommendations

Web configurators often have to cope with domain knowledge related to complex
products (i.e. products with numerous features, attributes, as wells as business and
technical constraints to satisfy). Due to this complexity, users can be exposed to
an overwhelming number of configuration steps to resolve, to the extent that the
benefits of the co-creation process risks to be offset. This has serious managerial
implications as tedious co-creation processes can make vendors undesirable for
customers [68]. Franke and Schreier [38] show that the enjoyment and perceived
effort of the co-design process have a direct impact on the willingness to pay for
customized products. Configuration complexity can also make customers miss the
product that best meets their expectations as they shift towards simplifying decision
heuristics [31].

For these reasons, it is important to assist users of web configurators during their
configuration tasks. Previous works have addressed the development of recommen-
dation techniques to help users resolve configuration steps, that is recommendations
for feature selections and attribute values. Researchers have proposed the use of de-
faults values which denote predefined recommendations that are applied based on
the current user preferences [60, 34]. Other approaches consist in analyzing past
configurations to infer recommendations [34, 90]. Felfernig et al. [37] analyze the
current partial configuration of the user and use a similarity-based approach to rec-
ommend the complete configurations that are the closest to the already specified
user requirements.

In this chapter we discussed languages to model variability and build GUI el-
ements. It would be interesting to investigate language extensions or additions to
support practitioners during the elicitation of configuration recommendations and
the generation of corresponding GUI elements through a model-based approach.

6.6 Evalution of Configuration Interfaces

In addition to the generation of configuration interfaces, another concern is their
evaluation. As noted by Leclercq et al. [58] there is limited knowledge on what are
the general guidelines and principles guiding the design of configuration interfaces.
Indeed, most the of the works criticise existing interfaces or practices (e.g., [76, 2]),
focus on specific configuration interfaces (web) or business-to-consumer (B2C) ap-
plications. As our case-study suggests, not all configuration interfaces are dedicated
to a general audience, and the specific needs and skills of intended users have to be
taken into account when designing interfaces for them. We are therefore in search
for grounded theories and guidelines that could assist the design of such interfaces
and in the long term incorporate these principles in our generative approaches.



Engineering Configuration Graphical User Interfaces from Variability Models 41

7 Conclusion

The explosion of e-commerce applications and the need for customized products
tailoring user needs make the development of configurators a concern in a variety
of domains. Configurator engineering is a difficult activity: configurators both need
to be consistent while handling user’s decisions and their graphical user interfaces
should meet usability and aesthetics requirements of consumers. This difficulty is
often amplified in ad-hoc configurators in which the variability model, graphical
user interface concerns and reasoning engine are all implicit and/or entangled. The
software product line community has developed conceptual models and concrete
tools to perform configuration through (simple) feature models. However, the engi-
neering of configuration graphical interfaces has been much less addressed.

In this chapter, we present a model-based perspective. We rely on (advanced)
feature models to formally specify configuration options and automate reasoning.
We developed a model-based solution to generate graphical user interfaces from
feature models while relying on SAT/SMT solvers to perform reasoning to react
to user selections/deselections. We propose a model-view-presenter architecture to
separate variability, reasoning and presentation. In our approach, the model is a
feature model and its solver, and the view is a graphical user interface. The presenter
will depend on the target graphical user interface technology. Its main role is to
enable communication between the model and the view.

As existing feature modelling languages are not providing the expressiveness re-
quired to cover our needs, we developed a new language: it is a textual language
named TVL and supports constructs such as feature attributes or group cardinalities
which are not supported by most existing variability modelling languages. Further-
more, the language provides two mechanisms for structuring large models: an in-
clude statement to split the model into several files and the possibility to define a
feature in one place and extend it later in the code. These mechanisms allow mod-
ellers to organise the feature model according to their preferences and can be used
to implement separation of concerns.

In order to split the hierarchy of feature models, we propose a view definition
language called TVDL. It is inspired by the XPath language previously used by
Hubaux et al. in the context of feature configuration workflows. The advantage of
TVDL is that is not XML-based and allows to select any (combination of) TVL
model construct(s). Four kinds of views are supported: grouping, sub-tree, feature
and attribute. Grouping views are syntactic sugar to group the three other kinds of
views. Sub-tree views allow to select TVL constructs in a sub-tree of a TVL model,
feature views allow to select a feature and its contents (or a part of them), and
attribute views cover TVL attributes (and their sub-attributes for structured ones).

As TVL and TVDL models do not focus on styling information, we propose
FCSS. FCSS is a beautification language which contains information related to the
graphical user interface such as labels or help texts, for example. The language has
been named after CSS which plays a similar role for HTML Web pages. FCSS mod-
els can be decomposed into three levels. The highest one, called global, defines
properties which should be applied to all constructs of imported TVL and TVDL



42 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

models. They can be seen as default values. The second level defines the default
properties for all constructs contained in a view. Finally, the last level allows to
define properties for a specific feature or attribute.

Configuration interfaces are generated through model transformations, of which
TVL, TVDL and FCSS models are the inputs. Our initial intent was to use a user
interface description language as target, more specifically an abstract user interface
model. In that case, model-to-model transformations would have been used. How-
ever, we did not find such a language meeting all our criteria. Consequently, our
prototype generator produces HTML code through model-to-text transformations.
The workload to move from a model-to-text to a model-to-model transformation
should not be too high given that the most intricate part can be massively reused.

The languages and the generator were evaluated together on several cases. Our
approach and the generator were used iteratively to demonstrate and evaluate the
capabilities of the tool to (re)design and (re)generate a configurator on-the-fly. This
could be done at such speed that the tools can be used during workshops in order to
dynamically adapt the configurator based on the participants’ input. Our experiences
demonstrated the utility of the approach and allowed to identify various improve-
ment opportunities.

References

1. Abbasi, E.K., Acher, M., Heymans, P., Cleve, A.: Reverse engineering web configurators.
In: Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014
Software Evolution Week-IEEE Conference on, pp. 264–273. IEEE (2014)

2. Abbasi, E.K., Hubaux, A., Acher, M., Boucher, Q., Heymans, P.: The anatomy of a sales con-
figurator: An empirical study of 111 cases. In: C. Salinesi, M.C. Norrie, O. Pastor (eds.) Pro-
ceedings of the 25th International Conference on Advanced Information Systems Engineering
(CAiSE’13), vol. 7908, pp. 162–177. Springer (2013)

3. Abele, A., Papadopoulos, Y., Servat, D., Törngren, M., Weber, M.: The CVM framework – a
prototype tool for compositional variability management. In: Proceedings of the 4th Interna-
tional Workshop on Variability Modelling of Software-intensive Systems (VaMoS’10) [12],
pp. 101–106

4. Acher, M., Collet, P., Lahire, P., France, R.: Separation of concerns in feature modeling: Sup-
port and applications. In: Proceedings of the 11th Annual International Conference on Aspect-
oriented Software Development (AOSD’12). ACM (2012). To appear

5. Acher, M., Collet, P., Lahire, P., France, R.: Familiar: A domain-specific language for large
scale management of feature models. Science of Computer Programming (SCP) Special issue
on programming languages p. 55 (2013). DOI http://dx.doi.org/10.1016/j.scico.2012.12.004

6. Ali, M., Pérez-Quiñones, M.A., Abrams, M., Shell, E.: Building multi-platform user interfaces
with UIML. In: C. Kolski, J. Vanderdonckt (eds.) Computer-Aided Design of User Interfaces
III, pp. 255–266. Springer Netherlands (2002)

7. Antkiewicz, M., Czarnecki, K.: FeaturePlugin: Feature modeling plug-in for eclipse. In: Pro-
ceedings of the 2004 OOPSLA Workshop on Eclipse Technology eXchange (2004)

8. Batory, D., Geraci, B.J.: Validating component compositions in software system generators.
In: Proceedings 4th International Conference on Software Reuse (ICSR’96), pp. 72–81 (1996)

9. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Proceedings of the
9th International Conference on Software Product Lines (SPLC’05), pp. 7–20 (2005)



Engineering Configuration Graphical User Interfaces from Variability Models 43

10. Bécan, G., Sannier, N., Acher, M., Barais, O., Blouin, A., Baudry, B.: Automating the for-
malization of product comparison matrices. In: 29th IEEE/ACM International Conference on
Automated Software Engineering (ASE’14). Västerås, Suède (2014). DOI 10.1145/2642937.
2643000. URL http://hal.inria.fr/hal-01058440

11. Benavides, D., Batory, D.S., Grünbacher, P. (eds.): Proceedings of the 4th International Work-
shop on Variability Modelling of Software-Intensive Systems, Linz, Austria, ICB-Research
Report, vol. 37. Universität Duisburg-Essen (2010)

12. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years
later: A literature review. Information Systems 35(6), 615–636 (2010)

13. Benavides, D., Segura, S., Trinidad, P., Cortés, A.R.: FAMA: Tooling a framework for the
automated analysis of feature models. In: Proceedings of the 1st International Workshop on
Variability Modelling of Software-intensive Systems (VaMoS’07), pp. 129–134 (2007)

14. Beuche, D.: Modeling and building software product lines with pure: :variants. In: Proceed-
ings of the 12th International Software Product Line Conference (SPLC’08), p. 358. IEEE
Computer Society, Washington, DC, USA (2008)

15. Blouin, A., Morin, B., Nain, G., Beaudoux, O., Albers, P., Jézéquel, J.M.: Combining aspect-
oriented modeling with property-based reasoning to improve user interface adaptation. In:
Proceedings of the 3rd ACM SIGCHI Symposium on Engineering Interactive Computing Sys-
tems (EICS’11), pp. 85–94. ACM (2011)

16. Blumendorf, M., Lehmann, G., Albayrak, S.: Bridging models and systems at runtime to build
adaptive user interfaces. In: Proceedings of the 2nd ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS’10), pp. 9–18. ACM (2010)

17. Botterweck, G., Janota, M., Schneeweiss, D.: A design of a configurable feature model con-
figurator. In: Proceedings of the 3rd International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS’09), pp. 165–168 (2009)

18. Boucher, Q.: Engineering configuration graphical user interfaces from variability models.
Ph.D. thesis, University of Namur (2014)

19. Boucher, Q., Abbasi, E.K., Hubaux, A., Perrouin, G., Acher, M., Heymans, P.: Towards more
reliable configurators: A re-engineering perspective. In: Proceedings of the 3rd Product LinE
Approaches in Software Engineering (PLEASE’12), pp. 29–32 (2012)

20. Boucher, Q., Classen, A., Faber, P., Heymans, P.: Introducing TVL, a text-based feature mod-
elling language. In: Proceedings of the 4th International Workshop on Variability Modelling
of Software-intensive Systems (VaMoS’10), pp. 159–162. Universität Duisburg-Essen (2010)

21. Burbeck, S.: Applications programming in smalltalk-80: How to use model-view-controller
(MVC). http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html (1992)

22. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A uni-
fying reference framework for multi-target user interfaces. Interacting with Computers 15,
289–308 (2003)

23. Chen, L., Babar, M.A., Ali, N.: Variability management in software product lines: A sys-
tematic review. In: Proceedings of the 13th International Software Product Line Conference
(SPLC’09), pp. 81–90 (2009)

24. Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature modelling: Syntax
and semantics of TVL. Science of Computer Programming 76, 1130–1143 (2011)

25. Classen, A., Heymans, P., Schobbens, P.Y.: What’s in a feature: A requirements engineering
perspective. In: Proceedings of the 11th International Conference on Fundamental Approaches
to Software Engineering (FASE’08), pp. 16–30 (2008)

26. Coutaz, J.: User interface plasticity: Model driven engineering to the limit! In: Proceed-
ings of the 2nd ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS’10), pp. 1–8. ACM (2010)

27. Cyledge: Cyledge Configurator Database (2013). URL http://www.
configurator-database.com. Last consulted: August 2013

28. Czarnecki, K.: Variability modeling: State of the art and future directions (keynote). In: Pro-
ceedings of the 4th International Workshop on Variability Modelling of Software-intensive
Systems (VaMoS’10) [12], p. 11



44 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

29. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applications.
Addison-Wesley (2000)

30. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature models
and their specialization. Software Process: Improvement and Practice 10(1), 7–29 (2005)

31. Dellaert, B.G., Stremersch, S.: Marketing mass-customized products: striking a balance be-
tween utility and complexity. Journal of Marketing Research 42(2), 219–227 (2005)

32. van Deursen, A., Klint, P.: Domain-specific language design requires feature descriptions.
Journal of Computing and Information Technology 10(1), 1–18 (2002)

33. Eisenstein, J., Vanderdonckt, J., Puerta, A.: Applying model-based techniques to the develop-
ment of UIs for mobile computers. In: Proceedings of the 6th International Conference on
Intelligent User Interfaces (IUI’01), IUI ’01, pp. 69–76. ACM, New York, NY, USA (2001)

34. Falkner, A., Felfernig, A., Haag, A.: Recommendation technologies for configurable products.
AI Magazine 32(3), 99–108 (2011)

35. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: An integrated environment for the de-
velopment of knowledge-based recommender applications. International Journal of Electronic
Commerce 11(2), 11–34 (2006)

36. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: Constraint-based recommender systems.
In: Recommender Systems Handbook, pp. 161–190. Springer (2015)

37. Felfernig, A., Mandl, M., Tiihonen, J., Schubert, M., Leitner, G.: Personalized user interfaces
for product configuration. In: Proceedings of the 15th international conference on Intelligent
user interfaces, pp. 317–320. ACM (2010)

38. Franke, N., Schreier, M.: Why customers value self-designed products: The importance of
process effort and enjoyment*. Journal of Product Innovation Management 27(7), 1020–1031
(2010)

39. Gabillon, Y., Biri, N., Otjacques, B.: Methodology to integrate multi-context UI variations into
a feature model. In: Proceedings of the 17th International Software Product Line Conference
Co-located Workshops (SPLC’13), pp. 74–81. ACM (2013)

40. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley, Boston, MA, USA (1995)

41. Garcı́a, J.G., González-Calleros, J.M., Vanderdonckt, J., Arteaga, J.M.: A theoretical survey
of user interface description languages: Preliminary results. In: Proceedings of the 2009 Latin
American Web Congress (La-web 2009), pp. 36–43 (2009)

42. pure-systems GmbH: Variant management with pure::variants. http://www.pure-
systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf (2006). Technical White Paper

43. Gomaa, M., Salah, A., Rahman, S.: Towards a better model based user interface development
environment : A comprehensive survey. In: Proceedings of the 38th Midwest Instruction and
Computing Symposium (MICS’05) (2005)

44. Grechanik, M., Batory, D.S., Perry, D.E.: Design of large-scale polylingual systems. In: Pro-
ceedings of the 26th International Conference on Software Engineering (ICSE’04), pp. 357–
366 (2004)

45. Griss, M.L., Favaro, J., Alessandro, M.d.: Integrating feature modeling with the RSEB. In:
Proceedings of the 5th International Conference on Software Reuse (ICSR’98), pp. 76–85
(1998)

46. Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., Abrams, M., Coyette, A., Vanderdonckt, J.:
Human-centered engineering of interactive systems with the user interface markup language.
In: Human-Centered Software Engineering, pp. 139–171. Springer (2009)

47. Hubaux, A., Boucher, Q., Hartmann, H., Michel, R., Heymans, P.: Evaluating a textual feature
modelling language: Four industrial case studies. In: Proceedings of the 3rd International
Conference on Software Language Engineering (SLE’10), pp. 337–356 (2010)

48. Hubaux, A., Classen, A., Heymans, P.: Formal modelling of feature configuration workflows.
In: Proceedings of the 13th International Software Product Line Conference (SPLC’09), pp.
221–230 (2009)

49. Hubaux, A., Classen, A., Mendonca, M., Heymans, P.: A preliminary review on the appli-
cation of feature diagrams in practice. In: Proceedings of the 4th International Workshop



Engineering Configuration Graphical User Interfaces from Variability Models 45

on Variability Modelling of Software-intensive Systems (VaMoS’10) [12], pp. 53–59. URL
http://www.vamos-workshop.net/2010

50. Hubaux, A., Heymans, P., Schobbens, P.Y., Deridder, D., Abbasi, E.K.: Supporting multiple
perspectives in feature-based configuration. Software and Systems Modeling pp. 1–23 (2011)

51. Hubaux, A., Heymans, P., Schobbens, P.Y., Deridder, D., Abbasi, E.K.: Supporting multiple
perspectives in feature-based configuration. Software and System Modeling 12(3), 641–663
(2013)

52. Johnson, P.D., Parekh, J.: Multiple device markup language: A rule approach. Tech. rep.,
DePaul University (2003)

53. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain analysis
(FODA) feasibility study. Tech. rep., SEI, CMU (1990)

54. Kang, K.C., Kim, S., Lee, J., Kim, K., Kim, G.J., Shin, E.: FORM: A feature-oriented reuse
method with domain-specific reference architectures. Annals of Software Engineering 5, 143–
168 (1998)

55. Kästner, C., Thüm, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F., Apel, S.: FeatureIDE:
A tool framework for feature-oriented software development. In: Proceedings of the 31th
International Conference on Software Engineering (ICSE’09), pp. 311–320 (2009)

56. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory 5(1), 95–96
(1971)

57. Kost, S.: Dynamically generated multi-modal application interfaces. Ph.D. thesis, Dresden
University of Technology (2006)

58. Leclercq, T., Davril, J.M., Cordy, M., Heymans, P.: Beyond de-facto standards for design-
ing human-computer interactions in configurators. In: Workshop on Engineering Computer-
Human Interaction in Recommender Systems (EnCHIReS) co-located with EICS (2016)

59. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: UsiXML: A
language supporting multi-path development of user interfaces. In: R. Bastide, P. Palanque,
J. Roth (eds.) Engineering Human Computer Interaction and Interactive Systems, Lecture
Notes in Computer Science, vol. 3425, pp. 200–220. Springer Berlin Heidelberg (2005)

60. McSherry, D.: Incremental nearest neighbour with default preferences. In: Proceedings of the
16th Irish Conference on Artificial Intelligence and Cognitive Science, pp. 9–18 (2005)

61. Mendonca, M.: Efficient reasoning techniques for large scale feature models. Ph.D. thesis,
University of Waterloo (2009)

62. Michel, R., Classen, A., Hubaux, A., Boucher, Q.: A formal semantics for feature cardinalities
in feature diagrams. In: Proceedings of the 5th Workshop on Variability Modeling of Software-
Intensive Systems (VaMoS’11), pp. 82–89 (2011)

63. Mueller, W., Schaefer, R., Bleul, S.: Interactive multimodal user interfaces for mobile de-
vices. In: Proceedings of the 37th Annual Hawaii International Conference on System Sci-
ences (HICSS’04), HICSS ’04, pp. 90,286.1–. IEEE Computer Society, Washington, DC, USA
(2004)

64. Müller, A., Forbrig, P., Cap, C.H.: Model-based user interface design using markup concepts.
In: Proceedings of the 8th International Workshop on Interactive Systems: Design, Specifica-
tion, and Verification-Revised Papers (DSV-IS’01), DSV-IS ’01, pp. 16–27. Springer-Verlag,
London, UK, UK (2001)

65. Myers, B.A., Hudson, S.E., Pausch, R.F.: Past, present, and future of user interface software
tools. ACM Transactions on Computer-Human Interaction 7, 3–28 (2000)

66. Paterno’, F., Santoro, C., Spano, L.D.: MARIA: A universal, declarative, multiple abstraction-
level language for service-oriented applications in ubiquitous environments. ACM Transac-
tions on Computer-Human Interaction 16(4), 19:1–19:30 (2009)

67. Picard, E., Fierstone, J., Pinna-Déry, A.M., Riveill, M.: Atelier de composition d’IHM et
évaluation du modèle de composants. Tech. Rep. Livrable 3, Réseau National des Technolo-
gies Logicielles (2003)

68. Piller, F.T., Blazek, P.: Core capabilities of sustainable mass customization. Morgan Kauffman
(2014)



46 Quentin Boucher, Gilles Perrouin, Jean-Marc Davril, and Patrick Heymans

69. Pleuss, A., Botterweck, G., Dhungana, D.: Integrating automated product derivation and indi-
vidual user interface design. In: Proceedings of the 4th International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’10), pp. 69–76 (2010)

70. Pleuss, A., Rabiser, R., Botterweck, G.: Visualization techniques for application in interac-
tive product configuration. In: Proceedings of the 15th International Software Product Line
Conference, Volume 2 (SPLC’11), p. 22 (2011)

71. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer (2005)

72. Potel, M.: MVP: Model-View-Presenter the taligent programming model for c++ and java.
Taligent Inc (1996)

73. Puerta, A., Eisenstein, J.: XIML: A common representation for interaction data. In: Proceed-
ings of the 7th International Conference on Intelligent User Interfaces (IUI’02), IUI ’02, pp.
214–215. ACM, New York, NY, USA (2002)

74. Puerta, A., Eisenstein, J.: Developing a multiple user interface representation framework for
industry. In: Multiple User Interfaces: Engineering and Application Framework, pp. 119–148.
John Wiley and Sons (2003)

75. Quinton, C., Parra, C.A., Mosser, S., Duchien, L.: Using multiple feature models to design
applications for mobile phones. In: Proceedings of the 15th International Software Product
Line Conference, Volume 2 (SPLC’11), p. 23 (2011)

76. Rabiser, R., Grünbacher, P., Lehofer, M.: A qualitative study on user guidance capabilities
in product configuration tools. In: M. Goedicke, T. Menzies, M. Saeki (eds.) IEEE/ACM
International Conference on Automated Software Engineering, ASE’12, Essen, Germany,
September 3-7, 2012, pp. 110–119. ACM (2012). DOI 10.1145/2351676.2351693. URL
http://doi.acm.org/10.1145/2351676.2351693

77. Reenskaug, T.: Models-Views-Controllers. http://heim.ifi.uio.no/t̃rygver/1979/mvc-2/1979-
12-MVC.pdf (1979). URL http://heim.ifi.uio.no/˜trygver/1979/mvc-2/
1979-12-MVC.pdf

78. Reiser, M.O.: Core concepts of the compositional variability management framework (cvm).
Tech. rep., Technische Universität Berlin (2009)

79. Schlee, M., Vanderdonckt, J.: Generative programming of guis. In: Proceedings of the 7th In-
ternational Working Conference on Advanced Visual Interfaces (AVI’04), pp. 403–406. ACM
(2004)

80. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of feature dia-
grams. Computer Networks 51(2), 456–479 (2006)

81. Souchon, N., Vanderdonckt, J.: A review of XML-compliant user interface description lan-
guages. In: J. Jorge, N. Jardim Nunes, J. Falcão e Cunha (eds.) Interactive Systems. Design,
Specification, and Verification, Lecture Notes in Computer Science, vol. 2844, pp. 377–391.
Springer Berlin Heidelberg (2003)

82. de Sousa, L.G., Leite, J.C.: XICL: A language for the user’s interfaces development and its
components. In: Proceedings of the Latin American Conference on Human-computer Interac-
tion (CLIHC’03), CLIHC ’03, pp. 191–200. ACM, New York, NY, USA (2003)

83. Tarr, P., Ossher, H., Harrison, W., Sutton, S.M.J.: N degrees of separation: Multi-dimensional
separation of concerns. In: Proceedings of the 21st International Conference on Software En-
gineering (ICSE’99), pp. 107–119 (1999). DOI http://doi.ieeecomputersociety.org/10.1109/
ICSE.1999.841000

84. UsiXML Consortium: USer Interface eXtensible Markup Language (UsiXML). Submitted to
the W3C Model-Based UI Working Group (2012)

85. W3C: Cascading Style Sheets. http://www.w3.org/TR/REC-CSS1/ (2008). URL http://
www.w3.org/TR/REC-CSS1/. Last consulted: October 2013

86. W3C: XForms 1.1 (2009). URL http://www.w3.org/TR/2009/
REC-xforms-20091020/

87. W3C: Model-based UI XG final report. http://www.w3.org/2005/Incubator/model-based-
ui/XGR-mbui-20100504/ (2010)

88. W3C: HTML5. http://www.w3.org/TR/html5/ (2014). Last consulted: December
2013



Engineering Configuration Graphical User Interfaces from Variability Models 47

89. W3C: MBUI - abstract user interface models. http://www.w3.org/TR/abstract-ui/ (2014)
90. Wang, Y., Tseng, M.M.: Customized products recommendation based on probabilistic rele-

vance model. Journal of intelligent manufacturing 24(5), 951–960 (2013)
91. White, J., Galindo, J.A., Saxena, T., Dougherty, B., Benavides, D., Schmidt, D.C.: Evolving

feature model configurations in software product lines. Journal of Systems and Software
87(0), 119 – 136 (2014). DOI http://dx.doi.org/10.1016/j.jss.2013.10.010. URL http://
www.sciencedirect.com/science/article/pii/S0164121213002434


