Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

KAOS Construct Analysis using the UEML Approach Template
Matulevicius, Raimundas; Heymans, Patrick

Publication date:
2005

Link to publication

Citation for pulished version (HARVARD):
Matulevicius, R & Heymans, P 2005, KAOS Construct Analysis using the UEML Approach Template.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Jan. 2026

https://researchportal.unamur.be/en/publications/f9a8dcba-8fc3-4986-a8a5-4f6cd7900797

Namur University
Computer Science Department

5 Moy
A
T

ﬂjé'ﬁ Uy 1Sy R S

S

%
=
m

7

™

-]
£

A

KAOS Construct Analysis using
the UEML Approach Template

(Technical report)

Raimundas MatulevicCius
and Patrick Heymans

-

Namur, Belgium
2005

KAOS Construct Analysis using
the UEML Approach Template

KAOS Construct Analysis using
the UEML Approach Template

Outline
KAOS 1 ACHIEVE ZO0QLoiiiiieciieiiee ettt et e e e e s e e tr e e s taeeseseeesseesssaeessseeassseessseeans 5
KIAOS 1 AZENL ...ttt et e et e et e e bt e e s bt e e ab e e s bt e e s b e e e beeeeabeeeaee 9
KAOS 1 ASSIZIIMEINLEeiiieiieeiieeitei ettt ettt et e et e et e e te e bt e seeenseense e seesneesnseenseenneesnsesnseenseeneas 13
KAOS 1 AVOIA GOAL ... ittt ettt e et e et e et e e st e et e e se e st e enseenseenneeneas 17
KAOS : Boundary CONAIION.co.eiiiriiiiiiiiieieeitete ettt ettt ettt st eaees 21
KCAOS 2 CeASE 0@ ...ttt ettt ettt 25
KCAOS 2 CONTTICT .ottt ettt et bt et bt et eatebesbeebeeseenteseeenees 29
KCAOS 2 CONLTOL .ttt ettt sttt s b et st e e eat et saeebesbeenteseeenean 33
KAOS : DOMAIN PIOPETLY ..uvvieerierieiieereesieeseeeteeteesseessseeseesseesssessseesseesseessssesseesseesssssssesssessseessssnses 35
KAOS : ENVITONMENT ZENT......eiiiuiiiiiiieeiieeiiieiiieeeteeeveesseeessreeessaeesseeessseesssseessseessssesssseeesssesssseees 39
L QN N T 2 1 RSP RSP 41
KAOS : EXPECLALION ..uvviiiiiiieeiiieeieecieeeetee et e stteeevee s tveesstaeessseeessseessseeasssaessssesssseessssesssseeesssesssees 43
L QN 1 T € o | PSR 47
AN O N TR € [T 1 (S i 1111153 L AR 51
KCAOS S TPUL .ttt ettt e sttt e sttt e s bt e e s bt e e ateesabteesabeesnteesabeeesneeasaseeas 55
KAOS : MaINtain Olcccveiiiiiiieiieeieeitete ettt ettt e e e s e sae e e e seesnaesnseesseessaesnsesnseenseenseennns 59
IKCAOS - IMOMIEOT ..entieiiieiieeie ettt e ete et et e st esebeeseessaesnseesseesseesaseenseenseesssesnseanseessaesnsennseenseenseennns 63
ICAOS £ ODJECEcutiiiiieiieieeeie ettt ettt e et e e e st esebe e baessbeesbeessaesseessseesseessaessseasseesseesssessseesseesseenseenses 65
KCAOS : OPETALION.......cuvieiieiieeiieteereeeteete et e stesbeeseessaeesseesaesseessseesseesseessseasseesseesssessseesseesseesssenses 69
KAOS : OperationNaliSAtIONcccveeeiieieereeerreestreeereeesreesseeesreeessreesseeesssessssseessseeasssesssseessssesssseees 73
QN O TR 11 1o RS 79
KA OS : PErfOrMANCEcuviiiiieiieeiete ettt ettt st et a e st e et et esbeeeaeeeneeenseesaeeenee 83
KAOS : REQUITEIMENLcccviiieiieiiieeciieeeree et e steeestee s veesteeesebaeeseseessseeessseesssseessseeasssesssseeessseenssees 87
KAOS : SOTEZOAL ...ttt ettt et et b e eabe e tee s ebeetbeesbeesaaesebeerneebaeseneenns 91
KAOS : SOTEWATE QZENT ..ottt ettt et e st e et e bt e s neeete e seenseesneeenseeseeneas 93

KAOS Construct Analysis using
the UEML Approach Template

KAOS Construct Analysis using
the UEML Approach Template

KAOS : Achieve goal

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas MatuleviCius
Distribution list: DEM

Document history:

Achieve goals are goals requiring that some property eventually holds.
Achieve goals state that some target condition should hold in some (bounded) future state.

1. Preamble

Builds on
Goal

Built on by

Construct name
Achieve goal

Alternative construct names
goal, requiring that a property eventually holds

Related, but distinct construct names
goal with a pattern achieve

Related terms

Goal : a prescriptive assertion capturing some objective to be met by cooperation of agents from the agent
model.

Maintain goal: a goal requiring that some property always holds.

Avoid goal: a goal requiring that some property never holds.

Cease goal: a goal requiring that some property eventually stops to hold.

Sofigoal: goal that do not have a clear-cut criterion for their satisfaction.
Terminal goals: a goal which has no G-refinement.
Requirement: a goal assigned to an agent in the software to be.
Expectation (assumption): a goal assigned to an agent in the environment.
Comment: Can a goal with a pattern be softgoal, terminal goal (requirement and expectation)?

Language
KAOS, http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type

Goal model

KAOS Construct Analysis using
the UEML Approach Template

2. Presentation
Builds on

Built on by

Icon, line style, text

. , Achieve goal

Achieve
[Goal name]

User-definable attributes
Relations to other constructs
Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Built on by

Instantiation level

Both type and instance level

Classes of things

1:1, “goalOwner” played by StakeholderThing.
Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing.

1:1, “concernedObject” played by AllThing.
Describing object concerned by a goal.

Comment: Achieve goal has the same classes as a goal. It belongs to a goal owner and has the sub-properties. These
classes are described here as they are used in property definition.

Properties (and relationships)

1:1, “theAchieveGoal” played by ComplexTransformationLaw.
Belongs to: 0:1 [1:1], goalOwner.
Trasformation law: a change is required between a state where the concerned object properties are false and one
where they are true.
Representing the achieve goal which is held by a goal owner and requires that some concerned object properties
eventually hold.

Comment: For more achieve goal properties (such as concExplicitObjAttribute, concImplicitObjAttribute,
attributeName, attributeDef, attributeFormalSpec, attributePriority, and attributeCategoty), see goal.

6

KAOS Construct Analysis using
the UEML Approach Template

Behaviour

Existence

Modality (permission, recommendation etc)
Intention of a goal owner;

4. Open Issues

Change List

KAOS Construct Analysis using
the UEML Approach Template

KAOS Construct Analysis using
the UEML Approach Template

KAOS : Agent

Document type:

Working document

Domain/Task/Topic:

DEM / UEML / Approaches

Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas Matulevicius

Distribution list:

DEM

Document history:

An agent is an active object (or “processor”) which plays a specific role towards goal achievement by controlling
specific object behaviours. The focus is thus on a specific role rather than a specific individual.

Agents are active objects, that is, they are capable of performing operations.

1. Preamble

Builds on
Object

Built on by

Environment agent
Software agent

Construct name
Agent

Alternative construct names

An active object
A processor

Related, but distinct construct names

e Environment agent : e.g., pre-existing software component, sensor, actuator, human, organizational unit, etc.
e Software agent : an agent in the system-to-be.

Related terms

Language
KAOS,

http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type

Agent model

2. Presentation

Builds on

KAOS Construct Analysis using
the UEML Approach Template

Built on by

Assignment,
Performance,
Controls,
Monitors

Icon, line style, text

User-definable attributes

[1:1] Name: String = *“”. A string allowing for unambiguous reference to corresponding instances at the application
level.
[1:1] Def: FreeText = “. Free text used for precise, unambiguous definition of the corresponding instances at the

application level.

Relations to other constructs

e Belongs 1:1 to agent model.
o L:n[l:1] responsibleAgent : assignment. Agent has assignment to satisfy the goal.

Comment: Agents are objects. This means that agent could also not be a responsible agent as they could be defined in
the object hierarchy.

e 0:n[1l:n] performs : operation. Agent performs operation in order to satisfy operationalised by this operation goal,
which is assigned to this agent.

e 0:n [0:n] monitors : object. Agent monitors (“reads”) the attribute of the object.

e 0:n[0:n] controls : object. Agent controls (“writes”) the attribute of the object.
Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Built on by

Instantiation level

Both type and instance level

Classes of things

1:1 “theAgent” played by ActiveComponentThing.
Represents the agent.

1:1 “monitoredControlledObject” played by ComponentThing.
Represents object, controlled or monitored by an agent.

Properties (and relationships)

1:1 [1:1], “attributeName” played by AnyRegularProperty.
Belongs to: theAgent.
Represents agent attribute name.

10

KAOS Construct Analysis using
the UEML Approach Template
1:1 [1:1], “attributeDef” played by AnyRegularProperty.
Belongs to: theAgent.
Represents agent attribute def.

1:n [1:n], “monitoredImplicitObjAttribute” played by EmergentBindingMutualProperty
Belongs to: 0:n [0:n], monitoredControlledObject
Belongs to: 0:n [0:n], theAgent
An agent monitors an object, without defining the concrete attribute of the control.
Also represented: Monitors.

1:n [1:n], “monitoredExplicitObjAttribute” played by EmergentBindingMutualProperty
Belongs to: 0:n [0:n], monitoredControlledObject
Belongs to: 0:n [0:n], theAgent
An agent monitors an object attribute.
Also represented: Monitors.

I:n [1:n], “controlledImplicitObjAttribute” played by EmergentBindingMutual Property
Belongs to: 0:n [0:n], monitoredControlledObject
Belongs to: 0:1 [0:n], theAgent
An agent controls an object, without defining the concrete attribute of the control.
Also represented: Controls.

1:n [1:n], “controlledExplicitObjAttribute” played by EmergentBindingMutualProperty
Belongs to: 0:n [0:n], monitoredControlledObject
Belongs to: 0:1 [0:n], theAgent
An agent controls an object attribute.
Also represented: Controls.

Behaviour

Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

TBF — Dependency constraint between agents as through goal or through operation.

TBF — A goal defines a set of admissible histories in the composed system. Intuitively, a history is a temporal sequence
of states of the system. Specify Scenario, Snapshot, Interaction, Source, Target, and State transition constraints. This is
related to Agent, Event, and Operation constraints.

11

-congtructhame = agent
-instLevel = both

age onstructDefinition

KAOS Construct Analysis using
the UEML Approach Template

: RepresentedSegment

theAgent: RepresentedClass

-roleName = "the agent”
-minCard = 1

-maxCard = 1

-segmentType = existence

ohject: RepresentedClass
-roleMame = "object”
-minCard = 0
-maxCard = n

monitoredimplicitOhjAttribute: RepresentedProperty
raleMame = "monitored implicit object property”
-minCard =0
-maxCard = 1

-roleMarne = "attribute name"
-minCard
-rmaxCard = 1

-representedProperty = perSe

-representedProperty = perSe

monitoredExplicitOhjProperty: RepresentedProperty
-raleMame = "monitored explicit object property”
-minCard = 0

[|-roleam ttribute def'
-rinCard = 1
-raxCard = 1

-represantedProperty = parSe

attributeD epresentedProperty

-maxCard = 1
-representedProperty = perSe

controlledimplicitObjAttribute: RepresentedProperty
-raleMame = "controlled implicit ohject attribute”
-minCard = 0

-raxCard = 1
representedProperty = perSe

controlledExplicitObjAttribute: RepresentedProperty

-igintringicOrhiutual = hindhiut

-isWhaolePan = pant

RepresentedClassPropertyAssociation

-isResultant OtEmergent = emergent

anyRegularProperty: Property
FpropertyMarne = "any regular propery”
FisLaw = false
FisWWholePart = false

ActiveComponentThing: Class

-classharme = "companent thing"

-roleMame = "controlled explicit object property” |1
-minCard = 0 [
-raxCard = 1 RepresentedClassPropertyAssociation
-representedProperty = perSe HisintringicOriutual = bindMut

R rEmergent = emergent
FisWWholePart = part

componentThing: Class

-classhame = camponent thing|

BindingMutualProperty: Property
-propertyMame = "hinding mutual property”
-isLawr = false
-isWWholePart = false

12

KAOS : Assignment

KAOS Construct Analysis using
the UEML Approach Template

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas MatuleviCius
Distribution list: DEM

Document history:

The Assignment is introduced as target of an OR-Assignment meta-relationship from Goal to capture alternative
assignments of the same terminal goal to different agents; alternative assignments result in different system proposals in

which more or less is automated.

1. Preamble
Builds on
Built on by

Construct name
Assignment

Alternative construct names

Responsibility assignment
Related, but distinct construct names
Related terms
Language

KAOS,

http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Agent model

2. Presentation

Builds on

Built on by

13

KAOS Construct Analysis using
the UEML Approach Template

Icon, line style, text

"""""

Resp.
Goal name Assignment
(AND assigned)
< Agent2 name >

Goal name /4 OR

Resp.

< Agent2 name >

User-definable attributes

[0:1] AltName : String = “”. Name of alternative OR-assignments.

Assignment
(OR assigned)

Agentl name

Relations to other constructs

e Belongs to 1..1 agent model.

e 1:1[0:n], assignedGoal: goal. A goal, if it is a terminal goal, could be assigned.

e 1:1[L:n], responsibleAgent: agent. Responsible agent (software agent or environment agent) is responsible for goal
satisfaction.

Diagram layout conventions

Other usage conventions

3. Representation

Builds on

Goal
Agent

Built on by

Instantiation level
Instance and type level

Classes of things

1:1 “responsibleAgent” played by ActiveComponentThing.
Represents the responsible agent.

1:1, “goalOwner” played by StakeholderThing.
Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing.

14

KAOS Construct Analysis using
the UEML Approach Template

Properties (and relationships)

1:1, “theGoal” played by ComplexLawProperty.
Belongs to: 0:1 [1:1], goalOwner.
Law: restricts the the possible values of the object attributes.
Representing the goal which is held by a goal owner.

1:1, “terminalGoal” played by StateLaw.
Belongs to: 0:1 [1:1], goalOwner.
Sub-property: 1:1 [1:1], theGoal.
State law: Vg € Goal, Va € Assignment, a.assignedGoal = g
= —3 gr € G-refinement: gr.superGoal =g
Only terminal goals can by assigned.

1:1, “theAssignment” played by ComplexBindingMutualProperty.
Type: OR relationship.
Belongs to: 1:1 [1:n] responsibleAgent.
Sub-property: 1:1 [0:n] terminalGoal.
Describing the assignment.

0:1, “attributeAltName” played by AnyRegularProperty.
Sub-property: theAssignment.
Represents assignement attribute altName.

Behaviour

Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

assignment: ConstructDefinition : RepresentedSegment
-constructMame = assignment -segmentType = existence
rinstlevel = both !
goalOwner: Rej ICla
-roleMame = "goal owner”
-minCard =0
-raxCard = 1 ibleAgent: IClass
theAssignment: RepresentedClass 3 e : "
-roleMame = "responsible agent’
-roleName = "the assignment” minGard 21
theGoal: RepresentedProperty -minCard = 1 _maxCard=n
-roleMame = "the goal" -maxCard = 1 ;
inc :,U rERiEseladRrapey = gerse : RepresentedClassPropertyAssociation
-maxCard = n =
_representsProperty = perSe -igintrinsicOriiutual = bindmut
igResultantOrEmergent = emergent
isWholePart = false
+subProperty +subProperty
terminalGoal: RepresentedProperty attributeAltName: RepresentedProperty
-roleNarme = "terminal goal” -roleMarme = "alternative name”
-minCard = 1 -rminCard = 0
-maxCard = 1 -raxCard =1
-representedProperty = perSe -representedProperty = perSe
[keholderThing: Class | wProperty: Property BindingMutualProperty: Property [activeComy Thing: Class |
[classh = "stakeholder na.. FpropertyMame = "complexLawProperty” | |FpropertyMame = "complex binding mutual property ‘rc\assName = "active component thing"‘
HsLaw = true HisLaw = false
HsWholePart = false HsiWholePart = false
holdsGoal: Property anyRegularProperty: Property
_propertyhlame = "holds goal’ [prapertyhame = *any regular praperty”
-isLaw = false FisLaw = false
-isWWholePart = false FigWWholePart = false

15

KAOS Construct Analysis using
the UEML Approach Template

16

KAOS Construct Analysis using
the UEML Approach Template

KAOS : Avoid goal

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas MatuleviCius
Distribution list: DEM

Document history:

Avoid goals are goals requiring that some property never holds.
Avoid goals state that some target condition on system states should never hold under some current condition.

1. Preamble

Builds on
Goal

Built on by

Construct name
Avoid goal

Alternative construct names

goal, requiring that some property never holds

Related, but distinct construct names
goal with a pattern avoid

Related terms

Goal : a prescriptive assertion capturing some objective to be met by cooperation of agents from the agent
model.

Maintain goal: a goal requiring that some property always holds.

Cease goal: a goal requiring that some property eventually stops to hold.

Achieve goal: a goal requiring that some property eventually hold.

Softgoal: goal that do not have a clear-cut criterion for their satisfaction.
Terminal goals: a goal which has no G-refinement.
Requirement: a goal assigned to an agent in the software to be.
Expectation (assumption): a goal assigned to an agent in the environment.
Comment: Can a goal with a pattern be softgoal, terminal goal (requirement and expectation)?

Language
KAOS, http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type

Goal model

17

2. Presentation
Builds on
Built on by

Icon, line style, text

Avoid
[Goal name]

User-definable attributes
Relations to other constructs
Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Built on by

Instantiation level
Both type and instance level

Classes of things
1:1, “goalOwner” played by StakeholderThing.

KAOS Construct Analysis using
the UEML Approach Template

Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.

StakeholderThing is subclass of the BWW-HumanThing.

1:1, “concernedObject” played by AllThing.
Describing object concerned by a goal.

Comment: Avoid goal has the same classes as a goal. It belongs to a goal owner and has the sub-properties. These

classes are described here as they are used in property definition.

Properties (and relationships)

1:1, “theAvoidGoal” played by ComplexStateLaw.
Belongs to: 0:1 [1:1], goalOwner.

State law: indicates states that cannot be in concerned object.

Representing the avoid goal which is held by a goal owner and requires some properties of the concerned object

never holds.

Comment: For more avoid goal properties (such as concExplicitObjAttribute, concImplicitObjAttribute, attributeName,
attributeDef, attributeFormalSpec, attributePriority, and attributeCategoty), see goal.

18

KAOS Construct Analysis using
the UEML Approach Template

Behaviour

Existence

Modality (permission, recommendation etc)
Intention of a goal owner;

4. Open Issues

Change List

19

KAOS Construct Analysis using
the UEML Approach Template

20

KAOS : Boundary condition

KAOS Construct Analysis using
the UEML Approach Template

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas MatuleviCius
Distribution list: DEM

Document history:

Boundary condition describes inconsistencies in the considered domain — this means that two or more different goals

could not be achieved together.

1. Preamble
Builds on
Built on by

Construct name
Boundary condition

Alternative construct names

Inconsistencies in the considered domain
Related, but distinct construct names

Related terms
Conflict

Language
KAOS,
http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type

Goal model

2. Presentation
Builds on
Built on by

Icon, line style, text

Boundary condition

21

KAOS Construct Analysis using
the UEML Approach Template

User-definable attributes

[1:1] Name: String = “”. A string allowing for unambiguous reference to corresponding instances at the application
level.
[1:1] Def: FreeText = “. Free text used for precise, unambiguous definition of the corresponding instances at the

application level.

[0:1] FormalSpec: KAOS real time temporal logic expression. Its values at the application level specify the
corresponding Def attribute in the KAOS real-time temporal logic.

[0:1] Likelihood : propability € [0..1]. Its values at the application level specify how likely the boundary condition is.

[0:1]Criticality : set_of{critical, ..., not critical}. Its values at the application level specify how severe the consequences
of the resulting conflict are.

Relations to other constructs
Belongs 1:1 to goal model.

1:1 [1:1], existUnder : conflict. Conflict exist only under some boundary condition.
Diagram layout conventions

Other usage conventions

3. Representation

Builds on
Conflict

Built on by

Instantiation level

Instance level
Comment: can we define classes of boundary conditions?

Classes of things

Properties (and relationships)

1:1, “theBoundaryCondition” played by StateLaw.
Type: Boolean, default value: frue.
Sub-property: 1:1 [1:1] theConflict.
State law: two (or more) goals in the same G-refinement cannot be satisfied together.
Describing boundary condition.

1:1 [1:1], “attributeName” played by AnyRegularProperty.
Sub-property: theBoundaryCondition.
Represents boundary condition attribute name.

1:1 [1:1], “attributeDef” played by AnyRegularProperty.
Sub-property: theBoundaryCondition.
Represents boundary condition attribute def.

1:1 [1:1], “attributeFormalSpec” played by AnyRegularProperty.
Sub-property: theBoundaryCondition.
Represents boundary condition attribute formalSpec.

0:1 [1:1], “attributeLikelihood” played by AnyRegularProperty.
Sub-property: theBoundaryCondition.
Represents boundary condition attribute likelihood.

22

KAOS Construct Analysis using
the UEML Approach Template

0:1 [1:1], “attributeCritically” played by AnyRegularProperty.
Sub-property: theBoundaryCondition.
Represents boundary condition attribute critically.

Behaviour
State

“logicallnconsistency” played by unstableState.
Defining property: theBoundaryCondition,
State constraint: Two or more different goals could not be achieved together.

Modality (permission, recommendation etc)

Regular assertion

4. Open Issues

TBD — describe state law in a more formal way.

23

KAOS Construct Analysis using
the UEML Approach Template

24

KAOS Construct Analysis using
the UEML Approach Template

KAOS : Cease goal

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas MatuleviCius
Distribution list: DEM

Document history:

Cease goals are goals requiring that some property eventually stops to holds.
Cease goals state that some target condition should not hold in some (bounded) future state.

1. Preamble

Builds on
Goal

Built on by

Construct name
Cease goal

Alternative construct names
goal, requiring that some property eventually stops to hold.

Related, but distinct construct names
goal with a pattern cease

Related terms

Goal : a prescriptive assertion capturing some objective to be met by cooperation of agents from the agent
model.

Maintain goal: a goal requiring that some property always holds.

Avoid goal: a goal requiring that some property never holds.

Achieve goal: a goal requiring that some property eventually hold.

Softgoal: goal that do not have a clear-cut criterion for their satisfaction.
Terminal goals: a goal which has no G-refinement.
Requirement: a goal assigned to an agent in the software to be.
Expectation (assumption): a goal assigned to an agent in the environment.
Comment: Can a goal with a pattern be softgoal, terminal goal (requirement and expectation)?

Language
KAOS, http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type

Goal model

25

2. Presentation
Builds on
Built on by

Icon, line style, text

Cease
[Goal name]

User-definable attributes
Relations to other constructs
Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Built on by

Instantiation level

Both type and instance level

Classes of things
1:1, “goalOwner” played by StakeholderThing.

Achieve goal

KAOS Construct Analysis using
the UEML Approach Template

Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.

StakeholderThing is subclass of the BWW-HumanThing.

1:1, “concernedObject” played by AllThing.
Describing object concerned by a goal.

Comment: Cease goal has the same classes as a goal. It belongs to a goal owner and has the sub-properties. These

classes are described here as they are used in property definition.

Properties (and relationships)

1:1, “theCeaseGoal” played by ComplexTransformationLaw.
Belongs to: 0:1 [1:1], goalOwner.

Trasformation law: a change is required between a state where the concerned object properties are true and one

where they are false.

Representing the cease goal which is held by a goal owner and requires that some concerned object properties

eventually stops to hold.

Comment: For more cease goal properties (such as concExplicitObjAttribute, concImplicitObjAttribute, attributeName,
attributeDef, attributeFormalSpec, attributePriority, and attributeCategoty), see goal.

Behaviour

Existence

26

KAOS Construct Analysis using
the UEML Approach Template

Modality (permission, recommendation etc)

Intention of a goal owner;

4. Open Issues

Change List

27

KAOS Construct Analysis using
the UEML Approach Template

28

KAOS Construct Analysis using
the UEML Approach Template

KAOS : Conflict

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas MatuleviCius
Distribution list: DEM

Document history:

Two or more goals are considered to be conflicting when under some boundary condition the goals become logically
inconsistent in the considered domain — these goals could not be achieved together.

Goals G1, G2, ..., Gn are said to be conflicting (or “divergent”) if under some boundary condition the goals become
logically inconsistent in the domain considered, that is, they cannot be achieved altogether.

1. Preamble
Builds on
Built on by

Construct name
Conflict

Alternative construct names
Conflicting goals
Divergent goals
Related, but distinct construct names
Related terms
Language
KAOS,

http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type

Goal model
2. Presentation
Builds on

Built on by

Icon, line style, text

Conflict

29

KAOS Construct Analysis using
the UEML Approach Template

User-definable attributes

Relations to other constructs

2:n [0:n], conflictBetweenGoals : goals.
0:n [0:n], isilnDomain : domain properties.
1:1 [1:1], existUnder: boundary condition.

Diagram layout conventions

Cross between conflicting goals is represented in red.

Other usage conventions

3. Representation

Builds on

Two or more goals

Built on by

Boundary condition
Domain property

Instantiation level

Instance level
Comment: can we define classes of conflicts?

Classes of things

1:1, “goalOwner” played by StakeholderThing.
Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing (specified in goal template).
If goals are conflicting, this means conflict between the goal owners.

1:1, “concernedObject” played by ComponentThing.
Describing object concerned by a goal. This object is characterised by a domain property.

Properties (and relationships)

1:1, theConflict played by MutualProperty. Describing the conflict.
Sub-property of 2:n [0:n] theGoal.
Sub-property of 0:n [0:n] domainHypothesis.
Sub-property of 0:n [0:n] domaininvariant.
Conflict specifies mutual property between two or more goal owners (we consider what two conflicting goals have
different goal owners).

Comment: theGoal property is specified in the template for the goal construct.

1:1 [1:1], boundaryCondition played by StateLaw
Sub-property of 1:1 [1:1] theConflict.
State law: Conflict exist under some boundary condition.
The conflict exists only if some boundary condition, which defines why two or m ore goals can not be satisfied
together exists.
Also represented by: boundary condition.

0:n [0:n], domainHypothesis played by AnyProperty.
Conflicts are described in the domain which is specified by the domain properties.
Also represented by: domain property.

30

0:n [0:n], domainInvariant played by AnyProperty.

Conflicts are described in the domain which is specified by the domain properties.

Also represented by: domain property.

Behaviour

Regular assertion

Modality (permission, recommendation etc)
Obligation of Boundary Condition.

4. Open

Issues

-roleName = "goal owner"
-rinCard = 0
-raxCard = 1

goalOwner: RepresentedClass

conflict: ConstructDefinition

-constructMame = "theConflict”
gy etlevel = nstance

KAOS Construct Analysis using
the UEML Approach Template

: RepresentedSegment

theConflict: RepresentedProperty

s

-segmentType = existence

concernedOhject: Repres...
-roleMame = concerned object

-representedProperty = value

Frolelame = "theConflict"
FrinCard =0 -rinCard = 0
+subPraperty maxCard = n +eubProperty — -maxCard =n
representedProperty = perSe —
+subProperty
theGoal: Reg Property yCi RepresentedProperty t: RepresentedProperty
-raoleMarne = “the goal” -roleMame = "boundary condition” roleMame = "dornain invarinat”
-minCard =0 -minCard = 1 FrminCard =0
-raxCard = n -raxCard =1
-representsProperty = perSe

FraxCard = n
[representedProperty = value

FpropertyNarme = "complex law property”
FisLaw = true

HsWholePart = false

ComplexLawProperty: Property

StateLaw: Property

AnyProperty: Property

FisLaw = true

stakeholderThing: Class
|classMarme = "stakeholder name"

HsWholePart = true

+characteristic

holdsGoal: Property
Fpropertylame = "holds goal”
HsLaw = false

Fs¥holePart = false

-isLaw =

MutualProperty: Property
-propertyNarme = “mutual propety”

-isWWholePart = false

FpropertyMame = "state law"

FisLaw = false
FisWWholePart = false

FpropertyMame = "any propery”

componentThing: Class
-classMame = component thing|

false

31

KAOS Construct Analysis using
the UEML Approach Template

32

KAOS : Control

KAOS Construct Analysis using
the UEML Approach Template

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2"% iteration

Authors: Raimundas Matulevicius
Distribution list: DEM

Document history:

Agent controls (“writes”) the value of the object attribute.

1. Preamble
Builds on
Built on by

Construct name
Controls

Alternative construct names
Writes

Related, but distinct construct names

Related terms
Monitors : Agent monitors (“reads”) the value of the attribute.

Language
KAOS,
http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Agent model

2. Presentation
Builds on
Built on by

Icon, line style, text

Obj e
name

Controls

33

KAOS Construct Analysis using
the UEML Approach Template

User-definable attributes
e WhichAtt : String = “”.indicate which attributes of the object are specifically controlled.

Relations to other constructs

e Belongs to 1..1 agent model.
e 0:n[1:1], Object. Object is controlled by an agent.
e 0:n[l:1], Agent. Agent controls an object.

Diagram layout conventions

Other usage conventions

3. Representation

Builds on

Agent
Object

Built on by

Instantiation level

Instance and type level

Classes of things

1:1 “controlledObject” played by ComponentThing.
Represents object, controlled by an agent.

1:1 “controllingAgent” played by ActiveComponentThing.
Represents the agent.

Properties (and relationships)

1:1, “theControls” played by BindingMutualProperty.
Belongs to: 1:1 [0:n], controllingAgent.
Describing controls relationship.

1:n, “explicitObjAttribute” played by AnyProperty.
Belongs to: controlledObject.
Sub-property of: theControls.
Defines explicitly which attribute of the object is controlled.

L:n, “implicitObjAttribute” played by AnyProperty.
Belongs to: controlledObject.
Sub-property of: theControls.
Does not define explicitly which attribute of the object is controlled.

Behaviour
Existence

Modality (permission, recommendation etc)

Regular assertion

4. Open Issues

34

KAOS Construct Analysis using
the UEML Approach Template

KAOS : Domain property

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas MatuleviCius
Distribution list: DEM

Document history:

A domain property is a property that is naturally true about the composite system.
A domain property (DomProp) is a descriptive assertion about objects in the environment which holds independently of
the software-to-be.

1. Preamble
Builds on

Built on by

Domain invariant. A domain invariant is a property known to hold in every state of some domain object. It is an
indicative statement of domain knowledge.

Domain hypothesis. A domain hypothesis is a domain property about some domain object supposed to hold and used
when arguing about the sufficient completeness of G-refinement.

Construct name
Domain property

Alternative construct names

A property that is naturally true about the composite system
A descriptive assertion about objects in the environment

Related, but distinct construct names

Related terms

e Domain invariant : a property known to hold in every state of some domain object
e Domain hypothesis : a property about some domain object supposed to hold and used when arguing about
the sufficient completeness of goal refinements.

Language
KAOS,
http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Goal model
Object model

35

KAOS Construct Analysis using
the UEML Approach Template

2. Presentation
Builds on
Built on by

Icon, line style, text

Cl Domain property

User-definable attributes

[1:1], Name = . A string allowing for unambiguous reference to corresponding instances at the application level.

[1:1], Def: FreeText = “. Free text used for precise, unambiguous definition of the corresponding instances at the
application level.

[0:1], FormalSpec: KAOS real time temporal logic expression. Its values at the application level specify the
corresponding Def attribute in the KAOS real-time temporal logic.

Relations to other constructs
0:n [0:n], subProperty: goal. Domain properties refine the goal through the G-refinement relationship.

0:n [0:n], islnDomain: Conflict. Conflicts between goals are defined in a domain by domain properties.
Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Built on by

Instantiation level
Instance level

Classes of things

1:1 “theDomainObject” played by CompositeThing.
Describing object to which domain property belongs.

Properties (and relationships)
1:1, “theDomainProperty” played by AnyThing.
Belongs to: theDomainObject.
Representing the domain property. Domain property is a property of an object.

1:1 [1:1], “attributeName” played by AnyRegularProperty.
Sub-property: theDomainProperty.
Represents domain property attribute name.

1:1 [1:1], “attributeDef” played by AnyRegularProperty.
Sub-property: theDomainProperty.
Represents domain property attribute def.

36

0:1 [1:1], “attributeFormalSpec” played by AnyRegularProperty.
Sub-property: theDomainProperty.
Represents domain property attribute formalSpec.

Behaviour
Existence

Modality (permission, recommendation etc)

Regular assertion

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

37

KAOS Construct Analysis using
the UEML Approach Template

38

KAOS Construct Analysis using
the UEML Approach Template

KAOS : Environment agent

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas Matulevi€ius
Distribution list: DEM

Document history:

Environment agent (e.g., pre-existing software component, sensor, actuator, human, organizational unit, etc.)

1. Preamble

Builds on
Agent

Built on by

Construct name

Environment agent
Alternative construct names
Related, but distinct construct names

Related terms

e Agents : active objects capable of performing operations.
o Software agent : an agent in the system-to-be.

Language
KAOS,
http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Agent model

2. Presentation
Builds on
Built on by

Icon, line style, text

©® AgentName Environment agent

User-definable attributes

39

Relations to other constructs

Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Built on by

Instantiation level
Type level

Classes of things
1:1, “isEnvironmentAgent” played by ActiveComponentThing.

Environment agents are agents and inherits all agent attributes and properties.

Properties (and relationships)

Behaviour

Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

40

KAOS : Event

KAOS Construct Analysis using
the UEML Approach Template

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas MatuleviCius
Distribution list: DEM

Document history:

Event is an instantaneous object.

1. Preamble

Builds on
Object

Built on by

Construct name
Event

Alternative construct names
An instantaneous object

Related, but distinct construct names

Related terms
Object

Language
KAOS,
http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html
Diagram type

Object model
Operation model

2. Presentation
Builds on
Built on by

Icon, line style, text

EvName Event

41

KAOS Construct Analysis using
the UEML Approach Template

User-definable attributes
Event inherits all the attributes of the object.

Relations to other constructs
Event inherits all the relationships of the object.

1:1 [1:n], occurs : operation. The applications of an operation may be caused by eveni(s).
Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Built on by

Instantiation level
Instance level

Classes of things

1:1, “theEvent” played by ChangingThing.
Describing the event.

Properties (and relationships)

Behaviour
Event

REPRESENTED STATE ENTRIES

“initialState” played by StateOfAThing
State constraints: State constraints are defined by object implicit and explicit attributes (inputs to the operation).

“resultState” played by StateOfAThing
State constraints: State constraints are defined by object implicit and explicit attributes (outputs from the
operation).

REPRESENTED EVENT ENTRIES

“occur” played by EventInAThing
From state: initialState
To state: resultState
Trigger: reqTrig sub-property of operationalisation.
Condition: reqPre and reqPost in operationalisation and domPre and domPost in operation.
Action: when event occurs the operation is caused.

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

TBF — A goal defines a set of admissible histories in the composed system. Intuitively, a history is a temporal sequence
of states of the system. Specify Scenario, Snapshot, Interaction, Source, Target, and State transition constraints. This is
related to Agent, Event, and Operation constraints.

42

KAOS : Expectation

KAOS Construct Analysis using
the UEML Approach Template

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas MatuleviCius
Distribution list: DEM

Document history:

An expectation is a goal assigned to an environment agent.

1. Preamble

Builds on
Goal

Built on by

Construct name
Expectation

Alternative construct names

Assumption

Related, but distinct construct names
Terminal goal: goal which has no G-requirement.

Related terms

Requirement: a goal assigned to an agent in the software-to-be.

Softgoal: a goal that cannot be said to be satisfied in a clearcut sense.
Comment: can an expectation be a softgoal?

Maintain goal: a goal requiring that some property always holds.

Avoid goal: a goal requiring that some property never holds.

Achieve goal: a goal requiring that some property eventually hold.

Cease goal: a goal requiring that some property eventually stops to hold.

Language
KAOS,
http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type

Goal model

43

KAOS Construct Analysis using
the UEML Approach Template

2. Presentation
Builds on
Built on by

Icon, line style, text

Expectation

User-definable attributes
Requirement inherits all the attributes of the goal.

Relations to other constructs

e Belongs 1:1 to goal model.

e l:n[l:n], responsible : environment agent. Expectation is assigned through responsibility relationship to an
environment agent.

Diagram layout conventions

Other usage conventions

3. Representation

Builds on

Comment: Expectation is a goal and has most of the goal classes and properties. But expectation is also a terminal
goal, so it has no G-refinement.

Built on by

Instantiation level
Instance level

Comment: Can we have classes of environment agents and these classes or individual expectations assigned?

Classes of things

1:1, “environmentAgent” played by ActiveComponentThing.
Describing the agent an expectation is assigned.

Properties (and relationships)

1:1, “theExpectation” played by ComplexStateLaw.
Belongs to: 0:1 [0:n] environmentAgent.
Belongs to: 0:1 [1:1] goalOwner-.
State law: Is restricted by the assignement relationship. An expectation himself restricts state of the concerned
object.
Representing the expectation. Expectation as a goal, has a goal owner.

1:1, “isTerminalGoal” played by StateLaw.
Sub-property: 1:1 [1:1], theExpectation.
State law: Vg € Goal, Va € Assignment, a.assignedGoal = g

44

KAOS Construct Analysis using
the UEML Approach Template

= —3 gr € G-refinement: gr.superGoal = g
Expectation is a terminal goal which means that an expectation can not have G-refinement.

Behaviour
Existence

Modality (permission, recommendation etc)

Intention of a goal owner;
Obligation of an environment agent.

4. Open Issues

45

KAOS Construct Analysis using
the UEML Approach Template

46

KAOS Construct Analysis using
the UEML Approach Template

KAOS : Goal

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas MatuleviCius
Distribution list: DEM

Document history:

A goal is a prescriptive assertion capturing some objective to be met by cooperation of agents from the agent model. A
goal prescribes a set of desired behaviours. A goal defines an objective the composite system should meet usually
through the cooperation of multiple agents.

1. Preamble

Builds on

Built on by

softgoal
maintain goal
achieve goal
cease goal
avoid goal
requirement
expectation (assumption)
Comment: All the mentioned constructs are goals having additional features to the ones defined in this template.

Construct name
Goal

Alternative construct names

a prescriptive assertion

a set of desirable behaviours

an objective a desirable system should meet
a sub-goal

a parent goal

a super goal

Related, but distinct construct names

Related terms

Sofigoal: goal that do not have a clear-cut criterion for their satisfaction.
Maintain goal: a goal requiring that some property always holds.

Avoid goal: a goal requiring that some property never holds.

Achieve goal: a goal requiring that some property eventually hold.

Cease goal: a goal requiring that some property eventually stops to hold.
Terminal goals: a goal which has no G-refinement.

Requirement: a goal assigned to an agent in the software to be.
Expectation (assumption): a goal assigned to an agent in the environment.

47

KAOS Construct Analysis using
the UEML Approach Template

Language
KAOS, http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type

Goal model
2. Presentation
Builds on
Built on by

Icon, line style, text

v

Goal name

Goal

User-definable attributes

[1:1] Name: String. A string allowing for unambiguous reference to a corresponding goal at the application level.

[1:1] Def: String. Free text used for precise, unambiguous definition of the goal at the application level.

[0:1] FormalSpec: KRTTL. Its values at the application level specify the corresponding Def attribute in the KAOS real-
time temporal logic.

[0:1] Priority: PriorityType. Values at the application level specify the extent to which the goal is mandatory or
optional.

[0:1] Owner: String. Defines stakeholder which identified and argued for that goal.

[0:1] Category: set_of Strings {satisfaction, safety, security, information, accuracy, and others}. Category provides a
classification of goals that can be used to guide the acquisition, definition and refinement.

Any other attributes that the user wished to add.

Relations to other constructs

Belongs 1:1 to Goal model.

0:n [1:1] assignedGoal : assignment. Defines relationship between goal and assignment.

0:n [0:n] concerns : object. Goal definition refers to the objects and their attributes.

1:1 [0:n] superGoal : goal. Goal is a super (parent) goal in the G-refinement relationship.

0:n [1:n] subGoal : goal. Goal refines a super (parent) goal through the G-refinement relationship.

0:n [0:n] subProperty : domain properties. Super (parent) goals are refined to a subgoal and domain properties through
the G-refinement relationship.

0:n [1:1] op_goal : operationalisation. Operationalisation defines operations which operationalise this goal through
required conditions (reqPre, reqTrig, and reqPost).

0:n [2:n] betweenGoals : conflict. One or several goals could be part of the conflict when boundary condition is
determined.

48

KAOS Construct Analysis using
the UEML Approach Template

Diagram layout conventions

Other usage conventions

3. Representation
Builds on

Built on by

Assignment — defines how goals can be assigned to agents.
Operationalisation — defines how goals are operationalised.
G-refinement — defines how goals are refined.

Conflict — defines the way conflicts between goals are represented.

Instantiation level

Both type and instance level

Classes of things

1:1, “concernedObject” played by AllThing.
Describing object concerned by a goal.

1:1, “goalOwner” played by StakeholderThing.
Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing.

Properties (and relationships)

1:1, “theGoal” played by ComplexLawProperty.
Belongs to: 0:1 [1:1] goalOwner-.
Law: goal restricts state of the object by concerning it.
Representing the goal which is held by a goal owner.

L:n [1:n], “concExplicitObjAttribute” played by AnyProperty.
Belongs to: 0:n [0:n], concernedObject.
Sub-property: theGoal.
Sub-property: attributeDef.
Sub-property: attributeFormalSpec.
A goal concerns an object’s attribute.

L:n [1:n], “concImplicitObjAttribute” played by AnyProperty.
Belongs to: 0:n [0:n], concernedObject.
Sub-property: theGoal.
Sub-property: attributeDef.
Sub-property: attributeFormalSpec.
A goal concerns an object, without defining the concrete attribute of the concern.

1:1 [1:1], “attributeName” played by AnyRegularProperty.
Sub-property: theGoal.
Represents goal attribute name.

1:1 [1:1], “attributeDef” played by AnyRegularProperty.
Sub-property: theGoal.
Represents goal attribute def.

0:1 [1:1], “attributeFormalSpec” played by AnyRegularProperty.
Sub-property: theGoal.
Represents goal attribute formalSpec.

49

KAOS Construct Analysis using
the UEML Approach Template
0:1 [1:1], “attributePriority” played by AnyRegularProperty.
Sub-property: theGoal.
Represents goal attribute priority.

0:1 [1:1], “attributeCategoty” played by AnyRegularProperty.
Sub-property: theGoal.
Represents goal attribute category.

Behaviour

Existence

Modality (permission, recommendation etc)

Intention of a goal owner;
Obligation of an agent.

4. Open Issues

In this template it is not considered:
Obstacle constructs and relationship with a goal.
Dependency constructs between agents both through goal and/or through operation.
History (and its constructs) in a composed system.

goal: ConstructDefinition

ne = goal -segmentType = existence
-instLevel = both

| aeelOwner: RepresentedClass | H
-roleName = "goal owner" “the goal” -roleName = "concerned object”
-minCard = 0 -minCard =0
-rmaxCard = 1 -rmaxCard = 1 -maxCard = n
-representsProperty = perSe
+subPropenty
B wn
% E FmaxCard = 1
- dProperty = perSe -roleMame = "concermed explicit object attribute”
@ 4 +subProperty -minCard = 0
= +subPropet -maxCard = n
7 E atributeCateqory: RepresentedProperty Rty -representesProperty = perSe
fﬁ O [roleName = "attribute categary”
t——minCard =0 P Props
,q\ E FmaxCard = 1
] iProperty = perSe +subPropenty
a = conclmplicitObjAtiribute: RepresentedProperty
= = atuibutePriority: RepresentedProperty -roleName = "concemed implicit object attribute”
= E raleName = “attribute priority” +subProperty [intamd =4
Z lminCard = 0 [maxCard =n
&= _H ——|-maxCard =1 -representsProperty = perSe
72} ﬁ [representedProperty = perSe
= +subProperty
:: m +subPropert{
- = attributeDef: RepresentedProperty
Frolelame = "attribute def' +subProperty
[FminCard = 1
FmaxCard = 1

[representedProperty = perSe

roleName = "attribute formal specification”
FminCard = 0 +subProperty
FmaxCard = 1

FrepresentedProperty = per3e

= 1

complexProperty: Property

Z [-propertyName = “complex property” -className = “all things"
=) U H -isLaw = true
— O -propertyName = “holds goal” -isWholePart = false
& -isLaw = false
=0 eharactenislic. | icwholePan = false [+cutPropery | it i
O = anyRegularProperty: Property anyProperty: Property

7 _ *+generalisation -propertyName = “any regular property” propertyName = “any property”
Q o humanThing: Class -isLaw = false HisLaw = false

-clagsName = "human thing" -isWholePart = false FisWholePart = false

—

50

KAOS : Goal refinement

KAOS Construct Analysis using
the UEML Approach Template

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas MatuleviCius
Distribution list: DEM

Document history:

Goals refinement is a relationship which is used to refine goals to subgoals and to domain properties. Parent goal could

have alternative refinements.

1. Preamble
Builds on
OR-refinement

AND-refinement

Built on by

Construct name

Goal refinement
Alternative construct names
Refines
G-refinement
Related, but distinct construct names
Related terms
Language
KAOS,
http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html
Diagram type
Goal model

2. Presentation

Builds on

Built on by

51

KAOS Construct Analysis using
the UEML Approach Template

Icon, line style, text

G-refinement (AND refinement)

Complete G-refinement (AND refinement)

G-refinement (OR refinement)

OR

User-definable attributes

[1:1]Complete: Boolean. Indicate whether the refinement is arguably sufficient (value "complete") or not arguably
sufficient (value "undetermined") to satisfy the parent goal.

[0:1] Tactics: set_of{IntroduceMileston, DecomposeAntecedentByCase, IntroduceAccuracyGoal} document the tactics
used for refining the parent goal. Values include IntroduceMileston, = DecomposeAntecedentByCase,
IntroduceAccuracyGoal.

[0:1] AltName: String =*. To name the corresponding alternative for further reference. In case a goal is refined into
multiple alternative G-refinements this meta-attribute is mandatory.

Relations to other constructs

Belongs to 1..1 Goal model.

1:1 [1:1], Goal. G-refinement is used to refine a parent goal.

1:n [1:1], Goal. G-refinement refines parent goal to several subgoals.

1:n [1:1], Domain property. G-refinement refines parent goal to subgoals and domain properties.

Diagram layout conventions

Other usage conventions

3. Representation

Builds on
Goal

Built on by

Domain property

Instantiation level
Instance and type levels

Classes of things

1:1, “goalOwner” played by StakeholderThing.
Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.

52

KAOS Construct Analysis using
the UEML Approach Template

StakeholderThing is subclass of the BWW-HumanThing (specified in goal template).
G-refinement is a mutual relationtion between goal owners.

1:1, “concernedObject” played by ComponentThing.
Describing object concerned by a goal. This object is characterised by a domain properties — either domain
invariant or domain hypothesis.

Properties (and relationships)

1:1, “theGoal” played by ComplexLawProperty.
Belongs to: 0:1 [1:1], goalOwner.
Law: restricts the the possible values of the object attributes.
Representing the goal which is held by a goal owner.

1:1 [0:n], superGoal played by ComplexLawProperty.
Sub-property: 0:1 [1:1] theGoal.
Supergoal is refined by the subgoals. Like a goal, it is complex (has attributes) and law property (has restrictions
over the concerned object —see goal template).

1:n [0:n], subGoal played by ComplexLawProperty.
Sub-property: 1:1 [1:1] theGoal.
Subgoals refine the super goal. Like goals they are complex (have attributes) and law properties (have restrictions
over the concerned object —see goal template).

0:n [0:n], domainHypothesis played by AnyProperty.
A domain hypothesis is a domain property about some domain object supposed to hold and used when arguing
about the sufficient completeness of G-refinement.
Also represented by: domain property.

0:n [0:n], domainInvarinat played by AnyProperty.
A domain invariant is a property known to hold in every state of some domain object. It is an indicative statement
of domain knowledge.
Also represented by: domain property.

1:1, “theG-Refinement” played by ComplexMutualProperty.
Type: AND/OR relationship.
Sub-property: 0:n [1:1] domainHypothesis.
Sub-property: 0:n [1:1] domainlnvariant.
Sub-property: 1:1 [1:1] superGoal.
Sub-property: 0:n [1:1] subGoal
Describing goal refinement.

1:1 [1:1], “attributeComplete” played by AnyRegularProperty.
Sub-property: theG-Refinement.
Represents G-refinement attribute complete.

0:1 [1:1], “attributeAltName” played by AnyRegularProperty.
Sub-property: theG-Refinement.
Represents G-refinement attribute altName.

0:1 [1:1], “attributeTactics” played by AnyRegularProperty.
Sub-property: theG-Refinement.
Represents G-refinement attribute tactics.

Behaviour

Existence

Modality (permission, recommendation etc)

Regular assertion

53

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

iption

<ing1level = hoth

—_—

|- segmentType = existence

concemedObject: Hepresented Class
-roleName = concemed ohject
i
-maxCand = n

[rolelame = doimain hypothesis

stakeholderThing: Clags

className =

koholder name®

holdaGoal: Propary

| proportyNann = *holds goal

sLaw = false

-ig¥WholePar = false

guallwner: lass the; ruperty
-roleName = “goal ewmer” .subProparty |olEMName = the G-refinament™
onieiC:ard = 01 P minCard =0 +subPropery
ol +5ubPropet i
-maxCard = 1 PEY |-maxCard = n wsubPrapeny
I -reprezentedProperty = perSe
theGoal: roperty l
-roleMarne = "the goal” +HubPropaty
-runCard = 0 i: (il P s
-maxCard = n -roleName = “role name" [releMame = “domain invarinat™
represurtsPropery = perSe minCard = minCard = 0
maxCard = | fmaxCard = n
operty = perSe f-representedProperty = value
p Toperty
Frelehame = “super goal®
fminCard = 1 attributeAltName: RepresantedProperty
marCard = 1 ~rralobame HaufbFropny
+subProperiprepresentedPropery = perSe -minCard = 0
maxCard = 1 firiCard = 0
represerdedProperty = perSe maxCord = n
[representedPropeny = value
subGoal: RepresentedProperty attributeComplete: HepresentedProperty
FrobeName = “subGoal® -roleNamse = "complete™ +subProparty
+subPropety | |menCard =0 minCard = 1
maxCand = n -maxCard = 1
[representedPropery = perSe -representedFroperty = perSe
ComplexLawProperty: Property anyftegularProperty: Propery ComplexMutualProperty: Property AnyPropersy: Propeny
propartyMame = “compla |aw propeny” properyanme = "any regular propary” LprepertyNarne = "camplex mautusl proper propenyhlama = "any peopeny”
i = e Law = f; isLaw = falsy wsLaw = £
-isVWhalePart = false -is¥¥holePar = false isWhalePar = false -isWholePart = false

54

KAOS : Input

KAOS Construct Analysis using
the UEML Approach Template

Document type:

Working document

Domain/Task/Topic:

DEM / UEML / Approaches

Version:

Date: 2005.11.30

Status: 2"% iteration

Authors: Raimundas Matulevicius

Distribution list:

DEM

Document history:

An object is among the inputs of an operation if it is among the sorts making up the domain of the relation defined by

the operation.

1. Preamble
Builds on
Built on by

Construct name
Inputs

Alternative construct names

Related, but distinct construct names

Related terms

Outputs : An object is among the outputs of an operation if it is among the sorts making up the co-domain of
the relation defined by the operation.

Language
KAOS,

http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type

Operation model

2. Presentation
Builds on
Built on by

Icon, line style, text

Agent name < Object
name

Inputs

55

KAOS Construct Analysis using
the UEML Approach Template

User-definable attributes
[0:1] WhichAtt : String = “”. Indicate which attributes of the object are specifically taken as input of the operation.

Relations to other constructs

e Belongs to 1..1 operation model.
e 0:n[1:1], Object. Object is input to an operation.
e 0:n[1:1], Operation. Operation has input an object.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Built on by

Instantiation level
Type level

Classes of things

1:1 “inObject” played by ComponentThing.
Represents object, which is input to operation.

0:n, “causingEvent” played by ChangingThing.

Properties (and relationships)

1:1, “thelnput” played by BindingMutualProperty.
Belongs to: O:n [1:1], inObject.
Describing input. Input is a binding mutual property between the event which causes the operation and the object
which is input to this operation.

1:n, “explicitObjAttribute” played by AnyProperty.
Belongs to: inObject.
Sub-property of: thelnput.
Defines explicitly which attribute of the object is an input.

L:n, “implicitObjAttribute” played by AnyProperty.
Belongs to: inObject.
Sub-property of: thelnput.
Does not define explicitly which attribute of the object is an input.

0:1, “attributeWhichAtt” played by AnyRegularProperty.
Sub-property: thelnput.
Representing the input attribute whichAtt.

0:n [1:1], “forOperation” played by TransformationLaw.
Belongs to: causingEvent.
Sub-property: thelnput.
Transformation law: operation gets input.
Describing the operation which has input.
Also represented by operation.

56

KAOS Construct Analysis using
the UEML Approach Template

Behaviour

Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

57

KAOS Construct Analysis using
the UEML Approach Template

58

KAOS Construct Analysis using
the UEML Approach Template

KAOS : Maintain goal

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas MatuleviCius
Distribution list: DEM

Document history:

Maintain goals are goals requiring that some property always holds
Maintain goals state that some target condition on system states should always hold under some current condition.

1. Preamble

Builds on
Goal

Built on by

Construct name

Maintain goal

Alternative construct names
goal, requiring that some property always holds

Related, but distinct construct names

goal with a pattern maintain

Related terms

Goal : a prescriptive assertion capturing some objective to be met by cooperation of agents from the agent
model.

Cease goal: a goal requiring that some property eventually stops to hold.

Achieve goal: a goal requiring that some property eventually hold.

Avoid goal: a goal requiring that some property never holds.

Softgoal: goal that do not have a clear-cut criterion for their satisfaction.
Terminal goals: a goal which has no G-refinement.
Requirement: a goal assigned to an agent in the software to be.
Expectation (assumption): a goal assigned to an agent in the environment.
Comment: Can a goal with a pattern be softgoal, terminal goal (requirement and expectation)?

Language
KAOS, http://www2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type

Goal model

59

KAOS Construct Analysis using
the UEML Approach Template

2. Presentation
Builds on
Built on by

Icon, line style, text

Maintain goal

Maintain
[Goal name]

User-definable attributes
Relations to other constructs
Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Built on by

Instantiation level

Both type and instance level

Classes of things

1:1, “goalOwner” played by StakeholderThing.
Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing.

1:1, “concernedObject” played by AllThing.
Describing object concerned by a goal.

Comment: Maintain goal has the same classes as a goal. It belongs to a goal owner and has the sub-properties. These
classes are described here as they are used in property definition.

Properties (and relationships)

1:1, “theMaintainGoal” played by ComplexStateLaw.
Belongs to: 0:1 [1:1], goalOwner.
State law: indicates states that cannot be in concerned object.
Representing the maintain goal which is held by a goal owner and requires that some properties of the concerned
object always holds.

Comment: For more avoid goal properties (such as concExplicitObjAttribute, concImplicitObjAttribute, attributeName,
attributeDef, attributeFormalSpec, attributePriority, and attributeCategoty), see goal.

60

KAOS Construct Analysis using
the UEML Approach Template

Behaviour

Existence

Modality (permission, recommendation etc)
Intention of a goal owner;

4. Open Issues

Change List

61

KAOS Construct Analysis using
the UEML Approach Template

62

KAOS Construct Analysis using
the UEML Approach Template

KAOS : Monitor

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2"% iteration

Authors: Raimundas Matulevicius
Distribution list: DEM

Document history:

Agent monitors (“reads”) the value of the attribute.

1. Preamble
Builds on
Built on by

Construct name
Monitors

Alternative construct names
Reads

Related, but distinct construct names

Related terms
Controls : agent controls (“writes”) the value of the object attribute.

Language
KAOS,
http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Agent model

2. Presentation
Builds on
Built on by

Icon, line style, text

Obj o Monitors
name

User-definable attributes
o WhichAtt : String = “”.indicate which attributes of the object are specifically monitored.

63

Relations to other constructs

e 0:n[l:1], Object. Object is monitored by an agent.
e 0:n[l:1], Agent. Agent monitors an object.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Built on by

Instantiation level

Instance level

Classes of things

1:1 “monitoredObject” played by ComponentThing.
Represents object, monitored by agent.

1:1 “monitoringAgent” played by ActiveComponentThing.
Represents the agent.

Properties (and relationships)

1:1, “theMonitors” played by BindingMutualProperty.
Belongs to: 1:1 [0:n], monitoringAgent.
Describing monitors relationship.

1:n, “explicitObjAttribute” played by AnyProperty.
Belongs to: monitoredObject.
Sub-property of: theMonitors.
Defines explicitly which attribute of the object is monitored.

L:n, “implicitObjAttribute” played by AnyProperty.
Belongs to: monitoredObject.
Sub-property of: theMonitors.

Does not define explicitly which attribute of the object is monitored.

Behaviour

Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

KAOS Construct Analysis using
the UEML Approach Template

64

KAOS : Object

KAOS Construct Analysis using
the UEML Approach Template

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas MatuleviCius
Distribution list: DEM

Document history:

An object is a thing of interest in the system being modeled whose instances can be distinctly identified and may evolve

from state to state.

An object instance is a thing that can be distinctly identified. A domain-level object describes a set of such instances

that share some common characteristics.

1. Preamble
Builds on
Built on by

Construct name
Object

Alternative construct names

a thing of interest
a thing that can be distinctly identified

Related, but distinct construct names

Related terms

Agent
Entity
Event
Relationship

Language
KAOS,

http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Object model

2. Presentation

Builds on

KAOS Construct Analysis using
the UEML Approach Template

Built on by
Icon, line style, text

User-definable attributes

[1:1] Name : String ="”.A string allowing for unambiguous reference to corresponding instances at the application
level. The name of the object is used to identify the object.

[1:1] Def : Text = “”. Tree text used for precise, unambiguous definition of the corresponding instances at the
application level. The definition of an object is a natural language statement that should provide a precise
interpretation for the set member(Obj), so that one can tell whether or not a particular object instance is currently an
instance of the domain-level object.

[0:1] Alive : Boolean = True/False”.Value in some state at the instance level indicates whether or not the corresponding
object instance exists in that state, that is, has appeared in the system without disappearing yet.

Relations to other constructs

e Belongs 1:1 to object model.

0:n [0:n], concerns : goal. Goals concern objects - this means that their formulation in Def refers to these objects
and their attributes.

1:n [0:n], input : operation. Operations are related to objects through input links.

1:n [0:n], output : operation. Operations are related to objects through output links.

0:n [0:n], monitors : agent. An agent monitors an object if the states of the object are directly observable by it.

0:n [0:n], controls : agent. An agent controls an object if the states of the object are directly controllable by it.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Built on by

Instantiation level
Both type and instance level

Classes of things
1:1, “theObject” played by ComponentThing.

Properties (and relationships)

1:1 [1:1], “attributeName” played by AnyRegularProperty.
Sub-property: theGoal.
Represents goal attribute name.

1:1 [1:1], “attributeDef” played by AnyRegularProperty.
Sub-property: theGoal.
Represents goal attribute def.

Behaviour
Existence

Modality (permission, recommendation etc)

Regular assertion

66

KAOS Construct Analysis using
the UEML Approach Template

4. Open Issues

67

KAOS Construct Analysis using
the UEML Approach Template

68

KAOS Construct Analysis using
the UEML Approach Template

KAOS : Operation

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas MatuleviCius
Distribution list: DEM

Document history:

An operation is an input-output relation over objects; operation applications define state transitions. Operations are
characterized by pre-, post-, and trigger conditions. A distinction is made between domain pre-/post- conditions, which
capture the elementary state transitions defined by operation applications in the domain, and required pre/trigger/
postconditions, which capture additional strengthening to ensure that the goals are met.

1. Preamble
Builds on
Built on by

Construct name
Operation

Alternative construct names

An input-output relation
Related, but distinct construct names
Related terms
Language

KAOS,

http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type

Operation model

2. Presentation
Builds on
Built on by

Icon, line style, text

Operation
name

Operation

69

KAOS Construct Analysis using
the UEML Approach Template

User-definable attributes

[1:1] Name: String = “”. A string allowing for unambiguous reference to corresponding instances at the application
level.
[1:1] Def: FreeText = “”. Free text used for precise, unambiguous definition of the corresponding instances at the

application level.
[0:1] modifier: Boolean. Indicate whether the operation is an object Modifier or Observer.

Relations to other constructs

Belongs 1:1 to goal model.

1:1 [0:n] operationalise : goal. Goals assigned to agents are operationalised through operations. The operationalisation
of a goal through some operation entails permissions and obligations on the operation’s applications; the latter are
captured by the ReqPre, ReqPost and ReqTrig metaattributes of the Operationalisation relationship that strengthen
the operation’s domain pre/postconditions.

0:n [1:n] input : object. Operations are related to objects through input links.

0:n [1:n] output : object. Operations are related to objects through output links.

1:n [1:1] occurs : event. The applications of an operation may be caused by event(s). This means that the operation’s
ReqTrig includes a predicate occurs on instances of that event.

I:n [1:n] performs : agent. A meta-model constraint requires any agent Responsible for some goal to Perform all the
operations that Operationalize that goal in accordance with the permissions and obligations specified in the
operation’s ReqPre, ReqTrig and ReqPost conditions. The Performance meta-relationship is thus a derived one.

Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Built on by

Instantiation level
Type level

Classes of things

1:n, “causingEvent” played by ChangingThing.
Operation is caused by event(s).

1:1, “op_object” played by ComponentThing.
Operation gets input from and makes output to the object.

Properties (and relationships)

0:n [0:n] “inputForOperation” played by BindingMutualProperty.
Belongs to: op_object.
Describing input for operation.
Also represented by: Inputs.

0:n [0:n] “outputForOperation” played by BindingMutualProperty.
Belongs to: op_object.
Describing output for operation.
Also represented by: Outputs.

1:1, “theOperation” played by TransformationLaw.
Belongs to: causingEvent.
Sub-property of: inputForOperation.

70

KAOS Construct Analysis using
the UEML Approach Template

Sub-property of: outputFromOperation.

Transformation law: operation is performed by an agent responsible for the goal fulfilment. Whenever the
required conditions hold, performing the operations satisfies the goal.

Representing the operation.

1:1, “attributeName” played by AnyRegularProperty.
Sub-property of: theOperation.
Represents operation attribute name.

1:1, “attributeDef” played by AnyRegularProperty.
Sub-property of: theOperation.
Represents operation attribute altName.

0:1, “modifier” played by AnyRegularProperty.
Sub-property of: theOperation.
Represents operation attribute altName.

1:1 [1:1] “domPre” played by StateLaw.
Sub-property of: 1:1 [1:1] operation.
Characterising the states before any application of the operation;

1:1 [1:1] “domPost” played by StateLaw.
Sub-property of: 1:1 [1:1] operation.
Defining a relation between states before and after applications of the operation;

Behaviour

Process
REPRESENTED STATE ENTRIES

“initState” played by StateOfAThing,
Defining property: inputForOperation.
State constraint: implicit and explicit attribute of an object.

“resultState” played by StateOfAThing,
Defining property: outputForOperation
state constraint: implicit and explicit attributes of an object.

REPRESENTED EVENT ENTRIES

“eventOccurs” played by ExternalEvent,
From state: initState
To state: initState
Trigger: reqTrig sub-property of operationalisation.
Condition: reqPre (sub-property of operationalisation) and domPre (sub-property of operation) holds.
Action: operation is initiated,
effected by Event.

“getInput” played by InternalEvent,
From state: initState
To state: initState
Trigger: reqTrig sub-property of operationalisation.
Condition: reqPre (sub-property of operationalisation) and domPre (sub-property of operation) holds.
reqPost (sub-property of operationalisation) and domPost (sub-property of operation) introduced.
Action: object implicit and explicit attributes are taken as the input for the operation.

“setOutput” played by InternalEvent,
From state: initState
To state: resultState
Trigger: reqTrig sub-property of operationalisation.

71

KAOS Construct Analysis using
the UEML Approach Template

Condition: reqPost (sub-property of operationalisation) and domPost (sub-property of operation) holds.
Action: object explicit and implicit attributes are taken as the input for the operation.

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

TBF — Dependency constraint between agents as through goal or through operation.

TBF — A goal defines a set of admissible histories in the composed system. Intuitively, a history is a temporal sequence
of states of the system. Specify Scenario, Snapshot, Interaction, Source, Target, and State transition constraints. This is
related to Agent, Event, and Operation constraints.

-instLevel = hoth

operation: ConstructDescription
-constructiame = operation

[rolehame ="the operation”

theOperation: RepresentedProperty

[operationSegment: RepresentedSegment
[segmentType = process

occuringEvent: RepresentedClass
|-roleMarme = "accuring event'

op_ohject: RepresentedClass
-roleName = op_ohject
-minCard =0

-maxCard = n

| representedPraperty = perSe

lminCard=1 +subPraperty ki
Faxcard =1 - Foinzardz
| representedProperty = perSe subRronerty [maxCard=n
attributeName: RepresentedProperty l
___lroleName ="atiribute name" SudProperty
krnincard =1 domPre: RepresentedProperty
FrmaxCard = 1 AR -raleMame = "damain pre-conditio.. | InputForoperation: RepresentedProperty
-representedProperty = petSe ~rinCard = 1 W
e ard == FminCard =0
-representedProperty = perge | I maxcarg=n
attributeDef: RepresentedProperty FrepresentadProperty = perSe
roleName ="atiribute der' +EUbRropery.
minCard =1 domPost: RepresentedProperty
_ |arcard=1 +euProperty -roleName = "domain post-condition” oulpuiFromOperation: RepresentedProperty
rrepresentedProperty = perSe -minCard =1 [roleNamme = "output from operation”
-maxCard =1 Lnincard=0
-representedProperty = perSe | maxCard = n
lifier: perty roperty=n
FroleMame = "derived attribute modifier*
lmincard= 0 +subPraperty
FmaxCard =1

FisLaw = false
HizWhalePan = false

anyRegularProperty: Property
FpropertyName = "any regular prapert’

stateLaw : Property

-propertyName = "any prapert’
-isLaw=true
-isholePart = true

hindingMutualProperty: Property

FaraperyName = "binding mutual propery’
[isLaw = false
HiswholePart = false

transformationLaw : Property

FatopertyName = “transformation law
isLaw = true

FisiholePart = false

changingThing: Class
FelagsName = "ehanging thing"

componentThing: Class

-tlasshame = component thing

72

KAOS Construct Analysis using
the UEML Approach Template

KAOS : Operationalisation

Document type: Working document
Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2"% iteration

Authors: Raimundas Matulevicius
Distribution list: DEM

Document history:

The Operationalisation meta-relationship is an AND/OR relationship between goals and required pre, trigger, and post
conditions of operations. Intuitively, a set of required pre, trigger, and post conditions operationalises a goal if satisfying
the required conditions on operations guarantees that the goal is satisfied.

1. Preamble
Builds on
Built on by

Construct name

Operationalisation
Alternative construct names
Related, but distinct construct names
Related terms
Language
KAOS,

http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type

Operation model

2. Presentation

Builds on

Built on by

73

KAOS Construct Analysis using
the UEML Approach Template

Icon, line style, text

Goal name

Operationalise (AND operationalise)

Operationl
name

Operation2
name

Goal name

Complete operationalisation (AND

operationalise)
Operationl Operation2
name name

Operationalise (OR operationalise)

OR

Operationl
name

Operation2
name

Operation3
name

Operation4
name

User-definable attributes

[1:1]Complete: Boolean. Indicate whether the operationalisation is arguably sufficient (value "complete") or not
arguably sufficient (value "undetermined").

[0:1] AltName: String =*“”. To name the corresponding alternative for further reference. In case a goal is
operationalised into multiple alternative operationalisations this meta-attribute is mandatory.

Relations to other constructs

Belongs to 1..1 operation model.
1:1 [1:1], op_goal. Goal is operationalised through the operation.

0:n [1:1], op_operation. Operation operationalises the goal.

Diagram layout conventions

Other usage conventions

3. Representation

Builds on
Goal

74

KAOS Construct Analysis using
the UEML Approach Template

Operation
Built on by

Instantiation level

Instance and type level

Classes of things

1:1, “goalOwner” played by StakeholderThing.
Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.
StakeholderThing is subclass of the BWW-HumanThing (specified in goal template).

1:1, “occurringEvent” played by ChangingThing.
Operationalisation’s reqTrig includes a predicate Occurs on instances of that event.

1:1, “op_object” played by ComponentThing.
Operation gets inputs as object attributes and produces outputs as object attributes.

Properties (and relationships)

1:1, “theGoal” played by ComplexLawProperty.
Belongs to: 0:1 [1:1], goalOwner.
Law: restricts the the possible values of the object attributes.
Representing the goal which is held by a goal owner.

1:1, “terminalGoal” played by ComplexLawProperty.
Sub-property: 1:1 [1:1], theAssignedGoal.
State law: Vg € Goal, Va € Assignment, a.assignedGoal = g
= —3 gr € G-refinement: gr.superGoal =g
Only terminal goals can by assigned.

1:1, “operationalisedOperation” played by TransformationLaw.
Sub-property: inputForOperation.
Sub-property: outputForOperation.
Belongs to: 0:n[0:n] occurringEvent.
Transformation law: operation changes the states of the object.
Describing the operationalised operation.
Also represented by operation.

0:n [0:n] “inputForOperation” played by BindingMutualProperty.
Belongs to: op _object.
Describing input for operation.
Also represented by: Inputs.

0:n [0:n] “outputForOperation” played by BindingMutualProperty.
Belongs to: op_object.
Describing output for operation.
Also represented by: Outputs.

1:1, “theOperationalisation” played by ComplexMutualProperty.
Type: AND/OR relationship.
Sub-property: 1:1[0:n] terminalGoal.
Describing operationalisation. Operationalisation is a complex mutual property between goal owner, object and
event.

1:1 [1:1], “attributeComplete” played by AnyRegularProperty.
Sub-property: theOperationalisation.
Represents operationalisation attribute complete.

75

KAOS Construct Analysis using
the UEML Approach Template
0:1 [1:1], “attributeAltName” played by AnyRegularProperty.
Sub-property: theOperationalisation.
Represents operationalisation attribute altName.

1:n [1:1], “op_operation” played by ComplexProperty.
Sub-property: 1:1 [1:n] theOperationalisation.
Sub-property: 1:1 [1:n] operationalisedOperation.

1:1 [1:1] “reqPre” played by StateLaw.

Sub-property: 1:1 [1:1] op_operation.

Necessary condition that needs to be true when the operation is applied for the corresponding operationalised goal
to be satisfied.

1:1 [1:1] “regPost” played by StateLaw.
Sub-property: 1:1 [1:1] op_operation.
Condition that needs to be established by the operation in its final state for the corresponding operationalised goal
to be satisfied.
1:1 [1:1] “reqTrig” played by TransformationLaw.
Sub-property: 1:1 [1:1] op_operation.
Sub-property: 0:n [0:n] occuringEvent.

Sufficient condition that requires the operation to be immediately applied for the corresponding operationalised
goal to be satisfied.

Behaviour

Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

76

KAOS Construct Analysis using
the UEML Approach Template

instigved = both

44

o eastence

+aakProparty

qlrig: Representediraperty

fisvincieriant = taise

77

KAOS Construct Analysis using
the UEML Approach Template

78

KAOS : Output

KAOS Construct Analysis using
the UEML Approach Template

Document type:

Working document

Domain/Task/Topic: | DEM / UEML / Approaches
Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas Matulevicius

Distribution list:

DEM

Document history:

An object is among the outputs of an operation if it is among the sorts making up the co-domain of the relation defined

by the operation.

1. Preamble
Builds on
Built on by

Construct name
Outputs

Alternative construct names

Related, but distinct construct names

Related terms

Inputs : An object is among the inputs of an operation if it is among the sorts making up the domain of the
relation defined by the operation.

Language
KAOS,

http://www?2.info.ucl.ac.be/research/projects/ AVL/ReqEng.html

Diagram type

Operation model

2. Presentation
Builds on
Built on by

Icon, line style, text

Agent name Object
name

Outputs

79

KAOS Construct Analysis using
the UEML Approach Template

User-definable attributes
[0:1] WhichAtt : String = . Indicate which attributes of the object are specifically monitored.

Relations to other constructs

e Belongs to 1..1 operation model.
e 0:n[1:1], Object. Object has output from an operation.
e 0:n[1:1], Operation. Operation outputs object attributes (changes its value).

Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Built on by

Instantiation level
Type level

Classes of things

1:1 “outObject” played by ComponentThing.
Represents object, which is output from operation.

0:n, “causingEvent” played by ChangingThing.

Properties (and relationships)

1:1, “theOutput” played by BindingMutualProperty.
Belongs to: 0:n [1:1] object.
Describing output. Output is a binding mutual property between the object which receives output from operation
and the event which causes this operation.

L:n, “explicitObjAttribute” played by AnyProperty.
Belongs to: outObject.
Sub-property of: theOutput.
Defines explicitly which attribute of the object is an output.

L:n, “implicitObjAttribute” played by AnyProperty.
Belongs to: outObject.
Sub-property of: theOutput.
Does not define explicitly which attribute of the object is an output.

0:1, “attributeWhichAtt” played by AnyRegularProperty.
Sub-property: theOutput.
Representing the output attribute whichAtt.

0:n [1:1], “fromOperation” played by TransformationLaw.
Belongs to: causingEvent.
Sub-property: theOutput.
Transformation law: operation produces output.
Describing the operation which has output.
Also represented by: operation.

Behaviour

Existence

80

KAOS Construct Analysis using
the UEML Approach Template

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

81

KAOS Construct Analysis using
the UEML Approach Template

82

KAOS : Performance

KAOS Construct Analysis using
the UEML Approach Template

Document type:

Working document

Domain/Task/Topic:

DEM / UEML / Approaches

Version:

Date: 2005.11.30

Status: 2"% iteration

Authors: Raimundas Matulevicius

Distribution list:

DEM

Document history:

An operation is related to the agent that can initiate it through a performance link. Performance is an OR meta-
relationship linking agents to operations.

1. Preamble
Builds on
Built on by

Construct name

Performance

Alternative construct names

Performs

Related, but distinct construct names

Related terms

Language
KAOS,

http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Agent model

2. Presentation
Builds on
Built on by

Icon, line style, text

&3

| Performance
Operation
name
User-definable attributes
[0:1] Agent : Agent. Declare the agent.
[0:1] AltName : String = “”. Name of alternative OR-assignments.

Relations to other constructs

e Belongs to 1..1 agent model.

e 1:1[1:1], Agent. Agent performs operation.

e IL:n[l:1], Operation. Operation is performed by agent.
Diagram layout conventions

Other usage conventions

3. Representation

Builds on
Agent

Built on by

Instantiation level
Type level

Classes of things
1:1, “goalOwner” played by StakeholderThing.

KAOS Construct Analysis using
the UEML Approach Template

Describing goal owner which holds the goal. Class StakeholderThing has a characteristic holds goal.

StakeholderThing is subclass of the BWW-HumanThing.

1:1 “responsibleAgent” played by ActiveComponentThing.
Represents the responsible agent.

Properties (and relationships)

1:1, “theGoal” played by ComplexLawProperty.
Belongs to: 0:1 [1:1], goalOwner-.
Law: restricts the the possible values of the object attributes.
Representing the goal which is held by a goal owner.

1:1, “terminalGoal” played by StateLaw.
Belongs to: 0:1 [1:1], goalOwner.
Sub-property: 1:1 [1:1], theGoal.
State law: Vg € Goal, Va € Assignment, a.assignedGoal = g
= —3 gr € G-refinement: gr.superGoal =g
Only terminal goals can by assigned.

1:1, “thePerformance” played by ComplexMutualProperty.
Type: OR-relationship.

84

KAOS Construct Analysis using
the UEML Approach Template
Belongs to: 1:n [1:1] responsibleAgent.
Representing the performance. Performance is a complex mutual property of the responsible agent and the goal
owner. Agent performs the operation in order to satisfy the goal.

0:1, “attributeAgent” played by AnyRegularProperty.
Sub-property: thePerformance.
Representing the performance attribute agent.

0:1, “attributeAltName” played by AnyRegularProperty.
Sub-property: thePerformancce.
Represents performance attribute altName.

1:1 [1:1], “performedOperation” played by TransformationLaw.
Sub-property: thePerformance.
Transformation law: agent performs operation to satisfy the goal.
Describing the operation which is performed by agent.
Also represented by: operation.

L:n [1:1], “operationalisation” played by ComplexMutualProperty.
Sub-property: performedOperation.
Sub-property: terminalGoal.
Describing the operationalisation relationship.
Also represented by: operationalisation.

Behaviour

Existence

Modality (permission, recommendation etc)
Regular assertion

4. Open Issues

performance: ConstructDefinition

1e = performan : RepresentedSegment

ringiLevel = hath FsegmentType = existence

goalOwner: RepresentedClass thePerformance: RepresentedProperty responsibleAgent: RepresentedClass
[roleMame = "goal owner” [roleName = thePerformance -roleNarme =" agent’
FminGard = 0 [FinGard =1 : -minCard =1
FmaxCard =1 FraxCard = 1 ' -maxCard = n
FrepresentedProperty = perSe :
'
'
theGoal: RepresentedProperty L —
raletame = "the goar subProperty : RepresentedClassPropertyAssociation
LminCard=1 performedOperation: RepresentedProperty isintrinsicOmiutlal = bindmut
FmaxCard=n FroleName = "perfarmed operation” [lsResutanOEmergentemargent
| representsPraperty = perse LrminCard = 1 [isv/holePart = false
FmaxCard =1
+representedProperty = perSe
subPrope
- pety +subProperty
terminalGoal: RepresentedProperty —
-roleklame ="terminal goal —
minCard=1 rrmegarze? operationalisation’
-maxCard = 1 R sl
subPropel R,
-reprasentadPropety = perse PEY Lmancard = n
representedProperty = perSe
complexLawProperty: Property transformationLaw : Property [activec Thing: Class |
FpropetyMame = "complexlawPropery’ ForopertyMarne = "transformation law"| |rc\assNama:“cnmpnnentthing“ |
FisLaw = true [HisLaw = true
rigWWholePart = false FisWiholePart = false
stakeholder Thing: Class holdsGoal: Property complexMutualProperty: Property
| classMame = "stakeholder na -propertyMame = "holds goar| propertyMame = "complex mutual property”
-isLaw = false FisLaw = false
-isWholePart = false -isWholePart = false

85

KAOS Construct Analysis using
the UEML Approach Template

86

KAOS : Requirement

KAOS Construct Analysis using
the UEML Approach Template

Document type:

Working document

Domain/Task/Topic:

DEM / UEML / Approaches

Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas Matulevicius

Distribution list:

DEM

Document history:

A requirement is a goal assigned to an agent in the software-to-be.

1. Preamble

Builds on
Goal

Built on by

Construct name
Requirement

Alternative construct names

Related, but distinct construct names

Terminal goal: goal which has no G-requirement.

Related terms

Expectation (assumption): a goal assigned to an agent in the environment.

Softgoal: a goal that cannot be said to be satisfied in a clearcut sense.
Comment: can a requirement be a softgoal?

Maintain goal: a goal requiring that some property always holds.

Avoid goal: a goal requiring that some property never holds.

Achieve goal: a goal requiring that some property eventually hold.

Cease goal: a goal requiring that some property eventually stops to hold.

Language
KAOS,

http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type

Goal model

87

KAOS Construct Analysis using
the UEML Approach Template

2. Presentation
Builds on
Built on by

Icon, line style, text

Requirement

User-definable attributes

Requirement inherits all the attributes of the goal.

Relations to other constructs

e Belongs 1:1 to goal model.

e L:n[l:n], responsible : software agent. Requirement is assigned through responsibility relationship to a software
agent.

Diagram layout conventions

Other usage conventions

3. Representation

Builds on

Comment: Requirement is a goal and has most of the goal classes and properties. But requirement is also a terminal
goal, so it has no G-refinement.

Built on by

Instantiation level
Instance level

Classes of things

1:1, “softwareAgent” played by ActiveComponentThing.
Describing the agent a requirement is assigned.

Properties (and relationships)

1:1, “theRequirement” played by ComplexStateLaw.
Belongs to: 0:1 [0:n] sofiwareAgent.
Belongs to: 0:1 [1:1] goalOwner-.
State law: s restricted by the assignement relationship. A requirement himself restricts state of the concerned
object.
Representing the requirement. Requirement as a goal, has a goal owner.

1:1, “isTerminalGoal” played by StateLaw.
Sub-property: 1:1 [1:1], theRequirement.
State law: Vg € Goal, Va € Assignment, a.assignedGoal = g

88

KAOS Construct Analysis using
the UEML Approach Template

= —3 gr € G-refinement: gr.superGoal = g
Requirement is a terminal goal which means that an requirement can not have G-refinement.

Behaviour
Existence

Modality (permission, recommendation etc)

Intention of a goal owner;
Obligation of a sofiware agent.

4. Open Issues

&9

KAOS Construct Analysis using
the UEML Approach Template

90

KAOS : Softgoal

KAOS Construct Analysis using
the UEML Approach Template

Document type:

Working document

Domain/Task/Topic:

DEM / UEML / Approaches

Version:

Date: 2005.11.30

Status: 2" iteration

Authors: Raimundas Matulevicius

Distribution list:

DEM

Document history:

A softgoal is a goal that cannot be said to be satisfied in a clearcut sense. It prescribes classes of preferred behaviour.

1. Preamble

Builds on
Goal

Built on by

Construct name
Softgoal

Alternative construct names

Goal
Preferred behaviour

Related, but distinct construct names

Related terms

Requirement : a goal assigned to an agent in the software to be.
Assumption : a goal assigned to an agent in the environment.

Language
KAOS,

http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type

Goal model

2. Presentation

Builds on

Built on by

91

KAOS Construct Analysis using
the UEML Approach Template

Icon, line style, text

Softgoal

User-definable attributes
[0:1] Type : set_of [Minimize, Maximize, Reduce, Increase, Improve]. Describes type of the softgoal.

Relations to other constructs
Diagram layout conventions

Other usage conventions

3. Semantics

Builds on

Comment: Softgoals can be And/Or refined like any other KAOS goals, conflicts between softgoals goals can also be
captured. An important research issue concerns the precise definition of optimization goals, reasoning techniques
about softgoals, and the role of such goals in selecting among alternative goal refinements.

Built on by

Instantiation level

Instance level
Classes of things

Properties (and relationships)

1:1, “theSoftGoal” played by ComplexLawProperty.
Representing the softgoal.

1:1, “notSatisfiedClearly” played by AnyProperty.
The softgoal has property (rather feature) not to be satisfied in a clearcut sense.

0:1 [1:1], “attributeType” played by AnyRegularProperty.
Sub-property: theSoftGoal.
Represents goal attribute type.

Behaviour

Existence

Modality (permission, recommendation etc)

Intention of a goal owner;

4. Open Issues

Comment: Further investigation about all softgoal (as goal) features is needed!

92

KAOS : Software agent

KAOS Construct Analysis using
the UEML Approach Template

Document type:

Working document

Domain/Task/Topic:

DEM / UEML / Approaches

Version:

Date: 2005.11.30

Status: 2"% iteration

Authors: Raimundas Matulevicius

Distribution list:

DEM

Document history:

Software agent is an agent in the system-to-be.

1. Preamble

Builds on
Agent

Built on by

Construct name

Software agent

Alternative construct names

Agent in the system-to-be

Related, but distinct construct names

Related terms

e Agents : active objects capable of performing operations.
e Environment agent : e.g., pre-existing software component, sensor, actuator, human, organisational unit, etc.

Language
KAOS,

http://www?2.info.ucl.ac.be/research/projects/AVL/ReqEng.html

Diagram type
Agent model

2. Presentation
Builds on
Built on by

Icon, line style, text

Software agent

93

KAOS Construct Analysis using
the UEML Approach Template

User-definable attributes
Relations to other constructs
Diagram layout conventions

Other usage conventions

3. Representation
Builds on
Built on by

Instantiation level
Type level

Classes of things

1:1, “theSoftwareAgent” played by ComponentSofiwareThing.
Representing the software agent. Software agents are agents and inherits all agent attributes and properties.

Properties (and relationships)

Behaviour
Existence

Modality (permission, recommendation etc)

Regular assertion

4. Open Issues

94

KAOS Construct Analysis using
the UEML Approach Template

95

KAOS Construct Analysis using
the UEML Approach Template

96

KAOS Construct Analysis using
the UEML Approach Template

97

