
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Towards highly adaptive data-intensive systems

Mori, Marco; Cleve, Anthony

Published in:
Lecture Notes in Business Information Processing

DOI:
10.1007/978-3-642-38490-5_36

Publication date:
2013

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Mori, M & Cleve, A 2013, Towards highly adaptive data-intensive systems: A research agenda. in Lecture Notes
in Business Information Processing: CAiSE 2013 International Workshops. vol. 148 LNBIP, Lecture Notes in
Business Information Processing, vol. 148 LNBIP, Springer Verlag, pp. 386-401, 25th Conference on Advanced
Information Systems Engineering, CAiSE 2013, Valencia, Spain, 17/06/13. https://doi.org/10.1007/978-3-642-
38490-5_36

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27. Apr. 2024

https://doi.org/10.1007/978-3-642-38490-5_36
https://researchportal.unamur.be/en/publications/b26e51f7-732e-4f60-bf62-44b99c67c2e7
https://doi.org/10.1007/978-3-642-38490-5_36
https://doi.org/10.1007/978-3-642-38490-5_36

Towards Highly Adaptive Data-intensive
Systems: A Research Agenda

Marco Mori? and Anthony Cleve

PReCISE Research Center, University of Namur
Rue Grandgagnage 21, 5000 Namur, Belgium
{marco.mori,anthony.cleve}@unamur.be

Abstract. Data-intensive software systems work in different contexts
for different users with the aim of supporting heterogeneous tasks in
heterogeneous environments. Most of the operations carried out by data-
intensive systems are interactions with data. Managing these complex
systems means focusing the attention to the huge amount of data that
have to be managed despite limited capacity devices where data are ac-
cessed. This rises the need of introducing adaptivity in accessing data as
the key element for data-intensive systems to become reality. Currently,
these systems are not supported during their lifecycle by a complete pro-
cess starting from design to implementation and execution while taking
into account the variability of accessing data. In this paper, we intro-
duce the notion of data-intensive self-adaptive (DISA) systems as data-
intensive systems able to perform context-dependent data accesses. We
define a classification framework for adaptation and we identify the key
challenges for managing the complete lifecycle of DISA systems. For each
problem we envisage a possible solution and we present the technological
support for an integrated implementation.

Key words: data-intensive systems lifecycle, context-aware database,
self-adaptive systems

1 Introduction

Data-intensive systems manage complex and huge amount of data that are suited
for different types of users each performing tasks of different nature and possibly
in different contexts. Most of the effort for designing, maintaining and evolving
these systems depends on their complex interactions with big data sources. Tak-
ing this perspective, a relevant problem that need to be tackled in a systematic
manner is how to ease the management of their variability in accessing data. This
problem has started to be tacked in the literature of context-aware databases [1]
by means of methodologies, techniques and tools for creating sub-portions of a
global database based on different factors, i.e., current context, user tasks and
user preferences [22, 7]. These techniques support variations of data that are not

? beneficiary of an FSR Incoming Post-doctoral Fellowship of the Académie universi-
taire ‘Louvain’, co-funded by the Marie Curie Actions of the European Commission

2 Marco Mori and Anthony Cleve

performed in a systematic process where context-dependent variations of appli-
cation behavior are propagated to data thus making it difficult to consistently
change data.

In order to generate the data of interest at a certain context we should rea-
son on the requirements that should be achieved in that specific context [38].
Through a systematic approach it should be possible to create context-dependent
versions of data-related artifacts that will remain un-changed for the whole sys-
tem lifetime. This first level of data-adaptivity (design-time), represents a possi-
ble solution which is suited for all the situations where there is no need of recon-
figuring data and programs at run-time. Nevertheless, this solution becomes un-
appropriate in ubiquitous environments that are characterized by every-changing
contexts leading to a two-fold problem. First, the set of contexts can be too large
in terms of tasks that will be completed, different types of users accessing the
same system and different situations in which the system will have to operate.
Second, limited capacity devices may not be able to manage the needed big data
source. Thus a second level of adaptivity (run-time) is needed for achieving re-
configurations of data-related artifacts in a systematic and continuous manner.
In the literature of self-adaptive systems [34, 5, 17] different techniques support
context-dependent behavioral adaptations both at design time and at run-time
while not much attention has been devoted to data-manipulation adaptations.
Data-intensive systems can benefit from these techniques to achieve design-time
and run-time adaptations of data-manipulation programs while they can bene-
fit from context-aware database approaches for propagating these variations to
data-related artifacts.

Variability of accessing data poses the interest towards a new class of data-
intensive self-adaptive (DISA) systems as systems able to ease the complexity
of accessing data by means of creating context-dependent data-related artifacts
at design time and by means of enabling their run-time reconfigurations. In this
paper, we envisage a lifecycle process for DISA systems and we propose a re-
search agenda organized according to the three main challenges that need to be
addressed in order for these systems to become a reality; we consider a design
process for DISA systems, migration of existing systems towards DISA systems
and monitoring/optimizing run-time reconfigurations of DISA systems. In [24]
we have defined a theoretical framework for supporting the design and configu-
ration of new DISA systems. In this paper, we extend our previous results in a
wider scope and we analyze the key challenges for DISA systems along with our
methodological solutions for each of those. Beyond the creation of new systems,
it is also important to consider legacy data-intensive systems. These systems
need to be analyzed in order to evaluate their variability in accessing data. To
understand this variability, it is necessary to extract their data-manipulation
behavior by analyzing the system execution. Thus we consider the problem of
process understanding in order to evaluate the convenience of migrating towards
DISA systems. Finally, a migrated or a new DISA system have to be provided
with a decision-making process to support its optimized run-time reconfiguration
of programs and data-related artifacts.

Towards Highly Adaptive Data-intensive Systems: A Research Agenda 3

We consider an e-health scenario where physicians, i.e, doctors, secretaries,
nurses, radiologists and patients are involved in a set of care processes. Each
physician is interested in a different excerpt of data. Secretaries are interested
in administrative data, doctors are interested in case histories (with medical im-
ages) of patients, diagnosis and therapies, nurses and patients are interested in
the application of the therapy while radiologists are strictly interested in case
histories and basic patient information with the aim of capturing medical im-
ages. Further, there exist other factors that affect the portion of data of interest,
namely the task the physician is performing, the device, the location or room
where the system will run and the department to which the patient belongs. For
instance, doctors access to high quality medical images only through desktop
devices. They access to different set of information based on the activity they
perform, i.e., check-up, visits, surgery operations and department administra-
tor. Finally, if the doctor performs a visit from outside the hospital or in case of
emergency, he should only visualize a textual representation of the case history.
This scenario shows the context-dependent interest of users towards heteroge-
neous data. The application can be provided with the required data once for all
the system lifetime or it may be necessary to reconfigure at run-time the data
due to context variations.

In the remainder of this paper, Section 2 gives a detailed descriptions of DISA
artifacts and a possible classification of data adaptations. Section 3 analyzes the
three main challenges for supporting the lifecycle of DISA systems along with
an integrated set of techniques to be adopted for implementing the process. For
each problem we present contributions in the literature and our methodological
approach. Finally, Section 4 discusses related work before conclusions and future
directions are given in Section 5.

2 Framework basics

In this paper we adopt a feature engineering perspective [19, 37, 11] in order
to represent the basic unit of behavior of DISA systems as features. In these
systems most of the functionalities operates on data, thus we consider their
corresponding features for our analysis. Section 2.1 discusses artifacts of a DISA
system while Section 2.2 classifies adaptations to data-related artifacts.

2.1 DISA artifacts

Fig. 1 envisages the relationships between the artifacts of DISA systems, namely
context, features and data. Context is characterized by means of a set of dimen-
sions determining the current user situations, namely, user role, user task, device
characteristics, location etc... Context states determines the set of features, i.e.,
configurations, that have to included into the application. Configurations defined
according to a feature model [37] require a subset of data belonging to a big data
source suited for all possible contexts. We consider different levels of abstraction

4 Marco Mori and Anthony Cleve

of data: the conceptual schema is a Platform Independent Model (PIM) typically
represented through an ER diagram containing entity types and relationships
among entity types; the logical schema is a Platform Specific Model (PSM) con-
taining tables and foreign keys which are the basis for defining database queries;
finally database instances are data to be loaded into the device.

Fig. 1. DISA artifacts

In our perspective a feature links together variability of the application (in
terms of its requirements) to the variability of data (in terms of data excerpts) as
inspired by approaches where variability of requirements is linked to variability
of a formal specification [8] or to the variability of source code [16]. Following the
taxonomy proposed in [14] we distinguish among functional, performance and
specific quality requirements which pertain to functional, performance and spe-
cific quality concerns of the application. Orthogonally to these requirements, con-
straints limit the solution space of functional, performance and specific quality
requirements. Based on this taxomony we define a feature as triple f = (R,P, V)
where R is a functional, non-functional or a specific quality requirement (context
independent), P is the presence condition, i.e. a contextual constraint require-
ment which expresses the applicability of the feature; V is the excerpt of data of
interest for the feature defined in terms of entity types of the conceptual schema.

2.2 Data adaptations dimensions

In this section we present a classification of data adaptations based on which
we characterize the adaptations we enable in our framework (Section 3.1). We
define database adaptations according to the three following dimensions:

– Structural dimension, concerning modifications to database structures and
data instances;

– Semantic dimension, i.e., evolution of the semantic of data;
– Consistency dimension, addressing the impact of adaptation to the correctness

of data-related artifacts.

Structural dimension is concerned with the adaptation of the database struc-
tures. This regroups modifications applied to the conceptual, logical, physical
schemas and data instances. we can classify database evolutions as:

Towards Highly Adaptive Data-intensive Systems: A Research Agenda 5

– Conceptual modifications typically translate changes in the functional require-
ments of the information system into conceptual schema changes.

– Logical modifications do not modify the requirements but adapt their platform-
dependent implementation in the logical schema.

– Physical modifications aim at adapting the physical schema to new or evolving
technical requirements, like data access performance.

– Data modifications aim at translating variations of the schema to the database
instance.

Semantic dimension captures the impact of a given database adaptation
scenario on the informational content of the target database. In other words,
it aims at indicating whether the adaptation involves: Semantics-augmenting,
Semantics-decreasing or Semantics-preserving schema modifications.

Semantics-augmenting Semantics-decreasing

Semantics-preserving

Fig. 2. Categories of schema modifications

Consistency dimension Whenever a variation to a data-related artifacts is
performed we have to check the consistency of this variation considering two
different problems:

– intra-artifact consistency: an adaptation may cause an existing consistency
constraint to be violated within an artifact.

– inter-artifact consistency: a broken consistency link must then be reestab-
lished by means of a change propagation adaptation. For instance, schema
modifications at a given level of abstraction necessitate the adaptation of the
schemas belonging to the other abstraction levels, and the data instances.

3 Variability for DISA systems

DISA systems have to be created either from zero or from legacy systems tak-
ing into account their variability in accessing data. In case of a new system
it is necessary to consider which are the factors that tune the interest of the

6 Marco Mori and Anthony Cleve

users towards different portions of data and how to propagate variations of this
factors to variations of data. DISA systems should support design-time and run-
time variability of data. The space of variability is determined at design time
while during execution a certain configuration of data is created based on the
current context. Only if context changes during the system lifetime we have to
provide run-time variability in order to align data variations to context varia-
tions. These variations of data that are foreseen at design time are not enough
if the system works in an un-predictable environment. Indeed there exist other
variations to data that cannot be foreseen before they are needed. Indeed, in
ubiquitous environments due to unforeseen situations it is not always possible
to exactly determine the space of variability of a system before its execution.
To this end, we envisage the adoption of a design process phase which is able
to support design-time variability, run-time variability and unforeseen run-time
variability of accessing data.

In case of the migration of a legacy system to a DISA system, we have
to extract its data-manipulation behavior with the aim of understanding its
variability in accessing data. This consists of a process understanding phase with
the aim of evaluating if it is convenient or not to carry out the migration and
determining the features of the system as the basis for its variability.

Finally, a DISA system has to perform run-time reconfigurations which are
subject to performance degradations and scalability problems that need to be
accurately tackled in order for a DISA system to be usable. In the remainder of
this section we explain each key problem for a DISA system along with our envis-
aged solution: (i)data-variability aware design process, (ii)data-variability aware
process understanding, (iii) data-variability aware performance optimization.

3.1 Data-variability aware design process

Context-dependent data accesses should be supported in a systematic manner
during the design phase of a DISA system. To this end, it is necessary to align
the variability of requirements to the variability of databases by defining trace-
ability links between software functionalities and databases excerpts. Variability
of data has been considered in the literature of context-aware databases where
many approaches identify the portions of data of interest based on a certain con-
text model describing the current situation. Methodologies, techniques and tools
have been defined following either a pruning [42, 43, 38, 36, 11] or a merging
[2, 3, 22, 7, 35, 29] technique for creating a subset of a database. Altought it has
been argued that it is important to link the variability of the application to vari-
ability of data [38], there is no approach that provides the data of interest based
on changing application requirements. The literature of self-adaptive systems
[34, 5, 17] provides the theoretical and methodological support for managing
the variability of system requirements as a consequence of context variations.
On the one hand, the literature of self-adaptive systems provides no support for
propagating variations of requirements to data, while on the other hand vari-
ability of application requirements has not been considered in the literature of
context-aware databases. To this end, taking inspiration by processes provided

Towards Highly Adaptive Data-intensive Systems: A Research Agenda 7

for self-adaptive systems [4, 17], we advice the adoption of a process for design-
ing a DISA system, having as objective the variability of accessing data. We
envisage the adoption of a framework that supports feature-based data tailoring
by means of a filtering design process and a run-time filtering process.

The design process (Fig. 3) supports the variability of accessing data by es-
tablishing the applicability for all the possible feature configurations. It starts
by defining the whole set of requirements along with the corresponding global
database for all possible contexts. Consequently designers organize the elicited
requirements following a feature engineering perspective, through features and
a feature model which entails the admissible configurations of features. At this
point designers define a mapping between identified features and portions of
the global schema, and they identify the contextual dimensions that affect the
interest towards different portion of data. Finally designers define a presence
condition for each feature to evaluate if data required by a feature should be in-
cluded or not in the subset of the database. Finally, the decision-making support
phase defines the applicability of each admissible configurations at each possible
context state based on the presence condition of its entailed features.

Fig. 3. Feature-based filtering design process

The run-time filtering process (Fig. 4(b)) provides the right data according
to the features that have to be provided at the current context. Upon context
variation an automatic derivation phase retrieves the most suitable (see Section
3.3) set of features to apply. According to these feature the process determines
the set of entity types of the conceptual schema that should be included in the
target view. The data model validation phase consists in modifying the concep-
tual schema in order to make it consistent with the large schema. Once this view
has been created the data model deployment phase determines the corresponding
logical schema and data instances. In Fig. 4(a) we have emphasized the stack
for the reconfiguration of data. The target configuration of features is the input
for determining the subset of the conceptual schema, which in turn is the input
for determining the subset of the logical schema, which in turn determines the
actual data. API’s provided at each level support the propagation of variation
from high-level conceptual schema till to data instances.

Designers should create DISA applications along with their context-dependent
variability (Fig. 3) before putting the system in execution. At run-time based on
the current context and user role, an automatic procedure should provide the
subset of data of interest to the application. If context and user role remain the
same for all the system lifetime we have only design-time variability of accessing
data. On the contrary, if either user role or context change during the system
lifetime, we need run-time variability of accessing data. In this case an automatic

8 Marco Mori and Anthony Cleve

(a) (b)

Fig. 4. Feature-based (a) reconfiguration stack and (b) run-time filtering process

procedure should enable the continuous run-time variations of data according to
continuous context and user role variations (Fig. 4(b)).

This clearly distinction from design-time and run-time activities does not
hold in ubiquitous environments which are mainly characterized by variations of
requirements due to un-predictable contexts. In this case, the variability space
determined at design time may have to be re-computed at run-time taking into
account the variations to the requirement set to satisfy. The process we have
envisaged in [24] is only able to support variations that are foreseen at design
time. To this end, we enhance the process by enabling the unforeseen run-time
variability of accessing data by means of re-iterating the steps of the process at
run-time in order to satisfy a new set of requirements (Fig. 3). We consider only
addition of requirements while we do not take into account deletion since the
first poses the more difficult problems.

Feature evolution scenarios New requirements encapsulated into new fea-
tures should be included into the data-intensive systems at run-time. We classify
two co-evolution scenarios representing the addition of a new feature:

– Co-evolution between requirements and context: requirements of the applica-
tion have to be provided based on the current context. On the one hand,
whenever a new requirement has to be implemented into the system it may
be necessary to modify the context. For instance, if the hospital buys a new
machine for the radiologist department it may be necessary to add a new re-
quirement to acquire a new kind of medical images. This implies the addition
of a new applicability condition over the context to define when this require-
ment should be provided. Thus the context model has to be augmented with
the new room where this new kind of images will be collected. On the other
hand, whenever the dimensions of context are augmented, it may be necessary
to modify the set of requirements. For instance if the set of user roles is aug-
mented with the psychologist (context variation), we may have to consider a
new requirement to support his activity.

– Co-evolution between requirements and data: requirements may require data
in order to be fulfilled, thus they may co-evolve each other. Following the

Towards Highly Adaptive Data-intensive Systems: A Research Agenda 9

same example above, the new requirement to add for collecting new medical
images requires new data portions where the images will be recorded. Thus
data schemas and data instances have to be modified in order to include this
new type of information. On the contrary, whenever data are evolved (e.g.,
augmented), new requirements may be required for accessing these data. Let
us suppose to add to data the portion corresponding to the long hospital
treatments. As a consequence we will have to add a new requirement to al-
low visualization of this new kind of treatments through the graphical unit
interface (GUI).

Data adaptations in our framework In our framework we envisage the adop-
tion of conceptual, logical and data instances modifications that are semantics-
decreasing and semantics-increasing. In particular, in case of design-time vari-
ability we envisage the application of semantics-decreasing adaptations in order
to produce a subset of information from the global source schema that are suited
for a certain context. In case of run-time variability we envisage the adoption
of semantics-preserving and semantics-increasing adaptations since switching
from a context to another it is necessary to discard some information that are
not anymore required while it is necessary to add other information. Both for
design-time and run-time variability we envisage the adoption of conceptual mod-
ifications in order to align the platform-independent schema to the current set
of requirements that have to be provided in a certain context. Consequently,
we consider logical modifications in order to align the conceptual modification
to the platform-dependent schema and finally data instances modifications for
configuring the required database instance.

Data-related artifacts provided for a certain context are subsets of wider
artifacts which include data necessary for all possible contexts. Whenever a
variation to a data-related artifact is performed we have to check the correctness
of this variation considering two different problems. First, we have to check if
such variation is consistent with the rules defined for the definition of that specific
model (intra-artifact consistency). Second, we have to check if the variation to
the data-related artifact is consistent with its global source model (inter-artifact
consistency). We achieve the first by performing variations that are correct by
construction while we achieve the second by applying an adjustments phase to
changed models [11]. Once a consistent model is obtained we apply bi-directional
transformations [12, 39] in order to propagate variations from user-centric data
models (i.e., the conceptual schema) till to data instances.

3.2 Data-variability aware process understanding

Extracting the data-manipulation behavior of the application is a complex task
which supports designers in understanding a running data-intensive system.
These systems carry out frequent interactions with a data source with the
aim of fulfilling their requirements. Capturing these interactions is a promising
approach for understanding the application behavior and for supporting three
different types of activities: discovering the application behavior, checking the

10 Marco Mori and Anthony Cleve

compliance of the application behavior w.r.t. contracts models, enhancing the
application behavior. The discovering phase is required for legacy data-intensive
systems for which documentation of processes is not available. Let us consider
the e-health application implemented and working in hospital without documen-
tation; for these application it is interesting to produce the behavioral models
that are daily performed by physicians in order to document their actual ac-
tivities. Checking the compliance of the application behavior is useful for both
legacy and non-legacy data-intensive systems; let us consider an hospital man-
ager which desires to monitor some parameters of the activities performed by
third-party companies working at the hospital; managers agree on a written pro-
cess and they would monitor that this process is correctly performed in reality.
Enhancing the application behavior is another important activity for legacy and
non-legacy data-intensive systems that allows the variation of the process by
adding new instances of it, e.g., in a hospital the manager may want to add a
new instance for the patient registration process where user is asked off-site to
give a judgment of his experience at the hospital.

The activities we have described are at the core of process mining techniques
whose aim is to discover, to check and to enhance real processes starting from
event logs of information systems [41, 40]. Input events logs entail different in-
stances of the same process as they can be recorded during system execution
based on different types of information. Many approach presented in the liter-
ature [20, 31, 21, 33, 26] show the usefulness of process mining techniques for
discovering, checking and enhancing processes in real working environments. The
approach presented in [26] applies a process mining technique to logs of web ser-
vice interactions, while approaches presented in [20, 31, 21] show the usefulness of
process mining techniques in healthcare scenarios. Finally, the approach in [33]
shows how to adopt a process mining technique to extract processes of wafer
scanners to support testing held by a manufacturer. None of these approaches is
designed for data-intensive systems. In order to adopt process mining techniques
to data-intensive systems we have to determine higher-level data-manipulation
functions starting from the interactions of the systems with its data sources.
Approaches presented in the literature like [9, 10] support the extraction of se-
mantic information starting from sequences of queries and relationships among
those. Semantic information collected by following these approaches should be
the basis for determining the events of a data-intensive application in terms of
high-level data-manipulation functions. Upon the identification of these data-
oriented events, we envisage the adoption of classical process mining techniques
in order to produce data-oriented processes of the system.

Process mining for DISA systems can support the analysis of processes re-
lated to a single user or to a single group of users or it can support the analysis of
multi-user of multi-group of users performing the same process. For example in
the e-health scenario we may want to analysis the process of check-up visits for
all the doctors and check the variability of accessing data for such a process. In
addition we may want to analyze a process containing all the activities in which

Towards Highly Adaptive Data-intensive Systems: A Research Agenda 11

a single doctor is involved, i.e., check-up visits, surgery operations, department
administrator activities, etc...

3.3 Data-variability aware performance optimization

DISA applications need to be reconfigured at run-time as a consequence of
context-variations. Reconfigurations of data involve a set of conflicting require-
ments that should be carefully taken into account by the framework module
implementing the variation of data. Among these requirements we have stability
of data [18, 27], i.e., a measure defined as the ratio between variations of data
(output) and variation of context (input), user benefit, i.e., a metric expressing
the satisfaction of the user, and reconfiguration cost which is a metric defined
over the operations that have to be completed for reconfiguring data. Let us
consider the e-heath case study where the doctor changes his task from check-up
activity to an emergency activity. This requires a reconfiguration of the database
supporting the doctor mobile application in the emergency activity with a re-
stricted set of data. This reconfiguration should be performed by considering the
requirements above and in particular given more weight to the reconfiguration
cost requirement since in an emergency situation it is better to have a low re-
configuration cost (e.g., very quickly) and low user benefit (e.g., limited patient
information) instead of having high reconfiguration cost (e.g., wait too long) and
high user benefit (e.g., rich set of patient information).

In Software Engineering conflicting criteria are combined together with differ-
ent weights in a unique utility function that is optimized [44, 32, 28]. Approaches
presented in the literature of self-adaptive systems show that these optimization
approaches can benefit from predictive models of context. Indeed, looking at
future context variations affecting the reconfiguration choices, it is possible to
achieve better performance of the reconfiguration process. As presented in [25]
the authors exploit a probabilistic user preference model for achieving reconfigu-
ration of self-adaptive systems with better performance while in [6] the authors
propose an approach for achieving better reconfiguration performance based on
a predictive model concerning the availability of contextual resources. Following
the idea of these approaches, our aim is to optimize the performance of the re-
configuration process for DISA systems by adopting a predictive process model
containing information about current and future data accesses. As shown in Sec-
tion 3.2, it is possible to extract processes of data accesses starting from historical
information as the basis for getting a predictive model. Based on this model, we
envisage the adoption of a multi-objective optimization technique with the aim
of promoting better performance for the reconfiguration of data. This technique
should support the decision-making process by enabling the evaluation of the
most suitable configuration of data that should be adopted for design-time and
run-time adaptations.

Let us consider the e-health case study where the doctor is changing his
activity from visits management to department administrator and let us suppose
that he remains department administrator for a short period of time before
coming back to his visits. As soon as he becomes administrator, his application

12 Marco Mori and Anthony Cleve

has to be reconfigured in order to include the data required for performing the
new activity. Nevertheless it is not convenient to discard all the data required
for performing the visits since the doctor will soon return to visit patients. To
this end, as much as possible data regarding visits should be maintained into
the device taking into account the future context variations.

3.4 Techniques for implementation

The lifecycle process we envisage for DISA systems can benefit from current
practice technologies available in the literature. We present features by defining
their requirements (e.g. as Linear Time Temporal Logic expressions), context
requirements as predicates and data excerpts as sets of entity types of the con-
ceptual schema. We formalize a SAT problem (e.g., JaCoP tool2) for evaluating
the context states in which each configuration of features is admissible according
to its context predicate. Since more than one configuration may be admissible
at a certain context state, we envisage the adoption of multi-objective optimiza-
tion techniques for selecting the best possible configuration of data. Once such
a configuration is identified, we envisage the application of a filtering technique
for creating the subset of the global conceptual schema suited for the best con-
figuration at the current context [23]. We consider schema transformation tech-
niques for making the subset of the conceptual schema consistent with the global
schema. Then, through bi-directional techniques we propagate conceptual mod-
ifications to the logical schema and finally to data instances. We plan to model
data-related artifacts with DB-MAIN tool3 while we plan to adopt MySQL4

DBMS for data instances. As far as the migration problem is concerned, we plan
to adopt query parsers (e.g., JSqlParser5) for extracting semantic information of
data-related events to be applied to a Formal Concept Analysis technique [13],
(e.g., colibri-java6) with the aim of clustering queries which implement the same
high-level data-manipulation function [15]. Once high-level data accesses have
been identified, we plan to adopt the de-facto standard for process mining, i.e.,
ProM tool7 to extract data-oriented processes of legacy data-intensive systems.

4 Related Work

To the best of our knowledge, a lifecycle process that supports creation, mi-
gration and optimization of DISA systems has not been yet proposed in the
literature. This process should support design-time and run-time adaptivity of
accessing data. Most of approaches presented in the literature consider only spe-
cific problems within the process and they provide only design-time variability;

2 http://jacop.osolpro.com
3 http://www.db-main.be
4 http://www.mysql.com
5 http://jsqlparser.sourceforge.net
6 http://code.google.com/p/colibri-java
7 http://www.promtools.org

Towards Highly Adaptive Data-intensive Systems: A Research Agenda 13

they follow either a pruning (top-down) or a merging (bottom-up) perspective
for creating the data of interest (subset) from a global data model. In [2], the
authors propose a merging approach for tailoring the logical schema to the cur-
rent context instance which is modeled separately from the schema. In [7], the
authors work on a logical schema for producing the excerpt of data that fits the
current context-dependent user preferences. In [42], the authors propose a filter-
ing approach for creating a consistent excerpt of the conceptual schema starting
from a required subset of it. In [38], the authors propose a feature-oriented ap-
proach for tailoring the data of interest from a conceptual schema. They model
the variability of accessing data in terms of features but they do not link this
variability to context variations. In [3], the authors present a design technique
for creating very small databases from a big data source by considering con-
ceptual and logical schema. Context variations are not taken into account, thus
their approach does not support context-dependent run-time variations of data.
As far as run-time variability is concerned, the approach presented in [30] shows
how to achieve un-predictable variations of the context and how to propagate
this variations to the relational database.

Altought adaptivity of data can be achieved by considering artifacts at dif-
ferent abstraction levels, it is not still clear which is the process to follow in order
to create, to migrate and to optimize DISA systems that support design-time
and run-time adaptivity of accessing data. A link between application variability
and data variability has not been yet implemented in the literature making it
difficult to propagate variations of context to variations of required data. Most
of approaches support design-time variations of data while there is almost no
support for foreseen and unforeseen run-time variations; the latter are becoming
more and more important given that it is not always possible to provide the
complete space of reconfiguration choices at design time.

5 Conclusions

We discussed the critical problems of data-intensive systems and the need of
introducing adaptivity to ease the management of big amount of data for which
a context-dependent approach makes sense, i.e., different users accessing the
same system, heterogeneous environments where the application runs and het-
erogeneous processes to be completed over data. We presented a unique lifecycle
process for DISA systems and we showed how to solve the three critical problems
for the management of data variability. We proposed a methodological solution
and a possible integrated implementation which exploits techniques presented in
the literature. As for future work we will implement our integrated solution for
the lifecycle of DISA systems and we will experiment it at a large scale with a real
e-health system, e.g., OSCAR database8 which contains a huge amount of data
of interest for differents stakeholders performing heterogeneous care processes in
different contexts.

8 http://www.new.oscarmanual.org

14 Marco Mori and Anthony Cleve

References

1. C. Bolchini, C. Curino, G. Orsi, E. Quintarelli, R. Rossato, F. A. Schreiber, and
L. Tanca. And what can context do for data? ACM, 52(11):136–140, 2009.

2. C. Bolchini, E. Quintarelli, and L. Tanca. Carve: Context-aware automatic view
definition over relational databases. IS, 38(1):45–67, 2012.

3. C. Bolchini, F. A. Schreiber, and L. Tanca. A methodology for a very small data
base design. Inf. Syst., 32(1):61–82, 2007.

4. Y. Brun et al. Engineering self-adaptive systems through feedback loops. In Self-
Adaptive Systems, volume 5525, pages 48–70, 2009.

5. B. H. C. Cheng et al., editors. Self-Adaptive Systems, volume 5525 of LNCS, 2009.
6. S.-W. Cheng, V. Poladian, D. Garlan, and B. R. Schmerl. Improving architecture-

based self-adaptation through resource prediction. In SEFSAS, pages 71–88, 2009.
7. P. Ciaccia and R. Torlone. Modeling the propagation of user preferences. In ER,

pages 304–317, 2011.
8. A. Classen, P. Heymans, and P.-Y. Schobbens. What’s in a feature: A requirements

engineering perspective. In FASE, pages 16–30, 2008.
9. A. Cleve, J.-R. Meurisse, and J.-L. Hainaut. Database semantics recovery through

analysis of dynamic sql statements. J. Data Semantics, 15:130–157, 2011.
10. A. Cleve, N. Noughi, and J.-L. Hainaut. Dynamic program analysis for database

reverse engineering. In GTTSE, pages 297–321, 2011.
11. K. Czarnecki and M. Antkiewicz. Mapping features to models: A template ap-

proach based on superimposed variants. In GPCE, pages 422–437, 2005.
12. K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Terwilliger.

Bidirectional transformations: A cross-discipline perspective. In ICMT, pages 260–
283, 2009.

13. B. Ganter, R. Wille, and R. Wille. Formal concept analysis. Springer Berlin, 1999.
14. M. Glinz. On non-functional requirements. In RE, pages 21–26, 2007.
15. C. D. Grosso, M. D. Penta, and I. G. R. de Guzmán. An approach for mining

services in database oriented applications. In CSMR, pages 287–296, 2007.
16. P. Inverardi and M. Mori. Model checking requirements at run-time in adaptive

systems. In ASAS ’11, pages 5–9, 2011.
17. P. Inverardi and M. Mori. A software lifecycle process to support consistent evo-

lutions. In Self-Adaptive Systems, volume 7475 of LNCS, pages 239–264, 2012.
18. G. Karsai, A. Ledeczi, J. Sztipanovits, G. Peceli, G. Simon, and T. Kovacshazy.

An approach to self-adaptive software based on supervisory control. IWSAS’01,
pages 24–38, 2003.

19. D. O. Keck and P. J. Kühn. The feature and service interaction problem in telecom-
munications systems. a survey. IEEE TSE, 24(10):779–796, 1998.

20. R. Mans, W. M. P. van der Aalst, R. J. B. Vanwersch, and A. J. Moleman. Process
mining in healthcare: Data challenges when answering frequently posed questions.
In ProHealth/KR4HC, volume LNAI, pages 140–153, 2012.

21. R. S. Mans, H. Schonenberg, M. Song, W. M. P. van der Aalst, and P. J. M. Bakker.
Application of process mining in healthcare - a case study in a dutch hospital. In
BIOSTEC (Selected Papers), pages 425–438, 2008.

22. D. Martinenghi and R. Torlone. A logical approach to context-aware databases.
In A. D’Atri, M. De Marco, A. M. Braccini, and F. Cabiddu, editors, Management
of the Interconnected World, pages 211–219. Physica-Verlag HD, 2010.

23. A. Metzger et al. Disambiguating the documentation of variability in software
product lines: A separation of concerns, formalization and automated analysis. In
RE, pages 243–253, 2007.

Towards Highly Adaptive Data-intensive Systems: A Research Agenda 15

24. M. Mori and A. Cleve. Feature-based adaptation of database schemas. In Proc. of
the 8th Int. Workshop on Model-based Methodologies for Pervasive and Embedded
Software (MOMPES 2012), volume 7706 of LNCS, pages 85–105. Springer, 2013.

25. M. Mori, F. Li, C. Dorn, P. Inverardi, and S. Dustdar. Leveraging state-based user
preferences in context-aware reconfigurations for self-adaptive systems. In SEFM,
volume 7041 of LNCS, pages 286–301, 2011.

26. H. R. M. Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah. Event correlation
for process discovery from web service interaction logs. VLDB J., 20(3):417–444,
2011.

27. R. Nzekwa, R. Rouvoy, and L. Seinturier. A flexible context stabilization approach
for self-adaptive application. In PerCom, pages 7–12, 2010.

28. C. Parra et al. Using constraint-based optimization and variability to support
continuous self-adaptation. In SAC, pages 486–491, 2012.

29. C. A. Parra, A. Cleve, X. Blanc, and L. Duchien. Feature-based composition of
software architectures. In ECSA, pages 230–245, 2010.

30. E. Quintarelli, E. Rabosio, and L. Tanca. Context schema evolution in context-
aware data management. In ER, pages 290–303, 2011.

31. Á. Rebuge and D. R. Ferreira. Business process analysis in healthcare environ-
ments: A methodology based on process mining. Inf. Syst., 37(2):99–116, 2012.

32. B. Roy. Multicriteria Methodology for Decision Aiding. Kluwer Academic Publish-
ers, 1996.

33. A. Rozinat, I. S. M. de Jong, C. W. Günther, and W. M. P. van der Aalst. Process
mining applied to the test process of wafer scanners in asml. IEEE Transactions
on Systems, Man, and Cybernetics, Part C, 39(4):474–479, 2009.

34. M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research
challenges. TAAS, 4(2), 2009.

35. G. Saval, J. P. Puissant, P. Heymans, and T. Mens. Some challenges of feature-
based merging of class diagrams. In VaMoS, pages 127–136, 2009.

36. M. Schäler, T. Leich, M. Rosenmüller, and G. Saake. Building information system
variants with tailored database schemas using features. In CAiSE, pages 597–612,
2012.

37. P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps. Generic semantics
of feature diagrams. Computer Networks, 51(2):456–479, 2007.

38. N. Siegmund, C. Kästner, M. Rosenmüller, F. Heidenreich, S. Apel, and G. Saake.
Bridging the gap between variability in client application and database schema. In
BTW, 2009.

39. J. F. Terwilliger, A. Cleve, and C. Curino. How clean is your sandbox? - towards
a unified theoretical framework for incremental bidirectional transformations. In
ICMT, pages 1–23, 2012.

40. W. M. P. van der Aalst. Process mining: Overview and opportunities. ACM Trans.
Management Inf. Syst., 3(2):7, 2012.

41. W. M. P. van der Aalst et al. Process mining manifesto. In Business Process
Management Workshops (1), pages 169–194, 2011.

42. A. Villegas and A. Olivé. A method for filtering large conceptual schemas. In ER,
pages 247–260, 2010.

43. A. Villegas, A. Olivé, and M.-R. Sancho. On computing the importance of asso-
ciations in large conceptual schemas. In Conceptual Modelling and Its Theoretical
Foundations, volume 7260 of LNCS, pages 216–230, 2012.

44. P. Vincke. Multicriteria Decision-Aid. J. Wiley, New York, 1992.

	Lecture Notes in Business Information Processing
	Authors' Instructions
	Introduction
	Framework basics
	DISA artifacts
	Data adaptations dimensions
	Structural dimension
	Semantic dimension
	Consistency dimension

	Variability for DISA systems
	Data-variability aware design process
	Feature evolution scenarios
	Data adaptations in our framework

	Data-variability aware process understanding
	Data-variability aware performance optimization
	Techniques for implementation

	Related Work
	Conclusions
	References

